

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA CIVIL

"MICROZONIFICACIÓN GEOTÉCNICA PARA DISEÑAR CIMENTACIONES SUPERFICIALES EN EL CENTRO POBLADO MENOR LUZ DEL SOL SECTOR III, ASCOPE 2022"

Tesis para optar al título profesional de:

Ingeniera Civil

Autores:

Luciana de Fatima Cruzado Sandoval Leticia Janeth Leyva Sanchez

Asesor:

Dra. Ing. Sheyla Cornejo Rodríguez https://orcid.org/0000-0001-8198-2250

Trujillo - Perú

JURADO EVALUADOR

Jurado 1	Luis Alva Reyes	42013371
Presidente(a)	Nombre y Apellidos	Nº DNI

Jurado 2	German Sagastegui Vasquez	45373822
Jurado 2	Nombre y Apellidos	Nº DNI

Jurado 3	Cinthya Alvarado Ruiz	71412783
Jurado 3	Nombre y Apellidos	Nº DNI

INFORME DE SIMILITUD

17% 17% 1% PUBLICACIONES	4% TRABAJOS DEL ESTUDIANTE
FUENTES PRIMARIAS	
hdl.handle.net Fuente de Internet	7%
2 doku.pub Fuente de Internet	1 %
repositorio.upt.edu.pe Fuente de Internet	1 %
4 www.slideshare.net Fuente de Internet	1,9
repositorio.ucv.edu.pe Fuente de Internet	1,9
repositorio.usmp.edu.pe Fuente de Internet	1,9
7 repositorio.uandina.edu.pe Fuente de Internet	1,9
8 1library.co Fuente de Internet	<19
9 docplayer.es Fuente de Internet	<19

DEDICATORIA

A Dios, por ser el autor y guía en el transcurrir de mi vida, gracias a él he logrado concluir mi carrera profesional.

A mis padres Cesar e Yliana, quienes con su sacrificio lograron brindarme lo mejor y por los consejos para hacer de mí una mejor persona.

A mis hermanos Claudia y Maxi, que este logro sea de ejemplo y motivación para cumplir sus propósitos.

A mi abuela Matilde, de quien voy agradecer siempre por sus buenos consejos que inculcó en mí para ser la persona que soy.

Luciana Cruzado Sandoval

A Dios, por guiarme durante todo este tiempo.

A mis padres Ángel y Angelita, por impulsarme siempre a ser mejor persona y profesional.

A mis hermanas Lelix, Thainna, Karla e Isabel; por ayudarme a cumplir mis objetivos.

A mis sobrinos Luana, Ariana, Nathan, Lianny y Jafet por alegrarme en cada momento, y por último

A mis abuelitos Alejandrina, Manuel y a mi sobrina Fátima, que aunque no estén aquí sé que me cuidan y apoyan desde el cielo.

Leticia Leyva Sánchez

AGRADECIMIENTO

Agradecemos a Dios por brindarnos salud, perseverancia, visión y permitirnos cumplir una de nuestras metas profesionales.

A nuestros padres, quienes nos apoyaron constantemente.

A nuestros docentes, que durante la carrera profesional nos forjaron con sus conocimientos y ética.

Las autoras

TABLA DE CONTENIDO

JURA	ADO EVALUADOR	1
INFO	DRME DE SIMILITUD	2
DEDI	ICATORIA	3
AGR	ADECIMIENTO	4
TABI	LA DE CONTENIDO	5
RESU	UMEN	9
CAPI	ITULO I: INTRODUCCIÓN	10
1.1.	REALIDAD PROBLEMÁTICA	10
1.2.	ANTECEDENTES	12
1.3.	JUSTIFICACIÓN	14
1.4.	MARCO TEÓRICO	15
1.4.1.	Microzonificación Geotécnica	15
1.4.1.	Estudio de Mecánica de Suelos (EMS) con Fines de Cimentación	19
1.4.2.	. Cimentaciones Superficiales	41
1.4.3.	. Capacidad Portante de Suelos	43
1.5.	FORMULACIÓN DEL PROBLEMA	56
1.6.	OBJETIVOS	56
1.7.	HIPÓTESIS	57
CAPI	ITULO II: METODOLOGÍA	58
2.1.	Enfoque de Investigación	58
2.2.	Población y Muestra	58
2.3.	Materiales, Instrumentos y Métodos	59
2.4.	Procedimiento	60
2.5.	Análisis Estadístico	61
2.6.	Aspectos Éticos	62
CAPI	ITULO III. RESULTADOS	63
3.1	Microzonificación Geotécnica	63
3.2	Propiedades Mecánicas del Suelo	65
3.3	Resistencia al Esfuerzo Cortante	66
3.4	Zonas Vulnerables	68
CAPÍ	ÍTULO IV. DISCUSIÓN Y CONCLUSIONES	73
4.1	Discusión	73
4.2	Conclusiones	75
REFI	ERENCIAS BIBLIOGRÁFICAS	76
ANE	XOS	80

INDICE DE FIGURAS

Figura 1	32
Figura 2	35
Figura 3	38
Figura 4	42
Figura 5	44
Figura 6	44
Figura 7	45
Figura 8	48
Figura 9	51
Figura 10	54
Figura 11	63
Figura 12	64

INDICE DE TABLAS

Гabla 1
Гabla 2
Гabla 3
Гabla 4
Γabla 5
Гabla 6
Гаbla 7
Гаbla 8
Гabla 9
Гabla 1040
Гabla 1147
Γabla 1350
Γabla 1452
Гabla 14 65
Гabla 15
Гabla 1668
Table 17

INDICE DE ECUACIONES

Ecuación I	1
Ecuación 2	3
Ecuación 3	4
Ecuación 4	7
Ecuación 5	7
Ecuación 6	9
Ecuación 7	9
Ecuación 8	5
Ecuación 94	6
Ecuación 104	6
Ecuación 114	6
Ecuación 124	6
Ecuación 134	8
Ecuación 145	2
Ecuación 154	9
Ecuación 165	1
Ecuación 175	3
Ecuación 185	4
Ecuación 195	4
Ecuación 205	5
Ecuación 215	5
Ecuación 225	8
Ecuación 235	9

RESUMEN

El proyecto de investigación se desarrolla en el C.P. Luz del Sol sector III, Distrito de Chicama, en esta zona han emergido edificaciones de material noble y rústico, construidas de manera informal y sin estudios previos.

El objetivo de la investigación es realizar la Microzonificación Geotécnica para el diseño de cimentaciones superficiales. El diseño es no experimental de tipo descriptivo. La población corresponde a 26 puntos de exploración con una muestra de 10 calicatas realizadas a cielo abierto. Se desarrollaron ensayos de contenido de humedad, análisis granulométrico, densidad relativa y gravedad especifica, los cuales fueron necesarios para encontrar la compacidad relativa del suelo, en base a este valor se relaciona ángulo de fricción.

Se microzonifica el sector estudiado en Zona I, Zona II y Zona III con capacidad portante para las cimentaciones corridas de 1.64 kg/cm² a 1.80 kg/cm², 1.93 kg/cm² a 2.10 kg/cm², 2.28 kg/cm² a 2.34 kg/cm² y para cimentaciones aisladas de 2.83 kg/cm² a 2.96 kg/cm², 3.08 kg/cm² a 3.70 kg/cm² y 3.96 kg/cm² a 4.16 kg/cm², respectivamente. En conclusión, se realizó la microzonificación geotécnica diviendo el lugar en 3 zonas geotécnicas delimitando dichas áreas según las características mecánicas del suelo.

PALABRAS CLAVES: Microzonificación geotécnica, diseño de cimentaciones superficiales, resistencia al esfuerzo cortante, capacidad protante, densidad relativa.

CAPITULO I: INTRODUCCIÓN

1.1. Realidad problemática

Para desarrollar estudios geotécnicos se utiliza una variedad de técnicas, como la perforación de reconocimiento, la topografía, el mapeo geotécnico y la exploración geofísica, los cuales proporcionan datos acerca de las características y propiedades de los suelos en áreas específicas para estimar su comportamiento y predecir inconvenientes geológicos y geotécnicos. (Gonzalez, 2002)

En México, la ingeniería básica ha evolucionado grandemente en las últimas décadas, ya que los proyectos actuales atienden necesidades de mediana y gran escala. Enfrentamos nuevos desafíos debido a la enorme demanda de macro y micro infraestructura en los sectores controlados y no controlados por el estado. A esto hay que añadir que la superpoblación ha provocado un crecimiento vertical de las estructuras. Por lo tanto, estas estructuras transfieren sus cargas al suelo utilizando sistemas de cimentación cada vez más complejos debido a dos factores: el primero es el diseño inteligente y su análisis numérico; el segundo es un método constructivo basado en las nuevas tecnologías y siendo respetuoso con el medio ambiente en todos los aspectos. (Gonzalez, 2013)

Una de las dificultades al estudiar los suelos granulares gruesos en Chile, es la caracterización del tamaño de sus partículas, las cuales pueden superar 1 m de diámetro, siendo este un obstáculo para el desarrollo de muestreo y conducción de ensayos de laboratorio estandarizados. A su vez, esto obstruye el diseño de cimentaciones de la zona, ya que no existe un procedimiento estándar que permita determinar dichos suelos. (Riquelme, 2016)

A lo largo de los años, diferentes problemas han surgido alrededor de la industria de la construcción en Bolivia, las edificaciones no cuentan con un diseño de cimentaciones y van en aumento, la mayoría de viviendas no son planificadas ni desarrolladas con el debido conocimiento profesional, lo que conlleva a que estas construcciones sean realizadas fuera del marco académico, es decir, que no cuentan con estudios o procesos previos, ya sea de suelos o de algún cálculo estructural, y esto influye a que la ciudad de El Alto sea una urbe con problemas a nivel funcional y estructural. Si a esto le sumamos el constante cambio de usos que sufre una edificación, no es extraño ver que las fallas estructurales se manifiesten con mayor intensidad y tal vez en menos tiempo. (García, 2018)

La Norma E.050 – Suelos y Cimentaciones ubicada en el Reglamento Nacional de Edificaciones, especifica el procedimiento que se debe seguir para realizar el estudio al suelo, el cual es base fundamental para el diseño de estructuras en obras civiles. El lugar donde se pretende realizar una construcción, requiere un estudio exhaustivo que permita evaluar las diferentes propiedades del suelo, asímismo su estratigrafía, para determinar qué tipo de suelo es y la geometría de la cimentación más conveniente según sus propiedades antes mencionadas, siendo esto una garantía para que las estructuras soporten las cargas para las cuales están siendo diseñados y así evitar asentamientos producidos por pesos excesivos. (Sánchez, 2019)

Calcular la capacidad portante en nuestros proyectos es decisiva, ya que indica la presión más alta de contacto entre el suelo y la fundación, tomando como dato esta condición se proponen diversas geometrías de cimentación y profundidades de desplante, para que las cargas transmitidas de la cimentación al suelo no sean mayores que las que este puede soportar, evitando fallas por cortante del mismo o un asentamiento diferencial elevado. Cabe resaltar que, para obtener esta capacidad portante es imprescindible llevar a cabo ensayos de laboratorio. (RNE, 2021)

El diseño de cimentaciones es una de las problemáticas más resaltantes en Perú, ya que debido al aumento de la población que se ha dado en las últimas décadas y la falta de una planificación de expansión urbana, las personas optan por realizar sus casas sin un análisis previo, es decir, que no hacen un estudio de mecánica de suelos ni mucho menos un cálculo, y esto conlleva a un aumento de construcciones informales. (Gonzalez & Torres, 2018)

Teniendo en cuenta todo lo mencionado y habiendo realizado una inspección ocular a las construcciones del Centro Poblado Menor Luz del Sol, las cuales hacen referencia a viviendas de 2 a 3 pisos que no cuentan con estudios previos como: estudio se suelos, cálculos estructurales y una adecuada supervisión a cargo de un personal capacitado, se decidió realizar la siguiente investigación con el fin de brindar soluciones geotécnicas y estructurales, que de igual manera servirá como antecedente para futuros proyectos.

1.2. Antecedentes

1.2.1. Internacional

Humadi (2016) tuvo como objetivo realizar una evaluación geotécnica mediante pruebas in situ y laboratorio para definir su capacidad portante en la región de Mosul. La metodología utilizada tiene un enfoque No Experimental ya que no altera las muestras de suelos obtenido a través de pozos exploratorios. Según los resultados adquiridos del laboratorio se encontró que los suelos presentan arcilla con baja plasticidad (CL), arcilla con alta plasticidad (CH) y arcilla limosa (CM) y se destaca que el nivel de capa freática se encuentra a partir de los 8 metros de profundidad, teniendo en cuenta estos parámetros se propone una nueva mezcla de materiales sostenibles para el diseño de cimentaciones y así mismo evaluar el efecto de las tensiones producidas por el edificio con respecto al suelo.

Knuttsson (2016) con la intención de calcular la capacidad portante de la región de Baghdad propuso un diseño de cimentación. La metodología utilizada tiene un enfoque No Experimental ya que no altera las muestras de suelos obtenido a través de pozos exploratorios. Según los resultados adquiridos la capacidad portante es de 125 kN/m² teniendo como tipo de suelo limo arcilloso, franco arcilloso y en algunas zonas suelos de alta y media plasticidad, considerando así que la presión que ejerce el edificio no supera el valor de dicha capacidad de carga, esto hace que la elección de cimentación pueda ser continua para edificios no mayor de 4 a 5 pisos.

Sanchez (2018) tuvo como finalidad realizar un plano que muestre la clasificación físico-mecánica de los suelos de área a estudiar y analizar la incidencia en el uso y ocupación del suelo por las construcciones. La metodología utilizada es no experimental, debido a que estudia las variables en su estado natural. En la zona de estudio; el autor encontró lo siguiente: El suelo consistió en 55% de ML (limo inorgánico de baja compresibilidad), 26% de CL (arcilla inorgánica de compresibilidad baja a media), 15% de CL-ML y 3% de MH (limo inorgánico de alta compresión). Se realizaron pruebas SPT y Vs a 6 y 12 metros de profundidad y se observó que el 69% de las edificaciones son menores a tres niveles, con crecimiento vertical esperado en los próximos años en el centro norte de Quito.

Por lo tanto, hay 822 edificios en Zonas de Vulnerabilidad Muy Alta, 644 edificios en Zonas de Vulnerabilidad Alta, 951 edificios en Zonas de Vulnerabilidad Media y 682 edificios en Zonas de Vulnerabilidad Baja.

1.2.2. Nacional

Atencio y Angulo (2020) investigaron la capacidad de carga admisible, para lo cual realizaron un estudio de mecánica de suelos obteniendo las propiedades físicas y mecánicas del suelo. Esta metodología no altera las variables en cuestión. Se excavaron diez pozos en el área de estudio y la capacidad de carga promedio permisible fue de 3,16 kg/cm² con un Df = 1,00 m, 4,23 kg/cm² con un Df = 1,50 m y 5,29 kg/cm² con un Df. = 2.00 m De acuerdo con la clasificación SUCS, el suelo resultó ser grava gruesa (GP) con un contenido de agua promedio de 1.083%, una cohesión de 0, una densidad natural promedio de 1.90 g/cm³ y finalmente una densidad relativa de 50.75%.

Por último, se sugiere utilizar cimientos cuadrados con dimensiones no superiores a 2,00 m y profundidades de siembra entre 1,00 m, 1,50 m y 2,00 m.

Olarte (2019) tuvo como objetivo principal clasificar al suelo para verificar la capacidad portante clasificándolo como un suelo GM (Grava limosa con arena), realizado a una profundidad de 1.20 m – 3.00 m. Según la clasificación SUCS es un suelo de consistencia media, cabe recalcar que tiene una capacidad de carga admisibles es de 0.99 kg/cm² a una profundidad de fundación de 1.40 m. Como cimentación se propone una zapata cuadrada unida por vigas de nexo continuo, que inciden especialmente en los muros exteriores. La carga admisible sugerida es de 1,29 kg/cm² con un nivel de cimentación de 2,00 m.

Sánchez (2019) plasmó las características físicas y mecánicas del suelo en un plano de zonificación y también calculó su capacidad portante. Ejecutó 15 calicatas cada una de 3.00 m de profundidad las cuales se agruparon en Zona I y Zona II, como resultado se concluye una capacidad de 1.23 kg/cm² a 1.27 kg/cm² para una base con un ancho de 1.00 m y 1.58 kg/cm² a 1.87 kg/cm² para una base con un ancho de 1.00 m respectivamente, ambas con una profundidad de cimentación de 1.5 m. Así mismo se clasificaron el suelo por el método SUCS, el cual manifiesta la existencia de suelos que contienen arcilla inorgánica de baja plasticidad (CL) y con porcentaje de humedad baja.

1.2.3. Local

Carranza y Ponce (2017) realizó una zonificación geotécnica y determinó propiedades físicas y mecánicas del suelo, para ello se elaboraron 10 calicatas a una profundidad aproximada de 3.00 m, no encontrándose nivel freático. Los resultados obtenidos

fueron los siguientes: el área estudiada se distribuyó en zona I, II, III y IV, según la clasificación SUCS se tiene grava bien graduada (GW) en todas las zonas, teniendo en cuenta una profundidad de desplante que va desde 1.20 a 1.80 m, se calculó la capacidad admisible la cual está entre 3.51 kg/cm² a 5.36 kg/ cm², 3.44 kg/cm² a 5.26 kg/cm², 3.47 kg/ cm² a 5.30 y 3.37 kg/cm² a 5.15 kg/cm², respectivamente. Finalmente, se define que, las cimentaciones superficiales cuadradas aisladas de B=1.00 m – 1.50 m x L=1.2 m – 1.80 m, son las que adquieren una mayor capacidad admisible; pero, debido a que la zona de investigación es un sector rural la cimentación corrida de B=1.00 m – 1.50 m (ancho) sería una opción más accesible.

Gonzalez & Torres (2018) tuvo como fin realizar la microzonificación reconociendo el comportamiento geotécnico en 28 calicatas en total. Después de extraer la muestra del suelo y según SUCS se encontró arena mal graduada (SP) en el área de estudio así mismo se identificó la capa freática a una profundidad de 1.5 m hasta los 3.4 m para las distintas calicatas teniendo como consecuencia licuefacción de suelos y baja capacidad portante.

El diseño de la cimentación estaba por debajo de la presión admisible de capacidad portante por cortante considerando el factor z=0.45, al estar ubicado en la zona 4 y por tener un perfil tipo S3 (suelo blando) por ende está controlado por asentamiento. Dado que los suelos pueden licuarse, se aconseja introducir técnicas de remediación como reemplazo de materiales que puedan licuarse, grava en forma de columnas, compactación dinámica, flotación vibratoria o cimentaciones profundas.

Se concluye que para una cimentación corrida se obtiene una capacidad portante desde1.46 kg/cm² hasta 2.74 kg/cm² con una dimensión aproximada de 0.60 a 2.00 m, mientras que para una cimentación cuadrada se obtiene una capacidad portante desde1.39 kg/cm² hasta 2.25 kg/cm² con dimensiones alrededor de 1.00 m x 1.00 m.

1.3. Justificación

1.3.1 Justificación general

Carranza y Ponce (2017) esta investigación tuvo como fin el estudio de las propiedades mecánicas, físicas, estructurales y resistencia del suelo en el Centro Poblado Luz del Sol - Sector III, ya que por lo general las edificaciones son construidas sin antes haber realizado un estudio de suelos, es importante saber en qué tipo de suelo se va a cimentar una construcción, así evitar en el futuro problemas o pérdidas humanas ocasionadas por la edificación.

1.3.2 Justificación teórica

Esta investigación se basó en la elaboración de la microzonificación de la capacidad portante por medio del estudio de mecánica de suelos para después identificarlo en un mapeo geotécnico y saber todas las características necesarias para así poder contribuir con el desarrollo urbano de la localidad.

1.3.3 Justificación práctica

Se realizó en el Centro Poblado Menor Luz del sol, en la provincia de Ascope en una fase de corto plazo, los ensayos de laboratorio se obtuvieron por medio de las exploraciones que se realizaron en el suelo en determinados lugares donde fue necesario, la información recolectada de este proyecto aporta significativamente para la construcción de edificaciones futuras con garantía y modelos de calidad.

1.4. Marco Teórico

1.4.1. Microzonificación Geotécnica

La microzonificación geotécnica consiste en dividir el área de indagación en sectores uniformemente caracterizadas en términos de tipos de suelo y propiedades geomecánicas, lo que significa que se espera un comportamiento mecánico similar en estas regiones.

Investigación que busca adaptar diversos métodos de mecánica de suelos para obtener propiedades mecánicas y físicas de la topografía tales como: perfil estratigráfico, tamaño de grano, capacidad portante, humedad, etc. Las zonas con atributos similares están relacionadas, por lo que podemos distinguir qué áreas son útiles para la construcción y cuáles no. La búsqueda de estas características permitirá encontrar riesgos que surgirán en relación con la construcción del área investigada, por ejemplo: licuefacción, hundimiento, aguas subterráneas, etc.; con el fin de que se mitigue el problema más tarde. (Medina & Rojas, 2019)

1.4.1.1. Etapas de la Microzonificación

Para hacer una microzonificación geotécnica hay muchos métodos para ejecutarla, cuyo resultado es la identificación de la zona que contenga información geotécnica y/o geológica. (Bravo & Zéqueda, 2015)

A su vez comprende cuatro etapas básicas:

a) Recopilación de la información existente y análisis

- b) Trabajo en campo
- c) Ensayos de laboratorio
- d) Procesamiento de la información

1.4.1.2. Puntos de Exploración

Este estudio abarca una gran amplitud de terreno, y de acuerdo al tipo de edificación se calcula el total número de puntos exploratorios.

Tabla 1Número de Puntos de Investigación

NÚMERO DE PUNTOS DE INVESTIGACIÓN		
Tipo de edificación	Número de puntos de investigación (n)	
I	Uno por cada 225 m ² de área techada del primer piso	
II	Uno por cada 450 m ² de área techada del primer piso	
III	Uno por cada 900 m² de área techada del primer piso	
IV	Uno por cada 100 ml de instalaciones sanitarias de agua y alcantarillado en obras urbanas.	
Habilitación urbana para viviendas unifamiliares de hasta 3 pisos	3 por cada Ha. de terreno habilitado	

Nota. Esta tabla muestra el número de puntos y/o calicatas de acuerdo al tipo de edificación, donde (n) nunca será menor de 3. Tomado de del Reglamento Nacional de Edificaciones – E-050, 2018.

Tabla 2

1.4.1.3. Simbología de puntos explorados

En nuestra investigación se utilizarán los siguientes símbolos para la ubicación de los puntos a explorar.

Simbología de Puntos de Exploración

SIMBOLOGÍA DE PUNTOS EXPLORADOS			
Técnica de Investigación		Símbolo	
Pozo o Calicata	C-n	-	
Perforación	P-n	◆	
Trinchera	T-n	-	
Auscultación	A-n	\triangle	

Nota. Tomado del del Reglamento Nacional de Edificaciones – E-050, 2018.

Para nuestro perfil estratigráfico, los estratos del suelo se representarán mediante las siguientes nomenclaturas.

Simbología de suelos

Tabla 3

SIMBOLOGÍA DE SUELOS				
SUCS - Gráfico	Descripción	SUCS - Gráfic	o Descripción	
	Grava bien gradua	ıda,	Materiales finos	
	mezcla de grava d	con	sin plasticidad o	
0 0 0 0 GW 0 0 0 0	poco o nada	de sw	con plasticidad	
	materia fina.		muy bajo.	
	Grava	mal	Arena arcillosa,	
GP	granulada, mezcla	a de	mezcla de arena-	
	arena-grava	con	arcillosa.	
	material fino.			

SIMBOLOGÍA DE SUELOS			
SUCS - Gráfico	Descripción	SUCS - Gráfico Descripción	
GM	Grava limosa, mezcla de grava, arena limosa.	Limo orgánico y arena muy fina, polvo de roca, arena fina limosa o arcillosa o limo arcilloso.	
/////gc/////	Grava arcillosa, mezcla de grava- arena-arcilla; grava con material fino.	Limo orgánico de plasticidad haia o mediano	
SW	Arena bien graduada, arena con grava, con material fino. Arena limpia con material fino, variación en tamaños granulares e intermedios. Arena mal graduada con grava y material fino. Un	Limo orgánico y arcilla limosa orgánica, baja plasticidad. Limo inorgánico,	
SP	tamaño predominante o una serie de tamaños conausencia de partículas intermedios.	suelo fino gravoso o limoso.	

Nota. Tomado del Reglamento Nacional de Edificaciones – E-050, 2018.

1.4.1.4. Método de Exploracion de Suelos

Para llevar a cabo un proyecto los proyectistas deben conocer la estratigrafía y las propiedades del suelo. Este conocimiento se obtiene a través de la investigación geotécnica, que consiste en exploración subterránea, muestreo, pruebas de laboratorio y análisis de información. Esta exploración debe arrojar resultados confiables. Por lo tanto, es importante que el trabajo de exploración se realice con cuidado de acuerdo con las metodologías y estándares establecidos. (Siapa, 2013)

 Métodos Indirectos (Geofísicos): Éstos métodos sirven para ejecutar estudios indirectos a las propiedades físicas de suelos y rocas.

Además, determinan las características físicas de los diferentes estratos del subsuelo. (Gonzalez de Vallejo, 2002)

Uno de los principales métodos geofísicos es:

<u>Método geo sísmico</u>: Una vez obtenidos los resultados del estudio del suelo, se puede deducir las propiedades mecánicas y distribución de los materiales que alberga el suelo, como por ejemplo:

- ✓ Compacidad o densidad de los materiales
- ✓ Profundidad de los contactos
- ✓ Espesor de los estratos

1.4.1. Estudio de Mecánica de Suelos (EMS) con Fines de Cimentación

Un estudio de suelo o estudio geotécnico es una serie de pruebas para determinar las propiedades del suelo. Esta información es fundamental para la planificación, el diseño y la ejecución de cualquier proyecto de construcción. (GeoPeru, 2019) dado que los perfiles del suelo son variables y la teoría de la mecánica del suelo es idealizada, su aplicación depende de las condiciones del campo y los parámetros del suelo. (Huanca, 2009)

 Tabla 4

 Tipo de Edificación u Obra para Determinar el Número de Puntos de Exploración

	TIPO DE EDI	FICACIÓ	N				
	Distancia	Número de pisos (incluidos sótanos)					
Descripción	mayor entre apoyos* (m)	≤ 3	4 a 8	9 a 12	> 12		
Aporticada de acero	< 12	С	С	С	В		
Pórticos y/o muros de concreto	< 10	C	C	В	A		
Muros portantes de albañilería	< 12	В	-	-	-		
Bases de máquinas y similares	Cualquiera		-	-	-		
Estructuras especiales	Cualquiera	A	A	A	A		
Otras estructuras	Cualquiera	В	A	A	A		
* Cuando la distancia sob edificación inmediato su		a, se clasif	icará en e	l tipo de			

	\leq 9 m de	> 9 m de altura
Tanques elevados y similares	altura	
	В	A
Plantas de tratamiento de agua		C
Instalaciones sanitarias de agua y alcantarillado en obras urbanas		С

Nota. Tomado del Reglamento Nacional de Edificaciones – E-050, 2018.

1.4.2.1. Suelos

Según Braja (2013), el suelo se puntualiza como el conjunto no cementado de partículas minerales y materia orgánica descompuesta (materia particulada) de la roca que sirve como base para soportar estructuras.

El suelo es la materia orgánica suelta y no consolidada que se encuentra en la corteza terrestre, formada por el colapso de la roca, roca dura con o sin materia orgánica. (Venkatramaiah, 2006)

1.4.2.2. Tipos de Suelos

Gravas: Son acopios sueltos de fragmentos de roca de textura redondeada, debido a la erosión producida por el transporte realizo por corrientes de río. (Crespo, 2004) Según Norma (ASTM, D2487), el tamaño de las particulas altera de 75 - 4.75 mm, siendo subdivididas en grava gruesa comprendida entre 75 - 19 mm, y grava fina comprendida entre 19 - 4.75 mm.

Arenas: Estos son granos granulares de varias texturas que se forman como resultado del colapso de rocas o fragmentación artificial. El origen de la arena es similar al de la grava, y ambos se encuentran principalmente en los mismos sedimentos. (Sánchez, 2019)

Según Norma (ASTM, D2487), el tamaño de las partículas varía entre 4.75-0.075 mm, siendo clasificada en tres categorías: arena guesa que tiene un tamaño de 4.75-2 mm, arena mediana que tiene un tamaño entre 2-0.425 mm y arena fina comprendida entre 0.425-0.075 mm.

Limos: Éstas son micropartículas que no tienen o tienen una plasticidad baja. Hay limos inorgánicos que se encuentran en las canteras y limos orgánicos que se encuentran en los ríos. Los suelos limosos son relativamente impermeables y propensos a la erosión. (Braja, 2013)

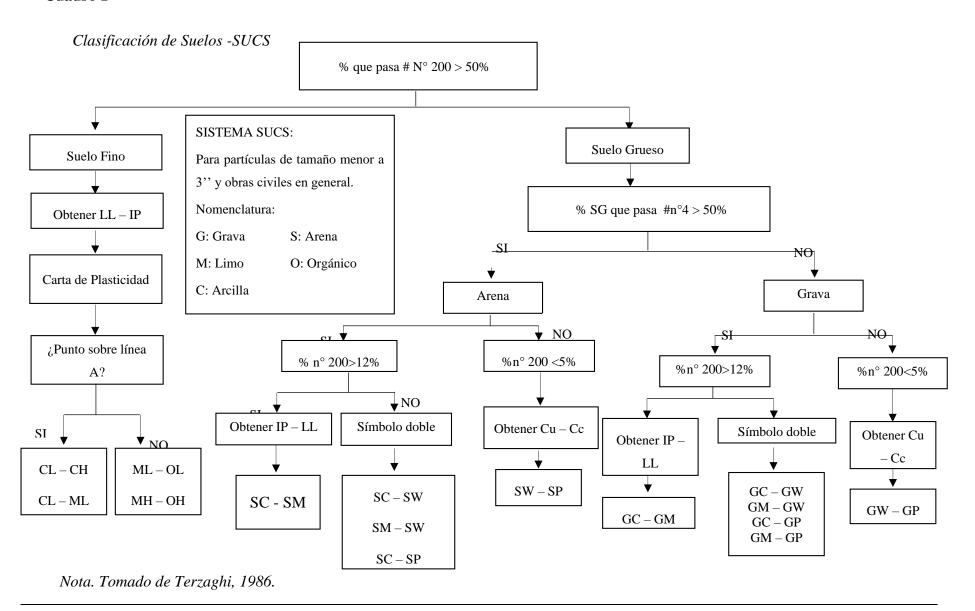
Según Norma (ASTM, D2487), el volumen de su partícula es menor a 0.075 mm.

Arcilla: Partículas finas en forma de escamas como mica y minerales arcillosos. Las arcillas se definen como partículas menores de 0.002 mm y pueden llegar a 0.005 mm en algunos casos. (Crespo, 2004)

Tabla 5Límites de Tamaño de Suelos Separados

LIMITES DE TAMAÑO DE SUELOS							
Nombre de la		Tam	año del Grano (N	Mm)			
Organización	Gravas	Arena	Limo	Arcilla			
Instituto Tecnológico de Massachusetts (MIT)	>2	2 – 0.06	0.06 – 0.002	< 0.002			

Departamento de Agricultura de Estado	>2	2 – 0.06	0.05 - 0.002	< 0.002
Unidos (USDA)				
Asociación Americana				
de Funcionarios del Transporte yCarreteras Estatales(AASHTO)	76.2 – 2	2 – 0.075	0.075 -0.002	< 0.002
Sistema Unificado de Clasificación de Suelos (SUCS)	76.2 – 4.75	4.75 – 0.075	Finos (es dec arcillas) <	•


Nota. Tomado de Braja, 2013.

1.4.2.3. Clasificación de Suelos

Estos son suelos clasificados en grupos y subgrupos con base a sus propiedades similares (químicas, físicas, biológicas), de acuerdo a los resultados de pruebas simples de laboratorio. (Terzaghi, 1986)

Cuadro 1

1.4.2.3.1. Sistema Unificado de Clasificación de Suelos (SUCS)

Clasifica a los suelos según sus propiedades, tomando principalmente en cuenta su plasticidad y cualidad estructural. Esta clasificación se basa en la cantidad de gravas, arenas, limos y arcillas, de acuerdo a su distribución granulométrica y plasticidad, generando así una separación de los mismos.

Tabla 6Sistema Unificado de Clasificación de Suelos (SUCS)

	SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (SUCS)																		
Identifica	ación	en e	l campo	(excluy	endo	las p	artícu	as ma	yores	de 7	.6 cm	n (3") y basando las fracciones en	Símbolo	Nombres típicos					
							peso	s estin	nados)			del grupo	1 (omores apress					
	al			S			_	_				Amplia gama de tamaño y		Gravas bien graduadas,					
al es 200.¹	inte a	pre		sa e			7	(0.		(con	solle	cantidades apreciables de todos	GW	mezclas de grava y arena con					
erial N° 2(dame	siempre		grue				ímeti			pias (sin	los tamaños intermedios		pocos finos o sin ellos.				
l mat	kima	ble a		sción	4.					Gravas limpias (con	pocos finoso sin ellos)	Predominio de un tamaño o un		Gravas mal graduadas,					
d de el ta	ıpro	ecia		ı fra	Z		OH O	edio	ava	ava	sos f	tipo de tamaños, con ausencia de	GP	mezclas de arena y grava con					
mita o por	nde a	a apr		de la	ltami		de la (Para la clasificación visual puede suponerse que tamiz N°4 equivale a medio Gravas con finos	Ğ	D od	algunos tamaños intermedios	-	pocos finoso sin ellos.							
más de la mitad del material es retenido por el tamiz $ m N^{\circ}~200$	(La abertura del tamiz N $^\circ$ 200 corresponde aproximadamente al	tamañode la menor partícula apreciable		más de la mitad de la fracción gruesa es	retenida por eltamiz N°			tamiz N°4 equivale a medio centímetro)	ē	on finos reciable de	on finos reciable de	Gravas con finos (cantidad apreciable de	nos Ible de		Fracción fina no plástica (parala		Gravas limosas, mezclas mal		
más ret	COL	r paı		lan	iida		700	ibə t	sou					ble	ble	ble		identificación ver el grupo	GM
1	200	neno		ás de	reten		-		on fii				(S)	ML más abajo)		limo.			
grueso	Z N°	e la n						tamiz	as co	ıd ap	finos)	Finos plásticos (para		Gravas arcillosas, mezclas					
grano	tami	ñode		Gravas			.;		Grav	Grav ntida		identificación ver el grupo CL	GC	mal graduadas de grava, arena					
le gra	ı del	tama	vista)	Ğ			ij	100		(ca		más abajo)		y arcilla.					
Suelos de	rtura	_	r				100	C143				Amplia gama de tamaños y		Arenas bien graduadas, arenas					
Sue	abeı			Arenas	más	de la	-	ม ม		Arenas	limpias	g cantidades apreciable de todos	SW	con grava, con pocos finos o					
	(La			Ar	Ī	Ť	G.	∄ •		Ar	lim	los tamaños intermedios		sin ellos.					

SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (SUCS)					
Identificación en el campo	Símbolo del grupo	Nombres típicos			
			Predominio de un tamaño o un tipo de tamaños, con ausencia de algunos tamañosintermedios.	SP	Arenas mal graduadas, arenas con grava, con pocos finos con ellos.
		n finos oreciable os)	Finos no plásticos (para identificación ver el grupo ML más abajo)	SM	Arenas limosas, mezclas de arena y limo mal graduadas.
	Arenas con finos (cantidad apreciable definos)		Finos plásticos (para identificación ver el grupo CL más abajo)	SC	Arenas arcillosas, mezcla mal graduadas de arenas arcillas.
Método	s de identificación para la fracci	ión que pasa por	el tamiz N°40	Símbolo del grupo	Nombres típicos
Suelos de grano fino – más de la (La abertura del tamiz N° 200 corresponde aproximadamente al	Resistencia en estado seco (a la disgregación)	Dilatancia (reacción a la agitación)	Tenacidad (consistencia cercadel límite plástico)		

SIS	STEMA UNIFIC	CADO DE CLASIF	ICACIÓN DE SUELOS (S	SUCS)		
Identificación en el campo (excluyendo las partículas mayores de 7.6 cm (3'') y basando las fracciones en pesos estimados)					Nombres típicos	
	Nula a ligera	Rápida a lenta	Nula	ML	Limos inorgánicos y arenas muy arenas, polvo de roca, arenas finas limosas o arcillosas con ligera plasticidad.	
	Media a alta	Nula a muy lenta	Media	CL	Arcillas inorgánicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas limosas, arcillas magras.	
	Ligera a media	Lenta	Ligera	OL	Limos orgánicos y arcillas limosas orgánicas de baja plasticidad.	
Limos y arcillas con	Ligera a media	Lenta a nula	Ligera a media	МН	Limos inorgánicos, suelos limosos o arenosos finos micáceos o con diatomeas, limos elásticos.	

OH

Pt

Arcillas

orgánicos.

orgánicas

Turba y otros suelos altamente

plasticidad media a alta.

de

SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (SUCS) Identificación en el campo (excluyendo las partículas mayores de 7.6 cm (3") y basando las fracciones en Símbolo Nombres típicos pesos estimados) del grupo Arcillas inorgánicas de Alta a muy Alta CH Nula plasticidad elevada, arcillas alta grasas.

Fácilmente identificable por su color, olor, sensación esponjosa y

frecuentemente por su textura fibrosa.

Ligera a media

Nula a muy

lenta

Nota. Tomado de Terzaghi, 1986.

Suelos altamente orgánicos

Media a

alta

• Información necesaria para la descripción de los suelos (Terzaghi, 1986):

¹Según el típico nombre; se indica grava y arena por porcentaje aproximado, tamaño máximo, ángulo, condición artificial y dureza de grano grueso; nombre geológico y cualquier otro dato o descripción necesario, asi como su simbología entre paréntesis. La información sobre estratigrafía, compactación, condiciones de humedad, cementación y características de drenaje se agrega al suelo intacto. Ejemplo:

Arena con limo y grava; alrededor del 20% de partículas de grava son de hasta 1,5cm de máxima dimensión; arena gruesa a fina con particulas de bordes redondeados o subbordeadas; particulas finas no plásticas en torno al 15%, baja resistencia en condición seco – compacta y la humedad in situ; arena aluvial; (SM).

Dado el típico nombre; indica la naturaleza y el grado de plasticidad; cuantía y máxima dimensión de particulas gruesas; si tuviese color el suelo humdo; olor (en algunos casos), nombre local y geológico; cualquier otra indagación descriptiva importante y simbología entre paréntesis.

El suelo intacto va acompañado de información sobre la estructura, la estratigrafía, la consistencia, tanto el estado intacto y transformado, la humedad y las condiciones de drenaje. Ejemplo:

Limo arcilloso, marrón; algo de plástico; reducido porcentaje de arena fina; numerosos poros radiculares verticales; solidos y seco in situ (ML).

Tabla 7

Sistema Unificado e Clasificación de Suelos (SUCS)

SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (SUCS) ASTM 2487

Criterios de Clasificación en el Laboratorio $C_u = \frac{D_{60}}{D_{10}}$; mayor de 4 $C_c = \frac{(D_{30})^2}{D_{10} * D_{60}}$; Entre 1 y 3

No satisfacen todos los requisitos granulométricos de las GW

Límites de Atterberg por debajo de la línea "A" o Ip menor de 4 Límites de Atterberg por encima de la línea "A" o Ip mayor de 7

Por encima de la línea "S", con Ip entre 4 y 7: casos límites que requieren el uso de símbolos dobles.

$$C_u = \frac{D_{60}}{D_{10}}$$
; mayor de 6
 $C_c = \frac{(D_{30})^2}{D_{10} * D_{60}}$; Entre 1 y 3

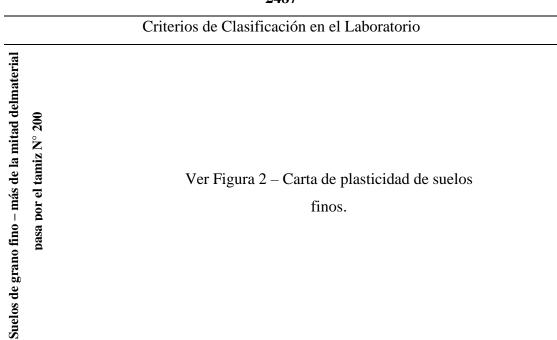
No satisfacen todos los requisitos granulométricos de las SW

Límites de Atterberg por debajo de la línea "A" o Ip menor de 5 Límites de Atterberg por debajo de la línea "A" o Ip mayor de 7

Por encima de la línea "A" con Ip entre 4 y 7: casos límites que requieren el empleo de símbolos dobles.

Utilícese la curva granulometría para identificar las fracciones de suelo indicadas en la columna Suelos de grano grueso – más de la mitad del material es retenido por el tamiz $m N^\circ$ 200.

de identificación en el campo


Determínense los porcentajes de grava y arena a partir de la curva granulométrica. Según el porcentaje de finos (fracción que pasa por el tamiz

Menos del 5%: GW, GP, SW, SPMás del 12%: GM, GC, SM, SC

al 12%: Casos límites que requieren el empleo de símbolos dobles N° 200) los suelos gruesos se clasifican como sigue:

SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (SUCS) ASTM 2487

Nota. Tomado de Terzaghi, 1986.

1.4.2.4. Propiedades Físicas del Suelo

a. Contenido de Humedad

Esta propiedad en una masa de suelo viene a ser la cantidad de agua presente en esta masa en base a su peso seco. Este procedimiento se rige bajo la ASTM-D2216. Se mide secando la muestra húmeda en un horno controlado a 110 ± 5 °C. Para el peso de partículas sólidas, se usa el peso del suelo que queda en el horno cuando se seca. La diferencia de peso se considera peso del agua.

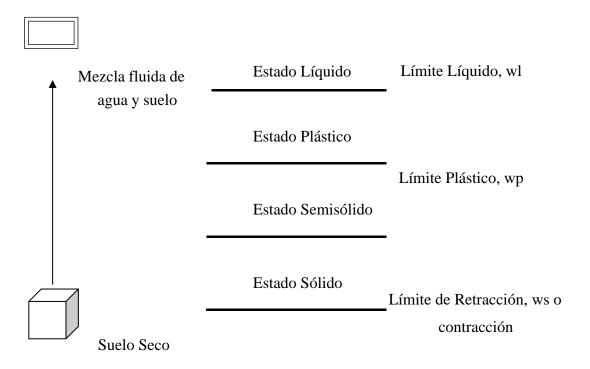
Ecuación 1

Contenido de Humedad

$$w(\%) = \frac{Ph - Ps}{Ps} * 100$$
$$w(\%) = \frac{Pw}{Ps} * 100$$

Donde:

- W (%): Contenido de humedad del suelo tomado en %.
- Ph: Peso del suelo humedo (gr).
- Ps: Peso del suelo seco (gr).


b. Limites de Atterberg

Mediante Atterberg & Casagrande (1948), los límites de Atterberg y los exponentes relacionados son valores útiles para caracterizar la agregación de partículas de suelo.

