

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA INDUSTRIAL

"PROPUESTA DE MEJORA EN EL ÁREA DE PRODUCCIÓN APLICANDO PROGRAMACIÓN LINEAL, MRP Y DISTRIBUCIÓN DE PLANTA PARA REDUCIR COSTOS OPERATIVOS EN UNA FÁBRICA DE CARTÓN, TRUJILLO, 2020"

Tesis para optar al título profesional de:

Ingeniera Industrial

Autores:

Maria Noemy Avila Eustaquio Maria Isabel De La Cruz Centeno

Asesor:

Mg. Rafael Luis Alberto Castillo Cabrera https://orcid.org/0000-0001-6804-5852

Trujillo - Perú

JURADO EVALUADOR

Jurado 1	Ing. Luis Alfredo Mantilla Rodríguez	18066188
Presidente(a)	Nombre y Apellidos	Nº DNI

lurada 2	Ing. Julio Cesar Cubas Rodríguez	17864776
Jurado 2	Nombre y Apellidos	Nº DNI

lurado 2	Ing. Mario Alberto Alfaro Cabello	07752467
Jurado 3	Nombre y Apellidos	Nº DNI

DEDICATORIA

A Dios, ante todo, a mi madre Luisa, por ser el soporte que necesitaba en los diferentes momentos que pasé a lo largo de esta etapa profesional; a mi padre Marco por todo el sacrificio que hizo para estudiar esta carrera y, a mi hermano Joel, por su cariño incondicional y comprensión en los momentos difíciles.

María Isabel De La Cruz Centeno

A Dios por otorgarme tener vida y salud, a mis padres, por todos los esfuerzos y sacrificios que hicieron para poder brindarme la oportunidad de contar con una excelente educación en el transcurso de mi vida, por creer en mí, por motivarme constantemente a seguir con mi formación académica, y por darme las fortalezas necesarias para cumplir todos mis objetivos.

María Noemy Avila Eustaquio

AGRADECIMIENTO

A Dios, por ayudarnos a superar los retos que se nos presentan cada día, y por darnos la fuerza necesaria para lograr nuestros objetivos.

A nuestros familiares, por ser el apoyo que necesitábamos en los momentos difíciles y por nunca habernos dejado solos, gracias.

A nuestros maestros, por compartir su sabiduría y experiencias diarias, para convertirnos en ingenieras con ética profesional y responsabilidad. En especial al Ing. Miguel Alcalá, por asesorarnos al inicio de esta investigación, por su dedicación y comprensión, al Ing. Mario Alberto Alfaro Cabello, por asesorarnos en las mejoras de nuestra investigación, y al Ing. Rafael Castillo Cabrera, por ser nuestro asesor en la presente investigación y apoyarnos para la finalización de la misma.

TABLA DE CONTENIDO

JURADO EVALUADOR		2
AGRADECIMI	ENTO	3
TABLA DE CONTENIDO		4
ÍNDICE DE TA	ABLAS	5
ÍNDICE DE FIO	GURAS	7
RESUMEN		9
CAPÍTULO I: I	NTRODUCCIÓN	10
1.1.	Realidad problemática	10
1.2.	Antecedentes	15
1.3.	Bases Teóricas	19
1.4.	Definición de Términos	24
1.5.	Formulación del problema	25
1.6.	Objetivos	25
1.7.	Hipótesis	26
1.8.	Justificación	26
1.9.	Aspectos Éticos	26
CAPÍTULO I	I: METODOLOGÍA	27
2.1.	Tipo de investigación	27
2.2.	Población y Muestra	28
2.3.	Materiales, instrumentos y métodos	29
2.4.	Procedimientos	33
2.4.3.	Diagnóstico del área problemática	40
2.5.	Solución de la Propuesta	45
2.6.	Evaluación Económico Financiera	71
CAPÍTULO III:	RESULTADOS	77
CAPÍTULO IV	: DISCUSIÓN Y CONCLUSIONES	82
REFERENCIAS		85
ANEXOS		93

ÍNDICE DE TABLAS

Tabla 1 Principales competidores en el ámbito Internacional	11
Tabla 2 Principales competidores en el Perú	12
Tabla 3 Principales competidores	12
Tabla 4 Principales Proveedores	13
Tabla 5 Modelo de Plan Maestro de Producción	21
Tabla 6 Formato usual para el planeamiento de Plan Maestro de Producción	22
Tabla 7 Escala del nivel de frecuencia	22
Tabla 8 Escala del nivel de gravedad	23
Tabla 9 Escala del Índice de Prioridad de Riesgo	23
Tabla 10 Diseño de la investigación	27
Tabla 11 Técnicas e instrumentos	29
Tabla 12 Descripción del procedimiento de la investigación	31
Tabla 13 Matriz de operacionalidad de variables	33
Tabla 14 Matriz de priorización	42
Tabla 15 Principales causas raíces	43
Tabla 16 Matriz de Indicadores de causas raíz	44
Tabla 17 Costos por compras urgentes por lámina	46
Tabla 18 Productos falltantes	46
Tabla 19 Calculo de utildad	47
Tabla 20 Calculo de lucro cesante	47
Tabla 21 Data histórica según el tipo de grosor de cada lámina de cartón	48
Tabla 22 Cantidad de presentación según el tipo de grosor de cada producto	49
Tabla 23 Pronóstico de demanda por producto	50
Tabla 24 Pesos de cada producto según el tipo de grosor	51
Tabla 25 Programa Maestro de Producción (PMP)	51
Tabla 26 Puestos de Trabajo	52
Tabla 27 Orden de Aprovisionamiento	53
Tabla 28 Costos de mano de obra	55

Tabla 29 Costo de energía y de insumos
Tabla 30 Costo unitario
Tabla 31 Costo de oportunidad
Tabla 32 Costos por trabajador
Tabla 33 Definición de variables
Tabla 34 Resultados por mes de acuerdo a las restricciones
Tabla 35 Resumen de los costos de plan agregado
Tabla 36 Costo de mano de obra
Tabla 37 Costo de energía eléctrica
Tabla 38 Superficie de cada una de las áreas de la empresa
Tabla 39 Razones de cercanía entre las áreas
Tabla 40 Cuadro Relacional
Tabla 41 Número de área para el programa ALDEP
Tabla 42 Costos de implementación de MRP
Tabla 43 Costos de implementación de programación lineal
Tabla 44 Costos de distribución de planta
Tabla 45 Costo de recursos
Tabla 46 Depreciación de maquinaria
Tabla 47 Costos de depreciación
Tabla 48 Costo total de los servicios y otros
Tabla 49 Financiamiento
Tabla 50 Cronograma de pagos de financiamiento
Tabla 51 Tabla de resumen de inversiones
Tabla 52 Estado de Resultados
Tabla 53 Flujo de caja proyectado
Tabla 54 Indicadores de rentabilidad del proyecto
Tabla 55 Resumen del antes, después y el beneficio
Tabla 56 Resumen del Beneficio

ÍNDICE DE FIGURAS

Figura 1 Porcentaje de demanda de cartón a nivel mundial en el año 2019	10
Figura 2 Porcentaje de consumo de cartón en América Latina	11
Figura 3 Modelo de reporte de Lingo	20
Figura 4 Modelo de Tabla de Relaciones – Componentes	21
Figura 5 Flujograma del procedimiento de ejecución de la investigación	30
Figura 6 Organigrama de la empresa	34
Figura 7 Cadena de Valor	35
Figura 8 Mapa de procesos	36
Figura 9 Análsis FODA	36
Figura 10 Análisis de Stakeholders	37
Figura 11 Diagrama de Análisis de Operaciones	38
Figura 12 Diagrama de operaciones	39
Figura 13 Análisis modal de fallos y efectos	40
Figura 14 Diagrama de Ishikawa	41
Figura 15 Diagrama de Paretto	42
Figura 16 Ventas del año 2018 y 2019	49
Figura 17 Puestos de Trabajo	52
Figura 18 Hoja de Ruta según las estaciones de trabajo	52
Figura 19 Modelo de función objetivo	59
Figura 20 Función Objetivo	59
Figura 21 Restricciones	59
Figura 22 Diseño en Lingo	60
Figura 23 Resultados	61
Figura 24 Diagrama de interrelaciones de Muther	65
Figura 25 Distribución de planta propuesta	67
Figura 26 Diagrama de Gantt para la implementación de las herramientas	68
Figura 27 Simulación del proceso en Promodel	70
Figura 28 Comparación de pérdidas y beneficios de la CR1	79

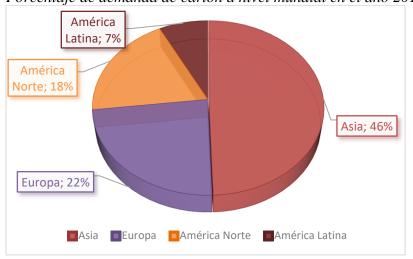
"Propuesta de mejora en el área de producción
aplicando Programación Lineal, MRP y Distribución de Planta para
reducir costos operativos en una fábrica de cartón, Trujillo, 2020"

Figura 29	Comparación de pérdidas y beneficios de la CR2	80
Figura 30	Comparación de pérdidas y beneficios de la CR3	80
Figura 31	Comparación de pérdidas y beneficios de la CR4	81

RESUMEN

El presente trabajo tiene como objetivo general determinar el efecto de la propuesta de mejora en el área de producción aplicando programación lineal, MRP y distribución de planta para reducir los costos operativos en una fábrica de cartón. En primer lugar el diagnóstico de la situación actual de la empresa en el área de producción, determinó las causas raíz aplicando el Diagrama de Ishikawa y la priorización de las mismas haciendo uso del diagrama de Pareto. Posteriormente se realizó un Plan Maestro de Producción (MRP), programación lineal y distribución de planta, ya que son las herramientas de ingeniería industrial propuestas para disminuir los costos operativos. Finalmente, se realizó una evaluación económica y financiera del proyecto el cual obtuvo resultados positivos, dando así un VAN de S/. 38,054.92, una TIR de 48.14%, un B/C de 1.4 y un PRI de 1.5 años, lo que demuestra que el proyecto es viable y rentable financieramente. Por lo tanto, se concluye que tras la aplicación de la propuesta de mejora los costos operativos se reducen en un 50.74%, lo cual representa S/. 24,445.07

PALABRAS CLAVES: Diagrama de Ishikawa, Diagrama de Pareto, Plan Maestro de producción (MRP), programación lineal y distribución de planta.



CAPÍTULO I: INTRODUCCIÓN

1.1.Realidad problemática

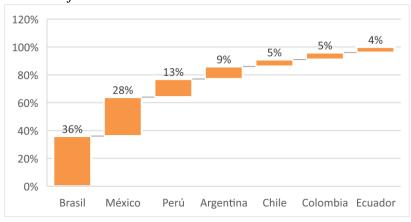
A nivel mundial, la demanda de pulpa para el cartón y otros derivados han tenido un incremento constante dado que diversos países han llegado o están por llegar al límite de su capacidad de producción de materia prima para esta industria, por lo que cada vez se tiene mayor atención en otras fuentes de materia prima, siendo la comercialización de fibra celulósica la más común; es por ello que, la producción de cartón en muchos casos se efectúa a partir de fibra que ha sido sometida a un proceso de secado; de igual manera, la comercialización de fibra obtenida a partir de papel post consumo sufre diversas modificaciones directamente relacionadas con su estructura denominándose Hornificación, el cual se refiere a las alteraciones que sufren las capas externas de la fibra celulósica durante el proceso de secado en la fabricación de cartón y durante su exposición al medio ambiente (Turrado *et al.*, 2008). Sin embargo, la presencia de varias empresas en diferentes continentes del mundo, han registrado una demanda de cartón bastante baja (Ver Figura 1).

Figura 1Porcentaje de demanda de cartón a nivel mundial en el año 2019

Fuente. Papel y artes gráficas informe sectorial de la economía española (2019)

Ante las cifras registradas, las empresas del rubro cartonero luchan constantemente por salir adelante y no dejar de existir, generando gran competitividad con empresas de países vecinos (Ver Tabla 1), quienes buscan diferentes maneras de reducir sus costos y ofrecer al mercado productos de calidad.

Tabla 1Principales competidores en el ámbito Internacional


Empresa	País
Lecta	Europa
Arauco	América del Sur
Bio – PAPPEL	Centroamérica
Cascades	América del Norte
Fedrigoni	Europa
TNPL / Tamil Nadu	Asia
Mondi	Sudáfrica

Fuente. Las 25 fabricantes de papel más responsables del mundo (Latino, 2013)

Además, la industria de cartón tiene gran importancia para las economías de Sudamérica debido a la gran disponibilidad de recursos forestales, siendo Brasil y Chile los mayores productores de celulosa (Ver Figura 2), puesto que, Chile produce anualmente 2 millones de toneladas de celulosa y Brasil alrededor de 6 millones de toneladas (Mansilla *et al.*, 2001).

Figura 2

Porcentaje de consumo de cartón en América Latina

Fuente. Papelera Nacional S.A. – PANASA. (s. f.)

De igual manera, en nuestro país existe una gran competencia por liderar el mercado siendo las empresas que más resaltan del sector agroindustrial y calzado (Ver Tabla 4).

Tabla 2 *Principales competidores en el Perú*

Sector	Empresa	Departamento
Agroindustrial	Carvinsa	Lima
Agromausurar	Trupal	Lima
Calzado	Cartonera Huachipa	Lima

Fuente. Estandarización del proceso de fabricación de papel kraft en la máquina papelera N° 2 de la empresa Trupal (Vega, 2017)

Por consiguiente, la demanda de láminas de cartón ha disminuido considerablemente a nivel nacional, debido a que esta industria está fuertemente ligada al sector del calzado, la cual cuenta con gran competencia de diversos países especialmente del continente asiático, ya que, ofrecen productos a bajo costo, generando pérdidas numerosas a empresas peruanas dedicadas a la fabricación de calzado, asi como también a sus proveedores; ocasionando el deceso de varias empresas dedicadas a la fabricación de este insumo; sin embargo, algunas empresas aún se han mantenido a pesar de que su producción no resulta muy rentable, es por ello que, han optado por dedicarse no solo a la producción de láminas de cartón, sino también al calzado para que no se vean muy afectadas por la competencia (He *et al.*, 2019).

De igual forma, la fábrica de cartón tiene competidores locales (Ver Tabla 3) y proveedores según la importancia de los insumos para la elaboración de cartón para el calzado (Ver Tabla 4).

Tabla 3Principales competidores

Sector	Empresa	Distrito
Alimentos	Tableros Peruanos	Laredo

Manufacturas Industriales Inka S.R.L. Trujillo

Fuente. Información de la empresa

Tabla 4

Principales Proveedores

Insumos	Proveedores
Colorante	Colorantes Naturales Trujillo S.A.C.
	Recicladora Baltodano
Recicladora	Recicladora Manuelita S.A.C.
D .	Tecno Resinas
Resina	Industria Vencedor SA
Insumos químicos	INDIQSA Industrial Insumos Químicos S. A.
msumos quinicos	SG Químicos del Perú SAC

Fuente. Información de la empresa

La empresa de cartón se encuentra ubicado en el distrito La Esperanza y se dedica a la fabricación de diferentes tipos de cartón para el calzado, entre ellos se encuentran cueroflex, T-Flex, Ipex y Caribiam. Actualmente la empresa afronta problemas que han generado un aumento en los costos operativos en el área de producción impidiendo vender los productos a un precio competitivo en el mercado.

Entre las principales dificultades de la empresa perteneciente al rubro cartonero, es la demora de abastecimiento y el costo de materiales, los cuales provocan un elevado costo de compras de materiales, pues no solo se tomaría en cuenta el costo de adquisición de materiales, sino conseguir un menor costo de compra de insumos para cumplir con los pedidos, ya que se deberá ver la forma de que estos costos no afecten directamente a la empresa, puesto que si no se realiza ninguna acción (Rivadeneira y Polanco, 2016) afectará no solo a los costos operativos, sino también a la liquidez de la empresa (Aguilar y Zuluaga, 2016).

Las demoras en una línea de producción de planchado de lámina significa retrasos con el pedido de las láminas al cliente, este tiempo dura entre 45 min - 48 min y 54 min -44 min; lo cual en los procesos productivos ocasionan un desequilibrio en la línea de producción, y por consecuencia se realizan horas extras a los operarios con la finalidad de

cumplir con el pedido, sin embargo, en algunos casos los clientes devuelven los productos por alguna falla que puedan presentar (Romero y Cañari, 2018), además de generar desigualdad en la planificación de tareas en cada proceso productivo, lo cual no crea un valor significativo al producto y de tal modo ocasiona que los clientes no se encuentren satisfechos (Arango *et al.*, 2013). Asimismo, las demoras en una línea de producción se ven reflejada en un aumento en el tiempo de paradas de máquina; dentro del proceso productivo de una empresa, normalmente una máquina está operativa un 70%, por lo que el restante ocasiona grandes pérdidas de producto en función del costo (Alzate, 2015).

Por consiguiente, los elevados costos de mano de obra es la consecuencia de no contar con la materia prima y herramientas en el tiempo requerido para las especificaciones del trabajo y/o duración con la producción (Valderrama *et al.*, 2016). Además, los tiempos recorridos entre cada departamento afectan significativamente en el costo de mano de obra en una línea de producción e influye notablemente en el costo de energía eléctrica, ya que será necesario que las máquinas trabajen mucho más tiempo (Vázquez y Ruíz, 2012).

Por otro lado, el aumento de costos de energía eléctrica se debe principalmente a los equipos utilizados, puesto que, muchas empresas realizan el mantenimiento correctivo en sus equipos, generando que las maquinas no se encuentren en óptimas condiciones para continuar trabajando y por ende genera un aumento del uso de energía eléctrica (Rosero *et al.*, 2013), además de ocasionar que no se tenga un correcto control en la línea de producción, ya que genera reprocesos (Reinoso y Salazar, 2017), otro factor que influye en el aumento del uso de energía eléctrica son los que se generan por el uso de los equipos para realizar el mantenimiento correctivo a las máquinas, ya que si se realiza solo este tipo

de mantenimiento generalmente se realizará en cortos periodos de tiempo (Hernández *et al.*, 2017).

Del mismo modo, es necesario llevar un adecuado control de los indicadores de stock mínimo, máximo, de seguridad y nivel de aprovisionamiento, ya que de no tenerlo puede generar elevados niveles de inventario, trayendo consigo consecuencias negativas, las cuales se verán reflejadas en el aumento de los costos de productos almacenados (Gómez y Negrin, 2018). Para ello, es importante realizar un análisis de la situación actual para identificar los puntos críticos del proceso de almacenamiento y distribución del área, por lo tanto, es necesario realizar un correcto *Layout*, teniendo en cuenta las señalizaciones internas y externas del almacén de productos terminados (Paredes *et al.*, 2018).

1.2.Antecedentes

A nivel internacional, según Martínez *et al.* (2015), la planificación deficiente de compras, así como la reducción de capital y el incremento de demanda de la materia prima son las causas del incremento de los costos de los insumos, lo cual genera un elevado costo de adquisición de insumos provocando un desbalance en el control de los costos, para ello el método Allen – Uzawa, se realiza en base al costo del insumo, con ayuda de restricciones de simetría y homogeneidad, esta herramienta permite reducir hasta en un 91% los costos de la empresa, en el cual el indicador de utilidad privada (D), considera los precios corrientes del mercado y el precio de cobro por los proveedores en la empresa, en donde se encontró un proveedor con un 28% menos respecto a costos comparado con los demás, significando una disminución de 57.28 dólares por pedido que se realice. Garófalo (2014) en su estudio avalado Universidad de Guayaquil, a través de su estudio Evaluación de los ciclos de conversión de cajas de cartón corrugado y propuesta de mejora en la empresa

Procarsa, en el cual su objetivo es la minimización del tiempo improductivo en los ajustes por procesos con la finalidad de mejorar en la planificación de la producción, inició con la exploración preliminar de las actividades de las estaciones de trabajo, luego aplico el análisis de operaciones con el cual estudió los factores, en donde se evidenció que se han perdido 8.116 horas, lo que representó una pérdida económica de \$647.413,13, de los cuales 1.589 horas son por demoras en la línea de producción, en el cual propone u Workshop de SMED, de ese modo logró reducir sus costos en \$345.12, así como también las horas se redujo a 1.23, lo cual inidicó que la implementación de la propuesta es factible y conveniente para la empresa ya que al principio elaboraba 1104 Tn/mes o 200.000 cajas completas tapa y fondo, pero ahora podrá elaborar 1584 Tn/mes o 300.000 cajas completas tapa y fondo.

Además, Lora, (2016) en su investigación titulada Maximización de la producción de café a través de la programación lineal, la cual tuvo como objetivo perfeccionar el proceso de planificación de la producción, mediante el empleo del modelo determinístico de la Programación Lineal y el Sistema Informático "LINDOW Systems" se logró aumentar los niveles de producción, a través de los medios de procesamiento de datos e introducción de los parámetros fundamentales. Es por ello que teniendo en cuenta la distribución brindada por el modelo, se obtuvo una producción de 508.9 1itros, lo cual indica un aumento con respecto al plan de la entidad de un 17,8%.

