

FACULTAD DE INGENIERÍA Carrera de INGENIERÍA INDUSTRIAL

PROPUESTA DE GESTIÓN DE MANTENIMIENTO BASADO EN LA CONFIABILIDAD PARA REDUCIR FALLAS DE MAQUINARIA DE LÍNEA DE POLLO DE EMPRESA AVÍCOLA, LA LIBERTAD 2021

Tesis para optar al título profesional de:

Ingeniero Industrial

Autores:

Karina Villena Mendieta Cesar Abraham Cueva Ramos

Asesor:

Ing. Miguel E. Alcalá Adrianzen https://orcid.org/0000-0002-5478-5910
Trujillo - Perú

JURADO EVALUADOR

Jurado 1	Walter Estela Tamay	16684488
Presidente(a)	Nombre y Apellidos	N° DNI
Jurado 2	Carlos Enrique Mendoza Ocaña	17806063
Jurado 2	Nombre y Apellidos	N° DNI
Jurado 3	Cesar Enrique Santos Gonzales	41458690
Jurado 3	Nombre y Apellidos	N° DNI

Tabla de Contenido

JURADO EVALUADOR	2
DEDICATORIA	3
AGRADECIMIENTO	4
TABLA DE CONTENIDO	5
INDICE DE TABLAS	. 10
INDICE DE FIGURAS	. 13
RESUMEN	. 16
CAPÍTULO I: INTRODUCCIÓN	. 17
1.1 Realidad Problemática	. 17
1.1.1 Justificación de la investigación	. 18
1.1.2 Justificación académico-profesional	. 21
1.1.3 Compromiso ético	. 21
1.1.4 Marco teórico	. 22
Mantenimiento preventivo	. 24
Mantenimiento y MCC	. 26
MCC: Las siete preguntas básicas	. 26
Disponibilidad	. 27
Mantenibilidad	. 27
Análisis de modo de falla y sus efectos AMFE	. 29
Severidad	. 31
Ocurrencia	. 32
Detectabilidad	. 33
Número de prioridad de riesgo (NPR)	. 34

Acción correctora3	5
Responsable y plazo	5
Acciones implantadas	5
Patrones de falla	6
Fallas potenciales y la curva P-F	8
1.2 Formulación del problema	9
1.3 Objetivos	9
1.3.1 Objetivo general	9
1.3.2 Objetivos específicos	19
1.4 Hipótesis	39
CAPÍTULO II: METODOLOGÍA	0
2.1 Materiales, instrumentos y métodos	0
2.1.1 Tipo de investigación	0
2.1.2 Diseño de la investigación	2
2.1.3 Variables del trabajo de investigación	2
Variable independiente	2
Variables dependientes	2
2.1.4 Población	2
2.1.5 Muestra	2
2.2 Materiales	2
2.2.1 Motores eléctricos	2
2.2.2 Formatos AMFE/NPR	3
2.3 Procedimiento	3

2.3.1	Obtención de los datos	43
Espec	ificaciones técnicas	43
Encue	estas	43
Super	visores y/o jefes de área	44
Perso	nal Operativo	44
Perso	nal de mantenimiento	44
2.3.2	Análisis de datos	44
2.3.3	Aplicación de formatos AMFE/NPR	45
2.3.4	Evaluación y pronóstico de resultados	45
2.3.5	Diseño del nuevo plan de mantenimiento	45
	Matriz de operacionalización de variables	46
CAPÍ	TULO III: APLICACIÓN DEL MCC A LOS MOTORES ELÉCTRICOS DE LA LÍNI	ΞA
DE PI	RODUCCIÓN DE POLLO DE UN EMPRESA AVÍCOLA	47
3.1 Co	ontexto operacional	47
3.2 Pr	oceso productivo de pollo de engorde	47
3.2.1	Preinicio	47
3.2.2	Iniciación	47
3.2.3	Desarrollo	48
3.2.4	Engorde	48
3.3 Pr	opósito y función de los motores eléctricos	49
3.3.1	Transportador helicoidal de silo	49
3.3.2	Comederos	50
3.3.3	Extractores, túneles y ventilas	50