Los suelos de grano fino pueden existir en cuatro estados de consistencia, dependiendo de su contenido de humedad. El suelo está en estado sólido cuando está seco, pero se vuelve semisólido, plástico y líquido cuando se le agrega agua. Estos cambios en la composición del suelo se pueden medir con precisión en el laboratorio, empleando criterios predeterminados que establecen límites.

Figura 1 *Limites de Atterberg e Índices Asociados*

Nota. La figura 1 muestra el límite líquido y el límite plástico. Estas definiciones de límites se basan en tres viscosidades del suelo. Consistencia líquida (las arcillas son líquidas o líquidas), consistencia plástica (es moldeable y amasable), consistencia semisólida (imposible de moldear) y disminución del volumen (contracción) a medida que la muestra se seca. Tomado de Lambe, 2004.

✓ Límite Líquido

Es el agua contenida en el suelo, el cual, al tener agua en su composición se tranforma de estado líquido a plástico. Esto se determina midiendo la humedad y el número de golpes necesarios para cerrar una ranura de un ancho y largo especificados usando equipo estandarizado. El modo de operación para determinar los límites líquidos se especifica en la Norma ASTM-D4318, el procedimiento que se debe seguir es

haciendo uso de la Copa de Casa Grande, del cual se obtiene la curva de fluidez que grafica el número de golpes en el eje horizontal en escala logarítmica y el contenido de agua en escala natural. eje vertical. El contenido de agua equivalente a 25 golpes representa el límite líquido del suelo en estudio. Lambe recomendó usar la siguiente fórmula:

Ecuación 2

Limite Liquido del Suelo

$$LL = W\left(\frac{N}{25}\right)^{0.121}$$

Donde:

- L.L: Límite del suelo
- W: Contenido de humedad del suelo respecto al peso seco
- N: Número de golpes necesarios para cerrar la ranuera en la copa de Casagrande

 Tabla 8

 Determinación del Límite Líquido

DETERMINACIÓN LÍMITE LÍQUIDO						
N	K- Factor de Límite					
IV	Líquido					
N.° GOLPES	$(N/25)^{0.121}$					
20	0.9734					
21	0.9792					
22	0.9847					
23	0.9900					
24	0.9951					
25	1.000					
26	1.0048					
27	1.0094					
28	1.0138					

29	1.0182
30	1.0223

Nota. Tomado de ASTM, D423.

✓ Límite Plástico

Se denomina límite plástico al agua contenida, en el que el suelo pasa de un un estado semisólido. En estado plástico, el suelo se moldea fácilmente, pero en estado semisólido, se deforma por grietas. El límite plástico se define como cuando el suelo contiene la humedad necesaria para hacer que los rollos cilíndricos de 3,2 mm de diámetro, los cuales comienzan a desmoronarse cuando se amasan a mano. Un mínimo aumento de la humedad en el límite plástico destruiría la cohesión del suelo.

- Un LL y LP alto, hace referencia a un suelo con un porcentaje alto de arcilla
- Las arcillas coloidales tienen mayor LL y LP que las arcillas no coloidales
- La arena, grava y turba no tienen plasticidad
- Los limos muestran plasticidad en ciertas ocasiones, su LP es igual o ligeramente mayor a 0

✓ Índice de Plasticidad

El Indice de Plasticidad (IP) está definido por la siguiente fórmula:

Ecuación 3

Índice de Plasticidad del Suelo

$$IP = LL - LP$$

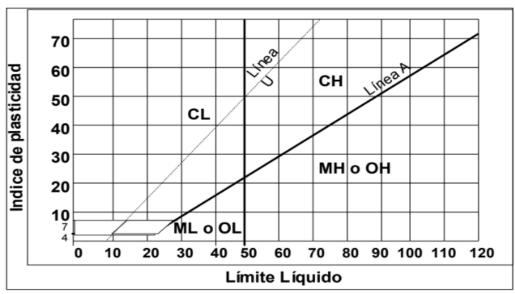
Donde:

- L.L: Límite del suelo
- L.P: Límite Líquido

El Indice de Plasticidad depende únicamente del contenido de arcilla presente e indica que tan fino es el suelo y su capacidad para alterar su forma sin cambiar el volumen. Un IP alto significa que hay demasiada arcilla o coloide en el suelo. Su valor es cero si LP es mayor o igual que LL. El Índice de Plasticidad es una buena guía para la compresibilidad. Cuanto más alto sea el IP, mas compresible será el suelo.

✓ Gráfico de Plasticidad para Suelos de Grano Fino

El Límite Líquido y el índice de plasticidad se pueden relacionar con las propiedades de suelos arcillosos y limosos. Esta correlación se expresa en el diagrama de



plasticidad de Casagrande para suelos de grano fino y se basa en las siguientes consideraciones:

- A medida que aumenta el Límite Líquido del suelo, también aumenta su compresibilidad y plasticidad.
- Los valores LL= 30% y LL= 50% especifican las diferencias entre los grados de plasticidad de los suelos inorgánicos.
- Para los mismos valores de LL, la fuerza en seca de los suelos inorgánicos generalmente aumenta con el índice de plasticidad.

Figura 2

Carta de Plasticidad de Suelos Finos

Nota. Tomado de ASTM, D423.

c. Análisis Granulométrico

El análisis del tamaño de partículas se realiza tomando una cantidad medida de suelo seco para determinar los tamaños diversos de partículas y su cantidad. En éste método, las muestras de suelo se agitan a través de una serie de mallas con aberturas en etapas. En la tabla 9 se muestra una lista del número de malla convencional con sus respectivos tamaños de abertura. El suelo se seca en un horno y los grumos se rompen en pequeñas particulas antes de pasar a través de una malla. Después de la agitación manual, se mide la masa de suelo retenida en cada red y se expresa como porcentaje del peso total o materia seca total.

Tabla 9 *Tamices para Analisis Granulométrico del Suelo*

TAMAÑO NOMI	NAL DE TAMICES
Tamiz ASTM	Abertura(mm)
3"	75.000
2"	50.000
1 1/2"	37.500
1"	25.000
3/4"	19.000
3/8"	9.500
N°4	4.750
N°10	2.000
N°20	850 μm
N°40	425 μm
N°60	250 μm
N°140	106 μm
N°200	75 μm

Nota. Tomado de NTP, 339.128.

Con la adquisición de esta información, se realiza la curva de distribución granulométrica en el gráfico semi- logarítmico, donde las ordenadas indican el porcentaje de masa pasante y las abscisas indican el tamaño de las partículas de la muestra (mm).

El propósito de este método es obtener información que pueda usarse para determinar estas constantes del suelo:

- Coeficiente de Uniformidad
- Coeficiente de Curvatura
- Porcentaje de Gravas
- Porcentaje de Arenas

- Porcentaje de Finos
- SUCS
- Curva Granulométrica

d. Tamaño Efectivo, Coeficiente de Uniformidad y Coeficiente de Curvatura

Para comparar difentes suelos se usa las curvas granulométricas. Existen parámetros básicos del suelo donde esas curvas presentadas se usan para clasificar los suelos granulares.

- Diámetro Efectivo
- Coeficiente de Uniformidad
- Coeficiente de Curvatura

El diámetro efectivo esta definido por el 10% de finos de acuerdo al tamaño de las partículas. El Coeficiente de Uniformidad está dado por la relación:

Ecuación 4

Coeficiente de Uniformidad

$$C_u = \frac{D_{60}}{D_{10}}$$

Donde:

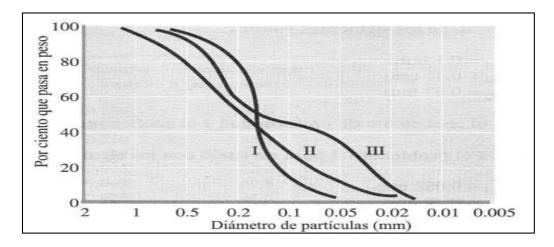
- C_u : Coeficiente de uniformidad
- D₆₀: Diámetro correspondiente al 60% de finos en la curva de distribución granulométrica

El Coeficiente de Curvatura se expresa como:

Ecuación 5

Coeficiente de Curvatura

$$C_s = \frac{(D_{30})^2}{D_{10} * D_{60}}$$


Donde:

- C_c : Coeficiente de curvatura
- D₁₀: Diámetro correspondiente al 10% de finos
- D₃₀: Diámetro correspondiente al 30% de finos
- D₆₀: Diámetro correspondiente al 60% de finos

Figura 3

Diferentes Tipos de Curvas Granulométricas

Nota. La figura 4 muestra la curva I, que identifica el suelo con los tamaños de grano más uniformes (suelo mal clasificado), la curva II muestra el suelo con una distribución de tamaño de partícula variable (suelo bien clasificado). El suelo bien graduado tiene un coeficiente de uniformidad (Cu) más alto, alrededor de 4 para grava y 6 para arena, el coeficiente de curvatura (Cc) para grava y arena entre 1 y 3. La curva III representa un suelo que puede tener una combinación de dos o fracciones clasificadas más uniformemente (granulometría discontínua). Tomado de Braja, 2013.

e. Peso Específico Relativo en los Sólidos

El peso especifico relativo de las partículas sólidas (Gs) es la relación entre peso en aire del volumen de un material, a una temperatura dada y el peso de idéntico volumen de agua a temperatura ambiente.

Para la realización de este ensayo, se inicia vaciando la muestra de suelo y el agua destilada dentro de la fiola, respectivamente. Las cantidades de agua destilada es de 250 ml hasta la marca indicada, posteriormente se procede a eliminar los vacíos (burbujas) colocando la fiola sobre una franela e inclinándola a 45°, para moverla levemente de un lado al otro. Una vez eliminado el aire se pesa la fiola mas la muestra y agua destilada. Este proceso se repitió tres veces para obtener resultados mas certeros.

Materiales y Equipos

Balanza

- Recipientes
- Fiola 250 ml
- Franela
- Olla
- Agua destilada

El Peso Específico de las partículas solidas en agua a una temperatura dada se define como:

Ecuación 6

Peso Específico del Suelo

$$G_s = \frac{M_o}{M_o + (M_a - M_b)}$$

Donde:

- G_s: Peso específico relativo de las partículas sólidas
- M_o: Masa de la muestra de suelo seco al horno (gr)
- M_a: Masa de fiola lleno de agua a temperatura ambiente (gr)
- M_b : Masa de fiola lleno con agua y suelo a temperatura ambiente (gr)

f. Densidad Relativa

Para calcular la densidad relativa, se requiere los resultados de densidades máximas, mínimas e in situ (o de campo), asimismo tener en cuenta la Norma (NTP, 339.138). Este concepto se utiliza para suelos granulares como arenas y gravas, para expresar esta relación entre el índice de vacíos in situ y los valores de *emáx* y *emín*. (Riquelme, 2016)

Ecuación 7

Densidad Relativa

$$D_r = \frac{e_{max} - e}{e_{max} - e_{min}}$$

Donde:

- Dr: Densidad relativa
- e: Relación de vacíos natural o in situ
- e_{max}: Relación de vacíos del suelo en la condición mas suelta
- e_{min}: Relación de vacíos del suelo en la condición mas densa

Según Braja (2013), menciona que la densidad relativa es usada para indicar la densidad de suelos granulares. Estas varian desde 0, para suelos sueltos hasta un máximo de 1 para suelos densos.

Tabla 10Descripción Cualitativa de Depósitos Granulares

DENSIDAD RELATIVA								
Suelo	Dr(%)	Angulo de Fricción φ (Grados)						
Muy Suelto	0 - 15	< 30						
Suelto	15 - 50	30 – 35						
Medio	50 - 70	35 – 40						
Denso	70 - 85	40 - 45						
Muy Denso	85 - 100	> 45						

Nota. Tomado de Braja, 2013.

Según Meyerhof el ángulo de fricción se puede obtener con las siguientes ecuaciones:

> 5% arena fina y limo	< 5% arena fina y limo
$\emptyset = 25 + 0.15Dr\%$	$\emptyset = 30 + 0.15Dr\%$

Nota. Tomado de Gonzalez, 2014.

✓ Densidad Mínima

Este ensayo determina el índice máximo de vacíos en los suelos, para realizar esta prueba se necesita de un molde metálico circular, del cual se halla su volumen y peso. Posteriormente se va vaciando la muestra en forma de espiral al molde hasta llenarlo por completo. Finalmente se enrasa con una regla metálica y se pesa el molde más muestra. Luego de haber realizado las actividades anteriores, se procede hacer la resta del molde, para obtener el peso de la muestra. Se hace este proceso tres veces por extracción.

Materiales y Equipos

Molde metálico circular

- Muestra del suelo
- Regla metálica
- Balanza electrónica

✓ Densidad Máxima

Este ensayo sirve para encontrar el índice mínimo de vacíos en el suelo, se necesita de un molde metálico circular, se toma las mismas medidas obtenidas en el ensayo de densidad mínima con respecto al molde. Posteriormente, se propone situar un ladrillo de techo como base del mismo molde ya que ayudará a absorber el agua que se utilizará en el ensayo. A continuación, se va colocando la muestra en 3 capas, esto depende de su altura, con un martillo de goma se va dando 25 golpes y para que el material se asiente humedecemos ligeramente con agua por cada capa y así eliminar vacíos. Por último, se pesa el molde con la muestra para poder determinar la densidad máxima, este procedimiento se realiza tres veces por calicata.

Materiales y Equipos

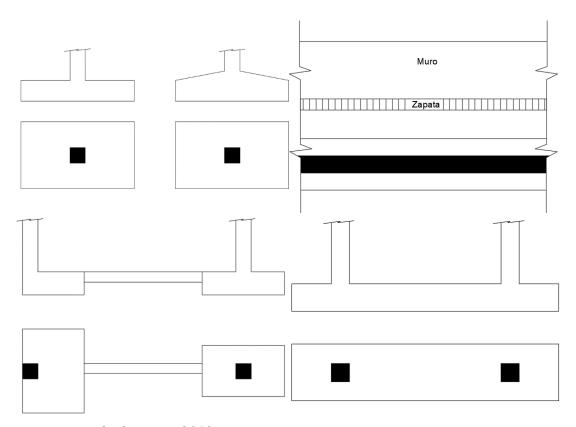
- Molde metálico circular
- Muestra del suelo
- Regla metálica
- Balanza electrónica con registro mayor a 5 kg
- Brocha
- Martillo de goma

1.4.2. Cimentaciones Superficiales

Según Braja (2013), una cimentación superficial suele ser mas utilizada en construcciones, pues tienen un costo menor debido a la carga que soporta y una mayor facilidad de ejecución. La cimentación correctamente diseñada transmite la carga de la estructura al suelo, sin alterar a este, de lo contrario provocaría un asentamiento excesivo o bien una falla por cortante provocando ciertos daños estructurales.

Ademas, se considera cimentación superficial a estructuras que tienen una profundidad entre 0.50 m y 4.00 m.

Son aquellas donde la profundidad y ancho es menor o igual a $5\left(\frac{D_f}{B} \le 5\right)$, siendo D_f la profundidad de la cimentación y B el ancho o diámetro de la misma. (E050, 2018).



Dependiendo del tipo de estructura y suelo encontrados, se usan diferentes tipos de cimentación superficial, como:

- **a. Zapata Aislada:** Es un tipo de cimentación superficial indicada para cimentar elementos aislados como pilares, considerada también una ampliación inferior de la columna extendiéndose la carga de la estructura sobre un área del suelo.
- **b. Zapata Corrida o Contínua:** Cimentación superficial donde las máximas cargas son recibidos por muros de mampostería o concreto, buscando asientos similares.
- c. Zapata Conectada: Tiene como ventaja soportar cargas concentradas en las columnas y al unirlas mediante tensores o vigas rígidas se anula el efecto de volcamiento, otorgando consistencia a la estructura.
- **d. Zapata Combinada:** Utilizada de apoyo cuando dos columnas están a una distancia cercana entre sí.

Figura 4

Tipos de Cimentaciones Superficiales

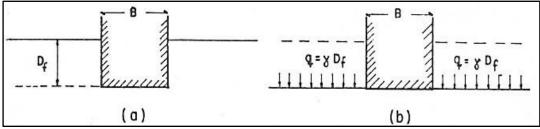
Nota. Tomado de Braja, 2013.

1.4.3. Capacidad Portante de Suelos

La capacidad de carga no solo es relacionado con las características del suelo, sino que requiere de la geometría de la cimentacion. La capacidad portante es la fuerza ejercida entre el suelo en cuestión y la cimentacion, tal que no se produzca asentamientos o falla por cortante del suelo. (Naranjo & Dranichnikoy, 2012) Según Terzaghi (1986), el suelo arriba del fondo de la cimentación es una sobrecarga semejante a $q=\gamma D_f$ (Donde $\gamma=$ peso específico del suelo), y para obtener la carga permisible o admisible se necesita abarcar un factor de seguridad (FS) a la capacidad de carga ultima $q_{per\ o\ adm}=\frac{q_u}{FS}$.

1.4.3.1. Factor de Seguridad

Es el rango que indica la capacidad de la estructura de soportar cargas sin fallar, la misma se diseña con una resistencia mayor a la requerida. Se sugiere emplear unf actor de seguridad (FS) de 3, siempre y cuando se traten de cargas estables y para cargas vivas esporádicas el valor puede ser entre 2-2.5. (Atencio & Angulo, 2020) Según Braja (2013), en la práctica se puede usar un factor de seguridad de incremento del esfuerzo netro sobre el suelo $q_{neta(adm)} = \frac{q_u - q}{FS}$.


1.4.3.2. Teoría de Capacidad de Carga de Karl Terzaghi

Terzaghi (1943), mostró una teoría para la evaluación de la capacidad de carga en cimentaciones superficiales, donde indica que, la profundidad de desplante de la cimentación es menor al ancho de la misma, sin embargo, investigadores posteriores sugirieron una profundidad de desplante que sea 4 veces el ancho de la cimentación. Terzaghi recomendó que un suelo bajo una cimentación contínua o rígida tiene un efecto dado por una sobrecarga equivalente $q = \gamma * D_f$ (donde γ es peso específico del suelo) arriba del fondo de la cimentación.

Figura 5

Semejanza del Suelo Sobre el Nivel de Desplante de un Cimiento.

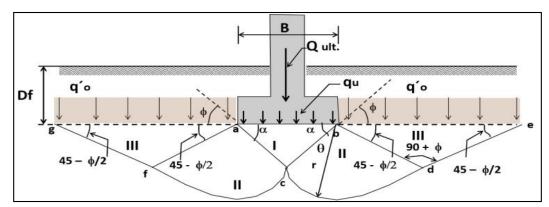
Nota. Tomado de Prandtl, 2018.

a. Zonas de Mecanismos de Falla

• ZONA I

Zona en forma de cuña que se mueve como un cuerpo rígido, con el cimiento vertical hacia abajo y sus límites forman un ángulo de $45^{\circ} - \frac{\emptyset}{3}$.

• ZONA II


Zona de deformación tangencial radial, de grandes deformaciones que se presenta y provocan un levantamiento de la zona III.

• ZONA III

Zona plástica que es empujada hacia arriba por el empuje pasivo provocado por la zona II.

Figura 6

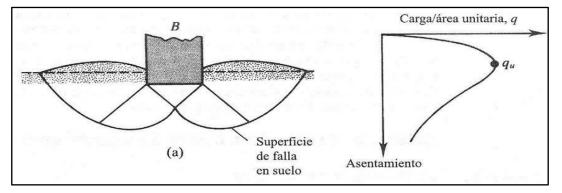
Falla por Capacidad de Carga en su Suelo Bajo una Cimentacion Rígida Contínua

Nota. Tomado de Terzaghi, 1943.

b. Tipos de Falla

Los tipos de falla o hundimiento de la cimentación son importantes para que el plan de cimentación utilizado en la estructura se calcule correctamente.

• Falla General por Corte del Suelo


Al presentarse esta falla, puede generar una superficie de rotura contínua que va desde la base de la zapata hasta llegar a un lado de la misma, dicha falla es mas frecuente en cohesivos o arenas densas tal como se muestra en la Figura 8. Si se aplica una carga o presión gradualmente a la cimentación, el asentamiento aumentaría variación de la carga por área unitaria.

Capacidad de Carga Última

Es el valor último por área unitaria de la fundación soportada al suelo en exceso de presión causada por el suelo que rodea a la cimentación.

Figura 7

Representación de Falla por Corte General y Diagrama de Deformación de Carga Última

Nota. Tomado de Braja, 2013.

Aplicando los estudios de equilibrio, Terzaghi indicó que la capacidad de carga última en la forma:

Ecuación 8

Capacidad Última – Terzaghi

$$q_u = c'Nc + qN_q + \frac{1}{2}\gamma BN_{\gamma}$$

Donde:

- N_c : Factor de capacidad de carga acorde a la cohesión
- N_q : Factor de capacidad de carga acorde a la sobrecarga
- N_{ν} : Factor acorde al peso del suelo

- c': Cohesión del suelo
- γ : Peso específico del suelo
- $q: \gamma D_f$ sobrecarga
- D_f: Profundidad de desplante de cimentación
- B: Ancho del cimiento

Factores de capacidad de carga N_c, N_q, N_γ

Los factores de capacidad de carga N_c , N_q , N_{ν} se definen mediante las expresiones:

Ecuación 9

Factor de Capacidad de Carga

acorde a la Sobrecarga

$$N_q = \frac{e^{2\left(\frac{3\pi}{4} - \frac{\emptyset'}{2}\right)tan\emptyset'}}{2cos^2\left(45 + \frac{\emptyset'}{2}\right)}$$

Ecuación 10

Factor de Capacidad de Carga acorde

a la Cohesión

$$N_c = \cot \emptyset' (N_q - 1)$$

Ecuación 11

Factor de Capacidad de Carga acorde al Peso del Suelo

$$N_{\gamma} = \frac{1}{2} \left(\frac{K_{p\gamma}}{\cos^2 \emptyset'} - 1 \right) tan \emptyset'$$

Donde:

- $K_{p\gamma}$: Coeficiente de empuje pasivo
- Ø': Ángulo de fricción interno

Terzaghi propuso fórmulas que se emplean para las cimentaciones cuadradas:

Ecuación 12

Capacidad Última – Terzaghi

$$q_u = 1.3cN_c + qN_q + 0.4\gamma BN_\gamma$$

Donde:

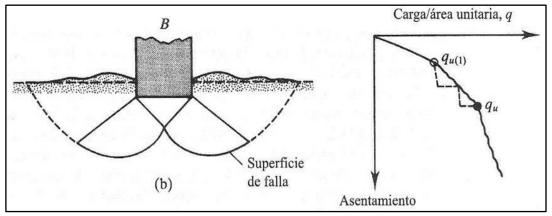
- c : Cohesión del suelo
- γ : Peso específico del suelo
- $q: \gamma D_f$
- D_f : Profundidad de desplante de cimentación
- B: Ancho del cimiento

Tabla 11Factores de Capacidad de Carga en Función del Ángulo de Fricción.

	FACTO	ORES DE	CAPACII	DAD DE	CARGA –	TERZAG	HI
Ø	$N_{\mathcal{C}}$	N_q	Νγ	Ø	N _C	N_q	Νγ
0	5.70	1.00	0.00	26	27.09	14.21	9.84
1	6.00	1.10	0.01	27	29.24	15.90	11.60
2	6.30	1.22	0.04	28	31.61	17.81	13.70
3	6.62	1.35	0.06	29	34.24	19.98	16.18
4	6.97	1.49	0.10	30	37.16	22.46	19.13
5	7.34	1.64	0.14	31	40.41	25.28	22.65
6	7.73	1.81	0.20	32	44.04	28.52	26.87
7	8.15	2.00	0.27	33	48.09	32.23	31.94
8	8.60	2.21	0.35	34	52.64	36.50	38.04
9	9.09	2.44	0.44	35	57.75	41.44	45.41
10	9.61	2.69	0.56	36	63.53	47.16	54.36
11	10.16	2.98	0.69	37	70.01	53.80	65.27
12	10.76	3.29	0.85	38	77.50	61.55	78.61
13	11.41	3.63	1.04	39	85.97	70.61	95.03
14	12.11	4.02	1.26	40	95.66	81.27	115.31
15	12.86	4.45	1.52	41	106.81	93.85	140.51
16	13.68	4.92	1.82	42	119.67	108.75	171.99
17	14.60	5.45	2.18	43	134.58	126.50	211.56
18	15.12	6.04	2.59	44	151.95	147.74	261.60
19	16.56	6.70	3.07	45	172.28	173.28	325.34
20	17.69	7.44	3.64	46	196.22	204.19	407.11
21	18.92	8.26	4.31	47	224.55	241.80	512.84
22	20.27	9.19	5.09	48	258.28	287.85	650.67
23	21.75	10.23	6.00	49	298.71	344.63	831.99
24	23.36	11.40	7.08	50	347.50	415.14	1072.80
25	25.13	12.72	8.34				

Nota. Tomado de Kumbhojkar, 1993.

• Falla por Corte Local


Representa una situación de nivel intermedio, pues presenta características de falla por corte general y de punzonamiento. El terreno se plastifica en bordes de la zapata y bajo de ella, sin que lleguen a formarse superficies continuas de rotura hasta la superficie.

Se presenta cuando el terreno está por encima de un suelo arenoso o sobre arcilla regularmente densa.

Al existir un aumento de carga "q" sobre la cimentación, el asentamiento se amplía proporcionalmente. Asimismo, se observa en la Figura 9 que la falla se amplifica gradualmente hacia los laterales de la cimentación (líneas discontínuas). Dicha cimentación al ser afectada por un movimiento enorme alcanzará el "qu" que sería la carga primera de falla.

Figura 8

Falla por Corte General en Función a la Capacidad de Carga Última.

Nota. Tomado de Braja, 2013.

De las ecuaciones ya mostradas anteriormente son válidas para fallas de tipo general pero Terzaghi propuso las correcciones siguientes:

Ecuación 13

Cimentación Corrida

$$q_u = \frac{2}{3}c'N_c + qN'_q + \frac{1}{2}\gamma BN'_\gamma$$

Ecuación 14

Cimentación Cuadrada

$$q_u = 0.867c'N_c + qN'_q + 0.4\gamma BN'_{\gamma}$$

Ecuación 15

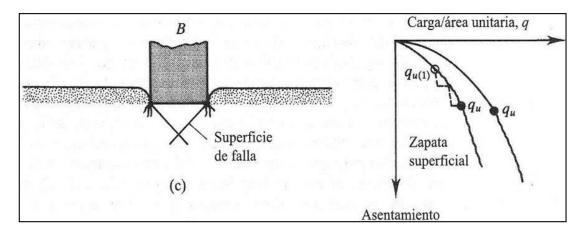
Cimentación Circular

$$q_u = 0.867c'N_c + qN'_q + 0.3\gamma BN'_{\gamma}$$

Tabla 12Factores de Carga en Función al Ángulo de Fricción.

	FACT	ORES DI	E CAPACI	DAD DE	CARGA –	TERZAGH	Ī
Ø'	N' _C	N'q	$N'\gamma$	Ø'	N'_{C}	N'q	N'γ
0	5.70	1.00	0.00	26	15.53	6.05	2.59
1	5.90	1.07	0.01	27	16.30	6.54	2.88
2	6.10	1.14	0.02	28	17.13	7.07	3.29
3	6.30	1.22	0.04	29	18.03	7.66	3.76
4	6.51	1.30	0.06	30	18.99	8.31	4.39
5	6.74	1.39	0.07	31	20.03	9.03	4.83
6	6.97	1.49	0.10	32	21.16	9.82	5.51
7	7.22	1.59	0.13	33	22.39	10.69	6.32
8	7.47	1.70	0.16	34	23.72	11.67	7.22
9	7.74	1.82	0.20	35	25.18	12.75	8.35
10	8.02	1.94	0.24	36	26.77	13.97	9.41
11	8.32	2.08	0.30	37	28.51	15.32	10.90
12	8.63	2.22	0.35	38	30.43	16.85	12.75
13	8.96	2.38	0.42	39	32.53	18.56	14.71
14	9.31	2.55	0.48	40	34.87	20.50	17.22
15	9.67	2.73	0.57	41	37.45	22.70	19.75
16	10.06	2.92	0.67	42	40.33	25.21	22.50
17	10.47	3.13	0.76	43	43.54	28.06	26.25
18	10.90	3.36	0.88	44	47.13	31.34	30.40
19	11.36	3.61	1.03	45	51.17	35.11	36.00
20	11.85	3.88	1.12	46	55.73	39.48	41.70
21	12.37	4.17	1.35	47	60.91	44.45	49.30
22	12.92	4.48	1.55	48	66.80	50.46	59.25
23	13.51	4.82	1.74	49	73.55	57.41	71.45
24	14.14	5.20	1.97	50	81.31	65.60	85.75
25	14.80	5.60	2.25				

Nota. Tomado de Braja, 2013.



Falla General por Corte del Suelo

Esta falla se caracteriza por tener un suelo bastante suelto, representándose la cargaasentamiento en la Figura 10. Una vez que se aumenta la carga, el suelo se oprime y
en seguida debajo del área de la zapata ocurre un desplazamiento vertical. Este
incremento de carga sobre la fundación genera una comprensión del suelo, ocasiona
una rotura vertical que se presenta por corte a su alrededor de la cimentación y casi
no se observa movimientos de este junto a la estructura manteniendo el equilibrio
tanto vertical como horizontal. Para conservar el traslado o circulación vertical de la
zapata se requiere un crecimiento contínuo de la carga vertical.

Figura 9

Falla por punzonamiento en función a una carga que se ejerce en el suelo.

Nota. Tomado de Braja, 2013.

1.4.3.3. Teoría de Meyerhof

Meyerhof (1963), considera los esfuerzos cortantes evolucionados en el suelo arriba del nivel de desplante de la base de cimiento, también consideró que las cimentaciones pueden poseer cargas inclinadas, quedando así la ecuación general:

Ecuación 16

Capacidad Última – Meyerhof

$$q_{u} = c'N_{c}F_{cs}F_{cd}F_{ci} + qN_{q}F_{qs}F_{qd}F_{qi} + \frac{1}{2}\gamma BN_{\gamma}F_{\gamma s}F_{\gamma d}F_{\gamma i}$$

Donde:

• c': Cohesión del suelo

 q: Esfuerzo efectivo al mivel de desplante de la base

• γ : Peso específico del suelo

■ B: Ancho de cimentación

• $F_{cs}F_{qs}F_{\gamma s}$: Componentes de forma

• $F_{cd}F_{qd}F_{\gamma d}$: Componentes de profundidad

• $F_{ci}F_{qi}F_{\gamma i}$: Componentes por inclinación de carga

• $N_c N_q N_{\gamma}$: Componentes de capacidad de carga

Los componentes de carga que se presentarán a continuación, fueron sugeridos y modificados por (Vesic, 1973), quien mencionó que el ángulo α es mas próximo a $45^{\circ} - \frac{\emptyset}{2}$ que a \emptyset , como originalmente fue propuesto por Terzaghi.

•
$$N_q = tan^2 \left(45 + \frac{\emptyset}{2}\right) e^{\pi tan\emptyset'}$$

•
$$N_{\gamma} = 2(N_q + 1)tan\emptyset'$$

•
$$N_c = (N_q - 1)cot\emptyset'$$

Tabla 13Factores de Carga en Función del Ángulo de Fricción Interno.

Ø'	N_c	N_q			FACTORES DE CAPACIDAD DE CARGA - MEYERHOF										
		1 V q	N_{γ}	Ø'	N_c	N_q	N_{γ}								
0	5.14	1.00	0.00	26	22.25	11.85	12.54								
1	5.38	1.09	0.07	27	23.94	13.20	14.47								
2	5.63	1.20	0.15	28	25.80	14.72	16.72								
3	5.90	1.31	0.24	29	27.86	16.44	19.34								
4	6.19	1.43	0.34	30	30.14	18.40	22.40								
5	6.49	1.57	0.45	31	32.67	20.63	25.99								
6	6.81	1.72	0.57	32	35.49	23.18	30.22								
7	7.16	1.88	0.71	33	38.64	26.09	35.19								
8	7.53	2.06	0.86	34	42.16	29.44	41.06								
9	7.92	2.25	1.03	35	46.12	33.30	48.03								
10	8.35	2.47	1.22	36	50.59	37.75	56.31								

]	FACTORI	ES DE CA	PACIDA	D DE C	ARGA - M	EYERH(OF
Ø'	N_c	N_q	N_{γ}	Ø'	N_c	N_q	N_{γ}
11	8.80	2.71	1.44	37	55.63	42.92	66.19
12	9.28	2.97	1.69	38	61.35	48.93	78.03
13	9.81	3.26	1.97	39	67.87	55.96	92.25
14	10.37	3.59	2.29	40	75.31	64.20	109.41
15	10.98	3.94	2.65	41	83.86	73.90	130.22
16	11.63	4.34	3.06	42	93.71	85.38	155.55
17	12.34	4.77	3.53	43	105.11	99.02	186.54
18	13.10	5.26	4.07	44	118.37	115.31	224.64
19	13.93	5.80	4.68	45	133.88	134.88	271.76
20	14.83	6.40	5.39	46	152.10	158.51	330.35
21	15.82	7.07	6.20	47	173.64	187.21	403.67
22	16.88	7.82	7.13	48	199.26	222.31	496.01
23	18.05	8.66	8.20	49	229.93	265.51	613.16
24	19.32	9.60	9.44	50	266.89	319.07	762.89
25	20.72	10.66	10.88				

Nota. Tomado de Meyerhof, 1963.

• Factores de Forma, Profundidad e Inclinación

Ecuación 17

(Debeer, 1970) Factor de Forma

$$F_{cs} = 1 + rac{BN_q}{LN_c}$$

$$F_{qs} = 1 + rac{B}{L}tan\emptyset$$

$$F_{\gamma s} = 1 - rac{B}{L}$$

Ecuación 18

(Hansen, 1970) Factor de Profundidad

$$\frac{D_f}{B} < 1$$

$$F_{cd} = 1 + 0.4 \frac{D_f}{B}$$

$$F_{qd} = 1 + 2tan\emptyset(1 - sin\emptyset)^2 \frac{D_f}{B}$$

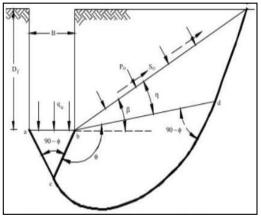
$$\frac{D_f}{B} > 1$$

$$F_{cd} = 1 + 0.4 tan \emptyset^{-1} \frac{D_f}{R}$$

$$F_{qd} = 1 + 2tan\phi(1 - sin\phi)^2 tan\phi^{-1} \frac{D_f}{B}$$

Ecuación 19

(Hanna & Meyerhof, 1981) Factor de Inclinación


$$F_{csi} = F_{qi} = \left(1 - \frac{\beta}{90^{\circ}}\right)^2$$

$$F_{\gamma i} = \left(1 - \frac{\beta}{\phi}\right)^2$$

$$F_{\gamma s}=1$$

Figura 10

Modelo de Falla Según Meyerhof

Nota. Tomado de Quezada, 2017.

Donde:

- β : Ángulo de inclinación de carga
- Ø : Ángulo de fricción del suelo
- D_f : Profundidad de cimentación
- B: Ancho de cimentación

1.4.3.4. Teoría de Hansen

Según Hansen (1970), considera aspectos complementarios a la fórmula de Meyerhof para el cálculo de capacidad portante cuando $\emptyset > 0$, es :

Ecuación 20

Capacidad Última – Hansen

$$q_u = c'N_cF_{sc}F_{dc}F_{ic}F_{gc}F_{bc} + qN_qF_qF_{dq}F_{iq}F_{gq}F_{bq} + \frac{1}{2}\gamma BN_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i}F_{\gamma g}F_{\gamma b}$$

Para los factores de carga, se considera las siguientes expresiones:

- N_a y N_c , se mantienen según Meyerhof
- $N_{\gamma} = 1.5(N_q 1)tan\emptyset$

Para los factores de forma, se considera también:

- $S_c y S_v$, se mantienen según Debeer
- $S_q = 1.0 + \frac{B}{L} tan \emptyset$

Para los factores de profundidad, las expresiones a considerar se muestran en la teoría de Meyerhof .

Los factores de inclinación de carga, terreno y base se consideran con un valor de 1, para $\emptyset > 0$.

1.4.3.5. Teoría de Vesic

Vesic (1975), presenta un método semejante al de Brinch Hansen. Concuerda factores de forma, profundidad, inclinación de carga, inclinación de terreno e inclinación de base. Se tiene en cuenta que los factores de carga son similares a la de Meyerhof, excepto de N_{ν} .

Conforme a los factores definidos previamente, se considera ecuaciones aplicadas a valores de \emptyset mayor a 0:

Ecuación 21

Capacidad Última – Vesic

$$q_{u} = c'N_{c}F_{cs}F_{cd}F_{ci}F_{gc}F_{bc} + qN_{q}F_{qs}F_{qd}F_{qi}F_{gq}F_{bq} + \frac{1}{2}\gamma BN_{\gamma}F_{\gamma s}F_{\gamma d}F_{\gamma i}F_{\gamma g}F_{\gamma d}F_{\gamma i}F_{\gamma i}F_{$$

Para los factores de carga, se considera las siguientes expresiones:

- N_q y N_c , se mantienen según Meyerhof
- $N_{\gamma} = 2.0(N_q + 1) tan \emptyset'$

Para los factores de forma, se considera también:

- $S_c y S_v$, se mantienen según Debeer
- $S_q = 1.0 + \frac{B}{L} tan \emptyset$

Para los factores de profundidad, se consideran las mismas expresiones de la teoría de Meyerhof .

Los factores de inclinación de carga, terreno y base se condiseran 1 como valor para $\emptyset > 0$.

1.5. Formulación del Problema

¿En qué medida existe diferencia significativa entre la microzonificación geotécnica para el diseño de cimentaciones superficiales en el Centro Poblado Menor Luz del Sol - Sector III, Ascope 2022?

1.6. Objetivos

1.6.1 Objetivo General

Determinar en qué medida existe diferencia significativa entre la microzonificación geotécnica para el diseño de cimentaciones superficiales en el Centro Poblado Menor Luz del Sol – Sector III, Acope 2022.

1.6.2 Objetivos Específicos

- Analizar la obtención de la capacidad portante en base a las propiedades mecánicas del suelo en el Centro Poblado Menor Luz del Sol – Sector III, Ascope 2022.
- Valorar en qué medida la resistencia al esfuerzo cortante permite el diseño de la geometría de la cimentación en el Centro Poblado Menor Luz del Sol – Sector III, Ascope 2022.
- Delimitar las zonas vulnerables de acuerdo a la capacidad de carga de la cimentación en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.

1.7. Hipótesis

1.7.1 Hipótesis General

H₀: No existe microzonificación geotécnica en el Centro Poblado Menor Luz del Sol
 Sector III.

Ha: Existe microzonificación geotécnica en el Centro Poblado Menor Luz del Sol – Sector III.

1.7.2 Hipótesis Específicos

Hipótesis Específica 1

H₀: El suelo del Centro Poblado Menor Luz del Sol – Sector III cumple con las propiedades mecánicas de un suelo medio a muy denso.

CAPITULO II: METODOLOGÍA

2.1. Enfoque de Investigación

Esta investigación muestra un enfoque cuantitativo, en un nivel descriptivo, utilizando unan metodología de observación directa en campo, para después realizar el análisis de las propiedades físicas-mecánicas que se encontrarán en el suelo con el fin de obtener un buen diseño de cimentaciones superficiales.

La presente investigación es de nivel descriptiva, ya que no se alterará la realidad del fenómeno en estudio, solo se describirá el estado en que se encuentran al momento de tomar las muestras de suelo para después analizarlas.

El tipo de diseño de la investigación es no experimental, debido a que toda la información será tomada tal cual ocurra en la realidad. Además, es transversal, dado que se recolectarán datos e informaciones con la finalidad de describir y analizar su comportamiento de cada una de ellas en un mismo tiempo.

2.2. Población y Muestra

2.2.1 Población

El área total que es objeto del presente estudio corresponde a 77.21 hectáreas aproximadamente (772087.00 m²). Según (E050, 2018) los puntos de exploración para urbanizaciones de viviendas son 3 cada hectárea de terreno, pero en nuestra investigación al ser un Centro Poblado en desarrollo se considera como criterio este cálculo para definir la cantidad de puntos de exploración. La población a desarrollar viene facilitada por la previa formulación:

Ecuación 22

Número de Calicatas a Realizar

Calicatas =
$$\frac{77.21 \text{ Ha}}{3}$$

Calicatas = 25.74 \cong 26

2.2.2 Muestra

La muestra para la presente investigación viene dada por suelos granulares con presencia de arena y porcentaje de finos menores al 5%. Siendo la población finita, la muestra viene dada por la siguiente expresión:

Ecuación 23

Población

$$n_0 = \frac{N * Z^2 * p * q}{E^2(N-1) + Z^2 * p * q}$$

Por lo tanto:

$$n_0 = \frac{26 * 1.96^2 * 0.97 * 0.03}{0.05^2 (26 - 1) + 1.96^2 * 0.97 * 0.03}$$
$$n_0 = 16.68$$

Donde:

- N : Número total de elementos que conforman la población
- Z : Grado de confiabilidad, 1.96 para el 5% de nivel de significancia
- E : Error asumido en el cálculo, 5%
- P : Probabilidad de que la población presenta las características
- Q : Probabilidad de que la población no presenta las características

El tamaño real de la muestra se expresa como:

$$n_0 = \frac{n_0}{1 + \frac{n_0}{N}}$$

$$n_0 = \frac{16.68}{1 + \frac{16.68}{26}}$$

$$n_0 = 10.16 \cong 10$$

2.3. Materiales, Instrumentos y Métodos

2.3.1. Materiales

Se utilizaron 300 kg de muestra de suelo, bolsas herméticas, sacos 50 kg, cucharon, agua destilada, ladrillo de techo 6 huecos, martillo de goma, bandejas metálicas, manguera, winchas, libros de Geotecnia, cuaderno de apuntes y lapiceros.

2.3.2. Instrumentos

Los instrumentos utilizados fueron: tamices de malla cuadrada, balanzas con precisión de 0.01 gr, balanzas con precisión de 0.1 gr, horno $110\pm5^{\circ}$ C, fiola 200 gr, molde de Proctor Estándar , GPS, cámara fotográfica.

2.3.3. Métodos

Para este proyecto de investigación se emplearán ensayos: Perforación o Extracción de material a cielo abierto: Empleados para la toma de datos como la estratigrafía visualmente, extraer muestreo para pruebas en laboratorio mencionados posteriormente, ensayos de Contenido de Humedad (NTP, 339.127), ensayos de Gravedad Específica (NTP, 339.131), ensayos de Análisis Granulométrico de suelos por tamizado (NTP, 339.128), determinación de los Límites de Consistencia - (NTP, 339.129), Densidad Máximas y Mínimas (NTP, 339.138), Densidad In Situ.

