

# FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

# "IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI – HUARI -ANCASH"

Tesis para optar el título profesional de:

Ingeniero Civil

Autor:

Mario Víctor Aguilar Cosquillo

Asesor:

Mg. Jorge Canta Honores

Lima - Perú

2018



# **DEDICATORIA**

Esta tesis está dedicada en especial a mis padres María Maura Cosquillo Rojas y Víctor Raúl Aguilar Macha, quienes con su paciencia, esfuerzo y comprensión me han permitido cumplir hoy un anhelo más; agradecer siempre a mis padres por los principios y valores inculcados en mí, que me han ayudado a lograr este objetivo.

A mis hermanos María, Rosa y Víctor; a mis sobrinos Katherine, Anthony, Víctor, Talita, Krisbell, Acxel y April por su constante apoyo, por estar siempre a mi lado en todo momento brindándome ese cariño incondicional.

A mis abuelitos Francisco Cosquillo, Faustina Rojas y Juana Macha que desde el cielo sé que siempre me cuidan y, a mi abuelito Amadeo Aguilar a quien siempre tengo presente.

A toda mi familia porque con sus palabras y consejos hacen que mejore cada dia.



# **AGRADECIMIENTO**

Primeramente agradecer a Dios por brindarme su bendición y la oportunidad de lograr este objetivo, a mi familia por estar siempre a mi lado.

A los amigos de la Universidad Nacional de Ingeniería, Manuel Percca, Katty Encarnación, Carlos Álvarez, Alfredo Villegas, Hebert Gutiérrez, José Erazo, Boris Fortón, Irnack Agüero, Rosa Flores, Mercedes Valle, Magaly Grados, Erick Roca, Enrique Soberon, William Janampa, José Brenis, Susana Tupa, Kelly Martel, Daniel Pérez, Jimmy Vilcachahua, Dany Rodríguez, Luis Visurraga; a mis amigos de la Universidad Privada del Norte, Sandy Cerón, Miller Campos y Gustavo Tirado.

A todos mis profesores tanto de la UNI como de la UPN y demás amigos que de alguna manera con sus palabras de aliento y apoyo incondicional me dieron fuerzas para seguir adelante y conseguir este objetivo.



# **TABLA DE CONTENIDOS**

| DEDIC          | CATORIA                                                                                 | 2  |
|----------------|-----------------------------------------------------------------------------------------|----|
| AGRA           | ADECIMIENTO                                                                             | 3  |
| TABL           | A DE CONTENIDOS                                                                         | 4  |
| ÍNDIC          | E DE TABLAS                                                                             | 6  |
| INDIC          | E DE CUADROS                                                                            | 7  |
| ÍNDIC          | E DE IMAGENES                                                                           | 7  |
| INDIC          | E DE FOTOGRAFIAS                                                                        | 8  |
| INDIC          | E DE ECUACIONES                                                                         | 8  |
| RESU           | MEN                                                                                     | 9  |
| ABST           | RACT                                                                                    | 10 |
| CAPIT          | TULO 1: INTRODUCCION                                                                    |    |
| 1.1.           | PLANTEAMIENTO Y DELIMITACIÓN DEL PROBLEMA                                               |    |
| 1.1.1.         | Realidad Problemática                                                                   |    |
|                | Formulación del Problema                                                                |    |
|                | 1.Problema Principal                                                                    |    |
|                | 2.Problemas Específicos                                                                 |    |
|                | Importancia y Justificación del Estudio                                                 |    |
| 1.1.4.         | Limitaciones para la elaboración de la Tesis                                            |    |
| 1.2.           | OBJETIVOS                                                                               |    |
| 1.2.1.         |                                                                                         |    |
| 1.2.2.<br>1.3. | Objetivos Específicos                                                                   |    |
| 1.3.<br>1.3.1. | Hipótesis General                                                                       |    |
| 1.3.1.         | Hipótesis Específica                                                                    |    |
|                |                                                                                         |    |
|                | TULO 2: MARCO TEORICO                                                                   |    |
| 2.1.           | MARCO HISTÓRICO                                                                         |    |
| 2.2.           | INVESTIGACIÓN RELACIONADA AL TEMA                                                       |    |
| 2.3.           | ESTRUCTURA TEÓRICA Y CIENTÍFICA QUE SUSTENTA EL ESTUDIO  DEFINICIÓN DE TÉRMINOS BÁSICOS |    |
| 2.4.           |                                                                                         |    |
|                | TULO 3: MARCO METODOLOGICO                                                              |    |
| 3.1.           | TIPO DE ESTUDIO                                                                         | _  |
| 3.2.           | POBLACIÓN, MUESTRA Y MUESTREO                                                           |    |
| 3.3.           | INFORMACION RECOPILADA                                                                  |    |
| ა.ა.1.         | Salud, Higiene y Saneamiento Básico                                                     | 41 |

| 3.3.2.  | Característica de la Vivienda                                                 | 43  |
|---------|-------------------------------------------------------------------------------|-----|
| 3.3.3.  | Servicios Existentes                                                          | 43  |
| 3.3.4.  | Ocupación Principal                                                           | 44  |
| 3.3.5.  | Ingresos Familiares                                                           | 45  |
| 3.3.6.  | Distribución del Gasto Familiar                                               | 46  |
| 3.3.7.  | Calificación del Servicio de Agua y Alcantarillado                            | 47  |
| 3.3.8.  | Aspectos Ambientales                                                          | 48  |
| 3.4.    | MATRIZ DE CONSISTENCIA                                                        | 50  |
| CAPIT   | ULO 4: DESARROLLO DE LA INVESTIGACION                                         |     |
| 4.1.    | CALCULO POBLACIONAL                                                           |     |
| 4.2.    | DETERMINACION DE DEMANDAS                                                     |     |
| 4.3.    | DETERMINACION DEL CAUDAL DE DISEÑO                                            |     |
| 4.4.    | DESCRIPCION DEL DISEÑO DEL SISTEMA INTEGRAL DE TRATAMIENTO DE RESIDUAL        |     |
| 4.4.1.  | Localización del Proyecto                                                     | 57  |
| 4.4.2.  | Estudio de Suelos                                                             | 58  |
| 4.4.3.  | Topografía                                                                    | 62  |
| 4.4.4.  | Planteamiento de las Unidades de Tratamiento                                  | 64  |
| 4.4.5.  | Diseño de las Rejas Gruesas y Rejas Finas                                     | 67  |
| 4.4.6.  | Diseño de Tanque Imhoff y Lecho de Secado                                     | 73  |
| 4.4.7.  | Diseño de Filtros Percoladores                                                | 80  |
| 4.4.8.  | Diseño de Sedimentador Secundario                                             | 83  |
| 4.4.9.  | Laguna de Remoción de Patógenos-Parásitos                                     | 88  |
| 4.4.10. | . Emisor de agua tratada                                                      | 95  |
| 4.5.    | COSTO DE INVERSIÓN                                                            | 96  |
| 4.5.1.  | Sostenibilidad                                                                | 97  |
| 4.5.1.1 | .Capacidad y disponibilidad de pago de los beneficiarios                      | 97  |
| 4.5.1.2 | 2.Capacidad de pago de los usuarios de los servicios                          | 98  |
| 4.5.1.3 | B. Estimación de la capacidad de pago                                         | 98  |
| 4.6.    | ANALISIS DEL EFLUENTE                                                         | 101 |
| 4.6.1.  | Caracterización del Cuerpo Receptor                                           | 101 |
| 4.6.2.  | Calculo del Balance de Masas                                                  | 103 |
| CAPIT   | ULO 5: RESULTADOS y DISCUSION                                                 |     |
| 5.1.    | PROYECCION DE LAS CARACTERISTICAS DE LAS AGUAS RESIDUALES TR (EFLUENTE FINAL) | 105 |
| 5.2.    | ANÁLISIS DEL RESULTADO DEL BALANCE DE MASAS                                   | 108 |
| CAPIT   | ULO 6: CONCLUSIONES                                                           | 110 |
| CAPIT   | ULO 7: RECOMENDACIONES                                                        | 113 |
| REFE    | RENCIAS                                                                       | 114 |
| ANEX    | os                                                                            | 115 |
| ANEXO   | OS 1: PANEL FOTOGRÁFICO                                                       | 116 |



# **ÍNDICE DE TABLAS**

| Tabla 1. Valores durante el nonzonte de programación                                             |      |
|--------------------------------------------------------------------------------------------------|------|
| Tabla 2: Valor histórico del déficit de cobertura en los últimos 05 años                         |      |
| Tabla 3: Meta de cobertura del Servicio de Tratamiento de Aguas Residuales para el sector urb    | ano  |
|                                                                                                  | 13   |
| Tabla 4: Impactos Sociales Generados por la construcción y Gestión de una Planta de Tratamientos | ento |
| de Aguas Residuales.                                                                             |      |
| Tabla 5: Impactos Económicos Generados por la construcción y Gestión de una Planta               |      |
|                                                                                                  |      |
| Tratamiento de Aguas Residuales.                                                                 |      |
| Tabla 6: Impactos Ambientales Generados por la construcción y Gestión de una Planta              |      |
| Tratamiento de Aguas Residuales                                                                  |      |
| Tabla 7: Estado situacional de las 143 PTAR urbanas - 2007                                       |      |
| Tabla 8: Características de los principales niveles de tratamiento.                              |      |
| Tabla 9: Desempeño de las tecnologías de tratamiento de aguas residuales domésticas              | 31   |
| Tabla 10: Tipo de Tratamiento de las Enfermedades                                                | 41   |
| Tabla 11: Fuente de Abastecimiento de Agua Potable                                               | 42   |
| Tabla 12: Servicios Higiénicos                                                                   |      |
| Tabla 13: Tipo y Material de vivienda.                                                           |      |
| Tabla 14: Servicio de Energía Eléctrica                                                          |      |
| Tabla 15: Tipo de Alumbrado                                                                      |      |
| Tabla 16: Ocupación de los Integrantes de la Familia                                             |      |
| Tabla 17: Promedio Ingresos de los Integrantes de la Familia                                     |      |
| Tabla 18: Distribución del Gasto Familiar en Promedios                                           |      |
|                                                                                                  |      |
| Tabla 19: Calificación del servicio que presta la JASS                                           |      |
| Tabla 20: Servicio Higiénico que tiene en su vivienda está conectado                             |      |
| Tabla 21: Situación del servicio Higiénico                                                       |      |
| Tabla 22: Servicio actual de Agua y Alcantarillado                                               |      |
| Tabla 23: Cuál sería el peor problema generado por no contar con un buen sistema de alcantaril   |      |
| y desagüe                                                                                        |      |
| Tabla 24: Conoce Ud. Donde es evacuado el desagüe de la ciudad                                   | 49   |
| Tabla 25: Problema, Objetivo e Hipótesis                                                         | 50   |
| Tabla 26: Tipo de conexión de Agua Potable                                                       | 51   |
| Tabla 27: Proyección de la Población Futura                                                      | 52   |
| Tabla 28: Proyección del Número de Conexiones                                                    |      |
| Tabla 29: Proyección del promedio por categorías                                                 |      |
| Tabla 30: Consumo Promedio y Demanda Promedio Total                                              |      |
| Tabla 31: Caudales Máximos y Caudal de Diseño de la PTAR                                         |      |
| Tabla 32: Resumen de ubicación de calicatas                                                      |      |
| Tabla 33: Resultados de los ensayos de clasificación de suelos                                   |      |
|                                                                                                  |      |
| Tabla 34: Tolerancia de Poligonales Topográficas                                                 |      |
| Tabla 35: Levantamiento Topográfico de Obras Lineales                                            |      |
| Tabla 36: Levantamiento Topográfico de Obras No Lineales                                         |      |
| Tabla 37: Parámetros Agua Residual – Diseño                                                      |      |
| Tabla 38: Cuadro de LMPs para efluentes de PTAR                                                  |      |
| Tabla 39: Cuadro para selección de los procesos de tratamiento de las aguas residuales           | 66   |
| Tabla 40: Caracterización del Cuerpo Receptor                                                    |      |
| Tabla 41: Caracterización del Agua residual tratada (Efluente de PTAR)                           | 102  |
| Tabla 42: Cuadro de ECAs para cuerpo receptor                                                    |      |
| Tabla 43: Eficiencia del Sistema en DBO                                                          | 106  |
|                                                                                                  |      |

| Tabla 44: Eficiencia del Sistema en Aceites y Grasas                                        | 106      |
|---------------------------------------------------------------------------------------------|----------|
| Tabla 45: Eficiencia del Sistema en DQO                                                     | 107      |
| Tabla 46: Eficiencia del Sistema en SST                                                     | 107      |
| Tabla 47: Eficiencia del Sistema en Coliformes Fecales                                      |          |
| Tabla 48: Cuadro de resumen del tipo de agua residual tratada – Efluente Final              | 107      |
| Tabla 49: Cuadro de ECAs para cuerpo receptor                                               | 108      |
| Tabla 50: Resultados del Balance de Masas                                                   | 108      |
| INDICE DE CUADROS                                                                           |          |
| Cuadro 1: Costos Medios y Cantidad de Producción de Agua Residual Tratada vs Agua Limpia.   |          |
| Cuadro 2: Pago promedio por consumo de Agua Potable efectuado por residencias               |          |
| Cuadro 3: Costo de Implementación del Sistema Integral de Tratamiento de Aguas Residuales   |          |
| Cuadro 4: Arreglos institucionales.                                                         |          |
| Cuadro 5: Cálculo de la tarifa incremental promedio de largo plazo                          |          |
| Cuadro 6: Tarifa familiar a largo plazo                                                     |          |
| Cuadro 7: comparación de la cuota promedio de operación y mantenimiento de agua potable co  |          |
| capacidad de pago promedio                                                                  |          |
| Cuadro 8: Resultados de Caracterización de Cuerpo Receptor                                  | 101      |
| ÍNDICE DE IMAGENES                                                                          |          |
| Imagen 1: Árbol de Causas y Efectos                                                         | 16       |
| Imagen 2: Letrinas en la Antigua Roma                                                       |          |
| Imagen 3: Proporción de la Población que usa Instalaciones de Saneamiento Mejoradas en 2    |          |
| ,                                                                                           |          |
| Imagen 4: Evolución del Tratamiento de ARD 1996 - 2009                                      | 25       |
| Imagen 5: Tecnología Empleada por las EPS                                                   | 26       |
| Imagen 6: Principales Enfermedades Presentadas en el Distrito de Huari, Según Grupo Etéreo. | . 41     |
| Imagen 7: Ubicación Geográfica del Distrito de Huari                                        | 57       |
| Imagen 8: Vista panorámica de la zona urbana de Huari                                       | . 58     |
| Imagen 9: Geología regional del área de estudio                                             |          |
| Imagen 10: Columna estratigráfica regional de Huari                                         | 60       |
| Imagen 11: Vista de la Planta de Tratamiento y el Distrito de Huari                         | 61       |
| Imagen 12: Planta de Tratamiento Proyectada - Huari                                         |          |
| Imagen 13: Resultados de Caracterización de Aguas Residuales                                |          |
| Imagen 14: Detalle de Reja Gruesa (e = 5 cm)                                                |          |
| Imagen 15: Desarenador Primario - Cámara de rejas                                           |          |
| Imagen 16: Detalle de Reja Gruesa (e = 1.5 cm)                                              |          |
| Imagen 17: Vista planta-perfil de Cámara de repartición                                     |          |
| Imagen 18: Vista detalles de Cámara de repartición.                                         |          |
| Imagen 19: Sección del Diseño del Tanque Imhoff                                             |          |
| Imagen 20: Sección del Diseño de Lecho de Secado                                            |          |
| Imagen 21: Vista de filtro percolador                                                       |          |
| Imagen 22: Vista de un sistema de distribución rotatorio para Filtros percoladores.         |          |
| Imagen 23: Vista en Planta del Filtro Percolador                                            |          |
| Imagen 24: Vista Corte A-A, Filtro Percolador                                               | 82<br>83 |
| maden zo ivisia cone p-p. filito Percolador                                                 | ന.⊀      |



# "IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI - HUARI - ANCASH"

| Imagen 26: Esquema de la pantalla difusora de cada sedimentador                                | 85    |
|------------------------------------------------------------------------------------------------|-------|
| Imagen 27: Esquema del Sedimentador Secundario                                                 | 85    |
| Imagen 28: Vista planta del lecho de secado para los Sedimentadores secundarios                |       |
| Imagen 29: Cortes del lecho de secado para el sedimentador secundario                          | 86    |
| Imagen 30: Cortes del lecho de secado para el sedimentador secundario                          | 87    |
| Imagen 31: Esquema del Lecho de Secado de Lodos                                                | 87    |
| Imagen 32: Esquema de componentes para el tratamiento de patógenos                             |       |
| Imagen 33: Vista planta de las lagunas para remoción de patógenos                              |       |
| Imagen 34: Vista en planta del sistema de disposición Final                                    |       |
| Imagen 35: Vista del Distrito de Huari y sus cuatro áreas de drenaje que aportan las aguas res |       |
| al sistema integral de tratamiento.                                                            |       |
| Imagen 36: Vista de las unidades que componen el sistema integral de tratamiento de            | aguas |
| residuales                                                                                     | 117   |
| INDICE DE FOTOGRAFIAS                                                                          |       |
| Foto 1: Visita al Distrito de Huari - Recorrido                                                | 118   |
| Foto 2: Vista Panorámica del área para la PTAR                                                 | 118   |
| Foto 3: Lecho de secado - estructuras en abandono                                              | 118   |
| Foto 4: lagunas en estado de abandono                                                          | 119   |
| Foto 5: Deslizamiento de terreno sobre laguna en abandono                                      | 119   |
| Foto 6: Camino para trazo de emisor de descarga                                                | 119   |
| Foto 7: Vista del rio Huayochaca - Cuerpo Receptor                                             | 120   |
| Foto 8: Sección del Rio Huayochaca - Puente Cardonyoc                                          | 120   |
|                                                                                                |       |
| INDICE DE ECUACIONES                                                                           |       |
| Ecuación 1: Población Futura - Método Geométrico                                               | 51    |
| Ecuación 2: Cálculo del Número de Conexiones Totales                                           | 52    |
| Ecuación 3: Provección de las Conexiones Comerciales Futura                                    | 52    |



#### RESUMEN

Actualmente, existe un déficit en la cobertura del saneamiento y conforme a lo indicado por la ONU en 2017, el 80% de las aguas residuales a nivel mundial no se tratan previamente de su vertimiento a algún cuerpo de agua y, en el Perú según la SUNASS en el 2016 existía un 32.0% de volumen de aguas residuales sin tratamiento que son dispuestos al ambiente causando daños sociales, económicos y ambientales.

El presente estudio se ha analizado los factores que ocasionan esta problemática y se ha podido establecer que el problema principal es la ausencia de un sistema integral de tratamiento de aguas residuales ya que no se cuenta con las inversión necesaria; sin embargo otro aspecto seria que existiendo un sistema de tratamiento de agua residual estas no desempeñan su finalidad a causa de una mala operación y mantenimiento generando contaminación ambiental en lugar de reducirlo; un tercer aspecto es que se han planteado sistemas de tratamiento con tecnologías inapropiadas para ciertas localidades convirtiéndose en un foco de contaminación generando la aparición de vectores de enfermedades.

Según lo indicado anteriormente se ha planteado el siguiente problema ¿De qué manera la implementación de un Sistema Integral de Tratamiento de Agua Residual, mejora la calidad de vida de la población en el Distrito de Huari? Y para resolver adecuadamente el problema surgido primeramente se han planteado nuestros dos problemas específicos ¿De qué manera el Diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce la Contaminación Ambiental en el Distrito de Huari? Y ¿De qué manera la construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari? Seguidamente se ha procedido a describir el diseño y construcción del sistema integral de tratamiento de agua residual propuesto a fin de que se cumplan dos exigencias para la mejora de la calidad de vida de la población del distrito de Huari.

Primero se ha verificado que el diseño cumpla con los Límites Máximos Permisibles (LMP) y segundo que después de la puesta en marcha se verifique el cumplimiento de los Estándares de calidad ambiental (ECAs)

Palabras Clave: Agua Residual, Tratamiento de Agua Residual, Balance de Masa, Límite Máximo Permisible, Estándares de Calidad Ambiental.



#### **ABSTRACT**

Currently, there is a deficit in the coverage of sanitation and according to what is indicated by the UN in 2017, 80% of wastewater worldwide is not previously treated for its discharge to any body of water and, in Peru according to the SUNASS in 2016 there was a 32.0% volume of wastewater without treatment that are disposed to the environment causing social, economic and environmental damage.

The present study has analyzed the factors that cause this problem and it has been established that the main problem is the absence of an integral wastewater treatment system since the necessary investment is not available; however another aspect would be that existing a residual water treatment system these do not fulfill their purpose because of a bad operation and maintenance generating environmental pollution instead of reducing it; A third aspect is that treatment systems have been proposed with inappropriate technologies for certain localities, becoming a source of contamination, generating the appearance of disease vectors.

As indicated above, the following problem has been raised: How does the implementation of an Integral Residual Water Treatment System improve the quality of life of the population in the Huari District? And to properly solve the problem that arose first, our two specific problems have been raised. How does the Design of an Integral Residual Water Treatment System reduce Environmental Pollution in the Huari District? And how does the construction of an Integral Residual Water Treatment System preserve the Environment in the Huari District? Next, we proceeded to describe the design and construction of the integral wastewater treatment system proposed in order to meet two requirements for improving the quality of life of the population of the district of Huari.

First it has been verified that the design complies with the Maximum Permissible Limits (LMP) and second that after the start-up, compliance with the Environmental Quality Standards (ECAs) is verified

Keywords: Residual Water, Wastewater Treatment, Mass Balance, Maximum Permissible Limit, Environmental Quality Standards.



# CAPITULO 1: INTRODUCCION

#### 1.1. PLANTEAMIENTO Y DELIMITACIÓN DEL PROBLEMA

#### 1.1.1. Realidad Problemática

Son diversos los criterios que corresponden tener en atención al efectuar una investigación de la situación del saneamiento en un determinado país, empezando desde el crecimiento poblacional, que genera el acrecentamiento de la demanda de agua potable y este a su vez demanda una cantidad mayor de redes recolectoras de alcantarillado y finalmente un buen sistema de tratamiento de aguas residuales. Es imposible pensar en brindar acceso al agua potable, sin antes haber apreciado el sistema de tratamiento de las aguas residuales, ya que estarían siendo evacuadas a entornos bióticos, ocasionando la aparición de focos de contaminación.

Las tecnologías de tratamiento de agua residual aplicadas son frecuentemente inconvenientes, para las zonas en las que se piensa implementar, entonces podemos decir que es necesario un correcto análisis y reconocimiento de la zona, antes de efectuar el proyecto de un sistema de tratamiento de agua residual.

La revista electrónica "lagua" (Montes, 2017, pág. 1) en su artículo nombrado "Las Aguas Residuales en el Perú, Realidad al 2017" precisa que, en tiempos en que el fenómeno del niño está apaleando toda la nación y nos expone lo endeble que somos ante estas circunstancias por la falta de medidas de contingencia; tiempos en los que nos hallamos en la búsqueda de recursos frente a la insolvencia de agua potable, no debemos resignar la problemática que enfrenta el país, en referencia del tratamiento de aguas residuales domésticas e industriales.

Este problema del tratamiento de aguas residuales es a nivel mundial y según lo indicado por la ONU, el 80 % de las aguas residuales de todo el mundo no se les da un tratamiento previamente a su vertimiento, ocasionando no solo impactos negativos a la fauna y flora, sino, males y víctimas prematuras que significan cada año muchos miles de cientos de millones al PBI del planeta.

En el Perú, las entidades reguladoras delegadas a vigilar el acatamiento de las leyes supremas (decretos supremos), que aprueban las normas concernientes al tratamiento de agua residual, asi por ejemplo la norma OS.090, y que al mismo tiempo vigilan el acatamiento de los Límites Máximos Permisibles (LMP) y de los Estándares de Calidad Ambiental (ECA) que deben cumplir cada empresa privada o pública, cuando solicitan permisos para ejecutar descargas, rehúso o riego del agua efluente. Las entidades reguladoras efectúan su trabajo de forma absoluta, pero, el compromiso de practicar estas normas no convendría sólo a responder al hecho de obviar una sanción, sino, a una concientización y respeto por el medio ambiente.

A lo largo del país localizamos un sin número de plantas de tratamiento de agua residual que no cumplen con su función correctamente; algunas han sido sobre dimensionadas y otras que no son eficientes; otras que han sido implementadas con una tecnología que no es recomendada para el



clima de la zona; muchos de ellos son modelos importados que no necesariamente van a funcionar en la realidad peruana; y así, podemos referir muchas situaciones que, donde supuestamente el interés económico de la empresa privada o la falta de profesionalismo de las empresas instaladoras, concibe que existan plantas abandonadas, o, peor aún, usadas pero cuya agua termina en algún cuerpo de agua, sin ningún tipo de fiscalización.

En el tiempo, el estado y la inversión privada, han planeado políticas que impulsan a la elaboración de proyectos relacionados con el saneamiento, los programas nacionales por parte del Ministerio de vivienda Construcción y Saneamiento tales como Programa Nacional de Saneamiento Urbano (PNSU) y el Programa Nacional de Saneamiento Rural (PNSR) han venido trabajando en conjunto con las demás entidades como las diferentes EPS, SUNASS, SEDAPAL, etc. con la intención de promover las inversiones estatales y privadas con proyectos dirigidos a esta problemática, sin embargo las metas propuestas no se llegan a concretar, es así que según (Saneamiento, 2018) lo señalado en el anexo 1 del boletín del Ministerio de Vivienda Construcción y Saneamiento en su "Formato de presentación del indicador asociado a la cobertura de servicios" publicado el 05.01.2018, para el Valor del indicador se tiene:

- 1) Línea de base 2015 = 34.6% de volumen aguas residuales sin tratamiento en localidades urbanas dentro del ámbito de las EPS.
  - Volumen recolectado de aguas residuales: 970, 558,170 m3
  - Volumen de agua residual con tratamiento: 635, 110,459 m3
  - Volumen de agua residual sin tratamiento: 335, 447,711 m3
- 2) Valores durante el horizonte de programación:

Tabla 1: Valores durante el horizonte de programación

| 2017  | 2018  | 2019  | 2020 | 2021 |
|-------|-------|-------|------|------|
| 26.0% | 21.0% | 14.0% | 7.0% | 0.0% |

- 3) Valor al final del horizonte de la programación a diciembre de 2021 = 0.0% de volumen agua residual sin tratamiento en localidades urbanas dentro del ámbito de las EPS.
  - Volumen recolectado de aguas residuales: 1, 245, 155,938 m3
  - Volumen de agua residual con tratamiento: 1, 245, 155,938 m3
  - Volumen de agua residual sin tratamiento: 0.0 m3
- 4) Valor histórico del déficit de cobertura en los últimos 05 años.



Tabla 2: Valor histórico del déficit de cobertura en los últimos 05 años.

| 2012  | 2013  | 2014  | 2015  | 2016  |
|-------|-------|-------|-------|-------|
| 68.0% | 53.8% | 39.4% | 34.6% | 32.0% |

Según (SUNASS, 2015, pág. 19) el boletín "Diagnóstico de las Plantas de Tratamiento de Aguas Residuales en el Ámbito de Operación de las Entidades Prestadoras de Servicio de Saneamiento" nos señala que el Plan Nacional de Saneamiento viene a ser el marco de ordenación con el fin de integrar y ajustar las gestiones de los diversos funcionarios que de alguna forma intervienen en el perfeccionamiento del sector saneamiento. De igual manera en correspondencia al tratamiento de las aguas residuales domésticas, el Plan Nacional de Saneamiento plantea como objetivo "aumentar la cobertura y optimizar la calidad y el sostenimiento de los servicios de saneamiento y tratamiento de las aguas servidas así como la disposición final de las excretas".

Finalmente nos indica que para verificar este objetivo, el citado plan ha precisado la meta de una cobertura del 100% del tratamiento de aguas residuales volcadas al sistema de alcantarillado (véase la tabla 3) para el 2015.

Tabla 3: Meta de cobertura del Servicio de Tratamiento de Aguas Residuales para el sector urbano

| AÑO                  | 2005 | 2010 | 2015 |
|----------------------|------|------|------|
| A NIVEL NACIONAL (%) | 22   | 54   | 100  |
| SEDAPAL (%)          | 10   | 40   | 100  |
| EPS GRANDES (%)      | 43   | 72   | 100  |
| EPS MEDIANAS (%)     | 33   | 66   | 100  |
| EPS PEQUEÑAS (%)     | 6    | 53   | 100  |

Fuente: (MVCS, Plan Nacional de Saneamiento 2006 - 2015, 2006)

La problemática que aborda el presente estudio considera lo siguiente:

#### Incumplimiento de la Gestión del Cronograma

Se logra observar que, según el Plan de Saneamiento 2006-2015 del MVCS se tenía proyectado obtener al 2015 un 100% de cobertura de la asistencia del tratamiento de aguas residuales para el sector urbano, además en el 2018 el mismo MVCS nos señala que el valor histórico del déficit de cobertura al 2015 fue del 34.6%.

Actualmente existen en el país un déficit de cobertura de los servicios de saneamiento más aun en las zonas urbanas y peri-urbanas del interior del país, en las cuales los servicios de muchas de estas localidades son administrados por los propios municipios que a su vez no cuentan con la capacidad de gestión técnico – económico para mantener el servicio de agua y alcantarillado para toda la



población; aun así la localidad se encuentre en el ámbito de competencia de una Empresa Prestadora de Servicio (EPS) reconocida por SUNASS.

Así mismo muchas EPS que brindan el servicio de saneamiento en zonas urbanas y rurales en el interior del país, no cuentan con la capacidad para lograr el 100% de la cobertura, obligando a que se creen las conocidas Área Técnica Municipal (ATM) encargadas del Servicio de Saneamiento, el cual cuenta con presupuesto mínimo auto sustentado mediante el cobro de tarifas.

Estas ATM, realizan un trabajo espontaneo según se de cada eventualidad de fallas en el servicio; no cuentan con personal calificado que pueda operar y/o gestionar de manera adecuada los servicios de saneamiento a nivel macro, más aun cuando no existe un sistema de micro medición ni tarifas.

Se prevé que al tener insuficiencias en el manejo del sistema de saneamiento año a año, se seguirán generando impactos, sociales, económicos y ambientales negativos que perjudican a la población, el poseer una adecuada fuente de agua involucra plantear un buen sistema de recolección de agua residual y aún más poseer un correcto sistema de tratamiento de aguas residuales.

La elección de la alternativa de solución que se plantea, respecto al problema de la ausencia de una buena gestión de las aguas residuales, es la ejecución y buen plan de operación y mantenimiento de un sistema integral de tratamiento de aguas residuales planeada a 20 años de asistencia (vida útil).

#### Daños al Medio Ambiente e Insatisfacción de Interesados

La Problemática de la gestión de las aguas residuales, involucra el cuidado del medio ambiente en el cual nos desarrollamos, así como la salud del hombre, a fin de prevenir enfermedades infectas contagiosas. Según (J. Fernando Larios-Meoño, 2015, pág. 10) la Revista de la Facultad de Ingeniería de la USIL, nos indica que:

En América Latina la población se halla agrupada en ciudades, se puede decir que un 80%. Además, la disposición de agua es escasa. Aún más cuando el 70% de las aguas residuales no poseen tratamiento, lo cual entorpece alcanzar el ciclo del agua, especialmente por el reúso del agua debido a alto grado de contaminación. Actualmente en Perú, simplemente se ha realizado el 30% de la inversión del estado en tratamiento de agua, acorde al Plan Nacional de Saneamiento Urbano y Rural 2006-2015. Los impactos de la contaminación del agua ocurren a nivel primario, secundario y terciario de las fuentes de agua. Las sustancias contaminantes del agua son orgánicas e inorgánicas y se sabe que siempre la contaminación del agua expone a la Salud Pública a un riesgo, conforme a lo indicado por la Organización Mundial de la Salud (OMS). Una inquietud es la contaminación del agua, que proviene de la presencia de elevados niveles de arsénico inorgánico, plomo y cadmio por las consecuencias negativas tales como el cáncer, diabetes mellitus, y padecimientos cardiovasculares. Para los casos de los distritos de Lima, La Oroya y Juliaca, el rango de la



concentración de arsénico inorgánico fue de 13 a 193 mg/l para las aguas subterráneas y superficiales, más alto que el límite de 10 mg/l según lo recomendado por la OMS.

"Yee-Batista (2013) afirma que el 80% de la población latinoamericana vive en ciudades y una gran parte en lugares cercanos a fuentes contaminadas. Agrega señalando que, aunque América Latina una de las regiones más biodiversas del mundo y dueña de un tercio de las fuentes de agua del mundo, la contaminación del agua constituye resultados ecológicos negativos.