3.3.4	Calentador de aire	. 50
3.3.5	Controlador de climatización	. 51
3.3.6	Bebedor automático	. 51
3.3.7	Calentadores	. 51
3.3.8	Enfriamiento evaporativo	. 52
3.4 Té	cnicas e instrumentos de recolección de datos	. 52
3.5 Co	ondición actual de los motores eléctricos de las máquinas y equipos de la línea de	
pro	oducción de pollo	. 56
3.5.1	Información técnica de los motores eléctricos de la granja	. 57
3.5.2	Tiempo medio entre fallas (TMEF) y tiempo medio para reparar (TMPR)	. 67
3.5.3	Disponibilidad del sistema	. 73
3.5.4	Confiabilidad del sistema	. 74
3.5.5	Mantenibilidad del sistema	. 84
3.5.6	Tasa de fallas del sistema	. 89
3.5.7	Tasa de conversión alimenticia	. 89
3.5.8	Resultados de la encuesta aplicada a 40 trabajadores de la empresa avícola	. 93
Elabor	rar la propuesta de gestión de mantenimiento basada en la metodología de confiabilidad	de
los mo	otores eléctricos de la maquinaria	. 96
3.6 Pro	opuestas de mejora y resultados proyectados	. 96
3.6.1	Aplicación y análisis de la matriz AMFE	. 96
3.6.2	Compra de motores eléctricos completos como repuesto	145
3.6.3	Nuevo plan de mantenimiento preventivo	147

Deterr	ninar las fallas de maquinaria después de la propuesta y los indicadores de la gestion de	;
mante	nimiento basado en confiabilidad de los motores eléctricos	155
3.6.4	Plan de entrenamiento y capacitación	157
3.7 Cc	omparación final de indicadores antes y después de las mejoras propuestas	168
3.7.1	Valores iniciales de TMEF, TMPR, tasa de fallos, confiabilidad y mantenibilidad de l	os
	motores eléctricos de los sistemas de la línea de producción de pollo	168
3.7.2	Valores finales de TMEF, TMPR, tasa de fallos, confiabilidad y mantenibilidad de los	•
	motores eléctricos de los sistemas de la línea de producción de pollo	169
Deterr	minar la inversión y el ahorro generado por la propuesta	170
3.7.3	Balance financiero después de la propuesta de mejora de la gestión del mantenimiento	•
	basado en el MCC	170
CAPÍ	ΓULO IV: DISCUSIÓN Y CONCLUSIONES	173
4.1 Di	scusión	173
4.2 Cc	onclusiones	175
REFE	RENCIAS	178
ANEX	XOS	184
Anexo	1: Encuesta	184
Anexo	2: Matriz AMFE	185
Anexo	3: Base de datos del sistema EasyMaint	186
Anexo	o 4: Plantilla de datos para la distribución de Weibull	187

ÍNDICE DE TABLAS

Tabla 1: Tiempos transcurridos desde la falla de un equipo y su puesta en marcha
Tabla 2: Criterios definidos para la puntuación de severidad en AMFE
Tabla 3: Criterios definidos para la puntuación de ocurrencia en AMFE
Tabla 4: Criterios definidos para la puntuación de detectabilidad en AMFE
Tabla 5: Proceso de actuación para la realización de un AMFE de proceso
Tabla 6: Matriz de operacionalización de variables
Tabla 7: Distribución de motores eléctricos, por galpón, en la empresa avícola
Tabla 8: Horas de operación de los motores eléctricos, por máquina y/o equipo de la empresa
avícola
Tabla 9: Horas de paradas no programadas mensuales, para los años 2019; 2020 y 2021 61
Tabla 10: Número de fallas por sistema y causa para el año 2019
Tabla 11: Número de fallas por sistema y causa para el año 2020
Tabla 12: Número de fallas por sistema y causa para el año 2021
Tabla 13: Tabla de regresión lineal para el cálculo de Confiabilidad, utilizando la distribución de
Weibull 75
Tabla 14: Tabla de datos para la distribución de Weibull
Tabla 15: Tabla de datos para graficar M(t) y F(t)
Tabla 16: Pérdidas monetarias mensuales por paradas no programadas debido a fallas en los
motores eléctricos de los sistemas de la empresa avícola, correspondientes a los años: 2019, 2020
y 202191