2.4. Procedimiento

2.4.1 Procedimiento de Recolección de Datos

En el trabajo de exploración primero se reconoció el sector de muestreo en la zona de trabajo a su vez se localizó en el plano los pozos de inspección, perforación o sondeo realizados con sus respectivas coordenadas.

Asimismo, se consultó a los habitantes el número de pisos que deseen construir.

2.4.2 Procedimiento, Tratamiento y Análisis de Datos

Los datos obtenidos mediante los ensayos de laboratorio de Mecánica de Suelos, se ingresaron al programa Excel, posteriormente se plasmaron los resultados en cuadros y mapas.

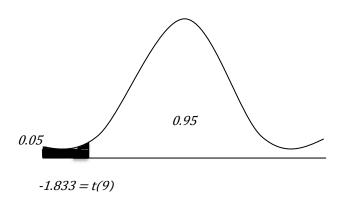
2.5. Análisis Estadístico

Para la hipótesis específica:

H₀: El suelo del Centro Poblado Menor Luz del Sol – Sector III cumplió con las propiedades mecánicas de un suelo medio a muy denso.

$$H_0 = 35^{\circ} \ge \varphi$$

$$H_a = 35^{\circ} < \varphi$$


$$t = \frac{x - \mu}{\sqrt{\frac{S^2}{n}}}$$

Por lo tanto;

$$t = \frac{40.563 - 35}{\sqrt{\frac{1.316^2}{10}}}$$
$$t = 13.368$$

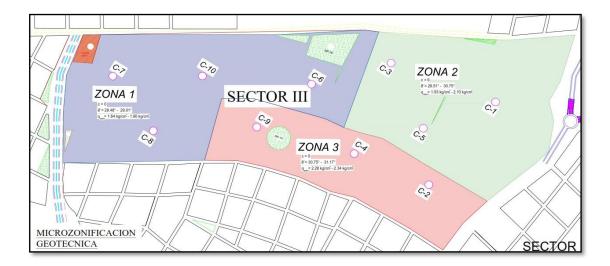
Donde:

- x : Promedio muestral
- μ : Promedio en la población
- S: Varianza
- n : Número de puntos estudiados, 10 calicatas

Los datos muestrales aportaron evidencia suficiente para aceptar H0 es decir el ángulo promedio es mayor e igual que 35°.

2.6. Aspectos Éticos

Nuestra investigación se rige bajo los principios de lograr el bien común, responsabilidad, honestidad, de respeto hacia todos los pobladores de la zona, autores de los estudios realizados anteriormente. Además, se trabajó con la herramienta Turnitin para cotejar nuestra información.

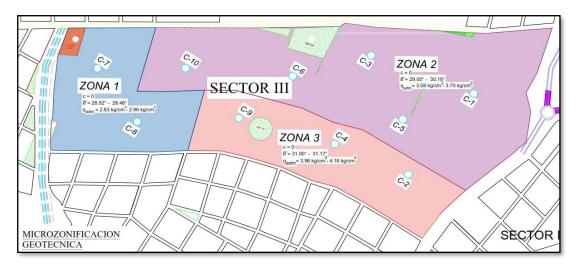

CAPITULO III. RESULTADOS

3.1 Microzonificación Geotécnica

De modo que se comprueba el objetivo general: "Determinar en qué medida existe diferencia significativa entre la microzonificación geotécnica para el diseño de cimentaciones superficiales en el Centro Poblado Menor Luz del Sol – Sector III, Ascope 2022", la cual se muestra en la figura 11 y 12.

Figura 11

Mapa de Microzonificación Geotécnica del Sector III, según Propiedades Mecánicas para Cimientos Corridos.


Nota. Según la Figura 12, muestra el sector zonificado según sus características mecánicas presentadas en cada calicata para el diseño de cimentaciones corridos.

Interpretación. En el sector III se divide en tres áreas, agrupadas de acuerdo a las características mecánicas y físicas del suelo, la carga admisible para la zona 1 con ángulos de fricción entre 28.48° - 29.01° va desde 1.64 kg/cm² - 1.80 kg/cm², la zona 2 con ángulos de fricción comprendidos entre 29.51° - 30.19° va desde 1.93 kg/cm² - 2.10 kg/cm² y la zona 3 con ángulos de fricción comprendidos entre 30.75° - 31.17° tiene un valor 2.28 kg/cm² - 2.34 kg/cm².

Figura 12

Mapa de microzonificación geotécnica del sector III, según propiedades mecánicas para cimientos aislados.

Nota. Según la Figura 13, muestra el sector zonificado según sus características mecánicas presentadas en cada calicata para el diseño de cimentaciones aisladas.

Interpretación. En el sector III se divide en tres áreas, agrupadas de acuerdo a las características mecánicas y físicas del suelo, la carga admisible para la zona 1 con ángulos de fricción entre 28.48° - 28.52° va desde 2.83 kg/cm² - 2.96 kg/cm², la zona 2 con ángulos de fricción comprendidos entre 29.00° - 30.19° va desde 3.08 kg/cm² - 3.70 kg/cm² y la zona 3 con ángulos de fricción comprendidos entre 31.00° - 31.17° tiene un valor 3.96 kg/cm² - 4.16 kg/cm².

3.2 Propiedades Mecánicas del Suelo

De tal manera que se comprueba el primer objetivo específico: "Analizar la obtención de la capacidad portante en base a las propiedades mecánicas del suelo en el Centro Poblado Menor Luz del Sol – Sector III, Ascope 2022", la cual se muestra en las tabla 14.

Tabla 14Propiedades Mecánicas del Suelo, según Relación de Vacíos

	RELACIÓN DE VACÍOS										
Calicata	emín	emáx	e	Dr (%)	φ	φ'	С				
C-1	0.37	0.85	0.707	70.723	40.61	29.75	0				
C-2	0.40	0.81	0.795	79.525	41.93	31.00	0				
C-3	0.35	0.76	0.689	68.893	40.33	29.51	0				
C-4	0.37	0.83	0.783	78.295	41.74	31.00	0				
C-5	0.37	0.78	0.741	74.082	41.11	30.19	0				
C-6	0.30	0.90	0.650	65.001	39.75	29.01	0				
C-7	0.29	0.70	0.612	61.224	39.18	28.52	0				
C-8	0.36	0.77	0.609	60.915	39.14	28.48	0				
C-9	0.36	0.85	0.814	81.447	42.22	31.17	0				
C-10	0.35	0.74	0.641	64.110	39.62	29.00	0				

Nota. Según la Tabla 14, muestra las propiedades mecánicas del suelo necesarias para calcular la capacidad portante.

Interpretación. La tabla 14 indica el ángulo de fricción y cohesión, para ello se tuvieron en cuenta la relación de vacíos mínimos y máximos de cada calicata, obtenidos mediante los ensayos de densidad saturada compacta y seca suelta. Asimismo, ya definida dichas propiedades se calculó la capacidad portante de cada calicata según Terzaghi, Meyerhof, Hansen y Vesic.

3.3 Resistencia al Esfuerzo Cortante

Por lo tanto, se constata el segundo objetivo específico: "Valorar en qué medida la resistencia al esfuerzo cortante permite el diseño de la geometría de la cimentación en el Centro Poblado Menor Luz del Sol – Sector III, Ascope 2022", la cual se muestra en la tabla 15.

Tabla 15

Resistencia al esfuerzo cortante del suelo, según sus propiedades gravimétricas y

volumétricas para cimentaciones corridas – aisladas.

ESFU	ESFUERZO CORTANTE PARA CIMENTACIONES AISLADAS									
Calicata	Df (m)	Ws (kN)	Vd (kN/m3)	$\sigma (kN/m^2)$	φ'	τf (kN/m ²)				
C-1	1.00	25.997	15.227	15.227	29.75	8.704				
	1.20			18.273		10.444				
	1.50			22.841		13.055				
C-2	1.00	26.389	14.699	14.699	31.00	8.832				
	1.20			17.639		10.599				
	1.50			22.049		13.248				
C-3	1.00	26.193	15.508	15.508	29.51	8.778				
	1.20			18.610		10.534				
	1.50			23.263		13.168				
C-4	1.00	25.898	14.526	14.526	31.00	8.728				
	1.20			17.431		10.473				
	1.50			21.788		13.092				
C-5	1.00	26.291	15.103	15.103	30.19	8.787				
	1.20			18.123		10.544				
	1.50			22.654		13.180				

ESFUERZO CORTANTE PARA CIMENTACIONES AISLADAS

Calicata	Df (m)	Ws (kN)	Vd (kN/m3)	$\sigma (kN/m^2)$	φ'	$\tau f (kN/m^2)$
C-6	1.00	26.095	15.815	15.815	29.00	8.769
	1.20			18.978		10.523
	1.50			23.722		13.153
C-7	1.00	25.212	15.638	15.638	28.52	8.498
	1.20			18.765		10.197
	1.50			23.457		12.746
C-8	1.00	26.193	16.277	16.277	28.48	8.831
	1.20			19.533		10.597
	1.50			24.416		13.246
C-9	1.00	25.997	14.327	14.327	31.17	8.667
	1.20			17.193		10.400
	1.50			21.491		13.000
C-10	1.00	25.898	15.781	15.781	29.00	8.748
	1.20			18.937		10.497
	1.50			23.672		13.121

Nota. Según la Tabla 15, presenta los parámetros necesarios para calcular el esfuerzo cortante según la ecuación de Mohr- Coulomb.

Interpretación. La tabla 15 muestra los valores de esfuerzo normal y resistencia al esfuerzo cortante del suelo con resepcto a sus propiedades gravimétricas y volumétricas. Obteniéndose valores para la zona 1 desde 8.00 kg/cm² - 13.00 kg/cm² para el esfuerzo cortante de acuerdo a su profundidad de desplante.

3.4 Zonas Vulnerables

De tal forma que se comprueba el tercer objetivo específico: "Delimitar las zonas vulnerables de acuerdo a la capacidad de carga de la cimentación en el Centro Poblado Menor Luz del Sol – Sector III, Ascope 2022", la cual se muestra en la tabla 16 y 17.

Tabla 16Capacidad de Carga Neta y Admisible según Terzaghi, Meyerhof, Hansen y Vesic para Edificaciones de 3 Pisos con Cimentaciones Corridas.

CAPACIDAD DE CARGA NETA – ADMISIBLE PARA CIMENTACIONES CORRIDAS

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm2)		qadm (kg	/cm2)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-1	100	0.60	2	17.790	2.720	2.435	1.981	1.967	2.156
		0.80	3	26.685	3.091	2.604	2.114	2.095	2.347
	120	0.60	2	17.790	2.667	2.821	2.298	2.283	2.472
		0.80	3	26.685	3.038	2.990	2.431	2.411	2.663
	150	0.60	3	26.685	4.070	3.400	2.772	2.758	2.947
		0.80		26.685	2.958	3.569	2.905	2.886	3.138
C-2	100	0.60	2	17.790	2.716	2.878	2.349	2.326	2.549
		0.80	3	26.685	3.087	3.082	2.516	2.485	2.782
	120	0.60	3	26.685	4.145	3.331	2.719	2.696	2.919
		0.80		26.685	3.033	3.535	2.886	2.854	3.152
	150	0.60	3	26.685	4.064	4.011	3.274	3.251	3.474
C-3	100	0.60	2	17.790	2.718	2.385	1.939	1.926	2.110
		0.80	3	26.685	3.089	2.549	2.068	2.050	2.296
		1.00		26.685	2.422	2.714	2.197	2.174	2.482
	120	0.60	2	17.790	2.665	2.763	2.249	2.236	2.421
		0.80	3	26.685	3.035	2.927	2.378	2.360	2.607
	150	0.60	3	26.685	4.067	3.330	2.715	2.702	2.887

		0.80			2.955	3.495	2.844	2.826	3.073
C-4	100	0.60	2	17.790	2.721	2.824	2.306	2.283	2.502
		0.80	3	26.685	3.092	3.024	2.469	2.438	2.731
	120	0.60	2	17.790	2.668	3.269	2.669	2.646	2.865
		0.80	3	26.685	3.039	3.469	2.832	2.801	3.094
	150	0.60	3	26.685	4.072	3.937	3.213	3.190	3.410
C-5	100	0.60	2	17.790	2.717	2.598	2.116	2.099	2.300
		0.80	3	26.685	3.088	2.780	2.261	2.238	2.506
		1.00			2.421	2.961	2.406	2.377	2.713
	120	0.60	2	17.790	2.663	3.009	2.453	2.435	2.637
		0.80	3	26.685	3.034	3.191	2.598	2.574	2.843
	150	0.60	3	26.685	4.066	3.625	2.957	2.940	3.141
C-6	100	0.60	2	17.790	2.719	2.229	1.810	1.800	1.972
		0.80			1.978	2.382	1.927	1.913	2.144
		1.00	3	26.685	2.423	2.535	2.045	2.027	2.315
	120	0.60	2	17.790	2.666	2.584	2.102	2.091	2.264
		0.80	3	26.685	3.036	2.736	2.219	2.205	2.435
		1.00			2.369	2.889	2.336	2.319	2.607
	150	0.60	2	17.790	2.586	3.115	2.539	2.528	2.701
		0.80	3	26.685	2.957	3.268	2.656	2.642	2.873
C-7	100	0.60	2	17.790	2.728	2.038	1.653	1.644	1.802
		0.80			1.987	2.176	1.758	1.747	1.957
		1.00	3	26.685	2.432	2.315	1.863	1.849	2.112
		1.20			1.987	2.453	1.968	1.951	2.267
	120	0.60	2	17.790	2.677	2.362	1.920	1.912	2.070
		0.80	3	26.685	3.047	2.501	2.025	2.014	2.225
		1.00			2.380	2.639	2.130	2.116	2.380
	150	0.60	2	17.790	2.600	2.849	2.322	2.313	2.471
		0.80	3	26.685	2.970	2.987	2.427	2.415	2.626
C-8	100	0.60	2	17.790	2.718	2.1069	1.7087	1.7002	1.8636

			0.80			1.977	2.2500	1.8170	1.8057	2.0236
			1.00	3	26.685	2.422	2.3931	1.9253	1.9112	2.1836
	12	20	0.60	2	17.790	2.665	2.4425	1.9854	1.9769	2.1404
			0.80	3	26.685	3.035	2.5856	2.0937	2.0824	2.3003
			1.00			2.368	2.7286	2.2021	2.1879	2.4603
	15	50	0.60	2	17.790	2.585	2.9458	2.4005	2.3920	2.5555
			0.80	3	26.685	2.955	3.0889	2.5088	2.4975	2.7154
C	C-9 10	00	0.60	2	17.790	2.720	2.8995	2.3682	2.3435	2.5685
			0.80	3	26.685	3.091	3.1054	2.5374	2.5044	2.8044
	12	20	0.60	3	26.685	4.150	3.3559	2.7403	2.7156	2.9406
			0.80			3.038	3.5617	2.9095	2.8766	3.1765
	15	50	0.60	3	26.685	4.070	4.0404	3.2985	3.2738	3.4988
C-	-10 10	00	0.60	2	17.790	2.721	2.2126	1.7964	1.7860	1.9575
			0.80			1.980	2.3640	1.9129	1.8990	2.1277
			1.00	3	26.685	2.425	2.5155	2.0294	2.0120	2.2979
	12	20	0.60	2	17.790	2.668	2.5643	2.0858	2.0754	2.2469
			0.80	3	26.685	3.039	2.7157	2.2023	2.1884	2.4171
			1.00			2.372	2.8671	2.3188	2.3014	2.5873
	15	50	0.60	2	17.790	2.589	3.0918	2.5199	2.5095	2.6810
			0.80	3	26.685	2.960	3.2432	2.6364	2.6225	2.8512

Nota. Según la Tabla 16, teniendo en cuenta la capacidad portante se compara la carga neta con la carga admisible para cimentaciones corridas.

Interpretación. La tabla 16 indica la capacidad de carga neta que debe resistir el suelo y la capacidad admisible de cada calicata según Terzaghi, Meyerhof, Hansen y Vesic. Se puede observar que, de acuerdo a la profundidad de desplante y base de la cimentación, la capacidad admisible es menor que la capacidad neta, identificanto así la zona más vulnerable según la ubicación de las calicatas; considerando un sistema de albañilería para viviendas de 3 pisos más azotea.

Tabla 17Capacidad de Carga Neta y Admisible según Terzaghi, Meyerhof, Hansen y Vesic para Edificaciones de 4 Pisos con Cimentaciones Aisladas.

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)	qadm (kg/cm²)			
						Terzaghi	Meyerhof	Hansen	Vesic
C-1	100	1.10	4	65.150	5.139	2.672	3.581	3.415	3.773
		1.30			3.610	2.807	3.560	3.396	3.787
	120	1.10	4	65.150	5.086	3.058	4.140	3.947	4.332
		1.30	5	82.260	4.569	3.193	4.302	4.102	4.528
	150	1.10	4	65.150	5.007	3.636	5.184	4.940	5.376
C-2	100	1.10	4	65.150	5.135	3.163	4.272	4.046	4.492
		1.30	5	82.260	4.618	3.326	4.254	4.031	4.514
	120	1.10	4	65.150	5.081	3.616	4.936	4.675	5.155
	150	1.10	5	82.260	6.415	4.297	6.169	5.842	6.389
C-3	100	1.10	4	65.150	5.137	2.615	3.500	3.341	3.689
		1.30			3.608	2.747	3.479	3.322	3.702
	120	1.10	4	65.150	5.084	2.993	4.047	3.863	4.236
		1.30	5	82.260	4.567	3.125	4.205	4.014	4.428
	150	1.10	5	82.260	6.418	3.560	5.069	4.836	5.257
C-4	100	1.10	4	65.150	5.140	3.104	4.192	3.971	4.408
		1.30	5	82.260	4.623	3.264	4.175	3.956	4.430
	120	1.10	4	65.150	5.087	3.549	4.844	4.588	5.060
	150	1.10	5	82.260	6.422	4.217	6.055	5.734	6.270
C-5	100	1.10	4	65.150	5.136	2.852	3.834	3.647	4.036
		1.30	5	82.260	4.619	2.997	3.814	3.629	4.053
	120	1.10	4	65.150	5.083	3.263	4.431	4.215	4.633
	150	1.10	5	82.260	6.416	3.879	5.545	5.273	5.747
C-6	100	1.10	4	65.150	5.138	2.443	3.260	3.120	3.438
		1.30			3.609	2.565	3.237	3.099	3.448
	120	1.10	4	65.150	5.085	2.797	3.770	2.974	3.949
		1.30			3.556	2.919	3.916	3.042	4.127
	150	1.10	4	65.150	5.005	3.329	4.725	4.519	4.904
		1.30	5	82.260	4.488	3.451	4.714	4.510	4.925

C-7	100	1.10	4	65.150	5.147	2.232	2.968	2.847	3.255
		1.30			3.618	2.342	2.945	2.826	3.262
		1.60	5	82.260	2.976	2.508	2.952	2.834	3.315
	120	1.10	4	65.150	5.096	2.556	3.433	3.292	3.738
		1.30			3.567	2.667	3.566	3.420	3.907
	150	1.10	4	65.150	5.019	3.043	4.306	4.127	4.644
		1.30	5	82.260	4.502	3.154	4.294	4.117	4.663
C-8	100	1.10	4	65.150	5.137	2.307	3.068	2.943	3.238
		1.30			3.608	2.422	3.044	2.922	3.246
	120	1.10	4	65.150	5.084	2.643	3.549	3.404	3.720
		1.30			3.555	2.757	3.686	3.536	3.887
	150	1.10	4	65.150	5.004	3.146	4.451	4.267	4.621
		1.30	5	82.260	4.487	3.261	4.438	4.257	4.640
C-9	100	1.10	4	65.150	5.139	3.188	4.309	4.078	4.529
		1.30			3.610	3.352	4.293	4.063	4.553
	120	1.10	4	65.150	5.086	3.644	4.978	4.710	5.198
		1.30	5	82.260	4.569	3.809	5.175	4.897	5.435
	150	1.10	5	82.260	6.421	4.329	6.221	5.885	6.441
C-10	100	1.10	4	65.150	5.140	2.425	3.235	3.096	3.412
		1.30			3.611	2.546	3.212	3.076	3.422
	120	1.10	4	65.150	5.087	2.776	3.741	3.580	3.919
		1.30	5	82.260	4.571	2.897	3.886	3.719	4.096
	150	1.10	4	65.150	5.008	3.304	4.689	4.485	4.866

Nota. Según la Tabla 17, teniendo en cuenta la capacidad portante se compara la carga neta con la carga admisible para cimentaciones aisladas.

Interpretación. La tabla 17 indica la capacidad de carga neta que debe resistir el suelo y muestra también la capacidad admisible de cada calicata según Terzaghi, Meyerhof, Hansen y Vesic, agrupadas de acuerdo a la microzonificación realizada. Teniendo en cuenta la profundidad de desplante y geometría de la cimentación, se puede observar que la capacidad admisible no es lo suficientemente alta para poder soportar cargas que posee una zapata central orientada para viviendas de 4 pisos como mínimo más azotea.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión:

• De acuerdo a Carranza y Ponce (2017) establecieron parámetros mecánicos (ángulo de fricción, cohesión, cohesión, profundidad de desplante) para el cálculo de capacidad portante, siendo éstas indispensables para delimitar la zona en 4 áreas. Lo que **concuerda** con la tesis mencionada y nuestro estudio realizado es que se empleó e identificó las mismas características para zonificar y a su vez los valores encontrados de la capacidad portante en ambos casos son cercanos, debido a que el suelo de los dos estudios es una grava bien graduada GW. De la mano se propone el diseño en cimentaciones superficiales, tal como se muestra en la Figura 12 y 13, cumpliendo así el primer objetivo de que la microzonificación geotécnica permite diseñar cimentaciones superficiales.

Limitaciones: El acceso a la zona es con movilidad privada, ya que no hay alguna línea de transporte público que nos traslade directo al área de estudio. Los habitantes no nos permitían acceder a sus terrenos con facilidad.

Implicancias: La zona de investigación es un centro poblado, por lo que se optó tomar nuestra área como posible habilitación urbana para encontrar el número de puntos exploratorios.

Según nuestro resultado de la Tabla 14 señala las propiedades mecánicas del suelo a través de relación máximas y mínimas, densidad relativa, ángulo de fricción y cohesión. Mientras que Astocondor (2020) obtuvo estas cualidades mecánicas del suelo a través del Ensayo de Corte Directo. Asimismo, González (2014) relacionó las propiedades del suelo densidad relativa y relación de vacíos con el ángulo de fricción interno y cohesión. Dichos parámetros sirvieron para calcular la capacidad portante a profundidades de desplante desde 1.00 hasta 2.00 m. Por lo que, estamos de acuerdo que los criterios mencionados en las investigaciones expuestas fueron indispensables para calcular la capacidad portante del suelo, decretando así que las propiedades mecánicas del suelo permiten obtener la capacidad portante.

Limitaciones: No se realizaron ensayos para el cálculo de capacidad de carga por temas económicos.

Implicancias: Se calculó el parámetro de ángulo de fricción por medio de ecuaciones de Meyerhof y Terzaghi, a través de la densidad relativa del suelo.

Como se mostró en el tercer resultado trabajado en la Tabla 15, cotejamos con la investigación de Apaza (2017), mediante el cálculo de la densidad relativa se obtuvo el parámetro de resistencia al esfuerzo cortante, ángulo de fricción. La investigadora refiere que, si bien es cierto no existe una propiedad que sea adecuada y única para la clasificación de suelos, sino que hay varias y a su vez son diferentes tanto para suelos granulares como finos, si se tiene como propiedades importantes la granulometría y densidad relativa para la obtención del ángulo de fricción. Estamos **conforme** ya que, los indicadores hallados en nuestra investigación se asemejan a los encontrados en el estudio mencionado puesto que, solo es necesario este parámetro para deducir la capacidad de carga última del suelo granular y por ende la geometría de la cimentación, a fin de evitar que dicha estructura sobre esfuerce al suelo y provoque la falla, ocasionando daños de importancia, especificando así que la resistencia al esfuerzo cortante permite el diseño de la geometría de la cimentación.

Limitaciones: No se realizaron ensayos para el cálculo resistencia al esfuerzo cortante.

Implicancias: Se calculó la resistencia al esfuerzo cortante por medio de ecuaciones, a través de la densidad relativa del suelo.

• En evidencia del cuarto resultado elaborado con las Tablas 16 y 17, comparamos y estamos **de acuerdo** con la investigación de Castillo (2017), la cual indica que según la capacidad portante del suelo se identificó las zonas con resistencias bajas, medias y altas. Considerando soluciones principalmente para la zona III que tiene valores de capacidad portante críticos. Tanto en la investigación mencionada como en la presente, la capacidad portante de los suelos es básica para poder establecer las zonas vulnerables del sector o lugar estudiado, precisando así las zonas vulnerables de acuerdo a la capacidad de carga de la cimentación.

4.2 Conclusiones:

Se realizó un mapa de microzonificación geotécnica indicando la ubicación de los 10 puntos de exploración en el Sector III del Centro Poblado Menor Luz del Sol, de las cuales se señala que:

- Se realizó la microzonificación geotécnica dividiendo el lugar estudiado en 3 zonas geotécnicas tanto para las cimentaciones corridas como para aisladas, delimitando dichas áreas según las características mecánicas del suelo, estas propiedades nos permitieron proponer diseños para las cimentaciones superficiales a diferentes profundidades de desplante, teniendo en cuenta la capacidad portante del suelo.
- Se determinaron las propiedades físico mecánicas del suelo tales como contenido de humedad, gravedad específica, análisis granulométrico, límites de consistencia, densidades máximas y mínimas, ángulo de fricción, cohesión; a profundidades de 3.00 m 3.20 m. De donde se concluye que, el suelo se define como una grava bien graduada con presencia de arena (GW) con un porcentaje de finos no mayor al 2% y no presenta nivel freático.
- De acuerdo a la densidad relativa del suelo en un rango de relación de vacíos, se calculó el parámetro de resistencia al esfuerzo cortante, ángulo de fricción teniendo valores desde 28.48° - 31.17° y al ser un suelo granular que no presentó plasticidad se asumió la cohesión con una estimación de 0.
- Se computó la capacidad portante de los suelos según las teorías de Terzaghi,
 Meyerhof, Hansen y Vesic, siendo las tres últimas las que proporcionaron resultados cercanos entre sí, eligiendo a Hansen como teoría principal para encontrar la capacidad portante de ambas cimentaciones superficiales ya que considera factores de inclinación, zapata y terreno.
- Se propone diversos dimensionamientos y profundidades de desplante tanto para cimentación corrida como aislada con respecto al peso de la edificación según su número de pisos. En nuestra investigación el diseño de cimentaciones corridas propuestas es en base a viviendas de un máximo de tres pisos con un sistema de albañilería mientras que el diseño de cimentaciones cuadradas es para un máximo de cinco pisos con sistema porticado, reconociendo así las zonas vulnerables de acuerdo a estos factores.

REFERENCIAS BIBLIOGRAFICAS

- Apaza , Y. (2017). Estimación del parámetro de resistencia al corte, ángulo de fricción en suelos granulares mediante ensayos de escala reducida. Juliaca [Tesis de título profesional, Universidad Peruana Unión] https://repositorio.upeu.edu.pe/handle/20.500.12840/920
- Astocondor, D. (2020). Estudio de zonificación de los suelos para fines de cimentación superficial del Sector Pómape del Distrito de Monsefú-Chiclayo. Lima [Tesis de título profesional, Universidad San Martín de Porres] https://repositorio.usmp.edu.pe/handle/20.500.12727/7468
- Carranza, I. y Ponce, A (2017). Estudio de zonificación geotecnica en el sector III del centro poblado El Milagro para el Diseño de Cimentaciones superficiales [Tesis de título profesional, Universidad Privada Antenor Orrego] https://repositorio.upao.edu.pe/handle/20.500.12759/3559
- Castillo, M.(2017). Estudio de zonificación en base a la determinación de la capacidad portante del suelo en las cimentaciones de las viviendas del casco urbano de la parroquia La Matriz del Cantón Patate Provincia de Tungurahua [Tesis de título profesional, Universidad Técnica de Ambato]
 - https://repositorio.uta.edu.ec/jspui/handle/123456789/25755
- Crespo, C. (2004). Mecánica de Suelos y Cimentaciones. Instituto Tecnológico y de Estudios Superiores de Monterrey.
- García, O. (2018). Cálculo, diseño estructural y construcción de un edificio de 8 plantas en Villa Bolivar A, Ciudad de El Alto [Tesis de título profesional, Universidad Mayor de San Andrés]
 - https://repositorio.umsa.bo/handle/123456789/19201

- González, G., De Barcia, E., Sulbaran, Y. y Ucar, R. (2014). Determinación del parámetro de resistencia, ángulo de fricción Interna (φ) y su relación con los parámetros densidad relativa (Dr) y relación de vacíos (e) en suelos granulares. *Ciencia e Ingeniería, Vol. 35* (Número 3), Pág. 3 6.
 - https://www.redalyc.org/pdf/5075/507550626003.pdf
- Gonzalez, E. (2013). Análisis y diseño de una cimentacion profunda a base de pilas y muros

 Milán de un rascacielos en el Valle de Mexico [Tesis de título profesional,

 Universidad Nacional Autónoma de México]

 http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/2519/

 Tesis.pdf?sequence=1&isAllowed=y
- Gonzalez, N. y Torres, J. (2018). Micronozificación geotecnica y diseño de cimentaciones superficiales en el sector Taquila de las Delicias, distrito de Moche, Provincia de Trujillo-La Libertad [Tesis de titulo profesional, Universidad Privada Antenor Orrego] https://repositorio.upao.edu.pe/handle/20.500.12759/4175
- Huanca, A. (2009). Mecánica de Suelos. HB Editores.
- Humadi, T. (2016). Analysis of Shallow Foundations in Three Different Regions In Iraq

 [Tesis de doctorado, Lulea University of Technology]

 http://www.diva-portal.org/smash/get/diva2:990402/FULLTEXT01.pdf
- Humadi, T., Al- Ansari, N., Edrees, T., Knuttson, S. (2016). *Bearing Capacity Affecting the Design of Shallow Foundation in Various Regions of Iraq Using SAP200 & SAFE softwares*[Tesis de doctorado, Lulea University of Technology]

 https://www.diva-portal.org/smash/get/diva2:982769/FULLTEXT01.pdf
- Lambe, T.(2004). Mecánica de suelos. Instituto de Massachusetts. https://www.academia.edu/36677655/Mecanica_de_Suelos_lambe

- Medina, J. y Rojas R. (2019). Microzonificación Geotecnica del sector tablazo I etapa del distrito de Huanchaco, Trujillo, La Libertad [Tesis de titulo profesional, Universidad Privada Antenor Orrego]
 - https://repositorio.upao.edu.pe/handle/20.500.12759/5640
- Olarte, L. (2019). *Mecánica de suelos aplicada a la verificacion de capacidad de carga para cimentaciones a emplearse en los talleres productivos del E.P. Cusco-Varones* [Tesis de título profesional, Universidad Nacional Federico Villarreal] https://repositorio.unfv.edu.pe/handle/20.500.13084/3208
- Periche, P. (2018). Obtención del ángulo de fricción interna mediante curvas granulométricas como alternativa al ensayo de corte directo, distrito Puerto Eten.

 Chiclayo [Tesis de título profesional, Universidad César Vallejo]

 https://repositorio.ucv.edu.pe/handle/20.500.12692/25684
- Riquetti, J. (2010). Dimensionamiento geotécnico de cimentaciones superficiales en las unidades geotécnicas de la Ciudad de Cuenca [Tesis de magister, Universidad de Cuenca]
 - http://dspace.ucuenca.edu.ec/handle/123456789/2582
- Riquelme, J. (2016). Estudio de correlaciones para densidad relativa y resistencia al corte de suelos granulares gruesos. Santiago de Chile [Tesis de título profesional, Universidad de Chile] https://repositorio.uchile.cl/bitstream/handle/2250/139272/Estudio-decorrelaciones-para-densidad-relativa-y-resistencia-al-corte-de-suelos-granularesgruesos.pdf?sequence=1

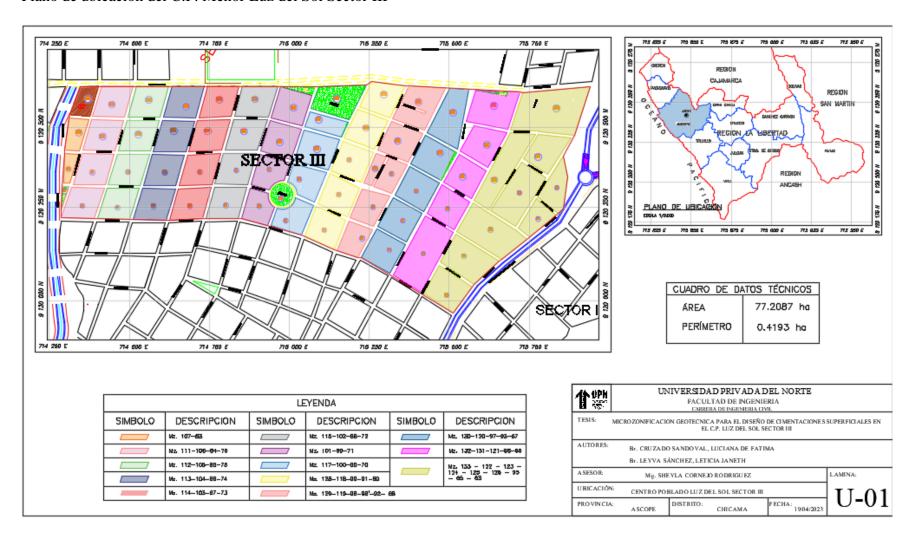
- Riquelme, J. y Dorador, L. (2014). Metodología para determinar densidades máxima y mínima en suelos granulares a partir de ensayos de laboratorio de escala reducida.

 VIII Congreso Chileno de Ingeniería Geotécnica, [Conference Paper], Santiago de Chile,

 Chile.

 https://www.researchgate.net/publication/270216113_Metodologia_para_determina r_densidades_maxima_y_minima_en_suelos_granulares_gruesos_a_partir_de_ensa yos_de_laboratorio_de_escala_reducida
- Sanchez, E. (2018). Caracterizacion geotecnica del centro norte de Quito relacionada con el uso y ocupacion del suelo por obras civiles, Quito, Ecuador [Tesis de magister, Pontificia Universidad Católica del Ecuador] http://repositorio.puce.edu.ec/handle/22000/14584
- Sánchez, W. (2019). Zonificación de la capacidad portante del suelo para construcción de edificaciones en la localidad de San Francisco del Rio Mayo, Distrito de Cuñumbuque, Provincia de Lamas, Departamento de San Martin [Tesis de título profesional, Universidad Nacional de San Martín] https://repositorio.unsm.edu.pe/bitstream/11458/3318/1/CIVIL%20-%20Winder%20S%C3%A1nchez%20Ruiz.pdf

ANEXOS


Anexo 1 *Matriz de Operacionalización de Variables*

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Instrumentación	Norma
	Los estudios de microzonificación geotécnica, consisten en la	Los estudios de		Clasificación SUCS	NTP 339.134	ASTM D - 2487
	división de un territorio urbano en	microzonificación se evaluarán mediante el		Limite líquido y plástico (gr)	NTP 339.129	ASTM D - 4318
	estudio de mecánica	Mecánica de Suelos	Granulometría	NTP 339.128	ASTM D - 422	
	de suelos los cual nos permitirán determinar las características y comportamiento de		Ensayo de densidad relativa y peso específico del suelo (gr)	NTP 339.138	ASTM D - 2049	
	para el desarrollo urbano. (Sifuentes, 2012, p.60)	los suelos en estudio.		Contenido de Humedad (%)	NTP 339.127	ASTM D - 2216
	Es el diseño realizado para soportar una estructura, así mismo	cimentaciones		Angulo de fricción (°)	Norma E 030	Norma E 030
Diseño de	transmite la carga de la misma a la tierra, vinculado también con el	superficiales se	Cálculos	Cohesión	Norma E 030	Norma E 030
superficiales suelo y Consider	suelo y la roca que están debajo. Considerando la geometría de la cimentación, que dependerá de la capacidad portante.	realizará de acuerdo a la profundidad de desplante, capacidad portante.		Peso unitario (kg/cm3)	NTP 339.139	ASTM C 29

Anexo 2

Plano de ubicación del C.P. Menor Luz del Sol Sector III

Anexo 3

Ubicación de las calicatas en el C.P. Menor Luz del Sol Sector III en Google Earth.

Perfil estratigráfico de la calicata 1, a una profundidad de 3 m.

UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.					
		Br. Lucio	ına de Fátima Cruzaa	lo Sandoval		
TESISTAS:		Br. I	Leticia Janeth Leyva S	Sánchez,		
UBICACIÓN:	(Centro Pob	lado Menor Luz del S	Sol - Sector III		
	P	PERFIL ES	STATIGRAFICO			
CALICATA:			C-1			
Prof. (m)	Tipo de excavación	Muestra	Descripción del material	Clasificación (SUCS)	Símbolo	
0.30			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico		
0.50	(TO		Grava bien			
1.00	A CIELO ABIERTO		graduada con arena, con poco finos			
1.50	MELO		menor al 5%, color beige pardo a			
2.00	AC	M-1	marrón, de poca humedad , con presencia de piedras	GW		
2.50			de 2" de tamaño distribuidos en la			
3.00			matriz arenosa de grano grueso.			
3.50						
NO PRESENTÓ) NIVEL DE A	AGUA FRI	EÁTICA A LOS 3.00) m DE PROFU	NDIDAD.	

Perfil estratigráfico de la calicata 2, a una profundidad de 3 m.

T UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.						
TESISTAS:			una de Fátima Cruzad				
LIDICA CIÓN			Leticia Janeth Leyva S				
UBICACIÓN:			plado Menor Luz del S TRATIGRÁFICO	Sol - Sector III			
CALICATA:	rı	EKFIL ES	C-2				
Prof.	Tipo de		Descripción del	Clasificación			
(m)	excavación	Muestra	material	(SUCS)	Símbolo		
0.30			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico			
0.50	Ţ		Grava bien				
1.00	A CIELO ABIERTC		graduada con arena, con poco finos				
1.50	TELO		menor al 5%, color beige pardo a	GW			
2.00	A C	M-2	marrón, de poca humedad, con presencia de piedras				
2.50			de 2" de tamaño distribuidos en la				
3.00			matriz arenosa de grano grueso.				
3.50							
NO PRESENTO	Ó NIVEL DE A	AGUA FR	EÁTICA A LOS 3.00	m DE PROFU	NDIDAD.		

Perfil estratigráfico de la calicata 3, a una profundidad de 3 m.

T UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.					
TESISTAS:			una de Fátima Cruzad			
LIDICA CIÓN.			Leticia Janeth Leyva S			
UBICACIÓN:			olado Menor Luz del S TRATIGRÁFICO	ol - Sector III		
CALICATA:	11	EKTIL ES	C-3			
Prof.	Tipo de		Descripción del	Clasificación		
(m)	excavación	Muestra	material	(SUCS)	Símbolo	
0.30			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico		
0.50	RTO		Grava bien			
1.00	A CIELO ABIERTC		graduada con arena, con poco finos			
1.50	IELO		menor al 5%, color beige pardo a	GW		
2.00	AC	M-2	marrón, de poca humedad, con presencia de piedras			
2.50			de 2" de tamaño distribuidos en la			
3.00			matriz arenosa de grano grueso.			
3.50						
NO PRESENTO	Ó NIVEL DE A	AGUA FR	EÁTICA A LOS 3.00	m DE PROFU	NDIDAD.	

Perfil estratigráfico de la calicata 4, a una profundidad de 3 m.

T UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.					
		Br. Lucio	ına de Fátima Cruzaa	lo Sandoval		
TESISTAS:		Br. I	Leticia Janeth Leyva S	Sánchez,		
UBICACIÓN:	(Centro Pob	olado Menor Luz del S	Sol - Sector III		
	Pl	ERFIL ES	TRATIGRÁFICO			
CALICATA:			C-4			
Prof. (m)	Tipo de excavación	Muestra	Descripción del material	Clasificación (SUCS)	Símbolo	
0.30			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico		
0.50	(TO		Grava bien			
1.00	A CIELO ABIERTO		graduada con arena, con poco finos			
1.50	MELO		menor al 5%, color beige pardo a	GW		
2.00	A C	M-2	marrón, de poca humedad, con presencia de piedras			
2.50			de 2" de tamaño distribuidos en la			
3.00			matriz arenosa de grano grueso.			
3.50						
NO PRESENTO	Ó NIVEL DE A	AGUA FR	EÁTICA A LOS 3.00	m DE PROFU	NDIDAD.	

Perfil estratigráfico de la calicata 5, a una profundidad de 3 m.

UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.						
TECICE A C.		Br. Lucia	ına de Fátima Cruzaa	lo Sandoval			
TESISTAS:		Br. L	Leticia Janeth Leyva S	Sánchez,			
UBICACIÓN:		Centro Pob	lado Menor Luz del S	Sol - Sector III			
	Pl	ERFIL ES	TRATIGRÁFICO				
CALICATA:			C-5				
Prof. (m)	Tipo de excavación	Muestra	Descripción del material	Clasificación (SUCS)	Símbolo		
0.30			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico			
0.50	lΟ						
1.00	A CIELO ABIERTC		Grava bien graduada con arena, con poco finos				
1.50	IELO /		menor al 5%, color beige pardo a				
2.00	AC	M-2	marrón, de poca humedad, con presencia de piedras	GW			
2.50			de 2" de tamaño distribuidos en la				
3.00			matriz arenosa de grano grueso.				
3.50							

Perfil estratigráfico de la calicata 6, a una profundidad de 3 m.

UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.						
TECICTAC.		Br. Lucia	ına de Fátima Cruzad	lo Sandoval			
TESISTAS:		Br. L	Leticia Janeth Leyva S	lánchez			
UBICACIÓN:	(Centro Pob	olado Menor Luz del S	ol - Sector III			
	P	ERFIL ES	STATIGRAFICO				
CALICATA:			C-6				
Prof. (m)	Tipo de excavación	Muestra	Descripción del material	Clasificación (SUCS)	Símbolo		
0.30			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico			
0.50	ľO						
1.00	A CIELO ABIERTO		Grava bien graduada con arena, con poco finos	GW			
1.50	IELO		menor al 5%, color beige pardo a				
2.00	AC	M-2	marrón, de poca humedad , con presencia de piedras				
2.50			de 2" de tamaño distribuidos en la				
3.00			matriz arenosa de grano grueso.				
3.50							
NO PRESENTÓ	NIVEL DE A	AGUA FRI	EÁTICA A LOS 3.00	m DE PROFU	NDIDAD.		

Perfil estatigrafico de la calicata 7, a una profundidad de 3 m.