De la misma manera, Cabrera y Puente, (2015) en su estudio avalado por la Universidad Nacional Mayor de San Marcos a través de su investigación Mejoras en la programación de la producción de una empresa farmacéutica, lograron identificar las causas del bajo nivel de cumplimiento en el plan de producción debido a la

acumulación de lotes por fabricar y del exceso de horas-hombre durante los procesos de envasado y acondicionado. Es por ello que, se propuso una línea automática utilizando el modelo determinístico de programación lineal que se encargará de realizar las operaciones de dosificado, tapado y etiquetado; además, de un modelo matemático el cual que propone un programa de producción de la línea de líquidos no estériles, de esta manera se obtuvo un ahorro anual de S/ 381,92 con un retorno de la inversión de 1.11 años.

A nivel local, según Bazán y Carré (2019), en su estudio avalado por la Universidad Privada del Norte a través de su investigación Propuesta de mejora en las áreas de producción y logística para reducir los costos en la empresa de calzado negocios e inversiones HGS E.I.R.L, en cual su objetivo es la reducción de costos mediante las herramientas de ingeniería de industriales tales como: estudio de tiempos y métodos de trabajo, gestión de almacén y control de calidad de procesos, recolecto datos para el diagnóstico en el cual se basó en la observación directa, la aplicación de entrevistas no estructuradas a todo el personal y a clientes externos, así como la consulta en diversas fuentes de información, en el identificó 9 causas raíces que ocasiona el aumento en los costos operativos para lo cual se desarrolló un estudio de tiempos para el proceso de armado por ser el cuello de botella de producción, en base a esto se logró mejorar tiempos y reducir actividades y tiempos muertos, logrando alcanzar un ahorro de 1 hora por docena de producción y de S/1,634.20 mensual y reduciendo el reproceso de 88% a 37%., en conjunto con las 5S se logró pasar del costo perdido de S/ 18,444.52 a S/ 6,462.54 lo que genera un ahorro de S/ 11,981.54 soles al año, además desarrolló el plan de capacitación para el personal administrativos y operarios de las áreas de Logística y Producción para resolver los

problemas de falta de conocimiento en los procesos de corte, perfilado y armado, como también el adecuado control de inventarios y almacenes, que al no contar con la herramienta los costos perdidos son de S/8,124.16 al año y con la herramienta es de S/2,841.95 al año, logrando un ahorro de S/5,282.22 de forma anual. En conclusión, aplicó de manera satisfactoria la metodología teniendo como resultados: estandarización del tiempo estándar de trabajo y una rentabilidad con los siguientes indicadores financieros: TIR al 79.44%, un van de S/ 17,004.3, un B/C de 1.12 y PRI de 2.8 años. Además según, Romero y Cañari, (2018) la experticia de los operarios, en relación a la capacidad de trabajo de cada operario, lo cual trae consigo efectos negativos para la empresa, ya que repercute en costos, elevándolos de manera significativa; el método más adecuado es un balance de línea y la aplicación del algoritmo Tabú, ya que su aplicación puede generar una mejora en la eficiencia del 75% y una reducción de fallas por reprocesos del 8.21% maximizando el aprovechamiento del recurso que genera un mayor impacto en los costos de producción, por otro lado si se aplican las herramientas correctas se puede alcanzar una productividad global de hasta 68% en toda la empresa.

Además, Campos y Ricra, (2018) en su estudio avalado por la Universidad Privada del Norte a través de su investigación titulada Impacto de la programación lineal con el uso de solver en la optimización de las operaciones de carguío-acarreo de mineral en la Mina Lagunas Norte, la Libertad, 2017. Por lo que la optimización de procesos está orientada en ayudar a la empresa a rediseñar sus procesos de negocio con el objetivo de reducir costos y mejorar la eficiencia obteniendo así el mayor beneficio posible haciendo uso del modelo determinístico de programación lineal mediante SOLVER con el fin de obtener significativas mejoras y ahorros operativos

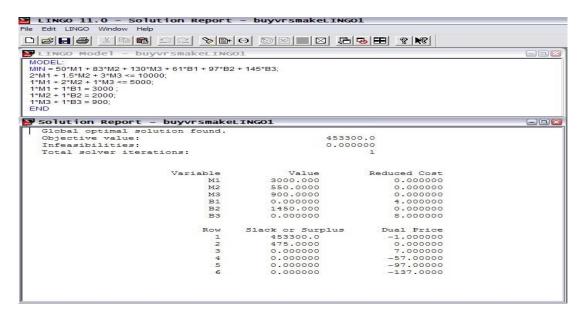
del orden de \$18,533.00 en los procesos de carguío-acarreo de mineral de la mina Lagunas Norte, lo cual constituye 12.35 % del costo del proceso.

1.3.Bases Teóricas

Las herramientas que se van a utilizar para disminuir los costos operativos en la empresa son los siguientes:

Programación Lineal: Esta herramienta es un modelo matemático de resolución de problemas, la cual tiene como objetivo optimizar (maximizar o minimizar) respetando las restricciones correspondientes a disponibilidad de recursos, especificaciones técnicas u otras condicionantes que limiten la libertad de elección (Boirivant, 2012). El objetivo de utilizar esta herramienta es disminuir los costos operativos.

$$\begin{aligned} \textit{Max o Min } Z &= C_1 X_1 + C_2 X_2 + \dots + C_n X_n \\ s. \, a. & a_{11} X_1 + a_{12} X_2 + \dots + a_{1n} X_n \leq b_1 \\ & a_{21} X_1 + a_{22} X_2 + \dots + a_{2n} X_n \leq b_2 \\ & a_{n1} X_1 + a_{n2} X_2 + \dots + a_{nn} X_n \leq b_n \\ x. \, 0. \, para \, i &= 1, 2, \dots n \end{aligned}$$

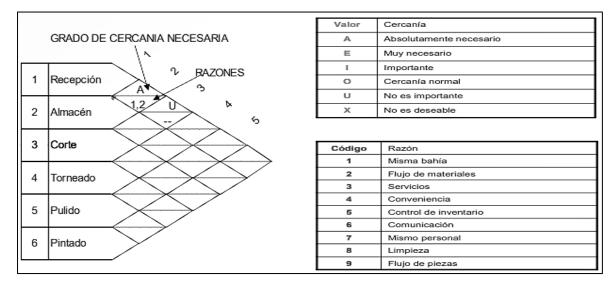

Ecuación 1 Estructura matemática general de la programación lineal Fuente. La programación lineal aplicación de la pequeñas y medianas empresas. (Boirivant, 2012).

Software Lingo: Es un software de programación, el cual cuenta con comandos de secuencia lógica para la solución de sistemas de ecuaciones (Tabares y Ramos, 2010). Este software será un complemento para la programación lineal, ya que se ingresará el modelo para obtener los resultados, para luego ser interpretados.

Figura 3

Modelo de reporte de Lingo

Fuente. Modelación y solución de problemas de PL mediante Solver y lingo (Tabares y Ramos, 2010).


Distribución De Planta: La distribución de planta implica un ordenamiento físico de los elementos pertenecientes a una empresa, para ello se requiere realizar movimientos de los materiales, maquinarias y equipos. Además, de realizar un análisis sobre los errores cometidos anteriormente en la distribución inicial de los espacios, para posteriormente realizar una comparación de la mejora obtenida (Sortino, 2012).

Para realizar una correcta distribución de planta, se realizará una tabla relacional de actividades, luego un diagrama relacional de actividades y finalmente el algoritmo de Francis de bloques unitarios, con la finalidad de visualizar la distribución entre cada área.

Figura 4

Modelo de Tabla de Relaciones – Componentes

Fuente. Distribución de planta (Fernández y De la Fuente, 2015).

Plan Maestro de Producción (PMP): El modelo de Plan Maestro de Producción (PMP) está diseñado considerando los costos de producción e inventario, así como las restricciones definidas por el mismo proceso productivo en cuanto a instalaciones y tiempos de producción (Zotelo et al, 2017). Es por ello que se pretende utilizar para tener un control de la producción.

 Tabla 5

 Modelo de Plan Maestro de Producción

Producto:	Pantalón llano			Política de pedido			L*L		
Cantidad disponible:		253		Tier	Tiempo de espera			1 semana	
		Enero				Febi	ero		
	1	2	3	4	1	2	3	4	
Inventario inicial	253	170	82	0	0	0	0	0	
Pronostico	83	83	83	83	91	91	91	91	
Pedidos de los clientes	36	88	0	16	125	125	0	125	
Cantidad en el MPS	0	0	0	83	125	125	91	125	
Inicio del MPS	0	0	83	125	125	91	125	0	
Inventario Final	170	82	0	0	0	0	0	0	
Inventario disponible para promesa	217	129	0	0	0	0	0	0	

Fuente. Plan maestro de producción de una empresa textil. Caso de estudio de Imbabura, Ecuador (Cossío *et al.*, 2018).

Planeamiento De Los Requerimientos De Material (MRP): La Planeación de Requerimientos de Materiales (MRP) permite planear y controlar las demandas de los materiales y las capacidades necesarias de producción en la empresa, para ello se toma en cuenta las fechas de entregas de los pedidos, por lo que resulta una herramienta muy beneficiosa para las empresas de producción. (Miño *et al.*, 2015). El MRP se va a utilizar para tener un mayor control de las entradas y salidas de la empresa.

Tabla 6Formato usual para el planeamiento de Plan Maestro de Producción

A mtí aula a					In	tervalo	S			
Artículos	1	2	3	4	5	6	7	8	9	10
X1										
X2										
Xn										

Fuente. Sistema de Planificación de los Requerimientos Materiales (MRP) (Rodríguez y León, s.f.)

Análisis de Modal de Fallos y Efectos: Se utilizó la herramienta básica de calidad AMFE, en donde se describieron los criterios referentes a la Frecuencia, Gravedad, Detección; los cuales fueron adaptados de González *et al.* (2017), quien sustenta La evaluación de los riesgos antrópicos en la seguridad corporativa: del Análisis Modal de Fallos y Efectos (AMFE) a un modelo de evaluación integral del riesgo.

Tabla 7Escala del nivel de frecuencia

Frecuencia	Criterio	Valor
Muy baja	Ningún fallo se asocia a procesos casi idénticos, ni se ha dado nunca en el pasado, pero es concebible. Una ocurrencia en más de cinco años, o en 1/10.000 eventos.	1
Baja	Fallos aislados en procesos similares o casi idénticos. Es esperable en la vida del sistema, aunque es poco probable que suceda. Una ocurrencia entre tres y cinco años/ Una ocurrencia entre uno y tres años.	2 - 3
Moderada	Defecto aparecido ocasionalmente en procesos similares o previos al actual. Probablemente aparecerá algunas veces en la vida del componente/sistema. Una ocurrencia por año/una cada seis meses /una cada tres meses.	4 - 6

Alta	El fallo se ha presentado con cierta frecuencia en el pasado en procesos similares o previos procesos que han fallado. Una ocurrencia por mes/una ocurrencia por semana.	
Muy alta	Fallo casi inevitable. Es seguro que el fallo se producirá frecuentemente. Una ocurrencia cada tres o cuatro días/más de una ocurrencia por día.	9 - 10

Fuente: Diseño adaptado de González et al. (2017)

Tabla 8Escala del nivel de gravedad

Gravedad	Criterio	Valor
Muy baja	No es razonable esperar que este fallo de pequeña importancia origine efecto real alguno sobre el rendimiento del sistema. Probablemente, el cliente ni se daría cuenta del fallo.	1
Baja	El tipo de fallo originaria un ligero inconveniente al cliente. Probablemente, este observara un pequeño deterioro del rendimiento del sistema sin importancia de fácil subsanación.	2 - 3
Moderada	El fallo produce cierto disgusto e insatisfacción en el cliente El cliente observara deterioro en el rendimiento del sistema.	4 - 6
Alta	El fallo puede ser crítico y verse inutilizado el sistema. Produce un grado de insatisfacción elevado.	7 - 8
Muy alta	Modalidad de fallo potencial muy crítico que afecta el funcionamiento de seguridad del producto o proceso y/o involucra seriamente el incumplimiento de normas reglamentarias.	9-10

Fuente: Diseño adaptado de González et al. (2017)

El AMFE se revisará periódicamente, evaluando nuevamente los Índices de Gravedad, Frecuencia y Detección y recalculando el Índice de Prioridad de Riesgo (IPR), para determinar la eficacia de las acciones correctivas, mejorando de esta manera la confiabilidad del funcionamiento del equipo.

Para esta revisión presentamos la siguiente tabla con los valores de los índices de prioridad de riesgos.

Tabla 9Escala del Índice de Prioridad de Riesgo

IPR	Acciones
500 - 1000	Alto riesgo de falla.
125 - 499	Riesgo de falla medio o normal.
1 – 124	Bajo riesgo de falla.

Fuente: Diseño adaptado de González et al. (2017)

El presente trabajo de investigación se centra en la reducción de los costos operativos de una empresa de cartón, para ello se tomó información de los años 2018 y 2019, en donde se identificaron los principales problemas de la empresa, de los cuales la demora en la línea de producción representa S/ 23,550.07, paradas de máquinas S/ 7,928.50, compras urgentes S/ 8,347.50 y la demanda insatisfecha S/ 8,347.50 de pérdida en la empresa. Asimismo, el presente proyecto se justifica desde el punto de vista teórico, porque utiliza los conocimientos de la Ingeniería Industrial, como Plan Maestro de Producción (PMP), Planeamiento de los Requerimientos de Materiales (MRP), Distribución de Planta y Programación Lineal, con el propósito de alcanzar beneficios para la empresa.

Además, permitirá una estandarización de los procedimientos en las diferentes áreas de producción para el logro de un beneficio económico a corto y largo plazo.

Además esta investigación beneficiará al ámbito académico, debido a que permitirá contribuir al desarrollo de la empresa, proporcionando un sistema mejorado en la planificación de sus recursos, de esta manera se evaluará su productividad, reducirá sus costos en desperdicios y sobreproducción, con lo cual se podrá identificar cuáles son las áreas y procesos que se deben mejorar y así reducir los costos operativos, lo que hará que la empresa sea competitiva en el mercado de la ciudad de Trujillo.

1.4. Definición de Términos

- Fibra celulósica: Es proveniente de la madera y es materia prima para la fabricación de cartón.
- Pronostico: Se refiere básicamente a la estimación de datos ante una variable.
- Lucro cesante: Se denomina a la perdida de ganancia de no vender un producto o servicio.

- Orden de aprovisionamiento: Consiste en la adquisición de servicios o bienes con el objetivo de obtener todo lo necesario para la realización de las operaciones.
- Diagrama de interrelaciones: Permite relacionar entre áreas que lleven relaciones entre sí y que estén muy cerca.
- Depreciación: Es la disminución progresiva del valor de un bien a medida que se va utilizando en las diferentes actividades.

1.5. Formulación del problema

¿Cuál es el efecto de la propuesta de mejora en el área de producción aplicando programación lineal, MRP y distribución de planta sobre los costos operativos en una fábrica de cartón, Trujillo, 2020?.

1.6.Objetivos

1.3.1. Objetivo general

Determinar el efecto de la propuesta de mejora en el área de producción aplicando programación lineal, MRP y distribución de planta sobre los costos operativos en una fábrica de cartón, Trujillo, 2020.

1.3.2. Objetivos específicos

- Diagnosticar la situación actual de la empresa.
- Proponer las herramientas de Ingeniería Industrial para la solución del problema.
- Cuantificar los costos después de la propuesta.
- Evaluar económica y financieramente la propuesta de mejora.

1.7. Hipótesis

La propuesta de mejora en el área de producción aplicando programación lineal, MRP y distribución de planta reduce los costos operativos en una fábrica de cartón, Trujillo, 2020.

1.8. Justificación

1.8.1. Justificación teórica

El propósito de la investigación es proporcionar conocimientos empleados para las herramientas, metodologías y técnicas de Ingeniería Industrial.

1.8.2. Justificación práctica

La presente investigación tiene como finalidad reducir costos operativos en una fábrica de cartón, identificando las causas raíces de los problemas y proponiendo alternativas de solución para la empresa.

1.8.3. Justificación valorativa

La investigación busca determinar el efecto de la propuesta de mejora en el área de producción sobre los costos operativos en una fábrica de cartón.

1.8.4. Justificación académica

La propuesta se basa en la aplicación de los conocimientos adquirido durante la formación académica mediante propuestas de herramientas que ayuden a solucionar problemas y asimismo servirá como referencia de consulta para futuras investigaciones.

1.9. Aspectos Éticos

La información fue proporcionada por los operarios, con la finalidad de ser usado solo para esta investigación, asimismo el nombre de los colaboradores se mantendrá de forma anónima. Asimismo, se comprometió a manejar con cautela y responsabilidad cualquier documento, recibo o información física brindaba por la empresa, con el fin de respaldar la confianza que nos brindan y resguardar la información de la investigación.

CAPÍTULO II: METODOLOGÍA

2.1. Tipo de investigación

2.1.1. Enfoque

La investigación se basó en un enfoque cuantitativo, ya que se analizó la información obtenida de la muestra de estudio a través de tablas y gráficos, además se pretende medir la capacidad de producción de la empresa con el fin de proponer mejoras en los procesos.

2.1.2. Orientación

La investigación aplicada está enfocada en la parte experimental, ya que se está relacionando la variable independiente y las variables dependientes, las cuales se miden después de realizar las mejoras propuestas para determinar el impacto sobre ellas.

2.1.3. **Diseño**

La investigación es diagnóstica y propositiva, debido a que se está realizando una propuesta para superar la problemática actual y no se va a implementar, por lo tanto, la validación es cuantitativa.

Tabla 10Diseño de la investigación

Sistemático	RX P R
Representativo	 RX: Altos costos operativos antes de la mejora. T: Modelo determinístico y planeación de operaciones. P: Propuesta de mejora en producción. R: Altos costos operativos después de la mejora. Condición: RX > R (Disminución de costos)
Fuente: Elaboración Propia	Condition. Im 7 in (Distribution de Costos)

2.2.Población y Muestra

- **Población:** Los procesos que van a ser objeto de estudio en la empresa.
 - Recepción de los insumos.
 - Verificación con el orden de compra.
 - Clasificación del reciclaje.
 - Carga del reciclaje a la molienda.
 - Trituración del reciclaje.
 - Coloración de la pasta.
 - Formación de la lámina.
 - Secar al aire libre.
 - Plachado de la lámina.
 - Corte horizontal de la lámina.
 - Corte vertical de la lámina.
 - Verificación de las medidas y grosor.
 - Empaquetado del producto.
- **Muestra:** Los procesos objeto de estudio son:
 - Recepción de los insumos.
 - Verificación con el orden de compra.
 - Clasificación del reciclaje.
 - Carga del reciclaje a la molienda.
 - Trituración del reciclaje.
 - Coloración de la pasta.
 - Formación de la lámina.

- Secar al aire libre.
- Plachado de la lámina.
- Corte horizontal de la lámina.
- Corte vertical de la lámina.
- Verificación de las medidas y grosor.
- Empaquetado del producto.

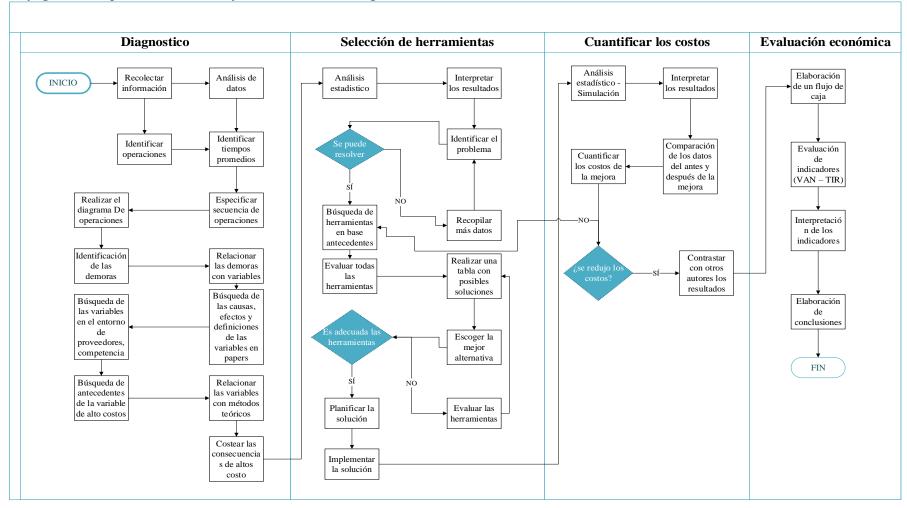
2.3. Materiales, instrumentos y métodos

2.3.1. Materiales, instrumentos y métodos de recolección de datos

Para la obtención de datos, se van a utilizar diferentes instrumentos, respecto a la técnica a emplear; en la siguiente tabla se detalla cada uno de ellos:

Tabla 11 *Técnicas e instrumentos*

Técnica	Justificación	Instrumentos	Aplicado
Observación de campo	Se realizó para registrar sistemáticamente los procesos en cada una de las áreas de una fábrica de cartón.	Cámara fotográfica Cuaderno de apuntes	Área de Producción
Análisis de documentos	Se empleó esta herramienta para recolectar información y datos necesarios para los cálculos matemáticos y verificación de los resultados obtenidos.	Microsoft Excel Laptop Cuaderno de apuntes	Gerencia General (Administración)


Fuente: Elaboración Propia

Para la presente investigación, se realizó un flujograma del procedimiento.