Tabla 17: Lucro cesante acumulado por tasa de conversion alimenticia y costos de	
mantenimiento debido a fallas en los motores eléctricos de los sistemas de la empresa avícola,	
correspondientes a los años: 2019, 2020 y 2021	92
Tabla 18: Matriz AMFE – Sistema de Alimentación	97
Tabla 19: Matriz AMFE – Sistema de Calefacción	106
Tabla 20: Matriz AMFE – Sistema de Túnel	16
Tabla 21: Matriz AMFE – Sistema de Ventilación	126
Tabla 22: Matriz AMFE – Sistema de Ventilas	136
Tabla 23: Propuesta de compra de motores por sistema de la línea de producción de pollo 1	146
Tabla 24: Propuesta de plan de mantenimiento preventivo para los motores eléctricos de la	
empresa avícola	148
Tabla 25: Tabla de análisis de falla y posibles soluciones para motores eléctricos	149
Tabla 26: Toma de tiempos observados por cada actividad de mantenimiento preventivo 1	151
Tabla 27: Cálculo de número de observaciones requeridas	152
Tabla 28: Cálculo de tiempo normal y tiempo estándar por cada actividad de mantenimiento . 1	153
Tabla 29: Cálculo de costo por actividad del plan de mantenimiento preventivo	154
Tabla 30: Análisis de confiabilidad, en horas, del 80% de los motores de cada sistema de la lín	ea
de producción de pollo de la granja	155
Tabla 31: Resultados de la mejora en la confiabilidad de los motores debido a la implementacion	ón
del plan de mantenimiento preventivo	156
Tabla 32: Nuevos valores de la tasade fallas y TMEF, aplicando la distribución de Weibull 1	156
Tabla 33: Plan de entrenamiento y capacitación para el personal de Operaciones y	
Mantenimiento de la empresa avícola. Lubricación	60

Tabla 34: Plan de entrenamiento y capacitación para el personal de Operaciones y
Mantenimiento de la empresa avícola. Motores eléctricos
Tabla 35: Mejora de indicadores de TMEF y confiabilidad después de los cursos de capacitación
y entrenamiento
Tabla 36: Indicadores de TMEF y confiabilidad antes de los cursos de capacitación y
entrenamiento
Tabla 37: Mejora de indicadores de TMEF y confiabilidad después de los cursos de capacitación
y entrenamiento
Tabla 38: Horas de paradas no programadas proyectadas para el 2022 del SW EasyMaint 170
Tabla 39: Horas de paradas no programadas proyectadas para el 2022 con el ajuste de la nueva
tasa de falla calculada con la distribución Weibull
Tabla 40: Costos proyectados sin planes de mejora y con planes de mejora para el año 2022 172
Tabla 41: Costos de inversión de propuestas para el mejoramiento de la Gestión de
mantenimiento

ÍNDICE DE FIGURAS

Figura 1: Expectativas de mantenimiento crecientes
Figura 2: Categorías del mantenimiento preventivo
Figura 3: Seis patrones de falla
Figura 4: La curva P-F
Figura 5: Diseño de investigación descriptiva propositiva
Figura 6: Diagrama del diseño de la investigación
Figura 7: Diagrama de bloques del sistema productivo de pollo
Figura 8: Diagrama funcional de EasyMaint
Figura 9: Matriz AMFE
Figura 10: Información técnica de los motores eléctricos con que cuenta la empresa avícola 57
Figura 11: Número de paradas no programadas, por mes, para el año 2019
Figura 12: Número de horas por paradas no programadas mensuales, durante los años: 2019,
2020 y 2021
Figura 13: Total de horas por paradas no programadas para los años 2019, 2020 y 2021 63
Figura 14: Diagrama de Pareto de la cantidad de fallas, por sistema, de la granja durante los años
2019, 2020 y 2021
Figura 15: Tiempo medio entre fallas (TMEF), por sistema, de la granja durante los años 2019,
2020 y 2021
Figura 16: Tiempo medio para reparar (TMPR), por sistema, de la granja durante los años 2019,
2020 y 2021
Figura 17: Diagrama de Pareto del TMEF para el año 2019
Figura 18: Diagrama de Pareto del TMEF para el año 2020

Figura 19: Diagrama de Pareto del TMEF para el año 2021	72
Figura 20: Cuadros de TMEF y TMPR de cada uno de los sistemas de la línea de producción	ı de
pollo para los años 2019, 2020 y 2021	73
Figura 21: Gráfico de los valores X e Y de la tabla de regresión lineal. Así, se obtienen los	
valores de BETA y a, ya que la ecuación de la recta tiene la forma $y=mx+a$; donde $m=BETA$	1 76
Figura 22: Gráfico de confiabilidad y probabilidad de falla para los motores eléctricos del	
sistema de Alimentación	79
Figura 23: Gráfico de confiabilidad y probabilidad de falla para los motores eléctricos del	
sistema de Calefacción	80
Figura 24: Gráfico de confiabilidad y probabilidad de falla para los motores eléctricos del	
sistema de Túnel	81
Figura 25: Gráfico de confiabilidad y probabilidad de falla para los motores eléctricos del	
sistema de Ventilación	82
Figura 26: Gráfico de confiabilidad y probabilidad de falla para los motores eléctricos del	
sistema de Ventilas	83
Figura 27: Gráfico de mantenibilidad M(t) para los motores eléctricos del sistema de	
Alimentación	84
Figura 28: Gráfico de mantenibilidad M(t) para los motores eléctricos del sistema de Calefac	ción
	85
Figura 29: Gráfico de mantenibilidad M(t) para los motores eléctricos del sistema de Túnel	86
Figura 30: Gráfico de mantenibilidad M(t) para los motores eléctricos del sistema de Ventila	ción
	87
Figura 31: Gráfico de mantenibilidad M(t) para los motores eléctricos del sistema de Ventila	