Yee-Batista (2013) nos asevera que el 70% de las aguas residuales de Latinoamérica no poseen tratamiento. El agua es captada, usada y vertida completamente contaminada a los ríos. Es importante el tratamiento de aguas residuales para volver a utilizar el agua, impidiendo su contaminación y la del ambiente.

Los lugares que poseen inadecuado abastecimiento de agua toleran por lo general enfermedades como el cólera, la hepatitis, la disentería, gastroenterocolitis, etc.; con lo cual se entiende que el tratamiento de aguas residuales necesita de la creación de políticas de saneamiento ambiental, más aun teniendo en cuenta que en las ciudades, se conciben aguas residuales causadas por uso doméstico, para lo cual se necesita de plantas de tratamiento de aguas residuales fundamentalmente en las urbes por la gran concentración de población que existe en ellas.

Las causas que dan originen a esta problemática es que las ciudades del interior del país se están desarrollando, la reclasificación de las zonas rurales como áreas urbanas y la migración de los pueblos a las ciudades están generando un crecimiento poblacional del tipo exponencial.

El incremento explosivo de la población urbana plantea retos en el abastecimiento de agua y cobertura de saneamiento, estos entre otros son los más urgentes y los que se sienten de forma más dolorosa cuando faltan.

La falta de agua potable y saneamiento trae como consecuencia enfermedades fecal-orales, como la diarrea, y brotes de malaria y cólera.

Normalmente se debería dar el desarrollo de nuevas ciudades en zonas en las cuales se cuenta con agua potable en base a un plan de desarrollo urbano, sin embargo está sucediendo al revés y es ahora que el agua potable debe llegar a zonas en las cuales existe un difícil acceso.

No se está trabajando en coordinación con el plan de desarrollo urbano de cada distrito que a su vez debe estar planificado a fin de evitar que los nuevos pobladores se ubiquen en zonas no seguras e inaccesibles.

El pronóstico es qué, el incremento poblacional que se viene dando en las diversas ciudades del país al no contar con un plan de desarrollo urbano que considere el saneamiento dentro de sus políticas; las enfermedades fecal-orales, como la diarrea, y brotes de malaria y cólera seguirán incrementándose.



La alternativa de solución que se plantea, respecto a la problemática de la ausencia de un buen manejo del sistema de tratamiento de las aguas residuales, es la ejecución de un sistema integral de tratamiento de aguas residuales proyectada a 20 años de vida útil, que ayude a la preservación del medio ambiente.

Luego de haber revisado los diferentes casos, descritos líneas arriba, podemos llegar a concluir que existe un problema central que es la ausencia e inadecuado tratamiento final de excretas impactan al medio ambiente, a continuación presento el árbol de causas y efectos.

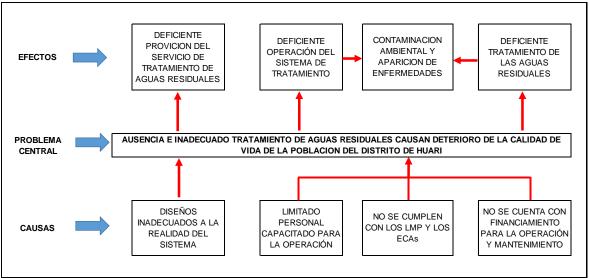



Imagen 1: Árbol de Causas y Efectos

Fuente: Elaboración Propia

En ese sentido debemos plantearnos la problemática cuya alternativa de solución en la reciente tesis es, *La implementación de un Sistema Integral de Tratamiento de Agua Residual, mejora de la calidad de vida de la población en el Distrito de Huari*, siempre y cuando se tengan en cuenta los factores como la zona donde se implemente, el tipo de sistema que se requiera para ciertas características de agua residual.

#### 1.1.2. Formulación del Problema

# 1.1.2.1. Problema Principal

¿De qué manera la implementación de un Sistema Integral de Tratamiento de Agua Residual, mejora la calidad de vida de la población en el Distrito de Huari?



#### 1.1.2.2. Problemas Específicos

Problema Específico 1: ¿De qué manera el Diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce la Contaminación Ambiental en el Distrito de Huari?

Problema Especifico 2: ¿De qué manera la construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari?

# 1.1.3. Importancia y Justificación del Estudio

#### Importancia:

Dentro de la importancia en el desarrollo del presente documento, alcanzamos explicar que el diseño, construcción y gestión de un Sistema Integral de Tratamiento de Aguas Residuales bien planificados causan en el medio ambiente efectos positivos por ende la mejora de la calidad de vida de la población servida; hablando estrictamente del medio ambiente los efectos positivos acatan a diferentes factores entre los cuales podemos mencionar:

- Al evitar que las aguas residuales sean tiradas directamente a los cuerpos receptores (ríos, quebradas, lagos, mares etc.) reducimos considerablemente la contaminación ambiental y los problemas que esto ocasiona.
- ➤ Eliminan los focos de contaminación por las descargas de aguas residuales sin tratamiento vertidas al medio ambiente.
- ➤ Los lodos concebidos en las plantas de tratamiento de aguas residuales, al ser ricos en nutrientes, serían aprovechados en los cultivos, disminuyendo el uso de fertilizantes artificiales.
- > Se logra conservar las fuentes de agua dulce generando que se aprovechen de excelente manera ante la demanda que pudiera existir.

#### Justificación

La intención de implementar un sistema integral de tratamiento de aguas residuales es el de proteger el medio ambiente en el cual nos desarrollamos y la salud de la población, ante esto deberíamos asegurar que sus impactos siempre serán positivos no obstante las realidades de muchas de estas hacen que consideremos el evento de estar frente a impactos negativos. Debemos tener en cuenta que, aunque se haya analizado todos los impactos, ya sean positivos o negativos, concernientes a la implementación de un sistema integral de tratamiento de aguas residuales podrían ocurrir



circunstancias negativas en la operación y mantenimiento del sistema. Generalmente los impactos perjudiciales de un sistema integral de tratamiento de aguas residuales son la trasmisión de malos olores y la aparición de mosquitos los cuales están siempre relacionados a la operación y mantenimiento.

Se logra emplear la evaluación de beneficio o el costo de un sistema integral de tratamiento de agua residual asimismo como al uso de sus efluentes, sim embargo medir monetariamente así sea positivo o negativo el impacto resulta difícil; podemos evaluar el aspecto social, económico y ambiental y sus impactos en la siguiente tabla N° 4, 5 y 6.

Tabla 4: Impactos Sociales Generados por la construcción y Gestión de una Planta de Tratamiento de Aguas Residuales.

| Aspecto | Impactos Positivos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Impactos Negativos                                                                                                                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Social  | <ul> <li>Reducción del índice de enfermedades.</li> <li>Generación de trabajos temporales para la construcción de la PTAR.</li> <li>Generación de trabajos temporales para la operación y mantenimiento de la PTAR</li> <li>Resguardo de las comunidades que se hallan aguas debajo de los vertimientos de las aguas residuales.</li> <li>Capacitación y educación Sanitaria a los habitantes de las comunidades sobre la importancia del saneamiento.</li> <li>Mejora en la población servida, su calidad de vida.</li> </ul> | <ul> <li>Generación de olores desagradables por defectuoso diseño, operación y/o mantenimiento.</li> <li>Disminución del valor de los terrenos cercanos a la PTAR en caso de presentarse malos olores.</li> </ul> |

Fuente: Elaboración Propia

Tabla 5: Impactos Económicos Generados por la construcción y Gestión de una Planta de Tratamiento de Aguas Residuales.

| Aspecto | Impactos Positivos | Impactos Negativos |
|---------|--------------------|--------------------|
|         |                    |                    |



- Ahorro en gastos médicos.
- Creación de nuevos campos de cultivos.
- Reducción del pago por agua para riego.
- Preservación del agua para los tiempos de estiaje.

# **Económico**

- Fertilización de los campos de cultivo en base a los lodos extraídos de la PTAR.
- Evitar usar el agua subterránea en lugares donde es la única fuente para el riego.
- Acrecentamiento de las áreas de esparcimiento y recreación.

- Perdida de Terrenos agrícolas para usarlos en la PTAR
- Perdida de Terrenos agrícolas para usarlos en las tuberías de descarga del efluente al cuerpo receptor.

Fuente: Elaboración Propia

Tabla 6: Impactos Ambientales Generados por la construcción y Gestión de una Planta de Tratamiento de Aguas Residuales.

| <ul> <li>Reducción de la carga orgánica evacuada a los ríos, quebradas, lagunas etc.</li> <li>Reducción de la carga microbiológica evacuada al medio ambiente.</li> <li>Reproducción de hábitats</li> <li>Reproducción de hábitats</li> <li>Ecológicos y sostenimiento de la reproducción de los mismos.</li> <li>Desaparición de los focos infecciosos por descargas de agua residual sin tratamiento, a campo abierto.</li> <li>Contaminación del agua subterránea y no exista una impermeabilización apropiada de las lagunas.</li> <li>Generación de olores desagradables por diseño.</li> <li>Generación de olores desagradables por una defectuosa operación y mantenimiento.</li> <li>Aparición de vectores de enfermedades.</li> </ul> | Aspecto | Impactos Positivos                                                                                                                                                                                                                                                                                                                                                   | Impactos Negativos                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuente: Flahoración Propia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | orgánica evacuada a los ríos, quebradas, lagunas etc.  Reducción de la carga microbiológica evacuada al medio ambiente.  Reproducción de hábitats ecológicos y sostenimiento de la reproducción de los mismos.  Desaparición de los focos infecciosos por descargas de agua residual sin tratamiento, a campo abierto.  Disminución de los vectores de enfermedades. | no exista una impermeabilización apropiada de las lagunas.  Generación de olores desagradables por diseño.  Generación de olores desagradables por una defectuosa operación y mantenimiento.  Aparición de vectores de |

Fuente: Elaboración Propia



# 1.1.4. Limitaciones para la elaboración de la Tesis

Con respecto a las limitaciones del estudio, podríamos mencionar que entre las más resaltantes tenemos:

- Una imposibilidad es la económica, puesto que no se puede proponer tecnologías muy costosas, para localidades pequeñas, que puedan hacer un proyecto inviable.
- Proponer operación y mantenimiento costosos, generan a la larga pueda ocurrir un mal manejo por falta de personal calificado.
- Falta de un equipo o software para la proyección de un sistema de tratamiento de agua residual domestico; por lo que se desarrolló el cálculo en Excel.
- La aplicación de la legislación vigente que controla la evacuación de las aguas residuales municipales a las redes colectoras y afectan al tratamiento final.
- La falta de datos confiables para el diseño del sistema de tratamiento. Según normatividad se requieren de la caracterización del agua residual.
- Los estudios previos, podríamos indicar que fue una limitación puesto que son pocos los estudios que estrictamente analicen la correspondencia entre la construcción de un sistema de tratamiento de aguas residuales y la conservación del medio ambiente; normalmente se encuentran estudios en base a la caracterización del agua residual o al análisis del agua residual tratada y sus efectos al cuerpo receptor.

# 1.2. OBJETIVOS

# 1.2.1. Objetivo General

Describir de qué manera la Implementación de un Sistema Integral de Tratamiento de Agua Residual, mejora la calidad de vida de la población del Distrito de Huari.

# 1.2.2. Objetivos Específicos

Objetivo Especifico 1: Describir de qué manera el diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce la Contaminación Ambiental del Distrito de Huari.

Objetivo Especifico 2: Describir de qué manera la construcción de un Sistema de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari.



# 1.3. HIPÓTESIS

# 1.3.1. Hipótesis General

La implementación de un Sistema Integral de Tratamiento de Agua Residual, mejora de la calidad de vida de la población en el Distrito de Huari.

# 1.3.2. Hipótesis Específica

Hipótesis Específica 1: El diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce de la Contaminación Ambiental en el Distrito de Huari.

Hipótesis Específica 2: La construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari.

"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES Y LA CONSERVACION DEL MEDIO AMBIENTE; DISTRITO DE HUARI – HUARI - ANCASH"

# **CAPITULO 2: MARCO TEORICO**

# 2.1. MARCO HISTÓRICO

A lo largo del tiempo, el tratamiento de las aguas residuales así como el saneamiento en general es una cuestión que requiere la debida importancia puesto que involucra al medio ambiente en el cual nos desarrollamos. El no contar con un sistema de tratamiento de aguas residuales genera que las descargas de las mismas sean a campo abierto generando la contaminación del medio ambiente, generación de vectores de enfermedades, problemas sociales y económicos. Como hemos visto en el capítulo I, hay una gran brecha en el tratamiento de las aguas residuales el cual requiere de acciones conjuntas de todos los implicados.

Según la revista "Anales de Geografía" (María Molinos Senante, 2012, pág. 2) de la Universidad de Valencia en su artículo denominado "Estado actual y evolución del saneamiento y la depuración de aguas residuales en el contexto nacional e internacional" coincide con nuestro diagnostico al indicar que: "...Sin embargo, el continuo crecimiento de la población, la industrialización, el aumento del nivel de vida y las inadecuadas prácticas de gestión han supuesto que en la actualidad nos enfrentemos a una importante crisis en el ámbito de los recursos hídricos..." Por ende, crisis en las líneas de recolección de alcantarillado y aprietos en el sistema de tratamiento de agua residual.

La misma revista en su página 3, hace referencia al "Aspecto Histórico del Saneamiento y Depuración de Aguas Residuales" en el cual nos refiere que:

La calidad del recurso agua para el abastecimiento urbano es muy importante y, ha sido examinada desde la antigüedad, es cierto que hasta el siglo XIX no se ha podido poner de manifiesto la necesidad de una apropiada gestión del agua residual como medio de resguardo para la salud pública (Lofrano y Brown, 2010). Durante siglos no se había prestado la atención necesaria al saneamiento y purificación de aguas residuales, induciendo serios impactos perjudiciales tanto sobre la salud de las personas como al medio ambiente (Aiello et al., 2008).

Nos habla de registros históricos que van desde el imperio Mesopotámico (3500-2500 AC) quien según la revista ha sido la primera civilización que afrontó el problema del saneamiento. También hace referencia a las ruinas de Babilonia y Ur en los cuales se han encontrado remanentes de viviendas que se encontraban conectados a un sistema de alcantarillado (Jones, 1967). La revista continúa indicando que la civilización Hindú (1700-26 AC) era aún más adelantada en la gestión del agua residual, ya que en esa época las viviendas eran interconectadas a canales de desagüe y no



estaba autorizado tirar el agua residual directamente a las calles sin que tuviera un tratamiento previo que contenía como mínimo la sedimentación del agua residual (Wolfe, 1999).

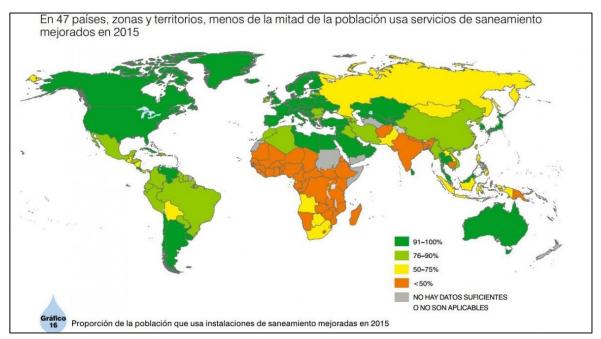

Es sabido que la civilización Griega (300 AC – 500 DC) ha sido considerada como la precursora de los sistemas de saneamiento moderno ya que esta contaba con letrinas públicas y que estas se conectaban a través de un sistema de alcantarillado que finalmente evacuaba el agua residual junto con las aguas de lluvias fuera de la ciudad para luego ser utilizadas para irrigar y fertilizar cultivos, es decir ya en la práctica se empleaban sistemas de tratamientos de agua residual y su reúso, prácticas que hasta el dia de hoy se sigue utilizando claro con nuevas tecnologías. Si bien es cierto que los romanos gestionaban el ciclo del agua desde el abastecimiento hasta su disposición final, también se sabe que el final del imperio romano marca el inicio de los citados años negros del saneamiento que perduraron por más de 1000 años (476-1800 DC) en la que el agua residual era nuevamente vertida a las calles ya que muchas viviendas no contaban con la instalación sanitaria.



Imagen 2: Letrinas en la Antigua Roma Fuente: Internet "Los indiscretos aseos públicos de la Antigua Roma"

Durante los últimos años se ha realizado, a nivel mundial, esfuerzos para disminuir la brecha en la demanda de saneamiento y así más población pueda acceder a los servicios básicos, a continuación, se presenta la imagen N° 1, en el cual se observa la Proporción de la Población que usa Instalaciones de Saneamiento Mejoradas en 2015; se menciona que, en 47 países, zonas y territorios, menos de la mitad de la población usa servicios de saneamiento.





*Imagen 3*: Proporción de la Población que usa Instalaciones de Saneamiento Mejoradas en 2015 Fuente: Revista Electrónica Iagua 2015

"En casi todos los países desarrollados, el acceso universal ya es una realidad; sin embargo, la cobertura del saneamiento varía ampliamente en los países en desarrollo. Desde 1990 ha bajado levemente el número de países donde menos del 50% de la población utiliza una instalación de saneamiento mejorada –de 54 a 47–, y los países con la menor cobertura se concentran actualmente en África subsahariana y Asia meridional". (lagua, 2015).

En el ámbito nacional, el Autoridad Nacional del Agua (Hídricos, 2013) en su presentación del Seminario de "Tecnología alemana en el rubro de Agua y Saneamiento" el 11 de marzo del 2013, indica entre otros asuntos que la evolución del tratamiento de aguas residuales domésticas y municipales entre 1996 y 2009 ha aumentado de un 11.11% a 34.98%, es decir que en trece años de gestión solo se ha logrado aumentar el porcentaje de tratamiento de aguas residuales domesticas en un 23.87% (Ver Gráfico 1). Así mismo se presenta un inventario de las Plantas de Tratamiento de Aguas Residuales Domesticas, encontrándose que existen 143 Plantas de tratamiento de Agua Residual Domestica (PTARD) y que de ellos, solo 4 cuentan con autorización de vertimiento y solo 3 de ellas poseen autorización de reúso y, de este último tan solo el 66% es nuevamente utilizado en riego. Seguidamente se presenta un cuadro resumen del escenario actual de las 143 PTAR urbanas – 2007.



Tabla 7: Estado situacional de las 143 PTAR urbanas - 2007

| ESTADO                                             | N° PTAR | %     |
|----------------------------------------------------|---------|-------|
| No Operan                                          | 16      | 11.2% |
| Sin Mantenimiento                                  | 116     | 81.1% |
| Sobrecarga Hídrica                                 | 55      | 38.5% |
| Sin Cribas                                         | 79      | 55.2% |
| Sin Desarenador                                    | 103     | 72.0% |
| DBO5 en la Entrada > 400 mg/l                      | 26      | 18.0% |
| Alta presencia de Macrófitos y Maleza              | 20      | 14.1% |
| Lagunas Arenadas y con Lodos                       | 52      | 36.1% |
| Eficiencia de remoción de DBO5 < 80%               | 94      | 66.0% |
| Eficiencia de Remoción de Coliformes Fecales < 99% | 69      | 48.0% |
| Con Autorización de Vertimiento                    | 4       | 2.1%  |
| Con Autorización de Reúso *                        | 3       | 2.8%  |

<sup>\*</sup> Sin embargo, el 66% del volumen de AR que pasa por una PTAR es reutilizado en riego.

Fuente: "Diagnóstico Situacional de los Sistemas de Tratamiento de Aguas Residuales en las EPS del Perú y Propuestas de Solución" de la SUNASS – 2007.

Como se puede observar el 81.1% de las 143 PTAR no tienen mantenimiento, así mismo el 72.0% no cuenta con un desarenador generando una mayor generación de lodos, a su vez el 79.0% no cuenta con cribas generando el ingreso de materiales de diferentes tamaño a las lagunas ocasionando el mal funcionamiento de las mismas.

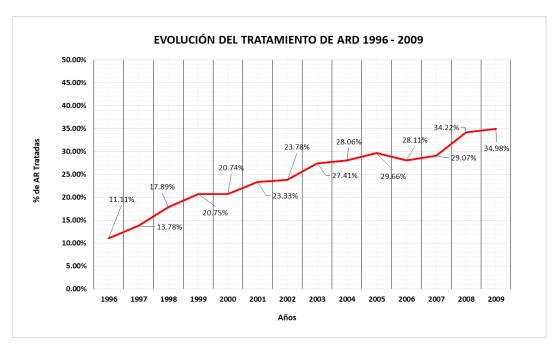



Imagen 4: Evolución del Tratamiento de ARD 1996 - 2009 Fuente: Informe de Indicadores de Gestión 2009 "EPS y su Desarrollo" / SUNASS



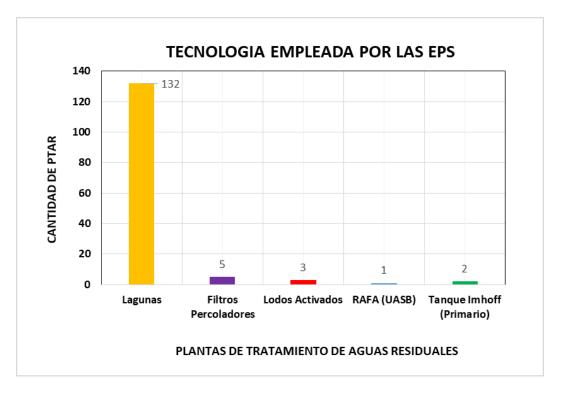



Imagen 5: Tecnología Empleada por las EPS Fuente: "Diagnóstico Situacional de los Sistemas de Tratamiento de Aguas Residuales en las EPS del Perú y Propuestas de Solución" de la SUNASS - 2007

En la actualidad la Superintendencia Nacional de Servicios de Saneamiento (SUNASS) (Momiy, 2016), en su redacción al Diario el Correo del 18 de febrero del 2016, nos indica que "La Superintendencia Nacional de Servicios de Saneamiento informó hoy solo una de las 204 plantas de tratamiento de aguas residuales evaluadas en un reciente estudio funciona cumpliendo todas las normativas". [La cursiva es mía]. Agrega que el "44% de PTAR de lagunas presentan colmatación visible y 19% de estas tienen abundante maleza en lagunas y taludes".

Es decir, que si comparamos la información de la tabla 2 en el cual se indica que existen 143 PTAR en el 2007, con lo indicado por la SUNASS en el 2016, nos hace entender que se han construido o implementado 61 PTAR nuevas, lo cual es un buen indicador de inversión; no obstante la misma SUNASS indica que de estas 204 PTAR solo una funciona cumpliendo con la normativa, es decir que si bien existe una política de inversión por parte de las autoridades correspondientes, estas no se han preocupado por la operación y mejoramiento de las PTAR existentes y que no existe un control de las mismas en las nuevas PTAR. El no contar con una buena operación y mantenimiento, como ya se ha mencionado en anteriores párrafos, genera problemas en el medio ambiente, problemas sociales y aparición de enfermedades; es imprescindible que las autoridades correspondientes al implementar una PTAR, fiscalice que se capacite periódicamente al personal,



se lleve un control de la operación y mantenimiento y que se desempeñen con los estándares de calidad ambiental (ECAs).

En septiembre del 2017, el diario El Comercio, publico un artículo llamado "¿Existen sistemas para tratar aguas residuales en el Perú?", en el cual nos refiere que en dos años aproximadamente, se van a autorizar 15 proyectos de plantas de tratamiento. (Comercio, 2017).

Pro Inversión notificó, hace pocos días, que se otorgarán 15 proyectos de plantas de tratamiento de aguas residuales por US\$1.100 millones en los inmediatos dos años. La noticia va en línea con el mensaje de Fiestas Patrias del presidente Kuczynski, en el que planeó proporcionar prioridad al tema.

Acorde a lo indicado por la Superintendencia Nacional de Servicios de Saneamiento (SUNASS), en el Perú la cobertura de aguas residuales aún está muy condicionada. De las 253 localidades atendidas por las EPS, el 35% no cuenta con instalación alguna de tratamiento de aguas residuales. El tratamiento de aguas servidas de las Empresas Prestadoras de Servicio (EPS) grandes (de 40 mil hasta 1 millón de conexiones) alcanza al 58%, mientras que en las EPS medianas (desde 15 mil hasta 40 mil conexiones) y pequeñas (hasta 15 mil conexiones) tan solo es de 36% y 10%, respectivamente. A nivel nacional, las PTAR tienen una capacidad de 29,6 metros cúbicos por segundo (m3/s), entre las cuales subrayan Taboada y La Chira. La planta de Taboada, que están comisionadas del tratamiento de agua de 27 distritos de Lima y Callao, tiene una capacidad de procesamiento de 19 m3 /s. La PTAR La Chira, por su lado, situada en el distrito de Chorrillos, tiene una capacidad de tratamiento promedio de 6,3 m3/s.

En la actualidad existirían, 9 Plantas de Tratamiento de Aguas Residuales (PTAR) que no tienen funcionamiento debido a la obstrucción de los vecinos, el colapso del afluente, procesos legales, etc., y 13 con obras de construcción detenidas por falta de saneamiento de terrenos, arbitrajes, insuficiencias de la construcción, entre otros motivos. Para disminuir la falta en el tratamiento de agua, el Plan Nacional de Saneamiento 2017-2021 insinúa una inversión de S/8.000 millones para la ampliación y construcción de PTAR en ese período. De dicho monto, las regiones de Lima (S/2.200 millones), Piura (S/520 millones) y La Libertad (S/448 millones) reconocen el mayor gasto esperado. El gasto o inversión en saneamiento constituye cerca del 20% de la inversión total deseable en saneamiento para este período.

El propósito está considerando que 15 PTAR estarían ejecutándose por dispositivos de asociaciones público-privadas (APP): dos son iniciativas estatales cofinanciadas y el resto son iniciativas privadas cofinanciadas. Entre ellos, proporcional a su nivel de avance, enfatiza el sistema de tratamiento de las aguas residuales de la cuenca del lago Titicaca. Esta iniciativa privada cofinanciada entiende a



09 municipalidades provinciales de Puno y se desarrollará bajo la modalidad de concesión por un plazo de 30 años.

Con el fin de facilitar el cumplimiento de estas Adjudicaciones Públicas Privadas (APP), el Ejecutivo presentó un proyecto de ley en julio que modifica la Ley Orgánica de Municipalidades. El fin es apartar el tratamiento de aguas residuales de las funciones exclusivas en saneamiento de las municipalidades provinciales y distritales y establecer que el Ministerio de Vivienda, Construcción y Saneamiento posea competitividad directa para promover APP en inversiones de este rubro. Según José Escaffi, gerente general de AC Pública, la gran ventaja de las APP es que permite imposibilitar la atomización de inversiones por cada una de las 51 entidades prestadoras de servicios de saneamiento (EPS) y de las más de 350 unidades de gestión municipal (UGM) a nivel nacional. De esta forma, se pueden aprovechar las economías de escala para reducir costos.

Los desafíos concernientes con la gestión estatal de estas plantas a mediano o largo plazo no son pocos. Por ejemplo, entre los muchos problemas de las EPS para recaudar las tarifas que ayuden a cubrir los costos operativos del tratamiento de aguas residuales los cuales generan un riesgo para el fisco, el cual se encargaría de cubrir los gastos que no puedan pagar las EPS. Por otro lado, Escaffi indica que el gobierno nacional podría contratar a una EPCM (empresa de ingeniería, adquisiciones y gestión de construcción como Bechtel, Technip o Fluor) para que ofrezca ayuda técnica permanente a los municipios, mientras se hace cargo de la gerencia de la contratación y en la supervisión de la ingeniería y de la ejecución de proyectos de inversión pública como estos.

#### 2.2. INVESTIGACIÓN RELACIONADA AL TEMA

La Facultad de Ingeniería de la Universidad del Valle - Cali (Colombia) - en julio del 2008, publico un artículo denominado "REÚSO DE AGUAS RESIDUALES DOMÉSTICAS EN AGRICULTURA. UNA REVISIÓN", en el cual indica la importancia del uso del agua residual tratada como nueva fuente para el riego en la agricultura (de esta manera cuida las fuentes de agua potable para compensar la demanda del recurso agua que es limitado para cubrir los exigencias de las ciudades), indica también que es importante para la disminución del impacto sobre el medio ambiente, recomendando, para el reúso de aguas residuales, realizar siempre un tratamiento preliminar y primario.

"Para el reúso de aguas residuales se aconseja realizar siempre un tratamiento preliminar y primario; el tratamiento secundario, además de remover de manera eficiente materia orgánica y sólidos suspendidos, influye directamente sobre la estructura de algunos compuestos, como los de nitrógeno, siendo importante tener en cuenta los



requerimientos del cultivo a irrigar y el tipo de suelo" (Jorge Silva, 2008, pág. 1). [Las negritas son mías]

La revista concluye indicando que independientemente del espécimen de cultivo, las exigencias mínimas para el uso seguro de las aguas residuales en la agricultura deben ser los determinados por la OMS (para las variables microbiológicas) y por la FAO (en calidad físico-química).

Tabla 8: Características de los principales niveles de tratamiento.

| Íta                                | Nivel de Tratamiento                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                         |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ítem                               | Preliminar                                                                                                                                               | Terciario                                                                                                         |                                                                                                                                                                                  |                                                                                                                                         |  |  |  |
| Contaminantes<br>removidos         | Sólidos gruesos<br>(basuras,<br>arenas)<br>Grasas<br>Acondicionamiento<br>químico (pH)                                                                   | Sólidos<br>suspendidos<br>sedimentables<br>Materia<br>orgánica<br>suspendida<br>(parcialmente)                    | Sólidos no sedimentables Materia orgánica suspendida fina/soluble (parcialmente) Nutrientes (parcialmente) Patógenos (parcialmente)                                              | Contaminantes específicos Materia orgánica fina y soluble (pulimento) Nutrientes patógenos (principalmente)                             |  |  |  |
| Eficiencias de remoción            | DBO: 0-5%<br>Coliformes: ≈0%<br>Nutrientes: ≈0%                                                                                                          | SS: 60-70%<br>DBO: 30-40%<br>Coliformes: 30-<br>40%<br>Nutrientes: <<br>20%                                       | SS: 60-99%<br>DBO: 60-99%<br>Coliformes: 60-99%<br>Nutrientes: 10-50%                                                                                                            | SS: > 99% DBO: > 99% Coliformes: > 99,9% Nutrientes: > 90%                                                                              |  |  |  |
| Mecanismo predominante             | Físico                                                                                                                                                   | Físico                                                                                                            | Biológico o químico                                                                                                                                                              | Biológico o químico                                                                                                                     |  |  |  |
| Cumple patrón<br>de<br>vertimiento | No                                                                                                                                                       | No                                                                                                                | Usualmente sí                                                                                                                                                                    | Sí                                                                                                                                      |  |  |  |
| Cumple patrón<br>de<br>reúso       | No                                                                                                                                                       | No                                                                                                                | Usualmente sí                                                                                                                                                                    | Sí                                                                                                                                      |  |  |  |
| Aplicación                         | Aguas arriba de estaciones de bombeo Etapa inicial del tratamiento Indispensable. Independiente de la complejidad del tratamiento y del uso del efluente | Tratamiento parcial Etapa intermedia de tratamiento Su uso depende del tipo de tratamiento posterior Recomendable | Tratamiento más completo para remoción de materia orgánica y sólidos suspendidos Para nutrientes con adaptaciones o inclusión de etapas específicas (parcialmente) Adecuada para | Tratamiento completo para remoción de material no biodegradables y disuelto Remoción de nutrientes y Coliformes Principalmente, para la |  |  |  |



"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI - HUARI - ANCASH"

(vertimiento o reúso agrícola)

en reúso para evitar obstrucción de los sistemas de riego

aplicación en riego (con desinfección)

remoción de patógenos Sin restricción de uso para cualquier tipo de cultivo

SS, sólidos suspendidos; DBO, demanda bioquímica de oxígeno

2 Sin restricción para cualquier tipo de cultivo (Parreiras, 2005) Fuente: adaptada de Von Sperling, 1996; Torres, 2000; Metcalf y Eddy, 2003.