Figura 5

Flujograma del procedimiento de ejecución de la investigación

Fuente: Elaboración propia

Descripción del procedimiento de la investigación

Recopilación de datos del estudio

- Se realizará un listado y registro de los datos personales de todos los proveedores con los que cuenta la empresa.

Análisis de Datos

- Se realizará un análisis de los datos, para posteriormente estimar los tiempos promedio.

Indicar operaciones

- Se identificarán las operaciones para que sean fáciles de reconocer y de separar de las demás, esto se hará para cada subproceso del proceso de producción.

Identificar tiempo y promedios

- Será necesario identificar tiempos y promedios, para la elaboración del diagrama de operaciones.

Especificar la secuencia de operaciones

- Es necesario, saber la secuencia de operaciones para satisfacer las relaciones de precedencia entre las tareas y se pueda optimizar el rendimiento de las mismas.

Realizar el diagrama de operaciones

- Este diagrama debe mostrar los tiempos de procesos con su respectiva descripción

Diagnóstico Actual

Identificación de demoras

- Es importante identificar las demoras dentro de la empresa, ya que permitirá evaluar los efectos dentro de la empresa.

Búsqueda de las variables

 Una vez identificadas las demoras, se convertirá en nuestras variables específicas, en el cual permitirá realizar la búsqueda de los efectos, indicadores, herramientas, y definición de la variable en artículos científicos.

Búsqueda en su entorno

- Es importante conocer el entorno de los clientes, competidores y proveedores del sector industrial de la empresa

Búsqueda de antecedentes del comportamiento de los costos operativos

- Es importante conocer el comportamiento de la variable de los costos operativos a nivel internacional, nacional y local.

Relación con base teórica

- En base a los antecedentes relacionar con teorías a las variables, en el cual se relacionó con el modelo determinístico y sistema de control de producción.

Costear la variable de los costos operativos

- Monetizar las causas raíz de los costos operativos.

	Identificar los problemas
	 Teniendo en cuenta con las fuentes de las búsquedas de las variables, se identifica los problemas que generan los altos costos operativos en la empresa. Búsqueda de las herramientas
Selección de	 Se realiza una búsqueda de las herramientas de solución que van acorde la disminución de los problemas. Realizar una tabla de restricciones
Herramientas	 Se realiza una tabla con restricciones con finalidad es escoger la mejor alternativa de solución. Escoger la mejor alternativa
	 Una vez calificado se sumará de forma horizontal, donde los 2 primeros puntajes, será la alternativa de solución Planificar e implementar la herramienta de solución
	- Se planifica e implementa la herramienta de solución.
	Comparación del antes y después de la propuesta
Cuantificar Costos	 Se realizará una tabla en el cual se evidenciará el antes y después de la propuesta.
	Elaboración del flujo de caja
	 Se elaborará un flujo de caja con los datos obtenidos. Evaluación de los indicadores
Evaluación Económica	 Se evaluará los indicadores donde está reflejará el valor actual de costos y valor de TIR. Interpretación de lo sindicadores
	 Mediante los resultados se evaluará si es factible la propuesta y si es beneficioso para la empresa Elaboración de resultados
	- Luego se elaborará los resultados con sus respectivos porcentajes

y expresados en valor monetario.

Fuente: Elaboración Propia

2.4.Procedimientos

2.4.1. Operacionalización de variables

Tabla 13Matriz de operacionalidad de variables

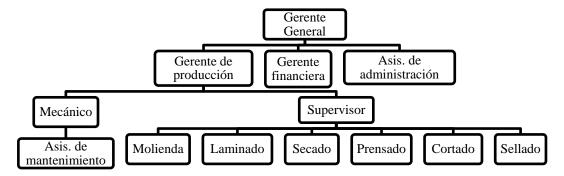
Problema	Hipótesis	Variable	Definición conceptual	Definición operacional	Indicador	Fórmula	Escala
¿Cuál es el efecto de la propuesta de mejora en el área de producción aplicando programació n lineal, MRP y	programación lineal, MRP y distribución de planta reduce los	VI: Propuesta de mejora en producción	Procedimientos que permitan organizar y mejorar su producción, optimizando los recursos, mejorando sus procesos, garantizando la calidad del producto y cumpliendo con los plazos de entrega.	La mejora en el área de producción se desarrollará utilizando el modelo de programación lineal, MRP y distribución de planta en la fábrica de cartón	 % Requerimientos de materiales % Pedidos no atendidos % Capacidad de producción % Tiempo Productos no elaborados 	$\frac{\text{N° de requerimiento de materiales efectivos}}{\text{N° total de requerimiento de materiales}}*100\%$ $\frac{\text{Pedidos no atendidos}}{\text{Total de pedidos}}*100\%$ $\frac{\text{Producción total}}{\text{Producción requerida}}*100\%$ $\frac{\text{Tiempo improductivo}}{\text{Tiempo de producción}}*100\%$	Razón
distribución de planta sobre los costos operativos en una fábrica de cartón?	Ho= La propuesta de mejora en el área de producción aplicando programación lineal, MRP y distribución de planta reduce los costos operativos en una fábrica de cartón.	VD: Altos costos operativos	Son los gastos económicos que una empresa tiene que asumir por sus operaciones empresariales o de negocios (Joaquín & Vargas, 2018)	Los costes operativos incurren en el desarrollo de su propia actividad la fábrica de cartón.	Relación de Costos actuales vs. Costos mejorados	C. totales actuales — C. totales mejorados Costo actuales * 100%	Intervalo

Fuente: Elaboración Propia

2.4.2. Generalidades de la empresa

El trabajo de investigación se realizó en una empresa que pertenece al sector de producción de falsas para el calzado. Es una empresa familiar con más de 15 años de trayectoria, se encuentra ubicado en el Parque Industrial y dentro de sus productos se encuentran: Cueroflex, T-Flex, Ipex y caribiam. Actualmente cuenta con 8 empleados en planta, los cuales trabajan por contratos eventuales de acuerdo a la demanda del mercado.

A. Misión:

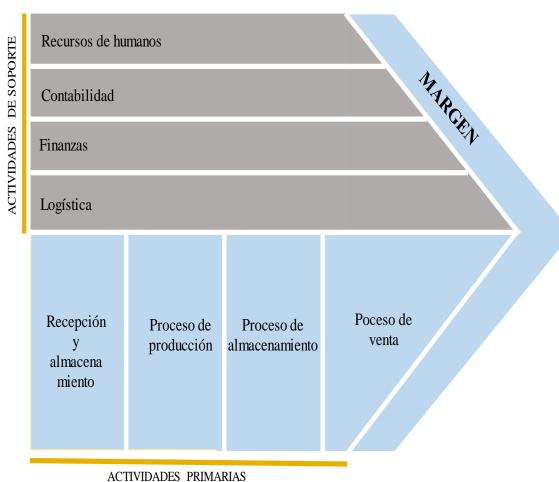

La misión de la empresa es Brindar un abastecimiento oportuno y eficiente de láminas de cartón para los diversos sectores industriales, orientada a la satisfacción de los clientes y desarrollo de nuestros colaboradores.

B. Visión:

La visión de la empresa es consolidarnos como uno de los más grandes proveedores de cartón a nivel nacional, alcanzando el liderazgo en los mercados que operamos y buscando la satisfacción de nuestros stakeholders.

C. Organigrama:

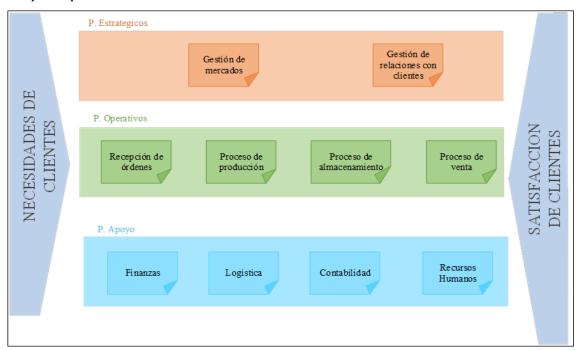
Figura 6 *Organigrama de la empresa*


Fuente: Elaboración propia

Cadena de Valor D.

Se presenta la cadena de valor de la empresa.

Figura 7 Cadena de Valor


Fuente: Elaboración Propia

E. Mapa de procesos

Se realizó el mapa de procesos de delimitar correctamente todos los aspectos clave de los procesos de la empresa.

Figura 8 *Mapa de procesos*

Fuente: Elaboración Propia

F. Análisis FODA

Se realizó un análisis FODA para identificar los factores internos y externos de la empresa.

Figura 9 Análsis FODA

FORTALEZAS	DEBILIDADES
F1: Productos con precios accesibles.	D1:Deficiente gestión de abastecimiento.
F2: Clientes fidelizados.	D2:Sistema de ventas y plan de producción antiguo.
F3: Local propio.	D3:No cuenta con una visión para la automatización.
F4:Experiencia de los operarios.	D4:Deficiencia en la distribución de área.
F5:Buen trato al cliente.	D5:Elevados costos operativos.

OPORTUNIDADES

O1:Nuevos clientes.

O2: Implementación de un sistema de abastecimiento.

O3:Mejorar con la distribución de planta.

O4: Nuevos clientes.

O5:Uso de sistemas digitales.

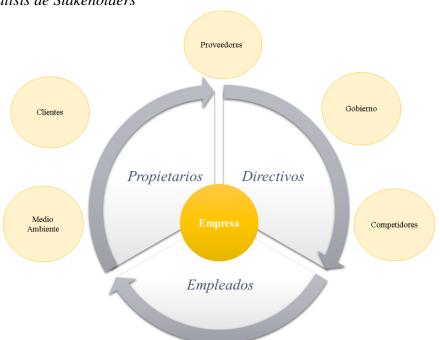
Fuente: Elabortación Propia

AMENEAZAS

A1:Inestabilidad economica.

A2:Restricciones por Covid 19.

A3:Incrementos de costos de materia prima.


A4: Aparición de nuevos competidores en el rubro.

A5:Productos sustitutos.

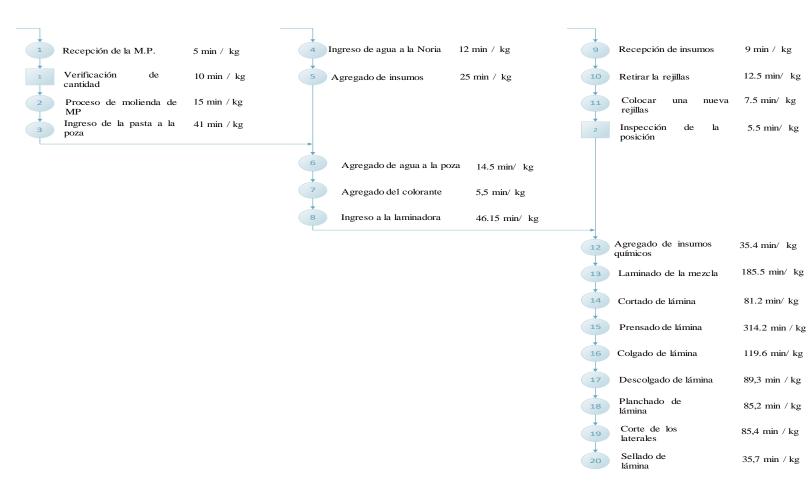
G. Análisis de Stakeholders

Se realizó un análisis de Stakeholders entender la relación entre los defensores o detractores de los proyectos de innovación, reducir riesgos y gestionar una comunicación más eficaz con ambos grupos.

Figura 10 *Análisis de Stakeholders*

H. Descripción del proceso productivo

Se realizó un un diagrama de operaciones (DAP) y un diagrama de operaciones (DOP), en donde los tiempos establecidos es para un lote de 100 láminas.


Figura 11Diagrama de Análisis de Operaciones

Obje	to: Análisis del proceso de láminas		Actual 12							
			Operación Transporte							
Activ	vidad: Laminado de láminas cueroflex			4						
			0							
Luga	r: Fábrica de cartón		C	Alma peración I					2	
Oper	arios 6			Distanc					.58	
		Costo	Т	iempo (mi	n-hombre)			133	0.99	
Com	puesto por: Elaboración propia	- Mano de ob - Material								
	Descripción	Tie (min)	Dist (m)	0		Sim	bolo	₿	∇	
1	Recepción de Materia Prima	5.00		Φ	۵		D	⇨	∇	
2	Verificación de cantidad	10.00		0	۵		Δ	♦	∇	
3	Proceso de molienda	15.00		0	D		D	⇨	∇	
4	Ingreso a la pasta	41.00		0			О	\Diamond	∇	
5	Ingreso de agua a la Noria	12.00		0	D		D	₿	∇	
6	Agregado de insumos	25.00		0	D		D	₿	∇	
7	Agregado del agua	14.50		0			О	4	∇	
8	Agregado del colorante	5.50		0	D		О	5	∇	
9	Espera para continuar con el proceso	8.45		0	D		Ð	⇨	\vee	
10	Ingreso a la laminadora	46.15		0			D	↔	∇	
11	Espera del insumo de la resina	7.11		0			Ð	⇨	∇	
12	Recepción de insumos	9.00		9			D	⇒	∇	
13	Retirar la rejillas	12.50		0			D	⇒	∇	
14	Colocar una nueva rejillas	7.50		0	۵		D	⇔	∇	
15	Inspección de la posición	5.50		0		A	D	⇔	∇	
16	Agregado de insumos	35.40		9			D	⇨	∇	
17	Laminado de la mezcla	185.45		0			D	⇨	∇	
18	Cortado de la lámina	81.20		0			D	↔	∇	
12	Translado de la lámina a la máquina prensadora	8.57	2.5	0			D	⇒	∇	
13	Prensado de la lámina	314.52		0	а		D	⇨	∇	
14	Translado de la lámina al área de secado	11.26	2.9	0	۵		D	⇒	∇	
15	Colgado de láminas	119.60		~			D	⇔	∇	
18	Demora por secado de las láminas	12.25	1.68	0			Ð	⇔	∇	
19	Descolgado de láminas	89.30		0			D	⇨	∇	
20	Planchado de lámina	85.20		0	Q		D	⇔	∇	
21	Corte horizontal y vertical de la lámina	85.40		0	D		D	⇨	∇	
22	Sellado de láminas	35.70		0			D	⇨	∇	
23	Translado del producto terminado al almacén.	22.47	3.5	0			D	4	∇	
24	Almacén de Productos terminados			0			D	₽	$\overline{\mathbf{v}}$	
25	Demora en descargar productos terminados.	20.46		0			D	↔	∇	
	TOTAL	1330.99			1	ı	L	1	·	

Figura 12

Diagrama de operaciones

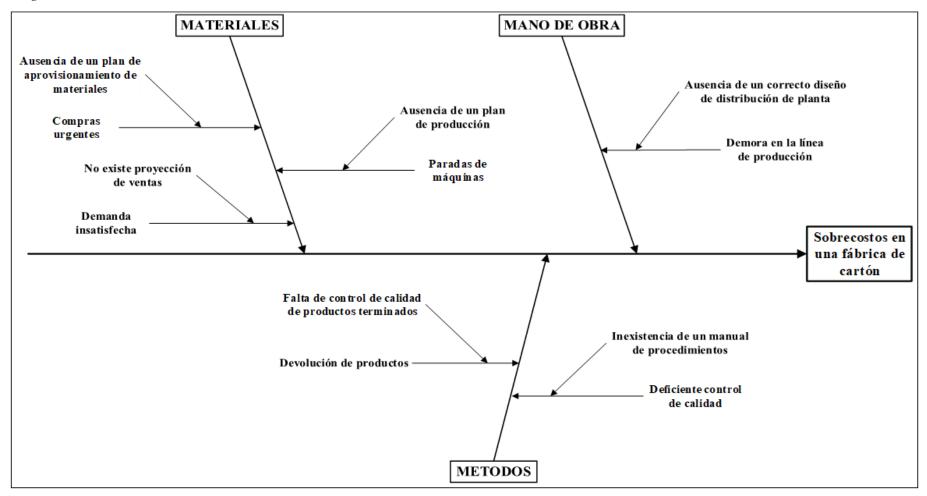


Figura 13 *Análisis modal de fallos y efectos*

Código: AMFE 21 10 2009 ANÁLISIS MODAL DE FALLOS Y EFECTOS (A.M.F.E) Edición: 1ª Fecha: 21 de ABRIL de 2022 Denominación LÁMINAS DE CARTÓN CARTÓN PARA EL CALZADO Rubro: Preparado por: Todos los integrantes producto: PARQUE INDUSTRIAL C-T Todos los integrantes Planta: Referencia/s: Revisado por: Falla Área Función y/o Desempeño Efecto de Fallo \mathbf{S} Causa de Fallo \mathbf{o} Método de detección Item D NRP funcional Falta de calidad de productos Devolución de productos Apariencia fisica. Daño visible. 384 terminados. **I**1 Planificación más Demora en la linea de Ausencia de un correcto diseño Apariencia fisica. Daño visible. 729 económica para la producción de distribución de planta. fabricación de los Ausencia de un plan de 12 Paradas de máquinas 10 Apariencia fisica. Daño visible. 900 productos, coordinación de Altos costos en producción. la mano de obra, uso de el área de Producción Inexistencia de un manual de Molestia al usarlo. Apariencia materiales, instalaciones, producción 13 Deficiente control de calidad 432 procedimientos. fisica diferente. herramientas y servicios, Ausencia de un plan de prueba de calidad de Compras urgentes Apariencia fisica. Daño visible. 729 aprovisionamiento de materiales. productos. **I**4 Demanda insatisfecha No existe proyección de ventas. Apariencia fisica. Daño visible. 600

Diagrama de Ishikawa

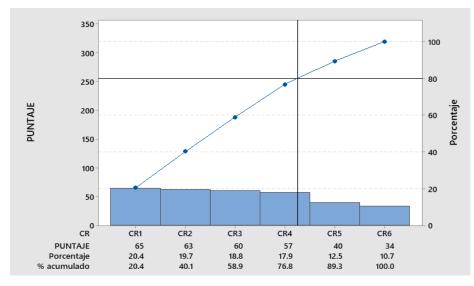

Luego de haber identificado los problemas y las causas raíces que influyen en el área de producción, se aplicó una encuesta a los diferentes trabajadores de la empresa para darle una priorización de acuerdo al nivel de influencia de la problemática de estudio, esto se logró gracias a la herramienta del diagrama Pareto, en donde se obtuvieron 4 causas raíz.

Tabla 14 *Matriz de priorización*

N°1	Causa raiz	Puntaje	P. Relativa	P. Acumulada
CR 1	Ausencia de un plan de aprovisionamiento de materiales	65.00	20%	20%
CR 2	No existe proyección de ventas.	63.00	20%	40%
CR 3	Ausencia de un plan de producción.	60.00	19%	59%
CR 4	Ausencia de un correcto diseño de distribución de planta	57.00	18%	77%
CR 5	Falta de control de calidad de productos terminados.	40.00	13%	89%
CR 6	Inexistencia de un manual de procedimientos	34.00	11%	100%
	Total	319.00	100%	

Fuente: Elaboración Propia

Figura 15Diagrama de Paretto

Mediante el diagrama Pareto se logró determinar las siguientes causas raíz

principales:

Tabla 15Principales causas raíces

N°1	Causa Raiz	Puntaje
CR1	Ausencia de un plan de Aprovisionamiento de materiales	65.00
CR2	No existe proyección de ventas.	63.00
CR3	Ausencia de un plan de producción.	60.00
CR4	Ausencia de un correcto diseño de distribución de planta.	57.00

Tabla 16 *Matriz de sobredores de causas raíz*

CR	Descripción	Indicador	Fórmula	VA		VM	HER.
CR1	Ausencia de un plan de	% requerimientos de materiales	requerimientos Nº total de requerimiento de materiales * 100%			90%	
0111	aprovisionamiento de materiales	Costo por falta de materiales	LC: Lucro cesante CM: Costo de mano de obra CEE: Costo de energía	S/ 8,347.50	S/	3,700.00	MRP
CD 2	No existe	% Pedidos no atendidos	$\frac{\text{Pedidos no atendidos}}{\text{Total de pedidos}} * 100\%$	5.49%		2%	
CR2	proyección de ventas	Costo de pedidos no atendidos	CT = CNO * COCNO: Costo de pedidos no atentidosCO: Costo de oportunidad	S/ 8,347.50	S/	3,500.00	
CR3	Ausencia de un plan de	% Capacidad de producción	$\frac{\text{Producción total}}{\text{Producción requerida}}*100\%$	75.11%		90%	Programación
CKJ	producción	Costo de baja producción	CT = PR * COPR: Producción requeridaCO: Costo de oportunidad	S/ 7,928.50	S/	3,528.00	lineal
	Ausencia de un correcto diseño de	% Tiempo Productos no elaborados	Tiempo improductivo Tiempo de producción * 100%	20%		10%	Distribución
CR4	distribución de planta	Costo de productos no elaborados	CT = CDI * LCLC: Lucro cesanteCDI: Costo de desplazamiento inncesaios	S/23,550.07	S/	12,000.00	de planta

2.5. Solución de la Propuesta

2.5.1. CR1 – CR2: Ausencia de un plan de aprovisionamiento de materiales – No existe proyección de ventas

Entre los principales problemas encontrados en la empresa es que constantemente se realizan compras urgentes debido a que no se tiene un plan de aprovisionamiento de materiales, por ende no se cuenta con los insumos necesarios para cada uno de los productos a fabricar, lo que conlleva a adquirir los insumos a un costo más elevado al habitual. Además, la empresa no cuenta con una proyección de ventas ocasionando que muchas veces no entregue los pedidos de sus clientes en el momento requerido; esto se genera debido a que no se tiene claro lo que se va a producir.