IN UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.					
TESISTAS:		Br. Lucia	ına de Fátima Cruzad	lo Sandoval		
		Br. I	eticia Janeth Leyva S	Sánchez		
UBICACIÓN:			lado Menor Luz del S	Sol - Sector III		
	P	PERFIL ES	STATIGRAFICO			
CALICATA:			C-7			
Prof. (m)	Tipo de excavación	Muestra	Descripción del material	Clasificación (SUCS)	Símbolo	
0.30			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico		
0.50	IERTO		Grava bien graduada con arena,			
1.50	A CIELO ABIERTO		con poco finos menor al 5%, color beige pardo a marrón, de poca			
2.00	A (M-2	humedad , con presencia de piedras	GW		
2.50			de 2" de tamaño distribuidos en la			
3.00			matriz arenosa de grano grueso.			
3.50						
NO PRESENTÓ	Ó NIVEL DE A	AGUA FRI	EÁTICA A LOS 3.00) m DE PROFU	NDIDAD.	

Perfil estatigrafico de la calicata 8, a una profundidad de 3 m.

UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.						
TESISTAS:		Br. Lucia	ına de Fátima Cruzad	lo Sandoval			
		Br. I	Leticia Janeth Leyva S	Sánchez			
UBICACIÓN:			olado Menor Luz del S	Sol - Sector III			
	P	PERFIL ES	STATIGRAFICO				
CALICATA:			C-8				
Prof.	Tipo de excavación	Muestra	Descripción del material	Clasificación	Símbolo		
(m)	CACAVACIOII		material	(SUCS)			
0.35			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico			
0.50	.TO		Grava bien				
1.00	A CIELO ABIERTO		graduada con arena, con poco finos				
1.50	TELO		menor al 5%, color beige pardo a				
2.00	A C	M-2	marrón, de poca humedad , con presencia de piedras	GW			
2.50			de 2" de tamaño distribuidos en la				
3.00			matriz arenosa de grano grueso.				
3.50							
	Ó NIVEL DE A	AGUA FRI	EÁTICA A LOS 3.00) m DE PROFU	NDIDA		

Perfil estatigrafico de la calicata 9, a una profundidad de 3 m.

UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.						
TESISTAS:		Br. Lucia	ına de Fátima Cruzaa	lo Sandoval			
		Br. L	Leticia Janeth Leyva S	Sánchez			
UBICACIÓN:			olado Menor Luz del S	Sol - Sector III			
	P	ERFIL ES	STATIGRAFICO				
CALICATA:			C-9				
Prof.	Tipo de excavación	Muestra	Descripción del material	Clasificación	Símbolo		
(m)	excavacion		шачегтаг	(SUCS)			
0.30			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico			
0.50	TO		Crosso hion				
1.00	A CIELO ABIERTO		Grava bien graduada con arena, con poco finos				
1.50	MELO		menor al 5%, color beige pardo a				
2.00	A C	M-2	marrón, de poca humedad , con presencia de piedras	GW			
2.50			de 2" de tamaño distribuidos en la				
3.00			matriz arenosa de grano grueso.				
3.50							
NO PRESENTÓ	NIVEL DE A	AGUA FRI	EÁTICA A LOS 3.00	m DE PROFU	NDIDAD.		

Perfil estatigrafico de la calicata 10, a una profundidad de 3 m.

T UPN UNIVERSIDAD PRIVADA DEL NORTE	Microzonificación geotécnica para diseñar cimentaciones superficiales en el Centro Poblado Menor Luz del Sol Sector III, Ascope 2022.						
TESISTAS:			una de Fátima Cruzad				
TIPE CL CTÁN			Leticia Janeth Leyva S				
UBICACIÓN:			plado Menor Luz del S	Sol - Sector III			
CALICATA:	r	ERFIL E	STATIGRAFICO C-10				
Prof.	Tipo do			Clasificación			
(m)	Tipo de excavación	Muestra	Descripción del material	(SUCS)	Símbolo		
0.30			Capa de suelo orgánico con arena en estado suelto	Relleno orgánico			
0.50	SIERTO		Grava bien graduada con arena,				
1.50	A CIELO ABIERTC		con poco finos menor al 5%, color beige pardo a marrón, de poca				
2.00	A	M-2	humedad , con presencia de piedras	GW			
2.50			de 2" de tamaño distribuidos en la				
3.00			matriz arenosa de grano grueso.				
3.50							
NO PRESENTÓ	NO PRESENTÓ NIVEL DE AGUA FREÁTICA A LOS 3.00 m DE PROFUNDIDAD.						

CONTENIDO DE HUMEDAD

Anexo 14

Ensayo de Contenido de Humedad para la Calicata 1, a una profundidad de 3 m.

"Microzon	ificación geotécnica para a Menor Luz o	liseñar Iel Sol s	cimentacione sector III, As	es superficiales cope 2023"	en el Centr	o Poblado		
Tesistas:	Br. Luciana de Fátima (Br. Leticia Janeth L							
Ubicación:	Centro Poblado Men Sector I		del Sol -	Firma de en	cargado de	laboratorio		
				Norma:		27 /ASTM D 216		
Ensayo:	Contenido de I	Humedo	ad	Calicata/ Muestra:		/ M-2		
		Coordenadas:	715682.906 N	9120406.520 E				
1202-000	Decemberation	Und		Nº de tara		Promedio		
Estratos	Descripción		1A	1B	1C	W(%)		
	Peso Muestra Húmeda	gr	100.05	100.19	103.52			
Estrato 2	Peso Tara + Muestra Seca	gr	137.67	138.04	141.42			
	Peso de la Tara	gr	38.38	38.65	38.65	0.77		
Profundidad (m):	Peso de la Muestra Seca	gr	99.29	99.39	102.77	0.77		
0.10 2.00	Peso del Agua	gr	0.76	0.80	0.75			
0.30 - 3.00	Contenido de Humedad	%	0.77	0.80	0.73			

Anexo 15

Ensayo de Contenido de Humedad para la Calicata 2, a una profundidad de 3 m.

"Microzo	onificación geotécnica pa Poblado Menor I			el Centro		
Tesistas:	Br. Luciana de Fâtima (Br. Leticia Janeth L					
Ubicación:	Centro Poblado Men Sector I		del Sol -	Firma de es	cargado de	laboratorio
				Norma:	77775 157500	27 /ASTM D 216
Ensayo:	Contenido de l	Tumedo	ıd	Calicata/ Muestra:		/M-2
				Coordenadas:	715466.777 N	9120134.053 E
Estratos	Descripción	Und		Nº de tara		Promedio
Estratos	Descripcion	Una	2A	2B	2C	W(%)
	Peso Muestra Húmeda	gr	100.83	100.95	100.69	
Estrato 2	Peso Tara + Muestra Seca	gr	128.77	136.39	128.55	-
	Peso de la Tara	gr	28.76	36.17	28.7	0.00
Profundidad (m):	Peso de la Muestra Seca	gr	100.01	100.22	99.85	0.80
0.30 - 3.00	Peso del Agua	gr	0.82	0.73	0.84	
	Contenido de Humedad	%	0.82	0.73	0.84	

Ensayo de Contenido de Humedad para la Calicata 3, a una profundidad de 3 m.

Tesistas:	Br. Luciana de Fátin Sandoval Br. Leticia Janeth Ley		550084			
Ubicación:	Centro Poblado Menor Sector III		el Sol -	Firma de en	cargado de	laboratorio
				Norma:	B C C C C C C C C C C C C C C C C C C C	27 /ASTM D 216
Ensayo:	Contenido de Hu	medad	i	Calicata/ Muestra:	C-3	/ M-2
				Coordenadas:	715344.453 N	9120534.59: E
Estratos	Descripción	Und -		Nº de tara	Promedio W(%)	
Latinto	Description		3A	3B	3C	
	Peso Muestra Húmeda	gr	102.69	103.57	102.93	
Estrato 2	Peso Tara + Muestra Seca	gr	140.75	141.58	140.75	
	Peso de la Tara	gr	38.71	38.67	38.43	0.63
Profundidad (m):	Peso de la Muestra Seca	gr	102.04	102.91	102.32	0.62
0.35 3.00	Peso del Agua	gr	0.65	0.66	0.61	
0.35 - 3.00	Contenido de Humedad	96	0.64	0.64	0.60	

Ensayo de Contenido de Humedad para la Calicata 4, a una profundidad de 3 m.

Tesistas:	Br. Luciana de Fátir Sandoval		ızado			
l esistas:	Br. Leticia Janeth Le					
Ubicación:	Centro Poblado Meno Sector III		lel Sol -	Firma de en	cargado de	laboratorio
				Norma:		27 /ASTM D 216
Ensayo:	Contenido de Hi	umeda	d	Calicata/ Muestra:	C-4	/ M-2
				Coordenadas:	715224.74 N	9120236.43 E
	December 1/1	Und		Nº de tara	Promedic	
Estratos	Descripción	Una	4A	4B	4C	W(%)
	Peso Muestra Húmeda	gr	101.09	100.51	101.36	-
Estrato 2	Peso Tara + Muestra Seca	gr	129.17	136.05	129.33	
	Peso de la Tara	gr	28.76	36.17	28.7	
Profundidad (m):	Peso de la Muestra Seca	gr	100.41	99.88	100.63	0.68
0.20 2.00	Peso del Agua	gr	0.68	0.63	0.73	
0.30 - 3.00	Contenido de Humedad	%	0.68	0.63	0.73	

Anexo 18

Ensayo de Contenido de Humedad para la Calicata 5, a una profundidad de 3.50 m.

	nificación geotécnica p Poblado Menor						
Tesistas:	Br. Luciana de Fátima Br. Leticia Janeth		200				
Ubicación:	Centro Poblado Me Sector	BERTON AND ST	del Sol -	Firma de encargado de laboratorio			
				Norma:	8.000000000000000	27 /ASTM D 216	
Ensayo:	Contenido de	Humea	lad	Calicata/ Muestra:		/ M-2	
				Coordenadas:	715448.93 N	9120320.10 E	
	December 16-	Und	1	Nº de tara		Promedic	
Estratos	Descripción	Una	5A	5B	5C	W(%)	
	Peso Muestra Hůmeda	gr	102.59	103.57	102.92		
Estrato 2	Peso Tara + Muestra Seca	gr	140.75	141.58	140.75		
	Peso de la Tara	gr	38.71	38.67	38.43		
Profundidad (m);	Peso de la Muestra Seca	gr	102.04	102.91	102.32	0.59	
0.50 - 3.00	Peso del Agua	gr	0.55	0.66	0.6		
0.50 - 3.00	Contenido de Humedad	%	0.54	0.64	0.59		

Ensayo de Contenido de Humedad para la Calicata 6, a una profundidad de 3 m.

Tesistas:	Br. Luciana de Fátin Sandoval						
	Br. Leticia Janeth Le						
Ubicación:	Centro Poblado Menor Sector III		el Sol -	Firma de encargado de laboratorio			
				Norma:	100 CO 100 CO CO	27 /ASTM D 216	
Ensayo:	Contenido de Hi	umedaa	ł	Calicata/ Muestra:	C-6/M-2		
				Coordenadas:	715086.49 N	9120465.16 E	
Estratos	Descripción	Und		Nº de tara	Promedio		
Estratos		Una	6A	6B	6C	W(%)	
	Peso Muestra Húmeda	gr	101.15	102.25	103.45		
Estrato 2	Peso Tara + Muestra Seca	gr	139.1	140.17	140.98		
	Peso de la Tara	gr	38.55	38.55	38.21	520223	
Profundidad (m):	Peso de la Muestra Seca	gr	100.55	101.62	102.77	0.63	
0.25 2.60	Peso del Agua	gr	0.6	0.63	0.68		
0.35 - 3.00	Contenido de Humedad	%	0.60	0.62	0.66		

Ensayo de Contenido de Humedad para la Calicata 7, a una profundidad de 3 m.

Tesistas:	Br. Luciana de Fáti Sandova Br. Leticia Janeth Le	l				
Ubicación:	Centro Poblado Meno Sector II	r Luz o		Firma de en	cargado de	laboratorio
				Norma:		27 /ASTM D 216
Ensayo:	Contenido de H	umeda	d	Calicata/ Muestra:	C-7/M-2	
				Coordenadas:	714442.19 N	9120491.49 E
_	D	Und		Nº de tara	Promedic	
Estratos	Descripción		7A	7B	7C	W(%)
	Peso Muestra Húmeda	gr	100.92	100.87	101.05	
Estrato 2	Peso Tara + Muestra Seca	gr	128.89	136.18	129.02	
	Peso de la Tara	gr	28.76	36.17	28.7	
Profundidad (m):	Peso de la Muestra Seca	gr	100.13	100.01	100.32	0.79
0.20 2.00	Peso del Agua	gr	0.79	0.86	0.73	
0.30 - 3.00	Contenido de Humedad	%	0.79	0.86	0.73	

Anexo 21

Ensayo de Contenido de Humedad para la Calicata 8, a una profundidad de 3 m.

Tesistas:	Br. Luciana de Fátim Sandoval Br. Leticia Janeth Ley		CONT. 1			
Ubicación:	Centro Poblado Menor Sector III	Luz de	l Sol -	Firma de en	cargado de l	laboratorio
				Norma:		27 /ASTM D
Ensayo:	Contenido de Hu	medad		Calicata/ Muestra:	C-8	/ M-2
				Coordenadas:	714573.40 N	9120311.47 E
and the second	N	Und		Nº de tara	Promedic W(%)	
Estratos	Descripción		8A	8B	8C	5/20/5/2007
	Peso Muestra Hůmeda	gr	101.88	100.55	105.39	
Estrato 1	Peso Tara + Muestra Seca	gr	128.91	120.11	142.69	
	Peso de la Tara	gr	28.84	20.21	38.03	0.70
Profundidad (m):	Peso de la Muestra Seca	gr	100.07	99.9	104.66	0.70
(0000000	Peso del Agua	gr	0.74	0.65	0.73	
0.40 - 3.00	Contenido de Humedad	%	0.74	0.65	0.70	

Anexo 22

Ensayo de Contenido de Humedad para la Calicata 9, a una profundidad de 3 m.

Tesistas:	Br. Luciana de Fátin Sandoval Br. Leticia Janeth Le						
Ubicación:	Centro Poblado Menor Sector III	Luz de		Firma de en	cargado de	laboratorio	
	UNASCONDENSION N	-		Norma:		27 /ASTM D 216	
Ensayo:	Contenido de Hi	ımedaa	t	Calicata/ Muestra:	1700	/ M-2	
				Coordenadas:	714909.06 N	9120323.60 E	
Estratos	DIII	U. d		Nº de tara		Promedic	
Estratos	Descripción	Und	9A	9B	9C	W(%)	
	Peso Muestra Húmeda	gr	100.82	101.18	101.02		
Estrato 2	Peso Tara + Muestra Seca	gr	129.05	136.39	128.33		
	Peso de la Tara	gr	28.76	36.17	28.7	12020	
Profundidad (m):	Peso de la Muestra Seca	gr	100.29	100.22	99.63	0.96	
0.50 2.00	Peso del Agua	gr	0.53	0.96	1.39		
0.50 - 3.00	Contenido de Humedad	%	0.53	0.96	1.40		

Anexo 23

Ensayo de Contenido de Humedad para la Calicata 10, a una profundidad de 3 m.

Tesistas:	Br. Luciana de Fátin Sandoval Br. Leticia Janeth Le		7000			
Ubicación:	Centro Poblado Menor Sector III		el Sol -	Firma de en	cargado de	laboratorio
	3/10/10/10/10			Norma:		127 /ASTM D 216
Ensayo:	Contenido de Hu	medad	1	Calicata/ Muestra:	C-11	0 / M-2
				Coordenadas:	714732.54 N	9120491.84 E
	Description	Und		Nº de tara		Promedio W(%)
Estratos	Descripción		10A	10B	10C	
	Peso Muestra Húmeda	gr	100.9	101.35	100.4	
Estrato 2	Peso Tara + Muestra Seca	gr	128.67	136.39	128	
	Peso de la Tara	gr	28.76	36.17	28.7	
Profundidad (m):	Peso de la Muestra Seca	gr	99.91	100.22	99.3	1.08
0.70 7.00	Peso del Agua	gr	0.99	1.13	1.1	
0.30 - 3.00	Contenido de Humedad	%	0.99	1.13	1.11	

GRAVEDAD ESPECÍFICA DEL SUELO

Anexo 24

Ensayo de Gravedad Específica para la Calicata 1.

	onificación geotécnica para Centro Poblado Menor Luz					
Tesistas:	Br. Luciana de Fátima Cri Sandoval Br. Leticia Janeth Leyva Sa					
Ubicación:	Centro Poblado Menor Luz o Sector III		Firma de enc	Firma de encargado de laboratorio		
			Norma:		31 /ASTM D	
Ensayo:	Gravedad Especifica		Calicata/ Muestra:	1000	/M-2	
		,	Coordenadas:	715682.906 N	9120406.526 E	
	D	Und	1	Nº de tara		
Estratos	Descripción		1A	1B	1C	
	Capacidad de la Fiola	cm3	250.00	250.00	250.00	
Estrato 2	Peso de Suelo Seco	gr	100.00	100.00	100.00	
	Peso de Fiola +Muestra +Agua Destilada	gr	425.59	425.63	407.10	
Profundidad (m):	Temperatura	Co	20.00	20.00	20.00	
0.30 - 3.00	Peso de Fiola + Agua destilada	gr	363.50	363.96	344.17	
0.00 - 0.00	Corrección por Temperatura	k	1.00	1.00	1.00	
	Peso Especifico de Sólidos	gr/cm3	2.64	2.61	2.70	
	Gravedad Especifica Promedio - Gs	gr/cm3		2.65		

Ensayo de Gravedad Específica para la Calicata 2.

	Down U Water was reduced	8 1707 77			
Tesistas:	Br. Luciana de Fátima Cruzado S Br. Leticia Janeth Leyva Sán	ALL PARTY OF THE			
Ubicación:	Centro Poblado Menor Luz de Sector III	l Sol -	A	de encarga aboratorio	ido de
			Norma:		31 /ASTM L 54
Ensayo:	Gravedad Especifica		Calicata/ Muestra:	C-2	M-2
			Coordenadas:	715466.78 N	9120134.0 E
Estratos	Descripción	Und	1	Nº de tara	
Estratos	Descripcion	Und	2A	2B	2C
	Capacidad de la Fiola	cm3	250.00	250.00	250.00
Estrato 2	Peso de Suelo Seco	gr	100.00	100.00	100.00
	Peso de Fiola +Muestra +Agua Destilada	gr	428.65	428.31	414.24
Profundidad (m):	Temperatura	C°	20.00	20.00	20.00
0.30 3.00	Peso de Fiola + Agua destilada	gr	366.87	365.59	350.29
0.30 - 3.00 C	Corrección por Temperatura	k	1.00	1.00	1.00
	Dans Caralle 4- 84114	gr/cm3	2.62	2.68	2.77
	Peso Especifico de Sólidos	gircins	2.02	2.00	2.11

Ensayo de Gravedad Específica para la Calicata 3.

Tesistas:	Br. Luciana de Fátima Cruzado Sandoval				
	Br. Leticia Janeth Leyva Sánchez				
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III		Firma de encargado de laboratorio		
Ensayo:	Gravedad Específica		Norma:	NTP 339,131 /ASTM D 854	
			Calicata/ Muestra:	C-3	M-2
			Coordenadas:	715344.45 N	9120534.60 E
Estratos	Descripción	Und	N° de tara		
			3A	3B	3C
Estrato 2	Capacidad de la Fiola	cm3	250.00	250.00	250.00
	Peso de Suelo Seco	gr	100.00	100.00	100.00
	Peso de Fiola +Muestra +Agua Destilada	gr	429.58	430.01	407.01
Profundidad (m):	Temperatura	C°	20.00	20.00	20.00
0.75 7.00	Peso de Fiola + Agua destilada	gr	367.05	367.49	344.42
0.35 - 3.00	Corrección por Temperatura	k	1.00	1.00	1.00
	Peso Especifico de Sólidos	gr/cm3	2.67	2.67	2.67
	Gravedad Especifica Promedio - Gs	gr/cm3		2.67	

Ensayo de Gravedad Específica para la Calicata 4.

Tesistas:	Br. Luciana de Fátima Cruzado Sandoval Br. Leticia Janeth Leyva Sánchez				
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III		Firma de encargado de laboratorio		
Ensayo:	Gravedad Específica		Norma:	NTP 339.131 /ASTM D 854	
			Calicata/ Muestra:	C-4	M-2
			Coordenadas:	715224.74 N	9120236.4. E
Estratos	Descripción	Und	Nº de tara		
			4A	4B	4C
Estrato 2	Capacidad de la Fiola	cm3	250.00	250.00	250.00
	Peso de Suelo Seco	gr	100.00	100.00	100.00
	Peso de Fiola +Muestra +Agua Destilada	gr	429.82	429.71	406.01
Profundidad (m):	Temperatura	C°	20.00	20.00	20.00
0.30 - 3.00	Peso de Fiola + Agua destilada	gr	367.46	367.46	344.44
	Corrección por Temperatura	k	1.00	1.00	1.00
	Peso Especifico de Sólidos	gr/cm3	2.66	2.65	2.60
	Gravedad Especifica Promedio - Gs	gr/cm3		2.64	

Ensayo de Gravedad Específica para la Calicata 5.

Tesistas:	Br. Luciana de Fátima Cruzado Sandoval Br. Leticia Janeth Leyva Sánchez				
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III		Firma de encargado de laboratorio		
Ensayo:	Gravedad Especifica		Norma:	NTP 339.131 /ASTM D 854	
			Calicata/ Muestra:	C-5 / M-2	
			Coordenadas:	715448.93 N	9120320.10 E
Estratos	Descripción	Und	Nº de tara		
			5A	5B	5C
	Capacidad de la Fiola	cm3	250.00	250.00	250.00
Estrato 2	Peso de Suelo Seco	gr	100.00	100.00	100.00
	Peso de Fiola +Muestra +Agua Destilada	gr	430.16	429.81	407.45
Profundidad (m):	Temperatura	C°	20.00	20.00	20.00
0.50 - 3.00	Peso de Fiola + Agua destilada	gr	367.81	367.01	344.75
	Corrección por Temperatura	k	1.00	1.00	1.00
	Peso Especifico de Sólidos	gr/cm3	2.66	2.69	2.68
	Gravedad Especifica Promedio - Gs	gr/cm3	2.68		

Ensayo de Gravedad Específica para la Calicata 6.

	"Microzonificación geo superficiales en el Centro		Menor Luz		
Tesistas:	Br. Luciana de Fátima Cruzado Sandoval Br. Leticia Janeth Leyva Sánchez				
Ubicación:	Centro Poblado Menor Luz de Sector III	el Sol -	Firma de en	cargado de i	laboratorio
Ensayo:		Norma:		31 /ASTM D 54	
	Gravedad Especifica	Calicata/ Muestra:	C-6	/M-2	
			Coordenadas:	715086.49 N	9120465.16 E
	Daniel III	Und	1	N° de tara	
Estratos	Descripción	Chu	6A	6B	6C
	Capacidad de la Fiola	cm3	250.00	250.00	250.00
Estrato 2	Peso de Suelo Seco	gr	100.00	100.00	100.00
	Peso de Fiola +Muestra +Agua Destilada	gr	429.29	429.79	407.03
Profundidad (m):	Temperatura	C°	20.00	20.00	20.00
0.35 - 3.00	Peso de Fiola + Agua destilada	gr	367.01	367.27	344.50
0.33 - 3.00	Corrección por Temperatura	k	1.00	1.00	1.00
	Peso Especifico de Sólidos	gr/cm3	2.65	2.67	2.67
	Gravedad Especifica Promedio - Gs	gr/cm3		2.66	

Ensayo de Gravedad Específica para la Calicata 7.

	"Microzonificación geo superficiales en el Centro		Menor Luz		
Tesistas:	Br. Luciana de Fátima Cruz Sandoval Br. Leticia Janeth Leyva Sán				
Ubicación:	Centro Poblado Menor Luz de Sector III	el Sol -	Firma de en	cargado de i	laboratorio
	00000		Norma:		31 /ASTM D 54
Ensayo:	Gravedad Específica	Calicata/ Muestra:	C-7	/M-2	
			Coordenadas:	714442.19 N	9120491.49 E
11525500000000		Und	Nº de tara		
Estratos	Descripción		7A	7B	7C
	Capacidad de la Fiola	cm3	250.00	250.00	250.00
Estrato 2	Peso de Suelo Seco	gr	100.00	100.00	100.00
	Peso de Fiola +Muestra +Agua Destilada	gr	427.15	421.13	409.10
Profundidad (m):	Temperatura	Co	20.00	20.00	20.00
	Peso de Fiola + Agua destilada	gr	365.32	360.03	348.65
0.30 - 3.00	Corrección por Temperatura	k	1.00	1.00	1.00
	Peso Especifico de Sólidos	gr/cm3	2.62	2.57	2.53
	Gravedad Especifica Promedio - Gs	gr/cm3		2.57	

Ensayo de Gravedad Específica para la Calicata 8.

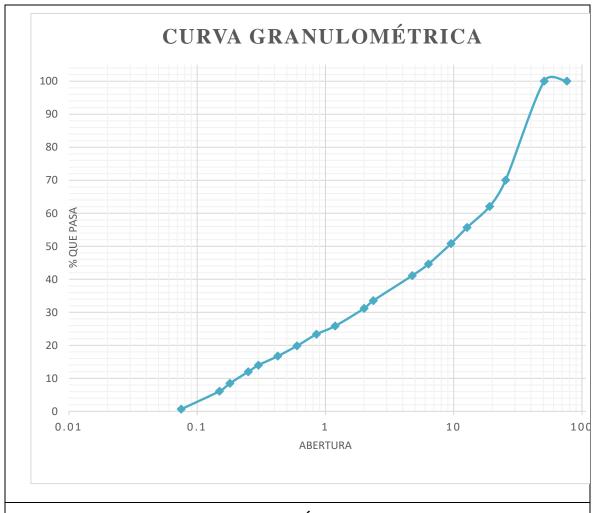
Tesistas:	Br. Luciana de Fátima Crua Sandoval				
Ubicación:	Br. Leticia Janeth Leyva Sår Centro Poblado Menor Luz de Sector III		Firma de en	cargado de i	laboratorio
			Norma:		31 /ASTM L 54
Ensayo:	Gravedad Especifica	Calicata/ Muestra:	3200	/ M-2	
			Coordenadas:	714573.40 N	9120311.4 E
Estratos	DIII	Und	1	N° de tara	
Estratos	Descripción	Cita	8A	8B	8C
	Capacidad de la Fiola	cm3	250.00	250.00	250.00
Estrato 2	Peso de Suelo Seco	gr	100.00	100.00	100.00
	Peso de Fiola +Muestra +Agua Destilada	gr	429.30	429.64	406.74
Profundidad (m):	Temperatura	Co	20,00	20.00	20.00
0.40 - 3.00	Peso de Fiola + Agua destilada	gr	367.11	366.87	344.24
0.40 - 3.00	Corrección por Temperatura	k	1.00	1.00	1.00
	Peso Especifico de Sólidos	gr/cm3	2.64	2.69	2.67
	Gravedad Especifica Promedio - Gs		2.67		

Ensayo de Gravedad Específica para la Calicata 9

			-		
Tesistas:	Br. Luciana de Fátima Cru Sandoval Br. Leticia Janeth Leyva Sá				
Ubicación:	Centro Poblado Menor Luz d Sector III	el Sol -	Firma de en	cargado de	laboratorio
			Norma:		31 /ASTM D 54
Ensayo:	Gravedad Especifica	Calicata/ Muestra:	C-9	/M-2	
			Coordenadas:	714909.06 N	9120323.66 E
		Und	1	Nº de tara	
Estratos	Descripción	Und	9A	9B	9C
	Capacidad de la Fiola	cm3	250.00	250.00	250.00
Estrato 2	Peso de Suelo Seco	gr	100.00	100.00	100.00
	Peso de Fiola +Muestra +Agua Destilada	gr	432.12	431.51	407.33
Profundidad (m):	Temperatura	C°	20.00	20.00	20.00
0.50 3.00	Peso de Fiola + Agua destilada	gr	367.91	368.16	348.64
0.50 - 3.00	Corrección por Temperatura	k	1.00	1.00	1.00
	Peso Especifico de Sólidos	gr/cm3	2.79	2.73	2.42
	Gravedad Especifica Promedio - Gs		2.65		

Ensayo de Gravedad Específica para la Calicata 10

	Br. Luciana de Fátima Cruz	rado			
Tesistas:	Sandoval	.uu			
24000	Br. Leticia Janeth Leyva Sár	nchez			
Ubicación:	Centro Poblado Menor Luz de Sector III	el Sol -	Firma de en	cargado de	laboratorio
			Norma:		31 /ASTM D 54
Ensayo:	Gravedad Especifica	Calicata/ Muestra:	C-16	/M-2	
			Coordenadas:	714732.54 N	9120491.8 E
-	December 15	Und		N° de tara	
Estratos	Descripción	Cita	10A	10B	10C
	Capacidad de la Fiola	cm3	250.00	250.00	250.00
Estrato 2	Peso de Suelo Seco	gr	100.00	100.00	100.00
	Peso de Fiola +Muestra +Agua Destilada	gr	429.82	429.71	406.01
Profundidad (m):	Temperatura	Co	20.00	20.00	20.00
0.30 - 3.00	Peso de Fiola + Agua destilada	gr	367.46	367.46	344.44
0.30 - 3.00	Corrección por Temperatura	k	1.00	1.00	1.00
	Peso Especifico de Sólidos	gr/cm3	2.66	2.65	2.60
	Gravedad Especifica Promedio - Gs	gr/cm3		2.64	


ENSAYO ANÁLISIS GRANULOMÉTRICO Y CLASIFICACIÓN DEL SUELO

Anexo 34

Ensayo de Análisis Granulométrico para la Calicata 1, estrato 2.

Tesis	efau.			Br. Luciana de Fátima Cruzado Sandoval stas: Br. Leticia Janeth Leyva Sánchez				
Ubicación:		300		lado Menor Li Sector III	Firma de encargado de laboratori			
						Norma:	NTP 339.128/ ASTM D 422	
Ens	ayo:	Anái	lisis Gra	mulométrico pe	or tamizado	Coordenadas:	715682.91 N 9120406.53 E	
Cali	cata	С	-1	Muestra:	M-2	Profundidad:	3.00 m	
TIPO	DE ELO	TAMICES (Pulg) (mm)		MICES PESO RETENIDO		% RETENIDO ACUMULADO	% QUE PASA	
		3*	76.200	0.00	0.00	0.00	100.00	
		2"	50.800	0.00	0.00	0.00	100.00	
	4	1.	25.400	1595.85	29.98	29.98	70.02	
	GRAVA	3/4"	19.050	424.35	7.97	37.95	62.05	
	2	1/2"	12,700	339.32	6.37	44.32	55.68	
	9	3/8"	9.525	259.55	4.88	49.20	50.80	
0		1/4"	6.350	329.97	6.20	55.40	44.60	
E		N°4	4.750	185.26	3.48	58.88	41.12	
SUELO GRUESO		Nº8	2.360	404.49	7.60	66.47	33.53	
3	100	Nº10	2.000	124.78	2.34	68.82	31.18	
9		Nº16	1.190	283.96	5.33	74.15	25.85	
Ξ	1	N°20	0.850	133.48	2.51	76.66	23.34	
S	5	N°30	0.600	186.54	3.50	80.16	19.84	
	3	N°40	0.425	164.98	3.10	83.26	16.74	
	A	N°50	0.300	146.90	2.76	86.02	13.98	
		Nº60	0.250	105.74	1.99	88.01	11.99	
	100	Nº80	0.180	185.69	3.49	91.50	8.50	
	1 90	Nº100	0.149	128.43	2.41	93.91	6.09	
	4	N°200	0.075	289.31	5.43	99.34	0.66	
FONDO		34.90	0.66	100.00	0.00			
	T	JATC		5323.50	100.00	2024		
DESCRIPCIÓN DE LA MUESTRA		Peso tam	Peso Original (kg) Peso tamizado (kg) Pérdida por lavado (gr)		soo			

Curva granulométrica y clasificación de suelos SUCS y AASHTO.

CLASIFICACIÓN DE SUELOS

SUCS: GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena

Descrip	oción de la muestra	GRAVA BIEN GRADUADA			
%W	0.77	% Grava	58.88		
L.L	NP	% Arena:	40.47		
I.P	NP	% Finos:	0.66		
D10:	0.182	Cu(mm):	97.42		
D30:	1.840	Cc(mm):	1.05		
D60:	17.691				

Ensayo de Análisis Granulométrico para la Calicata 2, estrato 2.

Tesi	stas:	***************************************		e Fátima Cruz a Janeth Leyvo	ado Sandoval a Sánchez		
Ubic	ación:	Cen	tro Pob	lado Menor L Sector III	Firma de encargo	ido de laboratorio	
	Several C					Norma:	NTP 339.128/ ASTM D 422
Ens	ayo:	Anai	isis Gra	mulométrico p	or tamizado	Coordenadas:	715466.78 N
Call	icata	C	-2	Muestra:	M-2	Profundidad:	9/20/34.05 E 3.00 m
	line and	TAM		PESO .	%		3.00 m
	D DE	(Pulg)	(mm)	RETENIDO (gr)	The second second second second	% RETENIDO ACUMULADO	% QUE PASA
		3"	76.200	0.00	0.00	0.00	100.00
		2"	50.800	379.56	7.11	7.11	92.89
	A	1"	25.400	1758.25	32.93	40.03	59,97
	GRAVA	3/4"	19.050	448.15	8.39	48.43	51.57
	N.	1/2"	12.700	523.16	9.80	58.22	41.78
	9	3/8"	9.525	296.39	5.55	63.77	36.23
0		1/4"	6.350	183.66	3.44	67.21	32.79
S		Nº4	4.750	156.72	2.93	70.15	29.85
SUELO GRUESO		Nº8	2.360	241.51	4.52	74.67	25.33
9	150	Nº10	2.000	62.92	1.18	75.85	24.15
3		Nº16	1.190	189.33	3.55	79.39	20.61
Œ	300	N°20	0.850	117.96	2.21	81.60	18.40
S	Y	N°30	0.600	159.35	2.98	84.59	15.41
	REN	Nº40	0.425	195.44	3.66	88.25	11.75
	7	Nº50	0.300	137.15	2.57	90.82	9.18
		Nº60	0.250	96.27	1.80	92.62	7.38
	733	Nº80	0.180	173.70	3.25	95.87	4.13
	200	Nº100	0.149	76.26	1.43	97.30	2.70
		N°200	0.075	101.90	1.91	99.21	0.79
		ONDO		42.32	0.79	100.00	0.00
_	TOTAL DESCRIPCIÓN DE LA MUESTRA		5340	100			
DES			Peso tami	rinal (Kg): izado (kg): lavado (gr):	5.5	Outcourt of	

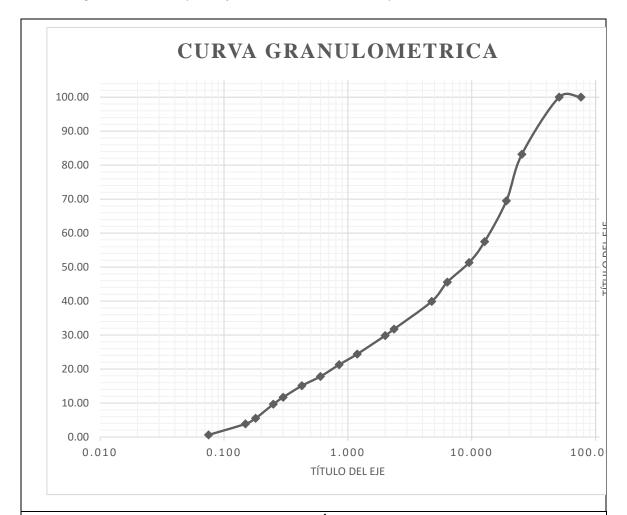
Curva granulométrica y clasificación de suelos SUCS y AASHTO

CLASIFICACIÓN DE SUELOS

SUCS:

GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena


Descripción de la muestra

R	RESULTADOS DEL ENSAYO									
%W	0.80	% Grava	70.15							
L.L	NP	% Arena:	29.06							
I.P	NP	% Finos:	0.79							
D10:	0.326	Cu(mm):	82.87							
D30:	4.710	Cc(mm):	2.52							
D60:	26.999									

Ensayo de Análisis Granulométrico para la Calicata 3, estrato 2.

		-	ciana a	le Fátima Cruzad	del Sol secto lo Sandoval			
1 2000 00000000000000000000000000000000		ic igrite to	e I termina Ci mana	O CHARACTER				
Tesi	stas:	В	r. Letici	a Janeth Leyva S	iánchez			
Ubica	ción:	Centro Poblado Menor Luz del Sol - Sector III				Firma de encargado de laboratorio		
						Norma:	NTP 339.128/ASTM 1 422	
Ens	ayo:	Aná	lisis Gr	anulométrico por	tamizado	Coordenadas:	715344.45 N 9120534.60 E	
Cali	cata	С	-3	Muestra:	M-2	Profundidad:	3.00 m	
TIPO		TAMICES (Pulg) (mm)		PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	
		3"	76,200	0.00	0.00	0.00	100.00	
		2"	50.800	0.00	0.00	0.00	100.00	
	4	1"	25.400	879.75	16.81	16.81	83.19	
	>	3/4"	19.050	717.32	13.70	30.51	69.49	
	GRAVA	1/2"	12.700	629.34	12.02	42.53	57.47	
	9	3/8"	9.525	321.52	6.14	48.67	51.33	
0		1/4"	6.350	301.57	5.76	54.43	45.57	
SUELO GRUESO		Nº4	4.750	296.94	5.67	60.10	39.90	
2		Nº8	2.360	426.32	8.14	68.25	31.75	
9	15	3	Nº10	2.000	100.31	1.92	70.16	29.84
9		Nº16	1.190	284.50	5.43	75.60	24.40	
2	- 130	Nº20	0.850	163.73	3.13	78.73	21.27	
S	5	Nº30	0.600	181.61	3.47	82.20	17.80	
	E	Nº40	0.425	142.60	2.72	84.92	15.08	
	A	Nº50	0.300	178.39	3.41	88.33	11.67	
	2	Nº60	0.250	106.22	2.03	90.36	9.64	
		Nº80	0.180	216.92	4.14	94.50	5.50	
		Nº100	0.149	85.81	1.64	96.14	3.86	
N°200 0.075		170.14	3.25	99.39	0,61			
	FONDO		32.01	0.61	100.00	0.00		
	T	DTAL		5235.00	100.00			
		PCIÓ		Peso Origir Peso tamiza			5.530 5.235	
	LA MUESTRA			Pérdida por la	svado (gr)		1	

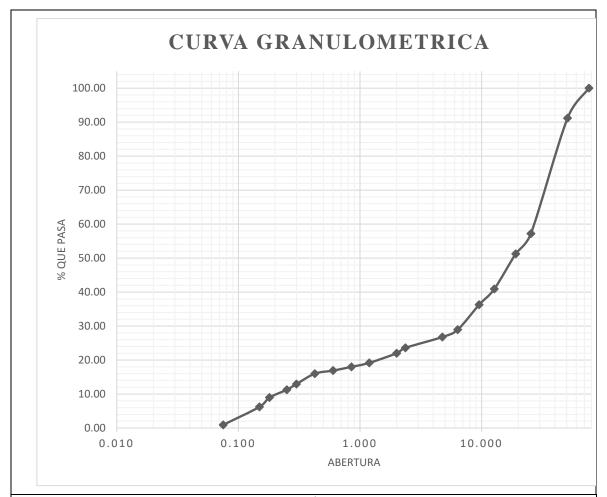
Curva granulométrica y clasificación de suelos SUCS y AASHTO

CLASIFICACIÓN DE SUELOS

SUCS:

GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena


Descripción de la muestra

RESULTADOS DEL ENSAYO									
%W	0.62	% Grava	60.10						
$\mathbf{L}.\mathbf{L}$	NP	% Arena:	39.28						
I.P	NP	% Finos:	0.61						
D10:	0.257	Cu(mm):	55.599						
D30:	2.173	Cc(mm):	1.285						
D60 :	14.297								

Ensayo de Análisis Granulométrico para la Calicata 4, estrato 2.

"M	ficroz			eotécnica para ado Menor Luz			
Tesistas: Ubicación:		Br. L	uciana	de Fåtima Cruza cia Janeth Leyva			
		Centr	o Poble	ado Menor Luz de III	el Sol - Sector	Firma de encarg	gado de laboratorio
						Norma:	NTP 339.128/ASTM D 422
Ens	ayo:	And	álisis G	ranulométrico po	r tamizado	Coordenadas:	715224.74 N 9120236.43 E
Cali	icata	C	-4	Muestra:	M-2	Profundidad:	3.00 m
1 TOT TO	O DE	TAMICES		PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA
		3"	76.200	0.00	0.00	0.00	100.00
		2*	50,800	478.25	8.83	8.83	91.17
	4	1"	25.400	1841.31	33.99	42.81	57.19
	15	3/4"	19.050	321.74	5.94	48.75	51.25
	GRAVA	1/2"	12.700	560.53	10.35	59.10	40.90
	9	3/8*	9.525	250.65	4.63	63.73	36.27
0		1/4*	6.350	397.92	7.34	71:07	28.93
E		Nº4	4.750	116.79	2.16	73.23	26,77
₹		Nº8	2.360	172.85	3.19	76.42	23.58
SUELO GRUESO		Nº10	2.000	85,70	1.58	78.00	22.00
9	-	Nº16	1.190	153.66	2.84	80.83	19.17
×	1	N°20	0.850	63.34	1.17	82.00	18.00
3	5	Nº30	0.600	59.48	1.10	83.10	16.90
	100	Nº40	0.425	48.88	0.90	84.00	16.00
	A	Nº50	0.300	165.92	3.06	87.07	12.93
	30	Nº60	0.250	90.46	1.67	88.74	11.26
		Nº80	0.180	124.88	2.31	91.04	8.96
	50	Nº100	0.149	148.66	2.74	93.78	6.22
N°200 0.075		286.45	5.29	99.07	0.93		
	52400	NDO		50.28	0.93	100.00	0.00
TOTAL		5417.75	100.00				
		PCIÓ		Peso origin Peso tamiza			.350
1	LA M	UESTE	KA	Pérdida por la		11.70	SO OF STEERING OF

Curva granulométrica y clasificación de suelos SUCS y AASHTO

CLASIFICACIÓN DE SUELOS

SUCS:

GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena

Descripción de la muestra

T.	ECH TADOC DE	LENGANO								
RESULTADOS DEL ENSAYO										
%W	0.68	% Grava	73.23							
L.L	NP	% Arena:	25.85							
I.P	NP	% Finos:	0.93							
D10:	0.218	Cu(mm):	123.28							
	a									
D30:	8.647	Cc(mm) :	12.79							
D60:	26.845									

Ensayo de Análisis Granulométrico para la Calicata 5, estrato 2.