<sup>1</sup> Según forma de nitrógeno y aprovechamiento de los cultivos

"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI – HUARI - ANCASH"

Tabla 9: Desempeño de las tecnologías de tratamiento de aguas residuales domésticas.

|                                                                    |                                        |                        | Eficienci |       |       |            |
|--------------------------------------------------------------------|----------------------------------------|------------------------|-----------|-------|-------|------------|
| Tecnología de tratamiento                                          | Referencia                             | Sólidos<br>suspendidos | DBO       | N     | Р     | Coliformes |
| Tanque séptico                                                     | Batalha, 1989                          | 50-70                  | 40-62     | < 10  | < 10  | < 60       |
| Tanque séptico - filtro anaerobio                                  | Von Sperling, 1996                     |                        | 70-90     | 10-25 | 10-20 | 60-90      |
| Tanque séptico - filtro anaerobio -humedal de flujo subsuperficial | Madera et al., 2005                    | 81-88                  | 71-82     | 15    | 15    | 74-96      |
| Primario avanzado (TPA)                                            | Torres et al., 2005<br>Tsukamoto, 2002 | 73-84                  | 46-70     | < 30  | 75-90 | 80-90      |
| Filtro anaerobio - filtro de arena                                 | Tonetti et al., 2005                   | > 90                   | 90        | > 95  | -     | -          |
| Infiltración lenta                                                 | Von Sperling, 1996                     | -                      | 94-99     | 65-95 | 75-99 | > 99       |
| Infiltración rápida                                                | Von Sperling, 1996                     | -                      | 86-98     | 10-80 | 30-99 | > 99       |
| Infiltración subsuperficial                                        | Von Sperling, 1996                     | -                      | 90-98     | 10-40 | 85-95 | > 99       |
| Escurrimiento superficial                                          | Von Sperling, 1996                     | -                      | 85-95     | 10-80 | 20-50 | 90-99      |
| Laguna facultativa                                                 |                                        | -                      | 70-85     | 30-50 | 20-60 | 60-99      |
| Laguna anaerobia - laguna facultativa                              |                                        | -                      | 70-90     | 30-50 | 20-60 | 60-99      |
| Laguna anaerobia - humedal                                         | Caicedo, 2005; Osorio,<br>2006         | 87-93                  | 80-90     | 37-48 | 45-50 | -          |
| UASB                                                               | Torres, 2000                           | 60-80                  | 60-70     | 10-25 | 10-20 | 60-90      |
| UASB - laguna facultativa                                          | CDMB, 2006                             | 84                     | 88        | -     | -     | -          |
| UASB - lodo activado convencional                                  | Van Haandel y Lettinga,<br>1994        | 85-95                  | 85-95     | 15-25 | 10-20 | 70-95      |
| UASB - lodo activado intermitente                                  | Torres, 2000                           | 84-86                  | 87-93     | 20-90 | 23-72 | -          |
| Lodo activado convencional                                         | Von Sperling, 1996                     | 80-90                  | 85-93     | 30-40 | 30-45 | 60-90      |
| Lodo activado flujo intermitente (RSB)                             | Von Sperling, 1996                     | 80-90                  | 85-95     | 30-40 | 30-45 | 60-90      |
| Lodo activado aireación prolongada                                 | Von Sperling, 1996                     | 80-90                  | 93-98     | 15-30 | 10-20 | 65-90      |



"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI – HUARI - ANCASH"

| Filtro biológico | Von Sperling, 1996  | 85-95 | 80-93 | 30-40 | 30-45 | 60-90 |
|------------------|---------------------|-------|-------|-------|-------|-------|
| Biodiscos        | Torres et al., 2006 | 85-95 | 85-93 | 30-40 | 30-45 | 60-90 |

UASB (Upflow anaerobic sludge blanket), reactor anaerobio de flujo ascendente y manto de lodos.

DBO, demanda bioquímica de oxígeno.

N, nitrógeno; P, fósforo

Silva, Torres y Madera. Reúso de aguas residuales domésticas en agricultura.



- Katherine Arbeláez Bermúdez & Maryan Gisell Parra Sepulved de la facultad de Ingeniería Programa de Ingeniería Civil de la Universidad Católica de Colombia, han presentado el Trabajo de Grado, para Optar al título de Ingeniería Civil, denominado "ANÁLISIS DE IMPACTO AMBIENTAL Y SOCIAL DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES BARRA DA TIJUCA EN BRASIL COMO LECCIONES APRENDIDAS PARA LA CIUDAD DE BOGOTA D.C" (Sepulved, 2017) en el describen el funcionamiento de la PTAR Da Tijuca en Brasil y sus efectos en el medio ambiente concluyendo mediante estudios existentes, visita técnica internacional y encuestas, que existe un "...buen manejo de olores y de agentes contaminantes en el aire; la población no se ve afectada por gases u olores expulsados por el funcionamiento del sistema..." Es decir la PTAR no genera impactos negativos con respecto a estos indicadores. Las autoras recomiendan como lecciones aprendidas que este sistema del manejo de control de olores pueda aplicarse en la PTAR Salitre que se encuentra en Bogotá D.C.
- Fortunato Vidal Méndez Melgarejo y Osiris Feliciano Muñoz, de la Facultad de Ingeniera Económica y Ciencias Sociales Post Grado, para la obtención del grado académico de Maestro en Proyección de Inversión, han presentado la Tesis "PROPUESTA DE UN MODELO SOCIO ECONÓMICO DE DECISIÓN DE USO DE AGUAS RESIDUALES TRATADAS EN SUSTITUCIÓN DE AGUA LIMPIA PARA ÁREAS VERDES" (Muñoz, 2010) en el que analizan la relación y funcionabilidad de las aguas limpias vs las aguas residuales tratadas mediante modelos matemáticos.

Para la aplicación del modelo matemático consideramos los valores de costos medios y cantidad producida/tratada entre los meses de Febrero y Junio 2008 proporcionados por La Planta de Tratamiento de aguas Residuales de la Universidad Nacional de Ingeniería – UNITRAR y la Oficina de servicios Agua Potable y Alcantarillado – SEDAPAL, elaborándose el cuadro siguiente:

Cuadro 1: Costos Medios y Cantidad de Producción de Agua Residual Tratada vs Agua Limpia.

| Periodo  | CMeART<br>(S/.) | QART<br>(m3) | CMeAL<br>(S/.) | QAL<br>(m3) | CT<br>(S/.) |
|----------|-----------------|--------------|----------------|-------------|-------------|
| Febrero  | 0,1688          | 13.976,11    | 0,78           | 19.965,87   | 17.932,55   |
| Marzo    | 0,2409          | 9.795,50     | 0,74           | 13.993,57   | 12.714,98   |
| Mayo     | 0,2214          | 10.656,56    | 0,76           | 15.223,66   | 13.929,34   |
| Junio    | 0,2228          | 10.592,35    | 0,75           | 15.131,93   | 13.708,92   |
| Promedio | 0,2134          |              | 0,7575         |             |             |

Fuente: UNITRAR y SEDAPAL



LEYENDA:

CMeART: Costo Medio de Agua Residual Tratada.

QART: Cantidad producida de Agua Residual Tratada

CMeAL: Costo Medio de Agua Limpia QAL: Cantidad producida de Agua Limpia

CT: Costo Total de la producción de Agua Limpia y Agua Residual Tratada

Seguidamente se comparó con los pagos promedio de consumo de agua potable efectuados por residencias en tres distritos Santa Anita, San Martin de Porres y Santiago de Surco.

Cuadro 2: Pago promedio por consumo de Agua Potable efectuado por residencias

| Distrito             | Consumo por mes: m3 | Pago<br>Efectuado: S/. | Precio: S/. x m3 |
|----------------------|---------------------|------------------------|------------------|
| Santa Anita          | 40.00               | 99.00                  | 2.475            |
| San Martin de Porres | 44.00               | 112.00                 | 2.545            |
| Santiago de Surco    | 37.00               | 89.50                  | 2.594            |
| Promedio             |                     |                        | 2.538            |

Fuente: SEDAPAL

Se llega a concluir que "En resumen, si la población está Dispuesta a Pagar en las facturas de agua potable un porcentaje adicional por el solo hecho de contar en la vecindad con plantas de tratamiento de aguas residuales y que se logren beneficios en salud o de trabajo u otra consideración ambiental, la brecha inicial entre el precio pagado por el agua potable vs. El del agua residual tratada se acrecienta, más al final y llegado el caso, las familias tendrán un aspecto compensatorio favorable dado que estas utilizaran más aguas residuales tratadas al tener menor precio para usarlo en zonas donde antes utilizaban agua potable, por lo que por la cantidad de uso de este último elemento se estaría pagando menos y ahorrando más". [Las cursivas son mías].

Según lo descrito por Iván Ernesto Torres Poveda en su Trabajo de Grado "Propuesta de Mejoramiento de las Operaciones en la Planta de Tratamiento de Aguas residuales en el Municipio de La Calera" (Poveda, 2016) indica en su problemática "¿Está la PTAR del municipio de La Calera funcionando adecuadamente según los estatutos que rigen el manejo de aguas residuales y su operación es lo suficientemente efectiva?", realiza una averiguación planteando la injerencia de la planta de tratamiento de aguas residual del municipio La Calera a fin de establecer las situaciones actuales de servicio de la planta, evalúa las técnicas e inspecciona los puntos críticos a fin de diseñar nuevas estructuras y mejorar los procesos.



Dentro de sus conclusiones nos indica que la planta actualmente trabaja con un caudal superior al de diseño lo cual genera que el vertedero al ingreso no trabaje adecuadamente indica también que "...Todos los procesos dentro de la planta presentan grandes eficiencias y cumplen adecuadamente con sus funciones, de manera que, sus deficiencias no se presentan en las estructuras que tiene sino en las que no tiene...".

Concluye recomendando, entre muchas otras cosas, que se debe contar con personal calificado para la operación del sistema, proponer un distrito que sirva a sus áreas verdes con el agua tratada.

# 2.3. ESTRUCTURA TEÓRICA Y CIENTÍFICA QUE SUSTENTA EL ESTUDIO

En el presente ítem se presentan la estructura teórica y científica que sustentan el estudio sobre que la implementación de un sistema integral de tratamiento de aguas residuales y su relación con la mejora de la calidad de vida, así tenemos los siguientes:

- Decreto Supremo Nº 004-2017-MINAM: Aprueban Estándares de Calidad Ambiental (ECA)
   para Agua y establecen Disposiciones Complementarias.
- Decreto Supremo Nº 003-2010-MINAM: Aprueban Límites Máximos Permisibles para los efluentes de las Plantas de Tratamiento de Aguas Residuales Domesticas o Municipales.
- Ley General del Ambiente Ley N° 28611
- Ley Marco del Sistema Nacional de Gestión Ambiental Ley N° 28245.
- Reglamento de la Ley Marco del Sistema Nacional de Gestión Ambiental Decreto Supremo
   Nº 008 2005 PCM.
- Ley de Creación, Organización y Funciones del Ministerio del Ambiente Decreto Legislativo Nº 1013.
- TUPA ANA: Autorización de Vertimientos de Aguas Residuales Industriales, Municipales y Domésticas Tratadas.
- RNE Norma OS.090: Plantas de Tratamiento de Aguas Residuales.
- RNE Norma E.020: Cargas
- RNE Norma E.030: Diseño Sismo Resistente
- RNE Norma E.060: Concreto Armado
- Metcalf and Eddy, 1985: Ingeniería Sanitaria: Tratamiento, Evacuación y Reutilización de Aguas Residuales.
- Manual de Disposición de Aguas Residuales: Tomo I Origen, Descarga, Tratamiento y Análisis de las Aguas Residuales.
- Manual de Disposición de Aguas Residuales: Tomo II Origen, Descarga, Tratamiento y Análisis de las Aguas Residuales.
- Guía para el Diseño de Desarenadores y Sedimentadores OPS/CEPIS Lima, 2005.



- Guía para el Diseño de tanques Sépticos, Tanques Imhoff y Lagunas de Estabilización OPS/CEPIS – Lima, 2005.
- Guía para Diseño de Sistema de Tratamiento por Filtración en Múltiples Etapas OPS/CEPIS – Lima, 2005.

# 2.4. DEFINICIÓN DE TÉRMINOS BÁSICOS

#### Agua residual

Agua que ha sido utilizada por una sociedad o fabrica y que contiene material orgánico o inorgánico diluido o en suspensión.

#### Agua residual doméstica

Es aquella agua de principio doméstico, comercial e institucional que posee desechos fisiológicos y otros procedentes de la actividad humana.

#### Aqua residual municipal

Se refiere a aquellas aguas residuales domésticas. Se puede incluir bajo esta definición a la mezcla de aguas residuales domésticas con aguas de drenaje pluvial o con aguas residuales de origen industrial, siempre que estas cumplan con las exigencias para ser aceptadas en los sistemas de alcantarillado.

#### Análisis

Se refiere a la caracterización de una sustancia para identificar sus elementos. También se le conoce como caracterización.

#### Bases de diseño.

Se refiere al conjunto de datos para los escenarios finales e intermedios del diseño que valen para el dimensionamiento de los procesos de tratamiento. Los datos generalmente encierran: poblaciones, caudales, concentraciones y contribuciones per cápita de las aguas residuales. Aquellos parámetros que constituyen las bases del diseño son: DBO, sólidos en suspensión, Coliformes fecales y nutrientes.

#### Coliformes

Son aquellas bacterias Gram negativas no esporuladas capaces de fermentar lactosa con obtención de gas a 35 +/- 0,5 °C (Coliformes totales). Aquellas que tienen las mismas propiedades a 44.5 +/- 0,2 °C en 24 horas se denominan Coliformes fecales (ahora también denominados Coliformes Termotolerantes).

#### Criba gruesa

Estructura metálica habitualmente de barras paralelas de apartamiento uniforme (4 a 10 cm) para remover sólidos flotantes de gran tamaño.

#### Criba Media



Estructura metálica de barras paralelas de apartamiento uniforme (1 a 4 cm) para remover sólidos flotantes y en suspensión; habitualmente se emplea en el tratamiento preliminar.

#### Criterios de diseño

Se refiere a aquellas guías de ingeniería que detallan objetivos, resultados o límites que deben verificarse en el diseño de un proceso, estructura o componente de un sistema.

# Demanda bioquímica de oxígeno (DBO)

Es aquella cantidad de oxígeno que demandan los microorganismos para la transformación de la materia orgánica bajo circunstancias de lapso de tiempo y temperatura determinados (generalmente 5 días y a 20°C).

## Demanda química de oxígeno (DQO)

Aquella cantidad de oxígeno requerido para la oxidación química de la materia orgánica del agua residual, utilizando como oxidante sales inorgánicas de permanganato o dicromato de potasio.

#### Depuración de aguas residuales

Purificación o remoción de sustancias objetables de las aguas residuales; se emplea únicamente a procesos de tratamiento de líquidos.

#### Deshidratación de lodos

Es el proceso mediante el cual se logra la remoción del agua contenida en los lodos.

#### Digestión

Desintegración biológica de la materia orgánica del lodo que origina una mineralización, licuefacción y gasificación parcial.

#### Digestión aerobia

Desintegración biológica de la materia orgánica del lodo, en presencia de oxígeno.

#### Digestión anaerobia

Desintegración biológica de la materia orgánica del lodo, en ausencia de oxígeno.

## Disposición final

Disposición del efluente o del lodo tratado de una planta de tratamiento.

#### Eficiencia del tratamiento

Es la correspondencia entre la masa o concentración removida y la masa o concentración aplicada, en un proceso o planta de tratamiento y para un parámetro específico. Puede expresarse en decimales o porcentaje.

#### Efluente

Es el líquido que sale de un proceso de tratamiento.

#### Efluente final

Es el líquido que sale de una planta de tratamiento de aguas residuales.

# Filtro biológico



Semejante a un "filtro percolador", "lecho bacteriano de contacto" o "biofiltro".

#### Filtro percolador

Procedimiento en el que se emplea el agua residual precipitada sobre un medio filtrante de piedra gruesa o material sintético. La película de microorganismos que se desarrolla sobre el medio filtrante estabiliza la materia orgánica del agua residual.

#### Grado de tratamiento

Es la eficacia de la remoción de una planta de tratamiento de aguas residuales para cumplir con los requerimientos de calidad del cuerpo receptor o las normas de reuso.

# Impacto ambiental

Se refiere al cambio o efecto sobre el ambiente que resulta de una acción específica.

#### Laguna aerada

Depósito para el tratamiento de aguas residuales en el cual se suministra oxígeno por acción mecánica o difusión de aire comprimido.

#### Laguna aerobia

Depósito con alta obtención de biomasa.

#### Laguna anaerobia

Depósito con alta carga orgánica en la cual se efectúa el tratamiento en la ausencia de oxígeno. Este tipo de laguna requiere tratamiento posterior complementario.

#### Laguna de estabilización

Depósito en el cual se descarga aguas residuales y en donde se produce la estabilización de materia orgánica y la disminución de la carga bacteriana.

## Lecho de secado

Depósitos de profundidad pequeña con arena y grava sobre drenes, consignado a la deshidratación de lodos por filtración y evaporación.

#### Lodo activado

Lodo formado primordialmente de biomasa con alguna cantidad de sólidos inorgánicos que recircula del fondo del sedimentador secundario al tanque de aeración en el tratamiento con lodos activados.

#### Manejo de aguas residuales

Es el conjunto de obras de recolección, tratamiento y disposición y acciones de operación, monitoreo, control y vigilancia en correspondencia a las aguas residuales.

# Planta de tratamiento

Construcción y procesos que permiten la purificación de aguas residuales.

#### Pre tratamiento

Son aquellos procesos que preparan las aguas residuales para su tratamiento posterior.

# Sedimentación primaria



Separación de material sedimentable presente en las aguas residuales crudas. Este proceso requiere el tratamiento posterior del lodo decantado.

#### Sedimentación secundaria

Proceso de separación de la biomasa en suspensión producida en el tratamiento biológico.

#### Tratamiento primario

Separación de una enorme cantidad de materia en suspensión sin incluir la materia coloidal y disuelta.

#### Tratamiento secundario

Es aquel nivel de tratamiento que admite alcanzar la eliminación de materia orgánica biodegradable y sólidos en suspensión.

### Límite Máximo Permisible (LMP)

Es la medida de la concentración o del grado de elementos, sustancias o parámetros físicos, químicos o biológicos, que caracterizan a un efluente o una emisión, que al ser excedida causa o puede causar daños a la salud, al bienestar humano y al ambiente.

# Estándar de Calidad Ambiental (ECA)

Es la medida que establece el nivel de concentración o del grado de elementos, sustancias o parámetros físicos, químicos y biológicos, presentes en el aire, agua o suelo en su condición de cuerpo receptor, que no representa riesgo significativo para la salud de las personas ni al ambiente.

Para su mejor descripción los términos básicos han sido obtenidos de las diferentes normas utilizadas como la OS.090



# CAPITULO 3: MARCO METODOLOGICO

#### 3.1. TIPO DE ESTUDIO

Es un tipo de investigación Descriptiva - Experimental.

La Investigación descriptiva, es aquella en la cual se tiene una relación causal, no solo describe o se acerca a un problema, sino que pretende hallar las causas del mismo.

La investigación experimental, se manipula una o varias variables independientes, ejerciendo el máximo control. Su metodología es generalmente cuantitativa.

Metodología Cuantitativa, Para cualquier campo se aplica la investigación de las Ciencias Físico-Naturales. El objeto de estudio es externo al sujeto que lo investiga tratando de lograr la máxima objetividad. Intenta identificar leyes generales referidas a grupos de sujeto o hechos. Sus instrumentos suelen recoger datos cuantitativos los cuales también incluyen la medición sistemática, y se emplea el análisis estadístico como característica resaltante.

# 3.2. POBLACIÓN, MUESTRA Y MUESTREO

La población para el presente estudio está conformado por las 81 localidades de la Provincia de Huari con un total de 27,524 habitantes según los datos de INEI y del Programa Nacional de Saneamiento Urbano (PNSU) del Ministerio de Vivienda Construcción y Saneamiento.

Para el presente estudio el tipo de muestreo empleado es no probabilístico (no aleatorio). Muestreo no probabilístico (no aleatorio).- En este tipo de muestreo, puede haber clara influencia de la persona o personas que seleccionan la muestra o simplemente se realiza atendiendo a razones de comodidad. Salvo en situaciones muy concretas en la que los errores cometidos no son grandes, debido a la homogeneidad de la población, en general no es un tipo de muestreo riguroso y científico, dado que no todos los elementos de la población pueden formar parte de la muestra.

Según lo descrito anteriormente, se ha tomado como muestra a la población del distrito de Huari con 6,212 habitantes, ubicado en la Provincia de Huari, Región Ancash.

# 3.3. INFORMACION RECOPILADA

Conforme a la visita de campo, se pudo realizar un diagnóstico socio-económico del distrito de Huari. Se obtuvo información por medio de los pobladores, los cuales expondremos a continuación:



# 3.3.1. Salud, Higiene y Saneamiento Básico

#### A. Salud

Los pobladores se atienden en el Hospital de Apoyo de Huari que se encuentra ubicado en la capital del Distrito de Huari.

Las enfermedades más comunes en el área de influencia del proyecto son las enfermedades parasitosis intestinal que afecta principalmente a la población de 0-4 años de edad. En la visita al puesto de salud del distrito se obtuvo la siguiente información.

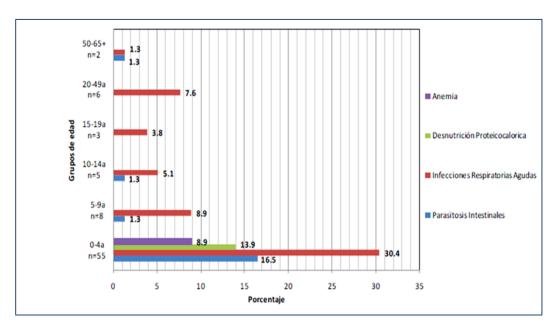



Imagen 6: Principales Enfermedades Presentadas en el Distrito de Huari, Según Grupo Etéreo.

Fuente: Ministerio de Salud - MPHi

Tabla 10: Tipo de Tratamiento de las Enfermedades

| Tratamiento enfermedades | %    |
|--------------------------|------|
| Casero                   | 7%   |
| Posta médica             | 93%  |
| Total                    | 100% |
|                          |      |

Fuente: Trabajo de campo - Elaborado por el autor

# B. Higiene.

En lo referente a los hábitos de higiene de las familias, en la mayoría de los hogares, no se practica el lavado de mano, ni el lavado dental. Solamente el 40% de la población conocen sobre educación sanitaria.



#### C. Saneamiento Básico

Existen muchas características físicas de la vivienda, que denotan pobreza, de las cuales destacan, la falta de agua y de desagüe, siendo la primera la más extendida. Las viviendas que no poseen agua ni desagüe son aquellas que no han tenido un proceso de urbanización adecuado.

Tabla 11: Fuente de Abastecimiento de Agua Potable

| Distrito de Huari                           |         |  |  |  |  |
|---------------------------------------------|---------|--|--|--|--|
| Categorías                                  | %       |  |  |  |  |
| Red pública Dentro de la viv.(Agua potable) | 69.39%  |  |  |  |  |
| Red Pública Fuera de la vivienda            | 14.19%  |  |  |  |  |
| Pilón de uso público                        | 1.25%   |  |  |  |  |
| Pozo                                        | 1.56%   |  |  |  |  |
| Río,acequia,manantial o similar             | 10.75%  |  |  |  |  |
| Vecino                                      | 2.50%   |  |  |  |  |
| Otro                                        | 0.36%   |  |  |  |  |
| Total                                       | 100.00% |  |  |  |  |

Fuente: Trabajo de campo - Elaborado por el autor

Tabla 12: Servicios Higiénicos

| Distrito de Huari                        |        |  |  |  |  |
|------------------------------------------|--------|--|--|--|--|
| Categorías                               | %      |  |  |  |  |
| Red pública de desagüe dentro de la Viv. | 41.13% |  |  |  |  |
| Red pública de desagüe fuera de la Viv.  | 2.99%  |  |  |  |  |
| Pozo séptico                             | 2.01%  |  |  |  |  |
| Pozo ciego o negro / letrina             | 12.99% |  |  |  |  |
| Río, acéquia o canal                     | 0.18%  |  |  |  |  |
| No tiene                                 | 40.70% |  |  |  |  |
| Total                                    | 1      |  |  |  |  |

Fuente: Trabajo de campo - Elaborado por el autor

En el distrito se observa que un porcentaje muy bajo de la población cuenta con servicio de desagüe, Situación que pone en riesgo la salud de los pobladores y al medio ambiente.

La ausencia de agua y desagüe en la vivienda trae consigo otros problemas asociados a esta carencia. Existe abundante evidencia empírica de la estrecha relación entre la mortalidad infantil y el acceso a un medio de eliminación de excretas, debido a que la sanidad necesaria en la preparación y toma de alimentos se ve seriamente afectada y provoca que las tasas de morbilidad y mortalidad en la infancia.



### 3.3.2. Característica de la Vivienda

Las viviendas cuentan con el servicio deficiente e insuficiente de agua potable y desagüe; también cuentan con servicio de energía eléctrica. Los detalles de las viviendas se muestran en los siguientes cuadros:

Tabla 13: Tipo y Material de vivienda.

| TIPO DE VIV             | IENDA | MATERIAL DE LOS TECHOS                             |       |
|-------------------------|-------|----------------------------------------------------|-------|
| Categorías              | %     | Categorías                                         | %     |
| Casa<br>independiente   | 99.82 | Planchas de calamina, fibra de cemento o similares | 76.67 |
| Choza o                 | 0.12  | Estera                                             | 13.51 |
| Vivienda<br>improvisada | 0.03  | Paja, hojas de palmera, etc                        | 8.46  |
| Otro                    | 0.03  | Concreto armado                                    | 1.23  |
| Vivienda en             | 0     | Vvienda en quinta                                  | 0.14  |
| No destinado            | 0     | Caña o estera con torta de barro                   | 0     |
| Total                   | 100   | Total                                              | 100   |

Fuente: Trabajo de campo - Elaborado por el autor

En distrito se observa que la mayoría de la población habita en una casa independiente, lo que constituye en gran parte una ventaja porque proporciona mayor bienestar y comodidad a las familias que lo habitan. El techo predominante en todas las viviendas en el distrito es la teja, material que es producido en la zona y que protege las viviendas de las inclemencias del tiempo principalmente en épocas de intensa avenidas.

# 3.3.3. Servicios Existentes

La electricidad, su utilización por lo hogares y por las industrias es un buen indicador del nivel de desarrollo alcanzado, en un país como el nuestro donde las fuentes de energía están básicamente restringidas. Por ello el porcentaje de hogares sin luz eléctrica (19.28%) es un buen indicador no solo del nivel de vida sino del desarrollo en un ámbito geográfico determinado.



Tabla 14: Servicio de Energía Eléctrica

| DISTRITO DE HUARI            |         |  |  |  |
|------------------------------|---------|--|--|--|
| Categorías                   | %       |  |  |  |
| Si tiene alumbrado eléctrico | 80.72%  |  |  |  |
| No tiene alumbrado eléctrico | 19.28%  |  |  |  |
| Total                        | 100.00% |  |  |  |

Fuente: Trabajo de campo - Elaborado por el autor

Tabla 15: Tipo de Alumbrado

| Distrito de Huari             |       |  |  |  |
|-------------------------------|-------|--|--|--|
| Categorías                    | %     |  |  |  |
| Electricidad                  | 33.11 |  |  |  |
| Vela                          | 31.03 |  |  |  |
| Otro                          | 23.62 |  |  |  |
| Kerosene (mechero / lamparín) | 11.81 |  |  |  |
| Petróleo / gas (lámpara)      | 0.14  |  |  |  |
| Generador                     | 0.14  |  |  |  |
| No tiene                      | 0.14  |  |  |  |
| Total                         | 100   |  |  |  |

Fuente: Trabajo de campo - Elaborado por el autor

Dentro de los servicios existentes tenemos el servicio de Internet que da servicio durante todo el día cuenta con el servicio de telefonía, celular Claro y Movistar en todo el distrito. En el servicio postal y de correos se encuentra SERPOST. Que tiene oficinas en la capital de la provincia y en algunos distritos. La televisión se está constituyendo en un medio cada vez más masivo de comunicación; las cuales en mediano plazo contribuirán al mejoramiento de la calidad cultural y por ende, en la vida del poblador Huarino.

# 3.3.4. Ocupación Principal

De acuerdo a la entrevista realizada a las familias de la zona de proyecto, se tiene, el 66% de la población de se dedica exclusivamente a la agricultura, el 12% se dedican a trabajos dependientes como empleados, con el 13% que se dedican al comercio en tiendas. Otro porcentaje inferior del 5% trabajan como albañil, esto refiere a los jefes de familia papá y mamá.

Asimismo, dentro de la actividad de empleado se refiere a profesionales como policías, enfermeras, secretarias.

Es bueno precisar que en su mayoría los miembros del hogar participan en las labores agrícolas, lo cual permite el sustento principal las familias de los barrios del distrito de Huari



como los jóvenes también apoyan a los padres de acuerdo a su edad, en cada actividad que supone proveer el principal sustento para el hogar.

Tabla 16: Ocupación de los Integrantes de la Familia

| Barrio        | Agric | ultura | Tien | da  | chof | fer | emple | ado | alba | ñil | Total |
|---------------|-------|--------|------|-----|------|-----|-------|-----|------|-----|-------|
| Бапто         | N°    | %      | N    | %   | N    | %   | N°    | %   | N°   | %   | N     |
| San Bartolomé | 12    | 12%    | 5    | 25% | 2    | 40% | 5     | 28% | 2    | 25% | 26    |
| Sta. Rosa     | 13    | 13%    | 3    | 15% | 1    | 20% | 6     | 33% | 3    | 38% | 26    |
| Cruz Jircan   | 5     | 5%     | 3    | 15% | 1    | 20% | 1     | 6%  | 1    | 13% | 11    |
| El Milagro    | 13    | 13%    | 2    | 10% | 0    | 0%  | 2     | 11% | 0    | 0%  | 17    |
| San Juan      | 10    | 10%    | 2    | 10% | 0    | 0%  | 1     | 6%  | 1    | 13% | 14    |
| El Carmen     | 11    | 11%    | 2    | 10% | 0    | 0%  | 1     | 6%  | 0    | 0%  | 14    |
| Vira          | 11    | 11%    | 0    | 0%  | 0    | 0%  | 0     | 0%  | 0    | 0%  | 11    |
| Ulia          | 13    | 13%    | 2    | 10% | 0    | 0%  | 0     | 0%  | 0    | 0%  | 15    |
| *Otros        | 11    | 11%    | 1    | 5%  | 1    | 20% | 2     | 11% | 1    | 13% | 16    |
| Total         | 99    | 66%    | 20   | 13% | 5    | 3%  | 18    | 12% | 8    | 5%  | 150   |

Fuente: Trabajo de campo – Elaborado por el autor

# 3.3.5. Ingresos Familiares

Según el cuadro los que tienen mayor promedio de ingreso son los jefes de familia de los barrios de: El Milagro, El Carmen y Vira. Los que tienen menor ingreso son las localidades de Cruz Jircan y Sta. Rosa.

Destaca estos porcentajes ya que las o los conyugues se dedican mayormente a la agricultura y al comercio, sosteniendo así los gastos del hogar.

Tabla 17: Promedio Ingresos de los Integrantes de la Familia

| Promedio ingreso Familiar mensual |                         |  |  |  |
|-----------------------------------|-------------------------|--|--|--|
| Barrio                            | Ingresos familiares S/. |  |  |  |
| San Bartolomé                     | 955                     |  |  |  |
| Sta. Rosa                         | 950                     |  |  |  |
| Cruz Jircan                       | 925                     |  |  |  |
| El Milagro                        | 1200                    |  |  |  |
| San Juan                          | 910                     |  |  |  |
| El Carmen                         | 1100                    |  |  |  |
| Vira                              | 980                     |  |  |  |
| Ulia                              | 970                     |  |  |  |
| *Otros                            | 890                     |  |  |  |



| Ingreso promedio Global                           | 986.67 |
|---------------------------------------------------|--------|
| Fuente: Trabajo de campo – Elaborado por el autor |        |

#### 3.3.6. Distribución del Gasto Familiar

La encuesta arroja un resultado en promedios en soles, donde indica por ejemplo que en el Barrio Jana gastan un promedio en energía eléctrica S/. 20.59 nuevos soles, el barrio Ura gasta en promedio S/. 31.96 nuevos soles, mientras el barrio Nuevo Chavín gasta en energía eléctrica un promedio bajo de S/. 10.50 nuevos soles.

En alimentación, el barrio que gasta más en promedio es Sr. de los Milagros que hace un monto en S/. 12.64 nuevos soles, seguido del barrio Las Viviendas que gasta en promedio S/. 90.17 nuevos soles. Mientras que el barrio San Pedro gasta un promedio de S/. 13.64 nuevos soles.

En transporte podemos mencionar que las familias se trasladan hacia la ciudad de Huaraz por el comercio, lo cual le genera un gasto mayor en soles como son los barrios Sr. Milagros y Las viviendas que gastan un promedio entre S/. 154 y 152 nuevos soles. El barrio que hace menor uso de transporte gasta un promedio de S/. 70.83 nuevos soles.

El gasto en promedio en combustible, el barrio que genera mayor gasto es el barrio Jana monto en promedio es S/. 150.23 nuevos soles. El barrio que menor gasta en promedio combustible es el barrio Las vivienda cuyo monto es de S/. 41.60 nuevos soles.

Según se observa, tiene prioridad de gasto el rubro de alimentación, el gasto en transporte se explica, ya que el distrito se encuentra a una distancia de dos horas de la ciudad.