2.5.1.1. Diagnóstico de costos perdidos

Para estas causas raíz se pretende Implementar un MRP, para ello primero se realizará un pronóstico de demanda de la empresa, por lo que se solicitó la data histórica de los años 2018 y 2019, en donde se especificó los distintos tipos de grosor y kilogramo de cada producto. A continuación se realizó una monetización de compras urgentes, en donde, se evaluó la cantidad de producción requerida normalmente y el costo de materia prima normal.

Costos por compras urgentes por lámina

Mes	Producción	Producción requerida	Faltante	Escasez MP 80%	Costo M.P.	Costo M.P. urgente
Julio	5300	6000	700	560	1780.8	5194
Agosto	4500	4900	400	320	1017.6	2968
Setiembre	4800	5000	200	160	508.8	1484
Octubre	5400	5600	200	160	508.8	1484
Noviembre	6500	6580	150	120	381.6	1113
Diciembre	6800	7000	200	160	508.8	1484
Enero	5500	5900	400	320	1017.6	2968
Total	38800	40980	2250	1800	5724	16695

Fuente: Elaboración Propia

Asimismo, se determinó el costo de la demanda insatisfecha de láminas.

Tabla 18Productos falltantes

Datos	Productos faltantes
Julio	140
Agosto	80
Setiembre	40
Octubre	40
Noviembre	30
Diciembre	40
Enero	80
Total	450

Es así que se obtuvo el total de 450 láminas que no se producen. Para hallar el costo del lucro cesante se procedió a calcular la utilidad tal como se aprecia en la siguiente tabla:

Tabla 19Calculo de utildad

Descripción	Cantidad	Unidad
Precio de venta de lámina	4	Soles/Unidad
Costo de lámina	2	Soles/Unidad
Utilidad	2	Soles/Unidad

Fuente: Elaboración Propia

Luego, se procedió a realizar el cálculo del costo de lucro cesante, como se observa en la siguiente tabla:

Tabla 20

Calculo de lucro cesante

Descripción	Cantidad	Unidad
Productos faltantes	450	Laminas
Utilidad	2	Soles/Unidad
Lucro cesante	900	Soles

Fuente: Elaboración Propia

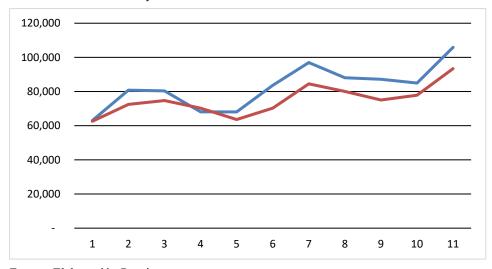
Se obtiene un lucro cesante mensual de S/ 900.00 por láminas no producidas a causa de la falta de un adecuado programa de producción.

Tabla 21Data histórica según el tipo de grosor de cada lámina de cartón

Año	Producto	Ene	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
	Cuero flex 1.5	1200	1480	1470	1240	1470	1820	2120	1920	1900	1850	2320
	Cuero flex 2.0	1400	1680	1670	1300	1520	1870	2170	1970	1950	1900	2370
	T flex 2.0	1,350	1630	1620	1,850	1,650	2000	2300	2100	2080	2030	2500
1 (2010)	T flex 2.5	1,480	1760	1750	1,470	1,480	1830	2130	1930	1910	1860	2330
1 (2018)	Ipex 1.5	1,850	2130	2120	1,680	1,350	1700	2000	1800	1780	1730	2200
	Ipex 1.0	1,850	2130	2120	1,970	1,840	2190	2490	2290	2270	2220	2690
	Caribiam 1.0	1,750	2030	2020	1,270	1,570	1920	2220	2020	2000	1950	2420
	Caribiam 0.8	1,650	1930	1920	1,540	1,350	1700	2000	1800	1780	1730	2200
	Cuero flex 1.5	1030	1320	1620	1520	1370	1520	1840	1740	1350	1690	2040
	Cuero flex 2.0	1230	1650	1670	1570	1420	1570	1890	1790	1550	1740	2090
	T flex 2.0	1180	1780	1800	1700	1550	1700	2020	1920	1500	1870	2220
2 (2010)	T flex 2.5	1310	1610	1630	1530	1380	1530	1850	1750	1630	1700	2050
2 (2019)	Ipex 1.5	1680	1480	1500	1400	1250	1400	1720	1620	2000	1570	1920
	Ipex 1.0	1680	1970	1990	1890	1740	1890	2210	2110	2000	2060	2410
	Caribiam 1.0	1580	1700	1720	1620	1470	1620	1940	1840	1900	1790	2140
	Caribiam 0.8	1480	1480	1500	1400	1250	1400	1720	1620	1800	1570	1920

Tabla 22Cantidad de presentación según el tipo de grosor de cada producto

Presentación	Envase	Unidad presentación	lámina por paquete	Kg por paquete
Cuero flex 1.5	Lámina	paquete	10	5
Cuero flex 2.0	Lámina	paquete	10	7
T flex 2.0	Lámina	paquete	10	7
T flex 2.5	Lámina	paquete	10	8
Ipex 1.5	Lámina	paquete	10	5.5
Ipex 1.0	Lámina	paquete	10	4
Caribiam 1.0	Lámina	paquete	10	5
Caribiam 0.8	Lámina	paquete	10	3


Fuente: Elaboración Propia

2.5.1.2. Solución de la propuesta

Luego de la recolección de datos históricos obtenidos por cada producto, se realizó el pronóstico estacional.

Figura 16

Ventas del año 2018 y 2019

Posteriormente, se realizó un pronóstico de demanda para los años 2020 y 2021, obtenidas con la desestacionalización de los datos históricos y el índice de estacionalidad.

Tabla 23Pronóstico de demanda por producto

Año	Producto	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
	Cueroflex	17814	17352	21211	21502	19215	18314	21445	25331	23507	22716	22837	22875
2020	T flex	20453	19923	24353	24688	22062	21028	24622	29084	26990	26082	26220	26264
2020	Ipex	15175	14782	18068	18317	16369	15601	18268	21578	20025	19351	19454	19486
	Caribiam	12536	12211	14926	15131	13522	12888	15091	17826	16542	15985	16070	16097
	Cueroflex	18176	17704	21640	21936	19603	18683	21876	25839	23978	23170	23293	23331
	T flex	20868	20327	24846	25186	22507	21451	25117	29667	27530	26603	26743	26787
2021	Ipex	15483	15081	18434	18687	16699	15915	18635	22011	20426	19738	19842	19874
	Caribiam	12790	12458	15228	15437	13795	13147	15394	18183	16873	16305	16391	16418

Previamente se realizó el Plan Maestro de Producción (PMP).

Tabla 24Pesos de cada producto según el tipo de grosor

SKU (Paquete)	Und	Pqt/Und	Peso (Kg)
Cueroflex 1.5	Paquete	10.00	5.00
Cueroflex 2	Paquete	10.00	7.00
T - Flex 2	Paquete	10.00	7.00
T - Flex 2.5	Paquete	10.00	8.00
Ipex 1	Paquete	10.00	5.50
Ipex 1.5	Paquete	10.00	4.00
Caribiam 0.8	Paquete	10.00	5.00
Caribiam 1	Paquete	10.00	3.00

Fuente: Elaboración Propia

Tabla 25Programa Maestro de Producción (PMP)

SKU	Dogovinoión	Semana						
SNU	Descripción	1	2	3	4	5	6	7
A011	Cueroflex 1.5	570	880	570	620	600	540	660
A012	Cueroflex 2	620	780	750	600	660	500	740
B021	T - Flex 2	680	830	650	580	710	650	710
B022	T - Flex 2.5	720	840	680	640	750	680	780
C031	Ipex 1	750	750	720	670	820	710	740
C032	Ipex 1.5	810	850	780	850	780	830	690
D041	Caribiam 0.8	840	900	800	500	790	670	760
D042	Caribiam 1	600	720	570	570	580	720	680
	Total (Kg)	5590	6550	5520	5030	5690	5300	5760

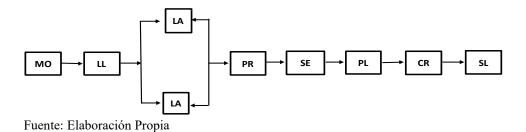


Tabla 26Puestos de Trabajo

Código	Descripción	N
MO	Molienda	3
LL	Llenado	3
LA	Laminado 1	3
LA	Laminado 2	2
PR	Prensado	2
SE	Secado 1	2
SE	Secado 2	3
PL	Planchado	4
CR	Cortado	4
SL	Sellado	2

Fuente: Elaboración Propia

Figura 17 *Puestos de Trabajo*

Figura 18 *Hoja de Ruta según las estaciones de trabajo*

E	Hoja De Ruta				Estación De Trabajo						
Código	Descripción	MO	LL	LA1	LA2	PR	SE	SE	PL	CR	SL
A011	Cueroflex 1.5										
A012	Cueroflex 2										
B021	T - Flex 2										
B022	T - Flex 2.5										
C031	Ipex 1										
C032	Ipex 1.5										
D041	Caribiam 0.8										
D042	Caribiam 1										

Luego, se diseñó el plan de requerimiento de materiales teniendo en cuenta los requerimientos semanales de producción extraídos del plan maestro de producción y relacionándolos con los requerimientos de materiales.

Tabla 27 *Orden de Aprovisionamiento*

Código de	Semana							
Material	1	2	3	4	5	6	7	
Cueroflex 1.5	423	880	570	620	600	540	660	
Cueroflex 2	480	780	750	600	660	500	740	
T – Flex 2	544	830	650	580	710	650	710	
T - Flex 2.5	581	840	680	640	750	680	780	
Ipex 1	597	750	720	670	820	710	740	
Ipex 1.5	632	850	780	850	780	830	690	
Caribiam 0.8	407	880	570	620	600	540	660	
Caribiam 1	478	780	750	600	660	500	740	
Papel	231864	366550	302700	284650	312000	276150	320400	
Agua	106158.325	189865.45	152313.3	141355.35	148134	124485.85	161467.6	
Ins. Químico	1642210	1358550	1295450	1441470	1306600	1443280	0	
Celulosa	200692.5	318914	262150	246110	270058	238800	277932	
Etiqueta de tipo A	4180	8800	5700	6200	6000	5400	6600	
Etiqueta de tipo B	4766	7800	7500	6000	6600	5000	7400	
Etiqueta de tipo C	326375	498000	390000	348000	426000	390000	426000	
Etiqueta de tipo D	504000	504000	408000	384000	450000	408000	468000	
Etiqueta de tipo E	450000	450000	432000	402000	492000	426000	444000	
Etiqueta de tipo F	510000	468000	510000	468000	498000	414000	0	
Etiqueta de tipo G	528000	342000	372000	360000	324000	396000	0	
Etiqueta de tipo H	468000	450000	360000	396000	300000	444000	0	
Sulfato de aluminio	950985	906815	1009029	914620	1010296	0	0	
Dióxido de titanio	271710	259090	288294	261320	288656	0	0	
Resina	6786	6525	5220	5742	4350	6438	0	
Colorante	255131.2	209720	196888	216046.4	191040	222345.6	0	

2.5.2. CR3: Ausencia de un plan de producción

En el proceso productivo se ocasionan múltiples paradas de máquinas, esto sucede debido a que, al no contar con un programa de producción no se conoce lo que se va a producir de acuerdo a los pedidos que se tienen; es decir, no existe un orden de prioridad.

2.5.2.1. Diagnóstico de costos perdidos

Para determinar la pérdida que genera a la empresa la ausencia de un plan de producción, nos enfocaremos en las pérdidas que se ocasionan por maquinaria. Para hallar el tiempo total de horas programadas se tomarán en cuenta las 8 maquinarias que intervienen en el proceso de producción; en el siguiente cuadro se registró el resumen de los tiempos que se observaron durante el periodo de julio 2019 – agosto 2020.

Porcentaje de paradas= 35,85/1803 = 2 %

Este factor nos indica que de toda la operatividad de la maquinaria solo estuvo detenida un 2% a causa de una falla imprevista.

Asimismo, se realizó un costeo de paradas de maquinaria.

Tabla 28

Costos de mano de obra

Maquinaria	Tiempo de reparación por paradas (h)	nro. paradas (7 meses)	Tiempo total de reparación	Costo de MO*h (S/.)	Costo Total de MO (S/.)
Hidropulper	4	4	16	150	2400
Poza de llenado	1	3	3	150	450
Laminadora	8	5	40	150	6000
Prensadora	5	3	15	150	2250
Calandria	8.4	4	33.6	150	5040
Cortadora	2	3	6	150	900
Selladora	3	3	9	150	1350
Total	31.4	25	122.6		18390

Fuente: Elaboración Propia

Tabla 29Costo de energía y de insumos

Maquinaria	Costo mensual de insumos en reparación(S/.)	Costo de energía eléctrica (S/.)
Hidropulper	160	30
Poza de llenado	100	20
Laminadora	230	15
Prensadora	53	28
Calandria	400	48
Cortadora	40	40
Selladora	90	20
Total	1073	201

Sueldo de la mano de obra externa por hora = 18390

Costo en insumos = 1073 soles/mes

Costo de energía eléctrica extra = 201 soles/mes

Costo total de paradas de máquinas= 19664 soles/mes en 25 paradas.

2.5.2.1. Solución de la propuesta

De igual manera, se realizó la monetización de reprocesos de producto, para poder determinar la pérdida, para ello, nos enfocaremos en el costo de oportunidad al no poder vender toda la producción, ya que reprocesa en un promedio de 2 % de láminas.

Para determinar el costo unitario de producción por cada lámina se calculó los siguientes datos:

% de producto reprocesados = 11/5500

% de producto reprocesados = 2%

Este porcentaje nos indica que el 2% de la producción total es reprocesada.

Tabla 30

Costo unitario

Componente	Costo (S/.)
Costo de mantenimiento correctivo	517.8
Costo de energía eléctrica	1,300
Costo de agua	300
Sueldo de operarios	10,320
Costo materia prima	1500
Costo total producción	13,937.8
Producción	5500
Costo unitario producción	2.53
Elaboración Propia	

Avila Eustaquio,M;De La Cruz Centeno,M

Luego, se determinó el costo de oportunidad, considerando el sueldo de los trabajadores.

Tabla 31Costo de oportunidad

Mes	P.V. (S/ lámina)	Prod. (láminas)	Prod. reprocesados (2%)	Costo Op. (S/)	C. Unit. prod. (S/)	C. prod. perdido (S/)	C. Op. total (S/)
Julio	4	5300	106	424	2.53	268.18	692.18
Agosto	4	4500	90	360	2.53	227.7	587.7
Setiembre	4	4800	96	384	2.53	242.88	626.88
Octubre	4	5400	108	432	2.53	273.24	705.24
Noviembre	4	6500	130	520	2.53	328.9	848.9
Diciembre	4	6800	136	544	2.53	344.08	888.08
Enero	4	5500	110	440	2.53	278.3	718.3
Total		38800	776	3104		1963.28	5067.28

Fuente: Elaboración Propia

Costo de oportunidad total = 5067.28 soles

Ante esta problemática, se va a aplicar la Programación lineal; por lo que, se tomaron diversos costos presentes en diversos escenarios.

Tabla 32

Costos por trabajador

Escenario	Costo (S/.)
Costo de contratación y capacitación	185.15 /lámina
Costo de despido	111.27 /operario
Costo de un trabajador normal en el mes	475.94 /operario
Costo de mantenimiento del inventario	1.88 /lámina
Costo marginal del inventario agotado	3.36 /lámian

Fuente: Elaboración Propia

Luego, se procedió a definir las variables:

Tabla 33Definición de variables

Variable	Definición
t =	Indica el número de periodos, t=1,2,,T
$C_t^W =$	Costo de un trabajador en el periodo t
$C_{t}^{C} =$	Costo de contratar un trabajador en el periodo t
$C_{\mathrm{t}}^{\mathrm{D}} =$	Costo de despedir a un trabajador en el periodo t
$C_{\mathrm{t}}^{\mathrm{I}} =$	Costo de mantener una unidad en inventario en el periodo t
$C_{t}^{F} = \\$	Costo del faltante de una unidad en el periodo t
$P_{t} =$	Número de unidades producidas en el periodo t
$W_{\rm t} =$	Número de trabajadores en el periodo t
$C_{\rm t} =$	Número de trabajadores contratados en el periodo t
$D_{t} =$	Pronóstico de la demanda en el periodo t
$I_t =$	Número de unidades en inventario en el periodo t
$F_t =$	Número de unidades faltantes en el periodo t
n _t =	Número de unidades que realiza un trabajador en el periodo t

Fuente: Elaboración Propia

Después, se definió el modelo la función objetivo y restricciones.

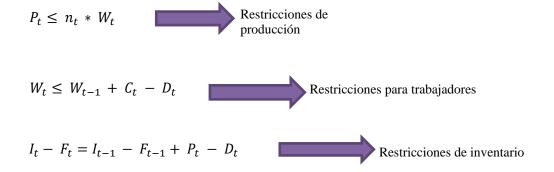
Figura 19

Modelo de función objetivo

$$\min = \sum_{t=1}^{T} (C_t^w * P_t + C_t^C * C_t + C_t^D * D_t + C_t^I * I_t + C_t^F * F_t)$$

Fuente: Elaboración Propia

Figura 20


Función Objetivo

$$\min = 475.94 * \left(\sum_{t=1}^{12} W_t\right) + 185.15 * \left(\sum_{t=1}^{12} C_t\right) + 111.27 + 1.88 * \left(\sum_{t=1}^{12} I_t\right) + 3.36 * \left(\sum_{t=1}^{12} F_t\right)$$

Fuente: Elaboración Propia

Figura 21

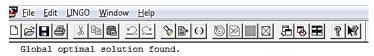
Restricciones

Fuente: Elaboración Propia

Posteriormente, se utilizó el programa lingo para ingresar los datos mencionados anteriormente.

Figura 22

Diseño en Lingo


```
File Edit Solver Window Help
                                                                                   model:
 sets:
 A/1..5/;!fila;
 D/1..12/:P,T;!Columna;
 F/1..12/:E;
 ADF(A,D):X,C;
 endsets
 Data:
 T= 300,255,270,285,300,255,300,285,270,300,270,285;!Valores de abastecimiento;
 P= 3821,5591,4577,4405,6080,8394,9194,8738,8741,7838,7325,4505; !Valores de demanda;
 C = 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 475.94, 
         185.15,185.15,185.15,185.15,185.15,185.15,185.15,185.15,185.15,185.15,185.15,185.15,
         111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.27, 111.
          1.88, 1.88, 1.88, 1.88, 1.88, 1.88, 1.88, 1.88, 1.88, 1.88, 1.88, 1.88,
         enddata
  \texttt{MIN} = \texttt{@SUM}(A(1): \texttt{@sum}(D(j): X(1,J) * C(1,j))); \; \texttt{!Function objetiva;} 
 @FOR (D(j):T(j)*X(1,j)>=E(j));!Restricciones de prododucción;
 19 + X(2,1)-X(3,1)=X(1,1); !Restricciones;
 X(1,1)+X(2,2)-X(3,2)=X(1,2);
 X(1,2)+X(2,3)-X(3,3)=X(1,3);
 X(1,3)+X(2,4)-X(3,4)=X(1,4);
 X(1,4)+X(2,5)-X(3,5)=X(1,5);
 X(1,5)+X(2,6)-X(3,6)=X(1,6);
 X(1,6)+X(2,7)-X(3,7)=X(1,7);
 X(1,7)+X(2,8)-X(3,8)=X(1,8);
 X(1,8)+X(2,9)-X(3,9)=X(1,9);
 X(1,9)+X(2,10)-X(3,10)=X(1,10);
 X(1,10)+X(2,11)-X(3,11)=X(1,11);
 X(1,11)+X(2,12)-X(3,12)=X(1,12);
 0+0+E(1)-P(1)=X(4,1)-X(5,1); !Restricciones;
 X(4,1)-X(5,1)+E(2)-P(2)=X(4,2)-X(5,2);
 X(4,2)-X(5,2)+E(3)-P(3)=X(4,3)-X(5,3);
 X(4,3)-X(5,3)+E(4)-P(4)=X(4,4)-X(5,4);
 X(4,4)-X(5,4)+E(5)-P(5)=X(4,5)-X(5,5);
 X(4,5)-X(5,5)+E(6)-P(6)=X(4,6)-X(5,6);
 X(4,6)-X(5,6)+E(7)-P(7)=X(4,7)-X(5,7);
 X(4,7)-X(5,7)+E(8)-P(8)=X(4,8)-X(5,8);
 X(4,8)-X(5,8)+E(9)-P(9)=X(4,9)-X(5,9);
 X(4,9)-X(5,9)+E(10)-P(10)=X(4,10)-X(5,10);
 X(4,10)-X(5,10)+E(11)-P(11)=X(4,11)-X(5,11);
 X(4,11)-X(5,11)+E(12)-P(12)=X(4,12)-X(5,12);
 @FOR(A(i):@for(D(j):@gin(X(i,j))));!Asignación;
 end
```


Luego de ingresar los datos, se obtuvieron los resultados:

Figura 23

Resultados

Objective value: 143609.6 Extended solver steps: 9 Total solver iterations: 455

Fuente: Elaboración Propia

Tabla 34Resultados por mes de acuerdo a las restricciones

Mes	Producción	Trabajadores	Contratación	Despido	Inventario	Faltantes
Enero	5.077	17	0	2	1.256	0
Febrero	4.335	17	0	0	0	0
Marzo	4.577	17	0	0	0	0
Abril	4.485	16	0	1	80	0
Mayo	6	20	4	0	0	0
Junio	8.394	33	13	0	0	0
Julio	9.194	31	0	2	0	0
Agosto	8.835	31	0	0	97	0
Septiembre	8.64	32	1	0	0	4
Octubre	7.877	27	0	5	35	0
Noviembre	7.29	27	0	0	0	0
Diciembre	4.517	16	0	11	0	0

Fuente: Elaboración Propia

Tabla 35 *Resumen de los costos de plan agregado*

Planes\Procesos		Costo total(S/.)
	Plan Agregado de Producción: Modelo 1	151.106,60
Planes Tradicionales	Plan Agregado de Producción: Modelo 2	141.341,07
	Plan Agregado de Producción: Modelo 3	144.116,24
Plan con Programación Lineal	Plan Agregado de Producción: Modelo 4	143.609,60

2.5.3. CR4: Ausencia de un correcto diseño de distribución de planta

Se evidenció que las maquinarias se encuentran ubicadas según el criterio del supervisor ocasionando muchas veces un aumento en el tiempo de desplazamiento, debido a que, no existe un diseño de distribución de planta.