"]	Micro			geotécnica para lado Menor Lu				
Tesistas:		Br. Luciana de Fátima Cruzado Sandoval ns: Br. Leticia Janeth Leyva Sánchez						
Ubica	ción:	Cent	ro Pobl	ado Menor Luz d III	Firma de encar	Firma de encargado de laboratorio		
			4000			Norma:	NTP 339.128/ASTM 1 422	
Ens	ayo:	A	iálisis C	iranulométrico p	or tamizado	Coordenadas:	715448.93 N 9120320.10 E	
Calie	eata:	C	-5	Muestra:	M-2	Profundidad:	3.00 m	
TIPO		TAM (Pulg)	ICES (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	
		3*	76.200	0.00	0.00	0.00	100.00	
		2"	50.800	622.69	11.66	11.66	88.34	
	_	1"	25.400	782.90	14.66	26.32	73.68	
	GRAVA	3/4"	19.050	572.49	10.72	37.04	62.96	
	2	1/2*	12,700	471.98	8.84	45.88	54.12	
	9	3/8*	9.525	379.67	7.11	52.99	47.01	
0	1	1/4*	6.350	387.18	7,25	60.24	39.76	
SUELO GRUESO		Nº4	4.750	203.88	3.82	64.06	35.94	
2	FAIR	Nº8	2.360	385.97	7.23	71.29	28.71	
5	-	N°10	2,000	98.42	1.84	73.13	26.87	
Q	100	Nº16	1.190	203.84	3.82	76.95	23.05	
-	The same	N°20	0.850	107.27	2.01	78.96	21.04	
S	5	N°30	0.600	165.68	3.10	82.06	17.94	
30	VRENA	Nº40	0.425	140.45	2.63	84.69	15.31	
	3	N°50	0.300	100.50	1.88	86.57	13.43	
	330	Nº60	0.250	125.91	2.36	88.93	11.07	
	11/1/16	Nº80	0.180	217.48	4.07	93.00	7.00	
	100	Nº100	0.149	112.70	2.11	95.11	4.89	
	1	N°200	0.075	221.65	4.15	99.26	0.74	
	F	ONDO		39.34	0.74	100.00	0.00	
	T	OTAL		5340.00	100.00			
DESCRIPCIÓN DE LA MUESTRA		202000000	ginal (kg) izado (kg)		5.600 5.340			
			Pérdida por	lavado (gr)		260.00		

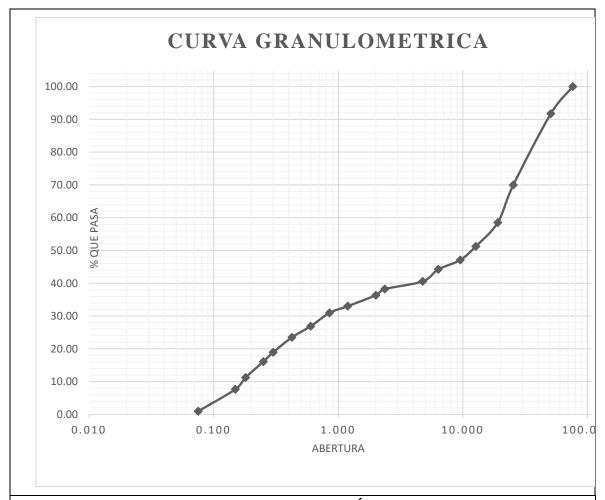
Curva granulométrica y clasificación de suelos SUCS y AASHTO

CLASIFICACIÓN DE SUELOS

SUCS:

GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena


Descripción de la muestra

R	RESULTADOS DEL ENSAYO									
%W	0.59	% Grava	64.06							
L.L	NP	% Arena:	35.20							
I.P	NP	% Finos:	0.74							
D10:	0.230	Cu(mm):	72.275							
D30:	3.062	Cc(mm):	2.449							
D60:	16.633									

Ensayo de Análisis Granulométrico para la Calicata 6, estrato 2.

".	licro			geotécnica para lado Menor Lu:			
Tesistas:		Br. Luciana de Fátima Cruzado Sandoval istas: Br. Leticia Janeth Leyva Sánchez					
Ubica	ción:	Cent	ro Pob	lado Menor Luz d III	Firma de encargado de laborator		
2000			Dieder Georg		article and to be being	Norma:	NTP 339.128/AST) D 422
Ens	iyo:	A	iálisis (Granulométrico p	or tamizado	Coordenadas:	715086.49 N 9120465.16 E
Calie	ata:	C	-6	Muestra:	M-2	Profundidad:	3,00 m
TIPO	13.5	TAM (Pulg)	(mm)		% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA
		3*	76.200	0.00	0.00	0.00	100.00
		2*	50.800	432.06	8.28	8.28	91.72
	4	1*	25,400	1135.27	21.75	30.03	69.97
	GRAVA	3/4"	19.050	598.32	11.46	41.49	58.51
		1/2"	12.700	379.28	7.27	48.75	51.25
		3/8"	9.525	217.46	4.17	52.92	47.08
0		1/4"	6.350	148.53	2.85	55.76	44.24
SUELO GRUESO		Nº4	4.750	191.15	3.66	59.43	40.57
₹		Nº8	2.360	122.79	2.35	61.78	38.22
9	133	Nº10	2.000	98.46	1.89	63.67	36.33
9		Nº16	1.190	173.22	3.32	66.98	33.02
X		N°20	0.850	108.15	2.07	69.06	30.94
3	5	Nº30	0.600	212.63	4.07	73.13	26.87
	E	Nº40	0.425	175.46	3.36	76.49	23.51
	Y	N°50	0.300	238.74	4.57	81.06	18.94
	60	N°60	0.250	149.03	2.85	83.92	16.08
	-	Nº80	0.180	253.66	4.86	88.78	11.22
	-	Nº100	0.149	187.50	3.59	92.37	7.63
- 2	1	N°200	0.075	348.97	6.69	99.06	0.94
		ONDO		49.32	0.94	100.00	0.00
	T	DTAL		5220.00	100.00		White and the second
DESCRIPCIÓN DE LA MUESTRA			Peso Original (kg) Peso tamizado (kg)		575 220		

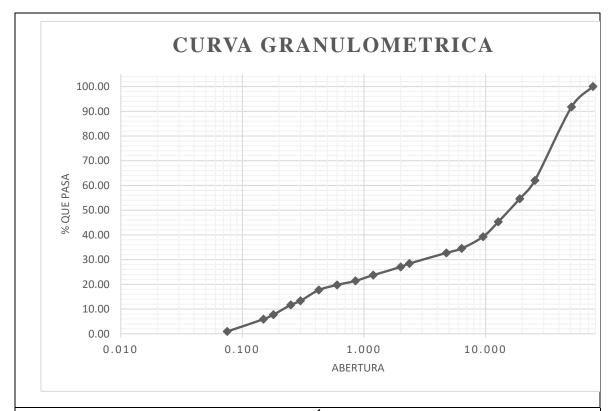
Curva granulométrica y clasificación de suelos SUCS y AASHTO.

CLASIFICACIÓN

SUCS:

GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena


Descripción de la muestra

RESULTADOS DEL ENSAYO									
%W	0.63	% Grava	59.43						
L.L	NP	% Arena:	39.63						
I.P	NP	% Finos:	0.94						
D10:	0.170	Cu(mm):	354.095						
D30:	0.742	Cc(mm):	0.054						
D60:	60.034								

Ensayo de Análisis Granulométrico para la Calicata 7, estrato 2.

95.51				ado Menor Lu			rficiales en el 923"
Tesis	Br. Luciana de Fátima Cruzado Sandoval sistas: Br. Leticia Janeth Leyva Sánchez						
Ubica	ción:	Centr	o Pobl	ado Menor Luz o	Firma de encarg	ado de laboratorio	
						Norma:	NTP 339.128/ASTI D 422
Ensa	yo:	An	álisis G	iranulométrico p	or tamizado	Coordenadas:	714442.19 N 9120491.50 E
Calic	ata:	С	-7	Muestra:	M-2	Profundidad:	3.00 m
TIPO		TAMICES (Pulg) (mm)		PESO RETENIDO(gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA
		3"	76.200	0.00	0.00	0.00	100.00
		2*	50,800	442.12	8.26	8.26	91.74
	4	1"	25.400	1589.63	29.71	37.98	62.02
	GRAVA	3/4"	19.050	396.54	7.41	45.39	54.61
	2	1/2"	12.700	499.87	9.34	54.73	45.27
	9	3/8"	9.525	321.11	6.00	60.73	39.27
0		1/4"	6.350	254.69	4.76	65.49	34.51
SUELO GRUESO		Nº4	4.750	97.03	1.81	67.31	32.69
₹	-	Nº8	2.360	228.65	4.27	71.58	28.42
9		Nº10	2.000	75.24	1.41	72.99	27.01
9		Nº16	1.190	175.88	3.29	76.28	23.72
Ξ		N°20	0.850	124.52	2.33	78.60	21.40
3	3	Nº30	0.600	88.21	1.65	80.25	19.75
	ARENA	N°40	0.425	109.87	2.05	82.31	17.69
	A	Nº50	0.300	233.89	4.37	86.68	13.32
	230	Nº60	0.250	87.02	1.63	88.30	11.70
	-	Nº80	0.180	211.80	3.96	92.26	7.74
	-	Nº100	0.149	98.47	1.84	94.10	5.90
		N°200	0.075	265.18	4.96	99.06	0.94
FONDO		50.28	0.94	100.00	0.00		
	TO	TAL		5350.00	100,00	1.699	
0.55200		PCIÓN UESTE		Peso orig Peso tami Pérdida por	zado (kg):	5	500 350 5:804 8

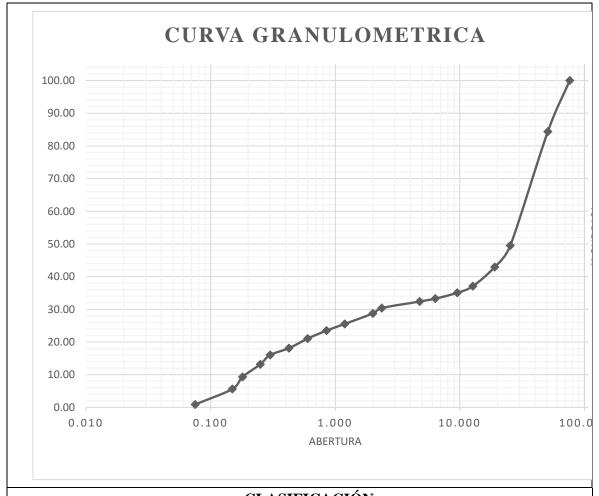
Curva granulométrica y clasificación de suelos SUCS y AASHTO

CLASIFICACIÓN DE SUELOS

SUCS:

GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena


Descripción de la muestra

F	RESULTADOS DEL ENSAYO									
%W	0.79	% Grava	67.31							
L.L	NP	% Arena:	31.75							
I.P	NP	% Finos:	0.94							
D10:	0.207	Cu(mm):	116.43							
D30:	3.206	Cc(mm):	2.07							
D60:	24.069									

Ensayo de Análisis Granulométrico para la Calicata 8, estrato 2.

"Microzonificación geotécnica para diseñar cimer Centro Poblado Menor Luz del Sol sector Br. Luciana de Fátima Cruzado Sandoval						Sen District Control of Control	
Tesistas:		E	Br. Letic	cia Janeth Leyvo	i Sánchez		
bica	ción:	Centre	o Pobla	ido Menor Luz a III	lel Sol - Sector	Firma de encargo	ado de laboratorio
						Norma:	NTP 339.128/ASTN D 422
Ens	ayo:	And	dists G	ranulométrico p	or tamizado	Coordenadas:	714573.40 N 9120311.47 E
Cali	cata:	C	-8	Muestra:	M-2	Profundidad:	3.00 m
TIPO	D DE	TAM (Pulg)	ICES (mm)	PESO RETENIDO(gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA
		3"	76.200	0.00	0.00	0.00	100.00
		2*	50.800	823.34	15.64	15.64	84.36
	-	1*	25.400	1834.66	34.85	50.48	49.52
	GRAVA	3/4"	19.050	346.51	6.58	57.07	42.93
	2	1/2"	12.700	308.50	5.86	62.93	37.07
	9	3/8"	9.525	107.14	2.03	64.96	35.04
0		1/4"	6.350	93.03	1.77	66.73	33.27
E		Nº4	4.750	47.14	0.90	67.62	32.38
2	-	Nº8	2.360	105.25	2.00	69.62	30.38
SUELO GRUESO	100	N°10	2.000	86.44	1.64	71.26	28.74
9		Nº16	1.190	169.29	3.22	74.48	25.52
Ξ	-	Nº20	0.850	107.22	2.04	76.52	23.48
S	3	Nº30	0.600	128.29	2.44	78.95	21.05
	ARENA	Nº40	0.425	154.57	2.94	81.89	18.11
	AH	N°50	0.300	109.89	2.09	83.97	16.03
		N°60	0.250	150.57	2.86	86.83	13.17
	E	N°80	0.180	202.50	3.85	90.68	9.32
		Nº100	0.149	195.41	3.71	94,39	5.61
	Na.	N°200	0.075	249.24	4.73	99.13	0.87
		ONDO		46.01	0.87	100.00	0.00
	Т	OTAL		5265.00	100.00		FEO.
DESCRIPCIÓN DE LA MUESTRA		Peso tam	ginal (kg) izado (kg) r lavado (gr)	5	550 265 VACIONAL ST		

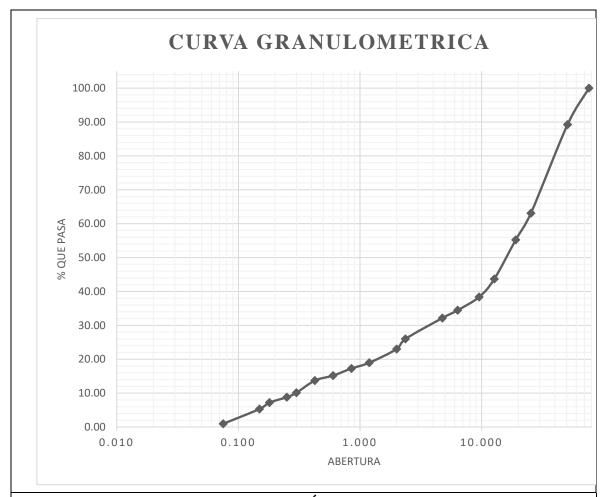
Curva granulométrica y clasificación de suelos SUCS y AASHTO

CLASIFICACIÓN

SUCS:

GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena


Descripción de la muestra

R	RESULTADOS DEL ENSAYO									
%W	0.70	% Grava	67.62							
L.L	NP	% Arena:	31.50							
I.P	NP	% Finos:	0.87							
D10:	0.204	Cu(mm):	153.147							
D30:	2.453	Cc(mm):	0.941							
D60:	31.290									

Ensayo de Análisis Granulométrico para la Calicata 9, estrato 2.

		p.	Landon	de Fâtima Cruz	anda Sandawal		
Tesistas:		111,02500		i de Panma Cruz icia Janeth Leyvi			
Ubica	ación:	Centi	ro Pobl	ado Menor Luz e III	Firma de encar	gado de laboratorio	
						Norma:	NTP 339.128/AST D 422
Ens	ayo:	An	álisis C	iranulométrico p	oor tamizado	Coordenadas:	714909.06 N 9120323.60 E
Cali	cata:	C	-9	Muestra:	M-2	Profundidad:	3.00 m
	O DE	TAM (Pulg)	ICES (mm)	PESO RETENIDO(gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA
		3"	76.200	0.00	0.00	0.00	100.00
		2"	50.800	569.21	10.78	10.78	89.22
	4	1"	25.400	1380.42	26.14	36.92	63.08
	2	3/4*	19.050	414,56	7.85	44.78	55.22
	GRAVA	1/2*	12.700	610.12	11.56	56.33	43.67
	0	3/8*	9.525	280.61	5,31	61.65	38.35
0		1/4"	6.350	205,24	3.89	65.53	34.47
SUELO GRUESO		Nº4	4.750	122.31	2.32	67.85	32.15
M		Nº8	2.360	325.96	6.17	74.02	25.98
9		Nº10	2.000	156.73	2.97	76.99	23.01
3		Nº16	1.190	213.68	4.05	81.04	18.96
Ξ	100	Nº20	0.850	88.91	1.68	82.72	17.28
S	5	N°30	0.600	111.37	2.11	84.83	15.17
	3	Nº40	0.425	77.60	1.47	86.30	13.70
	A	Nº50	0.300	189.69	3.59	89.89	10.11
	10000	Nº60	0.250	68.74	1.30	91.20	8.80
		Nº80	0.180	84.63	1.60	92.80	7.20
	-	N°100	0.149	100.06	1.90	94.69	5.31
	199	N°200	0.075	229.88	4.35	99.05	0.95
		ODO		50.28	0.95	100.00	0.00
	T	DTAL		5280.00	100.00	1.647	
DESCRIPCIÓN DE LA MUESTRA		300000000	Peso original (Kg): Peso tamizado (kg):		.400 .280 20.00		

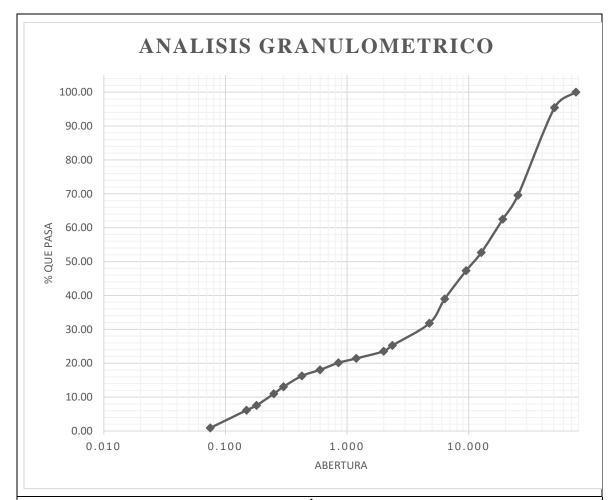
Curva granulométrica y clasificación de suelos SUCS y AASHTO

CLASIFICACIÓN DE SUELOS

SUCS:

GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena


Descripción de la muestra

F	RESULTADOS DEL ENSAYO									
%W	0.96	% Grava	67.85							
L.L	NP	% Arena:	31.20							
I.P	NP	% Finos:	0.95							
D10:	0.296	Cu(mm):	76.21							
D30:	4.904	Cc(mm):	3.61							
D60:	22.526									

Ensayo de Análisis Granulométrico para la Calicata 10, estrato 2.

,	Micr			geotécnica para blado Menor Lu				
Tesistas:		Br.	Luciane	n de Fâtima Cruza icia Janeth Leyva				
Ubica	ación:	Centre	Pobla	do Menor Luz dei	Sol - Sector III	Firma de encar	rgado de laboratorio	
Fne	ayo:	4.	olitele (iranulométrico p	or taminada	Norma:	NTP 339.128/AST D 422	
Las	ayo.	- 46	naisis C	тапиотетсо р	or tamizado	Coordenadas:	714732.54 N 9120491.84 E	
Cali	icata	C-	10	Muestra:	M-2	Profundidad:	3.00 m	
200000	D DE ELO	TAM (Pulg)	ICES (mm)	PESO RETENIDO (gr)	% RETENIDO PARCIAL	% RETENIDO ACUMULADO	% QUE PASA	
		3*	76.200	0.00	0.00	0.00	100.00	
		2*	50.800	252.37	4.59	4.59	95.41	
	4	1*	25,400	1422,42	25.86	30.45	69.55	
	GRAVA	3/4"	19.050	388.06	7.06	37.51	62.49	
		1/2"	12.700	539.79	9.81	47.32	52.68	
		3/8"	9.525	295.61	5.37	52.70	47.30	
8		1/4"	6.350	457.88	8.33	61.02	38.98	
E		Nº4	4.750	395.69	7.19	68.21	31.79	
SUELO GRUESO		Nº8	2.360	358.81	6.52	74.74	25.26	
9		N°10	2.000	95.20	1.73	76.47	23.53	
3		Nº16	1.190	115.96	2.11	78.58	21.42	
E	-	N°20	0.850	71.37	1.30	79.88	20.12	
S	Z	N°30	0.600	113.55	2.06	81.94	18.06	
	2	Nº40	0.425	99.14	1.80	83.74	16.26	
	4	Nº50	0.300	175.85	3.20	86.94	13.06	
		Nº60	0.250	113.26	2.06	89.00	11.00	
		Nº80	0.180	189.67	3.45	92.45	7.55	
	The same	Nº100	0.149	78.65	1.43	93.88	6.12	
	DC.	N°200	0.075	286.44 50.28	5.21 0.91	99.09	0.91	
FONDO TOTAL		5500.00	100.00	1.698	0.00			
				Peso origin	100100000	33353	5.700	
	200 DESCRIPTION OF THE PARTY OF	PCIÓN		Peso tamiz			5.500	
LA MUESTRA			A	100000000000000000000000000000000000000	Pérdida por lavado (gr):		1000	

Curva granulométrica y clasificación de suelos SUCS y AASHTO

CLASIFICACIÓN DE SUELOS

SUCS:

GW

AASHTO: A-1-a(0) Fragmentos de piedra, grava y arena

Descripción de la muestra

R	ESULTADOS DE	L ENSAYO	
%W	1.08	% Grava	68.21
L.L	NP	% Arena:	30.87
I.P	NP	% Finos:	0.91
D10:	0.229	Cu(mm):	75.11
D30:	9.839	Cc(mm):	24.62
D60:	17.185		

DENSIDAD MÍNIMA DEL SUELO

Anexo 54

Ensayo de Densidad mínima para relación de vacíos máxima de la Calicata 1, estrato 2.

Tesistas:	58865150005	iana de Fátima Sandoval cia Janeth Leyv	4			
Ubicación:	Centro P	oblado Menor i - Sector III	Luz del Sol	Firma de encarg	gado de laboratorio	
Ensayo:		Densidad Minin	na	Coordenadas:	715682.906 N 9120406.526 E	
Calicata	C-1	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
" Samasaan		Datos d	e molde			
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	1A	1B	1C	Promedio (Kg/cm³)	emáx	
Peso de la muestra + molde (kg):	12.45	12.80	12.64		0.85	
Peso del molde (kg):	8.00	8.00	8.00	1.43		
Peso de la muestra (kg):	4450.00	4800.00	4640.00		(2000)	
Densidad min:	1.37	1.48	1.43			

Ensayo de Densidad mínima para relación de vacíos máxima de la Calicata 2, estrato 2.

"Microzonificació Po				II, Ascope 2023"		
Tesistas:	Br. I	ana de Fátima Sandoval eticia Janeth L Sánchez	eyva			
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III			Firma de encarg	ado de laboratorio	
Ensayo:	Densidad Minima			Coordenadas:	715466.777 N 9120134.053 E	
Calicata	C-2	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
		Datos d	le molde			
Diametro Interno (cm):	15.22	Altura (cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	2A	2В	2C	Promedio (Kg/cm ³)	emáx	
Peso de la muestra + molde (kg):	12.75	12.93	12.78		0.81	
Peso del molde (kg):	8.00	8.00	8.00	1.49		
Peso de la muestra (kg):	4750.00	4930.00	4780.00		1.000	
Densidad min:	1.47	1.52	1.48			

Ensayo de Densidad mínima para relación de vacíos máxima de la Calicata 3, estrato 2.

		enor Luz del So			
Tesistas:		iana de Fátima Sandoval sia Janeth Leyv			
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III				ncargado de ratorio
Ensayo:	Densidad Minima			Coordenadas:	715344.453 N 9120534.595 E
Calicata	C-3	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049
		Datos d	le molde		
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645
Descripción/ Nº de tara	3A	3B	3C	Promedio (Kg/cm³)	emáx
Peso de la muestra + molde (kg):	12.95	12.88	12.90		0.76
Peso del molde (kg):	8.00	8.00	8.00	1.52	
Peso de la muestra (kg):	4950.00	4880.00	4900.00		
Densidad min:	1.53	1.51	1.51		

Ensayo de Densidad mínima para relación de vacíos máxima de la Calicata 4, estrato 2.

"Microzonificació Po				ciones superfici I, Ascope 2023''		
Tesistas:		iana de Fátima Sandoval ia Janeth Leyvi	E171753010			
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III			Firma de encargado de laborato		
Ensayo:	ı	Densidad Minin	na	Coordenadas:	715224,74 N 9120236.431 E	
Calicata	C-4	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
		Datos a	le molde			
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (em³):	3236.645	
Descripción/ Nº de tara	4A	4B	4C	Promedio (Kg/cm³)	emáx	
Peso de la muestra + molde (kg):	12.75	12.61	12.67		0.827	
Peso del molde (kg):	8.00	8.00	8.00	1.44		
Peso de la muestra (kg):	4750.00	4610.00	4670.00			
Densidad min:	1.47	1.42	1.44			

Ensayo de Densidad mínima para relación de vacíos de la Calicata 5, estrato 2.

				iciones superfici II, Ascope 2023'	ales en el Centro ,	
Tesistas:	(0.000.0000	iana de Fátima Sandoval cia Janeth Leyv				
Ubicación:	Cantra Bahlada Manor Luz dal Sal			Firma de encargado de laborator		
Ensayo:	Densidad Minima			Coordenadas:	715448.93 N 9120320.101 E	
Calicata	C-5	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
		Datos	de molde));		
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	5A	5B	5C	Promedio (Kg/cm³)	emáx	
Peso de la muestra + molde (kg):	12.87	12.96	12.79			
Peso del molde (kg):	8.00	8.00	8.00	1.51	0.78	
Peso de la muestra (kg):	4870.00	4960.00	4785.00			
Densidad min:	1.50	1.53	1.48			

Ensayo de Densidad mínima para relación de vacíos de la Calicata 6, estrato 2.

	Contract of the Contract of th			taciones superficia III, Ascope 2023"	
Tesistas:	Br. Luciana de Fátima Cruzado Sandoval Br. Leticia Janeth Leyva Sánchez				
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III			Firma de encarg	ado de laboratorio
Ensayo:	Densidad Minima			Coordenadas:	715086.488 N 9120465.156 E
Calicata	Calicata C-6 Muestra: M-2		NTP 339.138 / ASTM D 2049		
		Datos	de molde		
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645
Descripción/ Nº de tara	6A	6B	6C	Promedio (Kg/cm ³)	emáx
Peso de la muestra + molde (kg):	12.62	12.49	12.51		
Peso del molde (kg):	8.00	8.00	8.00	1.40	0.90
Peso de la muestra (kg):	4620.00	4490.00	4510.00		
Densidad min:	1.43	1.39	1.39		

Anexo 60.

Ensayo de Densidad mínima para relación de vacíos de la Calicata 7, estrato 2.

"Microzonificacio P	ón geotécn oblado M	tica para diseñ enor Luz del S	lar ciment Sol sector i	aciones superficia III, Ascope 2023"	les en el Centro
Tesistas:	Br. Luciana de Fátima Cruzado Sandoval Br. Leticia Janeth Leyva Sánchez				
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III			Firma de encargo	ado de laboratorio
Ensayo:	Densidad Minima			Coordenadas:	714442.193 N 9120491,494 E
Calicata	C-7 Muestra: M-2		Norma:	NTP 339.138 / ASTM D 2049	
		Datos	de molde		
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645
Descripción/ Nº de tara	7A	7B	7C	Promedio (Kg/cm³)	emáx
Peso de la muestra + molde (kg):	12.91	12.87	12.64		0.70
Peso del molde (kg):	8.00	8.00	8.00	1.52	
Peso de la muestra (kg):	4910.00	4870.00	4940.00		
Densidad min:	1.52	1.50	1.53		

Ensayo de Densidad mínima para relación de vacíos máximo de la Calicata 8, estrato 2.

Tesistas:		nna de Fátima Sandoval eticia Janeth I Sánchez				
Ubicación:		Poblado Menor Sol - Sector III		Firma de encarga	do de laboratorio	
Ensayo:	D	ensidad Minin	na	Coordenadas:	714573.403 N 9120311.474 E	
Calicata	C-8	Muestra:	M-2	Norma:	NTP 339.138 ASTM D 2049	
		Datos	de molde			
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm ³):	3236.645	
Descripción/ Nº de tara	8A	8B	8C	Promedio (Kg/cm ³)	emáx	
Peso de la muestra + molde (kg):	12.97	12.79	12.90			
Peso del molde (kg):	8.00	8.00	8.00	1.51	0.77	
Peso de la muestra (kg):	4970.00	4785.00	4895.00			
Densidad min:	1.54	1.48	1.51			

Ensayo de Densidad mínima para relación de vacíos máximo de la Calicata 9, estrato 2.

"Microzonificaci	ión geotéc Poblado M	nica para dise Ienor Luz del .	ñar cimen Sol sector	taciones superfic III, Ascope 2023	iales en el Centro "	
Tesistas:		na de Fátima Sandoval eticia Janeth L Sánchez				
Ubicación:		Poblado Menor Sol - Sector III		Firma de encarg	ado de laboratorio	
Ensayo:	Densidad Minima			Coordenadas:	714909.06 N 9120323.603 E	
Calicata	C-9	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
		Datos	de molde			
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	9A	9B	9C	Promedio (Kg/cm³)	emáx	
Peso de la muestra + molde (kg):	12.72	12.54	12.63			
Peso del molde (kg):	8.00	8.00	8.00	1.43		
Peso de la muestra (kg):	4720.00	4540.00	4630.00	1.43	0.85	
Densidad min:	1.46	1.40	1.43			

Ensayo de Densidad mínima para relación de vacíos máximo de la Calicata 10, estrato 2.

"Microzonificaci	ón geotéc Poblado M	nica para disei Ienor Luz del S	ñar cimen Sol sector	taciones superfic III, Ascope 2023	iales en el Centro "	
Tesistas:		nna de Fátima Sandoval eticia Janeth L Sánchez	12,000,000			
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III			Firma de encarg	gado de laboratorio	
Ensayo:	Densidad Minima			Coordenadas:	714732.543 N 9120491.835 E	
Calicata:	C-10	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
		Datos	de molde			
Diámetro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	10A	10B	10C	Promedio (Kg/cm³)	emáx	
Peso de la muestra + molde (kg):	12.87	12.99	12.89			
Peso del molde (kg):	8.00	8.00	8.00	1.52	0.74	
Peso de la muestra (kg):	4870.00	4985.00	4890.00			
Densidad min.:	1.50	1.54	1.51			

DENSIDAD MÁXIMA DEL SUELO

Anexo 64

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 1, estrato 2.

"Microzonificaci	ón geotéci Poblado M	nica para diseñ Ienor Luz del S	ar cimenta ol sector II	ciones superficia I, Ascope 2023''	des en el Centro
Tesistas:	200	ana de Fátima Sandoval ia Janeth Leyvo			
Ubicación:	Centro Poblado Menor Luz del Sol - Sector III			Firma de encargado de laborator	
Ensayo:	1	Densidad Máxin	na	Coordenadas:	715682.906 N 9120406.526 E
Calicata:	C-1	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049
		Datos	de molde		
Diámetro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645
Descripción/ Nº de tara	1A	1B	1C	Promedio (Kg/cm³)	emín
Peso de la muestra + molde (kg):	16.15	16.24	16.31		
Peso del molde (kg):	9.08	9.08	9.14	2.21	0.37
Peso de la muestra (kg):	7075.00	7165.00	7175.00		
Densidad máx:	2.19	2.21	2.22		

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 2, estrato 2.

"Microzonificació Po				ciones superficio II, Ascope 2023''		
Tesistas:		ana de Fátima Sandoval ia Janeth Leyva				
Ubicación:	Centro	Poblado Meno Sol - Sector III		Firma de encargado de laboratorio		
Ensayo:	L	ensidad Máxin	na	Coordenadas: 715466.777 8		
Calicata:	C-2 Muestra: M-2 Norma:				NTP 339.138 / ASTM D 2049	
		Datos d	e molde			
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	2A	2B	2C	Promedio (Kg/cm³)	emín	
Peso de la muestra + molde (kg):	16.19	16.25	16.32		0.40	
Peso del molde (kg):	9.08	9.08	9.14	2.21		
Peso de la muestra (kg):	7110.00	7170.00	7185.00			
Densidad máx:	2.20	2.22	2.22			

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 3, estrato 2.

				taciones superfici III, Ascope 2023'			
Tesistas:		ana de Fátima Sandoval ia Janeth Leyva					
Ubicación:		Poblado Menoi Sol - Sector III		Firma de encargado de laboratorio			
Ensayo:	D	ensidad Máxin	na	Coordenadas: 715344.453			
Calicata:	C-3	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049		
		Datos	de molde				
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645		
Descripción/ Nº de tara	3A	3B	3C	Promedio (Kg/cm³)	emín		
Peso de la muestra + molde (kg):	16,34	16.18	16.43				
Peso del molde (kg):	9.08	9.08	9.14	2.23	0.35		
Peso de la muestra (kg):	7260.00	7105.00	7295.00				
Densidad máx:	2.24	2.20	2.25				

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 4, estrato 2.

				ciones superficial I, Ascope 2023''	es en el Centro	
Tesistas:		na de Fátima (Sandoval a Janeth Leyva				
Ubicación:	Centro Po	blado Menor Li - Sector III	uz del Sol	Firma de encargado de laboratorio		
Ensayo:	De	ensidad Máxim	a	Coordenadas: 715224.74 1		
Calicata:	C-4	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
		Datos de	molde		1	
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	4A	4B	4C	Promedio (Kg/cm ³)	emín	
Peso de la muestra + molde (kg):	16.25	16.21	16.15			
Peso del molde (kg):	9.08	9.08	9.14	2.20	0.37	
Peso de la muestra (kg):	7175.00	7135.00	7015.00			
Densidad máx:	2.22	2.20	2.17			

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 5, estrato 2.

"Microzonificació Po				I, Ascope 2023"		
Tesistas:		ana de Fátima Sandoval ia Janeth Leyvo				
Ubicación:		Poblado Menoi Sol - Sector III		Firma de encargado de laboratorio		
Ensayo:	D	ensidad Máxin	na	Coordenadas:	715448.93 N 9120320.101 E	
Calicata:	C-5	C-5 Muestra: M-2		Norma:	NTP 339,138 / ASTM D 2049	
		Datos a	le molde			
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	5A	5B	5C	Promedio (Kg/cm³)	emín	
Peso de la muestra + molde (kg):	16.27	16.23	16.35			
Peso del molde (kg):	9.09	9.09	9.09	2.22	0.37	
Peso de la muestra (kg):	7175.00	7140.00	7260.00			
Densidad máx:	2.22	2.21	2.24			

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 6, estrato 2.

Po	oblado Me	enor Luz del So	ol sector I	II, Ascope 2023"		
Tesistas:	25000	ana de Fâtima Sandoval eticia Janeth L Sânchez				
Ubicación:		Poblado Menor Sol - Sector III		Firma de encargado de laboratorio		
Ensayo:	D	ensidad Máxin	na	Coordenadas: 715086.488		
Calicata:	licata: C-6 Muestra: M-2 Norma:		Norma:	NTP 339.138 / ASTM D 2049		
		Datos a	le molde			
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	6A	6B	6C	Promedio (Kg/cm³)	emín	
Peso de la muestra + molde (kg):	16.53	16.45	16.34			
Peso del molde (kg):	9.08 9.08		9.08	2.27	0.30	
Peso de la muestra (kg):	7455.00	7375.00	7260.00			
Densidad máx:	2.30	2.28	2.24			

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 7, estrato 2.

			ol sector I			
Tesistas:		nna de Fátima Sandoval eticia Janeth L Sánchez				
Ubicación:		Poblado Menor Sol - Sector III		Firma de encargado de laboratorio		
Ensayo:	D	ensidad Máxim	ıa	Coordenadas:	714442.193 N 9120491.494 E	
Calicata:	C-7	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
		Datos d	le molde			
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	7A	7B	7C	Promedio (Kg/cm ³)	emín	
Peso de la muestra + molde (kg):	16.22	16.18	16.37		0.29	
Peso del molde (kg):	9.08	9.08	9.14	2.21		
Peso de la muestra (kg):	7145.00	7105.00	7235.00			
Densidad máx:	2.21	2.20	2.24			

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 8, estrato 2.

"Microzonificacio P	in geotécn oblado M	ica para diseñ enor Luz del S	ar ciment ol sector i	III, Ascope 2023'	ales en el Centro	
Tesistas:		na de Fátima Sandoval eticia Janeth L Sánchez				
Ubicación:		Poblado Menor Sol - Sector III	C. C	Firma de encargado de laboratorio		
Ensayo:	D	ensidad Máxin	ıa	Coordenadas:	714573.403 N 9120311.474 E	
Calicata:	C-8	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
		Datos	de molde			
Diámetro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	8A	8B	8C	Promedio (Kg/cm ³)	emín	
Peso de la muestra + molde (kg):	16.29	16.23	16.38			
Peso del molde (kg):	9.08	9.08 9.08		2.23	0.36	
Peso de la muestra (kg):	7210.00	7150.00	7245.00			
Densidad máx:	2.23	2.21	2.24			

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 9, estrato 2.

Tesistas:		na de Fátima (Sandoval eticia Janeth L Sánchez	800000000			
Ubicación:		Poblado Menor Sol - Sector III		Firma de encargado de laboratorio		
Ensayo:	D	ensidad Máxim	ıa	Coordenadas:	714909.06 N 9120323.603 E	
Calicata:	C-9	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
)	Datos d	e molde	w		
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	9A	9B	9C	Promedio (Kg/cm³)	emín	
Peso de la muestra + molde (kg):	16.22	16.19	16.38			
Peso del molde (kg):	9.08 9.08		9.14	2.21	0.36	
Peso de la muestra (kg):			7245.00			
Densidad máx:	2.21	2.20	2.24			

Ensayo de Densidad máxima para relación de vacíos mínimo de la Calicata 10, estrato 2.