El uso del servicio de agua y alcantarillado no figura ya que la población no paga por dicho servicio. La tarifa para la energía eléctrica presenta un promedio bajo. El gasto en alimentación es razonable, ya que la población consume de su propio cultivo.

Tabla 18: Distribución del Gasto Familiar en Promedios

|               | Energía          | alimentación | transporte | salud  | educación | combustible | vestido | Autoval. | cable |
|---------------|------------------|--------------|------------|--------|-----------|-------------|---------|----------|-------|
| Barrio        | eléctrica<br>S/. | S/.          | S/.        | S/.    | S/.       | S/.         | S/.     | S/.      | S/.   |
| San Bartolomé | 20.59            | 37.05        | 123.17     | 105.86 | 200.13    | 150.23      | 346.11  | 194.00   | 35.00 |
| Sta. Rosa     | 31.96            | 22.79        | 163.75     | 176.54 | 330.00    | 48.57       | 392.86  | 163.33   | 35.00 |
| Cruz Jircan   | 20.27            | 13.64        | 70.83      | 70.00  | 128.38    | 83.90       | 257.27  | 110.00   | 0.00  |
| El Milagro    | 23.81            | 16.25        | 105.00     | 152.00 | 153.29    | 54.41       | 285.63  | 50.00    | 0.00  |
| San Juan      | 17.27            | 120.64       | 154.80     | 148.90 | 603.33    | 77.50       | 566.67  | 42.50    | 35.00 |
| El Carmen     | 23.42            | 90.17        | 152.00     | 54.89  | 515.00    | 41.50       | 215.00  | 179.00   | 35.00 |
| Vira          | 10.50            | 46.36        | 83.00      | 107.63 | 671.00    | 83.13       | 333.00  | 20.00    | 0.00  |
| Ulia          | 15.78            | 21.69        | 65.27      | 163.33 | 244.00    | 79.08       | 310.00  | 0.00     | 0.00  |
| *Otros        | 15.50            | 90.25        | 85.20      | 115.75 | 210.68    | 56.40       | 180.00  | 0.00     | 0.00  |

Fuente: Trabajo de campo – Elaborado por el autor



# 3.3.7. Calificación del Servicio de Agua y Alcantarillado

De la información obtenida (se consultó a 150 personas) se ha determinado que el servicio que presta el ATM para la población encuestada es de una aceptación regular del 50%, un 46% manifestó que es mala la atención de la Municipalidad, como también un número menor del 6% que respondió que es buena la calificación del servicio.

Tabla 19: Calificación del servicio que presta la JASS

| Descripción | N°  | %    |
|-------------|-----|------|
| Buena       | 6   | 4%   |
| Regular     | 75  | 50%  |
| Mala        | 69  | 46%  |
| Total       | 150 | 100% |

Fuente: Trabajo de campo - Elaborado por el autor

De las familias consultadas, el 90% manifestaron que la mayoría descargan a una red pública hacia el río Huayochaca o a la quebrada Vira, un porcentaje minoritario del 7% dijo que descargan a un pozo ciego, un bajo porcentaje del 5% manifestó que cuentan con letrina.

Tabla 20: Servicio Higiénico que tiene en su vivienda está conectado

| Descripción  | N°  | %    |
|--------------|-----|------|
| Letrina      | 5   | 3%   |
| Red pública  | 135 | 90%  |
| Pozo séptico | 3   | 2%   |
| Pozo ciego   | 7   | 5%   |
| Total        | 150 | 100% |

Fuente: Trabajo de campo – Elaborado por el autor

Conforme a la información obtenida, 136 familias respondieron que existen problemas de las redes de alcantarillado, y 128 familias respondieron que sus servicios higiénicos están en mal estado, y 136 respondieron que por los problemas del alcantarillado y/o falta de mantenimiento de las redes, esto genera malos olores en el ambiente.

Como se puede observar, si existe una red pública, sin embargo no existe un sistema de tratamiento de las aguas residuales.

Tabla 21: Situación del servicio Higiénico

| SH. Mal<br>estado |    | Problemas | de olores |     | nas red<br>lica | Considera que debe<br>pagarse |    |
|-------------------|----|-----------|-----------|-----|-----------------|-------------------------------|----|
| SI                | NO | SI        | NO        | SI  | NO              | SI                            | NO |
| 128               | 22 | 108       | 42        | 136 | 14              | 146                           | 4  |

Fuente: Trabajo de campo - Elaborado por el autor



# 3.3.8. Aspectos Ambientales

La información obtenida nos indica que los servicios de agua y alcantarillado no están en buen estado, por lo que el 33% manifestó que es malo el servicio, otro grupo del 55% manifestó que el servicio actual del alcantarillado y agua es regular. Esto demuestra que efectivamente el servicio es malo por falta de mantenimiento de las redes secundarias.

Tabla 22: Servicio actual de Agua y Alcantarillado

|                  | Qué op | arillado |         |       |      |       |                   |
|------------------|--------|----------|---------|-------|------|-------|-------------------|
| Barrio           | Bueno  |          | Regular |       | Malo |       | Total<br>vivienda |
|                  | %      | Total    | %       | Total | %    | Total | VIVICIIda         |
| San<br>Bartolomé | 26%    | 5        | 15%     | 12    | 18%  | 9     | 26                |
| Sta. Rosa        | 5%     | 1        | 22%     | 18    | 14%  | 7     | 26                |
| Cruz<br>Jircan   | 11%    | 2        | 10%     | 8     | 2%   | 1     | 11                |
| El Milagro       | 5%     | 1        | 10%     | 8     | 16%  | 8     | 17                |
| San Juan         | 16%    | 3        | 9%      | 7     | 8%   | 4     | 14                |
| El Carmen        | 11%    | 2        | 11%     | 9     | 6%   | 3     | 14                |
| Vira             | 5%     | 1        | 11%     | 9     | 2%   | 1     | 11                |
| Ulia             | 11%    | 2        | 7%      | 6     | 14%  | 7     | 15                |
| *Otros           | 11%    | 2        | 6%      | 5     | 18%  | 9     | 16                |
| Total:           | 13%    | 19       | 55%     | 82    | 33%  | 49    | 150               |

Fuente: Trabajo de campo - Elaborado por el autor

Según el cuadro indica que el problema generado por no contar con un buen sistema de alcantarillado y desagüe sería según los resultados que un 88% traería enfermedades, puede ser por presencia de insectos, roedores, generando enfermedades en la piel.

Otro problema por no contar con el mantenimiento o servicio de alcantarillado, sería problemas ambientales, como la contaminación del río del 20%, debido a que no cuentan con un sistema de tratamiento de aguas residuales, actualmente descarga al río Huayochaca.

Tabla 23: Cuál sería el peor problema generado por no contar con un buen sistema de alcantarillado y desagüe

| Barrio        | Enfermedades |       |     | ninación<br>I río | Total<br>Viviendas |  |
|---------------|--------------|-------|-----|-------------------|--------------------|--|
|               | %            | Total | %   | Total             | viviendas          |  |
| San Bartolomé | 22%          | 22    | 21% | 4                 | 26                 |  |
| Sta. Rosa     | 15%          | 15    | 58% | 11                | 26                 |  |
| Cruz Jircan   | 11%          | 11    | 0%  | 0                 | 11                 |  |



| El Milagro | 12% | 12  | 26% | 5  | 17  |
|------------|-----|-----|-----|----|-----|
| San Juan   | 12% | 12  | 11% | 2  | 14  |
| El Carmen  | 13% | 13  | 5%  | 1  | 14  |
| Vira       | 10% | 10  | 5%  | 1  | 11  |
| Ulia       | 13% | 13  | 11% | 2  | 15  |
| *Otros     | 10% | 10  | 32% | 6  | 16  |
| Total:     | 67% | 101 | 13% | 19 | 150 |

Fuente: Trabajo de campo – Elaborado por el autor

Los resultados nos indican que de un total de 101 familias **S**í conocen donde es descargado el agua residual de las localidades, pero 19 entrevistados dicen que **No** saben dónde es echado el agua de los desagües de las localidades del distrito.

La entrevista realizada sobre este aspecto, nos presenta que la población conoce hacia donde llega la descarga de sus desagües, como son el río (Huayochaca) 101 encuestados coincidieron en su respuesta. Como 10 encuestados manifestaron que descargan a un pozo séptico. Un número minoritario de 2 entrevistados desconocen a donde descargan sus desagües.

Tabla 24: Conoce Ud. Donde es evacuado el desagüe de la ciudad

| Barrio        | Si  | No | Total<br>vivienda |
|---------------|-----|----|-------------------|
| San Bartolomé | 22  | 4  | 26                |
| Sta. Rosa     | 23  | 3  | 26                |
| Cruz Jircan   | 9   | 2  | 11                |
| El Milagro    | 17  | 0  | 17                |
| San Juan      | 14  | 0  | 14                |
| El Carmen     | 14  | 0  | 14                |
| Vira          | 11  | 0  | 11                |
| Ulia          | 8   | 7  | 15                |
| *Otros        | 15  | 1  | 16                |
| total         | 109 | 11 | 150               |

Fuente: Trabajo de campo - Elaborado por el autor



#### 3.4. MATRIZ DE CONSISTENCIA

Tabla 25: Matriz de Consistencia - Problema, Objetivo e Hipótesis.

# TITULO: "IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI - HUARI - ANCASH"

**PROBLEMA OBJETIVOS HIPOTESIS Problema Principal: Objetivo General: Hipótesis General:** ¿De qué manera la La implementación de un Describir de qué manera la implementación de un Sistema Sistema Integral de Implementación de un Sistema Integral de Tratamiento de Integral de Tratamiento de Tratamiento de Agua Residual, Agua Residual, mejora la mejora de la calidad de vida de Agua Residual, mejora la la población en el Distrito de calidad de vida de la población calidad de vida de la población en el Distrito de Huari? Huari. en el Distrito de Huari. **Problemas Específicos: Objetivos Específicos: Hipótesis Especificas:** Objetivo Especifico 1: Describir Hipótesis Específica 1: El Problema Específico 1: ¿De diseño de un Sistema Integral qué manera el Diseño de un de qué manera el diseño de un de Tratamiento de Agua Sistema Integral de Sistema Integral de Residual, reduce de la Tratamiento de Agua Residual, Tratamiento de Agua Residual, Contaminación Ambiental en el reduce la Contaminación reduce la Contaminación Ambiental en el Distrito de Ambiental en el Distrito de Distrito de Huari. Huari? Huari. Problema Especifico 2: ¿De Objetivo Especifico 2: Describir Hipótesis Específica 2: La qué manera la construcción de de qué manera la construcción construcción de un Sistema un Sistema Integral de de un Sistema de Tratamiento Integral de Tratamiento de Tratamiento de Agua Residual, de Agua Residual, conserva el Agua Residual, conserva el conserva el Medio Ambiente Medio Ambiente en el Distrito Medio Ambiente en el Distrito en el Distrito de Huari? de Huari. de Huari.

Fuente: Elaboración Propia



# CAPITULO 4: DESARROLLO DE LA INVESTIGACION

Para la Implementación de un Sistema Integral de Tratamiento de Agua Residual, se ha procedido a calcular en primer lugar el caudal de diseño (Qd), seguidamente se han evaluado los parámetros de la caracterización del agua residual que se quiere tratar, que a su vez nos determinarán las unidades de tratamiento y las dimensiones de las mismas.

# 4.1. CALCULO POBLACIONAL

Para el cálculo poblacional se ha tenido en cuenta la tasa de crecimiento Distrital y la Densidad Poblacional según el INEI.

Tasa de Crecimiento (r): 0.62%

Densidad Poblacional: 4.00

Población Actual (2017): 6,212

Aplicando el método geométrico para hallar la población futura (al año 20):

$$P_f = P_o * (1+r)^{(T_f - T_o)}$$

Ecuación 1: Población Futura - Método Geométrico

Donde:

Pf: Población Final

Po: Población Inicial

r: Tasa de Crecimiento

Tf: Año de la población futura

To: Año de la población inicial.

Tabla 26: Tipo de conexión de Agua Potable

| TIPO DE CONEXION       | CANTIDAD |
|------------------------|----------|
| Conexiones Domesticas* | 1,553    |
| Conexiones Social      | 15       |
| Conexiones Estatal     | 33       |
| Conexiones Comercial   | 49       |
| Conexiones Industrial  | 0        |

Fuente: Trabajo de campo - Elaborado por el autor

(\*) Viviendas habitadas



Tabla 27: Proyección de la Población Futura

| Periodo<br>de Diseño | año  | Población Total |
|----------------------|------|-----------------|
| AÑO<br>BASE          | 2017 | 6,212           |
| 0                    | 2018 | 6,251           |
| 1                    | 2019 | 6,289           |
| 2                    | 2020 | 6,328           |
| 3                    | 2021 | 6,367           |
| 4                    | 2022 | 6,407           |
| 5                    | 2023 | 6,447           |
| 6                    | 2024 | 6,487           |
| 7                    | 2025 | 6,527           |
| 8                    | 2026 | 6,567           |
| 9                    | 2027 | 6,608           |
| 10                   | 2028 | 6,649           |
| 11                   | 2029 | 6,690           |
| 12                   | 2030 | 6,732           |
| 13                   | 2031 | 6,773           |
| 14                   | 2032 | 6,815           |
| 15                   | 2033 | 6,858           |
| 16                   | 2034 | 6,900           |
| 17                   | 2035 | 6,943           |
| 18                   | 2036 | 6,986           |
| 19                   | 2037 | 7,029           |
| 20                   | 2038 | 7,073           |

Fuente: Trabajo de campo - Elaborado por el autor

Seguidamente, se procederá al cálculo de la demanda en base al crecimiento poblacional.

# **4.2. DETERMINACION DE DEMANDAS**

Para determinar las Demandas se deberá primero proyectar el número de conexiones totales, así tenemos que:

 $N^{\circ}$  Conexiones $_{Total} = Conex._{Domesticas} + Conex._{Estatal} + Conex._{Comercial} + Conex._{Ind.} + Conex._{Social}$ Ecuación 2: Cálculo del Número de Conexiones Totales

Para la Proyección de las conexiones comerciales se ha tenido en cuenta la siguiente ecuación:

$$Cc_f = Cc_o * (1+i)^{(T_f - T_o)}$$

Ecuación 3: Proyección de las Conexiones Comerciales Futura



Donde:

Ccf: N° de Conexiones Comerciales Final Cco: N° de Conexiones Comerciales Inicial

i: Tasa de crecimiento del PBI Perú "3.50%" (Fuente: FMI)

Tf: Año de la población futura To: Año de la población inicial.

Tabla 28: Proyección del Número de Conexiones

| Población Número de Conexiones |      |        |         |             |         |              |            |        |       |
|--------------------------------|------|--------|---------|-------------|---------|--------------|------------|--------|-------|
| Período                        | Año  | Total  | Servida | •           | Nur     | nero de Cone | xiones     |        |       |
|                                |      | (hab.) | (hab.)  | Domésticas* | Estatal | Comercial    | Industrial | Social | Total |
| BASE                           | 2017 | 6,212  | 5,189   | 1,651       | 33      | 49           | 0          | 15     | 1,748 |
| 0                              | 2018 | 6,251  | 6,251   | 1,662       | 33      | 51           | 0          | 15     | 1,761 |
| 1                              | 2019 | 6,289  | 6,289   | 1,672       | 33      | 53           | 0          | 15     | 1,773 |
| 2                              | 2020 | 6,328  | 6,328   | 1,682       | 33      | 55           | 0          | 15     | 1,785 |
| 3                              | 2021 | 6,367  | 6,367   | 1,693       | 33      | 57           | 0          | 15     | 1,798 |
| 4                              | 2022 | 6,407  | 6,407   | 1,703       | 33      | 59           | 0          | 15     | 1,810 |
| 5                              | 2023 | 6,447  | 6,447   | 1,714       | 33      | 61           | 0          | 15     | 1,823 |
| 6                              | 2024 | 6,487  | 6,487   | 1,725       | 33      | 63           | 0          | 15     | 1,836 |
| 7                              | 2025 | 6,527  | 6,527   | 1,735       | 33      | 65           | 0          | 15     | 1,848 |
| 8                              | 2026 | 6,567  | 6,567   | 1,746       | 33      | 67           | 0          | 15     | 1,861 |
| 9                              | 2027 | 6,608  | 6,608   | 1,757       | 33      | 70           | 0          | 15     | 1,875 |
| 10                             | 2028 | 6,649  | 6,649   | 1,768       | 33      | 72           | 0          | 15     | 1,888 |
| 11                             | 2029 | 6,690  | 6,690   | 1,779       | 33      | 75           | 0          | 15     | 1,902 |
| 12                             | 2030 | 6,732  | 6,732   | 1,790       | 33      | 77           | 0          | 15     | 1,915 |
| 13                             | 2031 | 6,773  | 6,773   | 1,801       | 33      | 80           | 0          | 15     | 1,929 |
| 14                             | 2032 | 6,815  | 6,815   | 1,812       | 33      | 83           | 0          | 15     | 1,943 |
| 15                             | 2033 | 6,858  | 6,858   | 1,823       | 33      | 85           | 0          | 15     | 1,956 |
| 16                             | 2034 | 6,900  | 6,900   | 1,834       | 33      | 88           | 0          | 15     | 1,970 |
| 17                             | 2035 | 6,943  | 6,943   | 1,846       | 33      | 92           | 0          | 15     | 1,986 |
| 18                             | 2036 | 6,986  | 6,986   | 1,857       | 33      | 95           | 0          | 15     | 2,000 |
| 19                             | 2037 | 7,029  | 7,029   | 1,869       | 33      | 98           | 0          | 15     | 2,015 |
| 20                             | 2038 | 7,073  | 7,073   | 1,880       | 33      | 101          | 0          | 15     | 2,029 |

Fuente: Trabajo de campo – Elaborado por el autor

Seguidamente se procede a calcular el Consumo Promedio por cada tipo de conexión. Ver tabla 29.

<sup>(\*)</sup> Se ha considerado el total de viviendas habitadas, sin habitar y proyectadas



Tabla 29: Proyección del promedio por categorías

|         |      | Pob    | lación  |            | Cama    | Duamad     | !!                    |        |         |
|---------|------|--------|---------|------------|---------|------------|-----------------------|--------|---------|
| Período | Año  | Total  | Servida |            | Cons    | umo Promed | iio (m <i>3</i> /ano) |        |         |
|         |      | (hab.) | (hab.)  | Domésticas | Estatal | Comercial  | Industrial            | Social | Total   |
| BASE    | 2017 | 6,212  | 5,189   | 272,086    | 36,224  | 60,221     | 0                     | 20,548 | 389,080 |
| 0       | 2018 | 6,251  | 6,251   | 273,773    | 36,224  | 62,329     | 0                     | 20,548 | 392,874 |
| 1       | 2019 | 6,289  | 6,289   | 275,470    | 36,224  | 64,511     | 0                     | 20,548 | 396,753 |
| 2       | 2020 | 6,328  | 6,328   | 277,178    | 36,224  | 66,769     | 0                     | 20,548 | 400,719 |
| 3       | 2021 | 6,367  | 6,367   | 278,896    | 36,224  | 69,105     | 0                     | 20,548 | 404,774 |
| 4       | 2022 | 6,407  | 6,407   | 280,625    | 36,224  | 71,524     | 0                     | 20,548 | 408,922 |
| 5       | 2023 | 6,447  | 6,447   | 282,365    | 36,224  | 74,027     | 0                     | 20,548 | 413,166 |
| 6       | 2024 | 6,487  | 6,487   | 284,116    | 36,224  | 76,618     | 0                     | 20,548 | 417,507 |
| 7       | 2025 | 6,527  | 6,527   | 285,878    | 36,224  | 79,300     | 0                     | 20,548 | 421,950 |
| 8       | 2026 | 6,567  | 6,567   | 287,650    | 36,224  | 82,076     | 0                     | 20,548 | 426,498 |
| 9       | 2027 | 6,608  | 6,608   | 289,433    | 36,224  | 84,948     | 0                     | 20,548 | 431,154 |
| 10      | 2028 | 6,649  | 6,649   | 291,228    | 36,224  | 87,921     | 0                     | 20,548 | 435,922 |
| 11      | 2029 | 6,690  | 6,690   | 293,034    | 36,224  | 90,999     | 0                     | 20,548 | 440,805 |
| 12      | 2030 | 6,732  | 6,732   | 294,850    | 36,224  | 94,184     | 0                     | 20,548 | 445,807 |
| 13      | 2031 | 6,773  | 6,773   | 296,678    | 36,224  | 97,480     | 0                     | 20,548 | 450,931 |
| 14      | 2032 | 6,815  | 6,815   | 298,518    | 36,224  | 100,892    | 0                     | 20,548 | 456,182 |
| 15      | 2033 | 6,858  | 6,858   | 300,369    | 36,224  | 104,423    | 0                     | 20,548 | 461,564 |
| 16      | 2034 | 6,900  | 6,900   | 302,231    | 36,224  | 108,078    | 0                     | 20,548 | 467,081 |
| 17      | 2035 | 6,943  | 6,943   | 304,105    | 36,224  | 111,861    | 0                     | 20,548 | 472,738 |
| 18      | 2036 | 6,986  | 6,986   | 305,990    | 36,224  | 115,776    | 0                     | 20,548 | 478,539 |
| 19      | 2037 | 7,029  | 7,029   | 307,887    | 36,224  | 119,828    | 0                     | 20,548 | 484,488 |
| 20      | 2038 | 7,073  | 7,073   | 309,796    | 36,224  | 124,022    | 0                     | 20,548 | 490,591 |

Fuente: Trabajo de campo – Elaborado por el autor

Tabla 30: Consumo Promedio y Demanda Promedio Total

|         |      | Pob    | lación  | Consumo   | Domo                  | anda Promodio | Total    |
|---------|------|--------|---------|-----------|-----------------------|---------------|----------|
| Período | Año  | Total  | Servida | Promedio  | Demanda Promedio Tota |               | TOtal    |
|         |      | (hab.) | (hab.)  | (l/dia)   | (m³/día)              | (m³/año)      | Qp (lps) |
| BASE    | 2017 | 6,212  | 5,189   | 1,065,972 | 1,066.0               | 389,080       | 12.34    |
| 0       | 2018 | 6,251  | 6,251   | 1,076,368 | 1,076.4               | 392,874       | 12.46    |
| 1       | 2019 | 6,289  | 6,289   | 1,086,995 | 1,087.0               | 396,753       | 12.58    |
| 2       | 2020 | 6,328  | 6,328   | 1,097,860 | 1,097.9               | 400,719       | 12.71    |
| 3       | 2021 | 6,367  | 6,367   | 1,108,971 | 1,109.0               | 404,774       | 12.84    |
| 4       | 2022 | 6,407  | 6,407   | 1,120,335 | 1,120.3               | 408,922       | 12.97    |



| 5  | 2023 | 6,447 | 6,447 | 1,131,960 | 1,132.0 | 413,166 | 13.10 |
|----|------|-------|-------|-----------|---------|---------|-------|
| 6  | 2024 | 6,487 | 6,487 | 1,143,855 | 1,143.9 | 417,507 | 13.24 |
| 7  | 2025 | 6,527 | 6,527 | 1,156,028 | 1,156.0 | 421,950 | 13.38 |
| 8  | 2026 | 6,567 | 6,567 | 1,168,488 | 1,168.5 | 426,498 | 13.52 |
| 9  | 2027 | 6,608 | 6,608 | 1,181,245 | 1,181.2 | 431,154 | 13.67 |
| 10 | 2028 | 6,649 | 6,649 | 1,194,307 | 1,194.3 | 435,922 | 13.82 |
| 11 | 2029 | 6,690 | 6,690 | 1,207,685 | 1,207.7 | 440,805 | 13.98 |
| 12 | 2030 | 6,732 | 6,732 | 1,221,388 | 1,221.4 | 445,807 | 14.14 |
| 13 | 2031 | 6,773 | 6,773 | 1,235,428 | 1,235.4 | 450,931 | 14.30 |
| 14 | 2032 | 6,815 | 6,815 | 1,249,815 | 1,249.8 | 456,182 | 14.47 |
| 15 | 2033 | 6,858 | 6,858 | 1,264,560 | 1,264.6 | 461,564 | 14.64 |
| 16 | 2034 | 6,900 | 6,900 | 1,279,675 | 1,279.7 | 467,081 | 14.81 |
| 17 | 2035 | 6,943 | 6,943 | 1,295,173 | 1,295.2 | 472,738 | 14.99 |
| 18 | 2036 | 6,986 | 6,986 | 1,311,065 | 1,311.1 | 478,539 | 15.17 |
| 19 | 2037 | 7,029 | 7,029 | 1,327,364 | 1,327.4 | 484,488 | 15.36 |
| 20 | 2038 | 7,073 | 7,073 | 1,344,084 | 1,344.1 | 490,591 | 15.56 |

Fuente: Trabajo de campo - Elaborado por el autor

# 4.3. DETERMINACION DEL CAUDAL DE DISEÑO

Para el cálculo de los caudales máximos, se ha tenido en cuenta lo siguiente:

Caudal Máximo Diario (Qmd): Qmd = Qp \* K1

Caudal Máximo Horario (Qmh): Qmh = Qp \* K1

Donde:

**Qp: Caudal Promedio** 

K1: Coeficiente de variación diaria (R.N.E.) Norma OS.100 = 1.30

K2: Coeficiente de variación horaria (R.N.E.) Norma OS.100 = 2.00

Para el Caudal de infiltración (Qi) se ha considerado:

Caudal de Infiltración (0.05-1) I/(s.Km) Norma OS.090 = 0.05 I/(s.Km)

Metrado de tuberías en alcantarillado = 21.91 Km

Por lo tanto: Caudal de Infiltración = 0.05\*21.91

Por lo tanto: Caudal de Infiltración = 1.0955 ≈ 1.10 lps



Para el cálculo del caudal de diseño de la Planta de Tratamiento de Aguas Residuales se procede según la siguiente ecuación:

Caudal de Diseño PTAR = 0.80\*Qp + Qi

Tabla 31: Caudales Máximos y Caudal de Diseño de la PTAR

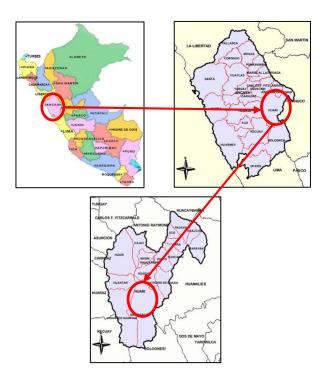
|         |      | Caudales  | Máximos   | Caudal       | Caudal de   |  |
|---------|------|-----------|-----------|--------------|-------------|--|
| Período | Año  | Diario    | Horario   | infiltración | Diseño PTAR |  |
|         |      | Qmd (lps) | Qmh (lps) | Qi (I/s)     | (I/s)       |  |
| BASE    | 2017 | 16.04     | 24.68     | 1.10         | 10.97       |  |
| 0       | 2018 | 16.20     | 24.92     | 1.10         | 11.06       |  |
| 1       | 2019 | 16.36     | 25.16     | 1.10         | 11.16       |  |
| 2       | 2020 | 16.52     | 25.41     | 1.10         | 11.26       |  |
| 3       | 2021 | 16.69     | 25.67     | 1.10         | 11.36       |  |
| 4       | 2022 | 16.86     | 25.93     | 1.10         | 11.47       |  |
| 5       | 2023 | 17.03     | 26.20     | 1.10         | 11.58       |  |
| 6       | 2024 | 17.21     | 26.48     | 1.10         | 11.69       |  |
| 7       | 2025 | 17.39     | 26.76     | 1.10         | 11.80       |  |
| 8       | 2026 | 17.58     | 27.05     | 1.10         | 11.91       |  |
| 9       | 2027 | 17.77     | 27.34     | 1.10         | 12.03       |  |
| 10      | 2028 | 17.97     | 27.65     | 1.10         | 12.15       |  |
| 11      | 2029 | 18.17     | 27.96     | 1.10         | 12.28       |  |
| 12      | 2030 | 18.38     | 28.27     | 1.10         | 12.40       |  |
| 13      | 2031 | 18.59     | 28.60     | 1.10         | 12.53       |  |
| 14      | 2032 | 18.81     | 28.93     | 1.10         | 12.67       |  |
| 15      | 2033 | 19.03     | 29.27     | 1.10         | 12.80       |  |
| 16      | 2034 | 19.25     | 29.62     | 1.10         | 12.94       |  |
| 17      | 2035 | 19.49     | 29.98     | 1.10         | 13.09       |  |
| 18      | 2036 | 19.73     | 30.35     | 1.10         | 13.23       |  |
| 19      | 2037 | 19.97     | 30.73     | 1.10         | 13.39       |  |
| 20      | 2038 | 20.22     | 31.11     | 1.10         | 13.54       |  |

Fuente: Trabajo de campo - Elaborado por el autor

Con este caudal de diseño de 13.54 lps, el cual es el proyectado al año 20 (2038), ya se puede empezar a realizar los diseños de los componentes del Sistema Integral de Tratamiento de Agua Residual.



# 4.4. DESCRIPCION DEL DISEÑO DEL SISTEMA INTEGRAL DE TRATAMIENTO DE AGUA RESIDUAL


La implementación del sistema integral de tratamiento de agua residual, en diseño y ejecución, que se ha considerado para el presente estudio corresponde al proyectado para el distrito de Huari, el cual ha sido desarrollado en el Proyecto de Inversión Pública "Mejoramiento y Ampliación del Sistema de Agua Potable, Alcantarillado y Tratamiento de Aguas Residuales de la zona Urbana de la Ciudad de Huari, Distrito de Huari, Provincia de Huari, Departamento de Ancash", cabe resaltar que sistemas similares vienen proyectándose para otras ciudades como San Marcos, Huallanca y Chavín de Huáncar en la misma región.

# 4.4.1. Localización del Proyecto

El Proyecto se encuentra ubicado en la zona central y oriente del Departamento de Ancash a una altura promedio de 3,149 m.s.n.m. El área de intervención del proyecto se encuentra ubicada en el Distrito de Huari, en la jurisdicción de la Provincia de Huari del Departamento/Región de Ancash.

Departamento : Ancash
 Provincia : Huari
 Distrito : Huari
 UBIGEO del distrito : 021004

Localidad : Zona Urbana del distrito de Huari



*Imagen 7:* Ubicación Geográfica del Distrito de Huari Fuente: Elaboración Propia





*Imagen 8*: Vista panorámica de la zona urbana de Huari. Fuente: Elaboración Propia

Entre los estudios básicos que generalmente se requieren para la implementación del Sistema integral de tratamiento de aguas residuales, se deben tener en cuenta los estudios de suelo y el levantamiento topográfico

Para el Sistema Integral de tratamiento de aguas residuales de Huari se ha considerado el correspondiente estudio de suelos del cual mencionaremos los puntos más resaltantes al igual que en el informe topográfico.

# 4.4.2. Estudio de Suelos

# Determinación del Marco Geológico Regional

La geología regional, se ha realizado a base del Boletín N° 60 y plano geológico del Cuadrángulo Huari (19-i), a escala 1:100,000, por Wilson J., Reyes L., Garayar J., editado por la Comisión de la Carta Geológica Nacional, del Ministerio de Fomento y Obras Públicas del Perú hoy Energía y minas – Dirección de Carta Geológica Nacional, Lima - Octubre de 1995. También se utilizó interpretación de imágenes de satélite y trabajos de campo.

El área de estudio se desarrolla entre los 3000 a 3500 msnm, las unidades geomorfológicas de esta zona son: Superficie Puna y La Zona de Valle, las rocas que afloran son sedimentarias, pertenecen a la Formación Chicama, y además depósitos coluviales, aluviales y fluvioglaciares del Cuaternario

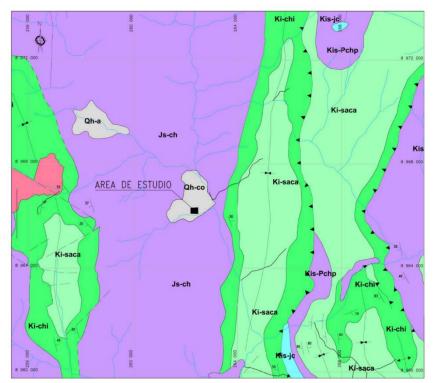



Imagen 9: Geología regional del área de estudio

# > Estratigrafía.

En el área de estudio se exponen diferentes unidades sedimentarias con edades que van desde el Mesozoico (Triásico) hasta el Cenozoico (Cuaternario).

La unidad más antigua está conformada por la Formación Chicama constituida por lutitas pizarrosas con pequeñas intercalaciones de areniscas, cuarcitas y limolitas que, infrayacen a las rocas de la Formación Chimú sobre el cual yace la Formación Carhuaz, compuesto por areniscas con limoarcillitas.