Figura 32: Resultados de las primeras cinco preguntas de la encuesta aplicada a 4	0 colaboradores
de la empresa avícola	93
Figura 33: Resultados de las preguntas 6 a 10 de la encuesta aplicada a 40 colabo	radores de la
empresa avícola	94
Figura 34: Resultados de la pregunta 11 de la encuesta aplicada a 40 colaborador	es de la empresa
avícola	95

RESUMEN

La empresa objeto de estudio fue una productora avícola de carne de pollo, cuyos centros de producción contaban con un alto nivel de automatización en los procesos. El área de mantenimiento estaba orientado a desarrollar actividades, sobre todo, de mantenimiento del tipo correctivo. Mediante la propuesta de gestión de mantenimiento basado en la confiabilidad (RCM) se buscó mejorar los indicadores del área de mantenimiento y promover las actividades del área con un enfoque preventivo. Se inició con el estudio y análisis del proceso productivo, los sistemas y componentes de las máquinas y/o equipos y la interacción de estos con el ambiente físico donde se encontraban. Como primer paso se realizó una exhaustiva identificación y evaluación de las principales fallas que afectaban a los motores eléctricos de las máquinas y equipos de la línea de producción de pollo de la empresa avícola, para ello, se utilizó la metodología de Análisis de Modo de Falla y Efectos (AMFE). Los resultados de este análisis permitieron definir las estrategias de mejora: a) tener motores eléctricos en almacén, como ítems de stock; b) implementar un plan de entrenamiento para el personal de mantenimiento y para el personal de operaciones y, c) el desarrollo de un nuevo plan de mantenimiento con un enfoque ahora, preventivo.

Las propuestas de mejora evaluadas permitieron obtener una reducción de costo equivalente al 31% de manera global sobre los costos asociados al mantenimiento de los motores eléctricos y las pérdidas por tasa de conversión alimenticia, correspondientes al año 2022. Además, los indicadores de mantenimiento como son: TMEF, TMPR, tasa de fallos, confiabilidad y mantenibilidad; para el año 2022, presentan mejoras significativas con respecto a años anteriores.

PALABRAS CLAVES: AMFE, motores eléctricos, disponibilidad, mantenibilidad, tasa de falla.

NOTA DE ACCESO
No se puede acceder al texto completo pues contiene datos confidenciales

REFERENCIAS

- Acuña, J. (2003). *Ingeniería de Confiabilidad*. Editorial Tecnológica de Costa Rica.
- Accorsi, R., Gallo, A., Tufano, A., Bortolini, M., Penazzi, S., & Manzini, R. (2019). A tailored Maintenance Management System to control spare parts life cycle. Procedia Manufacturing, 38, 92–99. doi: 10.1016/j.promfg.2020.01.013.
- Aguilera Díaz, Anailys. (2017). El costo-beneficio como herramienta de decisión en la inversión en actividades científicas. Cofin Habana, 11(2), 322-343. Recuperado en 17 de junio de 2022, de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2073-60612017000200022&lng=es&tlng=es.
- Astill, J., Dara, R. A., Fraser, E. D. G., Roberts, B., & Sharif, S. (2020). Smart poultry management: Smart sensors, big data, and the internet of things. Computers and Electronics in Agriculture, 170, 105291. doi: 10.1016/j.compag.2020.105291
- Aviagen 2014. Manual de manejo de pollo de engorde. (en línea). Consultado el 8 dic 2017. http://eu.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_T echDocs/RossBroilerHandbook2014-ES.pdf.
- Arbor Acres (2009). Guía de Manejo del Pollo de Engorde 3. Aviagen

 http://es.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_TechDo

 cs/smA-Acres-Guia-de-Manejo-del-Pollo-Engorde-2009.pdf.
- Bestratén, M., Orriols, R. & Mata, C. (2004) NTP 679: Análisis modal de fallos y efectos.