Tesistas:		ina de Fátima Sandoval eticia Janeth L Sánchez				
Ubicación:		Poblado Menor Sol - Sector III		Firma de encargado de laboratorio		
Ensayo:	D	na	Coordenadas:	714732.543 N 9120491.835 E		
Calicata:	C-10	Muestra:	M-2	Norma:	NTP 339.138 / ASTM D 2049	
		Datos d	le molde			
Diametro Interno (cm):	15.22	Altura(cm):	17.79	Volumen (cm³):	3236.645	
Descripción/ Nº de tara	10A	10B	10C	Promedio (Kg/cm³)	emín	
Peso de la muestra + molde (kg):	16.23	16.17	16.38			
Peso del molde (kg):	9.08 9.08		9.14	2.21	0.35	
Peso de la muestra (kg):	7158.00	7095.00	7245.00			
Densidad máx:	2.21	2.19	2.24			

ENSAYO DE DENSIDAD NATURAL IN SITU

Anexo 74

Ensayo de densidad natural in situ de las 10 calicatas, para densidad relativa

Calicata	Wmolde + muestra (gr)	Wmolde (gr)	Volumen molde (cm ³)	e in situ (gr/cm³)
C-1	71.76	33.00	76.00	0.51
C-2	69.48	33.00	76.00	0.48
C-3	69.48	33.00	76.00	0.48
C-4	68.72	33.00	76.00	0.47
C-5	69.48	33.00	76.00	0.48
C-6	71.76	33.00	76.00	0.51
C-7	67.2	33.00	76.00	0.45
C-8	72.52	33.00	76.00	0.52
C-9	67.2	33.00	76.00	0.45
C-10	70.24	33.00	76.00	0.49

CÁLCULO DE ÁNGULO DE FRICCIÓN A PARTIR DE RELACIÓN DE VACÍOS

$$D_r = \frac{e_{m\acute{a}x} - e}{e_{m\acute{a}x} - e_{m\acute{i}n}}$$

Ecuación N° 01: Densidad relativa

$$\varphi = 30 - 0.15 * Dr(\%)$$

Ecuación N° 02: Ángulo de fricción

$$\varphi' = tan^{-1}(\tan\left(\frac{2}{3}\varphi\right))$$

Ecuación N°03: Ángulo de fricción corregido

Anexo 75Ángulo de fricción a partir de la densidad relativa del suelo

Calicata	Gs	emín	emáx	e in situ	e	DR (%)	φ	φ'	С
C-1	2.65	0.37	0.85	0.51	0.707	70.723	40.61	29.75	0
C-2	2.69	0.40	0.81	0.48	0.795	79.525	41.93	31.00	0
C-3	2.67	0.35	0.76	0.48	0.689	68.893	40.33	29.51	0
C-4	2.64	0.37	0.83	0.47	0.783	78.295	41.74	31.00	0
C-5	2.68	0.37	0.78	0.48	0.741	74.082	41.11	30.19	0
C-6	2.66	0.30	0.90	0.51	0.650	65.001	39.75	29.01	0
C-7	2.57	0.29	0.70	0.45	0.612	61.224	39.18	28.52	0
C-8	2.67	0.36	0.77	0.52	0.609	60.915	39.14	28.48	0
C-9	2.65	0.36	0.85	0.45	0.814	81.447	42.22	31.17	0
C-10	2.64	0.35	0.74	0.49	0.641	64.110	39.62	29.00	0

CÁLCULO DE LA CAPACIDAD PORTANTE SEGÚN TERZAGHI - CIMIENTO CORRIDO

Anexo 76

Capacidad admisible de la Calicata 1 según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones		Terzaghi						
		B (cm)	L (cm)	Fact	tores de C	arga	q (kg/cm²)	qult (kg/cm²)	F.S.	qadm (kg/cm ²)	
				Nc	Nq	Ny		-		7	
C-1	100	60	120	36.432	21.837	19.111	0.265	7.306	3	2.435	
		80						7.813		2.604	
		100						8.319		2.773	
		120						8.825		2.942	
		140						9.332		3.111	
		160						9.838		3.279	
		180						10.345		3.448	
		200						10.851		3.617	
	120	60	120	36.432	21.837	19.111	0.318	8.463	3	2.821	
		80						8.970		2.990	
		100						9.476		3.159	
		120						9.983		3.328	
		140						10.489		3.496	
		160						10.996		3.665	
		180						11.502		3.834	
_		200						12.009		4.003	
	150	60	120	36.432	21.837	19.111	0.398	10.200	3	3.400	
		80						10.706		3.569	
		100						11.212		3.737	
		120						11.719		3.906	
		140						12.225		4.075	
		160						12.732		4.244	
		180						13.238		4.413	
		200						13.745		4.582	

Anexo 77

Capacidad admisible de la Calicata 2, según Terzaghi

Calicata	Df (cm)	Dimer	nsiones				Terza	aghi		
		B (cm)	L (cm)	Fact	ores de C	arga	q (kg/cm²)	qult (kg/cm ²)	F.S.	qadm (kg/cm ²)
				Nc	Nq	Ny	_			
C-2	100	60	120	40.411	25.282	22.714	0.269	8.634	3	2.878
		80						9.245		3.082
		100						9.856		3.285
		120						10.467		3.489
		140						11.078		3.693
		160						11.689		3.896
		180						12.300		4.100
		200						12.911		4.304
_	120	60	120	40.411	25.282	22.714	0.323	9.994	3	3.331
		80						10.605		3.535
		100						11.216		3.739
		120						11.827		3.942
		140						12.438		4.146
		160						13.049		4.350
		180						13.660		4.553
		200						14.271		4.757
	150	60	120	40.411	25.282	22.714	0.404	12.034	3	4.011
		80						12.645		4.215
		100						13.256		4.419
		120						13.867		4.622
		140						14.478		4.826
		160						15.089		5.030
		180						15.700		5.233
		200						16.311		5.437

Anexo 78

Capacidad admisible de la Calicata , según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones				Terza	aghi		
		B (cm)	L (cm)	Fact	ores de C	arga	q (kg/cm ²)	qult (kg/cm ²)	F.S.	qadm (kg/cm ²)
				Nc	Nq	Ny	_			
C-3	100	60	120	35.731	21.243	18.502	0.267	7.154	3	2.385
		80						7.648		2.549
		100						8.142		2.714
		120						8.636		2.879
		140						9.130		3.043
		160						9.624		3.208
		180						10.118		3.373
		200						10.612		3.537
_	120	60	120	35.731	21.243	18.502	0.320	8.288	3	2.763
		80						8.782		2.927
		100						9.276		3.092
		120						9.770		3.257
		140						10.264		3.421
		160						10.758		3.586
		180						11.252		3.751
		200						11.746		3.915
	150	60	120	35.731	21.243	18.502	0.401	9.990	3	3.330
		80						10.484		3.495
		100						10.978		3.659
		120						11.472		3.824
		140						11.966		3.989
		160						12.460		4.153
		180						12.954		4.318
		200						13.448		4.483

Anexo 79

Capacidad admisible de la Calicata 4, según Terzaghi

Calicata	Df (cm)	Dimen	siones				Terza	aghi		
		B (cm)	L (cm)	Fact	ores de C	arga	q (kg/cm ²)	qult (kg/cm ²)	F.S.	qadm (kg/cm ²)
				Nc	Nq	Ny				
C-4	100	60	120	40.411	25.282	22.714	0.264	8.473	3	2.824
		80						9.073		3.024
		100						9.673		3.224
		120						10.272		3.424
		140						10.872		3.624
		160						11.472		3.824
		180						12.071		4.024
		200						12.671		4.224
	120	60	120	40.411	25.282	22.714	0.317	9.808	3	3.269
		80						10.408		3.469
		100						11.008		3.669
		120						11.607		3.869
		140						12.207		4.069
		160						12.807		4.269
		180						13.406		4.469
		200						14.006		4.669
	150	60	120	40.411	25.282	22.714	0.396	11.811	3	3.937
		80						12.410		4.137
		100						13.010		4.337
		120						13.610		4.537
		140						14.209		4.736
		160						14.809		4.936
		180						15.409		5.136
		200						16.008		5.336

Anexo 80

Capacidad admisible de la Calicata 5, según Terzaghi

Calicata	Df (cm)	Dimer	nsiones				Terza	aghi		
		B (cm)	L (cm)	Fact	ores de C	arga	q (kg/cm ²)	qult (kg/cm ²)	F.S.	qadm (kg/cm ²)
				Nc	Nq	Ny				
C-5	100	60	120	37.779	22.993	20.309	0.268	7.795	3	2.598
		80						8.339		2.780
		100						8.884		2.961
		120						9.428		3.143
		140						9.972		3.324
		160						10.516		3.505
		180						11.061		3.687
		200						11.605		3.868
_	120	60	120	37.779	22.993	20.309	0.322	9.027	3	3.009
		80						9.572		3.191
		100						10.116		3.372
		120						10.660		3.553
		140						11.205		3.735
		160						11.749		3.916
		180						12.293		4.098
		200						12.837		4.279
	150	60	120	37.779	22.993	20.309	0.402	10.876	3	3.625
		80						11.420		3.807
		100						11.965		3.988
		120						12.509		4.170
		140						13.053		4.351
		160						13.597		4.532
		180						14.142		4.714
		200						14.686		4.895

Anexo 81

Capacidad admisible de la Calicata 6, según Terzaghi

Calicata	Df (cm)	Dimer	nsiones				Terza	nghi		
		B (cm)	L (cm)	Fact	ores de C	arga	q (kg/cm ²)	qult (kg/cm ²)	F.S.	qadm (kg/cm ²)
				Nc	Nq	Ny				
C-6	100	60	120	34.242	19.981	17.208	0.266	6.688	3	2.229
		80						7.146		2.382
		100						7.604		2.535
		120						8.061		2.687
		140						8.519		2.840
		160						8.977		2.992
		180						9.435		3.145
		200						9.892		3.297
_	120	60	120	34.242	19.981	17.208	0.319	7.751	3	2.584
		80						8.209		2.736
		100						8.667		2.889
		120						9.124		3.041
		140						9.582		3.194
		160						10.040		3.347
		180						10.498		3.499
		200						10.955		3.652
_	150	60	120	34.242	19.981	17.208	0.399	9.346	3	3.115
		80						9.803		3.268
		100						10.261		3.420
		120						10.719		3.573
		140						11.177		3.726
		160						11.634		3.878
		180						12.092		4.031
		200						12.550		4.183

Anexo 82

Capacidad admisible de la Calicata 7, según Terzaghi

Calicata	Df (cm)	Dimer	nsiones				Terza	aghi		
		B (cm)	L (cm)	Fact	ores de C	arga	q (kg/cm ²)	qult (kg/cm ²)	F.S.	qadm (kg/cm ²)
				Nc	Nq	Ny				
C-7	100	60	120	32.980	18.938	16.163	0.257	6.113	3	2.038
		80						6.529		2.176
		100						6.944		2.315
		120						7.359		2.453
		140						7.775		2.592
		160						8.190		2.730
		180						8.606		2.869
		200						9.021		3.007
_	120	60	120	32.980	18.938	16.163	0.308	7.087	3	2.362
		80						7.502		2.501
		100						7.917		2.639
		120						8.333		2.778
		140						8.748		2.916
		160						9.164		3.055
		180						9.579		3.193
		200						9.994		3.331
	150	60	120	32.980	18.938	16.163	0.386	8.547	3	2.849
		80						8.962		2.987
		100						9.378		3.126
		120						9.793		3.264
		140						10.208		3.403
		160						10.624		3.541
		180						11.039		3.680
		200						11.454		3.818

Anexo 83

Capacidad admisible de la Calicata 8, según Terzaghi

Calicata	Df (cm)	Dimer	nsiones				Terza	aghi		
		B (cm)	L (cm)	Fact	ores de C	Carga	q (kg/cm ²)	qult (kg/cm ²)	F.S.	qadm (kg/cm ²)
				Nc	Nq	Ny				
C-8	100	60	120	32.874	18.851	16.075	0.267	6.321	3	2.107
		80						6.750		2.250
		100						7.179		2.393
		120						7.608		2.536
		140						8.038		2.679
		160						8.467		2.822
		180						8.896		2.965
		200						9.325		3.108
_	120	60	120	32.874	18.851	16.075	0.320	7.327	3	2.442
		80						7.757		2.586
		100						8.186		2.729
		120						8.615		2.872
		140						9.044		3.015
		160						9.473		3.158
		180						9.903		3.301
		200						10.332		3.444
	150	60	120	32.874	18.851	16.075	0.401	8.837	3	2.946
		80						9.267		3.089
		100						9.696		3.232
		120						10.125		3.375
		140						10.554		3.518
		160						10.983		3.661
		180						11.413		3.804
		200						11.842		3.947

Anexo 84

Capacidad admisible de la Calicata 9, según Terzaghi

Calicata	Df (cm)	Dimer	nsiones				Terza	nghi		
		B (cm)	L (cm)	Fact	ores de C	arga	q (kg/cm ²)	qult (kg/cm ²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny				
C-9	100	60	120	41.027	25.832	23.308	0.265	8.698	3	2.899
		80						9.316		3.105
		100						9.934		3.311
		120						10.551		3.517
		140						11.169		3.723
		160						11.787		3.929
		180						12.404		4.135
		200						13.022		4.341
<u></u>	120	60	120	41.027	25.832	23.308	0.318	10.068	3	3.356
		80						10.685		3.562
		100						11.303		3.768
		120						11.921		3.974
		140						12.538		4.179
		160						13.156		4.385
		180						13.774		4.591
		200						14.391		4.797
	150	60	120	41.027	25.832	23.308	0.398	12.121	3	4.040
		80						12.739		4.246
		100						13.357		4.452
		120						13.974		4.658
		140						14.592		4.864
		160						15.210		5.070
		180						15.827		5.276
		200						16.445		5.482

Anexo 85

Capacidad admisible de la Calicata 10, según Terzaghi

Calicata	Df (cm)	Dimer	nsiones				Terza	aghi		
		B (cm)	L (cm)	Fact	ores de C	Carga	q (kg/cm ²)	qult (kg/cm ²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny				
C-10	100	60	120	34.242	19.981	17.208	0.264	6.638	3	2.213
		80						7.092		2.364
		100						7.546		2.515
		120						8.001		2.667
		140						8.455		2.818
		160						8.909		2.970
		180						9.364		3.121
		200						9.818		3.273
_	120	60	120	34.242	19.981	17.208	0.317	7.693	3	2.564
		80						8.147		2.716
		100						8.601		2.867
		120						9.056		3.019
		140						9.510		3.170
		160						9.964		3.321
		180						10.419		3.473
		200						10.873		3.624
_	150	60	120	34.242	19.981	17.208	0.396	9.275	3	3.092
		80						9.730		3.243
		100						10.184		3.395
		120						10.638		3.546
		140						11.093		3.698
		160						11.547		3.849
		180						12.001		4.000
		200						12.455		4.152

CÁLCULO DE LA CAPACIDAD PORTANTE SEGÚN MEYERHOF – CIMIENTO CORRIDO

Anexo 86

Capacidad admisible de la Calicata 1, según Meyerhof

Calicata	Df (cm)	Dimer	nsiones								N	Meyer	hof						
		R (cm)	L (cm)	Facto	res de (arga		ctore			actore			ctores		q	qult	F.S.	qadm
		D (CIII)	L (CIII)					Form			ofund			clinac		(kg/cm ²)	(kg/cm ²)	1.0.	(kg/cm ²)
				<u>Nc</u>	Nq	Ny						Fyd		Fqi		<u> </u>			
C-1		60	120	29.570	17.912	15.060	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.265	5.944	3	1.981
		80															6.343		2.114
		100															6.742		2.247
	100	120															7.141		2.380
	100	140															7.540		2.513
		160															7.939		2.646
		180															8.338		2.779
		200															8.738		2.913
		60	120	29.570	17.912	15.060	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.318	6.893	3	2.298
		80															7.292		2.431
		100															7.691		2.564
	120	120															8.091		2.697
	120	140															8.490		2.830
		160															8.889		2.963
		180															9.288		3.096
		200															9.687		3.229
		60	120	29.570	17.912	15.060	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.398	8.317	3	2.772
		80															8.716		2.905
		100															9.115		3.038
	150	120															9.515		3.172
	150	140															9.914		3.305
		160															10.313		3.438
		180															10.712		3.571
		200															11.111		3.704

Capacidad admisible de la Calicata 2, según Meyerhof

Calicata	Df (cm)	Dimen	siones								N	1eyerl	hof						
		B (cm)	L (cm)	Footo	res de (Corgo	Fa	ctores	de	Fa	ctores	s de	Fa	ctores	s de	q	qult	F.S.	qadm
		D (CIII)	L (CIII)	Facto	nes de v	Jaiga]	Forma	a		fundi			clinac		(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi	_			
C-2	100	60	120	32.671	20.631	18.564	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.269	7.048	3	2.349
		80															7.547		2.516
		100															8.047		2.682
		120															8.546		2.849
		140															9.045		3.015
		160															9.545		3.182
		180															10.044		3.348
		200															10.543		3.514
	120	60	120	32.671	20.631	18.564	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.323	8.158	3	2.719
		80															8.657		2.886
		100															9.157		3.052
		120															9.656		3.219
		140															10.155		3.385
		160															10.655		3.552
		180															11.154		3.718
		200															11.653		3.884
	150	60	120	32.671	20.631	18.564	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.404	9.823	3	3.274
		80															10.322		3.441
		100															10.821		3.607
		120															11.321		3.774
		140															11.820		3.940
		160															12.320		4.107
		180															12.819		4.273
		200															13.318		4.439

Anexo 88

Capacidad admisible de la Calicata 3, según Meyerhof

Calicata	Df (cm)	Dimer	isiones								M	leyerh	of						
		R (cm)	L (cm)	Facto	res de (⁷ arga		ctores			ctores			ctores		q	qult	F.S.	qadm
		D (CIII)	L (CIII)			Jai ga		Forma			fundi			clinac		(kg/cm ²)	(kg/cm ²)	1.0.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-3	100	60	120	29.023	17.442	14.476	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.267	5.817	3	1.939
		80															6.203		2.068
		100															6.590		2.197
		120															6.976		2.325
		140															7.363		2.454
		160															7.749		2.583
		180															8.136		2.712
		200															8.522		2.841
	120	60	120	29.023	17.442	14.476	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.320	6.748	3	2.249
		80															7.134		2.378
		100															7.521		2.507
		120															7.907		2.636
		140															8.294		2.765
		160															8.680		2.893
		180															9.067		3.022
		200															9.454		3.151
	150	60	120	29.023	17.442	14.476	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.401	8.145	3	2.715
		80															8.532		2.844
		100															8.918		2.973
		120															9.305		3.102
		140															9.691		3.230
		160															10.078		3.359
		180															10.464		3.488
		200															10.851		3.617

Anexo 89

Capacidad admisible de la Calicata 4, según Meyerhof

Calicata	Df (cm)	Dimer	isiones									Meye	rhof						
		B (cm)	L (cm)	Facto	res de (Carga		ctores Forma			ctores fundi			ctores linac		q (kg/cm²)	qult (kg/cm2)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-4	100	60	120	32.671	20.631	18.564	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.264	6.917	3	2.306
		80															7.407		2.469
		100															7.897		2.632
		120															8.387		2.796
		140															8.877		2.959
		160															9.367		3.122
		180															9.857		3.286
		200															10.347		3.449
	120	60	120	32.671	20.631	18.564	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.317	8.006	3	2.669
		80															8.496		2.832
		100															8.986		2.995
		120															9.476		3.159
		140															9.967		3.322
		160															10.457		3.486
		180															10.947		3.649
		200															11.437		3.812
	150	60	120	32.671	20.631	18.564	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.396	9.640	3	3.213
		80															10.130		3.377
		100															10.620		3.540
		120															11.110		3.703
		140															11.601		3.867
		160															12.091		4.030
		180															12.581		4.194
		200															13.071		4.357

Anexo 90

Capacidad admisible de la Calicata 5, según Meyerhof

Calicata	Df (cm)	Dimer	siones									Mey	erhoi	f					
		B (cm)	L (cm)	Facto	res de (Carga		ctores Form			ctores fundi			ctore:		q (kg/cm ²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-5	100	60	120	30.621	18.825	16.218	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.268	6.349	3	2.116
		80															6.784		2.261
		100															7.218		2.406
		120															7.653		2.551
		140															8.088		2.696
		160															8.522		2.841
		180															8.957		2.986
		200															9.392		3.131
	120	60	120	30.621	18.825	16.218	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.322	7.358	3	2.453
		80															7.793		2.598
		100															8.227		2.742
		120															8.662		2.887
		140															9.097		3.032
		160															9.531		3.177
		180															9.966		3.322
		200															10.401		3.467
	150	60	120	30.621	18.825	16.218	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.402	8.872	3	2.957
		80															9.306		3.102
		100															9.741		3.247
		120															10.176		3.392
		140															10.610		3.537
		160															11.045		3.682
		180															11.479		3.826
		200															11.914		3.971

Anexo 91

Capacidad admisible de la Calicata 6, según Meyerhof

Calicata	Df (cm)	Dimei	isiones								Ŋ	Meyer	hof						
		B (cm)	L (cm)	Facto	res de (Carga		ctores Form			ctores fundi			ctores clinac		q (kg/cm ²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-6	100	60	120	27.860	16.443	13.236	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.266	5.430	3	1.810
		80															5.782		1.927
		100															6.134		2.045
		120															6.486		2.162
		140															6.838		2.279
		160															7.190		2.397
		180															7.543		2.514
		200															7.895		2.632
	120	60	120	27.860	16.443	13.236	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.319	6.305	3	2.102
		80															6.657		2.219
		100															7.009		2.336
		120															7.361		2.454
		140															7.713		2.571
		160															8.065		2.688
		180															8.417		2.806
		200															8.769		2.923
	150	60	120	27.860	16.443	13.236	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.399	7.617	3	2.539
		80															7.969		2.656
		100															8.321		2.774
		120															8.673		2.891
		140															9.025		3.008
		160															9.377		3.126
		180															9.729		3.243
		200															10.082		3.361

Anexo 92

Capacidad admisible de la Calicata 7, según Meyerhof

Calicata	Df (cm)	Dimer	nsiones									Meye	rhof						
		B (cm)	L (cm)	Facto	res de (Carga		ctores Form			ctores fundi			ctores		q (kg/cm²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi	_			
C-7	100	60	120	26.873	15.616	12.254	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.257	4.958	3	1.653
		80															5.273		1.758
		100															5.588		1.863
		120															5.903		1.968
		140															6.218		2.073
		160															6.533		2.178
		180															6.848		2.283
		200															7.163		2.388
	120	60	120	26.873	15.616	12.254	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.308	5.761	3	1.920
		80															6.076		2.025
		100															6.391		2.130
		120															6.706		2.235
		140															7.020		2.340
		160															7.335		2.445
		180															7.650		2.550
		200															7.965		2.655
	150	60	120	26.873	15.616	12.254	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.386	6.965	3	2.322
		80															7.280		2.427
		100															7.595		2.532
		120															7.910		2.637
		140															8.224		2.741
		160															8.539		2.846
		180															8.854		2.951
		200															9.169		3.056

Anexo 93

Capacidad admisible de la Calicata 8, según Meyerhof

Calicata	Df (cm)	Dime	nsiones								Ŋ	Meyer	hof						
		B (cm)	L (cm)	Facto	res de (Carga		ctores Form			ctores fundi			ctores clinac		q (kg/cm²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi	_			
C-8	100	60	120	26.790	15.547	12.172	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.267	5.126	3	1.709
		80															5.451		1.817
		100															5.776		1.925
		120															6.101		2.034
		140															6.426		2.142
		160															6.751		2.250
		180															7.076		2.359
		200															7.401		2.467
	120	60	120	26.790	15.547	12.172	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.320	5.956	3	1.985
		80															6.281		2.094
		100															6.606		2.202
		120															6.931		2.310
		140															7.256		2.419
		160															7.581		2.527
		180															7.906		2.635
		200															8.231		2.744
	150	60	120	26.790	15.547	12.172	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.401	7.202	3	2.401
		80															7.527		2.509
		100															7.852		2.617
		120															8.177		2.726
		140															8.502		2.834
		160															8.827		2.942
		180															9.152		3.051
		200															9.476		3.159

Anexo 94

Capacidad admisible de la Calicata 9, según Meyerhof

Calicata	Df (cm)	Dimer	siones]	Meyer	rhof						
		B (cm)	L (cm)	Facto	res de (Carga		ctores Forma			ctores fundi			ctores clinac		q (kg/cm²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-9	100	60	120	33.150	21.064	19.152	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.265	7.105	3	2.368
		80															7.612		2.537
		100															8.120		2.707
		120															8.627		2.876
		140															9.177		3.059
		160															9.642		3.214
		180															10.150		3.383
		200															10.657		3.552
	120	60	120	33.150	21.064	19.152	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.318	8.221	3	2.740
		80															8.728		2.909
		100															9.236		3.079
		120															9.744		3.248
		140															10.251		3.417
		160															10.759		3.586
		180															11.266		3.755
		200															11.774		3.925
	150	60	120	33.150	21.064	19.152	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.398	9.896	3	3.299
		80															10.403		3.468
		100															10.911		3.637
		120															11.418		3.806
		140															11.926		3.975
		160															12.433		4.144
		180															12.941		4.314
		200															13.448		4.483

Anexo 95

Capacidad admisible de la Calicata 10, según Meyerhof

Calicata	Df (cm)	Dimer	siones									Meye	rhof						
		B (cm)	L (cm)	Facto	res de (Carga		ctores Form			ctores fundi			ctores clinac		q (kg/cm ²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-10	100	60	120	27.860	16.443	13.236	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.264	5.389	3	1.796
		80															5.739		1.913
		100															6.088		2.029
		120															6.438		2.146
		140															6.787		2.262
		160															7.136		2.379
		180															7.486		2.495
		200															7.835		2.612
	120	60	120	27.860	16.443	13.236	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.317	6.257	3	2.086
		80															6.607		2.202
		100															6.956		2.319
		120															7.306		2.435
		140															7.655		2.552
		160															8.005		2.668
		180															8.354		2.785
		200															8.703		2.901
	150	60	120	27.860	16.443	13.236	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.396	7.560	3	2.520
		80															7.909		2.636
		100															8.259		2.753
		120															8.608		2.869
		140															8.957		2.986
		160															9.307		3.102
		180															9.656		3.219
		200															10.006		3.335

CÁLCULO DE LA CAPACIDAD PORTANTE SEGÚN HANSEN – CIMIENTO CORRIDO

Anexo 96

Capacidad admisible de la Calicata 1, según Hansen.

Calicata	Df (cm)	Dimer	isiones									Han	sen						
		B (cm)	L (cm)	Facto	res de (Carga		ctores Form			ctores ofundi			ctores clinac		q (kg/cm²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
		,		Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-1	100	60	120	29.570	17.912	14.513	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.265	5.900	3	1.967
		80															6.285		2.095
		100															6.670		2.223
		120															7.054		2.351
		140															7.439		2.480
		160															7.823		2.608
		180															8.208		2.736
		200															8.593		2.864
	120	60	120	29.570	17.912	14.513	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.318	6.850	3	2.283
		80															7.234		2.411
		100															7.619		2.540
		120															8.004		2.668
		140															8.388		2.796
		160															8.773		2.924
		180															9.157		3.052
		200															9.542		3.181
	150	60	120	29.570	17.912	14.513	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.398	8.274	3	2.758
		80															8.658		2.886
		100															9.043		3.014
		120															9.428		3.143
		140															9.812		3.271
		160															10.197		3.399
		180															10.581		3.527
		200															10.966		3.655

Anexo 97

Capacidad admisible de la Calicata 2, según Hansen

Calicata	Df (cm)	Dimer	nsiones									Hans	en						
		R (cm)	L (cm)	Facto	res de (⁷ araa		ctores			ctores			ctores		q	qult	F.S.	qadm
		D (CIII)	L (CIII)	Гаси	nes de (Jaiga]	Form	a		fundi			clinac		(kg/cm ²)	(kg/cm ²)	F.D.	(kg/cm ²)
				Nc	Nq	Ny			Fys			Fyd			Fyi	-			
C-2	100	60	120	32.671	20.631	17.693	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.269	6.978	3	2.326
		80															7.454		2.485
		100															7.929		2.643
		120															8.405		2.802
		140															8.881		2.960
		160															9.357		3.119
		180															9.833		3.278
		200					1.00	1.00	1.00			1.00	1.00	1.00	1.00		10.309		3.436
	120	60	120	32.671	20.631	17.693	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.323	8.088	3	2.696
		80															8.563		2.854
		100															9.039		3.013
		120															9.515		3.172
		140															9.991		3.330
		160															10.467		3.489
		180															10.943		3.648
		200															11.419		3.806
	150	60	120	32.671	20.631	17.693	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.404	9.752	3	3.251
		80															10.228		3.409
		100															10.704		3.568
		120															11.180		3.727
		140															11.656		3.885
		160															12.132		4.044
		180															12.608		4.203
		200															13.084		4.361

Anexo 98

Capacidad admisible de la Calicata 3, según Hansen

Calicata	Df (cm)	Dimer	nsiones									Hans	en						
		R (om)	L (cm)	Footo	res de (Corgo	Fac	ctores	s de	Fa	ctores	s de	Fa	ctore	s de	q	qult	F.S.	qadm
		D (CIII)	L (CIII)	racio	nes de (Jaiga]	Form	a	Pro	fundi	dad		clinac		(kg/cm ²)	(kg/cm ²)	Г.Б.	(kg/cm ²)
				Nc	Nq	Ny		Fqs				Fyd		Fqi					
C-3	100	60	120	29.023	17.442	13.978	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.267	5.777	3	1.926
		80															6.150		2.050
		100															6.523		2.174
		120															6.896		2.299
		140															7.270		2.423
		160															7.643		2.548
		180															8.016		2.672
		200															8.389		2.796
	120	60	120	29.023	17.442	13.978	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.320	6.708	3	2.236
		80															7.081		2.360
		100															7.454		2.485
		120															7.828		2.609
		140															8.201		2.734
		160															8.574		2.858
		180															8.947		2.982
		200															9.321		3.107
	150	60	120	29.023	17.442	13.978	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.401	8.105	3	2.702
		80															8.478		2.826
		100															8.852		2.951
		120															9.225		3.075
		140															9.598		3.199
		160															9.971		3.324
		180															10.344		3.448
		200															10.718		3.573

Anexo 99

Capacidad admisible de la Calicata 4, según Hansen.

Calicata	Df (cm)	Dimer	siones									Han	sen						
		B (cm)	L (cm)	Facto	ores de (Carga		ctores Form			ctores fundi			ctores clinac		q (kg/cm²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-4	100	60	120	32.671	20.631	17.693	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.264	6.848	3	2.283
		80															7.315		2.438
		100															7.782		2.594
		120															8.249		2.750
		140															8.716		2.905
		160															9.183		3.061
		180															9.650		3.217
		200															10.118		3.373
	120	60	120	32.671	20.631	17.693	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.317	7.937	3	2.646
		80															8.404		2.801
		100															8.871		2.957
		120															9.338		3.113
		140															9.806		3.269
		160															10.273		3.424
		180															10.740		3.580
		200															11.207		3.736
	150	60	120	32.671	20.631	17.693	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.396	9.571	3	3.190
		80															10.038		3.346
		100															10.505		3.502
		120															10.972		3.657
		140															11.440		3.813
		160															11.907		3.969
		180															12.374		4.125
		200															12.841		4.280

Anexo 100

Capacidad admisible de la Calicata 5, según Hansen

Calicata	Df (cm)	Dimens	siones									Hans	en						
		D (om)	L (cm)	Footo	res de (Commo	Fa	ctores	de	Fa	ctores	s de	Fac	ctores	de	q	qult	F.S.	qadm
	<u>-</u>	B (cm)	L (cm)	racio	res de v	carga]	Forma	a	Pro	fundi	dad		clinaci	ón	(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-5	100	60	120	30.621	18.824	15.568	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.268	6.296	3	2.099
		80															6.714		2.238
		100															7.131		2.377
		120															7.548		2.516
		140															7.965		2.655
		160															8.383		2.794
		180															8.800		2.933
		200															9.217		3.072
	120	60	120	30.621	18.824	15.568	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.322	7.305	3	2.435
		80															7.723		2.574
		100															8.140		2.713
		120															8.557		2.852
		140															8.974		2.991
		160															9.392		3.131
		180															9.809		3.270
		200															10.226		3.409
	150	60	120	30.621	18.824	15.568	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.402	8.819	3	2.940
		80															9.236		3.079
		100															9.653		3.218
		120															10.071		3.357
		140															10.488		3.496
		160															10.905		3.635
		180															11.322		3.774
		200															11.739		3.913

Anexo 101

Capacidad admisible de la Calicata 6, según Hansen.

Calicata	Df (cm)	Dimer	nsiones									Hans	en						
		B (cm)	L (cm)	Facto	res de (Carga		ctores Form			ctores fundi			ctores clinac		q (kg/cm²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-6	100	60	120	27.860	16.443	12.841	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.266	5.399	3	1.800
		80															5.740		1.913
		100															6.082		2.027
		120															6.423		2.141
		140															6.765		2.255
		160															7.106		2.369
		180															7.448		2.483
		200															7.790		2.597
	120	60	120	27.860	16.443	12.841	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.319	6.273	3	2.091
		80															6.615		2.205
		100															6.956		2.319
		120															7.298		2.433
		140															7.640		2.547
		160															7.981		2.660
		180															8.323		2.774
		200															8.664		2.888
	150	60	120	27.860	16.443	12.841	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.399	7.585	3	2.528
		80															7.927		2.642
		100															8.269		2.756
		120															8.610		2.870
		140															8.952		2.984
		160															9.293		3.098
		180															9.635		3.212
		200															9.976		3.325

Anexo 102

Capacidad admisible de la Calicata 7, según Hansen.

Calicata	Df (cm)	Dimer	isiones									Han	sen						
		D (om)	I (om)	Footo	res de (Commo	Fac	ctores	s de	Fa	ctores	s de	Fa	ctores	s de	q	qult	F.S.	qadm
		D (CIII)	L (cm)	Facto	ores de C	Jarga ———]	Form	a	Pro	fundi	dad	Inc	linac	ión	(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny						Fyd			Fyi				
C-7	100	60	120	26.873	15.616	11.929	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.257	4.933	3	1.644
		80															5.240		1.747
		100															5.546		1.849
		120															5.853		1.951
		140															6.159		2.053
		160															6.466		2.155
		180															6.772		2.257
		200															7.079		2.360
	120	60	120	26.873	15.616	11.929	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.308	5.736	3	1.912
		80															6.042		2.014
		100															6.349		2.116
		120															6.655		2.218
		140															6.962		2.321
		160															7.269		2.423
		180															7.575		2.525
		200															7.882		2.627
	150	60	120	26.873	15.616	11.929	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.386	6.940	3	2.313
		80															7.246		2.415
		100															7.553		2.518
		120															7.859		2.620
		140															8.166		2.722
		160															8.473		2.824
		180															8.779		2.926
		200															9.086		3.029

Anexo 103

Capacidad admisible de la Calicata 8, según Hansen.

Calicata	Df (cm)	Dimer	nsiones									Hans	sen						
		B (cm)	L (cm)	Facto	res de (Carga		ctores Form			ctores fundi			ctores clinac		q (kg/cm ²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-8	100	60	120	26.790	15.547	11.854	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.267	5.101	3	1.700
		80															5.417		1.806
		100															5.734		1.911
		120															6.050		2.017
		140															6.367		2.122
		160															6.683		2.228
		180															7.000		2.333
		200															7.316		2.439
	120	60	120	26.790	15.547	11.854	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.320	5.931	3	1.977
		80															6.247		2.082
		100															6.564		2.188
		120															6.880		2.293
		140															7.197		2.399
		160															7.513		2.504
		180															7.830		2.610
		200															8.146		2.715
	150	60	120	26.790	15.547	11.854	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.401	7.176	3	2.392
		80															7.493		2.498
		100															7.809		2.603
		120															8.126		2.709
		140															8.442		2.814
		160															8.759		2.920
		180															9.075		3.025
		200															9.392		3.131

Anexo 104

Capacidad admisible de la Calicata 9, según Hansen

Calicata	Df (cm)	Dimer	isiones									Hans	sen						
		D (om)	I (om)	Footo	res de (Commo	Fac	ctores	s de	Fa	ctores	de	Fac	ctores	s de	q	qult	F.S.	qadm
		D (CIII)	L (cm)	гаси	res de C	carga]	Form	a	Pro	fundi	dad	Inc	linac	ión	(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny						Fyd		Fqi					
C-9	100	60	120	33.150	21.064	18.220	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.265	7.030	3	2.343
		80															7.513		2.504
		100															7.996		2.665
		120															8.479		2.826
		140															9.004		3.001
		160															9.445		3.148
		180															9.927		3.309
		200															10.410		3.470
	120	60	120	33.150	21.064	18.220	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.318	8.147	3	2.716
		80															8.630		2.877
		100															9.113		3.038
		120															9.595		3.198
		140															10.078		3.359
		160															10.561		3.520
		180															11.044		3.681
		200															11.527		3.842
	150	60	120	33.150	21.064	18.220	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.398	9.821	3	3.274
		80															10.304		3.435
		100															10.787		3.596
		120															11.270		3.757
		140															11.753		3.918
		160															12.236		4.079
		180															12.718		4.239
		200															13.201		4.400

Anexo 105

Capacidad admisible de la Calicata 10, según Hansen

Calicata	Df (cm)	Dimer	siones									Hans	en						
		D (om)	L (cm)	Footo	res de (Commo	Fac	ctores	s de	Fa	ctores	de	Fac	ctores	s de	q	qult	F.S.	qadm
		B (CIII)	L (CIII)	Facto	res de C	Jarga ———]	Form	a	Pro	fundi	dad	Inc	linac	ión	(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs			Fqd								
C-10	100	60	120	27.860	16.443	12.841	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.264	5.358	3	1.786
		80															5.697		1.899
		100															6.036		2.012
		120															6.375		2.125
		140															6.714		2.238
		160															7.053		2.351
		180															7.392		2.464
		200															7.731		2.577
	120	60	120	27.860	16.443	12.841	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.317	6.226	3	2.075
		80															6.565		2.188
		100															6.904		2.301
		120															7.243		2.414
		140															7.582		2.527
		160															7.921		2.640
		180															8.260		2.753
		200															8.599		2.866
	150	60	120	27.860	16.443	12.841	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.396	7.528	3	2.509
		80															7.867		2.622
		100															8.206		2.735
		120															8.545		2.848
		140															8.884		2.961
		160															9.223		3.074
		180															9.562		3.187
		200															9.901		3.300

CÁLCULO DE LA CAPACIDAD PORTANTE SEGÚN VESIC – CIMIENTO CORRIDO

Anexo 106

Capacidad admisible de la Calicata 1, según Vesic

Calicata	Df (cm)	Dimer	siones									Vesi	c						
	, ,		L (cm)	Facto	res de (⁷ ลroa		ctores			ctores			ctores		q	qult	F.S.	qadm
		D (CIII)	L (CIII)					Forma			fundi			linac		(kg/cm ²)	(kg/cm ²)	1.0.	(kg/cm ²)
				Nc	Nq	Ny						Fyd		Fqi					
C-1	100	60	120	29.570	17.912	21.636	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.265	6.467	3	2.156
		80															7.040		2.347
		100															7.613		2.538
		120															8.187		2.729
		140															8.760		2.920
		160															9.334		3.111
		180															9.907		3.302
		200	400	20.570	17.010	24.626	1.00	1.00	1.00	1.00	4.00	4.00	1.00	1.00	1.00	0.010	10.480		3.493
	120	60	120	29.570	17.912	21.636	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.318	7.416	3	2.472
		80															7.989		2.663
		100															8.563		2.854
		120															9.136		3.045
		140															9.709		3.236
		160															10.283		3.428
		180															10.856		3.619
		200	420	20 570	47.042	24.626	1.00	4.00	4.00	4.00	4.00	4.00	1.00	1.00	1.00	0.200	11.430		3.810
	150	60	120	29.570	17.912	21.636	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.398	8.840	3	2.947
		80															9.413		3.138
		100															9.987		3.329
		120															10.560		3.520
		140															11.133		3.711
		160															11.707		3.902
		180															12.280		4.093
		200															12.854		4.285

Anexo 107

Capacidad admisible de la Calicata 2, según Vesic

Calicata	Df (cm)	Dimer	isiones									Vesi	c						
		D (om)	L (cm)	Footo	res de (Congo	Fac	ctores	s de	Fa	ctores	de	Fac	ctore	s de	q	qult	F.S.	qadm
		D (CIII)	L (CIII)	гаси	ores de C	Jarga ———]	Form	a	Pro	fundi	dad	Inc	linac	ción	(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi	_			
C-2	100	60	120	32.671	20.631	25.994	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.269	7.647	3	2.549
		80															8.347		2.782
		100															9.046		3.015
		120															9.745		3.248
		140															10.444		3.481
		160															11.144		3.715
		180															11.843		3.948
		200															12.542		4.181
	120	60	120	32.671	20.631	25.994	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.323	8.757	3	2.919
		80															9.457		3.152
		100															10.156		3.385
		120															10.855		3.618
		140															11.554		3.851
		160															12.254		4.085
		180															12.953		4.318
		200															13.652		4.551
	150	60	120	32.671	20.631	25.994	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.404	10.422	3	3.474
		80															11.122		3.707
		100															11.821		3.940
		120															12.520		4.173
		140															13.219		4.406
		160															13.919		4.640
		180															14.618		4.873
		200															15.317		5.106

Anexo 108

Capacidad admisible de la Calicata 3, según Vesic

Calicata	Df (cm)	Dimer	siones									Vesi	c						
		R (cm)	L (cm)	Facto	res de (⁷ orgo	Fac	ctores	de	Fa	ctores	de	Fac	ctores	de	q	qult	F.S.	qadm
		D (CIII)	L (CIII)	racto	ics uc (Jarga		Forma			fundi			linac	ión	(kg/cm ²)	(kg/cm ²)	1.0.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi	=.			
C-3	100	60	120	29.023	17.442	20.901	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.267	6.331	3	2.110
		80															6.889		2.296
		100															7.447		2.482
		120															8.005		2.668
		140															8.563		2.854
		160															9.121		3.040
		180															9.680		3.227
		200															10.238		3.413
	120	60	120	29.023	17.442	20.901	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.320	7.263	3	2.421
		80															7.821		2.607
		100															8.379		2.793
		120															8.937		2.979
		140															9.495		3.165
		160															10.053		3.351
		180															10.611		3.537
		200															11.169		3.723
	150	60	120	29.023	17.442	20.901	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.401	8.660	3	2.887
		80															9.218		3.073
		100															9.776		3.259
		120															10.334		3.445
		140															10.892		3.631
		160															11.450		3.817
		180															12.008		4.003
		200															12.566		4.189

Anexo 109

Capacidad admisible de la Calicata 4, según Vesic

Calicata	Df (cm)	Dimer	siones									Vesi	c						
	` `	D (om)	I (am)	Foots	mag da	Carra	Fa	ctores	s de	Fa	ctores	de	Fac	ctores	de	q	qult	F.S.	qadm
		D (CIII)	L (cm)	гаси	ores de	Carga]	Form	a	Pro	fundi	dad	Inc	linac	ión	(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi	_			
C-4	100	60	120	32.671	20.631	25.994	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.264	7.505	3	2.502
		80															8.192		2.731
		100															8.878		2.959
		120															9.564		3.188
		140															10.250		3.417
		160															10.937		3.646
		180															11.623		3.874
		200															12.309		4.103
	120	60	120	32.671	20.631	25.994	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.317	8.595	3	2.865
		80															9.281		3.094
		100															9.967		3.322
		120															10.653		3.551
		140															11.340		3.780
		160															12.026		4.009
		180															12.712		4.237
		200															13.398		4.466
	150	60	120	32.671	20.631	25.994	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.396	10.229	3	3.410
		80															10.915		3.638
		100															11.601		3.867
		120															12.287		4.096
		140															12.974		4.325
		160															13.660		4.553
		180															14.346		4.782
		200															15.032		5.011

Anexo 110

Capacidad admisible de la Calicata 5, según Vesic

Calicata	Df (cm)	Dimer	siones									Ves	ic						
		D (om)	I (am)	Footo	res de (Congo	Fac	ctores	s de	Fa	ctores	de	Fa	ctores	de	q	qult	F.S.	qadm
		D (CIII)	L (cm)	гаси	res de C	Jarga]	Form	a	Pro	fundi	dad	Inc	clinac	ión	(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-5	100	60	120	30.621	18.824	23.084	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.268	6.901	3	2.300
		80															7.519		2.506
		100															8.138		2.713
		120															8.757		2.919
		140															9.375		3.125
		160															9.994		3.331
		180															10.613		3.538
		200															11.231		3.744
	120	60	120	30.621	18.824	23.084	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.322	7.910	3	2.637
		80															8.528		2.843
		100															9.147		3.049
		120															9.766		3.255
		140															10.384		3.461
		160															11.003		3.668
		180															11.622		3.874
		200															12.240		4.080
	150	60	120	30.621	18.824	23.084	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.402	9.423	3	3.141
		80															10.042		3.347
		100															10.661		3.554
		120															11.279		3.760
		140															11.898		3.966
		160															12.516		4.172
		180															13.135		4.378
		200															13.754		4.585

Anexo 111

Capacidad admisible de la Calicata 6, según Vesic

Calicata	Df (cm)	Dimer	nsiones									Vesic	•						
		R (cm)	L (cm)	Facto	res de (arga	Fac	ctores	de	Fac	ctores	de	Fac	ctores	de	q	qult	F.S.	qadm
		D (CIII)	L (CIII)	racu	n es ue (Jaiga]	Forma	ì	Pro	fundi	dad		clinac		(kg/cm ²)	(kg/cm ²)	г.ы.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-6	100	60	120	27.860	16.443	19.338	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.266	5.917	3	1.972
		80															6.431		2.144
		100															6.946		2.315
		120															7.460		2.487
		140															7.975		2.658
		160															8.489		2.830
		180															9.003		3.001
		200															9.518		3.173
	120	60	120	27.860	16.443	19.338	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.319	6.792	3	2.264
		80															7.306		2.435
		100															7.821		2.607
		120															8.335		2.778
		140															8.849		2.950
		160															9.364		3.121
		180															9.878		3.293
		200															10.393		3.464
	150	60	120	27.860	16.443	19.338	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.399	8.104	3	2.701
		80															8.618		2.873
		100															9.133		3.044
		120															9.647		3.216
		140															10.161		3.387
		160															10.676		3.559
		180															11.190		3.730
		200															11.705		3.902

Anexo 112

Capacidad admisible de la Calicata 7, según Vesic

Calicata	Df (cm)	Dimei	nsiones									Vesi	c						
		R (cm)	L (cm)	Facto	res de (⁷ arga		ctores		Fa	ctores	de		ctores		q	qult	F.S.	qadm
		D (CIII)	L (CIII)	racu	n es ue (Jai ga]	Form	a	Pro	fundi	dad		linac		(kg/cm ²)	(kg/cm ²)	1.0.	(kg/cm ²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-7	100	60	120	26.873	15.616	18.080	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.257	5.407	3	1.802
		80															5.872		1.957
		100															6.337		2.112
		120															6.801		2.267
		140															7.266		2.422
		160															7.731		2.577
		180															8.195		2.732
		200															8.660		2.887
	120	60	120	26.873	15.616	18.080	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.308	6.210	3	2.070
		80															6.675		2.225
		100															7.139		2.380
		120															7.604		2.535
		140															8.069		2.690
		160															8.533		2.844
		180															8.998		2.999
		200															9.463		3.154
	150	60	120	26.873	15.616	18.080	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.386	7.414	3	2.471
		80															7.879		2.626
		100															8.343		2.781
		120															8.808		2.936
		140															9.273		3.091
		160															9.737		3.246
		180															10.202		3.401
		200															10.667		3.556

Anexo 113

Capacidad admisible de la Calicata 8, según Vesic.

Calicata	Df (cm)	Dimer	nsiones							-		Har	isen	-	-				
		B (cm)	L (cm)	Facto	res de (Carga		ctores Form			ctores fundi			ctores clinac		q (kg/cm ²)	qult (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fcs	Fqs	Fys	Fcd	Fqd	Fyd	Fci	Fqi	Fyi				
C-8	100	60	120	26.790	15.547	11.854	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.267	5.101	3	1.700
		80															5.417		1.806
		100															5.734		1.911
		120															6.050		2.017
		140															6.367		2.122
		160															6.683		2.228
		180															7.000		2.333
		200															7.316		2.439
	120	60	120	26.790	15.547	11.854	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.320	5.931	3	1.977
		80															6.247		2.082
		100															6.564		2.188
		120															6.880		2.293
		140															7.197		2.399
		160															7.513		2.504
		180															7.830		2.610
		200															8.146		2.715
	150	60	120	26.790	15.547	11.854	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.401	7.176	3	2.392
		80															7.493		2.498
		100															7.809		2.603
		120															8.126		2.709
		140															8.442		2.814
		160															8.759		2.920
		180															9.075		3.025
		200															9.392		3.131

Anexo 114

Capacidad admisible de la Calicata 9, según Vesic.