A la parte intermedia resalta el Grupo Goyllarisquizga litológicamente constituido por calizas blanquecinas, areniscas y lutitas en sus diferentes formaciones que afloran en el área (Formación Chimú y Formación Carhuaz), siendo sobreyacidos por la secuencia carbonatada cretácica inferior constituida por la Formación Pariahuanca, Formación Chúlec y Formación Pariatambo, que a su vez infrayacen a la Formación Celendín.

En la parte superior se observa una discordancia angular, entre la Formación Celendín y los depósitos fluvioglaciares. En la Imagen 10, se presenta la columna estratigráfica regional generalizada del proyecto en el distrito de Huari.

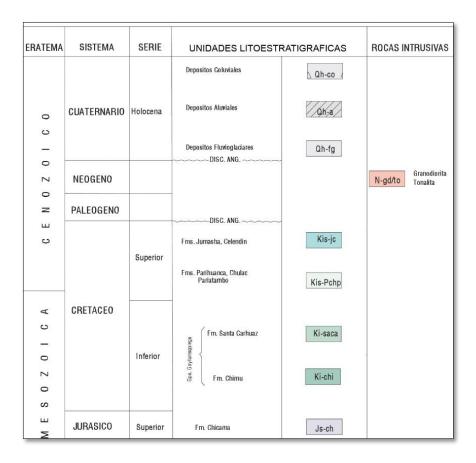



Imagen 10: Columna estratigráfica regional de Huari

#### Excavación de Calicatas

En la excavación de calicatas se realizaron los registros de los diferentes materiales encontrados de acuerdo a la norma ASTM D 2488 (Práctica Estándar para la descripción e identificación de Suelos - Procedimiento Visual Manual). En estos registros se describe el tipo de material encontrado en toda la profundidad de acuerdo: al sistema unificado de clasificación de suelos (SUCS), a su compacidad o consistencia, a la plasticidad del material fino, a la forma del material granular, a su humedad natural y color, al porcentaje estimado de cantos rodados, al porcentaje estimado de bolos o bolones, al porcentaje estimado de bloques y su tamaño máximo.

Se excavaron calicatas en la zona de la Laguna de oxidación, en las cuales se encontraron superficialmente suelos de cobertura y subyaciendo arena limosa y limo arenoso (SM, ML) con presencia de gravas aisladas.

En el siguiente cuadro se muestra el resumen de las calicatas excavadas en el área de estudio:



Tabla 32: Resumen de ubicación de calicatas

| N° | Ubicación           | Calicata | Coordenadas UTM WGS84 |              | Prof. (m) |
|----|---------------------|----------|-----------------------|--------------|-----------|
|    |                     |          | Este                  | Norte        |           |
| 1  | Laguna de Oxidación | C-01     | 262,384.00            | 8'966,220.00 | 2.80      |
| 2  | Laguna de Oxidación | C-02     | 262,353.00            | 8'966,212.00 | 1.90      |
| 3  | Laguna de Oxidación | C-03     | 262,277.00            | 8′966,247.00 | 1.80      |

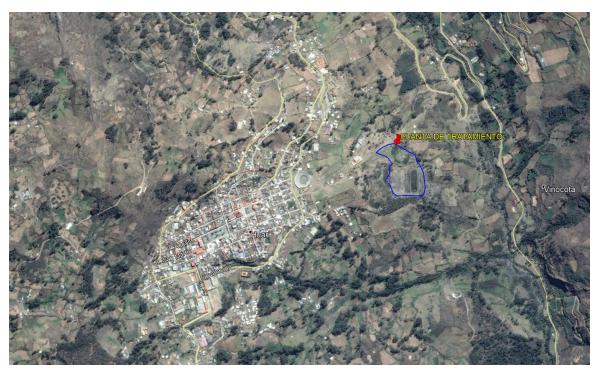



Imagen 11: Vista de la Planta de Tratamiento y el Distrito de Huari

Fuente: Elaboración Propia

Tabla 33: Resultados de los ensayos de clasificación de suelos

| N° | Calicata | Prof. (m) | Gr    | anulome | tría  | Lin | nites ( | %)   | СН   | Clasi | ificación |
|----|----------|-----------|-------|---------|-------|-----|---------|------|------|-------|-----------|
| •• | Guillata |           | Finos | Arena   | Grava | LL  | LP      | '"JP | (%)  | SUCS  | AASTHO    |
| 1  | C-01     | 0.20-2.80 | 37.5  | 50.3    | 12.2  | NP  | NP      | NP   | 18.4 | SM    | A-4(0)    |
| 2  | C-02     | 0.20-1.50 | 50.7  | 34.0    | 15.3  | NP  | NP      | NP   | 19.1 | ML    | A-4(3)    |
| 3  | C-03     | 0.20-1.20 | 59.6  | 23.0    | 17.4  | NP  | NP      | NP   | 11.5 | ML    | A-4(5)    |
| 4  |          | 1.20-1.80 | 14.0  | 30.4    | 55.6  | NP  | NP      | NP   | 5.46 | GM    | A-1-a(0)  |
| 5  | CORTE 1  | 0.00-0.50 | 27.4  | 22.8    | 49.8  | NP  | NP      | NP   | 4.47 | GM    | A-2-4(0)  |
| 6  | CORTE 2  | 0.00-0.50 | 31.3  | 24.0    | 44.7  | NP  | NP      | NP   | 4.63 | GM    | A-2-4(0)  |
| 7  |          | 0.50-0.80 | 35.8  | 27.6    | 36.6  | NP  | NP      | NP   | 7.27 | GM    | A-2-4(0)  |
| 8  | CORTE 3  | 0.00-0.50 | 17.2  | 17.7    | 65.1  | NP  | NP      | NP   | 3.31 | GM    | A-1-b(0)  |

Fuente: Elaboración Propia

Para los ensayos se utilizaron las normas de la American Society For Testing and Materials (ASTM)

Análisis granulométrico por tamizado ASTM D-422 Límites de Atterberg ASTM D-4318 Contenido de humedad ASTM D-2216 Clasificación SUCS ASTM D-2487



# 4.4.3. Topografía

El Estudio Topográfico en el Distrito de Huari, Departamento de Ancash consta de una red de alineamientos que forman una poligonal cerrada de cuarto orden de precisión, que ofrece un procedimiento exacto para el enlace de datos de control de posición al sistema UNIVERSAL TRANSVERSAL MERCATOR (U.T.M), el cual rige los sistemas de coordenadas, en la mayoría de los países del mundo, incluido el Perú

El Levantamiento topográfico se ha dividido en DOS clases: Obras Lineales, Obras No Lineales.

Se realizaron los siguientes procedimientos:

Para realizar el levantamiento topográfico se trabajó la ubicación de BMs GPS que están monumentados para amarrar a nuestro trabajo de campo.

Adicionalmente se realizó un trabajo de documentación de BMs que servirán como puntos de control para el expediente técnico y posteriormente a la ejecución del proyecto. Toda esta información servirá para trabajar las curvas de nivel.

Apoyados en los vértices de las Poligonales de Control, se levantaron en campo todos los detalles Planimétricos compatibles con la escala de presentación de los servicios tales como: estructuras existentes, caminos, carreteras, casas, postes, etc.

Toda la información obtenida se ha procesado empleando programas con un software de cálculo en el caso de la Estación Total (Indicado en el equipo de software utilizado).

Los trazos que generan los planos, han sido procesados en dibujos vectorizados en los programas de AUTOCAD CIVIL 3D, cuyos archivos están en unidades métricas. Los puntos son incluidos como bloques en la capa Puntos Topográficos y controlada en tres tipos de información básica (número de punto, descripción y elevación).

El Levantamiento Planimétricos se ejecutó con los siguientes límites de precisión

Tabla 34: Tolerancia de Poligonales Topográficas

|                                          | Control con Estación Total |                            |  |  |
|------------------------------------------|----------------------------|----------------------------|--|--|
| Descripción                              | Cuarto Orden               | Poligonales<br>secundarias |  |  |
| Límite de error Acimutal                 | 10" (N) ^ ½                | 20" (N) ^ ½                |  |  |
| Máximo error en la medición de distancia | 1:10,000                   | 1:5,000                    |  |  |
| Cierre después del ajuste Acimutal       | 1:5,000                    | 1:3,000                    |  |  |
| Criterio de cálculo y compensación       | MC ó Crandall              | MC ó Crandall              |  |  |

Fuente: Elaboración Propia

Tabla 35: Levantamiento Topográfico de Obras Lineales



| Book to the                                                                              | Escala  |          |
|------------------------------------------------------------------------------------------|---------|----------|
| Descripción                                                                              | 1:500   | 1:1000   |
| Puntos por ha (en media) y todos los detalles<br>Planimétricos compatibles con la escala | 50      | 36       |
| Cuadriculado (o espacio entre secciones)                                                 | 10 m    | 20 m     |
| Tolerancia planimetría                                                                   | 0,2 m   | 0,3 m    |
| Tolerancia altimétrica en Puntos Acotados                                                | +- 5 cm | +- 10 cm |

Tabla 36: Levantamiento Topográfico de Obras No Lineales

| Dogarinaján                                                                              | Escala  |         |
|------------------------------------------------------------------------------------------|---------|---------|
| Descripción                                                                              | 1:200   | 1:500   |
| Puntos por ha (en media) y todos los detalles<br>Planimétricos compatibles con la escala | 200     | 36      |
| Cuadriculado (o espacio entre secciones)                                                 | 5 m     | 10 m    |
| Tolerancia planimetría                                                                   | 0,1 m   | 0,2 m   |
| Tolerancia altimétrica en Puntos Acotados                                                | +- 2 cm | +- 5 cm |

Fuente: Elaboración Propia



Imagen 12: Planta de Tratamiento Proyectada - Huari Fuente: Trabajo de Campo - Elaboración Propia



# 4.4.4. Planteamiento de las Unidades de Tratamiento

Para plantear las unidades de tratamiento que van a conformar nuestro Sistema Integral de Tratamiento de Aguas Residuales, se debe primeramente caracterizar el agua residual a tratar, para lo cual se recogió una muestra de agua residual y se llevó a un laboratorio acreditado por la INACAL, los resultados se pueden observar en la imagen 13.

| N° ALS - CORPLAB<br>Fecha de Muestreo<br>Hora de Muestreo<br>Tipo de Muestra<br>Identificación |                   |             |         | 401501/2016-1.0<br>29/10/2016<br>09:00:00<br>Agua Residual<br>Doméstica<br>PUNTO DE |
|------------------------------------------------------------------------------------------------|-------------------|-------------|---------|-------------------------------------------------------------------------------------|
| Parámetro                                                                                      | Ref. Mét.         | Unidad      | LD      | DESCARGA 4                                                                          |
| 002 ANÁLISIS EN CAMPO                                                                          | Kei. Wiet.        | Omuau       | LD      |                                                                                     |
| pH                                                                                             | 15906             | Unidades pH | man.    | 6,02                                                                                |
| Temperatura de la Muestra                                                                      | 15908             | 5C          |         | 18,2                                                                                |
| 003 ANÁLISIS FISICOQUÍMICOS                                                                    | 1 1               |             |         |                                                                                     |
| Aceites y Grasas                                                                               | 12261             | mg/L        | 1,0     | 25,1                                                                                |
| Cianuro Total                                                                                  | 12450             | mg/L        | 0,001   | < 0,001                                                                             |
| Cromo Hexavalente                                                                              | 12235             | mg/L        | 0,002   | < 0,002                                                                             |
| Demanda Bioquímica de Oxígeno (DBO5)                                                           | 12413             | mg/L        | 2       | 60                                                                                  |
| Demanda Química de Oxígeno                                                                     | 12336             | mg O2/L     | 2       | 124                                                                                 |
| Nitrógeno Amoniacal                                                                            | 13330             | mg NH3-N/L  | 0,004   | 2,790                                                                               |
| Sólidos Sedimentables(SS)                                                                      | 12294             | mL/L        | 0,2     | 3,0                                                                                 |
| Sólidos Totales Suspendidos                                                                    | 12440             | mg/L        | 2       | 29                                                                                  |
| Sulfuros                                                                                       | 12194             | mg/L        | 0,001   | < 0,001                                                                             |
| 005 ANÁLISIS POR CROMATOGRAFÍA - Anion                                                         | es por Cromatogra | fía Iónica  |         |                                                                                     |
| Sulfatos, SO4-2                                                                                | 8100              | mg/L        | 0,050   | 20,59                                                                               |
| 007 ANÁLISIS DE METALES - ICP óptico totale                                                    | S                 |             |         |                                                                                     |
| Aluminio (AI)                                                                                  | 10602             | mg/L        | 0,005   | 0,293                                                                               |
| Arsénico (As)                                                                                  | 10602             | mg/L        | 0,02    | < 0,02                                                                              |
| Boro (B)                                                                                       | 10602             | mg/L        | 0,002   | < 0,002                                                                             |
| Cadmio (Cd)                                                                                    | 10602             | mg/L        | 0,002   | < 0,002                                                                             |
| Cobre (Cu)                                                                                     | 10602             | mg/L        | 0,002   | < 0,002                                                                             |
| Cromo (Cr)                                                                                     | 10602             | mg/L        | 0,002   | < 0,002                                                                             |
| Manganeso (Mn)                                                                                 | 10602             | mg/L        | 0,0008  | 0,0639                                                                              |
| Niquel (Ni)                                                                                    | 10602             | mg/L        | 0,006   | < 0,006                                                                             |
| Plomo (Pb)                                                                                     | 10602             | mg/L        | 0,02    | < 0,02                                                                              |
| Zinc (Zn)                                                                                      | 10602             | mg/L        | 0,001   | 0,053                                                                               |
| 007 ANÁLISIS DE METALES - Mercurio total                                                       |                   |             |         |                                                                                     |
| Mercurio (Hg)                                                                                  | 10599             | mg/L        | 0,00005 | < 0,00005                                                                           |
| 015 ANÁLISIS MICROBIOLÓGICOS                                                                   | 1 30445           | *********   | 1.0     | 4.75.7                                                                              |
| Coliformes Termotolerantes                                                                     | 12146             | NMP/100 mL  | 1,8     | 1,7E+7                                                                              |

Imagen 13: Resultados de Caracterización de Aguas Residuales

Fuente: Elaboración Propia

Como se puede observar en el caso de los resultados de la DBO5, se cuenta con un valor de 60 mg/l, que al ser un valor no representativo de una ciudad con proyecciones de expansión, en el tiempo, se recomienda emplear un parámetro teórico para localidades de carga orgánica media de 250 mg/l y DQO de 450 mgO2/L. (Metcalf and Eddy, 1985).



Asimismo se tomará como temperatura promedio de la zona un valor de 11.9°C y no los 18.2°C del resultado de laboratorio, ya que este valor representa la temperatura de la muestra conservada.

En este contexto los principales parámetros de diseño para la planta de tratamiento serán los especificados en el siguiente cuadro:

Tabla 37: Parámetros Agua Residual – Diseño

| PARÁMETROS                        | UNIDADES  | VALORES |
|-----------------------------------|-----------|---------|
| pH (15°C)                         | -         | 6.5     |
| Temperatura                       | (°C)      | 11.9    |
| DBO5                              | mg/l      | 250.0   |
| DQO                               | mg/l      | 450.0   |
| SST                               | mg/l      | 29.0    |
| Solidos sedimentables             | ml/L/h    | 3.0     |
| Aceites y Grasas                  | mg/l      | 25.1    |
| <b>Coliformes Termotolerantes</b> | NMP/100ml | 1.7E+07 |

Fuente: Elaboración Propia – Resultado de Laboratorio

A fin de sustentar nuestra Hipótesis Especifica 1 (He1) "El diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce de la Contaminación Ambiental en el Distrito de Huari" se debe verificar que las unidades proyectadas en su conjunto logren obtener parámetros, del efluente, que cumplen con los "Límites Máximos Permisibles (LMP) para los Efluentes de PTAR" (D.S. N°003-2010-MINAM). Ver tabla 38.

Tabla 38: Cuadro de LMPs para efluentes de PTAR.

| Parámetro                     | Unidad    | LMP de Efluente para<br>vertidos a cuerpos de aguas |
|-------------------------------|-----------|-----------------------------------------------------|
| Aceites y grasas              | mg/L      | 20                                                  |
| Coliformes Termotolerantes    | NMP/100mL | 10,000                                              |
| Demanda Bioquímica de Oxigeno | mg/L      | 100                                                 |
| Demanda Química de Oxigeno    | mg/L      | 200                                                 |
| рН                            | Unidad    | 6.5-8.5                                             |
| Solidos Totales en Suspensión | ml/L      | 150                                                 |
| Temperatura                   | °C        | <35                                                 |

Fuente: Decreto Supremo Nº 003-2010-MINAM



Tabla 39: Cuadro para selección de los procesos de tratamiento de las aguas residuales

| PROCESOS DE                | Re    | moción (%)               | Remoción ciclos log <sub>10</sub> |           |  |
|----------------------------|-------|--------------------------|-----------------------------------|-----------|--|
| TRATAMIENTO                | DBO   | Sólidos en<br>Suspensión | Bacterias                         | Helmintos |  |
| Sedimentación primaria     | 25-30 | 40-70                    | 0-1                               | 0-1       |  |
| Lodos Activados (a)        | 70-95 | 70-95                    | 0-2                               | 0-1       |  |
| Filtros Percoladores (a)   | 50-90 | 70-90                    | 0-2                               | 0-1       |  |
| Lagunas Aeradas (b)        | 80-90 | (c)                      | 1-2                               | 0-1       |  |
| Zanjas de Oxidación (d)    | 70-95 | 80-95                    | 1-2                               | 0-1       |  |
| Lagunas Estabilización (e) | 70-85 | (c)                      | 1-6                               | 1-4       |  |

Fuente: RNE - Norma OS.090

- (a) precedidos y seguidos de sedimentación
- (b) incluye laguna secundaria
- (c) dependiente del tipo de lagunas
- (d) Seguidas de sedimentación
- (e) Dependiendo del número de lagunas y otros factores como: Temperatura, Periodo de retención y forma de las lagunas

Teniendo en consideración lo indicado en la tabla N° 37, 38 y 39, se han considerado optar por los siguientes componentes para el sistema:

## Como Pre tratamiento:

Cámara de Rejas Gruesas

Cámara de Rejas finas

# Como Tratamiento Primario:

Tanque Imhoff

Lecho de secado

# Como Tratamiento Secundario

Filtros Percoladores

Sedimentadores Secundarios

Lecho de Secado para Sedimentador

# Lagunas Facultativas (como tratamiento de Patógenos y Parásitos)



# 4.4.5. Diseño de las Rejas Gruesas y Rejas Finas

Como primera unidad de tratamiento se ha considerado el diseño de dos cámaras de rejas; las rejas gruesas que tienen como función retener los sólidos gruesos de mayor tamaño como bolsas, trozos de madera, latas y demás que puedan obstruir el sistema; y las rejas finas que retienen partículas de menor tamaño.

Para el caudal de diseño (Qd) se ha considerado el 80% del Caudal Máximo Horario (Qmh) al año 20 más el caudal de infiltración, así tenemos:

Qd = 80%\*Qmh + Qi Qd = 80%\*31.11 + 1.10Qd = 25.9 lps

#### Cámara de Rejas

Es una estructura de concreto armado con rejas en su interior construida al inicio del sistema integral de tratamiento, sirve para retener sólidos procedentes de las redes colectoras. Se ubica entre la tubería principal y Desarenador. Se construirá en un área establecida que consta de 10 m2 aproximadamente.

La primera unidad de la planta de tratamiento es la cámara de rejas (gruesas y finas), la finalidad de las rejillas es de retener las materias gruesas o los objetos grandes tales como: latas de conserva, pedazos de madera, materias plásticas y otras materias gruesas acarreadas por las aguas residuales que pueden perturbar el funcionamiento de la planta de tratamiento, las materias se limpiarán en forma manual con rastrillo o gancho.

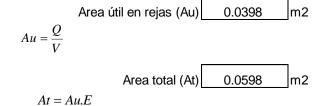
La rejilla se compone de F<sup>o</sup> G<sup>o</sup> ø 5/8" separados cada 5 cm (rejas gruesas) y 1.5 cm (rejas finas)., tienen una inclinación de 60°.

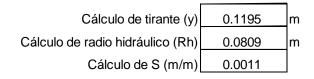
#### Desarenador

Estructura de concreto armado que tiene por función retener solidos suspendidos que pueden precipitar por su propio peso sin la ayuda de un coagulante, esto con la optimizar la eficiencia de la siguiente unidad en el tratamiento primario. Se construirá en un área aproximadamente de 10m2.



# **DISEÑO DE REJAS GRUESAS**


# a) PARAMETROS DE DISEÑO CAUDALES DE DISEÑO


| Qmín  | 0.007  | m3/s = | 7    | l/s |
|-------|--------|--------|------|-----|
| Qprom | 0.014  | m3/s = | 14.4 | l/s |
| Qmáx  | 0.0259 | m3/s = | 25.9 | l/s |

# b) CALCULO DE LAS REJAS PARA EL Qmáximo

| Caudal máximo (Q)                          | 0.0259 | m3/s |
|--------------------------------------------|--------|------|
| Angulo de Inclinación: OS-090 <45º-60º>    | 60     | _    |
| Espesor de barra, (e)                      | 0.0075 | m    |
| Separación entre barras (a)                | 0.05   | m    |
| "Eficiencia de barra" E=(a/(e+a))          | 0.87   |      |
| Velocidad en rejas,V (m/s) <0.6 - 0.75>    | 0.65   | m/s  |
| Velocidad de aproximación (Vo) <0.3 - 0.6> | 0.55   | m/s  |
| Ancho canal (b) (asumir)                   | 0.50   | m    |
| Coeficiente de Manning (n)                 | 0.014  |      |
| Numero de barras "n"= (b-a)/(e+a)          | 7      |      |
|                                            |        |      |

# Cálculo para el caudal máximo





# Cálculo de perdida de carga

$$Hf = \frac{1.143(V^2 - Vo^2)}{2g} \quad \text{P\'erdida carga Hf(m)} \quad 0.007$$

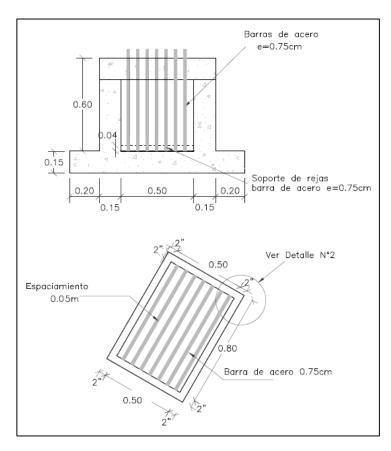



Imagen 14: Detalle de Reja Gruesa (e = 5 cm)

"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI - HUARI - ANCASH"

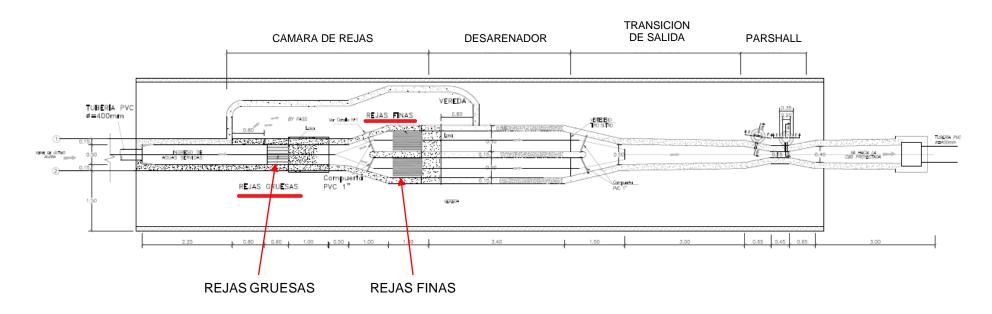



Imagen 15: Desarenador Primario - Cámara de rejas Fuente: Elaboración Propia



# **DISEÑO DE REJAS FINAS**

# a.) PARÁMETROS DE DISEÑO

# **CAUDALES DE DISEÑO**

Qmín Qprom

Qmáx

0.007 m3/s = 7 l/s 0.014 m3/s = 14.4 l/s 0.0259 m3/s = 25.9 l/s

# b.) CÁLCULO DE LAS REJAS PARA EL Qmáximo

Caudal máximo (Q)

Angulo de Inclinación: OS-090 <45º-60º>

Espesor de barra, (e)

Separación entre barras (a)

"Eficiencia de barra" E=(a/(e+a))

Velocidad en rejas, V (m/s) < 0.6 - 0.75>

Velocidad de aproximación (Vo) < 0.3 - 0.6>

Ancho canal (b) (asumir)

Coeficiente de Manning (n)

Numero de barras "n"= (b-a)/(e+a)

|        | _    |
|--------|------|
| 0.0259 | m3/s |
| 45     |      |
| 0.0075 | m    |
| 0.015  | m    |
| 0.67   |      |
| 0.75   | m/s  |
| 0.50   | m/s  |
| 0.50   | m    |
| 0.014  |      |
| 21     |      |
|        |      |

# Cálculo para el caudal máximo

Area útil en rejas (Au) 
$$0.035$$
 m2  $Au = \frac{Q}{V}$ 

Area total (At) 
$$0.052$$
 m2  $At = Au.E$ 

| Cálculo de tirante (y)           | 0.104  | m |
|----------------------------------|--------|---|
| Cálculo de radio hidráulico (Rh) | 0.073  | m |
| Cálculo de S (m/m)               | 0.0016 |   |

# Cálculo de perdida de carga

$$Hf = \frac{1.143(V^2 - Vo^2)}{2g}$$
 Pérdida carga Hf(m) 0.018






Imagen 16: Detalle de Reja Gruesa (e = 1.5 cm)

Después del pre-tratamiento conformado por el sistema de rejas y el desarenador, se plantea la construcción de una cámara de repartición (CR-01) para distribuir el caudal hacia los (04) tanques Imhoff proyectados.

### Caja de Repartición Tipo I (CRI-01)

Se proyecta la construcción de una caja de concreto armado y con una dimensiones exteriores de 1.8 x2.7x2.2m, los muros de 0.20m, (04) compuertas metálicas de acero inoxidable. A la caja ingresa una tubería de 315mm y tiene (04) salidas de 200mm que se dirigen a los tanques Imhoff. Esta caja tiene un área de 4.86m2.




Imagen 17: Vista planta-perfil de Cámara de repartición.



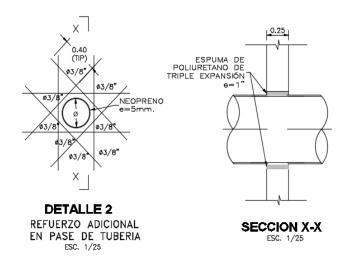



Imagen 18: Vista detalles de Cámara de repartición.

#### 4.4.6. Diseño de Tanque Imhoff y Lecho de Secado

Se plantea la construcción de (04) tanques Imhoff y (02) lechos de secados que trabajaran en forma alternada. Los tanques Imhoff serán de concreto armado con un área individual aproximada de 63m2 y con una altura aproximada de 5.4m. Para evacuar los lodos se consideró dos (02) salidas por cada tanque, estas salidas tienen una válvula compuerta de 200mm.

Cada tanque Imhoff típico es de forma rectangular y se divide en tres compartimientos:

- Cámara de sedimentación.
- Cámara de digestión de lodos.
- Área de ventilación y acumulación de natas.

Para el diseño del Tanque Imhoff y el lecho de secado, se debe considerar el Caudal de diseño de la PTAR (13.54 lps), según lo indicado en la Guía para el Diseño de tanques Sépticos, Tanques Imhoff y Lagunas de Estabilización – OPS/CEPIS – Lima, 2005. Asi mismo los siguientes parámetros de diseño:

Qdiseño = 13.54 lps

Población futura al año 20 = 7,073 habitante

Dotación = 120 L/hab\*dia



|           |                                       | DISEÑO DE 1                 | TANQUE IMHOFF PROYECT                          | TADO ( TRATAN   | /IIENTO PRIMARIO)                       |                      |                                           |
|-----------|---------------------------------------|-----------------------------|------------------------------------------------|-----------------|-----------------------------------------|----------------------|-------------------------------------------|
| _         | Agua Infiltracion 5% (0.05-1)         | _/(s.Km) <b>según R.N.E</b> | <b>C. OS.090</b> Q diseño=                     | 13.54 lt/seg    |                                         |                      |                                           |
| DATOS     |                                       |                             | Poblacion=                                     | 7073 habitantes | Dato ( Cuadro demanda)                  |                      |                                           |
| $\succeq$ |                                       |                             | Dotación=                                      | 120 lt/hab.*dia | L red=8.00 Km                           |                      |                                           |
| ⋖         |                                       |                             | Coef.retorno C=                                | 80.00%          |                                         | DATO DEL CAUDRO DE D |                                           |
| _         |                                       |                             | Tiempo Retencion Hidraulica=                   | 2.00 horas      | Dato <b>R.N.E.</b> ( 1.5 -2.5 horas)    | Q total=13.54 lt/seg | g (Según <b>R.N.E.</b> , <b>OS. 100</b> ) |
|           |                                       |                             | Temperatura=                                   | 10°C            | 2                                       | C                    | )                                         |
|           |                                       |                             | Qdiseño=                                       | 1169.86 m3/dia  |                                         |                      |                                           |
|           | Se considerara <b>4 Unidac</b>        | les                         | Qidiseño=                                      | 292.46 m3/dia   | →12.19 m3/hora                          |                      |                                           |
|           |                                       |                             | Carga superficial.CS=                          |                 | (Según <b>R.N.E.</b> , <b>OS. 090</b> ) |                      |                                           |
| [         | , , , , , , , , , , , , , , , , , , , |                             | Area del sedimentador=                         | 12.19m2         |                                         |                      |                                           |
| 2         | · -                                   | .N.E. , OS. 090)            | Volumen del sedimentador=                      | 24.37 m3        |                                         |                      |                                           |
| <b>}</b>  | 80 %                                  | 65 %                        | $\rightarrow$ [Ø] Pendiente <sub>fondo</sub> = | 56.98°          | (entre 50º y 60º, Según <b>R.</b>       | •                    |                                           |
| <b>-</b>  |                                       |                             |                                                | Tanteo #1       |                                         | Tanteo #2            | ı                                         |
| 2         |                                       |                             | B <sub>SEDIMENTADOR</sub> (m.)=                | 2.75 m          | Valor inicial impuesto                  | B Sed.=2.75 m        |                                           |
|           |                                       |                             | h1 <sub>SEDIMENTADOR</sub> (m.)=               | 2.12 m          | Calculado                               | H sed.=2.12 m        | DATOS PARA IMHOFF                         |
|           |                                       |                             | h2 <sub>SEDIMENTADOR</sub> (m.)=               | 0.00 m          | (Asumido)                               | L selec=11.00 m      |                                           |
|           |                                       |                             | ht <sub>SEDIMENTADOR</sub> (m.)=               | 2.12 m          |                                         | 4.0                  | Ok $\leftarrow$ [L/B=4]                   |
| ו         |                                       |                             | L <sub>SEDIMENTADOR</sub> (m.)=                | 8.38 m          |                                         | 5.2                  | OK $\leftarrow$ [L/H=5-30]                |
|           |                                       |                             | (L/B)=                                         | 3.00 m          | Revisar                                 |                      |                                           |
|           |                                       |                             | verificacion de Volumen =                      | 32.00 m3        | ok                                      |                      |                                           |
|           |                                       |                             | H sedimentador[m]=                             | 2.12 m          | Real Calculado                          |                      |                                           |



|          | DISEÑO DE TANO                                              | QUE IMHOFF PROYECT                                  | ADO ( TRATAN            | MIENTO PRIMARIO                         | 0)                               |                                  |
|----------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------|-----------------------------------------|----------------------------------|----------------------------------|
|          | Volumen de almacenamiento y digestion (Vd) para cada unidad | Vd[70*Pob*fcr/1000]=                                | 173.29 m3               | Se tiene 04 unidades                    |                                  |                                  |
|          | Fac                                                         | tor de Capacidad relativa fcr =                     | 1.40                    | Ingresar dato de tabla 1                | l                                |                                  |
|          |                                                             | Espesor paredes del sedimentador [e]=               | 20 cm                   |                                         |                                  |                                  |
|          | Ancho minimo espaci                                         | o pared sedimentador al digestor [A <sub>1</sub> ]= | 1.30 m                  | Min.1.0 mts aumentar si el are          | ea de ventilacion es menor al 30 | % del area total                 |
|          |                                                             | Comprobacion de areas=                              | 28.60m2                 | 1.73m2                                  | ok ——                            | Comprobacion según <b>R.N.E.</b> |
|          |                                                             | B digest total =                                    | 5.75 m                  |                                         |                                  |                                  |
|          | Frecu                                                       | encia de extraccion de lodos=                       | 76 dias                 | _ Ingresar dato de tabla 1              | 1                                |                                  |
|          | Volumen de lodo digerido a extraer (Vel)                    | Vel=                                                | 31.76 m3                | Solo para un tanque                     |                                  |                                  |
|          |                                                             | Altura de zona de digestor=                         | 2.24 m                  |                                         | B digest.=5.75 m                 |                                  |
| <b>X</b> |                                                             | Borde libre=                                        | 0.45 m                  |                                         | H digest.=2.24 m                 | DATOS DIGESTOR                   |
| 2        | Espaciamiento e                                             | entre sedimentador-digestor=                        | 0.50 m                  | (Según <b>R.N.E.</b> , <b>OS. 090</b> ) | L digest=11.00 m                 |                                  |
| DIGESTOR | hallamos un primer volumen de prisma con una altur 0.00m    | h=                                                  | 0.00 m                  |                                         |                                  |                                  |
| 出        |                                                             | Vol1=                                               | 0.00 m3                 |                                         |                                  |                                  |
|          |                                                             | Vol2=                                               | 31.76 m3                |                                         |                                  |                                  |
|          | Hallando el volumen de lodo a extraer                       | L3=                                                 | 2.65 m                  | (Asumido)                               |                                  |                                  |
|          |                                                             | L4=                                                 | 2.65 m                  | (Asumido)                               | 5.3                              |                                  |
|          |                                                             | S1=                                                 | 31.63m2                 |                                         |                                  |                                  |
|          |                                                             | S2=                                                 | 0.09m2                  |                                         |                                  |                                  |
|          |                                                             | Veli=                                               | h1(S1+S2+(S1*S2)^0.5)/3 | (Volumen de cada tron                   | co de piramide)                  |                                  |
|          |                                                             | Veli=                                               | 15.88 m3                | (Volumen de cada tron                   | co de piramide)                  |                                  |
|          |                                                             | h1=_                                                | 0.72 m                  | _                                       |                                  |                                  |
|          | Angulo que pertenece al corte A-A                           | [θ2] Pendiente <sub>fondo</sub> =                   | 15.20°                  | OK, CUMPLE CON EL R.I                   | N.E. , OS.090                    |                                  |
|          | Angulo que pertenece al corte B-B                           | [θ3] Pendiente <sub>fondo</sub> =                   | 15.20°                  | OK, CUMPLE CON EL R.I                   | N.E. , OS.090                    |                                  |
|          |                                                             |                                                     |                         | _                                       |                                  |                                  |

"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI - HUARI - ANCASH"

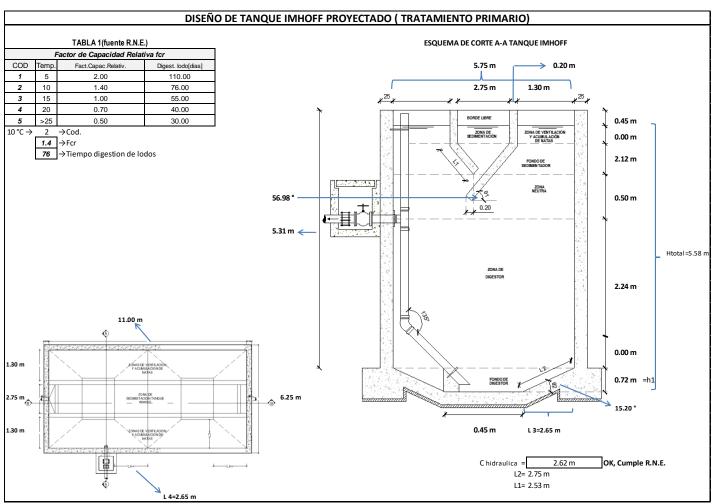



Imagen 19: Sección del Diseño del Tanque Imhoff



Durante la operación, las aguas residuales fluyen a través de la cámara de sedimentación, donde se remueven gran parte de los sólidos sedimentables, estos resbalan por las paredes inclinadas del fondo de la cámara de sedimentación pasando a la cámara de digestión a través de la ranura con traslape existente en el fondo del sedimentador. El traslape tiene la función de impedir que los gases o partículas suspendidas de sólidos, producto de la digestión, que inevitablemente se producen en el proceso de digestión, son desviados hacia la cámara de natas o área de ventilación.