 AMFE. Ministerio de Trabajo y Asuntos Sociales de España

 https://www.insst.es/documents/94886/326775/ntp_679.pdf/3f2a81e3-531c-4daa-bfc2-2abd3aaba4ba?version=1.0&t=1528460825650.

- Barreda Beltrán, S. (2015). Plan de mantenimiento centrado en la confiabilidad (R.C.M.) en la EDAR de Nules-Vilavella. Tesis de pregrado, Universitat Jaume. http://repositori.uji.es/xmlui/bitstream/handle/10234/128127/TFG_2015_BarredaBeltran S.pdf?sequence=1&isAllowed=y
- Barriento, V. F., & Achcar, J. A. (2019). Statistical analysis of equipment maintenance time in the food industry: a case study to identify sources of impact on performance. Ingeniare. Revista Chilena de Ingeniería, 27(1), 151–163. doi:10.4067/s0718-3305201900010015110.4067/s0718-33052019000100151
- Ciolos, D. (2012). El camino de Europa hacia una agricultura sostenible. https://europa.eu/rapid/pressrelease_SPEECH-12-480_en.htm.
- Campos, O., Toledo, M., Tolentino, R., Tolentino, G. (2019). Metodología de mantenimiento centrado en confiabilidad (RCM) considerando taxonomía de equipos, base de datos y criticidad de efectos. Instituto Politécnico de México. Científica, Vol. XXIII (N° 1), 51-59 https://www.redalyc.org/articulo.oa?id=61458265006
- CEI. IEC 60300-3-11/ NEK IEC 60300-3-11: Gestión de la confiabilidad, Parte 3–11: Guía de aplicación Mantenimiento centrado en la confiabilidad. Norsk elektrote knisk komite (NEK), 1999.
- De Smet, S., & Vossen, E. (2016). Carne: El equilibrio entre nutrición y salud. Una revisión. Ciencia de la Carne, 120, 145–156. doi: 10.1016/j.meatsci.2016.04.008.
- Díaz, A., Villar, L., Cabrera, J., Gil, A., Mata, R., Rodríguez, A. (2016) Implementación del Mantenimiento Centrado en la confiabilidad en empresas de trasmisión eléctrica.
 Universidad Politécnica de La Habana. Ingeniería Mecánica, Vol. XIX (N.º 3), 137-142
 http://scielo.sld.cu/pdf/im/v19n3/im03316.pdf

- Da Costa Burga, M. (2010). Aplicación del mantenimiento centrado en la confiabilidad a motores a gas de dos tiempos en pozos de alta producción. Tesis de pregrado, Pontificia Universidad Católica del Perú.
 - https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/567
- Duffua, S; Raouf, A y Dixon, J. (2000). Sistemas de Mantenimiento. Planeación y Control. Editorial Limusa.
- Ehsan Ullah, Mirza Mansoor Baig, Hamid Gholamhossein, Jun Lu, Failure mode and effect analysis (FMEA) to identify and mitigate failures in a hospital rapid response system (RRS), Heliyon, Volume 8, Issue 2, 2022, e08944, ISSN 2405-8440. https://doi.org/10.1016/j.heliyon.2022.e08944.
- EasyMaint (2022). Software para la Gestión del Mantenimiento de Activos [Archivo PDF]

 https://www.easymaint.net/images/Folletos/EasyMaint_Cmms_Software_de_Mantenimie

 nto.pdf.
- Espinosa Noritz, H. A. (2010). Comparación de rendimientos sobre parámetros zootécnicos y económicos, utilizando comedores automáticos y manuales en pollos de engorde en el trópico. Guayaquil: Universidad Católica Santiago de Guayaquil.
- EC&M (1 de octubre de 2004) Explaining motor failure.

 https://www.ecmweb.com/content/article/20893083/explaining-motor-failure.
- Geert Waeyenbergh; Liliane Pintelon (2004). Maintenance concept development: A case study., 89(3), 395–405. doi: 10.1016/j.ijpe.2003.09.008
- Gazcón-Rivera, A., Nosedal-Sánchez, J., & Trigos, F. (2021). Transactional failure mode and effect analysis an application to map risks in the service industry. Case Studies on Transport Policy. doi: 10.1016/j.cstp.2021.07.004.