Calicata	Df (cm)	Dimer	isiones									Han	sen						
		D (om)	I (om)	Footo	res de (Congo	Fac	ctores	s de	Fa	ctores	de	Fac	ctores	s de	q	qult	F.S.	qadm
		D (CIII)	L (cm)	гаси	res de C	Jarga ———]	Form	a	Pro	fundi	dad	Inc	linac	ión	(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny						Fyd				_			
C-9	100	60	120	33.150	21.064	18.220	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.265	7.030	3	2.343
		80															7.513		2.504
		100															7.996		2.665
		120															8.479		2.826
		140															9.004		3.001
		160															9.445		3.148
		180															9.927		3.309
		200															10.410		3.470
	120	60	120	33.150	21.064	18.220	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.318	8.147	3	2.716
		80															8.630		2.877
		100															9.113		3.038
		120															9.595		3.198
		140															10.078		3.359
		160															10.561		3.520
		180															11.044		3.681
		200															11.527		3.842
	150	60	120	33.150	21.064	18.220	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.398	9.821	3	3.274
		80															10.304		3.435
		100															10.787		3.596
		120															11.270		3.757
		140															11.753		3.918
		160															12.236		4.079
		180															12.718		4.239
		200															13.201		4.400

Anexo 115

Capacidad admisible de la Calicata 10, según Vesic.

Calicata	Df (cm)	Dimer	siones									Hans	sen						
		D (om)	L (cm)	Footo	res de (Corgo	Fac	ctores	s de	Fa	ctores	de	Fac	ctores	de	q	qult	F.S.	qadm
		D (CIII)	L (CIII)	Facto	ores de C	Carga]	Form	a	Pro	fundi	dad	Inc	clinac	ión	(kg/cm ²)	(kg/cm ²)	г.э.	(kg/cm ²)
				Nc	Nq	Ny								Fqi					
C-10	100	60	120	27.860	16.443	12.841	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.264	5.358	3	1.786
		80															5.697		1.899
		100															6.036		2.012
		120															6.375		2.125
		140															6.714		2.238
		160															7.053		2.351
		180															7.392		2.464
		200															7.731		2.577
	120	60	120	27.860	16.443	12.841	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.317	6.226	3	2.075
		80															6.565		2.188
		100															6.904		2.301
		120															7.243		2.414
		140															7.582		2.527
		160															7.921		2.640
		180															8.260		2.753
		200															8.599		2.866
	150	60	120	27.860	16.443	12.841	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.396	7.528	3	2.509
		80															7.867		2.622
		100															8.206		2.735
		120															8.545		2.848
		140															8.884		2.961
		160															9.223		3.074
		180															9.562		3.187
		200															9.901		3.300

CÁLCULO DE LA CAPACIDAD PORTANTE SEGÚN TERZAGHI – CIMIENTOS AISLADOS

Anexo 116

Capacidad admisible de la Calicata 1, según Terzaghi.

Calicata	Df (cm)	Dimen	siones	Kp				Terzaghi		
		B (cm)	L (cm)		Fact	ores de c	arga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
					Nc	Nq	Ny			
C-1	100	110	110	2.97	36.432	21.837	19.111	8.015	3	2.672
	100	130	130					8.420		2.807
	100	160	160					9.028		3.009
	100	190	190					9.636		3.212
	120	110	110	2.97	36.432	21.837	19.111	9.173	3	3.058
	120	130	130					9.578		3.193
	120	160	160					10.185		3.395
	120	190	190					10.793		3.598
	150	110	110	2.97	36.432	21.837	19.111	10.909	3	3.636
	150	130	130					11.314		3.771
	150	160	160					11.921		3.974
	150	190	190					12.529		4.176

Anexo 117

Capacidad admisible de la Calicata 2, según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones	Kp				Terzaghi		
		B (cm)	L (cm)		Fact	ores de c	arga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
	·			_	Nc	Nq	Ny			
C-2	100	110	110	3.12	40.411	25.282	22.7143	9.489	3	3.163
	100	130	130					9.978		3.326
	100	160	160					10.711		3.570
	100	190	190					11.445		3.815
	120	110	110	3.12	40.411	25.282	22.7143	10.849	3	3.616
	120	130	130					11.338		3.779
	120	160	160					12.072		4.024
	120	190	190					12.805		4.268
	150	110	110	3.12	40.411	25.282	22.7143	12.890	3	4.297
	150	130	130					13.379		4.460
	150	160	160					14.112		4.704
	150	190	190					14.845		4.948

Anexo 118

Capacidad admisible de la Calicata 3, según Terzaghi.

Calicata	Df (cm)	Dimens	iones	Kp				Terzaghi		
		B (cm)	L (cm)		Fac	ctores de ca	rga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
	_				Nc	Nq	Ny			
C-3	100	110	110	2.94	35.731	21.243	18.502	7.845	3	2.615
	100	130	130					8.241		2.747
	100	160	160					8.834		2.945
	100	190	190					9.426		3.142
•	120	110	110	2.94	35.731	21.243	18.502	8.980	3	2.993
	120	130	130					9.375		3.125
	120	160	160					9.968		3.323
	120	190	190					10.561		3.520
•	150	110	110	2.94	35.731	21.243	18.502	10.681	3	3.560
	150	130	130					11.077		3.692
	150	160	160					11.669		3.890
	150	190	190					12.262		4.087

Anexo 119

Capacidad admisible de la Calicata 4, según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones	Kp				Terzaghi		
		B (cm)	L (cm)		Fac	ctores de ca	ırga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
					Nc	Nq	Ny			
C-4	100	110	110	3.12	40.411	25.282	22.714	9.313	3	3.104
	100	130	130					9.793		3.264
	100	160	160					10.512		3.504
	100	190	190					11.232		3.744
	120	110	110	3.12	40.411	25.282	22.714	10.648	3	3.549
	120	130	130					11.128		3.709
	120	160	160					11.847		3.949
	120	190	190					12.567		4.189
	150	110	110	3.12	40.411	25.282	22.714	12.650	3	4.217
	150	130	130					13.130		4.377
	150	160	160					13.849		4.616
	150	190	190					14.569		4.856

Anexo 120

Capacidad admisible de la Calicata 5, según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones	Кр				Terzaghi		
		B (cm)	L (cm)		Fac	ctores de ca	ırga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
					Nc	Nq	Ny			
C-5	100	110	110	3.02	37.779	22.993	20.309	8.557	3	2.852
	100	130	130					8.992		2.997
	100	160	160					9.646		3.215
	100	190	190					10.299		3.433
	120	110	110	3.02	37.779	22.993	20.309	9.789	3	3.263
	120	130	130					10.225		3.408
	120	160	160					10.878		3.626
	120	190	190					11.531		3.844
	150	110	110	3.02	37.779	22.993	20.309	11.638	3	3.879
	150	130	130					12.073		4.024
	150	160	160					12.727		4.242
	150	190	190					13.380		4.460

Anexo 121

Capacidad admisible de la Calicata 6, según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones	Кр				Terzaghi		
		B (cm)	L (cm)		Fac	ctores de ca	ırga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
					Nc	Nq	Ny			
C-6	100	110	110	2.88	34.242	19.981	17.208	7.329	3	2.443
	100	130	130					7.695		2.565
	100	160	160					8.244		2.748
	100	190	190					8.794		2.931
	120	110	110	2.88	34.242	19.981	17.208	8.392	3	2.797
	120	130	130					8.758		2.919
	120	160	160					9.307		3.102
	120	190	190					9.857		3.286
	150	110	110	2.88	34.242	19.981	17.208	9.986	3	3.329
	150	130	130					10.353		3.451
	150	160	160					10.902		3.634
	150	190	190					11.451		3.817

Anexo 122

Capacidad admisible de la Calicata 7, según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones	Кр				Terzaghi		
		B (cm)	L (cm)		Fa	ctores de c	arga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
					Nc	Nq	Ny			
C-7	100	110	110	2.83	32.98	18.938	16.163	6.695	3	2.232
	100	130	130					7.027		2.342
	100	160	160					7.525		2.508
	100	190	190					8.024		2.675
	120	110	110	2.83	32.98	18.938	16.163	7.668	3	2.556
	120	130	130					8.000		2.667
	120	160	160					8.499		2.833
	120	190	190					8.997		2.999
	150	110	110	2.83	32.98	18.938	16.163	9.128	3	3.043
	150	130	130					9.461		3.154
	150	160	160					9.959		3.320
	150	190	190					10.457		3.486

Anexo 123

Capacidad admisible de la Calicata 8, según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones	Кр				Terzaghi		
		B (cm)	L (cm)		Fac	ctores de ca	ırga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
					Nc	Nq	Ny			
C-8	100	110	110	2.82	32.874	18.851	16.075	6.922	3	2.307
	100	130	130					7.265		2.422
	100	160	160					7.780		2.593
	100	190	190					8.295		2.765
	120	110	110	2.82	32.874	18.851	16.075	7.928	3	2.643
	120	130	130					8.272		2.757
	120	160	160					8.787		2.929
	120	190	190					9.302		3.101
	150	110	110	2.82	32.874	18.851	16.075	9.438	3	3.146
	150	130	130					9.782		3.261
	150	160	160					10.297		3.432
	150	190	190					10.812		3.604

Anexo 124

Capacidad admisible de la Calicata 9, según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones	Кр				Terzaghi		
		B (cm)	L (cm)		Fac	ctores de ca	ırga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
					Nc	Nq	Ny			
C-9	100	110	110	3.15	41.027	25.832	23.308	9.563	3	3.188
	100	130	130					10.057		3.352
	100	160	160					10.799		3.600
	100	190	190					11.540		3.847
	120	110	110	3.15	41.027	25.832	23.308	10.932	3	3.644
	120	130	130					11.426		3.809
	120	160	160					12.168		4.056
	120	190	190					12.909		4.303
	150	110	110	3.15	41.027	25.832	23.308	12.986	3	4.329
	150	130	130					13.480		4.493
	150	160	160					14.221		4.740
	150	190	190					14.962		4.987

Anexo 125

Capacidad admisible de la Calicata 10, según Terzaghi.

Calicata	Df (cm)	Dimer	nsiones	Кр				Terzaghi		
		B (cm)	L (cm)		Fac	ctores de ca	ırga	qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
					Nc	Nq	Ny			
C-10	100	110	110	2.88	34.242	19.981	17.208	7.274	3	2.425
	100	130	130					7.637		2.546
	100	160	160					8.182		2.727
	100	190	190					8.728		2.909
	120	110	110	2.88	34.242	19.981	17.208	8.329	3	2.776
	120	130	130					8.692		2.897
	120	160	160					9.237		3.079
	120	190	190					9.783		3.261
	150	110	110	2.88	34.242	19.981	17.208	9.911	3	3.304
	150	130	130					10.275		3.425
	150	160	160					10.820		3.607
	150	190	190					11.365		3.788

CÁLCULO DE LA CAPACIDAD PORTANTE SEGÚN MEYERHOF – CIMIENTOS AISLADOS

Anexo 126

Capacidad admisible de la Calicata 1, según Meyerhof.

Calicata	Df (cm)	Dimensiones	Kp							Meye	rhof				
		B = L (cm)		Fact	ores de c	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Fdy			
C-1	100	110	0.91	29.570	17.912	15.060	1.18	1.57	0.60	1.17	1.26	1.00	10.744	3	3.581
	100	130	0.77				1.15	1.57	0.60	1.13	1.22	1.00	10.681		3.560
	100	160	0.63				1.13	1.57	0.60	1.10	1.18	1.00	10.728		3.576
	100	190	0.53				1.11	1.57	0.60	1.08	1.15	1.00	10.874		3.625
	120	110	0.83	29.570	17.912	15.060	1.17	1.57	0.60	1.20	1.24	1.00	12.421	3	4.140
	120	130	0.92				1.18	1.57	0.60	1.18	1.27	1.00	12.905		4.302
	120	160	0.75				1.15	1.57	0.60	1.13	1.22	1.00	12.815		4.272
	120	190	0.63				1.13	1.57	0.60	1.10	1.18	1.00	12.867		4.289
	150	110	0.94	29.570	17.912	15.060	1.19	1.57	0.60	1.26	1.27	1.00	15.552	3	5.184
	150	130	0.86				1.17	1.57	0.60	1.21	1.25	1.00	15.527		5.176
	150	160	0.94				1.19	1.57	0.60	1.18	1.27	1.00	16.149		5.383
	150	190	0.79				1.16	1.57	0.60	1.14	1.23	1.00	16.027		5.342

Anexo 127

Capacidad admisible de la Calicata 2, según Meyerhof

Calicata	Df (cm)	Dimensiones	Kp							Meyer	hof				
		B = L (cm)		Fact	ores de c	earga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-2	100	110	0.91	32.671	20.631	18.564	1.18	1.60	0.60	1.17	1.26	1.00	12.815	3	4.272
	100	130	0.77				1.15	1.60	0.60	1.13	1.22	1.00	12.763		4.254
	100	160	0.63				1.13	1.60	0.60	1.10	1.18	1.00	12.851		4.284
	100	190	0.53				1.11	1.60	0.60	1.08	1.15	1.00	13.052		4.351
	120	110	0.83	32.671	20.631	18.564	1.17	1.60	0.60	1.20	1.23	1.00	14.807	3	4.936
	120	130	0.92				1.18	1.60	0.60	1.18	1.26	1.00	15.390		5.130
	120	160	0.75				1.15	1.60	0.60	1.13	1.21	1.00	15.318		5.106
	120	190	0.63				1.13	1.60	0.60	1.10	1.18	1.00	15.411		5.137
	150	110	0.94	32.671	20.631	18.564	1.19	1.60	0.60	1.26	1.27	1.00	18.508	3	6.169
	150	130	0.86				1.17	1.60	0.60	1.21	1.24	1.00	18.501		6.167
	150	160	0.94				1.19	1.60	0.60	1.18	1.26	1.00	19.255		6.418
	150	190	0.79				1.16	1.60	0.60	1.14	1.22	1.00	19.146		6.382

Anexo 128

Capacidad admisible de la Calicata 3, según Meyerhof

Calicata	Df (cm)	Dimensiones	Kp]	Meyer	hof				
		B = L (cm)		Facto	ores de c	arga	Facto	res de	forma		ctores fundic		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-3	100	110	0.91	29.023	17.442	14.476	1.18	1.57	0.60	1.17	1.26	1.00	10.501	3	3.500
	100	130	0.77				1.15	1.57	0.60	1.13	1.22	1.00	10.436		3.479
	100	160	0.63				1.13	1.57	0.60	1.10	1.18	1.00	10.477		3.492
	100	190	0.53				1.11	1.57	0.60	1.08	1.15	1.00	10.615		3.538
•	120	110	0.83	29.023	17.442	14.476	1.17	1.57	0.60	1.20	1.24	1.00	12.141	3	4.047
	120	130	0.92				1.18	1.57	0.60	1.18	1.27	1.00	12.614		4.205
	120	160	0.75				1.15	1.57	0.60	1.13	1.22	1.00	12.520		4.173
	120	190	0.63				1.13	1.57	0.60	1.10	1.18	1.00	12.566		4.189
•	150	110	0.94	29.023	17.442	14.476	1.19	1.57	0.60	1.26	1.27	1.00	15.206	3	5.069
	150	130	0.86				1.17	1.57	0.60	1.21	1.25	1.00	15.179		5.060
	150	160	0.94				1.19	1.57	0.60	1.18	1.27	1.00	15.784		5.261
	150	190	0.79				1.16	1.57	0.60	1.14	1.23	1.00	15.660		5.220

Anexo 129

Capacidad admisible de la Calicata 4, según Meyerhof

Calicata	Df (cm)	Dimensiones	Kp							Meyer	hof				
		B = L (cm)		Fact	ores de c	earga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	$\mathbf{D}\mathbf{y}$			
C-4	100	110	0.91	32.671	20.631	18.564	1.18	1.60	0.60	1.17	1.26	1.00	12.577	3	4.192
	100	130	0.77				1.15	1.60	0.60	1.13	1.22	1.00	12.526		4.175
	100	160	0.63				1.13	1.60	0.60	1.10	1.18	1.00	12.612		4.204
	100	190	0.53				1.11	1.60	0.60	1.08	1.15	1.00	12.810		4.270
•	120	110	0.83	32.671	20.631	18.564	1.17	1.60	0.60	1.20	1.23	1.00	14.531	3	4.844
	120	130	0.92				1.18	1.60	0.60	1.18	1.26	1.00	15.104		5.035
	120	160	0.75				1.15	1.60	0.60	1.13	1.21	1.00	15.033		5.011
	120	190	0.63				1.13	1.60	0.60	1.10	1.18	1.00	15.124		5.041
•	150	110	0.94	32.671	20.631	18.564	1.19	1.60	0.60	1.26	1.27	1.00	18.164	3	6.055
	150	130	0.86				1.17	1.60	0.60	1.21	1.24	1.00	18.157		6.052
	150	160	0.94				1.19	1.60	0.60	1.18	1.26	1.00	18.897		6.299
	150	190	0.79				1.16	1.60	0.60	1.14	1.22	1.00	18.791		6.264

Anexo 130

Capacidad admisible de la Calicata 5, según Meyerhof

Calicata	Df (cm)	Dimensiones	Kp							Meye	rhof				
		B = L (cm)		Fact	ores de c	carga	Facto	res de	forma		actores (ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-5	100	110	0.91	30.621	18.825	16.218	1.18	1.58	0.60	1.17	1.26	1.00	11.501	3	3.834
	100	130	0.77				1.15	1.58	0.60	1.13	1.22	1.00	11.441		3.814
	100	160	0.63				1.13	1.58	0.60	1.10	1.18	1.00	11.501		3.834
	100	190	0.53				1.11	1.58	0.60	1.08	1.15	1.00	11.666		3.889
	120	110	0.83	30.621	18.825	16.218	1.17	1.58	0.60	1.20	1.24	1.00	13.293	3	4.431
	120	130	0.92				1.18	1.58	0.60	1.18	1.27	1.00	13.814		4.605
	120	160	0.75				1.15	1.58	0.60	1.13	1.22	1.00	13.728		4.576
	120	190	0.63				1.13	1.58	0.60	1.10	1.18	1.00	13.793		4.598
	150	110	0.94	30.621	18.825	16.218	1.19	1.58	0.60	1.26	1.27	1.00	16.634	3	5.545
	150	130	0.86				1.17	1.58	0.60	1.21	1.25	1.00	16.615		5.538
	150	160	0.94				1.19	1.58	0.60	1.18	1.27	1.00	17.284		5.761
	150	190	0.79				1.16	1.58	0.60	1.14	1.23	1.00	17.166		5.722

Anexo 131

Capacidad admisible de la Calicata 6, según Meyerhof

Calicata	Df (cm)	Dimensiones	Kp						rhof						
		B (cm)		Fact	ores de c	earga	Facto	res de	forma		actores (ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-6	100	110	0.91	27.860	16.443	13.236	1.18	1.55	0.60	1.17	1.27	1.00	9.779	3	3.260
	100	130	0.77				1.15	1.55	0.60	1.13	1.23	1.00	9.711		3.237
	100	160	0.63				1.13	1.55	0.60	1.10	1.18	1.00	9.739		3.246
	100	190	0.53				1.11	1.55	0.60	1.08	1.15	1.00	9.859		3.286
	120	110	0.83	27.860	16.443	13.236	1.17	1.55	0.60	1.20	1.24	1.00	11.310	3	3.770
	120	130	0.92				1.18	1.55	0.60	1.18	1.27	1.00	11.748		3.916
	120	160	0.75				1.15	1.55	0.60	1.13	1.22	1.00	11.649		3.883
	120	190	0.63				1.13	1.55	0.60	1.10	1.19	1.00	11.682		3.894
	150	110	0.94	27.860	16.443	13.236	1.19	1.55	0.60	1.26	1.28	1.00	14.175	3	4.725
	150	130	0.86				1.17	1.55	0.60	1.21	1.25	1.00	14.142		4.714
	150	160	0.94				1.19	1.55	0.60	1.18	1.28	1.00	14.701		4.900
	150	190	0.79				1.16	1.55	0.60	1.14	1.23	1.00	14.574		4.858

Anexo 132

Capacidad admisible de la Calicata 7, según Meyerhof

Calicata	Df (cm)	Dimensiones	Kp							Meyer	hof				
		B = L (cm)		Facto	ores de c	arga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-7	100	110	0.91	26.873	15.616	12.254	1.18	1.54	0.60	1.17	1.27	1.00	8.904	3	2.968
	100	130	0.77				1.15	1.54	0.60	1.13	1.23	1.00	8.836		2.945
	100	160	0.63				1.13	1.54	0.60	1.10	1.19	1.00	8.855		2.952
	100	190	0.53				1.11	1.54	0.60	1.08	1.16	1.00	8.957		2.986
•	120	110	0.83	26.873	15.616	12.254	1.17	1.54	0.60	1.20	1.25	1.00	10.300	3	3.433
	120	130	0.92				1.18	1.54	0.60	1.18	1.27	1.00	10.697		3.566
	120	160	0.75				1.15	1.54	0.60	1.13	1.22	1.00	10.599		3.533
	120	190	0.63				1.13	1.54	0.60	1.10	1.19	1.00	10.621		3.540
•	150	110	0.94	26.873	15.616	12.254	1.19	1.54	0.60	1.26	1.28	1.00	12.917	3	4.306
	150	130	0.86				1.17	1.54	0.60	1.21	1.25	1.00	12.882		4.294
	150	160	0.94				1.19	1.54	0.60	1.18	1.28	1.00	13.388		4.463
	150	190	0.79				1.16	1.54	0.60	1.14	1.23	1.00	13.263		4.421

Anexo 133

Capacidad admisible de la Calicata 8, según Meyerhof

Calicata	Df (cm)	Dimensiones	Kp							Meyer	hof				
		B (cm)		Facto	ores de c	arga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	$\mathbf{D}\mathbf{y}$			
C-8	100	110	0.91	26.790	15.547	12.172	1.18	1.54	0.60	1.17	1.27	1.00	9.204	3	3.068
	100	130	0.77				1.15	1.54	0.60	1.13	1.23	1.00	9.133		3.044
	100	160	0.63				1.13	1.54	0.60	1.10	1.19	1.00	9.151		3.050
	100	190	0.53				1.11	1.54	0.60	1.08	1.16	1.00	9.256		3.085
	120	110	0.83	26.790	15.547	12.172	1.17	1.54	0.60	1.20	1.25	1.00	10.647	3	3.549
	120	130	0.92				1.18	1.54	0.60	1.18	1.27	1.00	11.057		3.686
	120	160	0.75				1.15	1.54	0.60	1.13	1.22	1.00	10.955		3.652
	120	190	0.63				1.13	1.54	0.60	1.10	1.19	1.00	10.977		3.659
	150	110	0.94	26.790	15.547	12.172	1.19	1.54	0.60	1.26	1.28	1.00	13.352	3	4.451
	150	130	0.86				1.17	1.54	0.60	1.21	1.25	1.00	13.315		4.438
	150	160	0.94				1.19	1.54	0.60	1.18	1.28	1.00	13.838		4.613
	150	190	0.79				1.16	1.54	0.60	1.14	1.23	1.00	13.709		4.570

Anexo 134

Capacidad admisible de la Calicata 9, según Meyerhof.

Calicata	Df (cm)	Dimensiones	Kp							Meyer	hof				
		B (cm)		Fact	ores de c	arga	Facto	res de	forma		actores (ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-9	100	110	0.91	33.150	21.064	19.152	1.18	1.60	0.60	1.17	1.26	1.00	12.926	3	4.309
	100	130	0.77				1.15	1.60	0.60	1.13	1.22	1.00	12.878		4.293
	100	160	0.63				1.13	1.60	0.60	1.10	1.18	1.00	12.971		4.324
	100	190	0.53				1.11	1.60	0.60	1.08	1.15	1.00	13.179		4.393
	120	110	0.83	33.150	21.064	19.152	1.17	1.60	0.60	1.20	1.23	1.00	14.934	3	4.978
	120	130	0.92				1.18	1.60	0.60	1.18	1.26	1.00	15.524		5.175
	120	160	0.75				1.15	1.60	0.60	1.13	1.21	1.00	15.456		5.152
	120	190	0.63				1.13	1.60	0.60	1.10	1.18	1.00	15.555		5.185
	150	110	0.94	33.150	21.064	19.152	1.19	1.60	0.60	1.26	1.26	1.00	18.662	3	6.221
	150	130	0.86				1.17	1.60	0.60	1.21	1.24	1.00	18.659		6.220
	150	160	0.94				1.19	1.60	0.60	1.18	1.26	1.00	19.421		6.474
	150	190	0.79				1.16	1.60	0.60	1.14	1.22	1.00	19.318		6.439

Anexo 135

Capacidad admisible de la Calicata 10, según Meyerhof

Calicata	Df (cm)	Dimensiones	Kp							Meyer	hof				
		B (cm)		Fact	ores de c	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-10	100	110	0.91	27.860	16.443	13.236	1.18	1.55	0.60	1.17	1.27	1.00	9.705	3	3.235
	100	130	0.77				1.15	1.55	0.60	1.13	1.23	1.00	9.637		3.212
	100	160	0.63				1.13	1.55	0.60	1.10	1.18	1.00	9.665		3.222
	100	190	0.53				1.11	1.55	0.60	1.08	1.15	1.00	9.784		3.261
•	120	110	0.83	27.860	16.443	13.236	1.17	1.55	0.60	1.20	1.24	1.00	11.224	3	3.741
	120	130	0.92				1.18	1.55	0.60	1.18	1.27	1.00	11.659		3.886
	120	160	0.75				1.15	1.55	0.60	1.13	1.22	1.00	11.561		3.854
	120	190	0.63				1.13	1.55	0.60	1.10	1.19	1.00	11.593		3.864
•	150	110	0.94	27.860	16.443	13.236	1.19	1.55	0.60	1.26	1.28	1.00	14.067	3	4.689
	150	130	0.86				1.17	1.55	0.60	1.21	1.25	1.00	14.035		4.678
	150	160	0.94				1.19	1.55	0.60	1.18	1.28	1.00	14.590		4.863
	150	190	0.79				1.16	1.55	0.60	1.14	1.23	1.00	14.464		4.821

CÁLCULO DE LA CAPACIDAD PORTANTE SEGÚN HANSEN – CIMIENTOS AISLADOS

Anexo 136

Capacidad admisible de la Calicata 1, según Hansen

Calicata	Df (cm)	Dimensiones	Kp							Hanse	n				
		B = L (cm)		Fact	ores de o	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-1	100	110	0.91	29.570	17.912	14.513	1.61	1.50	0.60	1.36	1.26	1.00	10.244	3	3.41
	100	130	0.77				1.61	1.50	0.60	1.31	1.22	1.00	10.187		3.40
	100	160	0.63				1.61	1.50	0.60	1.25	1.18	1.00	10.236		3.41
	100	190	0.53				1.61	1.50	0.60	1.21	1.15	1.00	10.379		3.46
•	120	110	0.83	29.570	17.912	14.513	1.61	1.50	0.60	1.33	1.24	1.00	11.841	3	3.95
	120	130	0.92				1.61	1.50	0.60	1.37	1.27	1.00	12.305		4.10
	120	160	0.75				1.61	1.50	0.60	1.30	1.22	1.00	12.223		4.07
	120	190	0.63				1.61	1.50	0.60	1.25	1.18	1.00	12.276		4.09
•	150	110	0.94	29.570	17.912	14.513	1.61	1.50	0.60	1.38	1.27	1.00	14.821	3	4.94
	150	130	0.86				1.61	1.50	0.60	1.34	1.25	1.00	14.801		4.93
	150	160	0.94				1.61	1.50	0.60	1.38	1.27	1.00	15.397		5.13
	150	190	0.79				1.61	1.50	0.60	1.32	1.23	1.00	15.285		5.10

Anexo 137

Capacidad admisible de la Calicata 2, según Hansen

Calicata	Df (cm)	Dimensiones	Kp							Hans	sen				
		B = L (cm)		Facto	ores de o	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-2	100	110	0.91	32.671	20.631	17.693	1.63	1.52	0.60	1.36	1.26	1.00	12.139	3	4.05
	100	130	0.77				1.63	1.52	0.60	1.31	1.22	1.00	12.092		4.03
	100	160	0.63				1.63	1.52	0.60	1.25	1.18	1.00	12.178		4.06
	100	190	0.53				1.63	1.52	0.60	1.21	1.15	1.00	12.372		4.12
•	120	110	0.83	32.671	20.631	17.693	1.63	1.52	0.60	1.33	1.23	1.00	14.024	3	4.67
	120	130	0.92				1.63	1.52	0.60	1.37	1.26	1.00	14.578		4.86
	120	160	0.75				1.63	1.52	0.60	1.30	1.21	1.00	14.513		4.84
	120	190	0.63				1.63	1.52	0.60	1.25	1.18	1.00	14.604		4.87
•	150	110	0.94	32.671	20.631	17.693	1.63	1.52	0.60	1.38	1.27	1.00	17.526	3	5.84
	150	130	0.86				1.63	1.52	0.60	1.34	1.24	1.00	17.522		5.84
	150	160	0.94				1.63	1.52	0.60	1.38	1.26	1.00	18.238		6.08
	150	190	0.79				1.63	1.52	0.60	1.32	1.22	1.00	18.139		6.05

Anexo 138

Capacidad admisible de la Calicata 3, según Hansen

Calicata	Df (cm)	Dimensiones	Kp												
		B = L (cm)		Facto	ores de o	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-3	100	110	0.91	29.023	17.442	13.978	1.60	1.49	0.60	1.36	1.26	1.00	10.024	3	3.34
	100	130	0.77				1.60	1.49	0.60	1.31	1.22	1.00	9.965		3.32
	100	160	0.63				1.60	1.49	0.60	1.25	1.18	1.00	10.009		3.34
	100	190	0.53				1.60	1.49	0.60	1.21	1.15	1.00	10.145		3.38
•	120	110	0.83	29.023	17.442	13.978	1.60	1.49	0.60	1.33	1.24	1.00	11.588	3	3.86
	120	130	0.92				1.60	1.49	0.60	1.37	1.27	1.00	12.041		4.01
	120	160	0.75				1.60	1.49	0.60	1.30	1.22	1.00	11.956		3.99
	120	190	0.63				1.60	1.49	0.60	1.25	1.18	1.00	12.004		4.00
•	150	110	0.94	29.023	17.442	13.978	1.60	1.49	0.60	1.38	1.27	1.00	14.509	3	4.84
	150	130	0.86				1.60	1.49	0.60	1.34	1.25	1.00	14.486		4.83
	150	160	0.94				1.60	1.49	0.60	1.38	1.27	1.00	15.067		5.02
	150	190	0.79				1.60	1.49	0.60	1.32	1.23	1.00	14.953		4.98

Anexo 139

Capacidad admisible de la Calicata 4, según Hansen

Calicata	Df (cm)	Dimensiones	Kp	p Hansen											
		B = L (cm)		Fact	ores de o	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-4	100	110	0.91	32.671	20.631	17.693	1.63	1.52	0.60	1.36	1.26	1.00	11.913	3	3.97
	100	130	0.77				1.63	1.52	0.60	1.31	1.22	1.00	11.867		3.96
	100	160	0.63				1.63	1.52	0.60	1.25	1.18	1.00	11.951		3.98
	100	190	0.53				1.63	1.52	0.60	1.21	1.15	1.00	12.142		4.05
•	120	110	0.83	32.671	20.631	17.693	1.63	1.52	0.60	1.33	1.23	1.00	13.763	3	4.59
	120	130	0.92				1.63	1.52	0.60	1.37	1.26	1.00	14.307		4.77
	120	160	0.75				1.63	1.52	0.60	1.30	1.21	1.00	14.243		4.75
	120	190	0.63				1.63	1.52	0.60	1.25	1.18	1.00	14.332		4.78
•	150	110	0.94	32.671	20.631	17.693	1.63	1.52	0.60	1.38	1.27	1.00	17.201	3	5.73
	150	130	0.86				1.63	1.52	0.60	1.34	1.24	1.00	17.196		5.73
	150	160	0.94				1.63	1.52	0.60	1.38	1.26	1.00	17.899		5.97
	150	190	0.79				1.63	1.52	0.60	1.32	1.22	1.00	17.802		5.93

Anexo 140

Capacidad admisible de la Calicata 5, según Hansen

Calicata	Df (cm)	Dimensiones	Kp]	Hansen	ì				
		B = L (cm)		Facto	ores de o	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-5	100	110	0.91	30.621	18.825	15.568	1.61	1.50	0.60	1.36	1.26	1.00	10.941	3	3.65
	100	130	0.77				1.61	1.50	0.60	1.31	1.22	1.00	10.887		3.63
	100	160	0.63				1.61	1.50	0.60	1.25	1.18	1.00	10.948		3.65
	100	190	0.53				1.61	1.50	0.60	1.21	1.15	1.00	11.108		3.70
·	120	110	0.83	30.621	18.825	15.568	1.61	1.50	0.60	1.33	1.24	1.00	12.644	3	4.21
	120	130	0.92				1.61	1.50	0.60	1.37	1.27	1.00	13.141		4.38
	120	160	0.75				1.61	1.50	0.60	1.30	1.22	1.00	13.064		4.35
	120	190	0.63				1.61	1.50	0.60	1.25	1.18	1.00	13.129		4.38
·	150	110	0.94	30.621	18.825	15.568	1.61	1.50	0.60	1.38	1.27	1.00	15.818	3	5.27
	150	130	0.86				1.61	1.50	0.60	1.34	1.25	1.00	15.802		5.27
	150	160	0.94				1.61	1.50	0.60	1.38	1.27	1.00	16.442		5.48
	150	190	0.79				1.61	1.50	0.60	1.32	1.23	1.00	16.333		5.44

Anexo 141

Capacidad admisible de la Calicata 6, según Hansen

Calicata	Df (cm)	Dimensiones	Kp	Hansen											
		B = L (cm)		Fact	ores de o	carga	Facto	res de	forma		octores		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-6	100	110	0.91	27.860	16.443	12.841	1.59	1.48	0.60	1.36	1.27	1.00	9.359	3	3.12
	100	130	0.77				1.59	1.48	0.60	1.31	1.23	1.00	9.297		3.10
	100	160	0.63				1.59	1.48	0.60	1.25	1.18	1.00	9.329		3.11
	100	190	0.53				1.59	1.48	0.60	1.21	1.15	1.00	9.447		3.15
·	120	110	0.83	27.860	16.443	12.841	1.59	1.48	0.60	1.33	1.00	1.00	8.921	3	2.97
	120	130	0.92				1.59	1.48	0.60	1.37	1.00	1.00	9.126		3.04
	120	160	0.75				1.59	1.48	0.60	1.30	1.00	1.00	9.433		3.14
	120	190	0.63				1.59	1.48	0.60	1.25	1.00	1.00	9.741		3.25
·	150	110	0.94	27.860	16.443	12.841	1.59	1.48	0.60	1.38	1.28	1.00	13.558	3	4.52
	150	130	0.86				1.59	1.48	0.60	1.34	1.25	1.00	13.530		4.51
	150	160	0.94				1.59	1.48	0.60	1.38	1.28	1.00	14.069		4.69
	150	190	0.79				1.59	1.48	0.60	1.32	1.23	1.00	13.952		4.65

Anexo 142

Capacidad admisible de la Calicata 7, según Hansen

Calicata	Df (cm)	Dimensiones	Kp							Hanse	en				
		B = L (cm)		Facto	ores de o	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-7	100	110	0.91	26.873	15.616	11.929	1.58	1.48	0.60	1.36	1.27	1.00	8.541	3	2.85
	100	130	0.77				1.58	1.48	0.60	1.31	1.23	1.00	8.479		2.83
	100	160	0.63				1.58	1.48	0.60	1.25	1.19	1.00	8.501		2.83
	100	190	0.53				1.58	1.48	0.60	1.21	1.16	1.00	8.603		2.87
•	120	110	0.83	26.873	15.616	11.929	1.58	1.48	0.60	1.33	1.25	1.00	9.877	3	3.29
	120	130	0.92				1.58	1.48	0.60	1.37	1.27	1.00	10.260		3.42
	120	160	0.75				1.58	1.48	0.60	1.30	1.22	1.00	10.171		3.39
	120	190	0.63				1.58	1.48	0.60	1.25	1.19	1.00	10.196		3.40
•	150	110	0.94	26.873	15.616	11.929	1.58	1.48	0.60	1.38	1.28	1.00	12.382	3	4.13
	150	130	0.86				1.58	1.48	0.60	1.34	1.25	1.00	12.351		4.12
	150	160	0.94				1.58	1.48	0.60	1.38	1.28	1.00	12.840		4.28
	150	190	0.79				1.58	1.48	0.60	1.32	1.23	1.00	12.725		4.24

Anexo 143

Capacidad admisible de la Calicata 8, según Hansen

Calicata	Df (cm)	Dimensiones	Kp	Hansen											
		B = L (cm)		Facto	ores de o	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	$\mathbf{D}\mathbf{y}$			
C-8	100	110	0.91	26.790	15.547	11.854	1.58	1.48	0.60	1.36	1.27	1.00	8.830	3	2.94
	100	130	0.77				1.58	1.48	0.60	1.31	1.23	1.00	8.765		2.92
	100	160	0.63				1.58	1.48	0.60	1.25	1.19	1.00	8.788		2.93
	100	190	0.53				1.58	1.48	0.60	1.21	1.16	1.00	8.893		2.96
•	120	110	0.83	26.790	15.547	11.854	1.58	1.48	0.60	1.33	1.25	1.00	10.212	3	3.40
	120	130	0.92				1.58	1.48	0.60	1.37	1.27	1.00	10.607		3.54
	120	160	0.75				1.58	1.48	0.60	1.30	1.22	1.00	10.514		3.50
	120	190	0.63				1.58	1.48	0.60	1.25	1.19	1.00	10.540		3.51
•	150	110	0.94	26.790	15.547	11.854	1.58	1.48	0.60	1.38	1.28	1.00	12.802	3	4.27
	150	130	0.86				1.58	1.48	0.60	1.34	1.25	1.00	12.770		4.26
	150	160	0.94				1.58	1.48	0.60	1.38	1.28	1.00	13.275		4.42
	150	190	0.79				1.58	1.48	0.60	1.32	1.23	1.00	13.156		4.39

Anexo 144

Capacidad admisible de la Calicata 9, según Hansen.