Estas unidades no cuentan con unidades mecánicas que requieran mantenimiento y la operación consiste en la remoción diaria de espuma, en su evacuación por el orificio más cercano y en la inversión del flujo dos veces al mes para distribuir los sólidos de manera uniforme en los dos extremos del digestor de acuerdo con el diseño y retirarlos periódicamente al lecho de secado.

Los lodos acumulados en el digestor se extraen periódicamente y se conduce a lechos de secado, en donde el contenido de humedad se reduce por infiltración, después de lo cual se retiran y se disponen de ellos enterrándolos o pueden ser utilizados para mejoramiento de los suelos.

#### Lecho de Secado

Se construirá (02) estructuras de concreto armado que tiene en su interior material que permita la filtración del agua durante el secado y la retención de los lodos.

El lecho de secado para los tanques imhoff tendrá las siguientes dimensiones: Largo=9.9ml, ancho=8.0ml y una altura de lodo de 0.4ml (solo el lodo), esta altura es muy aparte del material por donde va filtrar el agua.

Este lecho estará conformado por un espesor de capa de arena de 0.2 m de espesor, tamaño efectivo de 0.3 A 1.30mm y coeficiente de uniformidad 2.00. Así mismo, debajo de esta capa se ha dispuesto otra capa de grava de 0.2m de espesor y tamaño efectivo entre los valores de 1/6" y 2".



| LECHO DE SECADO DE                                        | LODOS PROYEC        | CTADO                                               |
|-----------------------------------------------------------|---------------------|-----------------------------------------------------|
| Q max=                                                    | 13.54 lt/seg        |                                                     |
| Poblacion=                                                | 7073 habitantes     |                                                     |
| Contribuccion percapita =                                 | 60.50 gr.SS/hab.dia | Poblaciones con alcantarillado                      |
| % solidos contenidos en lodo=                             | 8.00%               | Dato varia entre [8-12%]                            |
| Temperatura=                                              | 10°C                | #¡REF!                                              |
| Profundidad de apliacacion <b>Ha</b> =                    | 0.40 m              | Dato varia entre [0.20-0.40m]                       |
| Carga de solidos [C]=                                     | 427.92 kg SS /dia   | a ·                                                 |
| Masa de solidos en el lodos ( Msd)=                       | 139.07 kg SS/dia    | a .=((0.5*0.7*0.5)*C+(0.5*0.3)*C                    |
| γ lodos=                                                  | 1.04 kg/lt          | Densidad de los lodos                               |
| Volumen diario de lodos digeridos (VId)[Msd/%*dens.lodo]= | 1671.55 l/d         |                                                     |
| Volumen de lodos a extraerse ( Vel )=                     | 127.04 m3           |                                                     |
| Area del lecho de secado [Vel/ Ha]=                       | 317.59m2            |                                                     |
| Numero de lechos de secado=                               | 4.0                 |                                                     |
| Ancho del lecho de secado (A)=                            | 8.0 m               | [Para Instalaciones Grandes >10 valores entre 3-6m] |
| Longitud del lecho de secado <b>(L)</b> =                 | 9.90 m              |                                                     |

"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI – HUARI - ANCASH"

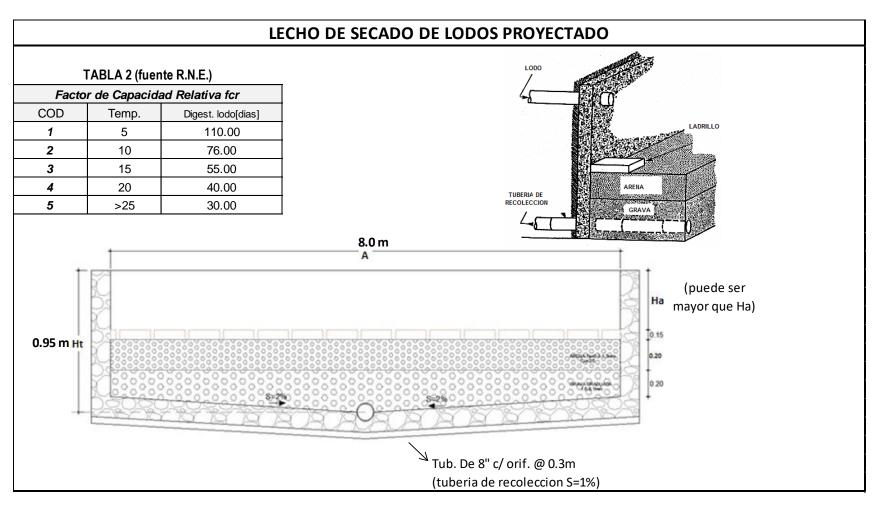



Imagen 20: Sección del Diseño de Lecho de Secado



#### 4.4.7. Diseño de Filtros Percoladores

Se proyecta la de dos filtros percoladores que trabajaran en paralelo, cada filtro percolador será de concreto armado, una dimensión interna de 12m y una altura de lecho percolador de 2.5m y de plástico. Adicionalmente se considerara un sistema de distribución rotatorio que trabajara con carga hidráulica.

El sistema de distribución está formado por un conducto de aducción de las aguas residuales empalmada a la tubería de alimentación, colocada al centro de la presa de percolación, que se encarga de sostener un sistema rotatorio de distribución equipado con cuatro tubos distribuidores que, a su vez están empalmados radialmente a un colector central y tensados mediante tirantes regulables. Las aguas residuales procedentes del conducto de aducción se reparten en los tubos distribuidores y desde éstos salen a través de una serie de toberas dimensionadas adecuadamente para obtener, por el principio del remolino hidráulico, un empuje hidrostático capaz de activar la rotación de todo el sistema de distribución.



Imagen 21: Vista de filtro percolador



Imagen 22: Vista de un sistema de distribución rotatorio para Filtros percoladores.



| <u>DIMENSIONAMIENTO DE FII</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TROS PERCO         | LADORES        |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|--------------------|
| Critarias de diseño pero fitros persoladores, conún tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                | onto ata (l. amana |
| Criterios de diseño para filtros percoladores, según tip<br>Rivas, Material de clase para las asignaturas de Trata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                  | -              |                    |
| Rivas, iviateriai de ciase para las asignaturas de Trata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imenio de Agua     | as Residuales, | 2012).             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                |                    |
| → Población de diseño (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 7073           | habitantes         |
| → Dotación de agua (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                | L/(habitante.día)  |
| <ul> <li>→ Contribución de aguas residuales (C)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | 80%            | L'(Habitanto.dia)  |
| <ul> <li>→ Contribución percápita de DBO5 (Y) (más desfavor</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ahla)              |                | grDBO5/(hab.día)   |
| → Producción percápita de aguas residuales: q =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                | L/(habitante.día)  |
| → DBO5 teórica: St = Y x 1000 / q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                | mg/L               |
| → Eficiencia de remoción de DBO5 del tratamiento presenta de la companya de l | rimario (En)       | 30%            | 9/ _               |
| → DBO5 remanente: So = (1 - Ep) x St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a.io ( <u>-</u> p) |                | mg/L               |
| → Caudal de aguas residuales: Q= P x q / 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                | m3/día             |
| → Numero de unidades (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 2.0            |                    |
| → Caudal de diseño unitario: Qu= Q/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | _              | m3/día             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                | 1                  |
| DIMENSIONAMIENTO FILTRO PERCOLADOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                |                    |
| → Tipo de tasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | Alta           |                    |
| → Medio filtrante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | Plastico       |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (n =)              | 0.50           | Adim               |
| → Carga organica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (asumido)          | 1.00           | Kg DBO/(m3.día)    |
| $\rightarrow$ Carga de DBO (W): W = So x Q / 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Al Ingreso         |                | KgDBO/día          |
| <b>3</b> , 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A la salida        |                | KgDBO/día          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A eliminar         |                | KgDBO/día          |
| → Volumen requerido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 255.91         |                    |
| → Altura del Filtro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 2.50           |                    |
| → Area superficial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 102.36         | m2                 |
| ightarrow Carga hidraulica superficial (CHS): CHS=Q x (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1+R)/A            | 5.71           | m3/(m2.día)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                  | 0.24           | m3/(m2.hr)         |
| CARGA ORGANICA FINAL - SIN RECIRCULACION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | •              |                    |
| $ ightarrow$ DBO a la salida $Sf = So * e^{-K*H / CHS^{-n}}$ $Sf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 43.37          | mg/L               |
| → DBO del afluente So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 437.5          | mg/L               |
| ightarrow Constante de tratabilidad $k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 2.21           | $(m^*d)^{-0.5}$    |
| → Profundidad o altura Ide filtro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 2.50           | m                  |
| → Carga hidraulica superficial (sin recirc CHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 5.71           | m3/(m2.día)        |
| → Constante del material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 0.50           | Adim               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                  |                |                    |
| CARGA ORGÁNICA FINAL - INCLUYENDO RECIRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ULACIÓN            |                |                    |
| → DBO a la salida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 17.32          | mg/L               |
| $\rightarrow$ Razon de recirculación (R = $Q_R/Q$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 2              |                    |
| → Carga hidraulica superficial (conn recirc) (CHS): Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HS=Q x (1+R)/A     |                | m3/(m2.día)        |
| → Eficiencia del filtro (E): E = (So - Se)/So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 96.04%         |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                  |                |                    |
| DIMENSIONAMIENTO DEL DIAMETRO DEL FILTRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                  |                | 1                  |
| → Filtro circular (sube tuberia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 1.20           |                    |
| → Area Superficial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 102.36         |                    |
| → Filtro circular (Diametro)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 11.48          |                    |
| → Filtro circular (Diametro) redondeado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 12.00          | m                  |

Fuente: Fundamentos de Diseño de plantas Depuradoras de Aguas Residuales – Ing. William Antonio Lozano-Rivas, MSc, PhD – Bogotá D.C., Colombia – Octubre 2012



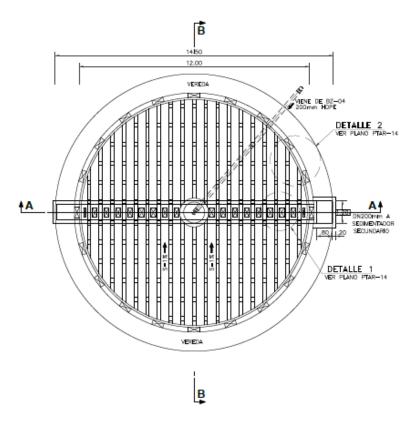



Imagen 23: Vista en Planta del Filtro Percolador Fuente: Elaboración Propia

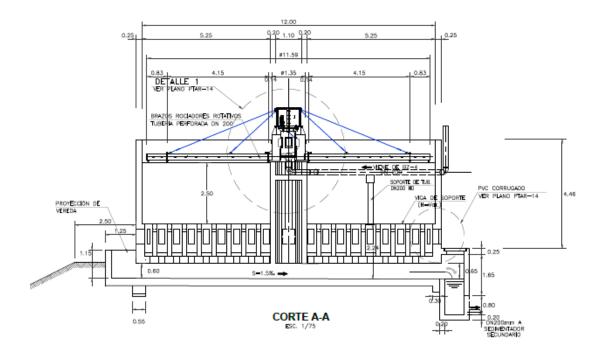



Imagen 24: Vista Corte A-A, Filtro Percolador. Fuente: Elaboración Propia



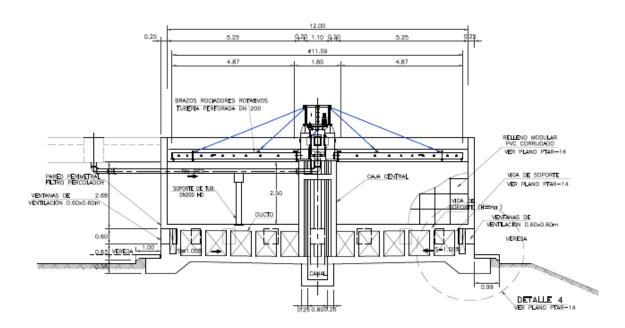



Imagen 25: Vista Corte B-B, Filtro Percolador.

Fuente: Elaboración Propia

#### 4.4.8. Diseño de Sedimentador Secundario

Después de los filtros percoladores se construirá (02) dos Sedimentadores rectangulares de concreto armado, aquellos tendrán un sistema de rebose y adicionalmente evacuación de lodos hacia un lecho de secado. Cada sedimentador secundario tiene las siguientes características:

Los criterios de diseño son los mismos que para el cálculo del sedimentador convencional (Furente: OPS/CEPIS/05-158):

- 1.- El número de unidades mínimas en paralelo es de dos unidades para efectos de mantenimiento.
- 2.- La relación de las dimensiones de largo-ancho (Lt/B) y largo-Alto (Lt/H) será entre los valores de 3-6 y 5-20 respectivamente.
- 3.- El fondo de la unidad debe tener entre 5-10% de pendiente, también la velocidad de oricios no debe ser mayor a 0.15m/s.
- 4.- Aboquillar los orificios en un ángulo de 15º en el flujo también la pantalla difusora debe estar entre 0.7-1.0 m de la pared de entrada.
- 5.- La descarga de lodos ubicar en el primer tercio de la unidad, pues el 80% de volumen de lodos se deposita en esa zona.

El caudal de diseño es en Caudal máximo diario en metros cúbicos por segundo (m3/s), así tenemos:

$$Qmd = 13.54 lps = 0.013540 m3/s$$



|    | ]                                                                | IMENSION | IAMIEN | TO DEL SEDIMEN                                                                                        | TADOR SECU          | JNDARIO                                        |      |
|----|------------------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------|------|
| Ν° | DATOS                                                            | CANT.    | UND    | CRITERIOS                                                                                             | CALCULOS            | RESULTADOS                                     | UND  |
|    | Veloc. Sedimentación particula Vs=                               | 0.000106 | m/s    |                                                                                                       | As=                 |                                                |      |
| 1  | Caudal de diseño Qt=<br>(obtenido Qmd)                           | 0.013540 | m3/s   | As=Q/Vs                                                                                               |                     | Área superficial zona<br>sedimentación de cada | m2   |
|    | N° unidades de sedimentacion =                                   | 4        | und    |                                                                                                       | 32.055              | unidad                                         |      |
|    | Caudal de diseño C/U (Q)                                         | 0.003385 | m3/s   | 1                                                                                                     |                     |                                                |      |
| 2  | Ancho del Sedimentador B=                                        | 3        | m      | L2=As/B                                                                                               | L2=                 | Longitud de la Zona<br>Sedimentación           | m    |
|    | Longitud estructura entrada                                      | •        |        |                                                                                                       | Lt=                 | Longitud total del                             |      |
| 3  | L1=                                                              | 1        | m      | Lt=L1+L2                                                                                              | 11.70               | sedimentador                                   | m    |
|    |                                                                  |          |        |                                                                                                       | L2/B=               | Aceptable                                      |      |
| 4  |                                                                  |          |        | 2,8 <lt b<6<="" td=""><td>3.57</td><td>Relación Largo/ancho zona sedimentación</td><td>adim</td></lt> | 3.57                | Relación Largo/ancho zona sedimentación        | adim |
| 5  | Altura sedimentador (entre 1,5<br>a 2,5m) H=                     | 2        | m      | 5 <lt h<20<="" td=""><td>5.85</td><td>Relación Largo/alto zona sedimentación</td><td>adim</td></lt>   | 5.85                | Relación Largo/alto zona sedimentación         | adim |
|    |                                                                  |          |        | VH=100*Q/(B*H)                                                                                        | VH=                 | Aceptable                                      |      |
| 6  |                                                                  |          |        | Si:VH<0.55>OK                                                                                         | 0.056               | Velocidad Horizontal del<br>flujo              | cm/s |
| 7  |                                                                  |          |        | TRH=As*H/ (3600*Q)                                                                                    | To=                 | Tiempo de retención de la                      | hras |
| •  |                                                                  |          |        | 7.6 (6666 Q)                                                                                          | 5.261               | unidad                                         |      |
| 8  | Pendiente en el fondo S =                                        | 8%       |        | H1=H+S*(2/3Lt)                                                                                        | H1=                 | Altura Máx ima en tolv a                       | m    |
|    | Lauritud assata wastadasa                                        |          |        | , ,                                                                                                   | 2.62                | lodos                                          |      |
| 9  | Longitud cresta vertedero<br>salida= ancho sedimentador<br>L'=B= | 3        | m      | H2=(Q/(1.84*L')) <sup>2/3</sup>                                                                       | <b>H2=</b> 0.007    | Altura de agua sobre<br>v ertedero de salida   | m    |
| 10 | veloc. Paso a traves de orificios de la cortina de               | 0.0215   | m/s    | Ao = Q/Vo                                                                                             | <b>Ao=</b> 0.15744  | Área total de orificios                        | m2   |
|    | distribucion Vo=                                                 | •        |        |                                                                                                       | ao=                 |                                                |      |
| 11 | Diametro orificios D=                                            | 0.05     | m      | ao=0.7854*D <sup>2</sup>                                                                              | 0.001964            | - Area de cada orificio                        | m2   |
|    |                                                                  |          |        |                                                                                                       | n=                  | N/ I T                                         |      |
| 12 |                                                                  |          |        | n=Ao / ao                                                                                             | 80.18               | Número de orificios                            | adim |
|    |                                                                  |          |        |                                                                                                       | 80.00               | N° Orificios Final                             |      |
| 13 |                                                                  |          |        | h=H-2/5H                                                                                              | h=                  | Altura de la cortina cubierta                  | m    |
|    |                                                                  |          |        | 11 11 2011                                                                                            | 1.20                | c/ orificios                                   |      |
| 14 | Número de orificios a lo alto                                    | 8        | adim   | a=h/(N2-1)                                                                                            | a=                  | Espaciamiento entre                            | m    |
|    | N2                                                               | -        |        | (/                                                                                                    | 0.171               | orificios                                      |      |
| 15 | Numero de orificios a lo                                         | 10.0     | adim   | a1=(B-a(N1-1)-n1*D)/2                                                                                 | a1=                 | Espacio lateral con                            | m    |
|    | ancho N1=n/N2                                                    |          |        |                                                                                                       | 0.48                | respecto a la pared                            |      |
| 16 | Sección canal limpieza<br>lodos A2=0.2*0.1                       | 0.02     | m2     | T1=60*As*H <sup>0.5</sup> /<br>(4850*A2)                                                              | T1=                 | Tiempo de vaciado de la                        | min  |
|    | 10005 AZ-U.Z U. I                                                |          |        | (::::::::::::::::::::::::::::::::::::::                                                               | 28                  | unidad<br>Caudai diseno tuberia                |      |
| 17 |                                                                  |          |        | q=1000*Lt*B*H/(60*T1)                                                                                 | <b>q=</b><br>41.725 | desague para evitar represamiento en caja de   | l/s  |
|    |                                                                  | •        |        |                                                                                                       | Q=                  | El caudal satisface                            |      |
| 18 | Diametro orificios D=                                            | 0.16     | m      | Q=Cdx Ax (2x gx H)^0.5                                                                                |                     | el Valor de "q"                                | l/s  |
|    |                                                                  |          |        | (                                                                                                     | 0.07679             | el Valor de "q"                                | **   |

Fuente: Guía para el Diseño de Desarenadores y Sedimentadores – OPS/CEPIS – Lima, 2005.



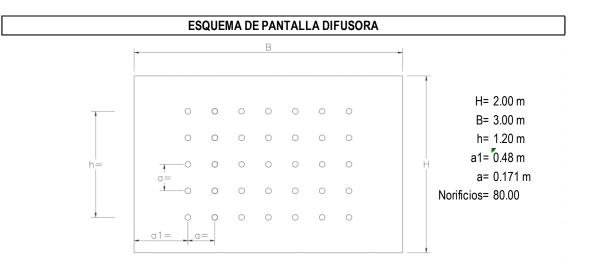



Imagen 26: Esquema de la pantalla difusora de cada sedimentador Fuente: Guía para el Diseño de Desarenadores y Sedimentadores – OPS/CEPIS – Lima, 2005.

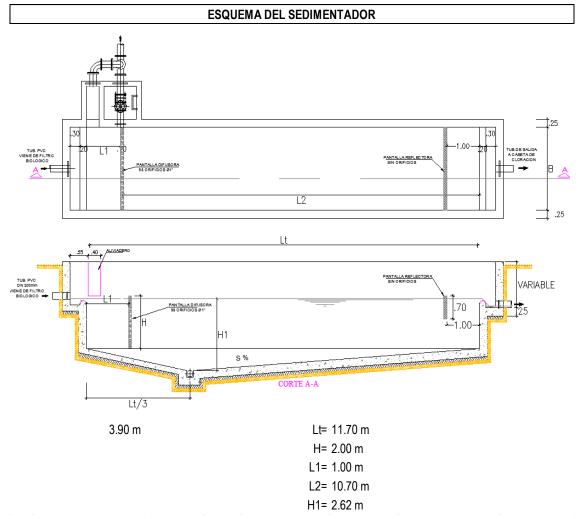



Imagen 27: Esquema del Sedimentador Secundario

Fuente: Guía para el Diseño de Desarenadores y Sedimentadores - OPS/CEPIS - Lima, 2005.



Para la evacuación de los lodos en el sedimentador se proyecta la construcción de (01) un lecho de secado, estructura de concreto armado de dimensiones internas ancho: 6m, largo: 7m y una profundidad de 0.4m. Este componente recibirá los lodos de los dos (02) Sedimentadores, es decir, a los meses de la extracción del primer sedimentador se realizará la descarga del segundo.

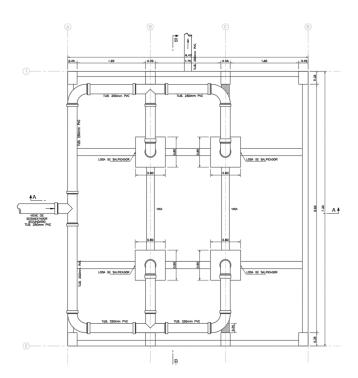



Imagen 28: Vista planta del lecho de secado para los Sedimentadores secundarios.

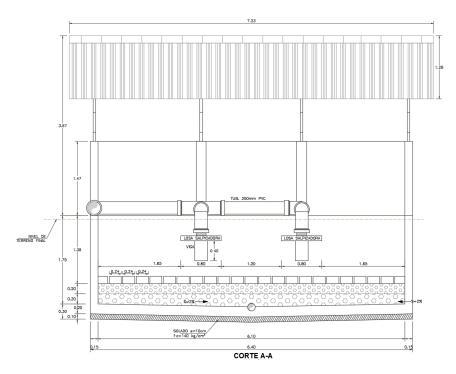



Imagen 29: Cortes del lecho de secado para el sedimentador secundario.



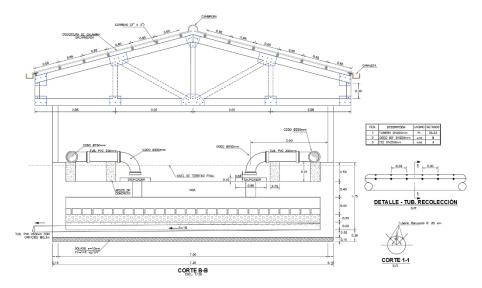
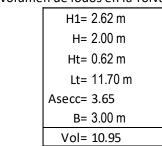




Imagen 30: Cortes del lecho de secado para el sedimentador secundario.

### LECHO DE SECADO DE LODOS

Para el diseño del lecho de secado se considerará el volumen de lodos que se encuentra en la tolva del Sedimentador

Cálculo del volumen de lodos en la Tolva



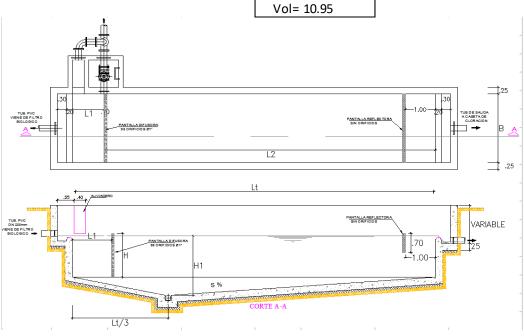



Imagen 31: Esquema del Lecho de Secado de Lodos

Fuente: Guía para el Diseño de Desarenadores y Sedimentadores – OPS/CEPIS – Lima, 2005.



#### 4.4.9. Laguna de Remoción de Patógenos-Parásitos

Para la remoción de patógenos y parásitos se está proponiendo la construcción de (02) lagunas de una profundidad de agua 1.5m y un borde libre de 0.5m, estas lagunas estarán revestidas de una geo membrana de HDPE y además de un geo textil. Cada laguna tendrá (03) entradas y (03) salidas, a continuación se describen las estructuras proyectadas:

- (02) Caja de Repartición Tipo I (CRI).
- (01) Caja de Repartición Tipo II (CRII).
- (04) Cámaras de Paso (CP).
- (06) Cámaras de Salidas (CS).
- (04) Buzones Tipo I de Profundidad de 1.20 A 1.50M.
- (03) Buzones Tipo I de Profundidad de 1.51 A 2.00M.

Además se instalaran 250 ml de tubería de PVC NTP 4435:2005 DN 200mm SN2

Actualmente el área disponible para la construcción de las lagunas le pertenece a la municipalidad provincial de Huari. El área mencionada ya ha sido utilizada para la ejecución de un proyecto de saneamiento y se construyó dos lagunas pero por un derrumbe no se llegó a tener en funcionamiento al 100% el componente mencionado. En tal sentido el movimiento de tierras para el presente proyecto no será excesivo debido que ya se realizó las partidas de excavación en el proyecto anterior.




Imagen 32: Esquema de componentes para el tratamiento de patógenos.

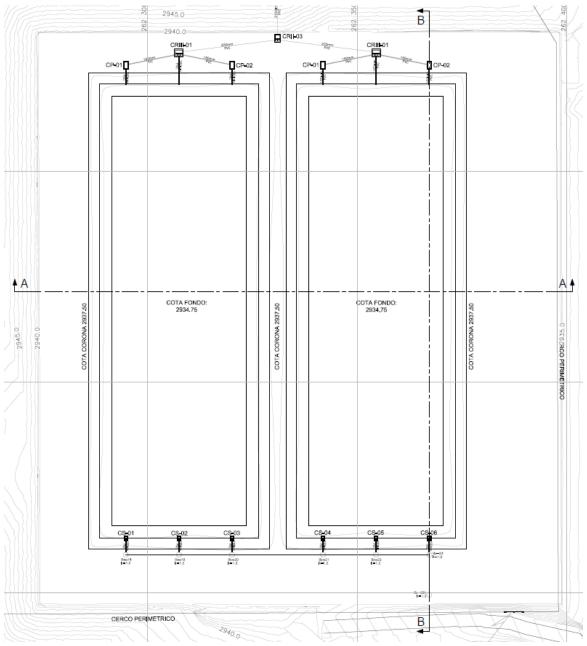



Imagen 33: Vista planta de las lagunas para remoción de patógenos.