2.5.3.1. Diagnóstico de costos perdidos

Se realizó una monetización de horas extras en la línea de producción, por lo que, se tomaron las horas extras de mano de obra y de energía eléctrica, asimismo para el cálculo se tomaron datos del tiempo de actividades improductivas, más el costo de mano de obra y energía eléctrica; los datos fueron desde julio del 2019 hasta enero del 2020.

Tabla 36Costo de mano de obra

Área	T. Act. Improd. (día)	T. Act. Improd. (Julio-Enero)	C. MO/ hora (S/.)	C. Total MO (S/.)
Molienda	1.50	273.00	3.72	1,015.56
Llenado	2.50	455.00	3.72	1,692.60
Laminado	3.80	691.60	3.72	2,572.75
Prensado	0.70	127.40	3.72	473.93
Secado	1.40	254.80	3.72	947.86
Cortado	1.20	218.40	3.72	812.45
Sellado	1.20	218.40	3.72	812.45
Total	12.30	2,238.60	26.04	8,327.59

Fuente: Elabortación Propia

Luego, se calcula el costo de energía teniendo en cuenta el tiempo improductivo en cada máquina.

Tabla 37Costo de energía eléctrica

Maquinaria	T. Act. Imp. (Julio - enero)	C. Energía eléctrica (S/./h)	C. Total Energía (S/.)
Hidropulper	273	6.8	1856.4
Poza de llenado	455	6.8	3094
Laminadora	691.6	6.8	4702.88
Prensadora	127.4	6.8	866.32
Calandria	254.8	6.8	1732.64
Cortadora	218.4	6.8	1485.12
Selladora	218.4	6.8	1485.12
Total	2,238.60	47.60	15222.48

2.5.3.2. Solución de la propuesta

Se realizó una distribución de planta, ya que la empresa cuenta máquinas con diferentes máquinas que se encuentran distribuidas incorrectamente. Para ello, se realizó la planeación sistemática de la distribución, en donde se utilizó el cuadro de relación entre las razones e importancia de cercanía entre las áreas haciendo uso del diagrama de interrelaciones de Muther.

Tabla 38Superficie de cada una de las áreas de la empresa

Área	m^2
Almacén de M.P.	45
Área de Proceso	285.34
Área de productos terminados	105
Área de recepción	20
Área de embarque y desembarque	50
Área de SS.HH.	17
Área de insumos	65
Total	587.34

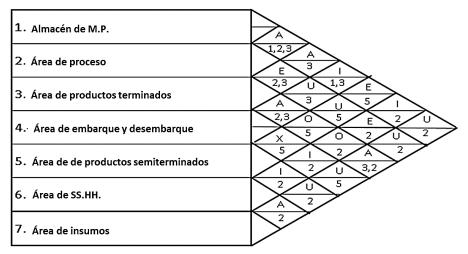

Fuente: Elabortación Propia

Tabla 39Razones de cercanía entre las áreas

Código	Razón
1	Abastecimiento de materiales
2	Agilidad de operaciones
3	Movilidad de materiales
4	Facilidad de supervisión
5	Gestión logística

Figura 24Diagrama de interrelaciones de Muther

Fuente: Elabortación Propia

Tabla 40Cuadro Relacional

Ámana	A					
Areas	2	3	4	5	6	7
1. Almacén de M.P.	A	A	I	Е	I	U
1. Amacen de M.F.	1,2,3	3	1,3	5	2	2
2. Área de proceso		E	U	U	E	U
2. Area de proceso		2,3	3	5	2	2
3. Almacén de producto			A	O	O	A
terminado			2,3	5	2	3,2
4. Área de embarque y				X	I	U
desembarque				5	2	5
5. Área de productos					I	U
semiterminados					2	2
6. Servicios Higiénicos						A
o. Servicios Higienicos						2
7. Área de insumos						

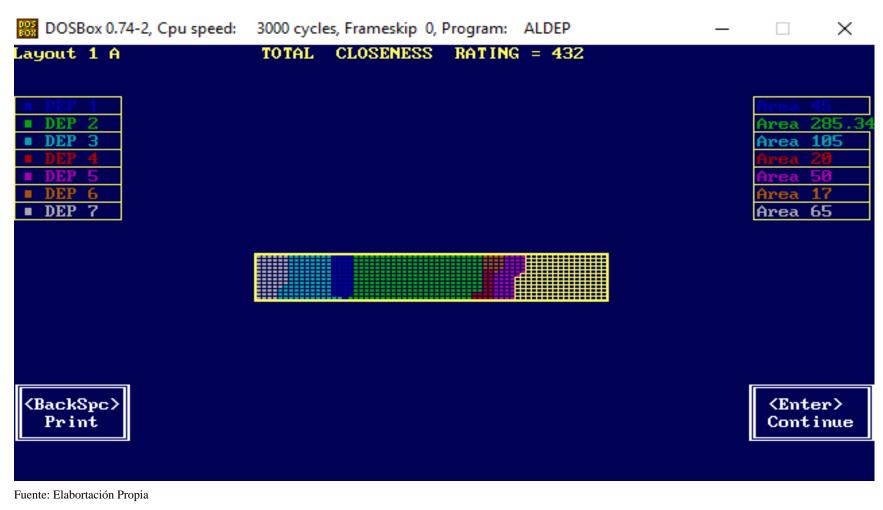
Fuente: Elabortación Propia

Luego, se procedió a calcular el área total de la superficie requerida para ingresar los datos al programa ALDEP, asimismo se tomó en

consideración que el terreno de la empresa es rectangular, como propone el programa.

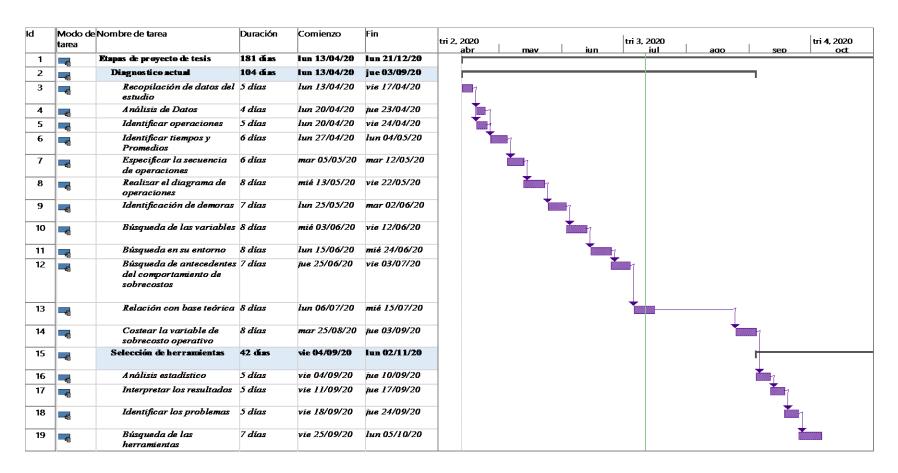
Tabla 41Número de área para el programa ALDEP

Área	m^2	N° de unidades superficie requerida
Almacén de M.P.	45	11.25
Área de Proceso	285.34	71.335
Área de productos terminados	105	26.25
Área de embarque y desembarque	20	5
Área de de productos semiterminados	50	12.5
Área de SS.HH.	17	4.25
Área de insumos	65	16.25
Total	587.34	


Fuente: Elabortación Propia

Finalmente, después de ingresar los datos de la tabla relacional se ingresaron los datos al programa ALDEP, el cual se encargará de brindar la distribución de áreas más adecuada.

Figura 25


Distribución de planta propuesta

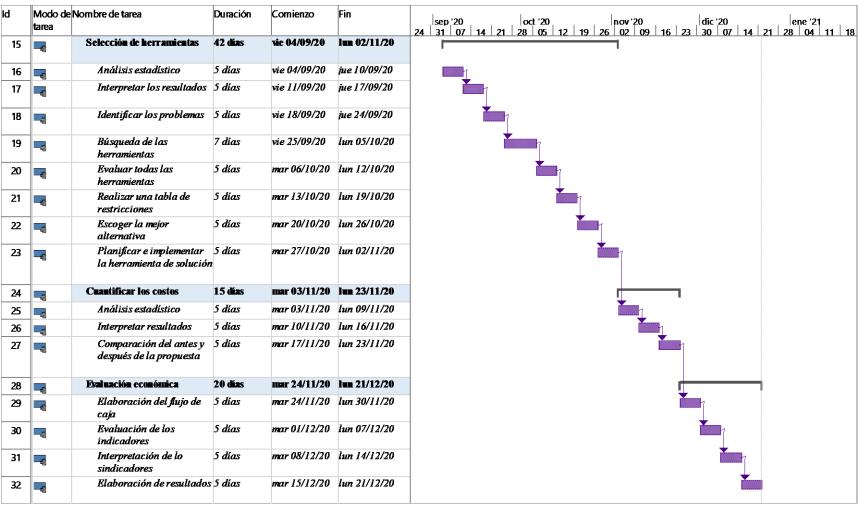
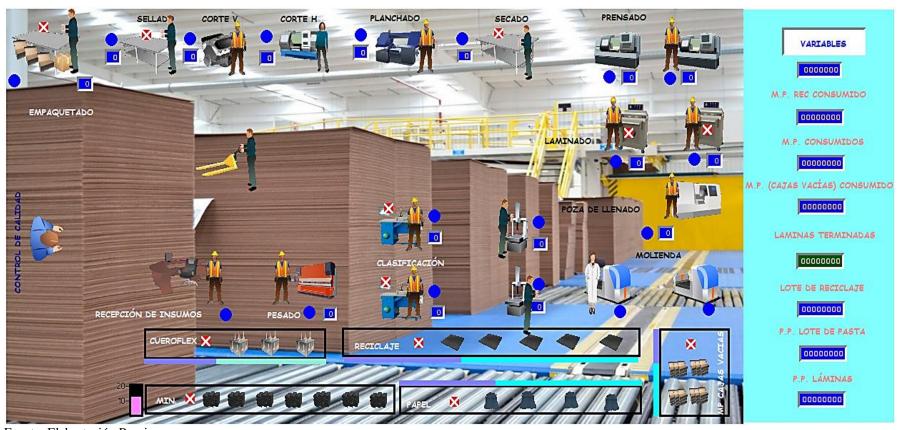


Figura 26

Diagrama de Gantt para la implementación de las herramientas


Fuente: Elabortación Propia

Se realizó una simulación del proceso productivo, en donde se calculó la desviación estándar por cada proceso.

Figura 27

Simulación del proceso en Promodel

2.6. Evaluación Económico Financiera

2.6.1. Inversión de la propuesta

Se presenta la inversión para la implementación de las herramientas de mejora en el área de producción.

Tabla 42Costos de implementación de MRP

Asesor de MRP	150	soles/hora
Tiempo de implementación	35	horas
Instalación de Red	2000	soles
Viáticos	250	soles
Otros	100	soles
Costo Total	7600	soles

Fuente: Elabortación Propia

Tabla 43

Costos de implementación de programación lineal

Asesor de programación	20	soles/hora
Tiempo de implementación	25	horas
Costo de software	350	soles
Instalación de Red	150	soles
Viáticos	20	soles
Otros	50	soles
Costo Total	1070	soles

Fuente: Elabortación Propia

Tabla 44

Costos de distribución de planta

Asesor de programación	100	soles/hora
Tiempo de implementación	35	horas
Costo de software	150	soles
Instalación de Red	150	soles
Viáticos	20	soles
Otros	50	soles
Costo Total	3870	soles

Tabla 45

Costo de recursos

Actividad	Cantidad	Unidad Medida	Costo Unit.	Costo Total
Materiales de consumo				
Papel Bond A4	semanal	5	S/25.00	S/125.00
Papel Bond A3	semanal	1	S/5.00	S/5.00
Cuaderno (100 hojas)	semanal	2	S/2.00	S/4.00
Lapiceros	semanal	3	S/2.00	S/6.00
Borrador	mensual	2	S/1.00	S/2.00
Engrapador	500 hrs	1	S/30.00	S/30.00
Perforador	semestral	1	S/15.00	S/15.00
Folder Manila A-4	bimensual	1	S/3.60	S/3.60
Fastener	trimestral	1	S/1.20	S/1.20
Clips	5000 hrs	1	S/2.00	S/2.00
Corrector	5000 hrs	1	S/3.00	S/3.00
Resaltador	5000 hrs	2	S/4.50	S/9.00
Grapas	5000 hrs	1	S/3.00	S/3.00
Subtotal				
Otros Servicios - Terceros				
Internet, Teléfono y Luz	8	mensual	S/200.00	S/1,600.00
Viáticos y asignaciones	96	días	S/24.00	S/2,304.00
Pasajes y gastos de transporte	96	días	S/16.00	S/1,536.00
Servicios de Consultoría		1	S/300.00	S/300.00
Total			_	S/5,948.80

Fuente: Elabortación Propia

Tabla 46Depreciación de maquinaria

Nombre	Función	Detalle	Cantidad	Precio soles (S/.)	Depreciación mensual (S/.)	Depreciación anual (S/.)
Hidropulper	Molienda	ML - 201	1	S/ 48,000	S/ 400.00	S/4,800
	Total			S/ 131,200	S/ 1,093.33	S/4,800
Laminadora	Formación	LM - 301	1	S/ 41,600	S/ 346.67	S/4,160
Laminadora	de lámina	LM - 302	1	S/ 41,600	S/ 346.67	S/ 4,160
	Total			S/ 131,200	S/ 1,093.33	S/ 8320

Nombre	Función	Detalle	Cantidad	Precio (S/.)	Costo total (S/.)	Depreciación mensual (S/.)	Depreciación anual (S/.)
Prensadora	Prensadora	PR - 401	1	S/ 4,299	S/ 4,299	S/ 35.83	S/ 429.90
		Total			S/ 4,299	S/ 35.83	S/ 429.90
Calandria	Máquina Selladora	CL - 501	1	S/ 450	S/ 450.00	S/ 3.75	S/ 45.00

Fuente: Elaboración Propia

Tabla 47

Costos de depreciación

Costo de depreciación de Máquinas de fábrica mensual	S/ 1,132.91
Costo de depreciación semanal	S/ 283.23

Fuente: Elaboración Propia

Tabla 48

Costo total de los servicios y otros

Descripción	Costo	Frecuencia
Secretaría	S/ 400	S/ Mensual
Útiles de oficina	S/ 200	S/ Mensual
Teléfono Fijo e Internet	S/ 155	S/ Mensual
Luz	S/3,500	S/ Mensual
Agua	S/ 655	S/ Mensual
Total	S/ 4,910	S/ Mensual

Fuente: Elaboración propia

Tabla 49

Financiamiento

Monto	S/65,288
Efectivo	12%
Nominal mensual	0.95%
Periodo	5.00

Fuente: Elaboración propia

Tabla 50

Cronograma de pagos de financiamiento

Periodo (mensual)	Cuota	Capital	Interés	Total
0	S/0.00	S/0.00	S/0.00	S/36,288.80
1	S/7,465.66	S/7,121.33	S/344.34	S/29,167.47
2	S/7,465.66	S/7,188.90	S/276.76	S/21,978.58
3	S/7,465.66	S/7,257.11	S/208.55	S/14,721.46
4	S/7,465.66	S/7,325.97	S/139.69	S/7,395.49
5	S/7,465.66	S/7,395.49	S/70.17	S/0.00

Fuente: Elaboración propia

Tabla 51

Tabla de resumen de inversiones

Descripción	Total
Activo fijo	21,068.80
Activo intangible	15,220.00
Total	36,288.80

Fuente: Elaboración propia

Tabla 52 *Estado de Resultados*

Año	2020	2021	2022	2023	2024	2025	2026
Ingresos		S/. 77,615.80	S/. 77,130.30	S/. 66,006.10	S/. 70,119.80	S/. 69,080.00	S/. 65,364.40
Costos Operativos		S/. 49,107.01	S/. 48,116.87	S/. 41,841.84	S/. 44,462.44	S/. 43,954.17	S/. 41,132.17
Depreciación activos		S/. 1,132.91					
GAV		S/. 4,910.70	S/. 4,811.69	S/. 4,184.18	S/. 4,446.24	S/. 4,395.42	S/. 4,113.22
Utilidad antes de IR		S/. 22,465.18	S/. 23,068.83	S/. 18,847.17	S/. 20,078.21	S/. 19,597.50	S/. 18,986.10
Impuestos a la renta		S/. 3,369.78	S/. 3,460.32	S/. 2,827.08	S/. 3,011.73	S/. 2,939.63	S/. 2,847.92
Utilidad Neta		S/. 19,095.40	S/. 19,608.51	S/. 16,020.09	S/. 17,066.48	S/. 16,657.88	S/. 16,138.19

Fuente: Elaboración propia

2.6.2. Flujo de Caja proyectado

Se elaboró un flujo de caja proyectadoen 7años detallando la inversión, depreciación, ingresos y egresos.

Tabla 53 *Flujo de caja proyectado*

Año	2020	2021	2022	2023	2024	2025	2026
Utilidad							_
después de		S/. 19,095.40	S/. 19,608.51	S/. 16,020.09	S/. 17,066.48	S/. 16,657.88	S/. 16,138.19
impuestos							
Depreciación		S/. 1,132.91					
Inversión	S/36,288.80						
Flujo neto efectivo	S/36,288.80	S/. 20,228.31	S/. 20,741.42	S/. 17,153.00	S/. 18,199.39	S/. 17,790.79	S/. 17,271.10

Año	2021	2022	2023	2024	2025	2026
Ingresos	S/. 77,615.80	S/. 77,130.30	S/. 66,006.10	S/. 70,119.80	S/. 69,080.00	S/. 65,364.40
Egresos	S/. 55,150.62	S/. 54,061.47	S/. 47,158.93	S/. 50,041.59	S/. 49,482.50	S/. 46,378.30

Fuente: Elaboración propia

Para determinar la rentabilidad de la propuesta, se cacularon los indicadores (VAN, TIR, B/C).

Tabla 54 *Indicadores de rentabilidad del proyecto*

VAN	S/. 38,054.92
TIR	48.14%
VAN Ingresos	S/. 283,662.94
VAN Egresos	S/. 201,468.98
B/C	1.41
PRI	1.5 años

Fuente: Elaboración propia

De acuerdo a los resultados obtenidos, se puede afirmar que:

- El proyecto es rentable, debido a que se obtuvo un VAN de S/. 38,054.92; por lo tanto, se recupera lo invertido.
- La propuesta es factible, ya que se obtuvo un TIR de 48.14%.
- La propuesta es viable, puesto que se obtuvo un B/C de 1.41 y es mayor a 1. Es decir, por cada sol invertido se gana 0.41 soles.
- El periodo de Recuperación de Inversión (PRI), es de 1.5 años.