- Gupta, G., Ghasemian, H., & Janvekar, A. A. (2021). A novel failure mode effect and criticality analysis (FMECA) using fuzzy rule-based method: A case study of industrial centrifugal pump. Engineering Failure Analysis, 123, 105305. doi: 10.1016/j.engfailanal.2021.10.
- Hung, A. (2008) Mantenimiento centrado en confiabilidad como estrategia para apoyar los indicadores de disponibilidad y paradas forzadas en la Planta Oscar A. Machado EDC. Energética, Vol. XXX (N° 2). https://www.redalyc.org/pdf/3291/329127741002.pdf
- ISO. (2022) SAE JA1012 A Guide to the Realibility-Centred Maintenance (RCM) Standard.

 SAE International Provided by HIS under license with SAE.
- Moubray, J. (2004). Mantenimiento Centrado en Confiabilidad (2.ª ed.). (Ellmann, Suerio y Asociados, Trad.) (Obra original publicada en 1997).
- Mesa, D., Ortiz, Y., Pinzón, M. (2006) La confiabilidad, la disponibilidad y la mantenibilidad, disciplinas modernas aplicadas al mantenimiento. Universidad Tecnológica de Pereira. Scientia et Technica Año XII, (N.º 30), 155-160

 https://www.redalyc.org/pdf/849/84920491036.pdf
- Miranda S. 2017. Manejo de los pollitos de engorde durante la primera semana "Broiler brooding time": los cinco aspectos fundamentales. Universidad Técnica Nacional. No. 78-2017.

 15-17 p.
- Miño G., Moyano J., Santillán C. (2019). Standard times for line balancing in model four automotive welding área. Facultad de Ingeniería Industrial, Instituto Superior Politécnico José Antonio Echeverría, Cujae. Ingeniería Industrial, vol. XL, núm. 2, pp. 110-122,2019.
- Moreno-Martínez, J.A. 2011. Diseño de explotación. Instalaciones para pollo de engorde. Selecciones avícolas. p. 13 20.

- Roenigk, WP. (1999). Crecimiento y desarrollo muscular. Discurso principal: consumo mundial de aves de corral. Ciencia Avícola, 78(5), 722–728. doi:10.1093/ps/78.5.722.
- Reaño Ramos, L (2019). Propuesta de mantenimiento centrado en confiabilidad en una empresa reprocesadora de subproductos de arroz para minimizar el número de averías. Tesis de pregrado, Universidad Tecnológica del Perú.

 https://repositorio.utp.edu.pe/bitstream/handle/20.500.12867/2058/Leonardo%20Reaño_
 - https://repositorio.utp.edu.pe/bitstream/handle/20.500.12867/2058/Leonardo%20Reaño_ Tesis_Titulo%20Profesional_2019.pdf?sequence=3&isAllowed=y.
- Ross 2014. Manual de manejo de pollo de engorde. (En línea). Consultado el 08 enero del 2018.

 Disponible en:

 http://eu.evio.gon.com/oscate/Tech. Contar/P.P. Foreign Language Docs/Spenish T.
 - http://eu.aviagen.com/assets/Tech_Center/BB_Foreign_Language_Docs/Spanish_T echDocs/RossBroilerHandbook2014-ES.pdf.
- Selvik, J. T., & Aven, T. (2011). A framework for reliability and risk centered maintenance.

 Reliability Engineering & System Safety, 96(2), 324–331. doi:10.1016/j.ress.2010.08.001
- Sifonte J. (2019). Origen del RCM. https://esp.reliabilityconnect.com/origen-del-rcm/
- Sovacool B.; Kryman M. y Laine E. (2015). Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents. Energy, 90(), 2016–2027. doi: 10.1016/j.energy.2015.07.043
- SAE. SAE-JA1011: Criterios de evaluación para procesos de mantenimiento centrado en confiabilidad (RCM), Sociedad de Ingenieros Automotrices, 1999.
- SAE. SAE-JA1012: Una guía para el estándar de mantenimiento centrado en la confiabilidad (RCM), Sociedad de Ingenieros Automotrices, 2002.
- UMPIERRES D. 2015. Manual de buenas prácticas en la producción avícola. Dirección General de Desarrollo Rural. Montevideo, Uruguay. 30 p.

Wittig, J. (2005). Process automation for the production of large composite parts. Reinforced Plastics, 49(1), 30–33. doi:10.1016/s0034-3617(05)00519-9

Xianzhong, J., Wenlong, L., Xuguang, G. & Ruzhi, W. (2019) Fault Diagnosis of Motor

Bearings Based on a One-Dimensional Fusion Neural Network. Sensors MDPI

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339238/pdf/sensors-19-00122.pdf