"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI – HUARI - ANCASH"

| DISEÑO DE LAGUNAS PARA REMOCION DE PATÓGENOS |                       |            |                    |                     |         |         |                                  |  |
|----------------------------------------------|-----------------------|------------|--------------------|---------------------|---------|---------|----------------------------------|--|
| <u>Cuadro de Demanda</u>                     |                       |            |                    |                     |         |         |                                  |  |
| DATOS                                        | CANTIDAD              | UND        | PROCESO DE CALCULO | CANTIDAD            |         | UND     | RESULTADO                        |  |
|                                              |                       |            |                    | C <sub>RP</sub> =   | 13.58   | kgDBO/d | Carga Remanente T. Secundario    |  |
|                                              | De Sedimentadores sed | cundarios: |                    | DBO <sub>EP</sub> = | 6.58    | mg/l    | DBO Efluente Trat. Secundario    |  |
|                                              |                       |            |                    | Q <sub>EP</sub> =   | 1169.86 | m3/día  | Caudal Efluente Trat. Secundario |  |

| Área de Sedimentación, N° de Lagunas y | Acumulación de Lodos      |           |                                            |                   |        |            |                                     |
|----------------------------------------|---------------------------|-----------|--------------------------------------------|-------------------|--------|------------|-------------------------------------|
| DATOS                                  | CANTIDAD                  | UND       | PROCESO DE CALCULO                         | CANT              | IDAD   | UND        | RESULTADO                           |
| Carga de Diseño preliminar:            | NORMA OS.090 - (5         | .5.2.2.c) | Cs = 250*1.05^(T-20)                       | C -               | 168.39 | KgDBO/Ha/d | Carga Superficial de Diseño         |
| Temperatura del mes más frio           | T° = 11.9                 | °C        | CS-230 1.03··(1-20)                        | C <sub>S</sub> -  |        |            | carga Superiiciai de Diseilo        |
|                                        | C <sub>RS</sub> = 13.58   | kgDBO/d   | $A_T = C_R/C_S$                            | A <sub>T</sub> =  | 0.08   | На         | Área Superficial Requerida          |
| Numero de Unidades                     | N = 2                     | und       | $A_{US} = A_S/N$                           | A <sub>UT</sub> = | 0.04   | На         | Área Unitaria de Laguna             |
| Caudal Efluente Trat. Secundario       | Q <sub>ES</sub> = 1169.86 | m3/día    | Q <sub>UT</sub> =(Q <sub>ES</sub> /N)/86.4 | Q <sub>UT</sub> = | 6.77   | lps        | Caudal Unit. Afluente T. Secundario |

"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI – HUARI - ANCASH"

|                                     |                    |        | DISEÑO D | E LAGUNAS PARA REMOCION DE PAT | rógenos                               |        |            |                            |
|-------------------------------------|--------------------|--------|----------|--------------------------------|---------------------------------------|--------|------------|----------------------------|
| Dimensiones de Laguna Secundaria Fa |                    |        |          |                                |                                       |        |            |                            |
| DATOS                               | CA                 | NTIDAD | UND      | PROCESO DE CALCULO             | CANT                                  | IDAD   | UND        | RESULTADO                  |
| Área Unitaria de Laguna             | A <sub>UT</sub> =  | 0.04   | На       | BT = (Aut*10000/3)^(0.5)       | BT =                                  | 11.59  | m          | Ancho Teórico              |
| Relación Largo/ Ancho Teórico       | LT/BT =            | 3      | und      | LT =3*B                        | LT =                                  | 34.78  | m          | Largo Teórico              |
| Ancho constructivo                  | W =                | 35.0   | m        | A <sub>M</sub> = W * L         | A <sub>M</sub> =                      | 0.3675 | На         | Área media de Laguna       |
| Largo constructivo                  | L =                | 105.0  | m        | $C_{SA} = (C/N)/(A_M/10000)$   | C <sub>SA</sub> =                     | 18.48  | KgDBO/Ha/d | Carga Superficial Aplicada |
| Carga de DBO5                       | C <sub>RS</sub> =  | 13.58  | kgDBO/d  | Carga Aplic                    | cada Correct                          | a      | •          | Verificación               |
| Talud (Horizontal/Vertical)         | z =                | 2.00   |          | \/ _\\/ *  * 7                 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | FF12 F | 2          | Valuman da la suna         |
| Profundidad de Laguna               | Z <sub>LFS</sub> = | 1.50   | m        | $V_{LP} = W * L * Z_{LFS}$     | V <sub>LP</sub> =                     | 5512.5 | m3         | Volumen de Laguna          |
| Borde Libre                         | B <sub>L</sub> =   | 1.25   | m        | $L_F = L - Z_{LPS}^*z$         | L <sub>F</sub> =                      | 102    | m          | Largo del Fondo            |
| Profundidad Total                   | Z <sub>T</sub> =   | 2.75   | m        | $W_F = W - Z_{LPS}^*z$         | W <sub>F</sub> =                      | 32     | m          | Ancho del Fondo            |
|                                     |                    |        |          | $A_F = L_F * W_F$              | A <sub>F</sub> =                      | 0.33   | На         | Área del Fondo             |
|                                     |                    |        |          | $L_E = L + Z_{LPS} * z$        | L <sub>E</sub> =                      | 108    | m          | Largo del Espejo de Agua   |
|                                     |                    |        |          | $W_E = W + Z_{LPS}^*z$         | W <sub>E</sub> =                      | 38     | m          | Ancho del Espejo de Agua   |
|                                     |                    |        |          | $A_E = L_E * W_E$              | A <sub>E</sub> =                      | 0.41   | На         | Área del Espejo de Agua    |
|                                     |                    |        |          | $L_C = L_E + 2*B_L*z$          | L <sub>C</sub> =                      | 113    | m          | Largo de Coronación        |
|                                     |                    |        |          | $W_{C} = W_{E} + 2*B_{L}*z$    | W <sub>C</sub> =                      | 43     | m          | Ancho de Coronación        |
|                                     |                    |        |          | $A_C = L_C * W_C$              | A <sub>C</sub> =                      | 0.49   | На         | Área de Coronación         |

|                                            |                     |                   | DISEÑO            | DE LAGUNAS PARA REMOCION DE PATÓ                                                                                              | GENOS                |          |                 |                                    |
|--------------------------------------------|---------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|-----------------|------------------------------------|
| Factores de Ajuste Hidráulico y Calibració | n del mode          | elo de flujo disp |                   |                                                                                                                               |                      |          |                 |                                    |
| DATOS                                      | CA                  | NTIDAD            | UND               | PROCESO DE CALCULO                                                                                                            | CAN <sup>-</sup>     | ΓIDAD    | UND             | RESULTADO                          |
| Caudal Efluente Trat. Secundario           | Q <sub>ES</sub> =   | 584.93            | m3/día            | $Q_{\text{HFT}} = Q_{\text{FS}} - A_{\text{M}} * (\text{Pi+Pe-Pm}) * 100$                                                     | 0 -                  | E94 02   | m2/día          | Caudal Unitario del Efluente al    |
| Perdida de infiltración                    | Pi =                | 0                 | cm/día            | $Q_{\text{UET}} = Q_{\text{ES}} - A_{\text{M}} \cdot (PI + PE - PIII) \cdot 100$                                              | Q <sub>UET</sub> =   | 584.93   | m3/día          | Tratamiento Terciario              |
| Precipitación media                        | Pm =                | 0                 | cm/día            | $P_{RT} = (V_{IP} / Q_{IIFT})/86400$                                                                                          | р –                  | 9.42     | día             | Periodo de Retención Teórico       |
| Perdida de evaporación                     | Pe =                | 0                 | cm/día            | FRT - (V <sub>LP</sub> / Q <sub>UET</sub> )/80400                                                                             | r <sub>RT</sub> –    | 3.42     | uia             | remodo de Netención Teónico        |
| Periodo de Retención                       | P <sub>RT</sub> =   | 9.42              | día               | $P_R = P_{RT} * F_{CH}$                                                                                                       | P <sub>R</sub> =     | 7.54     | días            | Periodo Retención corregido        |
| Factor Corrección Hidráulico               | F <sub>CH</sub> =   | 0.80              |                   | $d = \frac{1.158 \left[ PR(W + 2Z) \right]^{0.489} W^{1.511}}{(T + 42.5)^{0.734} (LZ)^{1.489}}$                               | 4 -                  | 0.113    |                 | Numero de Dispersión               |
| Temperatura de agua                        | T°=                 | 11.9              | °C                | $\mathbf{U} = \frac{\mathbf{T} + 42.5)^{0.734} (LZ)^{1.489}}{\mathbf{T} + 42.5)^{0.734} (LZ)^{1.489}}$                        | u -                  | 0.113    |                 | Numero de Dispersion               |
| Tasa degradación materia orgánica          | Kd =                | 0.25              | dia <sup>-1</sup> | (T°-20)                                                                                                                       | 1/ 1-                | 0.168    | l: d            | Tasa degradación materia orgánica  |
| Constante de ajuste para Kd                | θ <sub>Kd</sub> =   | 1.05              |                   | $KdT = Kd * \theta_{Kd}^{(T^{\circ}-20)}$                                                                                     | Kal =                |          | dia-1           | a los 11.9°C                       |
| Tasa de mortalidad de coliformes           | Kb =                | 1.00              | dia <sup>-1</sup> | — (T°-20)                                                                                                                     | KbT =                | 0.674    | dia-1           | Tasa de mortalidad de coliformes a |
| Constante de ajuste para Kb                | θ <sub>κb</sub> =   | 1.05              |                   | $KbT = Kb * \theta_{Kb}^{(T^{\circ}-20)}$                                                                                     |                      |          | uia-i           | los 11.9°C                         |
| Factor características sedimentación       | F <sub>S</sub> =    | 0.95              |                   | ab = (1+4*Kb*P <sub>R</sub> *d) <sup>0.5</sup>                                                                                | ab=                  | 1.815    |                 | Factor Mortalidad Bacteriana       |
| Factor intrínseco de Algas                 | F <sub>IA</sub> =   | 0.45              |                   | ad = (1+4*Kd*P <sub>R</sub> *d) <sup>0.5</sup>                                                                                | ad=                  | 1.254    |                 | Factor Degradación Materia         |
| Caudal Unitario Efl. Trat. Secundario      | Q <sub>UES</sub> =  | 584.93            | m3/día            | Q <sub>ET</sub> = Q <sub>UES</sub> * N                                                                                        | Q <sub>ET</sub> =    | 1169.86  | m3/día          | Caudal efluente Total              |
| Numero de Unidades                         | N =                 | 2                 | und               | $DBO_{ES} = DBO \times F_{CS} \frac{4ae^{\frac{\left(1-a\right)}{2d}}}{\left(1+a\right)^2} + DBO \times F_{IA} \times F_{CS}$ | DBO <sub>ET</sub> =  | 4 000    | mg/l            | DBO Efluente Secundario            |
| DBO Efluente trat. Secundario              | DBO <sub>ES</sub> = | 6.58              | mg/l              | $DBO_{ES} = DBO \times F_{CS} \frac{4ac}{(1+a)^2} + DBO \times F_{IA} \times F_{CS}$                                          | DBO <sub>ET</sub> =  | 4.000    | IIIg/I          | DBO Effuente Secundano             |
|                                            |                     |                   |                   | $EF_{DBO} = (DBO_{ES} - DBO_{ET})/(DBO_{ET})$                                                                                 | EF <sub>DBO</sub> =  | 39.21    | %               | Ef. Remoción DBO                   |
|                                            | LMP                 | 100.00            | mg/l              | Cumple con Li                                                                                                                 | mite de D            | ВО       | •               | Verificación Limite DBO            |
| Carga Remanente T. Secundario              | C <sub>RS</sub> =   | 13.58             | kgDBO/d           | $C_{RT} = C_{RS} - C_{RS}^* Ef.$                                                                                              | C <sub>RT</sub> =    | 8.26     | kgDBO/d         | Carga Remanente efluente           |
| Coliformes del Trat. Secundario            | C.F. <sub>A</sub> = | 8.5E+03           | NMP/100ml         | N 4ae <sup>2d</sup>                                                                                                           | CE -                 | 2 115+02 | NMP/100ml       | Coliformes en Efluente             |
|                                            |                     |                   |                   | $\frac{N}{No} = \frac{4ae^{\frac{1}{2d}}}{(1+a)^2}$                                                                           | C.F. <sub>ET</sub> = | Z.11ETUZ | INIVIP/ TOUIIII | Comonies en ciruente               |
|                                            |                     |                   |                   | $EF_{CF} = (C.F{ES}-CF_{ET})/(C.F{ES})$                                                                                       | EF <sub>CF</sub> =   | 97.52    | %               | Ef. Remoción Coliformes            |
|                                            | LMP                 | 1.0E+04           | NMP/100ml         | Cumple con L                                                                                                                  | imite de (           | C.F.     |                 | Verificación Limite Coliformes     |



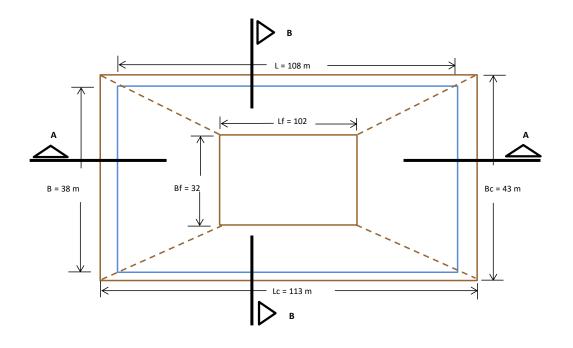
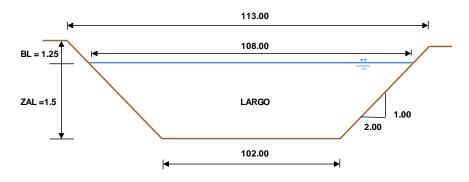




Ilustración 1: Esquema de Laguna Facultativa Proyectada - Vista en Planta

#### ESQUEMA LAGUNA FACULTATIVA (CORTE A-A)



#### ESQUEMA LAGUNA FACULTATIVA (CORTE B-B)

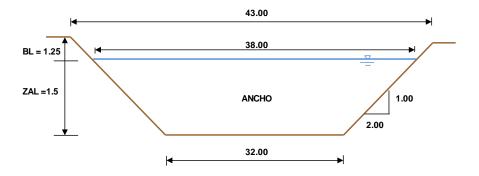
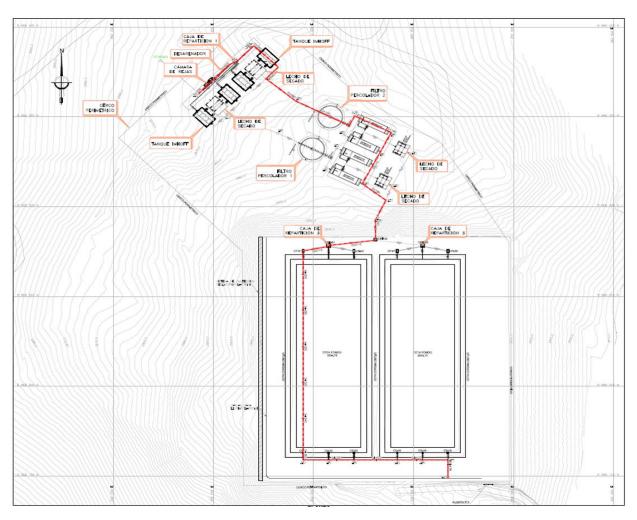
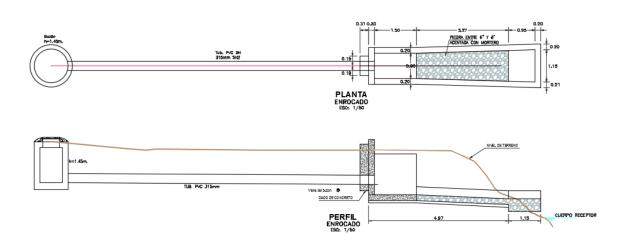
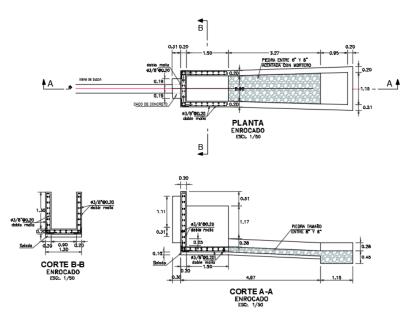



Ilustración 2: Esquema de Laguna Facultativa Proyectada - Cortes A-A y B-B

"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI – HUARI - ANCASH"





Ilustración 3: Vista en Planta del Sistema Integral de Tratamiento de Aguas Residuales Fuente: Elaboración Propia




# 4.4.10. Emisor de agua tratada

El agua tratada (Efluente) será conducida hacia un cuerpo receptor mediante una tubería de PVC DN 315mm SN2, Se instalará 638.72ml de tubería y además buzones tipo I:

- (28) BUZONES TIPO I DE PROFUNDIDAD DE 1.20 A 1.50M.





*Imagen 34*: Vista en planta del sistema de disposición Final Fuente: Elaboración Propia



## 4.5. COSTO DE INVERSIÓN

Los costos para dotar del servicio de tratamiento de aguas residuales en la zona urbana del distrito de Huari, teniendo en cuenta las estructuras del sistema y normas sectoriales representan los costos directos (estructuras del sistema) e indirectos (gastos generales, utilidades, expediente técnico, supervisión de obra y estudios definitivos), los cuales fueron calculados teniendo en cuenta el diseño de las infraestructuras y resultados de los trabajos de campo (topografía del terreno, resultados de los estudios de suelos, análisis de la demanda y evacuación de aguas residuales). Los resultados se detallan a continuación para la alternativa propuesta.

A los costos de infraestructura del SITAR, se le adicionan los costos intangibles (gastos generales, utilidades, expediente técnico, supervisión de obra y estudios definitivos), así se obtienen los costos totales del sistema de tratamiento de aguas residuales.

Cuadro 3: Costo de Implementación del Sistema Integral de Tratamiento de Aguas Residuales.

|                                                             | COSTO A      |
|-------------------------------------------------------------|--------------|
| DESCRIPCIÓN                                                 | PRECIO       |
|                                                             | DE MERCADO   |
| COMPONENTE: PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES       | 3,930,797.81 |
| PLANTA TRATAMIENTO AGUAS RESIDUALES                         | 3,930,797.81 |
| OBRAS PROVISIONALES Y PRELIMINARES                          | 84,078.72    |
| CÁMARA DE REJAS                                             | 11,960.69    |
| DESARENADOR                                                 | 8,870.85     |
| TANQUE IMHOFF                                               | 745,918.57   |
| LECHOS DE SECADO                                            | 223,399.24   |
| TUBERÍAS DE INTERCONEXIÓN TRATAMIENTO PRIMARIO - SECUNDARIO | 48,663.67    |
| CAJA DE REPARTICIÓN                                         | 4,870.21     |
| FILTRO PERCOLADOR                                           | 782,949.81   |
| SEDIMENTADORES SECUNDARIOS                                  | 76,784.33    |
| LECHOS DE SECADO                                            | 72,575.95    |
| LAGUNA PARA REMOCIÓN DE PATÓGENOS                           | 456,423.30   |
| SISTEMA DE EVACUACIÓN FINAL                                 | 182,753.53   |
| MURO DE CONTENCIÓN                                          | 598,591.53   |
| CASETA DE VIGILANCIA                                        | 29,476.91    |
| CERCO PERIMÉTRICO                                           | 549,529.68   |
| EQUIPAMIENTO E INSTALACIONES ELÉCTRICAS                     | 53,950.82    |
| TOTAL COSTO DIRECTO                                         | 3,930,797.81 |
| GASTOS GENERALES                                            | 614,585.35   |
| UTILIDADES 8%                                               | 314,463.82   |
|                                                             |              |



| SUB TOTAL                                     | 4,859,846.99 |
|-----------------------------------------------|--------------|
| IGV 18%                                       | 874,772.46   |
| COMPONENTE:CAPACITACIÓN Y EDUCACION SANITARIA | 26,799.71    |
| PUESTA EN MARCHA DE PTAR                      | 29,100.00    |
| ALIMENTACION ELECTRICA                        | 305,473.68   |
| MITIGACION AMBIENTAL                          | 14,300.00    |
| INTERVENCION SOCIAL                           | 191,943.52   |
| PLAN DE MONITOREO ARQUEOLOGICO                | 24,680.00    |
| SUPERVISION OBRA                              | 708,284.68   |
| SUPERVISION EXPEDIENTE                        | 247,455.73   |
| EXPEDIENTE TECNICO                            | 684,011.05   |
| COSTO TOTAL                                   | 7,966,667.82 |

Fuente: Empresa Lycons S.R.L.

#### 4.5.1. Sostenibilidad

Dentro de la sostenibilidad para la implementación del SITRAR se ha evaluado la posibilidad que tiene el proyecto de generar los beneficios esperados a lo largo de los 20 años que tiene de vida útil el servicio. El análisis de sostenibilidad se establece a fin de demostrar la continuidad del efecto o impacto de las inversiones en el tiempo de horizonte del proyecto y los mecanismos necesarios y presentes para dicho propósito.

El análisis de sostenibilidad tiene como objetivo prever cómo se financiarán las inversiones del proyecto y determinar la capacidad del mismo para cubrir los costos de operación y mantenimiento que se generarán a lo largo de su horizonte de evaluación. En tal sentido la sostenibilidad se refiere a la posibilidad de que el proyecto genere los beneficios esperados a lo largo de su vida.

## 4.5.1.1. Capacidad y disponibilidad de pago de los beneficiarios

Las tarifas deben cubrir por lo menos los costos de Operación y Mantenimiento.

Se deberá tener en cuenta que según recomendaciones de organismos internacionales (BID), el pago por el servicio no debe exceder el 5% del ingreso promedio mensual familiar.

Según el trabajo de campo, la población del distrito de Huari, se comprometen a aportar el monto de S/. 5.60 nuevos soles mensuales por el servicio de agua potable y 6.10 soles por el alcantarillado, haciendo un total de 11.70 soles (fuente estudio socioeconómico) para realizar las actividades de operación y mantenimiento de los servicios de agua y saneamiento. Y según los arreglos institucionales se tiene:



Cuadro 4: Arreglos institucionales.

| INSTITUCIÓN                            | FUNCIÓN                                                               | COMPROMISO                                                                 |
|----------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|
| UNIDAD DE<br>GESTIÓN DE<br>SANEAMIENTO | Asegurar la prestación de los servicios de agua y saneamiento         | Asistencia técnica en operación y mantenimiento del sistema                |
|                                        | Operación y mantenimiento de los sistemas a implementar               | Administración eficiente de los fondos recaudados                          |
| MUNICIPALIDAD<br>DISTRITAL DE          | Organismo Público que se encarga de financiar y promover proyectos de | Financiamiento de las<br>obras (100%)                                      |
| HUARI                                  | infraestructura de agua y<br>saneamiento                              | Supervisión durante la ejecución del proyecto                              |
|                                        |                                                                       | Pago puntual por el servicio prestado                                      |
| BENEFICIARIOS                          | Pago de la cuota mensual establecida                                  | Limpieza y buen uso del sistema<br>de agua potable y saneamiento<br>básico |

Fuente: Elaboración Propia

#### 4.5.1.2. Capacidad de pago de los usuarios de los servicios

La capacidad de pago, se define como la proporción máxima del ingreso familiar que se puede destinar al pago del servicio de saneamiento. Según la Organización Panamericana de la Salud (OPS), así como el BID (Banco Interamericano de Desarrollo), esta proporción no debe superar el 5% de los ingresos de las familias beneficiadas. Analizando la capacidad de pago de los usuarios y teniendo como guía este 5%, como proporción máxima del ingreso familiar.

Para estimar la capacidad de pago, se tuvo en cuenta los resultados del trabajo de campo aplicado a una muestra de la población de la zona urbana del distrito de Huari.

Se estimó que el ingreso de las familias de la zona urbana del distrito de Huari, es en promedio S/. 986.67 Nuevos Soles al mes (ítem 3.3.5) y considerando el 5% como la proporción máxima del ingreso que se puede utilizar para el pago del servicio de agua potable, se determinó que el promedio de la capacidad de pago, es de S/. 49.33 mensual por familia.

#### 4.5.1.3. Estimación de la capacidad de pago

Para garantizar la sostenibilidad financiera en la implementación del sistema de saneamiento incluido el SITAR, se ha efectuado un análisis tarifario a efectos de proponer un nivel de tarifa que permita cubrir los costos anuales en la situación con proyecto, considerando la capacidad de pago de los usuarios. La metodología utilizada para la estimación de la tarifa está basada en el cálculo



del costo marginal de largo plazo de los servicios de agua potable para el horizonte del proyecto. En este sentido la fórmula utilizada es la siguiente:

$$Tarifa-propuesta-por-m^{3}=\frac{VALOR-ACTUAL-COSTOS}{VALOR-ACTUAL-VOLUMEN-AGUA}$$

Se ha tenido en cuenta la inversión a precios de mercado de los componentes de inversión correspondientes al servicio de agua potable y los volúmenes de agua. Sobre la base de la relación costos por m3 se han definido las tarifas para una cobertura en el largo plazo, utilizando una tasa de descuento del 9%.

En el cuadro siguiente se presenta el análisis correspondiente al servicio de agua potable considerando los costos de inversión, los costos de operación y mantenimiento y la tarifa o cuota familiar resultante.

Cuadro 5: Cálculo de la tarifa incremental promedio de largo plazo

| 1    | 2                  | 3                              | 4        | 5                    | 6                                     | 7                         | 8                               | 9             | 10                          |                   | 11                      | 12                         |
|------|--------------------|--------------------------------|----------|----------------------|---------------------------------------|---------------------------|---------------------------------|---------------|-----------------------------|-------------------|-------------------------|----------------------------|
|      |                    |                                |          | Consumo              |                                       |                           |                                 | Factor de     |                             | Valor             | Actual                  |                            |
| Años | Población<br>Total | Producción de<br>agua (m³/año) | % de     |                      | Inversión Total a<br>precios privados | Costos de OM<br>a precios | Total Costos a precios privados | Actualización | Costos de<br>Inversión OM   | Costos de         | Costos de OM<br>Precios | Consumos sin<br>considerar |
|      | rotai              | agua (III /aiio)               | reididas | perdidas<br>(m3/año) | (S/.)                                 | privados                  | precios privados                | 9%            | Precios Privados<br>(Soles) | Inversión (Soles) | Privados<br>(Soles)     | perdidas<br>(m3/año)       |
| 0    | 6,251              | 523,833                        | 40%      | 392,874              | 37,231,391                            |                           | 37,231,391                      | 1.000         | 37,231,391                  | 37,231,391        | 0                       |                            |
| 1    | 6,289              | 529,004                        | 25%      | 396,753              | 0                                     | 155,695                   | 155,695                         | 0.917         | 142,839                     | 0                 | 142,839                 | 363,994                    |
| 2    | 6,328              | 534,292                        | 25%      | 400,719              | 0                                     | 165,192                   | 165,192                         | 0.842         | 139,039                     | 0                 | 139,039                 | 337,277                    |
| 3    | 6,367              | 539,699                        | 25%      | 404,774              | 0                                     | 164,785                   | 164,785                         | 0.772         | 127,244                     | 0                 | 127,244                 | 312,560                    |
| 4    | 6,407              | 545,230                        | 25%      | 408,922              | 0                                     | 166,192                   | 166,192                         | 0.708         | 117,734                     | 0                 | 117,734                 | 289,691                    |
| 5    | 6,447              | 550,887                        | 25%      | 413,166              | 0                                     | 173,509                   | 173,509                         | 0.650         | 112,769                     | 0                 | 112,769                 | 268,529                    |
| 6    | 6,487              | 556,676                        | 25%      | 417,507              | 0                                     | 167,238                   | 167,238                         | 0.596         | 99,719                      | 0                 | 99,719                  | 248,946                    |
| 7    | 6,527              | 562,600                        | 25%      | 421,950              | 0                                     | 167,779                   | 167,779                         | 0.547         | 91,781                      | 0                 | 91,781                  | 230,821                    |
| 8    | 6,567              | 568,664                        | 25%      | 426,498              | 0                                     | 168,334                   | 168,334                         | 0.502         | 84,481                      | 0                 | 84,481                  | 214,045                    |
| 9    | 6,608              | 574,872                        | 25%      | 431,154              | 0                                     | 169,803                   | 169,803                         | 0.460         | 78,182                      | 0                 | 78,182                  | 198,515                    |
| 10   | 6,649              | 581,229                        | 25%      | 435,922              | 0                                     | 566,240                   | 566,240                         | 0.422         | 239,186                     | 0                 | 239,186                 | 184,138                    |
| 11   | 6,690              | 587,740                        | 25%      | 440,805              | 0                                     | 172,065                   | 172,065                         | 0.388         | 66,681                      | 0                 | 66,681                  | 170,826                    |
| 12   | 6,732              | 594,409                        | 25%      | 445,807              | 0                                     | 172,476                   | 172,476                         | 0.356         | 61,321                      | 0                 | 61,321                  | 158,500                    |
| 13   | 6,773              | 601,242                        | 25%      | 450,931              | 0                                     | 174,201                   | 174,201                         | 0.326         | 56,820                      | 0                 | 56,820                  | 147,084                    |
| 14   | 6,815              | 608,243                        | 25%      | 456,182              | 0                                     | 173,939                   | 173,939                         | 0.299         | 52,051                      | 0                 | 52,051                  | 136,511                    |
| 15   | 6,858              | 615,419                        | 25%      | 461,564              | 0                                     | 182,296                   | 182,296                         | 0.275         | 50,047                      | 0                 | 50,047                  | 126,717                    |
| 16   | 6,900              | 622,775                        | 25%      | 467,081              | 0                                     | 176,169                   | 176,169                         | 0.252         | 44,372                      | 0                 | 44,372                  | 117,644                    |
| 17   | 6,943              | 630,317                        | 25%      | 472,738              | 0                                     | 175,957                   | 175,957                         | 0.231         | 40,659                      | 0                 | 40,659                  | 109,237                    |
| 18   | 6,986              | 638,051                        | 25%      | 478,539              | 0                                     | 177,764                   | 177,764                         | 0.212         | 37,685                      | 0                 | 37,685                  | 101,447                    |
| 19   | 7,029              | 645,984                        | 25%      | 484,488              | 0                                     | 178,290                   | 178,290                         | 0.194         | 34,676                      | 0                 | 34,676                  | 94,228                     |
| 20   | 7,073              | 654,121                        | 25%      | 490,591              | 0                                     | 575,792                   | 575,792                         | 0.178         | 102,739                     | 0                 | 102,739                 | 87,537                     |
|      |                    |                                |          |                      | 37,231,391                            | 4,223,715                 | VALOR ACTUAL                    |               | 39,011,415                  | 37,231,391        | 1,780,024               | 3,898,248                  |

Fuente: Elaboración Propia

| CIP (I+ OM) | 39,011,415 | '= | S/ | 10.01 por M3 |
|-------------|------------|----|----|--------------|
| •           | 3,898,248  |    |    |              |
| CIP (I)     | 37,231,391 | '= | S/ | 9.55 por M3  |
|             | 3,898,248  |    |    |              |
| CIP (OM)    | 1,780,024  | =  | S/ | 0.457 por M3 |
|             | 3,898,248  |    |    |              |



CIP (I+ OM) 10.007 S/./ m3

CIP (OM) 0.457 S/./ m3

La cuota media total que incluye inversiones, operación y mantenimiento, estimada para el servicio de saneamiento es de S/. 10.007/m3 de agua.

La cuota media total que incluye operación y mantenimiento, estimada para el servicio de saneamiento es de S/. 0.457/m3 de agua.

Cuadro 7: Comparación de la cuota promedio de operación y mantenimiento de agua potable con la capacidad de pago promedio

| COSTOS UNITARIOS/M3           | Soles por  | 'Pago / conex./mes por<br>consumo de | Limite de<br>Capacidad de | Esta dentro<br>Capacidad | Subsidio<br>(S/mes) |
|-------------------------------|------------|--------------------------------------|---------------------------|--------------------------|---------------------|
|                               | Consumo do |                                      | Pago (Soles)              | Pago ??                  | por conexión        |
| Costo Unitario de O & M       | 0.457      | 6.91                                 | 49.33                     | SI                       | 0.00                |
| Costo Unitario de Inv + O & M | 10.007     | 151.33                               | 49.33                     | NO                       | 102.00              |

Fuente: Elaboración Propia

La comparación de la cuota promedio de operación y mantenimiento de saneamiento con la capacidad de pago promedio muestra que en este sector, la población que accede a conexiones domiciliarias están en condiciones de pagar la cuota promedio de operación y mantenimiento; en consecuencia, no se requerirá subsidios que garanticen la eficiente operación y mantenimiento del sistema de agua potable dentro de la zona urbana del distrito de Huari. Además podemos indicar que la cuota mensual que se le aplicará a los beneficiarios con conexión domiciliaria es de S/. 10.007, las que serán modificadas más adelante con cuotas superiores que garantice la sostenibilidad del proyecto.

De los cuadros presentados, podemos ver que los beneficiarios no están en la capacidad de pagar una cuota que involucre los costos de inversión, operación y mantenimiento, por lo que será necesaria la intervención del estado para realizar el proyecto. Por otro lado si tienen la capacidad de pagar una tarifa que cubra los costos de operación y mantenimiento (Según diagnóstico del trabajo de campo la población TINENE UN INGRESO MINIMO DE 986.67 Y EL LIMITE DE CAPACIDAD DE PAGO SERIA DEL 5%, HACIENDO UN VALOR DE 49.33 SOLES y es superior a la tarifa calculada), la cual garantiza la sostenibilidad financiera del proyecto.



#### 4.6. ANALISIS DEL EFLUENTE

Para el análisis del efluente, se debe realizar el balance de masa entre los parámetros resultantes del sistema integral de tratamiento de agua residual (efluente del SITAR) y los parámetros de la caracterización del cuerpo receptor. En nuestro caso se está considerando al río Huayochaca como cuerpo receptor de las aguas residuales tratadas proveniente del SITAR proyectada.