CAPÍTULO III: RESULTADOS

En la propuesta de mejora al área de producción, se propuso reducir los costos operativos y, como resultado se identificaron los problemas como: La realización de compras urgentes, las constantes paradas de máquina, la demanda insatisfecha y las demoras en la línea de producción, luego, se determinaron las causas ríces de cada uno de ellos, siendo: Ausencia de un plan de aprovisionamiento de materiales, ausencia de un plan de producción, no existe proyección de ventas y ausencia de un correcto diseño de distribución de planta.

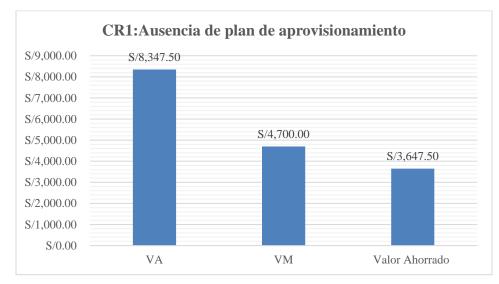
El identificar los porblemas y sus causas raíz, nos permitió determinar el costo actual de la empresa y, luego de desarrollar la propuesta se calculó el valor meta, determinando el valor ahorrado, el cual se define como el dinero que se está perdiendo al no solucionar los porblemas antes mencionados en el área de producción.

Tabla 55 *Resumen del antes, después y el beneficio*

CR	Descripción	Indicador	Fórmula	VA	VM	Herramienta de mejora
	Ausencia de un plan de	% requerimientos de materiales	$\% = \frac{N^{\circ} de \ requerimiento \ de \ materiales \ efectivos}{N^{\circ} total \ de \ requerimiento \ de \ materiales} * 100$	75.11%	98%	
CR1	aprovisionamiento de materiales	Costo por falta de materiales	 CT = LC + CMO + CEE LC: Lucro cesante CM: Costo de mano de obra CEE: Costo de energía 	S/ 8,347.50	S/ 4,700.00	MRP
CR2	No existe proyección de ventas	% de pedidos no atendidos	$\% = \frac{\text{pedidos no atendidos}}{\text{total de pedidos}} *100$ $CT = CNO * CO$	3.57%	2%	
		Costo de pedidos no atendidos	CNO: Costo de pedidos no atentidos CO: Costo de oportunidad	S/ 8,347.50	S/ 3,500.00	
	Ausencia de un plan de	% de capacidad de producción	$\% = \frac{Producción\ total}{Producción\ requerida}*100$	75.11%	90%	Programación
CR3	producción	Costo de baja producción	CT = PR * CO PR: Producción requerida CO: Costo de oportunidad	S/ 7,928.00	S/ 3,528.00	lineal
	Ausencia de un correcto	% Tiempo Productos no elaborados	$\% = \frac{Tiempo\ improductivo}{Tiempo\ de\ producción}*100$	20%	10%	
CR4	diseño de distribución de planta	Costo de productos no elaborados	CT = CDI * LCLC: Lucro cesanteCDI: Costo de desplazamiento inncesaios	S/ 23,550.07	S/ 12,000.00	Distribución de planta

Fuente: Elaboración Propia

Además se realizó un resumen del beneficio por cada causa raíz, en donde se visualiza que al implementar la propuesta se obtiene un ahorro de S/. 24,445.07

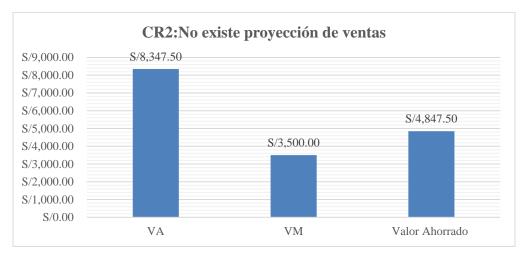

Tabla 56 *Resumen del Beneficio*

CR	Descripción	VA	VM	Valor Ahorrado
CR1	Ausencia de un plan de aprovisionamiento de materiales.	S/ 8,347.50	S/ 4,700.00	S/ 3,647.50
CR2	No existe proyección de ventas.	S/ 8,347.50	S/ 3,500.00	S/ 4,847.50
CR3	Ausencia de un plan de producción.	S/ 7,928.00	S/ 3,528.00	S/ 4,400.00
CR4	Ausencia de un correcto diseño de distribución de planta.	S/ 23,550.07	S/ 12,000.00	S/ 11,550.07
	Total	S/ 48,173.07	S/ 23,728.00	S/ 24,445.07

Fuente: Elaboración Propia

Se realizó una comparación del valor actual, valor meta y valor ahorrado de la **CR1**: **Ausencia de un plan de aprovisionamiento de materiales**, en donde se propuso implementar un MRP y se obtuvo un valor ahorrado de S/ 3,647.50.

Figura 28 *Comparación de pérdidas y beneficios de la CR1*



Fuente: Elaboración Propia

De la misma manera se realizó con la **CR2**: **No existe proyección de ventas**, en donde se visualiza que de implementar un MRP, se obtendría un valor ahorrado de S/ 3,500.00


Figura 29 *Comparación de pérdidas y beneficios de la CR2*

Fuente: Elaboración Propia

De igual forma se realizó con la **CR3:Asusencia de plan de producción** se utilizó una programación lineal para disminuir los costos por falta de materiales y se obtuvo un ahorro de S/3,528.00.

Figura 30 *Comparación de pérdidas y beneficios de la CR3*

Fuente: Elaboración Propia

Finalmente en la **CR4: Ausencia de un correcto diseño de distribución de planta**, se realizó una distribución de planta con el software ALDEP y se obtuvo un ahorro del S/ 11,550.07 en los costos de productos no elaborados.

Figura 31 *Comparación de pérdidas y beneficios de la CR4*

Fuente: Elaboración Propia

CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES

Discusión:

De acuerdo a los resultados obtenidos, se realizó el diagnóstico de la situación actual de la empresa, en donde se identificaron cuatro causas raíz, las cuales son: Ausencia de plan de aprovisionamiento de materiales, no existe proyección de ventas, ausencia de un plan de producción y ausencia de un correcto diseño de distribución de planta, mediante la aplicación de las técnicas de observación de campo y análisis de documentos, al igual que, Bazán y Carré (2019) quienes lograron identificar 9 causas raíz que ocasionan un aumento en los costos operativos en el área de producción, mediante la consulta de diversas fuentes de información y la aplicación de entrevistas no estructuradas a todo el personal y a clientes externos.

Además, de acuerdo al problema planteado se aplicó un sistema de requerimientos de materiales, programación lineal y distribución de planta, de la misma manera que, Coronado y Cueva (2019), quienes luego de realizar un análisis de la situación actual de la empresa, realizaron un plan agregado de la producción en base al plan maestro y requerimientos de materiales relacionado con la programación de operaciones, con ello lograron reducir los costos mensuales por demanda insatisfecha.

Asimismo, se cuantificaron los costos operativos generados por las seis causas raíz después de la propuesta, siendo estos de S/ 23,728.00, en donde inicialmente eran de S/ 48,173.00, logrando un ahorro de S/ 24,445.07; además, Garófalo (2014), con su propuesta de mejora en el área de producción en una empresa de cajas de cartón corrugado logró pasar del costo perdido de \$ 647,413.13 a reducir sus costos en \$ 345.12.

De la misma manera, se realizó una evaluación económica y financiera de la propuesta de mejora, en donde se obtuvo un VAN de S/ 38,054.92, una TIR al 48.14%, un B/C de 1.41 y una PRI de 1.5 años, de la misma manera que, Bazán y Carré (2019), quienes mediante la aplicación de su propuesta de mejora en las áreas de producción y logística para reducir los costos en una empresa de calzado, obtuvieron un VAN de S/ 17,044.30, una TIR al 79.44%, un B/C de 1.12 y PRI de 2.8 años.

Conclusiones:

Al realizar la propuesta de mejora en el área de producción de la empresa, se valida la hipótesis de la investigación, en donde se evidencia una reducción de costos de S/ 24,445.07.

Al realizar el diagnóstico de la situación actual del área de producción de la empresa, se identificaron 4 causas raíz priorizadas, las cuales son: Ausencia de plan de aprovisionamiento de materiales, no existe proyección de ventas, ausencia de un plan de producción y ausencia de un correcto diseño de distribución de planta.

Al diseñar la propuesta de mejora en el área de producción, considerando las causas raíz identificadas en el diagnóstico de la situación actual de la empresa, se determinaron como herramientas un sistema de requerimientos de materiales, programación lineal y distribución de planta.

Por otro lado, se determina que los costos operativos disminuyen en S/ 23,728.00, pasando de S/ 48,173.07 a S/ 23,728.00.

Finalmente, al evaluar la propuesta económica y financiera con los indicadores del VAN 38,054.92, una TIR de 48.14%, un B/C de 1.4 y un PRI 1.5 años, demuestra que el proyecto es viable y rentable financieramente.

Recomendaciones:

Se recomienda a la empresa realizar la inversión de las herramientas propuestas para reducir los costos operativos de la fábrica de cartón y de esta manera ser más competitivos en el mercado.

Asegurarse de mantener el área ordenada y distribuida de acuerdo a la propuesta planteada, de esta forma se asegurará evitar tiempos perdidos.

Se recomienda realizar mejora continua de las herramientas propuestas y realizar un seguimiento de los indicadores para verificar su comportamiento y evitar más pérdidas a la empresa.

REFERENCIAS

- Aguilar, R. A. M., & Zuluaga, S. R. (2016). Competitividad y cadenas de abastecimiento en el sector productivo del valle del cauca, Colombia/competitiveness and supply chain in the productive sector of valle del cauca, colombia. *Revista Global de Negocios*, 4(1), 77. http://www.theibfr2.com/RePEc/ibf/rgnego/rgn-v4n1-2016/RGN-V4N1-2016.pdf#page=79
- Alzate, C. A. S. (2015). Impacto de las averías e interrupciones en los procesos. Un análisis de la variabilidad en los procesos de producción. *Dyna*, 72(145), 67-75. https://www.redalyc.org/pdf/496/49614506.pdf
- Arango, M. J. W., Reyes, J. C. C., Lucuara, J., & Gonzalez, R. (2013). Aplicación de herramientas de manufactura esbelta para el mejoramiento de la cadena de valor de una línea de producción de sillas para oficina. Dimensión empresarial, 11(1), 126-136. https://dialnet.unirioja.es/servlet/articulo?codigo=4714884
- Bazán Dionicio, J. C., & Carré Montero, M. C. (2019). Propuesta de mejora en las áreas de producción y logística para reducir los costos en la empresa de calzado negocios e inversiones HGS E.I.R.L
 - https://repositorio.upn.edu.pe/bitstream/handle/11537/21993/Baz%E1n%20Dionicio%20
 Jean%20Carlos%20%20Carr%E9%20Montero%20Mary%20Carmen.pdf?sequence=6
- Boirivant, J. A. (2012). La programación lineal aplicación de la pequeñas y medianas empresas. Reflexiones, 88(1),

 4.
 - https://dialnet.unirioja.es/servlet/articulo?codigo=4796082

- Cabrera, E. P., & Puente, M. M. (2015). Mejoras en la programación de la producción de una empresa farmacéutica. *Industrial data*, 18(2), 27-35. https://www.redalyc.org/pdf/816/81643819005.pdf
- Campos Vásquez, M. Á., & Ricra Quispe, R. D. (2018). Impacto de la programación lineal con el uso de solver en la optimización de las operaciones de carguío-acarreo de mineral en la Mina Lagunas Norte, la Libertad, 2017.

 https://repositorio.upn.edu.pe/bitstream/handle/11537/12985/Campos%20V%c3%a1sque z%20Miguel%20%c3%81ngel%20%20Ricra%20Quispe%20Rolan%20Diesel.pdf?sequence=1&isAllowed=y
- Coronado Malpartida, M. R., & Cueva Criollo, R. A. (2019). Propuesta de implementación del planeamiento y control de la producción de la planta de conversión de Trupal-sede Evitamiento para la producción de resmas, cintas de cartón pardo, claro y test liner, tucos y esquineros de cartón pardo. http://repositorio.uarm.edu.pe/bitstream/UNIARM/2020/1/Coronado%20Malpartida%2c%20Mois%c3%a9s%20Ricardo_Cueva%20Criollo%2c%20Rodrigo%20Anthony_Trabajo%20de%20investigaci%c3%b3n_Bachillerato_2019.pdf
- Cossío, N. S., Crespo, E. O., Cariba, L. R., & Yakcleem, M. (2018). Plan maestro de producción de una empresa textil. Caso de estudio de Imbabura, Ecuador. *UNIANDES*EPISTEME, 5(4), 448-462.

http://45.238.216.13/ojs/index.php/EPISTEME/article/view/1075/461

- Fernández, I., & De la Fuente, D. (2015). *Distribución de planta*. Universidad de Oviedo. http://www.fernandezantonio.com.ar/Documentos/6-Distribucion%20en%20Planta%20final%20mayo%202017.pdf
- Garófalo Carreño, M. L. (2014). Evaluación de los ciclos de conversión de cajas de cartón corrugado y propuesta de mejora en la Empresa Procarsa (Doctoral dissertation, Universidad de Guayaquil. Facultad de Ingeniería Industrial. Carrera de Ingeniería Industrial.).

 http://repositorio.ug.edu.ec/bitstream/redug/4958/1/TESIS%20DE%20GRADO%20PRE

http://repositorio.ug.edu.ec/bitstream/redug/4958/1/TESIS%20DE%20GRADO%20PRE VIO%20A%20LA%20OBTENCION%20DEL%20TITULO%20DE%20INGENIERO.pd

- Gómez, R. C., & Negrin-Sosa, E. (2018). Evaluación de los costos logísticos de almacenamiento en entidades de servicios petroleros. Ciencias Holguín, 24(4), 40-55. http://www.ciencias.holguin.cu/index.php/cienciasholguin/article/view/1101/1196
- González, J. C., Myer, R. A., & Pachón-Muñoz, W. (2017). La evaluación de los riesgos antrópicos en la seguridad corporativa: del Análisis Modal de Fallos y Efectos (AMFE) a un modelo de evaluación integral del riesgo. Revista Científica General José María Córdova, 15(19), 269-289. Hoła, B., Nowobilski, T., Szer, I. y Szer, J. (2017). Identificación de los factores que afectan la tasa de accidentes en la industria de la construcción. Ingeniería de procedimientos, 208, 35-42.
- He, Z., Chowdhury, A., Tong, L., Reynolds, M., & Ni, Y. (2019). Cellulose paper-based strapping products for green/sustainable packaging needs. Paper and Biomaterials, 5(3), 54-68.

- http://pbm.cnjournals.com/ch/reader/create_pdf.aspx?file_no=201903007&flag=1&journal_id=zzyswzcl&year_id=2019
- Hernández, J. C., Pinto, Á. D., González, J. A., Pérez, N. A., Torres, J. M., & Rengel, J. E. (2017).

 Nuevas Estrategias para un plan de uso eficiente de la energía eléctrica. Ciencia, docencia y tecnología, 28(54), 75-99. https://www.redalyc.org/pdf/145/14551170003.pdf
- Joaquín Rodríguez, G. M., & Vargas Quispe, D. P. (2018). Diagnóstico de los costos operacionales en el proceso de producción de calzado para damas en la empresa de calzados

 Arisa.

 https://repositorio.upn.edu.pe/bitstream/handle/11537/14605/Joaquin%20Rodriguez%20

 Gerardo%20Moises.pdf?sequence=1&isAllowed=y
- Latino, I. Q. (2013). Las 25 fabricantes de papel más responsables del mundo. de https://iqlatino.org/2013/las-25-fabricantes-de-papel-mas-responsables-del-mundo/
- Lora-Freyre, R. J., & Pellicer-Durán, R. G. (2016). Maximización de la producción de café a través de la programación lineal. *Anuario Facultad de Ciencias Económicas y Empresariales*, 3, 61-70.
 - https://web.archive.org/web/20180414011848id_/https://revistas.uo.edu.cu/index.php/aeco/article/viewFile/643/616
- Mansilla, H. D., Lizama, C., Gutarra, A., & Rodríguez, J. (2001). *Tratamiento de residuos líquidos de la industria de celulosa y textil. CYTED VII-G*. Eliminación de contaminantes por fotocatálisis heterogénea. La Plata, Argentina: *CYTED VII-G*, 60-84. https://dlwqtxts1xzle7.cloudfront.net/31208975/20cap13.pdf?1367474605=&response-

content-

disposition=inline%3B+filename%3DTRATAMIENTO_DE_RESIDUOS_LIQUIDOS_DE_LA_I.pdf&Expires=1594244153&Signature=BjvwDDiGj4vu-i24Zm6aydcqbRre3SEhgwj5cHwDZnaoG0rPL8UfO36ko4eWGjgPyhKXZHnlLa4oClR~20YXWXOcVG6MFYkmKCC1lzqYnAfUkLhs4UXEhl7P8UKay3SFQeqVR0BmmvD0tG~qUxDywbm~AeK6Vw4mC8V6n6PPE0Jswwu1BAWSoTMVqGQqxTHnNNWg4MwqhQcjV~V28NnNxsQIYYkBjymGUXW6~pMVZVmCFTGIp2TqYjSp9JY45Emx-Oi1QNH0xZb18GCJwb-mMI2AeX-akPDwZh5S0fyOX-j2IVtSfEM8~IlLyO91Cx90EmCDOHVcFg0Y2OXouj-5gA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

- Martínez Medina, I., Val Arreola, D., Tzintzun Rascón, R., Conejo Nava, J. D. J., & Tena Martínez,
 M. J. (2015). Competitividad privada, costos de producción y análisis del punto de equilibrio de unidades representativas de producción porcina. *Revista mexicana de ciencias pecuarias*, 6(2), 193-205. http://www.scielo.org.mx/pdf/rmcp/v6n2/v6n2a5.pdf
- Miño-Cascante, G., Saumell-Fonseca, E., Toledo-Borrego, A., Roldan-Ruenes, A., & Moreno García, R. R. (2015). *Planeación de requerimientos de materiales por el sistema MRP. Caso Laboratorio Farmacéutico Oriente. Cuba.* Tecnología Química, 35(2), 208-219. http://scielo.sld.cu/scielo.php?pid=S222461852015000200007&script=sci_arttext&tlng=pt
- Papel y artes gráficas informe sectorial de la economía española (2019). Recuperado de https://issuu.com/cesce.es/docs/informe_sectorial_cesce_2019_papel_

Papelera Nacional S.A. - PANASA. (s. f.). http://www.panasa.com.pe/perfil.html

- Paredes Fernández, D. F., Llerena, V., & Alexsi, R. (2018). Propuesta de mejora del proceso de almacenamiento y distribución de producto terminado en una empresa cementera del sur del país.

 http://54.213.100.250/bitstream/UCSP/15643/1/PAREDES_FERN%C3%81NDEZ_DAN_PRO.pdf
- Reinoso, J., & Salazar, G. (2017). Sistema de Medición Inteligente de Energía Eléctrica en la Empresa The Tesalia Springs Company SA: Implementación y Análisis de Resultados.

 Revista Politécnica, 39(2), 33-40.

 http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S1390-01292017000200033
- Rivadeneira, M. T. M., & Polanco, N. C. (2016). El abastecimiento estratégico y su aplicación en las empresas. Saber, Ciencia y Libertad, 11(1), 129-140. https://dialnet.unirioja.es/servlet/articulo?codigo=5847017
- Rodríguez, C. R. C., & León, C. A. M. Sistema de planificación de los requerimientos materiales (MRP).
 - https://www.researchgate.net/profile/Alberto_Leon16/publication/328723322_Sistema_d e_Planificacion_de_los_Requerimientos_Materiales_MRP/links/5ce2dc7992851c4eabb1 5706/Sistema-de-Planificacion-de-los-Requerimientos-Materiales-MRP.pdf
- Romero, E. C., & Cañari, A. C. R. (2018). Balance de línea de producción en una empresa de calzado mediante la metaheurística búsqueda tabú. Revista peruana de computación y

sistemas, 1(1), 9-22.

https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/download/14853/129

- Rosero, J., Téllez, S. M., & Prias, O. F. (2013). *Gestión energética integral en procesos industriales*. Visión electrónica, 7(2), 175- 184. https://dialnet.unirioja.es/descarga/articulo/4886457.pdf
- Sortino, R. A. (2012). Radicación y distribución de planta (*layout*) como getión empresaria. *Invenio: Revista de investigación académica*, (6), 125-139. https://dialnet.unirioja.es/servlet/articulo?codigo=3330316
- Tabares Moreno, D., & Ramos Pacheco, L. (2010). Modelación y solución de problemas de PL mediante solver y lingo.

 https://repository.upb.edu.co/bitstream/handle/20.500.11912/2729/Articulo%2018.pdf?se quence=1&isAllowed=y
- Turrado, J., Saucedo, A. R., Ramos, J., & Reynoso, M. L. (2012). Comportamiento de la Fibra de Celulosa Reciclada en el Proceso de Hidratación. *Información tecnológica*, *19*(5), 129-136. https://scielo.conicyt.cl/scielo.php?pid=S0718-07642008000500014&script=sci_arttext&tlng=en
- Valderrama, Y. J., Colmenares, L., Colmenares, K. D., & Jaimes, R. (2016). Costo de la gestión laboral en el proceso productivo de una empresa manufacturera trujillana. Caso: Industrias
 Kel, CA. Actualidad Contable Faces, 19(33), 96-111.
 https://www.redalyc.org/pdf/257/25746579006.pdf

- Vázquez, P. M., & Ruíz, J. M. (2012). Elementos que Afectan el Nivel de Inventario en Proceso (WIP) y los Costos de una Línea de Producción. Conciencia tecnológica, (43), 36-41. https://www.redalyc.org/pdf/944/94424470006.pdf
- Vega, L. A. (2017). Estandarización del proceso de fabricación de papel kraft en la máquina papelera N° 2 de la empresa Trupal. http://repositorio.utp.edu.pe/bitstream/UTP/836/6/Luis%20Vega_Trabajo%20de%20Sufi ciencia%20Profesional_Titulo%20Profesional_2017.pdf
- Zotelo, Y. R., Mula, J., Díaz-Madroñero, M., & González, E. G. (2017). Plan maestro de producción basado en programación lineal entera para una empresa de productos químicos. *Revista de Métodos Cuantitativos para la Economía y la Empresa*, 24, 147-168. https://www.econstor.eu/bitstream/10419/195385/1/1022416308.pdf

ANEXOS

Anexo 1. Valores por criterios de la matriz AMFE

Detección	Criterio	Valor
Muy alta	El defecto es obvio. Resulta muy improbable que no sea detectado por los controles existentes.	1
Alta	El defecto, aunque es obvio y fácilmente detectable, podría en alguna ocasión escapar a un primer control, aunque sería detectado con toda seguridad.	2 - 3
Mediana	El defecto es detectable y posiblemente no llegue al cliente. Posiblemente se detecte en los últimos estados de producción.	4 - 6
Pequeña	El defecto es de tal naturaleza que resulta difícil detectarlo con los procedimientos establecidos hasta el momento.	7 - 8
Improbable	El defecto no puede detectarse. Casi seguro que lo percibirá el cliente final.	9 - 10

Anexo 2. índice estacional de los años 2018 – 2019

Año	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
2018	63,025	80,825	80,380	68,100	68,065	83,640	96,990	88,090	87,200	84,975	105,890
2019	62,580	72,450	74,740	70,290	63,615	70,290	84,530	80,080	75,040	77,855	93,430
Índice Estacional	0.81	0.99	1.00	0.89	0.85	0.99	1.17	1.08	1.05	1.05	1.29
Año	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1	77,827	81,789	80,372	76,325	80,173	84,278	82,875	81,246	83,364	80,943	82,400
2	77,277	73,314	74,732	78,779	74,931	70,826	72,229	73,858	71,739	74,161	72,704

Anexo 3. Pronóstico de demanda por tipo de medida de producto

Año	Producto	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
	Cuero flex 1.5	9896.6	9640.1	11783.7	11945.6	10675.2	10174.7	11913.8	14072.8	13059.6	12620.1	12687.1	12708.2
	Cuero flex 2.0	7917.3	7712.1	9426.9	9556.5	8540.2	8139.7	9531.1	11258.2	10447.7	10096.1	10149.7	10166.5
	T flex 2.0	11876.0	11568.2	14140.4	14334.7	12810.2	12209.6	14296.6	16887.3	15671.5	15144.1	15224.5	15249.8
2020	T flex 2.5	8577.1	8354.8	10212.5	10352.9	9251.8	8818.0	10325.3	12196.4	11318.3	10937.4	10995.5	11013.8
2020	Ipex 1.5	5938.0	5784.1	7070.2	7167.4	6405.1	6104.8	7148.3	8443.7	7835.7	7572.1	7612.2	7624.9
	Ipex 1.0	9236.9	8997.5	10998.1	11149.2	9963.5	9496.4	11119.6	13134.6	12188.9	11778.7	11841.3	11861.0
	Caribiam 1.0	7257.5	7069.4	8641.4	8760.1	7828.5	7461.4	8736.8	10320.0	9577.0	9254.7	9303.9	9319.3
	Caribiam 0.8	5278.2	5141.4	6284.6	6371.0	5693.4	5426.5	6354.0	7505.5	6965.1	6730.7	6766.4	6777.7
	Cuero flex 1.5	10097.5	9835.5	12022.1	12186.9	10890.4	10379.5	12153.2	14355.1	13321.1	12872.4	12940.3	12961.4
	Cuero flex 2.0	8078.0	7868.4	9617.6	9749.5	8712.3	8303.6	9722.6	11484.1	10656.9	10297.9	10352.3	10369.1
	T flex 2.0	12117.0	11802.6	14426.5	14624.2	13068.5	12455.4	14583.9	17226.1	15985.3	15446.9	15528.4	15553.7
2021	T flex 2.5	8751.2	8524.1	10419.1	10562.0	9438.4	8995.5	10532.8	12441.1	11545.0	11156.1	11214.9	11233.2
2021	Ipex 1.5	6058.5	5901.3	7213.2	7312.1	6534.3	6227.7	7291.9	8613.0	7992.7	7723.4	7764.2	7776.9
	Ipex 1.0	9424.3	9179.8	11220.6	11374.4	10164.4	9687.5	11343.0	13398.1	12433.0	12014.2	12077.6	12097.3
	Caribiam 1.0	7404.8	7212.7	8816.2	8937.0	7986.3	7611.6	8912.4	10527.0	9768.8	9439.8	9489.6	9505.0
	Caribiam 0.8	5385.3	5245.6	6411.8	6499.7	5808.2	5535.7	6481.7	7656.0	7104.6	6865.3	6901.5	6912.8

Anexo 4. Suma de los tipos de cartón por mes del año 2021

	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
CueroFlex	18176	17704	21640	21936	19603	18683	21876	25839	23978	23170	23293	23331
T flex	20868	20327	24846	25186	22507	21451	25117	29667	27530	26603	26743	26787
Ipex	15483	15081	18434	18687	16699	15915	18635	22011	20426	19738	19842	19874
Caribiam	12790	12458	15228	15437	13795	13147	15394	18183	16873	16305	16391	16418
Total	67316.78	65569.94	80147.03	81245.80	72602.86	69196.40	81021.53	95700.45	88807.41	85816	86268.84	86409.53

Anexo 5. Peso (kg) por producto

Producto (Presentación en cajas) - SKU	Peso(kg)
CueroFlex	17.5
T flex	22.5
Ipex	12.5
Caribiam	9

Anexo 6. Requerimientos para la producción

	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Inventario inicial	10,000	13,464	13,114	16,030	16,249	14,521	13,840	16,205	19,140	17,762	17,164	17,254
Pronóstico de la demanda (agregada)	67,317	65,570	80,147	81,246	72,603	69,196	81,022	95,700	88,807	85,816	86,269	86,410
Reserva de seguridad (20% pronóstico)	13,463	13,114	16,029	16,249	14,521	13,839	16,204	19,140	17,761	17,163	17,254	17,282
Requerimiento para la producción	70,781	65,220	83,063	81,465	70,874	68,516	83,386	98,636	87,429	85,218	86,359	86,438
Inventario Final	13,464	13,114	16,030	16,249	14,521	13,840	16,205	19,140	17,762	17,164	17,254	17,282

Anexo 7. Lista de materiales (BOM)

			Ctd Base:	1
	D 1	Cueroflex 1.5	TZ.	10
	Papel		Kg	10
0774	Celulosa		Kg	9.9
SK1	Agua		Lt	10
	Ins. Químico		Lt	3.5
	Etiqueta de tipo A		Unidad	1
	Plástico		Kg	0.9
		Cueroflex 2.0		
	Papel		Kg	10
	Celulosa		Kg	9.9
SK2	Agua		Lt	10
	Ins. Químico		Lt	3.5
	Etiqueta de tipo B		Unidad	1
	Plástico		Kg	0.9
		T-Flex 2.0	-	
	Papel		Kg	10
	Celulosa		Kg	10
SK3	Agua		Lť	1.190
	Ins. Químico		Lt	60
	Etiqueta de tipo C		Unidad	60
	Plástico		Kg	1
	Tastes	T-Flex 2.5		•
	Papel	1 1 ION 2.3	Kg	10
	Celulosa		Kg	8
SK4	Agua		Lt	1.190
SKT	Ins. Químico		Lt	60
	Etiqueta de tipo D		Unidad	60
	Plástico		Kg	1
	Flastico	Inav 1.0	ĸg	1
	Papel	Ipex 1.0	17 -	10
	Celulosa		Kg	8
SK5			Kg	1.190
SKS	Agua		Lt Lt	60
	Ins. Químico			
	Etiqueta de tipo E Plástico		Unidad	60
	Piastico	I 1 5	Kg	1
	Donal	Ipex 1.5	V.a	10
	Papel		Kg	
OTC C	Celulosa		Kg	8
SK6	Agua		Lt	1.190
	Ins. Químico		Lt	60
	Etiqueta de tipo F		Unidad	60
	Plástico		Kg	1
		Caribiam 1.0		
	Papel		Kg	10
	Celulosa		Kg	8
SK7	Agua		Lt	1.190
	Ins. Químico		Lt	60
	Etiqueta de tipo G		Unidad	60
	Plástico		Kg	1
		Caribiam		
	Papel		Kg	10
	Celulosa		Kg	6
SK8	Agua		Lt	1.190
	Ins. Químico		Lt	60
	Etiqueta de tipo H		Unidad	60
	Plástico		Kg	1
		Ins. Químico	0	-
			Litro	0.7
COMP1	Sulfato de aluminio			
COMP1	Sulfato de aluminio Dióxido de titanio			
COMP1	Sulfato de aluminio Dióxido de titanio	Celulosa	Litro	0.2
COMP1		Celulosa		

Anexo 8. Inventario

Código	Descripción	Unidad	Tipo	Stock disponible	Lead Time(sem)	Tamaño de lote	Stock Seguridad
SK1	Cueroflex 1.5	Paquete	SKU	147	0	LFL	0
SK2	Cueroflex 2	Paquete	SKU	140	0	LFL	0
SK3	T - Flex 2	Paquete	SKU	136	0	LFL	0
SK4	T - Flex 2.5	Paquete	SKU	139	0	LFL	0
SK5	Ipex 1	Paquete	SKU	153	0	LFL	0
SK6	Ipex 1.5	Paquete	SKU	178	0	LFL	0
SK7	Caribiam 0.8	Paquete	SKU	163	0	LFL	0
SK8	Caribiam 1	Paquete	SKU	142	0	LFL	0
C050	Papel	Kg	Comp.	251	0	LFL	0
C055	Agua	Lt	Comp.	260	0	LFL	0
M130	Ins. Químico	Lt	Mat.	190	1	LFL	0
M135	Celulosa	Kg	Mat.	150	0	LFL	0
M140	Etiqueta de tipo A	Unidad	Mat.	50	0	LFL	0
M180	Etiqueta de tipo B	Unidad	Mat.	34	0	LFL	0
M190	Etiqueta de tipo C	Unidad	Mat.	25	0	LFL	0
M230	Etiqueta de tipo D	Unidad	Mat.	25	1	LFL	0
M240	Etiqueta de tipo E	Unidad	Mat.	20	1	LFL	0
M250	Etiqueta de tipo F	Unidad	Mat.	250	1	LFL	0
M260	Etiqueta de tipo G	Unidad	Mat.	235	1	LFL	0
M270	Etiqueta de tipo H	Unidad	Mat.	150	1	LFL	0
M275	Sulfato de aluminio	Litro	Mat.	50	1	LFL	5
M276	Dióxido de titanio	Litro	Mat.	200	1	LFL	6
M277	Resina	Kg	Mat.	200	1	LFL	7
M278	Colorante	Litro	Mat.	200	1	LFL	8

Anexo 9. Tabla de lanzamientos: SK1 - Cueroflex 1.5

Stock	LT	Lote	Stock Seguridad
147	0	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas Entradas Previstas		570	880	570	620	600	540	660
Stock Final	147	-	-	-	-	-	-	-
Necesidades Netas		423	880	570	620	600	540	660
Pedidos Planeados		423	880	570	620	600	540	660
Lanzamiento de ordenes		423	880	570	620	600	540	660

Anexo 10. Tabla de lanzamientos: SK2 - Cueroflex 2

Stock	LT	Lote	Stock Seguridad
140	0	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		620	780	750	600	660	500	740
Entradas Previstas								
Stock Final	140	-	-	-	-	-	-	-
Necesidades Netas		480	780	750	600	660	500	740
Pedidos Planeados		480	780	750	600	660	500	740
Lanzamiento de ordenes		480	780	750	600	660	500	740

Anexo 11. Tabla de lanzamiento: SK3 - T - Flex 2

Stock	LT	Lote	Stock Seguridad
136	0	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		680	830	650	580	710	650	710
Entradas Previstas								
Stock Final	136	-	-	-	-	-	-	-
Necesidades Netas		544	830	650	580	710	650	710
Pedidos Planeados		544	830	650	580	710	650	710
Lanzamiento de ordenes		544	830	650	580	710	650	710

Anexo 12. Tabla de lanzamiento: SK4 - T - Flex 2.5

Stock	LT	Lote	Stock Seguridad
139	0	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		720	840	680	640	750	680	780
Entradas Previstas								
Stock Final	139	-	-	-	-	-	-	-
Necesidades Netas		581	840	680	640	750	680	780
Pedidos Planeados		581	840	680	640	750	680	780
Lanzamiento de ordenes		581	840	680	640	750	680	780

Anexo 13. Tabla de lanzamiento: SK5 - Ipex 1

Stock	LT	Lote	Stock Seguridad
153	0	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		750	750	720	670	820	710	740
Entradas Previstas								
Stock Final	153	-	-	-	-	-	-	-
Necesidades Netas		597	750	720	670	820	710	740
Pedidos Planeados		597	750	720	670	820	710	740
Lanzamiento de ordenes		597	750	720	670	820	710	740

Anexo 14. Tabla de lanzamiento: SK6 - Ipex 1.5

Stock	LT	Lote	Stock Seguridad
178	0	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		810	850	780	850	780	830	690
Entradas Previstas								
Stock Final	178	-	-	-	-	-	-	-
Necesidades Netas		632	850	780	850	780	830	690
Pedidos Planeados		632	850	780	850	780	830	690
Lanzamiento de ordenes		632	850	780	850	780	830	690

Anexo 15. Tabla de lanzamiento: SK7 - Caribiam 0.8

Stock	LT	Lote	Stock Seguridad
163	0	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		570	880	570	620	600	540	660
Entradas Previstas								
Stock Final	163	-	-	-	-	-	-	-
Necesidades Netas		407	880	570	620	600	540	660
Pedidos Planeados		407	880	570	620	600	540	660
Lanzamiento de ordenes		407	880	570	620	600	540	660

Anexo 16. Tabla de lanzamiento: SK8 - Caribiam 1

Stock	LT	Lote	Stock Seguridad
142	0	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		620	780	750	600	660	500	740
Entradas Previstas								
Stock Final	142	-	-	-	-	-	-	-
Necesidades Netas		478	780	750	600	660	500	740
Pedidos Planeados		478	780	750	600	660	500	740
Lanzamiento de ordenes		478	780	750	600	660	500	740

Anexo 17. F050: Papel

	kg/paq	1	2	3	4	5	6	7
Cueroflex 1.5	10.00	21,150.00	44,000.00	28,500.00	31,000.00	30,000.00	27,000.00	33,000.00
Cueroflex 2.0	10.00	33,600.00	54,600.00	52,500.00	42,000.00	46,200.00	35,000.00	51,800.00
T-Flex 2.0	10.00	38,080.00	58,100.00	45,500.00	40,600.00	49,700.00	45,500.00	49,700.00
T-Flex 2.5	10.00	46,480.00	67,200.00	54,400.00	51,200.00	60,000.00	54,400.00	62,400.00
Ipex 1.0	10.00	32,835.00	41,250.00	39,600.00	36,850.00	45,100.00	39,050.00	40,700.00
Ipex 1.5	10.00	25,280.00	34,000.00	31,200.00	34,000.00	31,200.00	33,200.00	27,600.00
Caribiam 1.0	10.00	20,350.00	44,000.00	28,500.00	31,000.00	30,000.00	27,000.00	33,000.00
Caribiam	10.00	14,340.00	23,400.00	22,500.00	18,000.00	19,800.00	15,000.00	22,200.00
Total (Bat)		232,115.00	366,550.00	302,700.00	284,650.00	312,000.00	276,150.00	320,400.00

	Stock	LT	Lote	Stock Seguridad	1			
	251	0	LFL	0				
Período	Inicial	1	2		4	5	6	7
Necesidades Brutas		232,115	366,550	302,700	284,650	312,000	276,150	320,400
Entradas Previstas								
Stock Final	251	-	-	-	-	-	-	-
Necesidades Netas		231,864	366,550	302,700	284,650	312,000	276,150	320,400
Pedidos Planeados		231,864	366,550	302,700	284,650	312,000	276,150	320,400
Lanzamiento de ordenes		231,864	366,550	302,700	284,650	312,000	276,150	320,400

Anexo 18. F055: Agua

	kg/paq	1	2	3	4	5	6	7
Cueroflex 1.5	10.00	21,150.00	44,000.00	28,500.00	31,000.00	30,000.00	27,000.00	33,000.00
Cueroflex 2.0	10.00	33,600.00	54,600.00	52,500.00	42,000.00	46,200.00	35,000.00	51,800.00
T-Flex 2.0	1.19	4,531.52	6,913.90	5,414.50	4,831.40	5,914.30	5,414.50	5,914.30
T-Flex 2.5	1.19	5,531.12	7,996.80	6,473.60	6,092.80	7,140.00	6,473.60	7,425.60
Ipex 1.0	1.19	3,907.37	4,908.75	4,712.40	4,385.15	5,366.90	4,646.95	4,843.30
Ipex 1.5	1.19	3,008.32	4,046.00	3,712.80	4,046.00	3,712.80	3,950.80	3,284.40
Caribiam 1.0	1.19	20,350.00	44,000.00	28,500.00	31,000.00	30,000.00	27,000.00	33,000.00
Caribiam	1.19	14,340.00	23,400.00	22,500.00	18,000.00	19,800.00	15,000.00	22,200.00
Total (Bat)		106,418.33	189,865.45	152,313.30	141,355.35	148,134.00	124,485.85	161,467.60

	Stock	LT	Lote	Stock Seguridad				
	260	0	LFL	0				
Período	Inicial	1	2		4	5	6	7
Necesidades Brutas		106,418	189,865	152,313	141,355	148,134	124,486	161,468
Entradas Previstas								
Stock Final	260	-	-	-	-	-	-	-
Necesidades Netas		106,158	189,865	152,313	141,355	148,134	124,486	161,468
Pedidos Planeados		106,158	189,865	152,313	141,355	148,134	124,486	161,468
Lanzamiento de ordenes		106,158	189,865	152,313	141,355	148,134	124,486	161,468

Anexo 19. M130: Las. Químico

	kg/paq	1	2	3	4	5	6	7
Cueroflex 1.5	3.50	7,402.50	15,400.00	9,975.00	10,850.00	10,500.00	9,450.00	11,550.00
Cueroflex 2.0	3.50	11,760.00	19,110.00	18,375.00	14,700.00	16,170.00	12,250.00	18,130.00
T-Flex 2.0	60	228,480.00	348,600.00	273,000.00	243,600.00	298,200.00	273,000.00	298,200.00
T-Flex 2.5	60.00	278,880.00	403,200.00	326,400.00	307,200.00	360,000.00	326,400.00	374,400.00
Ipex 1.0	60.00	197,010.00	247,500.00	237,600.00	221,100.00	270,600.00	234,300.00	244,200.00
Ipex 1.5	60.00	151,680.00	204,000.00	187,200.00	204,000.00	187,200.00	199,200.00	165,600.00
Caribiam 1.0	60.00	122,100.00	264,000.00	171,000.00	186,000.00	180,000.00	162,000.00	198,000.00
Caribiam	60.00	86,040.00	140,400.00	135,000.00	108,000.00	118,800.00	90,000.00	133,200.00
Total (Bat)		1,083,352.50	1,642,210.00	1,358,550.00	1,295,450.00	1,441,470.00	1,306,600.00	1,443,280.00
	Stock	LT	Lote	Stock Segurid	lad			
	190	1	LFL	0				
Período	Inicial	1	2		4	5	6	7
Necesidades Brutas		1,083,353	1,642,210	1,358,550	1,295,450	1,441,470	1,306,600	1,443,280
Entradas Previstas								
Stock Final	190	-	-	-	-	-	-	-
Necesidades Netas		1,083,163	1,642,210	1,358,550	1,295,450	1,441,470	1,306,600	1,443,280
Pedidos Planeados		1,083,163	1,642,210	1,358,550	1,295,450	1,441,470	1,306,600	1,443,280
Lanzamiento de ordenes		1,642,210	1,358,550	1,295,450	1,441,470	1,306,600	1,443,280	0