## 4.6.1. Caracterización del Cuerpo Receptor

Al igual que la caracterización del agua residual, se consideró las aguas del Río Huayochaca como el cuerpo receptor proyectado para la descarga de las aguas residuales tratadas del SITAR en dicha localidad. Se obtuvieron los resultados que se presentan en el cuadro N° 3:

Cuadro 8: Resultados de Caracterización de Cuerpo Receptor

Muestras del item: 1 Nº ALS LS 8196/2018-1.1 Fecha de Muestreo 06/01/2018 Hora de Muestreo 15:00:00 Aguas Superficiales Tipo de Muestra Identificación P3 Parámetro Ref. Mét. Unidad LD 002 ANÁLISIS EN CAMPO 15906 Unidades pH 6,58 Temperatura de la Muestra 15908 oC. 13,9 ---003 ANÁLISIS FISICOQUÍMICOS Aceites y Grasas 12261 mg/L 1,0 < 1,0 Demanda Bioquímica de Oxígeno (DBO5) 12413 2 <2 mg/L Demanda Química de Oxigeno mg O2/L 12336 2 12 Dureza Total 12165 mg CaCO3/L 27,5 1,0 Sólidos Totales Suspendidos 12440 2 183 mg/L 015 ANÁLISIS MICROBIOLÓGICOS NMP/100 mL Coliformes Termotolerantes 12146 1,8 2,8E+2

Fuente: Trabajo de Campo - Elaboración Propia

Como se puede observar los resultados obtenidos en el cuerpo receptor cumplen con los "Estándares Nacionales de Calidad Ambiental para Agua" (D.S. N°004-2017-MINAM), a excepción de los Solidos Suspendidos Totales (183 mg/L). Ahora se deben verificar los resultados del balance de masas entre la mezcla del efluente de la SITAR proyectada y el Río Huayochaca los cuales deberán cumplir con los estándares señalados en la tabla 40.



Tabla 40: Caracterización del Cuerpo Receptor

| PARAMETROS                     | VALORES |
|--------------------------------|---------|
| DBO5 (mg/l)                    | 1.8     |
| DQO (mg/l)                     | 12.0    |
| ACEITES Y GRASAS (mg/l)        | 1.0     |
| SST (mg/l)                     | 183.0   |
| C. Termotolerantes (NMP/100ml) | 2.8E+02 |

Fuente: Elaboración Propia



Imagen: Vista del punto de descarga en el rio Huayochaca

Fuente: Elaboración Propia

El valor de C. Fecales y DBO se encuentran por debajo de las normas de los LMPs y ECAs.

Tabla 41: Caracterización del Agua residual tratada (Efluente de PTAR)

| PARAMETROS                              | VALORES  |
|-----------------------------------------|----------|
| DBO5 (mg/l)                             | 4.00     |
| DQO (mg/l)                              | 11.85    |
| ACEITES Y GRASAS (mg/l)                 | 0.66     |
| SST (mg/l)                              | 0.76     |
| C. Termotolerantes(Fecales) (NMP/100ml) | 2.11E+02 |

Fuente: Elaboración Propia - Resultados Ítem 4



#### 4.6.2. Calculo del Balance de Masas

Datos de cálculos:

Qvert = 0.01354m3/s (Dato del Caudal de Diseño)

Calculo del caudal del cuerpo receptor:

Se efectuaron mediciones volumétricas del caudal estimado del río donde se evacuará.

QRHcrit = 6.81m3/s (Resultado de aforos)

#### 1.- Cálculo de la mezcla de DBO5:

$$\mathsf{DBO}_{\mathsf{5Mezcla}} = \frac{DBO_{\mathsf{5RH}} * Q_{RHcrit} + DBO_{\mathsf{5vert}} * Q_{vert}}{Q_{RHcrit} + Q_{vert}}$$

DBO<sub>5</sub>mezcla = 11.9881 mg/l

Donde:

DBO<sub>5</sub>mezcla = Es la concentración calculada en la zona de mezcla.

DBO<sub>5RH</sub> = Es la DBO máxima medida en el rio,

QRHcrit = Es el caudal crítico del cuerpo receptor

DBO<sub>5vert</sub> = Es la DBO máxima del efluente proyectado

Qvert = Es el caudal máximo del efluente proyectado

#### 2.- Cálculo de la mezcla de DQO:

$$\mathsf{DQO}_{\mathsf{mezcla}} = \frac{DBO_{RH} * Q_{RHcrit} + DQO_{vert} * Q_{vert}}{Q_{RHcrit} + Q_{vert}}$$

DQO<sub>mezcla</sub> = 12.00 mg/l

### 3.- Cálculo de la mezcla de Aceites Y Grasas:

$$\mathsf{AyG}_{\mathsf{Mezcla}} = \frac{AyG_{RH} * Q_{RHcrit} + AyG_{vert} * Q_{vert}}{Q_{RHcrit} + Q_{vert}}$$

AyGmezcla= 0.999 mg/l



#### 4.- Cálculo de la mezcla de SST:

$$\mathsf{SST}_{\mathsf{mezcla}} = \frac{SST_{RH} * Q_{RHcrit} + SST_{vert} * Q_{vert}}{Q_{RHcrit} + Q_{vert}}$$

 $SST_{mezcla} = 182.638 \text{ mg/l}$ 

#### 5.- Cálculo de la mezcla de Coliformes Fecales (Coliformes Totales):

$$\text{C.Tmezcla} = \frac{CT_{RH}*Q_{RHcrit} + CT_{vert}*Q_{vert}}{Q_{RHcrit} + Q_{vert}}$$

 $C.T_{mezcla} = 2.80E+02$ 

A fin de aceptar nuestra Hipótesis Especifica 2 (He2) "La construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari" se debe verificar que el balance de masa cumpla con los parámetros de los Estándares de Calidad Ambiental (ECAs) según la tabla 42.

Tabla 42: Cuadro de ECAs para cuerpo receptor.

| Parámetro                     | Unidad    | ECAs para cuerpos de aguas |
|-------------------------------|-----------|----------------------------|
| Aceites y grasas              | mg/L      | 1                          |
| Coliformes Termotolerantes    | NMP/100mL | 1,000                      |
| Demanda Bioquímica de Oxigeno | mg/L      | 15                         |
| Demanda Química de Oxigeno    | mg/L      | 40                         |
| рН                            | Unidad    | 6.5-8.5                    |
| Solidos Totales en Suspensión | ml/L      | 20                         |
| Temperatura                   | °C        | <35                        |

Fuente: Decreto Supremo Nº 004-2017-MINAM



# **CAPITULO 5: RESULTADOS y DISCUSION**

# 5.1. PROYECCION DE LAS CARACTERISTICAS DE LAS AGUAS RESIDUALES TRATADAS (EFLUENTE FINAL)

Luego de haber proyectado el sistema integral de tratamiento de aguas residuales, se ha procedido a verificar la remoción de los Coliformes Termotolerantes, así tenemos a continuación:

1. Cálculo de Coliformes Termotolerantes (Fecales) en el Afluente del Tratamiento Primario

Coliformes Fecales en el Afluente= 1.7E+07 NMP/100ml

Este valor se obtiene de la caracterización del agua residual antes del tratamiento.

2. Cálculo de Coliformes Termotolerantes (Fecales) en el Efluente del Tratamiento Primario (Tanques Imhoff).

Teniendo en cuenta lo indicado en la tabla 39 "Cuadro para selección de los procesos de tratamiento de las aguas residuales", asumimos un valor de remoción de 1.0E+00.

Coliformes Fecales en el Efluente= 1.7E+07 / 1.0E+00 NMP/100ml

Coliformes Fecales en el Efluente= 1.7E+07 NMP/100ml

 Cálculo de Coliformes Termotolerantes (Fecales) en el Efluente Tratamiento Secundario (Filtros Percoladores)

Teniendo en cuenta lo indicado en la tabla 39 "Cuadro para selección de los procesos de tratamiento de las aguas residuales", asumimos un valor de remoción de 2.0E+02.

Coliformes Fecales en el Efluente= 1.7E+07 / 2.0E+02 NMP/100ml

Coliformes Fecales en el Efluente= 8.50E+04 NMP/100ml

 Cálculo de Coliformes Termotolerantes (Fecales) en el Efluente de Sedimentadores Secundarios.

Teniendo en cuenta lo indicado en la tabla 39 "Cuadro para selección de los procesos de tratamiento de las aguas residuales", asumimos un valor de remoción de 1.0E+01.



Coliformes Fecales en el Efluente= 8.50E+04 / 1.0E+01 NMP/100ml

Coliformes Fecales en el Efluente= 8.50E+03 NMP/100ml

5. Cálculo de Coliformes Termotolerantes (Fecales) en el Efluente de Lagunas

Coliformes Fecales en el Efluente (\*)= 2.11E+02 NMP/100ml

(\*) Este valor se obtuvo del diseño de las lagunas proyectadas

Por lo cual se obtiene un valor de remoción de = 8.50E+03 / 2.11E+02 NMP/100ml

Por lo cual se obtiene un valor de remoción de = 4.03E+01 NMP/100ml

Este valor obtenido de, 2.11E+02, ya está por debajo de lo requerido en los LMP, por lo cual ya se podría descargar en el cuerpo receptor.

A continuación, se evaluará la eficiencia de cada unidad, para cada parámetro a tratar.

Tabla 43: Eficiencia del Sistema en DBO

| UNIDAD   | CAMARA<br>DE<br>REJAS | DESARENADOR | TANQUE<br>IMHOFF | FILTRO<br>PERCOLADOR | SEDIMENTADOR<br>SECUNDARIO | LAGUNAS DE<br>REMOCIÓN<br>PATÓGENOS |
|----------|-----------------------|-------------|------------------|----------------------|----------------------------|-------------------------------------|
| INGRESO  | 250.00 mg/l           | 250.00 mg/l | 250.00 mg/l      | 175.00 mg/l          | 6.93 mg/l                  | 6.58 mg/l                           |
| REMOCIÓN | 0.0%                  | 0.0%        | 30.0%            | 96.04%               | 5.00%                      | 39.24%                              |
| SALIDA   | 250.00 mg/l           | 250.00 mg/l | 175.00 mg/l      | 6.93 mg/l            | 6.58 mg/l                  | 4.00 mg/l                           |

Fuente: Elaboración Propia

Tabla 44: Eficiencia del Sistema en Aceites y Grasas

| UNIDAD   | CAMARA<br>DE<br>REJAS | DESARENADOR | TANQUE<br>IMHOFF | FILTRO<br>PERCOLADOR | SEDIMENTADOR<br>SECUNDARIO | LAGUNAS DE<br>REMOCIÓN<br>PATÓGENOS |
|----------|-----------------------|-------------|------------------|----------------------|----------------------------|-------------------------------------|
| INGRESO  | 25.10 mg/l            | 25.10 mg/l  | 25.10 mg/l       | 17.57 mg/l           | 0.70 mg/l                  | 0.66 mg/l                           |
| REMOCIÓN | 0.0%                  | 0.0%        | 30.0%            | 96.04%               | 5.00%                      | 0.00%                               |
| SALIDA   | 25.10 mg/l            | 25.10 mg/l  | 17.57 mg/l       | 0.70 mg/l            | 0.66 mg/l                  | 0.66 mg/l                           |

Fuente: Elaboración Propia



Tabla 45: Eficiencia del Sistema en DQO

| UNIDAD   | CAMARA DE<br>REJAS | DESARENADOR | TANQUE<br>IMHOFF | FILTRO<br>PERCOLADOR | SEDIMENTADOR<br>SECUNDARIO | LAGUNAS<br>DE<br>REMOCIÓN<br>PATÓGENOS |
|----------|--------------------|-------------|------------------|----------------------|----------------------------|----------------------------------------|
| INGRESO  | 450.00 mg/l        | 450.00 mg/l | 450.00 mg/l      | 315.00 mg/l          | 12.47 mg/l                 | 11.85 mg/l                             |
| REMOCIÓN | 0.0%               | 0.0%        | 30.0%            | 96.04%               | 5.00%                      | 0.00%                                  |
| SALIDA   | 450.00 mg/l        | 450.00 mg/l | 315.00 mg/l      | 12.47 mg/l           | 11.85 mg/l                 | 11.85 mg/l                             |

Fuente: Elaboración Propia

Tabla 46: Eficiencia del Sistema en SST

| UNIDAD   | CAMARA DE<br>REJAS | DESARENADOR | TANQUE<br>IMHOFF | FILTRO<br>PERCOLADOR | SEDIMENTADOR<br>SECUNDARIO | LAGUNAS<br>DE<br>REMOCIÓN<br>PATÓGENOS |
|----------|--------------------|-------------|------------------|----------------------|----------------------------|----------------------------------------|
| INGRESO  | 29.0 mg/l          | 29.0 mg/l   | 29.0 mg/l        | 20.3 mg/l            | 0.80 mg/l                  | 0.76 mg/l                              |
| REMOCIÓN | 0.0%               | 0.0%        | 30.0%            | 96.04%               | 5.00%                      | 0.00%                                  |
| SALIDA   | 29.00 mg/l         | 29.00 mg/l  | 20.30 mg/l       | 0.80 mg/l            | 0.76 mg/l                  | 0.76 mg/l                              |

Fuente: Elaboración Propia

Tabla 47: Eficiencia del Sistema en Coliformes Fecales

| UNIDAD  | CÁMARA DE<br>REJAS | DESARENADOR | TANQUE<br>IMHOFF | FILTRO<br>PERCOLADOR | SEDIMENTADOR<br>SECUNDARIO | LAGUNAS<br>DE<br>REMOCIÓN<br>PATÓGENOS |
|---------|--------------------|-------------|------------------|----------------------|----------------------------|----------------------------------------|
| INGRESC | 1.70E+07           | 1.70E+07    | 1.70E+07         | 1.70E+07             | 8.50E+04                   | 8.50E+03                               |
| REMOCIÓ | <b>N</b> 0.00E+00  | 0.00E+00    | 1.00E+00         | 2.00E+02             | 1.00E+01                   | 4.03E+01                               |
| SALIDA  | 1.70E+07           | 1.70E+07    | 1.70E+07         | 8.50E+04             | 8.50E+03                   | 2.11E+02                               |

Fuente: Elaboración Propia

Tabla 48: Cuadro de resumen del tipo de agua residual tratada – Efluente Final

| PARÁMETROS       | UNIDADES  | VALORES<br>EFLUENTE | LMPs     | OBSERVACIÓN |
|------------------|-----------|---------------------|----------|-------------|
| Aceites y Grasas | mg/l      | 0.66                | 20       | CUMPLE!     |
| DBO5             | mg/l      | 4.00                | 100      | CUMPLE!     |
| DQO              | mg/l      | 11.85               | 200      | CUMPLE!     |
| SST              | mg/l      | 0.76                | 150      | CUMPLE!     |
| C. Termot.       | NMP/100ml | 2.11E+02            | 1.00E+04 | CUMPLE!     |

Fuente: Elaboración Propia



Como se puede observar, en la tabla 48 el efluente final cumple con los Límites Máximos Permisibles (LMP), demostrando de esta manera que el Diseño del Sistema Integral de Tratamiento de Agua Residual Proyectado, reduce de la Contaminación Ambiental en el Distrito de Huari.

Según lo indicado en nuestro problema específico 1 "¿De qué manera el Diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce la Contaminación Ambiental en el Distrito de Huari?" podemos indicar lo siguiente:

El Diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce la Contaminación Ambiental; cuando este logra que el agua residual tratada (efluente final) cumpla con lo estipulado en la norma, en este caso el "Decreto Supremo Nº 003-2010-MINAM" el cual nos señala los Límites Máximos Permisibles (LMP) para que el efluente final pueda ser descargado al cuerpo receptor sin contaminar el medio ambiente y sin causar daños a la salud.

Los resultados de la tabla 48, hacen que se pueda aceptar nuestra Hipótesis Especifica 1 planteada "El diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce de la Contaminación Ambiental en el Distrito de Huari"; indicando que efectivamente el diseño del SITAR reduce la contaminación ambiental, al verificar el cumplimiento de los LMP.

# 5.2. ANÁLISIS DEL RESULTADO DEL BALANCE DE MASAS

Una vez obtenido los resultados del balance de masa en el ítem 4.5.2, y habiendo comparado cada uno de los parámetros requeridos en los Estándares de Calidad Ambiental (ECAs), se ha procedido a elaborar la tabla 50.

Tabla 49: Cuadro de ECAs para cuerpo receptor.

| Parámetro                     | Unidad    | ECAs para cuerpos de aguas |
|-------------------------------|-----------|----------------------------|
| Aceites y grasas              | mg/L      | 1                          |
| Coliformes Termotolerantes    | NMP/100mL | 1,000                      |
| Demanda Bioquímica de Oxigeno | mg/L      | 15                         |
| Demanda Química de Oxigeno    | mg/L      | 40                         |
| рН                            | Unidad    | 6.5-8.5                    |
| Solidos Totales en Suspensión | ml/L      | 20                         |
| Temperatura                   | °C        | <35                        |

Fuente: Decreto Supremo Nº 004-2017-MINAM

A continuación se muestra los resultados obtenidos de la mezcla entre el agua tratada y el cuerpo

Tabla 50: Resultados del Balance de Masas



| PARÁMETROS              | VALORES DEL BALANCE DE MASAS | ECAs       | OBSERVACIÓN |
|-------------------------|------------------------------|------------|-------------|
| DBO5 (mg/l)             | 11.98 mg/l                   | 15.00 mg/l | CUMPLE!     |
| DQO (mg/l)              | 12.0 mg/l                    | 40.00 mg/l | CUMPLE!     |
| ACEITES Y GRASAS (mg/l) | 1.00 mg/l                    | 1.00 mg/l  | CUMPLE!     |
| SST (mg/l)              | 182.64 mg/l                  | 20.00 mg/l | NO CUMPLE!  |
| C. fecales (NMP/100ml)  | 2.80E+02                     | 1.0E+03    | CUMPLE!     |

Fuente: Elaboración Propia

Podemos observar que el balance de masas del efluente final y el cuerpo receptor, han logrado cumplir con los parámetros establecidos en los Estándares de Calidad Ambiental (ECAs).

Según lo indicado en nuestro problema específico 2 "¿De qué manera la construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari?" podemos indicar lo siguiente:

La construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente; cuando este logra que el agua residual tratada (efluente final) al evacuarse y combinarse con las aguas del cuerpo receptor (en un balance de masa) logre cumplir con lo estipulado en la norma, en este caso el "Decreto Supremo Nº 004-2017-MINAM" el cual nos señala los Estándares de Calidad Ambiental (ECAs) que se deben cumplir luego de haber vertido el efluente final al cuerpo receptor y este no altere las condiciones naturales (conservándolo) del medio ambiente.

Se debe indicar que en el caso del parámetro Solidos Suspendidos Totales (182.64 mg/l) en el cual se indica que "NO CUMPLE", es porque la misma caracterización de las aguas del rio Huayochaca arroja un resultado de 183 mg/l (propio del rio) el cual es un resultado muy elevados para este parámetro (ver Cuadro 4 y/o tabla 40). Sin embargo el efluente final indica para este mismo parámetro un resultado de 0.76 mg/l el cual está muy por debajo de lo que se requiere en los LMP y de lo que permite los ECAs.

Los resultados de la tabla 50 muestra el cumplimiento de los ECAs, lo cual nos hacen aceptar la Hipótesis Específica 2 (He2) "La construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari"; ya que después del balance de masas no se altera las condiciones del cuerpo receptor conservando de esta manera el medio ambiente.



## **CAPITULO 6: CONCLUSIONES**

CONCLUCION 1: Según lo indicado en nuestro problema específico 1 "¿De qué manera el Diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce la Contaminación Ambiental en el Distrito de Huari?" lo cual nos ha llevado a plantear nuestro objetivo específico 1 "Describir de qué manera el diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce la Contaminación Ambiental en el Distrito de Huari" podemos indicar lo siguiente:

El Diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce la Contaminación Ambiental; cuando este logra que el agua residual tratada (efluente final) cumpla con lo estipulado en la norma, en este caso el "Decreto Supremo Nº 003-2010-MINAM" el cual nos señala los Límites Máximos Permisibles (LMP) para que el efluente final pueda ser descargado al cuerpo receptor sin contaminar el medio ambiente y sin causar daños a la salud.

Como se ha podido demostrar en los cálculos de diseño del ítem 4.4 y se observa en los resultados en la tabla 48, todos los parámetros cumplen con los LMP.

Tabla 48: Cuadro de resumen del tipo de agua residual tratada – Efluente Final

| PARÁMETROS       | UNIDADES  | VALORES<br>EFLUENTE | LMPs     | OBSERVACIÓN |
|------------------|-----------|---------------------|----------|-------------|
| Aceites y Grasas | mg/l      | 0.66                | 20       | CUMPLE!     |
| DBO5             | mg/l      | 4.00                | 100      | CUMPLE!     |
| DQO              | mg/l      | 11.85               | 200      | CUMPLE!     |
| SST              | mg/l      | 0.76                | 150      | CUMPLE!     |
| C. Termot.       | NMP/100ml | 2.11E+02            | 1.00E+04 | CUMPLE!     |

Fuente: Elaboración Propia

En conclusión se puede aceptar nuestra Hipótesis Especifica 1 planteada "El diseño de un Sistema Integral de Tratamiento de Agua Residual, reduce de la Contaminación Ambiental en el Distrito de Huari"; indicando que efectivamente el diseño del SITAR reduce la contaminación ambiental, al verificar el cumplimiento de los LMP y evitando de esta manera la descarga de aguas residuales sin tratamiento, al medio ambiente.

CONCLUCION 2: Según lo indicado en nuestro problema específico 2 "¿De qué manera la construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari?" lo cual nos ha llevado a plantear nuestro objetivo específico 2 "Describir de qué manera la construcción de un Sistema de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari" podemos indicar lo siguiente:

La construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente; cuando este logra que el agua residual tratada (efluente final) al evacuarse y combinarse



con las aguas del cuerpo receptor (en un balance de masa) logre cumplir con lo estipulado en la norma, en este caso el "Decreto Supremo Nº 004-2017-MINAM" el cual nos señala los Estándares de Calidad Ambiental (ECAs) que se deben cumplir luego de haber vertido el efluente final al cuerpo receptor y este no altere las condiciones naturales (conservándolo) del medio ambiente.

Como se ha podido demostrar en los cálculos de diseño del ítem 4.5 y se observa en los resultados en la tabla 50, todos los parámetros cumplen con los ECAs a excepción de los Solidos suspendidos Totales (SST).

Tabla 50: Resultados del Balance de Masas

| PARÁMETROS              | VALORES     | ECAs       | OBSERVACIÓN |
|-------------------------|-------------|------------|-------------|
| DBO5 (mg/l)             | 11.98 mg/l  | 15.00 mg/l | CUMPLE!     |
| DQO (mg/l)              | 12.0 mg/l   | 40.00 mg/l | CUMPLE!     |
| ACEITES Y GRASAS (mg/l) | 1.00 mg/l   | 1.00 mg/l  | CUMPLE!     |
| SST (mg/l)              | 182.64 mg/l | 20.00 mg/l | NO CUMPLE!  |
| C. fecales (NMP/100ml)  | 2.80E+02    | 1.0E+03    | CUMPLE!     |

Fuente: Elaboración Propia

Como ya se ha indicado anteriormente el parámetro Solidos Suspendidos Totales (182.64 mg/l) en el cual se indica que "NO CUMPLE", es porque la misma caracterización de las aguas del rio Huayochaca arroja un resultado de 183 mg/l (propio del río) el cual es un resultado muy elevados para este parámetro (ver Cuadro 4 y/o tabla 40). Sin embargo el efluente final indica para este mismo parámetro un resultado de 0.76 mg/l el cual está muy por debajo de lo que se requiere en los LMP y de lo que permite los ECAs.

En conclusión se puede aceptar nuestra Hipótesis Especifica 2 planteada "La construcción de un Sistema Integral de Tratamiento de Agua Residual, conserva el Medio Ambiente en el Distrito de Huari"; indicando que efectivamente la construcción del SITAR conserva el medio ambiente, al verificar el cumplimiento de los ECAs, conservando de esta manera las condiciones naturales del rio Huayochaca.

CONCLUCION 3: Según lo indicado en nuestro problema principal "¿De qué manera la implementación de un Sistema Integral de Tratamiento de Agua Residual, mejora la calidad de vida de la población en el Distrito de Huari?" lo cual nos ha llevado a plantear nuestro objetivo general "Describir de qué manera la Implementación de un Sistema Integral de Tratamiento de Agua Residual, mejora la calidad de vida de la población en el Distrito de Huari" y teniendo en cuenta que la implementación de un SITAR involucra el diseño y construcción del mismo, podemos indicar lo siguiente:

Efectivamente, se demuestra que, la implementación de un Sistema Integral de Tratamiento de Agua Residual, mejora la calidad de vida de la población en el Distrito de Huari; al verificarse el



"IMPLEMENTACION DE UN SISTEMA INTEGRAL DE TRATAMIENTO DE AGUAS RESIDUALES; DISTRITO DE HUARI - HUARI - ANCASH"

cumplimiento de nuestras dos Hipótesis Especificas; como se ha visto en la conclusion 1 se está asegurando que el efluente no logre causar daños a la salud, al bienestar humano y al ambiente y, en la conclusión 2, el efluente no representa riesgo significativo para la salud de las personas ni al medio ambiente.

Por lo cual se concluye aceptar nuestra Hipótesis General "La implementación de un Sistema Integral de Tratamiento de Agua Residual, mejora de la calidad de vida de la población en el Distrito de Huari" al verificar que la SITAR proyectada cumple con los LMP y los ECAs.



### **CAPITULO 7: RECOMENDACIONES**

RECOMENDACIÓN 1: Se recomienda que los diseños de Sistemas de Tratamiento de Agua Residual, sea siempre de forma integral con las unidades necesarias de tratamiento y que en su funcionamiento conjunto se verifique el cumplimiento de los Límites Máximos Permisibles (LMP) con el fin de continuar con la reducción de la contaminación ambiental y la mejora de la calidad de vida. Se recomienda así mismo tener en cuenta dentro del plan de Operación y Mantenimiento del SITAR, programar la realización de monitoreos permanentes a fin de verificar el cumplimiento de la calidad del efluente final en base a los Límites Máximos Permisibles (LMP).

RECOMENDACIÓN 2: Se recomienda que después de la puesta en marcha del Sistemas Integral de Tratamiento de Agua Residual, se programe, en el plan de Operación y Mantenimiento, el monitoreo permanente del balance de masas para la verificación del cumplimiento de Estándares de Calidad Ambiental (ECAs) a fin de continuar con la conservación del medio ambiente y la mejora de la calidad de vida.

RECOMENDACIÓN 3: Se recomienda que el personal que esté a cargo de la operación y mantenimiento del sistema integral de tratamiento, sea capacitado periódicamente y se mantenga permanentemente.

RECOMENDACIÓN 4: Es recomendable solo en algunos casos (en los que los Coliformes del agua residual tratada aun sea superior al indicado en los LMP), colocar un sistema de difusores de cloro líquido al final del sistema con el fin de eliminar Coliformes.

RECOMENDACIÓN 5: Se recomienda realizar una evaluación de aquellos distritos que no tienen o no cuentan con un sistema de tratamiento de aguas residuales, a fin de conocer su problemática y plantear las soluciones más recomendables.



#### **REFERENCIAS**

- Comercio, E. (04 de Septiembre de 2017). ¿Existen sistemas para tratar aguas residuales en el Perú? ¿Existen sistemas para tratar aguas residuales en el Perú?, pág. 1.
- Hídricos, D. d. (11 de Marzo de 2013). Situación actual y perspectivas en el sector agua y saneamiento en el Perú. (ANA, Intérprete) ANA, Lima, Lima, Lima.
- lagua. (26 de Febrero de 2015). 47 países siguen en 2015 por debajo del 50% de acceso a servicios de saneamiento mejorados. Obtenido de Connecting Waterpeople: https://www.iagua.es/blogs/facts-and-figures/47-paises-siguen-2015-debajo-50-acceso-servicios-saneamiento-mejorados
- J. Fernando Larios-Meoño, C. G. (25 de Septiembre de 2015). Las Aguas Residuales y sus Consecuencias en el Perú. Saber y Hacer, 2(2), 18.
- Jorge Silva, P. T. (2008). Reuso de aguas residuales domésticas en agricultura. Una revisión.
   Cali (Colombia): Facultad de Ingeniería, Universidad del Valle.
- María Molinos Senante, F. H. (2012). Estado actual y evolución del saneamiento y la depuración de aguas residuales en el contexto nacional e internacional. Revista Científicas Complutenses, 21.
- Momiy, F. (18 de Febrero de 2016). Solo una de las 204 plantas de tratamiento de aguas residuales cumple las normativas. GESTION, SUNASS-DIARIO, pág. 1.
- Montes, M. S. (21 de Marzo de 2017). iagua. Obtenido de Waterpeople: file:///C:/Users/Propietario/Zotero/storage/U9B7RX3V/aguas-residuales-peru-costoimprovisacion.html
- Muñoz, F. V. (2010). "Propuesta de un Modelo Socio Económico de Decisión de uso de aguas Residuales Tratadas en Sustitución de Agua Limpia para Areas Verdes". Lima: Universidad Nacional de Ingeniería.
- Poveda, I. E. (2016). Propuesta de Mejoramiento de las Operaciones en la Planta de Tratamiento de Agua Residual en el municipio de La Calera - Cundinamarca. Bogota: Universidad Católica de Colombia.
- Saneamiento, M. d. (2018). Formato de Presentacion de Indicador Asociado a la cobertura del Servicio. Lima-Perú: MVCS.
- Sepulved, K. A. (2017). Análisis de Impacto Ambiental y Social de la Planta de Tratamiento de Aguas Residuales Barra da Tijuca en Brasil como Lecciones Aprendidas para la ciudad de Bogota D.C. Bogotá: Universidad Catolica de Colombia.
- Suematsu, I. G. (1995). impacto Ambiental de los Proyectos de usó de Aguas Residuales. Impacto Ambiental de los Proyectos de usó de Aguas Residuales. Lima, Lima, Perú: CEPIS/OPS.
- SUNASS. (2015). Diagnóstico de Las Plantas de Tratamiento de Aguas Residuales. Lima:
   Tarea Asociacion Gráfica Educativa.



## **ANEXOS**



# **ANEXO 1: PANEL FOTOGRÁFICO**

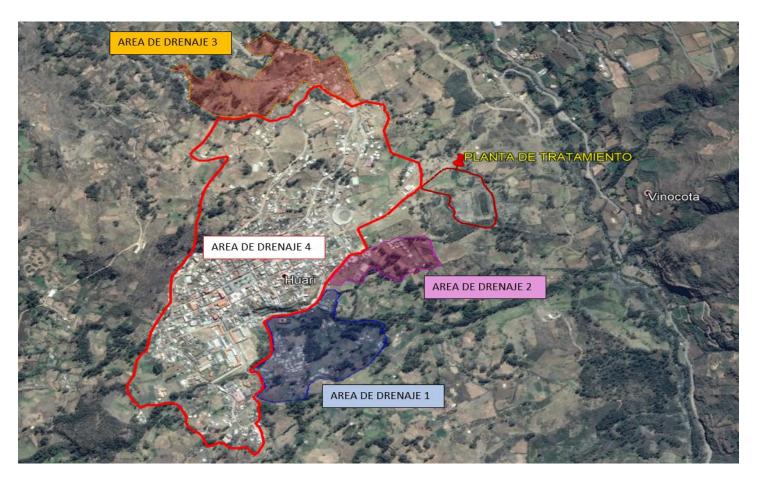



Imagen 35: Vista del Distrito de Huari y sus cuatro áreas de drenaje que aportan las aguas residuales al sistema integral de tratamiento.

Fuente: Elaboración Propia

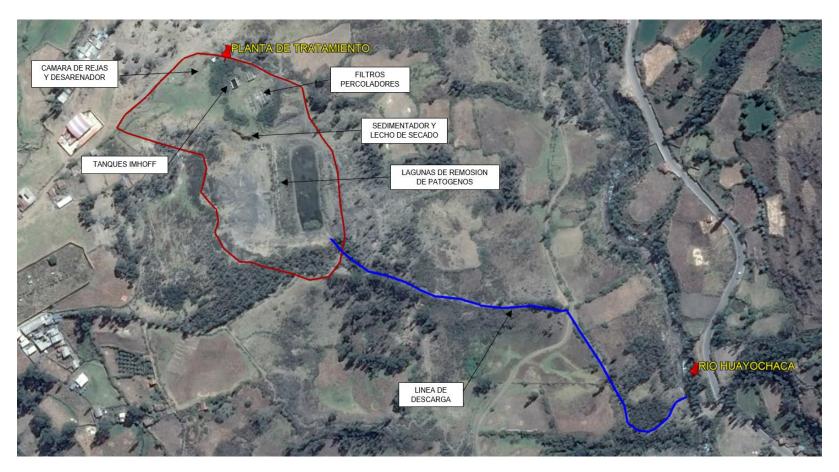



Imagen 36: Vista de las unidades que componen el sistema integral de tratamiento de aguas residuales. Fuente: Elaboración Propia





Foto 1: Visita al Distrito de Huari - Recorrido



Foto 2: Vista Panorámica del área para la PTAR



Foto 3: Lecho de secado - estructuras en abandono





Foto 4: lagunas en estado de abandono



Foto 5: Deslizamiento de terreno sobre laguna en abandono



Foto 6: Camino para trazo de emisor de descarga





Foto 7: Vista del rio Huayochaca - Cuerpo Receptor



Foto 8: Sección del Rio Huayochaca - Puente Cardonyoc