Anexo 20. M135: Celulosa

	kg/paq	1	2	3	4	5	6	7
Cueroflex 1.5	9.90	20,938.50	43,560.00	28,215.00	30,690.00	29,700.00	26,730.00	32,670.00
Cueroflex 2.0	9.90	33,264.00	54,054.00	51,975.00	41,580.00	45,738.00	34,650.00	51,282.00
T-Flex 2.0	10	38,080.00	58,100.00	45,500.00	40,600.00	49,700.00	45,500.00	49,700.00
T-Flex 2.5	8.00	37,184.00	53,760.00	43,520.00	40,960.00	48,000.00	43,520.00	49,920.00
Ipex 1.0	8.00	26,268.00	33,000.00	31,680.00	29,480.00	36,080.00	31,240.00	32,560.00
Ipex 1.5	8.00	20,224.00	27,200.00	24,960.00	27,200.00	24,960.00	26,560.00	22,080.00
Caribiam 1.0	8.00	16,280.00	35,200.00	22,800.00	24,800.00	24,000.00	21,600.00	26,400.00
Caribiam	6.00	8,604.00	14,040.00	13,500.00	10,800.00	11,880.00	9,000.00	13,320.00
Total (Bat)		200,842.50	318,914.00	262,150.00	246,110.00	270,058.00	238,800.00	277,932.00
	Stock	LT	Lote	Stock Seguridad	_			
	150	0	LFL	0	- -			
Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas	Iniciai	200,843	318,914	262,150	246,110	270,058	238,800	277,932
Entradas Previstas		200,043	310,914	202,130	240,110	270,038	230,000	211,932
Stock Final	150							
	130	-	-	-	-	-	-	-
Necesidades Netas		200,693	318,914	262,150	246,110	270,058	238,800	277,932
Pedidos Planeados		200,693	318,914	262,150	246,110	270,058	238,800	277,932
Lanzamiento de ordenes		200,693	318,914	262,150	246,110	270,058	238,800	277,932

Anexo 21. M140: Etiqueta de tipo A

	kg/paq	1	2	3	4	5	6	7
Cueroflex 1.5	1.00	4,230.00	8,800.00	5,700.00	6,200.00	6,000.00	5,400.00	6,600.00
Total (Bat)		4,230.00	8,800.00	5,700.00	6,200.00	6,000.00	5,400.00	6,600.00

Stock	LT	Lote	Stock Seguridad
50	0	LFL	0

Período	Inicial	1	2		4	5	6	7
Necesidades Brutas		4,230	8,800	5,700	6,200	6,000	5,400	6,600
Entradas Previstas								
Stock Final	50	-	-	-	-	-	-	-
Necesidades Netas		4,180	8,800	5,700	6,200	6,000	5,400	6,600
Pedidos Planeados		4,180	8,800	5,700	6,200	6,000	5,400	6,600
Lanzamiento de ordenes		4,180	8,800	5,700	6,200	6,000	5,400	6,600

Anexo 22. M138: Etiqueta de tipo B

	kg/paq	1	2	3	4	5	6	7
Cueroflex 2.0	1.00	4,800.00	7,800.00	7,500.00	6,000.00	6,600.00	5,000.00	7,400.00
Total (Bat)		4,800.00	7,800.00	7,500.00	6,000.00	6,600.00	5,000.00	7,400.00

Stock	LT	Lote	Stock Seguridad
34	0	LFL	0

Período	Inicial	1	2		4	5	6	7
Necesidades Brutas		4,800	7,800	7,500	6,000	6,600	5,000	7,400
Entradas Previstas								
Stock Final	34	-	-	-	-	-	-	-
Necesidades Netas		4,766	7,800	7,500	6,000	6,600	5,000	7,400
Pedidos Planeados		4,766	7,800	7,500	6,000	6,600	5,000	7,400
Lanzamiento de ordenes		4,766	7,800	7,500	6,000	6,600	5,000	7,400

Anexo 23. M190: Etiqueta de tipo C

-	kg/paq	1	2	3	4	5	6	7
T-Flex 2.0	60.00	326,400.00	498,000.00	390,000.00	348,000.00	426,000.00	390,000.00	426,000.00
Total (Bat)		326,400.00	498,000.00	390,000.00	348,000.00	426,000.00	390,000.00	426,000.00

Stock	LT	Lote	Stock Seguridad
25	0	LFL	0

Período	Inicial	1	2		4	5	6	7
Necesidades Brutas		326,400	498,000	390,000	348,000	426,000	390,000	426,000
Entradas Previstas								
Stock Final	25	-	-	-	-	-	-	-
Necesidades Netas		326,375	498,000	390,000	348,000	426,000	390,000	426,000
Pedidos Planeados		326,375	498,000	390,000	348,000	426,000	390,000	426,000
Lanzamiento de ordenes		326,375	498,000	390,000	348,000	426,000	390,000	426,000

Anexo 24. M230: Etiqueta de tipo D

	kg/paq	1	2	3	4	5	6	7
T-Flex 2.5	60.00	348,600.00	504,000.00	408,000.00	384,000.00	450,000.00	408,000.00	468,000.00
Total (Bat)		348,600.00	504,000.00	408,000.00	384,000.00	450,000.00	408,000.00	468,000.00

Stock	LT	Lote	Stock Seguridad
25	1	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		348,600	504,000	408,000	384,000	450,000	408,000	468,000
Entradas Previstas								
Stock Final	25	-	-	-	-	-	-	-
Necesidades Netas		348,575	504,000	408,000	384,000	450,000	408,000	468,000
Pedidos Planeados		348,575	504,000	408,000	384,000	450,000	408,000	468,000
Lanzamiento de ordenes		504,000	504,000	408,000	384,000	450,000	408,000	468,000

Anexo 25. M240: Etiqueta de tipo E

	kg/paq	1	2	3	4	5	6	7
Ipex 1.0	60.00	358,200.00	450,000.00	432,000.00	402,000.00	492,000.00	426,000.00	444,000.00
Total (Bat)		358,200.00	450,000.00	432,000.00	402,000.00	492,000.00	426,000.00	444,000.00

Stock	LT	Lote	Stock Seguridad
20	1	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		358,200	450,000	432,000	402,000	492,000	426,000	444,000
Entradas Previstas								
Stock Final	20	-	-	=	-	-	-	-
Necesidades Netas		358,180	450,000	432,000	402,000	492,000	426,000	444,000
Pedidos Planeados		358,180	450,000	432,000	402,000	492,000	426,000	444,000
Lanzamiento de ordenes		450,000	450,000	432,000	402,000	492,000	426,000	444,000

Anexo 26. M250: Etiqueta de tipo F

	kg/paq	1	2	3	4	5	6	7
Ipex 1.5	60.00	379,200.00	510,000.00	468,000.00	510,000.00	468,000.00	498,000.00	414,000.00
Total (Bat)		379,200.00	510,000.00	468,000.00	510,000.00	468,000.00	498,000.00	414,000.00

Stock	LT	Lote	Stock Seguridad
250	1	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		379,200	510,000	468,000	510,000	468,000	498,000	414,000
Entradas Previstas								
Stock Final	250	-	-	-	-	-	-	-
Necesidades Netas		378,950	510,000	468,000	510,000	468,000	498,000	414,000
Pedidos Planeados		378,950	510,000	468,000	510,000	468,000	498,000	414,000
Lanzamiento de ordenes		510,000	468,000	510,000	468,000	498,000	414,000	0

Anexo 27. M260: Etiqueta de tipo G

	kg/paq	1	2	3	4	5	6	7
Caribiam 1.0	60.00	244,200.00	528,000.00	342,000.00	372,000.00	360,000.00	324,000.00	396,000.00
Total (Bat)		244,200.00	528,000.00	342,000.00	372,000.00	360,000.00	324,000.00	396,000.00

Stock	LT	Lote	Stock Seguridad
235	1	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		244,200	528,000	342,000	372,000	360,000	324,000	396,000
Entradas Previstas								
Stock Final	235	-	-	-	-	-	-	-
Necesidades Netas		243,965	528,000	342,000	372,000	360,000	324,000	396,000
Pedidos Planeados		243,965	528,000	342,000	372,000	360,000	324,000	396,000
Lanzamiento de ordenes		528,000	342,000	372,000	360,000	324,000	396,000	0

Anexo 28. M270: Etiqueta de tipo H

	kg/paq	1	2	3	4	5	6	7
Caribiam	60.00	286,800.00	468,000.00	450,000.00	360,000.00	396,000.00	300,000.00	444,000.00
Total (Bat)		286,800.00	468,000.00	450,000.00	360,000.00	396,000.00	300,000.00	444,000.00

Stock	LT	Lote	Stock Seguridad
150	1	LFL	0

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		286,800	468,000	450,000	360,000	396,000	300,000	444,000
Entradas Previstas								
Stock Final	150	-	-	-	-	-	-	-
Necesidades Netas		286,650	468,000	450,000	360,000	396,000	300,000	444,000
Pedidos Planeados		286,650	468,000	450,000	360,000	396,000	300,000	444,000
Lanzamiento de ordenes		468,000	450,000	360,000	396,000	300,000	444,000	0

Anexo 29. M275: Sulfato de aluminio

	Lt/paq	1	2	3	4	5	6	7
Ins. Químico	0.70	1,149,547.00	950,985.00	906,815.00	1,009,029.00	914,620.00	1,010,296.00	-
Total (Bat)		1,149,547.00	950,985.00	906,815.00	1,009,029.00	914,620.00	1,010,296.00	-

Stock	LT	Lote	Stock Seguridad
50	1	LFL	5

Período	Inicial	1	2		4	5	6	7
Necesidades Brutas		1,149,547	950,985	906,815	1,009,029	914,620	1,010,296	-
Entradas Previstas								
Stock Final	50	5	5	5	5	5	5	5
Necesidades Netas		1,149,502	950,985	906,815	1,009,029	914,620	1,010,296	-
Pedidos Planeados		1,149,502	950,985	906,815	1,009,029	914,620	1,010,296	-
Lanzamiento de ordenes		950,985	906,815	1,009,029	914,620	1,010,296	0	0

Anexo 30. M276: Dióxido de titanio

	Lt/paq	1	2	3	4	5	6	7
Ins. Químico	0.20	328,442.00	271,710.00	259,090.00	288,294.00	261,320.00	288,656.00	-
Total (Bat)		328,442.00	271,710.00	259,090.00	288,294.00	261,320.00	288,656.00	-

Stock	LT	Lote	Stock Seguridad
200	1	LFL	6

Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		328,442	271,710	259,090	288,294	261,320	288,656	-
Entradas Previstas								
Stock Final	200	6	6	6	6	6	6	6
Necesidades Netas		328,248	271,710	259,090	288,294	261,320	288,656	-
Pedidos Planeados		328,248	271,710	259,090	288,294	261,320	288,656	-
Lanzamiento de ordenes		271,710	259,090	288,294	261,320	288,656	0	0

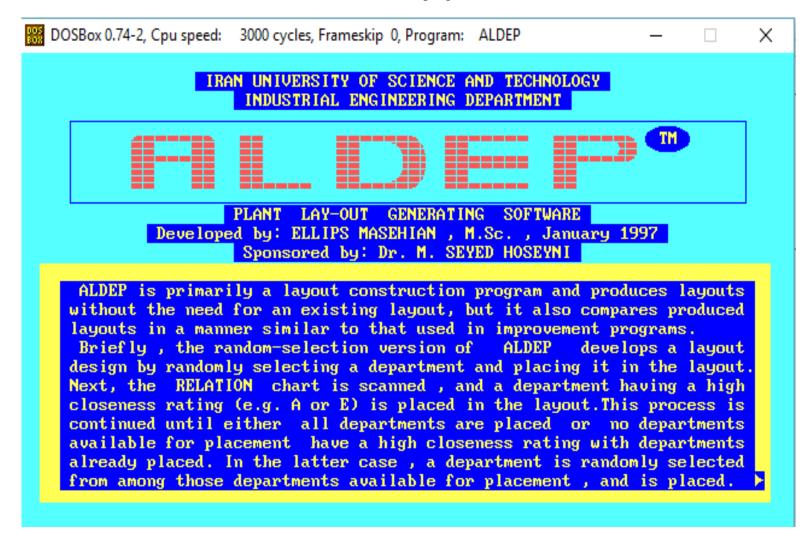
Anexo 31. M277: Resina

	Lt/paq	1	2	3	4	5	6	7
Celulosa	0.87	4,146.42	6,786.00	6,525.00	5,220.00	5,742.00	4,350.00	6,438.00
Total (Bat)		4,146.42	6,786.00	6,525.00	5,220.00	5,742.00	4,350.00	6,438.00

Stock	LT	Lote	Stock Seguridad
200	1	LFL	7

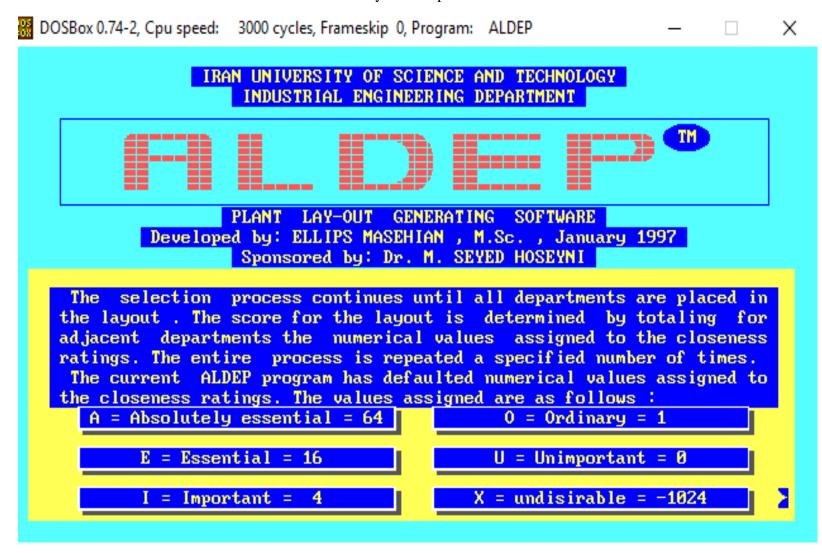
Período	Inicial	1	2		4	5	6	7
Necesidades Brutas		4,146	6,786	6,525	5,220	5,742	4,350	6,438
Entradas Previstas								
Stock Final	200	7	7	7	7	7	7	7
Necesidades Netas		3,953	6,786	6,525	5,220	5,742	4,350	6,438
Pedidos Planeados		3,953	6,786	6,525	5,220	5,742	4,350	6,438
Lanzamiento de ordenes		6,786	6,525	5,220	5,742	4,350	6,438	0

Anexo 32. M278: Colorante

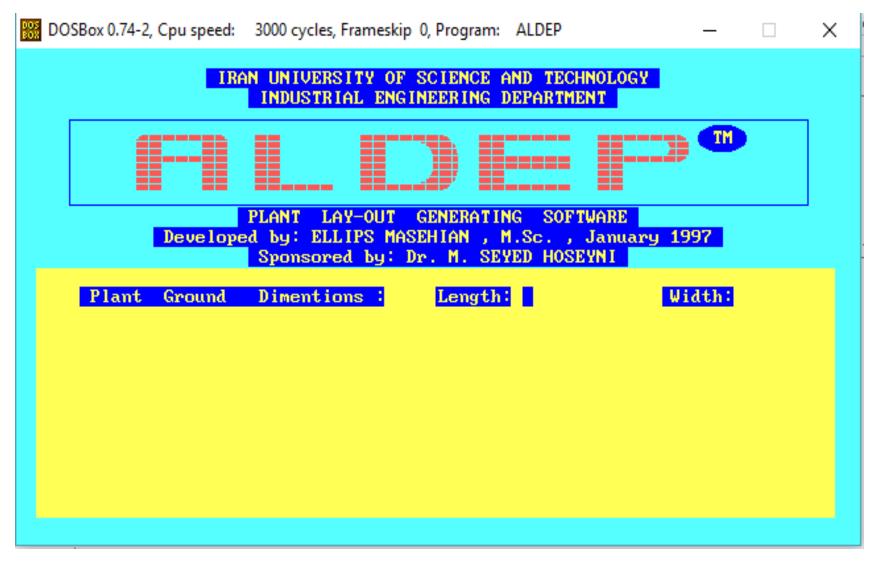

	Kg/paq	1	2	3	4	5	6	7
Celulosa	0.80	160,554.00	255,131.20	209,720.00	196,888.00	216,046.40	191,040.00	222,345.60
Total (Bat)		160,554.00	255,131.20	209,720.00	196,888.00	216,046.40	191,040.00	222,345.60

Stock	LT	Lote	Stock Seguridad
200	1	LFL	8

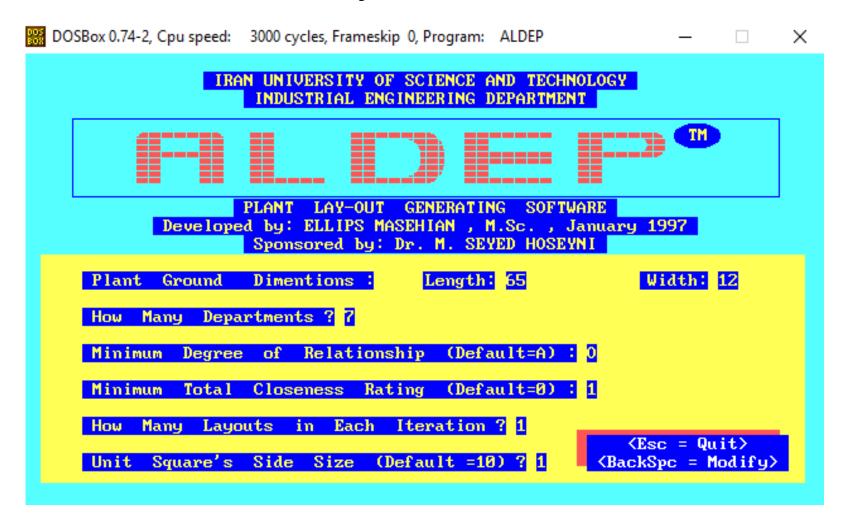
Período	Inicial	1	2	3	4	5	6	7
Necesidades Brutas		160,554	255,131	209,720	196,888	216,046	191,040	222,346
Entradas Previstas								
Stock Final	200	8	8	8	8	8	8	8
Necesidades Netas		160,362	255,131	209,720	196,888	216,046	191,040	222,346
Pedidos Planeados		160,362	255,131	209,720	196,888	216,046	191,040	222,346
Lanzamiento de ordenes		255,131	209,720	196,888	216,046	191,040	222,346	0



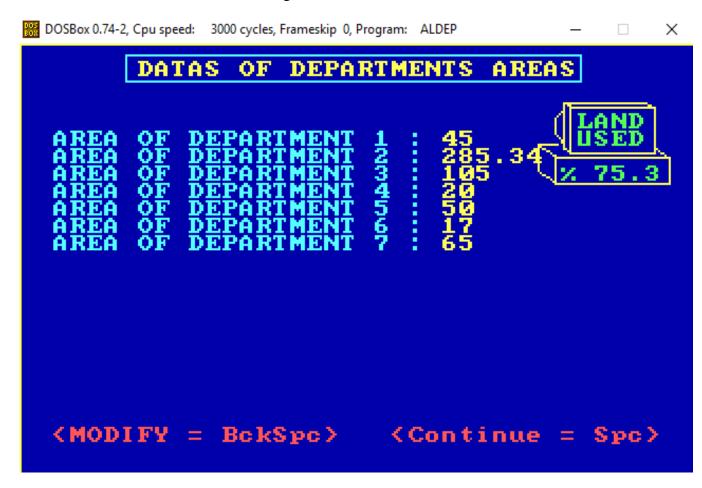
Anexo 33. Introducción del programa ALDEP



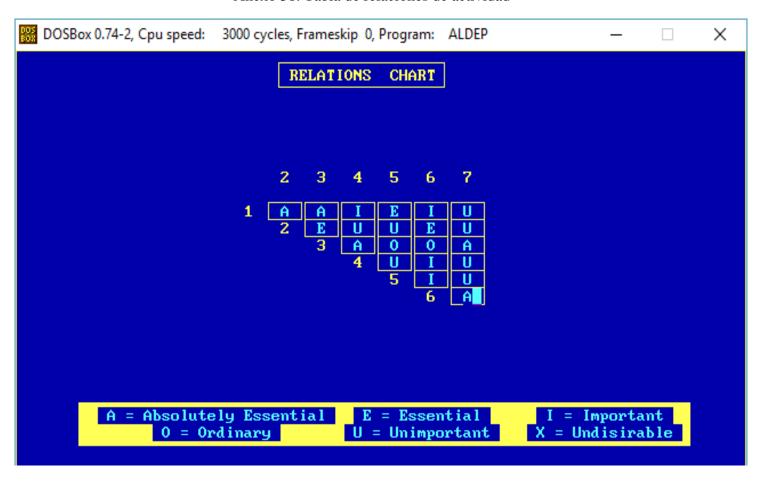
Anexo 34. Comandos y valores predeterminados



Anexo 35. Funcionamiento y limitaciones del programa ALDEP



Anexo 36. Ingreso de la información


Anexo 37. Ingreso de datos a la tabla

Pág. 129

Anexo 38. Tabla de relaciones de actividad