Calicata	Df (cm)	Dimensiones	Kp							Hanse	en				
		B = L (cm)		Facto	ores de o	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-9	100	110	0.91	33.150	21.064	18.219	1.64	1.52	0.60	1.36	1.26	1.00	12.233	3	4.08
	100	130	0.77				1.64	1.52	0.60	1.31	1.22	1.00	12.189		4.06
	100	160	0.63				1.64	1.52	0.60	1.25	1.18	1.00	12.279		4.09
	100	190	0.53				1.64	1.52	0.60	1.21	1.15	1.00	12.478		4.16
	120	110	0.83	33.150	21.064	18.219	1.64	1.52	0.60	1.33	1.23	1.00	14.131	3	4.71
	120	130	0.92				1.64	1.52	0.60	1.37	1.26	1.00	14.690		4.90
	120	160	0.75				1.64	1.52	0.60	1.30	1.21	1.00	14.629		4.88
	120	190	0.63				1.64	1.52	0.60	1.25	1.18	1.00	14.725		4.91
•	150	110	0.94	33.150	21.064	18.219	1.64	1.52	0.60	1.38	1.26	1.00	17.656	3	5.89
	150	130	0.86				1.64	1.52	0.60	1.34	1.24	1.00	17.655		5.88
	150	160	0.94				1.64	1.52	0.60	1.38	1.26	1.00	18.378		6.13
	150	190	0.79				1.64	1.52	0.60	1.32	1.22	1.00	18.283		6.09

Anexo 145

Capacidad admisible de la Calicata 10, según Hansen

Calicata	Df (cm)	Dimensiones	Kp	-											
		B = L (cm)		Fact	ores de c	earga	Facto	res de	forma		actores ofundic		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-10	100	110	0.91	27.860	16.443	12.841	1.59	1.48	0.60	1.36	1.27	1.00	9.288	3	3.10
	100	130	0.77				1.59	1.48	0.60	1.31	1.23	1.00	9.227		3.08
	100	160	0.63				1.59	1.48	0.60	1.25	1.18	1.00	9.258		3.09
	100	190	0.53				1.59	1.48	0.60	1.21	1.15	1.00	9.376		3.13
•	120	110	0.83	27.860	16.443	12.841	1.59	1.48	0.60	1.33	1.24	1.00	10.740	3	3.58
	120	130	0.92				1.59	1.48	0.60	1.37	1.27	1.00	11.158		3.72
	120	160	0.75				1.59	1.48	0.60	1.30	1.22	1.00	11.069		3.69
	120	190	0.63				1.59	1.48	0.60	1.25	1.19	1.00	11.104		3.70
•	150	110	0.94	27.860	16.443	12.841	1.59	1.48	0.60	1.38	1.28	1.00	13.456	3	4.49
	150	130	0.86				1.59	1.48	0.60	1.34	1.25	1.00	13.428		4.48
	150	160	0.94				1.59	1.48	0.60	1.38	1.28	1.00	13.963		4.65
	150	190	0.79				1.59	1.48	0.60	1.32	1.23	1.00	13.847		4.62

CÁLCULO DE LA CAPACIDAD PORTANTE SEGÚN VESIC – CIMIENTOS AISLADOS

Anexo 146

Capacidad admisible de la Calicata 1, según Vesic

Calicata	Df (cm)	Dimensiones	Kp							Ves	sic				
		B = L (cm)		Facto	ores de	carga	Facto	res de	forma		actores ofundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Fdy			
C-1	100	110	0.91	29.570	17.912	21.636	1.61	1.57	0.60	1.36	1.26	1.00	11.32	3	3.77
	100	130	0.77				1.61	1.57	0.60	1.31	1.22	1.00	11.36		3.79
	100	160	0.63				1.61	1.57	0.60	1.25	1.18	1.00	11.56		3.85
	100	190	0.53				1.61	1.57	0.60	1.21	1.15	1.00	11.87		3.96
	120	110	0.83	29.570	17.912	21.636	1.61	1.57	0.60	1.33	1.24	1.00	13.00	3	4.33
	120	130	0.92				1.61	1.57	0.60	1.37	1.27	1.00	13.58		4.53
	120	160	0.75				1.61	1.57	0.60	1.30	1.22	1.00	13.65		4.55
	120	190	0.63				1.61	1.57	0.60	1.25	1.18	1.00	13.86		4.62
	150	110	0.94	29.570	17.912	21.636	1.61	1.57	0.60	1.38	1.27	1.00	16.13	3	5.38
	150	130	0.86				1.61	1.57	0.60	1.34	1.25	1.00	16.21		5.40
	150	160	0.94				1.61	1.57	0.60	1.38	1.27	1.00	16.99		5.66
	150	190	0.79				1.61	1.57	0.60	1.32	1.23	1.00	17.02		5.67

Anexo 147

Capacidad admisible de la Calicata 2, según Vesic

Calicata	Df (cm)	Dimensiones	Kp							Vesi	c				
		B = L (cm)	_	Facto	res de c	arga	Facto	res de	forma		actores ofundi		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Fdy			
C-2	100	110	0.91	32.671	20.631	25.994	1.63	1.60	0.60	1.36	1.26	1.00	13.47	3	4.49
	100	130	0.77				1.63	1.60	0.60	1.31	1.22	1.00	13.54		4.51
	100	160	0.63				1.63	1.60	0.60	1.25	1.18	1.00	13.81		4.60
	100	190	0.53				1.63	1.60	0.60	1.21	1.15	1.00	14.19		4.73
	120	110	0.83	32.671	20.631	25.994	1.63	1.60	0.60	1.33	1.23	1.00	15.47	3	5.16
	120	130	0.92				1.63	1.60	0.60	1.37	1.26	1.00	16.17		5.39
	120	160	0.75				1.63	1.60	0.60	1.30	1.21	1.00	16.28		5.43
	120	190	0.63				1.63	1.60	0.60	1.25	1.18	1.00	16.55		5.52
	150	110	0.94	32.671	20.631	25.994	1.63	1.60	0.60	1.38	1.27	1.00	19.17	3	6.39
	150	130	0.86				1.63	1.60	0.60	1.34	1.24	1.00	19.28		6.43
	150	160	0.94				1.63	1.60	0.60	1.38	1.26	1.00	20.21		6.74
	150	190	0.79				1.63	1.60	0.60	1.32	1.22	1.00	20.29		6.76

Anexo 148

Capacidad admisible de la Calicata 3, según Vesic

Calicata	Df (cm)	Dimensiones	Kp												
		B = L (cm)		Facto	res de	carga	Facto	res de	forma		ctores fundio		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Fdy			
C-3	100	110	0.91	29.023	17.442	20.901	1.60	1.57	0.60	1.36	1.26	1.00	11.07	3	3.69
	100	130	0.77				1.60	1.57	0.60	1.31	1.22	1.00	11.10		3.70
	100	160	0.63				1.60	1.57	0.60	1.25	1.18	1.00	11.30		3.77
	100	190	0.53				1.60	1.57	0.60	1.21	1.15	1.00	11.59		3.86
	120	110	0.83	29.023	17.442	20.901	1.60	1.57	0.60	1.33	1.24	1.00	12.71	3	4.24
	120	130	0.92				1.60	1.57	0.60	1.37	1.27	1.00	13.28		4.43
	120	160	0.75				1.60	1.57	0.60	1.30	1.22	1.00	13.34		4.45
	120	190	0.63				1.60	1.57	0.60	1.25	1.18	1.00	13.54		4.51
	150	110	0.94	29.023	17.442	20.901	1.60	1.57	0.60	1.38	1.27	1.00	15.77	3	5.26
	150	130	0.86				1.60	1.57	0.60	1.34	1.25	1.00	15.85		5.28
	150	160	0.94				1.60	1.57	0.60	1.38	1.27	1.00	16.61		5.54
	150	190	0.79				1.60	1.57	0.60	1.32	1.23	1.00	16.64		5.55

Anexo 149

Capacidad admisible de la Calicata 4, según Vesic

Calicata	Df (cm)	Dimensiones	Kp							Vesic					
		B = L (cm)	_	Facto	ores de	carga	Facto	res de	forma		ctores fundio		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-4	100	110	0.91	32.671	20.631	25.994	1.63	1.60	0.60	1.36	1.26	1.00	13.22	3	4.41
	100	130	0.77				1.63	1.60	0.60	1.31	1.22	1.00	13.29		4.43
	100	160	0.63				1.63	1.60	0.60	1.25	1.18	1.00	13.55		4.52
	100	190	0.53				1.63	1.60	0.60	1.21	1.15	1.00	13.93		4.64
	120	110	0.83	32.671	20.631	25.994	1.63	1.60	0.60	1.33	1.23	1.00	15.18	3	5.06
	120	130	0.92				1.63	1.60	0.60	1.37	1.26	1.00	15.87		5.29
	120	160	0.75				1.63	1.60	0.60	1.30	1.21	1.00	15.97		5.32
	120	190	0.63				1.63	1.60	0.60	1.25	1.18	1.00	16.24		5.41
	150	110	0.94	32.671	20.631	25.994	1.63	1.60	0.60	1.38	1.27	1.00	18.81	3	6.27
	150	130	0.86				1.63	1.60	0.60	1.34	1.24	1.00	18.92		6.31
	150	160	0.94				1.63	1.60	0.60	1.38	1.26	1.00	19.84		6.61
	150	190	0.79				1.63	1.60	0.60	1.32	1.22	1.00	19.91		6.64

Anexo 150

Capacidad admisible de la Calicata 5, según Vesic

Calicata	Df (cm)	Dimensiones	Kp							Ves	ic				
		B = L (cm)		Facto	ores de	carga		ctores forma			ctores fundid		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-5	100	110	0.91	30.621	18.825	23.084	1.61	1.58	0.60	1.36	1.26	1.00	12.11	3	4.04
	100	130	0.77				1.61	1.58	0.60	1.31	1.22	1.00	12.16		4.05
	100	160	0.63				1.61	1.58	0.60	1.25	1.18	1.00	12.38		4.13
	100	190	0.53				1.61	1.58	0.60	1.21	1.15	1.00	12.71		4.24
	120	110	0.83	30.621	18.825	23.084	1.61	1.58	0.60	1.33	1.24	1.00	13.90	3	4.63
	120	130	0.92				1.61	1.58	0.60	1.37	1.27	1.00	14.53		4.84
	120	160	0.75				1.61	1.58	0.60	1.30	1.22	1.00	14.61		4.87
	120	190	0.63				1.61	1.58	0.60	1.25	1.18	1.00	14.84		4.95
	150	110	0.94	30.621	18.825	23.084	1.61	1.58	0.60	1.38	1.27	1.00	17.24	3	5.75
	150	130	0.86				1.61	1.58	0.60	1.34	1.25	1.00	17.33		5.78
	150	160	0.94				1.61	1.58	0.60	1.38	1.27	1.00	18.17		6.06
	150	190	0.79				1.61	1.58	0.60	1.32	1.23	1.00	18.21		6.07

Anexo 151

Capacidad admisible de la Calicata 6, según Vesic

Calicata	Df (cm)	Dimensiones	Kp							Vesi	ic				
		B = L (cm)		Facto	res de	carga	Facto	res de	forma		ctores fundi		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-6	100	110	0.91	27.860	16.443	19.338	1.59	1.55	0.60	1.36	1.27	1.00	10.31	3	3.44
	100	130	0.77				1.59	1.55	0.60	1.31	1.23	1.00	10.34		3.45
	100	160	0.63				1.59	1.55	0.60	1.25	1.18	1.00	10.52		3.51
	100	190	0.53				1.59	1.55	0.60	1.21	1.15	1.00	10.78		3.59
	120	110	0.83	27.860	16.443	19.338	1.59	1.55	0.60	1.33	1.24	1.00	11.85	3	3.95
	120	130	0.92				1.59	1.55	0.60	1.37	1.27	1.00	12.38		4.13
	120	160	0.75				1.59	1.55	0.60	1.30	1.22	1.00	12.43		4.14
	120	190	0.63				1.59	1.55	0.60	1.25	1.19	1.00	12.61		4.20
	150	110	0.94	27.860	16.443	19.338	1.59	1.55	0.60	1.38	1.28	1.00	14.71	3	4.90
	150	130	0.86				1.59	1.55	0.60	1.34	1.25	1.00	14.78		4.93
	150	160	0.94				1.59	1.55	0.60	1.38	1.28	1.00	15.48		5.16
	150	190	0.79				1.59	1.55	0.60	1.32	1.23	1.00	15.50		5.17

Anexo 152Capacidad admisible de la Calicata 7, según Vesic

Calicata	Df (cm)	Dimensiones	Kp							Ve	esic				
		B = L (cm)		Facto	res de c	arga	Facto	res de	forma		actores ofundi		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	$\mathbf{D}\mathbf{y}$			
C-7	100	110	0.91	26.873	15.616	18.08	1.58	1.54	0.60	1.36	1.27	1.00	9.76	3	3.25
	100	130	0.77				1.58	1.54	0.60	1.31	1.23	1.00	9.79		3.26
	100	160	0.63				1.58	1.54	0.60	1.25	1.19	1.00	9.95		3.32
	100	190	0.53				1.58	1.54	0.60	1.21	1.16	1.00	10.19		3.40
	120	110	0.83	26.873	15.616	18.08	1.58	1.54	0.60	1.33	1.25	1.00	11.21	3	3.74
	120	130	0.92				1.58	1.54	0.60	1.37	1.27	1.00	11.72		3.91
	120	160	0.75				1.58	1.54	0.60	1.30	1.22	1.00	11.76		3.92
	120	190	0.63				1.58	1.54	0.60	1.25	1.19	1.00	11.92		3.97
	150	110	0.94	26.873	15.616	18.08	1.58	1.54	0.60	1.38	1.28	1.00	13.93	3	4.64
	150	130	0.86				1.58	1.54	0.60	1.34	1.25	1.00	13.99		4.66
	150	160	0.94				1.58	1.54	0.60	1.38	1.28	1.00	14.66		4.89
	150	190	0.79				1.58	1.54	0.60	1.32	1.23	1.00	14.67		4.89

Anexo 153

Capacidad admisible de la Calicata 8, según Vesic

Calicata	Df (cm)	Dimensiones	Kp							Vesi	c				
		B = L (cm)		Facto	ores de	carga	Facto	res de	forma		ctores fundio		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-8	100	110	0.91	26.790	15.547	17.975	1.58	1.54	0.60	1.36	1.27	1.00	9.72	3	3.24
	100	130	0.77				1.58	1.54	0.60	1.31	1.23	1.00	9.74		3.25
	100	160	0.63				1.58	1.54	0.60	1.25	1.19	1.00	9.90		3.30
	100	190	0.53				1.58	1.54	0.60	1.21	1.16	1.00	10.14		3.38
	120	110	0.83	26.790	15.547	17.975	1.58	1.54	0.60	1.33	1.25	1.00	11.16	3	3.72
	120	130	0.92				1.58	1.54	0.60	1.37	1.27	1.00	11.66		3.89
	120	160	0.75				1.58	1.54	0.60	1.30	1.22	1.00	11.70		3.90
	120	190	0.63				1.58	1.54	0.60	1.25	1.19	1.00	11.86		3.95
	150	110	0.94	26.790	15.547	17.975	1.58	1.54	0.60	1.38	1.28	1.00	13.86	3	4.62
	150	130	0.86				1.58	1.54	0.60	1.34	1.25	1.00	13.92		4.64
	150	160	0.94				1.58	1.54	0.60	1.38	1.28	1.00	14.58		4.86
	150	190	0.79				1.58	1.54	0.60	1.32	1.23	1.00	14.59		4.86

Anexo 154

Capacidad admisible de la Calicata 9, según Vesic

Calicata	Df (cm)	Dimensiones	Kp							Vesi	c				
		B = L (cm)		Facto	ores de	carga	Facto	res de	forma		ctores fundi		qúlt (kg/cm²)	F.S.	qadm (kg/cm²)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-9	100	110	0.91	33.150	21.064	26.712	1.64	1.60	0.60	1.36	1.26	1.00	13.59	3	4.53
	100	130	0.77				1.64	1.60	0.60	1.31	1.22	1.00	13.66		4.55
	100	160	0.63				1.64	1.60	0.60	1.25	1.18	1.00	13.93		4.64
	100	190	0.53				1.64	1.60	0.60	1.21	1.15	1.00	14.32		4.77
	120	110	0.83	33.150	21.064	26.712	1.64	1.60	0.60	1.33	1.23	1.00	15.59	3	5.20
	120	130	0.92				1.64	1.60	0.60	1.37	1.26	1.00	16.30		5.43
	120	160	0.75				1.64	1.60	0.60	1.30	1.21	1.00	16.42		5.47
	120	190	0.63				1.64	1.60	0.60	1.25	1.18	1.00	16.70		5.57
	150	110	0.94	33.150	21.064	26.712	1.64	1.60	0.60	1.38	1.26	1.00	19.32	3	6.44
	150	130	0.86				1.64	1.60	0.60	1.34	1.24	1.00	19.44		6.48
	150	160	0.94				1.64	1.60	0.60	1.38	1.26	1.00	20.38		6.79
	150	190	0.79				1.64	1.60	0.60	1.32	1.22	1.00	20.46		6.82

Anexo 155

Capacidad admisible de la Calicata 10, según Vesic

Calicata	Df (cm)	Dimensiones	Kp							Vesi	c				
		B = L (cm)		Facto	res de	carga	Facto	res de	forma		ctores ofundic		qúlt (kg/cm2)	F.S.	qadm (kg/cm2)
				Nc	Nq	Ny	Fsc	Fsq	Fsy	Fdc	Fdq	Dy			
C-10	100	110	0.91	27.860	16.443	19.338	1.59	1.55	0.60	1.36	1.27	1.00	10.24	3	3.41
	100	130	0.77				1.59	1.55	0.60	1.31	1.23	1.00	10.27		3.42
	100	160	0.63				1.59	1.55	0.60	1.25	1.18	1.00	10.44		3.48
	100	190	0.53				1.59	1.55	0.60	1.21	1.15	1.00	10.70		3.57
	120	110	0.83	27.860	16.443	19.338	1.59	1.55	0.60	1.33	1.24	1.00	11.76	3	3.92
	120	130	0.92				1.59	1.55	0.60	1.37	1.27	1.00	12.29		4.10
	120	160	0.75				1.59	1.55	0.60	1.30	1.22	1.00	12.33		4.11
	120	190	0.63				1.59	1.55	0.60	1.25	1.19	1.00	12.51		4.17
	150	110	0.94	27.860	16.443	19.338	1.59	1.55	0.60	1.38	1.28	1.00	14.60	3	4.87
	150	130	0.86				1.59	1.55	0.60	1.34	1.25	1.00	14.66		4.89
	150	160	0.94				1.59	1.55	0.60	1.38	1.28	1.00	15.36		5.12
	150	190	0.79				1.59	1.55	0.60	1.32	1.23	1.00	15.38		5.13

CÁLCULO DE CAPACIDAD NETA

Anexo 156Capacidad neta de la Calicata 1 en cimientos corridos

Calicata	Df (cm)	B (m)	S/C (kg/cm ²)	Peso Específico (kg/cm³)	N° Pisos	P (tn)	P/B (tn/m)	P/B (kg/cm)	qn (kg/cm2)
			(Kg/CIII)	(kg/cm)	1 1505		(111/111)	(Kg/CIII)	(Kg/CIII2)
C-1	100	0.60	0.020	0.00265	1	8.895	14.825	1.483	1.238
			****	*****	2	17.790	29.650	2.965	2.720
					3	26.685	44.475	4.448	4.203
		0.80			1	8.895	11.119	1.112	0.867
					2	17.790	22.238	2.224	1.979
					3	26.685	33.356	3.336	3.091
		1.00			1	8.895	8.895	0.890	0.645
					2	17.790	17.790	1.779	1.534
					3	26.685	26.685	2.669	2.424
		1.20			1	8.895	7.413	0.741	0.496
					2	17.790	14.825	1.483	1.238
					3	26.685	22.238	2.224	1.979
	120	0.60	0.020	0.00265	1	8.895	14.825	1.483	1.185
					2	17.790	29.650	2.965	2.667
					3	26.685	44.475	4.448	4.150
		0.80			1	8.895	11.119	1.112	0.814
					2	17.790	22.238	2.224	1.926
					3	26.685	33.356	3.336	3.038
		1.00			1	8.895	8.895	0.890	0.592
					2	17.790	17.790	1.779	1.481
					3	26.685	26.685	2.669	2.371
		1.20			1	8.895	7.413	0.741	0.443
					2	17.790	14.825	1.483	1.185
					3	26.685	22.238	2.224	1.926
	150	0.60	0.020	0.00265	1	8.895	14.825	1.483	1.105
					2	17.790	29.650	2.965	2.588
					3	26.685	44.475	4.448	4.070
		0.80			1	8.895	11.119	1.112	0.734
					2	17.790	22.238	2.224	1.846
					3	26.685	33.356	3.336	2.958
		1.00			1	8.895	8.895	0.890	0.512
					2	17.790	17.790	1.779	1.402
					3	26.685	26.685	2.669	2.291
		1.20			1	8.895	7.413	0.741	0.364
					2	17.790	14.825	1.483	1.105
-					3	26.685	22.238	2.224	1.846

Anexo 157Capacidad neta de la Calicata 2 en cimientos corridos

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Específico (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
			(Kg/CIII2)	(kg/cm3)	1 1505		(111/111)	(Kg/CIII)	(Kg/CIII2)
C-2	100	0.60	0.020	0.00269	1	8.895	14.825	1.483	1.234
					2	17.790	29.650	2.965	2.716
					3	26.685	44.475	4.448	4.199
		0.80			1	8.895	11.119	1.112	0.863
					2	17.790	22.238	2.224	1.975
					3	26.685	33.356	3.336	3.087
		1.00			1	8.895	8.895	0.890	0.641
					2	17.790	17.790	1.779	1.530
					3	26.685	26.685	2.669	2.420
		1.20			1	8.895	7.413	0.741	0.492
					2	17.790	14.825	1.483	1.234
					3	26.685	22.238	2.224	1.975
	120	0.60	0.020	0.00269	1	8.895	14.825	1.483	1.180
					2	17.790	29.650	2.965	2.662
					3	26.685	44.475	4.448	4.145
		0.80			1	8.895	11.119	1.112	0.809
					2	17.790	22.238	2.224	1.921
					3	26.685	33.356	3.336	3.033
		1.00			1	8.895	8.895	0.890	0.587
					2	17.790	17.790	1.779	1.476
					3	26.685	26.685	2.669	2.366
		1.20			1	8.895	7.413	0.741	0.438
					2	17.790	14.825	1.483	1.180
					3	26.685	22.238	2.224	1.921
	150	0.60	0.020	0.00269	1	8.895	14.825	1.483	1.099
					2	17.790	29.650	2.965	2.582
					3	26.685	44.475	4.448	4.064
		0.80			1	8.895	11.119	1.112	0.728
					2	17.790	22.238	2.224	1.840
					3	26.685	33.356	3.336	2.952
		1.00			1	8.895	8.895	0.890	0.506
					2	17.790	17.790	1.779	1.396
					3	26.685	26.685	2.669	2.285
		1.20			1	8.895	7.413	0.741	0.358
					2	17.790	14.825	1.483	1.099
					3	26.685	22.238	2.224	1.840

Anexo 158

Capacidad neta de la Calicata 3 en cimientos corridos

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Específico (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
									_
C-3	100	0.60	0.020	0.00267	1	8.895	14.825	1.483	1.236
					2	17.790	29.650	2.965	2.718
					3	26.685	44.475	4.448	4.201
		0.80			1	8.895	11.119	1.112	0.865
					2	17.790	22.238	2.224	1.977
					3	26.685	33.356	3.336	3.089
		1.00			1	8.895	8.895	0.890	0.643
					2	17.790	17.790	1.779	1.532
					3	26.685	26.685	2.669	2.422
		1.20			1	8.895	7.413	0.741	0.494
					2	17.790	14.825	1.483	1.236
					3	26.685	22.238	2.224	1.977
	120	0.60	0.020	0.00267	1	8.895	14.825	1.483	1.182
					2	17.790	29.650	2.965	2.665
					3	26.685	44.475	4.448	4.147
		0.80			1	8.895	11.119	1.112	0.811
					2	17.790	22.238	2.224	1.923
					3	26.685	33.356	3.336	3.035
		1.00			1	8.895	8.895	0.890	0.589
					2	17.790	17.790	1.779	1.479
					3	26.685	26.685	2.669	2.368
		1.20			1	8.895	7.413	0.741	0.441
					2	17.790	14.825	1.483	1.182
					3	26.685	22.238	2.224	1.923
	150	0.60	0.020	0.00267	1	8.895	14.825	1.483	1.102
					2	17.790	29.650	2.965	2.585
					3	26.685	44.475	4.448	4.067
		0.80			1	8.895	11.119	1.112	0.731
					2	17.790	22.238	2.224	1.843
					3	26.685	33.356	3.336	2.955
		1.00			1	8.895	8.895	0.890	0.509
					2	17.790	17.790	1.779	1.399
					3	26.685	26.685	2.669	2.288
		1.20			1	8.895	7.413	0.741	0.361
					2	17.790	14.825	1.483	1.102
					3	26.685	22.238	2.224	1.843

Anexo 159

Capacidad neta de la Calicata 4 en cimientos corridos

Calicata	Df (cm)	B (m)	S/C (kg/cm ²)	Peso Específico (kg/cm³)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm²)
C-4	100	0.60	0.020	0.00264	1	8.895	14.825	1.483	1.239
					2	17.790	29.650	2.965	2.721
					3	26.685	44.475	4.448	4.204
		0.80			1	8.895	11.119	1.112	0.868
					2	17.790	22.238	2.224	1.980
					3	26.685	33.356	3.336	3.092
		1.00			1	8.895	8.895	0.890	0.646
					2	17.790	17.790	1.779	1.535
					3	26.685	26.685	2.669	2.425
		1.20			1	8.895	7.413	0.741	0.497
					2	17.790	14.825	1.483	1.239
					3	26.685	22.238	2.224	1.980
	120	0.60	0.020	0.00264	1	8.895	14.825	1.483	1.186
					2	17.790	29.650	2.965	2.668
					3	26.685	44.475	4.448	4.151
		0.80			1	8.895	11.119	1.112	0.815
					2	17.790	22.238	2.224	1.927
					3	26.685	33.356	3.336	3.039
		1.00			1	8.895	8.895	0.890	0.593
					2	17.790	17.790	1.779	1.482
					3	26.685	26.685	2.669	2.372
		1.20			1	8.895	7.413	0.741	0.444
					2	17.790	14.825	1.483	1.186
					3	26.685	22.238	2.224	1.927
	150	0.60	0.020	0.00264	1	8.895	14.825	1.483	1.107
					2	17.790	29.650	2.965	2.589
					3	26.685	44.475	4.448	4.072
		0.80			1	8.895	11.119	1.112	0.736
					2	17.790	22.238	2.224	1.848
					3	26.685	33.356	3.336	2.960
		1.00			1	8.895	8.895	0.890	0.514
					2	17.790	17.790	1.779	1.403
					3	26.685	26.685	2.669	2.293
		1.20			1	8.895	7.413	0.741	0.365
					2	17.790	14.825	1.483	1.107
					3	26.685	22.238	2.224	1.848

Anexo 160

Capacidad neta de la Calicata 5 en cimientos corridos

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Específico (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
			(118/ 01112)	(119, 01110)	1 1505		(=======)	(118/ 0111)	(118/ 41112)
C-5	100	0.60	0.020	0.00268	1	8.895	14.825	1.483	1.235
					2	17.790	29.650	2.965	2.717
					3	26.685	44.475	4.448	4.200
		0.80			1	8.895	11.119	1.112	0.864
					2	17.790	22.238	2.224	1.976
					3	26.685	33.356	3.336	3.088
		1.00			1	8.895	8.895	0.890	0.642
					2	17.790	17.790	1.779	1.531
					3	26.685	26.685	2.669	2.421
		1.20			1	8.895	7.413	0.741	0.493
					2	17.790	14.825	1.483	1.235
					3	26.685	22.238	2.224	1.976
	120	0.60	0.020	0.00268	1	8.895	14.825	1.483	1.181
					2	17.790	29.650	2.965	2.663
					3	26.685	44.475	4.448	4.146
		0.80			1	8.895	11.119	1.112	0.810
					2	17.790	22.238	2.224	1.922
					3	26.685	33.356	3.336	3.034
		1.00			1	8.895	8.895	0.890	0.588
					2	17.790	17.790	1.779	1.477
					3	26.685	26.685	2.669	2.367
		1.20			1	8.895	7.413	0.741	0.440
					2	17.790	14.825	1.483	1.181
					3	26.685	22.238	2.224	1.922
	150	0.60	0.020	0.00268	1	8.895	14.825	1.483	1.101
					2	17.790	29.650	2.965	2.583
					3	26.685	44.475	4.448	4.066
		0.80			1	8.895	11.119	1.112	0.730
					2	17.790	22.238	2.224	1.842
					3	26.685	33.356	3.336	2.954
		1.00			1	8.895	8.895	0.890	0.508
					2	17.790	17.790	1.779	1.397
					3	26.685	26.685	2.669	2.287
		1.20			1	8.895	7.413	0.741	0.359
					2	17.790	14.825	1.483	1.101
					3	26.685	22.238	2.224	1.842

Anexo 161

Capacidad neta de la Calicata 6 en cimientos corridos

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Específico (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C-6	100	0.60	0.020	0.00266	1	8.895	14.825	1.483	1.237
					2	17.790	29.650	2.965	2.719
					3	26.685	44.475	4.448	4.202
		0.80			1	8.895	11.119	1.112	0.866
					2	17.790	22.238	2.224	1.978
					3	26.685	33.356	3.336	3.090
		1.00			1	8.895	8.895	0.890	0.644
					2	17.790	17.790	1.779	1.533
					3	26.685	26.685	2.669	2.423
		1.20			1	8.895	7.413	0.741	0.495
					2	17.790	14.825	1.483	1.237
					3	26.685	22.238	2.224	1.978
	120	0.60	0.020	0.00266	1	8.895	14.825	1.483	1.183
					2	17.790	29.650	2.965	2.666
					3	26.685	44.475	4.448	4.148
		0.80			1	8.895	11.119	1.112	0.813
					2	17.790	22.238	2.224	1.925
					3	26.685	33.356	3.336	3.036
		1.00			1	8.895	8.895	0.890	0.590
					2	17.790	17.790	1.779	1.480
					3	26.685	26.685	2.669	2.369
		1.20			1	8.895	7.413	0.741	0.442
					2	17.790	14.825	1.483	1.183
					3	26.685	22.238	2.224	1.925
	150	0.60	0.020	0.00266	1	8.895	14.825	1.483	1.104
					2	17.790	29.650	2.965	2.586
					3	26.685	44.475	4.448	4.069
		0.80			1	8.895	11.119	1.112	0.733
					2	17.790	22.238	2.224	1.845
					3	26.685	33.356	3.336	2.957
		1.00			1	8.895	8.895	0.890	0.511
					2	17.790	17.790	1.779	1.400
					3	26.685	26.685	2.669	2.290
		1.20			1	8.895	7.413	0.741	0.362
					2	17.790	14.825	1.483	1.104
					3	26.685	22.238	2.224	1.845

Anexo 162Capacidad neta de la Calicata 7 en cimientos corridos

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Específico (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C-7	100	0.60	0.020	0.00257	1	8.895	14.825	1.483	1.246
					2	17.790	29.650	2.965	2.728
					3	26.685	44.475	4.448	4.211
		0.80			1	8.895	11.119	1.112	0.875
					2	17.790	22.238	2.224	1.987
					3	26.685	33.356	3.336	3.099
		1.00			1	8.895	8.895	0.890	0.653
					2	17.790	17.790	1.779	1.542
					3	26.685	26.685	2.669	2.432
		1.20			1	8.895	7.413	0.741	0.504
					2	17.790	14.825	1.483	1.246
					3	26.685	22.238	2.224	1.987
	120	0.60	0.020	0.00257	1	8.895	14.825	1.483	1.194
					2	17.790	29.650	2.965	2.677
					3	26.685	44.475	4.448	4.159
		0.80			1	8.895	11.119	1.112	0.823
					2	17.790	22.238	2.224	1.935
					3	26.685	33.356	3.336	3.047
		1.00			1	8.895	8.895	0.890	0.601
					2	17.790	17.790	1.779	1.491
					3	26.685	26.685	2.669	2.380
		1.20			1	8.895	7.413	0.741	0.453
					2	17.790	14.825	1.483	1.194
					3	26.685	22.238	2.224	1.935
	150	0.60	0.020	0.00257	1	8.895	14.825	1.483	1.117
					2	17.790	29.650	2.965	2.600
					3	26.685	44.475	4.448	4.082
		0.80			1	8.895	11.119	1.112	0.746
					2	17.790	22.238	2.224	1.858
					3	26.685	33.356	3.336	2.970
		1.00			1	8.895	8.895	0.890	0.524
					2	17.790	17.790	1.779	1.414
					3	26.685	26.685	2.669	2.303
		1.20			1	8.895	7.413	0.741	0.376
					2	17.790	14.825	1.483	1.117
					3	26.685	22.238	2.224	1.858

Anexo 163

Capacidad neta de la Calicata 8 en cimientos corridos.

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Específico (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
			(118/ 01112)	(iig/ ciiic)	1 15 05		(=======)	(118/ 0111)	(118/ 01112)
C-8	100	0.60	0.020	0.00267	1	8.895	14.825	1.483	1.236
					2	17.790	29.650	2.965	2.718
					3	26.685	44.475	4.448	4.201
		0.80			1	8.895	11.119	1.112	0.865
					2	17.790	22.238	2.224	1.977
					3	26.685	33.356	3.336	3.089
		1.00			1	8.895	8.895	0.890	0.643
					2	17.790	17.790	1.779	1.532
					3	26.685	26.685	2.669	2.422
		1.20			1	8.895	7.413	0.741	0.494
					2	17.790	14.825	1.483	1.236
					3	26.685	22.238	2.224	1.977
	120	0.60	0.020	0.00267	1	8.895	14.825	1.483	1.182
					2	17.790	29.650	2.965	2.665
					3	26.685	44.475	4.448	4.147
		0.80			1	8.895	11.119	1.112	0.811
					2	17.790	22.238	2.224	1.923
					3	26.685	33.356	3.336	3.035
		1.00			1	8.895	8.895	0.890	0.589
					2	17.790	17.790	1.779	1.479
					3	26.685	26.685	2.669	2.368
		1.20			1	8.895	7.413	0.741	0.441
					2	17.790	14.825	1.483	1.182
					3	26.685	22.238	2.224	1.923
	150	0.60	0.020	0.00267	1	8.895	14.825	1.483	1.102
					2	17.790	29.650	2.965	2.585
					3	26.685	44.475	4.448	4.067
		0.80			1	8.895	11.119	1.112	0.731
					2	17.790	22.238	2.224	1.843
					3	26.685	33.356	3.336	2.955
		1.00			1	8.895	8.895	0.890	0.509
					2	17.790	17.790	1.779	1.399
					3	26.685	26.685	2.669	2.288
		1.20			1	8.895	7.413	0.741	0.361
					2	17.790	14.825	1.483	1.102
					3	26.685	22.238	2.224	1.843

Anexo 164

Capacidad neta de la Calicata 9 en cimientos corridos

Calicata	Df (cm)	B (m)	S/C (kg/cm ²)	Peso Específico (kg/cm³)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm²)
<i>C</i> 0	100	0.60	0.020	0.00265	1	0.007	14.007	1 402	1.220
C-9	100	0.60	0.020	0.00265	1	8.895	14.825	1.483	1.238
					2	17.790	29.650	2.965	2.720
		0.80			3	26.685	44.475	4.448	4.203
		0.80			1	8.895	11.119	1.112	0.867
					2	17.790	22.238	2.224	1.979
		1.00			3	26.685	33.356	3.336	3.091
		1.00			1	8.895	8.895	0.890	0.645
					2 3	17.790	17.790	1.779	1.534
		1.20				26.685	26.685	2.669	2.424
		1.20			1	8.895	7.413	0.741	0.496
					2	17.790	14.825	1.483	1.238
	120	0.60	0.020	0.00265	3	26.685	22.238	2.224	1.979
	120	0.60	0.020	0.00265	1	8.895	14.825	1.483	1.185
					2	17.790	29.650	2.965	2.667
		0.00			3	26.685	44.475	4.448	4.150
		0.80			1	8.895	11.119	1.112	0.814
					2	17.790	22.238	2.224	1.926
		1.00			3	26.685	33.356	3.336	3.038
		1.00			1 2	8.895	8.895	0.890	0.592
					3	17.790 26.685	17.790 26.685	1.779	1.481 2.371
		1.20				8.895	7.413	2.669 0.741	0.443
		1.20			1 2	17.790	14.825	1.483	
					3	26.685	22.238	2.224	1.185 1.926
	150	0.60	0.020	0.00265	1	8.895	14.825	1.483	1.105
	130	0.00	0.020	0.00203	2	17.790	29.650	2.965	2.588
					3	26.685	44.475	4.448	4.070
		0.80			1	8.895	11.119	1.112	0.734
		0.60			2	17.790	22.238	2.224	1.846
					3	26.685	33.356	3.336	2.958
		1.00			1	8.895	8.895	0.890	0.512
		1.00			2	17.790	17.790	1.779	1.402
					3	26.685	26.685	2.669	2.291
		1.20			1	8.895	7.413	0.741	0.364
		1.20			2	17.790	14.825	1.483	1.105
					3	26.685	22.238	2.224	1.846

Anexo 165

Capacidad neta de la Calicata 10 en cimientos corridos

Calicata	Df (cm)	B (m)	S/C (kg/cm ²)	Peso Específico (kg/cm³)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm²)
C-10	100	0.60	0.020	0.00264	1	8.895	14.825	1.483	1.239
					2	17.790	29.650	2.965	2.721
					3	26.685	44.475	4.448	4.204
		0.80			1	8.895	11.119	1.112	0.868
					2	17.790	22.238	2.224	1.980
					3	26.685	33.356	3.336	3.092
		1.00			1	8.895	8.895	0.890	0.646
					2	17.790	17.790	1.779	1.535
					3	26.685	26.685	2.669	2.425
		1.20			1	8.895	7.413	0.741	0.497
					2	17.790	14.825	1.483	1.239
					3	26.685	22.238	2.224	1.980
	120	0.60	0.020	0.00264	1	8.895	14.825	1.483	1.186
					2	17.790	29.650	2.965	2.668
					3	26.685	44.475	4.448	4.151
		0.80			1	8.895	11.119	1.112	0.815
					2	17.790	22.238	2.224	1.927
					3	26.685	33.356	3.336	3.039
		1.00			1	8.895	8.895	0.890	0.593
					2	17.790	17.790	1.779	1.482
					3	26.685	26.685	2.669	2.372
		1.20			1	8.895	7.413	0.741	0.444
					2	17.790	14.825	1.483	1.186
					3	26.685	22.238	2.224	1.927
	150	0.60	0.020	0.00264	1	8.895	14.825	1.483	1.107
					2	17.790	29.650	2.965	2.589
					3	26.685	44.475	4.448	4.072
		0.80			1	8.895	11.119	1.112	0.736
					2	17.790	22.238	2.224	1.848
					3	26.685	33.356	3.336	2.960
		1.00			1	8.895	8.895	0.890	0.514
					2	17.790	17.790	1.779	1.403
					3	26.685	26.685	2.669	2.293
		1.20			1	8.895	7.413	0.741	0.365
					2	17.790	14.825	1.483	1.107
					3	26.685	22.238	2.224	1.848

Anexo 166Capacidad neta de la Calicata 1 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Espe (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C-1	100	1.10	0.020	0.00265	5	82.26	74.78	7.48	7.233
					4	65.15	59.23	5.92	5.678
					3	48.44	44.04	4.40	4.159
		1.30			5	82.26	63.28	6.33	6.083
					4	65.15	50.12	5.01	4.767
					3	48.44	37.26	3.73	3.481
		1.60			5	82.26	51.41	5.14	4.896
					4	65.15	40.72	4.07	3.827
					3	48.44	30.28	3.03	2.783
		1.90			5	82.26	43.29	4.33	4.084
					4	65.15	34.29	3.43	3.184
					3	48.44	25.49	2.55	2.304
	120	1.10	0.020	0.00265	5	82.26	74.78	7.48	7.180
					4	65.15	59.23	5.92	5.625
					3	48.44	44.04	4.40	4.106
		1.30			5	82.26	63.28	6.33	6.030
					4	65.15	50.12	5.01	4.714
					3	48.44	37.26	3.73	3.428
		1.60			5	82.26	51.41	5.14	4.843
					4	65.15	40.72	4.07	3.774
					3	48.44	30.28	3.03	2.730
		1.90			5	82.26	43.29	4.33	4.031
					4	65.15	34.29	3.43	3.131
					3	48.44	25.49	2.55	2.251
	150	1.10	0.020	0.00265	5	82.26	74.78	7.48	7.101
					4	65.15	59.23	5.92	5.545
					3	48.44	44.04	4.40	4.026
		1.30			5	82.26	63.28	6.33	5.950
					4	65.15	50.12	5.01	4.634
					3	48.44	37.26	3.73	3.349
		1.60			5	82.26	51.41	5.14	4.764
					4	65.15	40.72	4.07	3.694
					3	48.44	30.28	3.03	2.650
		1.90			5	82.26	43.29	4.33	3.952
					4	65.15	34.29	3.43	3.051
					3	48.44	25.49	2.55	2.172

Anexo 167Capacidad neta de la Calicata 2 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Esp. (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C-2	100	1.10	0.020	0.00269	5	92.26	74.78	7.48	7 220
C-2	100	1.10	0.020	0.00209	5 4	82.26 65.15	59.23	5.92	7.229 5.674
					3	48.44	44.04	4.40	4.155
		1.30			5	82.26	63.28	6.33	6.079
		1.30			4	65.15	50.12	5.01	4.763
					3	48.44	37.26	3.73	3.477
		1.60			5	82.26	51.41	5.14	4.892
		1.00			4	65.15	40.72	4.07	3.823
					3	48.44	30.28		
		1.00				82.26	43.29	3.03 4.33	2.779
		1.90			5 4			3.43	4.080
					3	65.15	34.29		3.180
	120	1.10	0.020	0.00269	5	48.44	25.49	2.55	2.300
	120	1.10	0.020	0.00269		82.26	74.78 59.23	7.48 5.02	7.175 5.620
					4	65.15		5.92	5.620
		1.20			3	48.44	44.04	4.40	4.101
		1.30			5	82.26	63.28	6.33	6.025
					4	65.15	50.12	5.01	4.709
		1.60			3	48.44	37.26	3.73	3.423
		1.60			5	82.26	51.41	5.14	4.838
					4	65.15	40.72	4.07	3.769
		1.00			3	48.44	30.28	3.03	2.725
		1.90			5	82.26	43.29	4.33	4.027
					4	65.15	34.29	3.43	3.126
	150	1.10	0.020	0.00260	3	48.44	25.49	2.55	2.247
	150	1.10	0.020	0.00269	5	82.26	74.78	7.48	7.095
					4	65.15	59.23	5.92	5.539
		1.20			3	48.44	44.04	4.40	4.020
		1.30			5	82.26	63.28	6.33	5.944
					4	65.15	50.12	5.01	4.628
		1.60			3	48.44	37.26	3.73	3.343
		1.60			5	82.26	51.41	5.14	4.758
					4	65.15	40.72	4.07	3.688
		1.00			3	48.44	30.28	3.03	2.644
		1.90			5	82.26	43.29	4.33	3.946
					4	65.15	34.29	3.43	3.045
-					3	48.44	25.49	2.55	2.166

Anexo 168Capacidad neta de la Calicata 3 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Esp. (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C^{2}	100	1 10	0.020	0.00267	5	92.26	74.70	7.40	7 221
C-3	100	1.10	0.020	0.00267	5	82.26	74.78	7.48	7.231
					4 3	65.15 48.44	59.23 44.04	5.92 4.40	5.676 4.157
		1.30			5	82.26	63.28	6.33	6.081
		1.50			4	65.15	50.12	5.01	4.765
					3	48.44	37.26	3.73	3.479
		1.60			5	82.26	51.41	5.14	4.894
		1.00			4	65.15	40.72	4.07	3.825
					3	48.44	30.28	3.03	2.781
		1.90			5	82.26	43.29	4.33	4.082
		1.70			4	65.15	34.29	3.43	3.182
					3	48.44	25.49	2.55	2.302
	120	1.10	0.020	0.00267	5	82.26	74.78	7.48	7.178
					4	65.15	59.23	5.92	5.622
					3	48.44	44.04	4.40	4.103
		1.30			5	82.26	63.28	6.33	6.027
					4	65.15	50.12	5.01	4.711
					3	48.44	37.26	3.73	3.426
		1.60			5	82.26	51.41	5.14	4.841
					4	65.15	40.72	4.07	3.771
					3	48.44	30.28	3.03	2.727
		1.90			5	82.26	43.29	4.33	4.029
					4	65.15	34.29	3.43	3.129
					3	48.44	25.49	2.55	2.249
	150	1.10	0.020	0.00267	5	82.26	74.78	7.48	7.098
					4	65.15	59.23	5.92	5.542
					3	48.44	44.04	4.40	4.023
		1.30			5	82.26	63.28	6.33	5.947
					4	65.15	50.12	5.01	4.631
					3	48.44	37.26	3.73	3.346
		1.60			5	82.26	51.41	5.14	4.761
					4	65.15	40.72	4.07	3.691
					3	48.44	30.28	3.03	2.647
		1.90			5	82.26	43.29	4.33	3.949
					4	65.15	34.29	3.43	3.048
					3	48.44	25.49	2.55	2.169

Anexo 169

Capacidad neta de la Calicata 4 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Espe (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C-4	100	1.10	0.020	0.00264	5	82.26	74.78	7.48	7.234
					4	65.15	59.23	5.92	5.679
					3	48.44	44.04	4.40	4.160
		1.30			5	82.26	63.28	6.33	6.084
					4	65.15	50.12	5.01	4.768
					3	48.44	37.26	3.73	3.482
		1.60			5	82.26	51.41	5.14	4.897
					4	65.15	40.72	4.07	3.828
					3	48.44	30.28	3.03	2.784
		1.90			5	82.26	43.29	4.33	4.085
					4	65.15	34.29	3.43	3.185
					3	48.44	25.49	2.55	2.305
	120	1.10	0.020	0.00264	5	82.26	74.78	7.48	7.181
					4	65.15	59.23	5.92	5.626
					3	48.44	44.04	4.40	4.107
		1.30			5	82.26	63.28	6.33	6.031
					4	65.15	50.12	5.01	4.715
					3	48.44	37.26	3.73	3.429
		1.60			5	82.26	51.41	5.14	4.844
					4	65.15	40.72	4.07	3.775
					3	48.44	30.28	3.03	2.731
		1.90			5	82.26	43.29	4.33	4.033
					4	65.15	34.29	3.43	3.132
					3	48.44	25.49	2.55	2.253
	150	1.10	0.020	0.00264	5	82.26	74.78	7.48	7.102
					4	65.15	59.23	5.92	5.547
					3	48.44	44.04	4.40	4.028
		1.30			5	82.26	63.28	6.33	5.952
					4	65.15	50.12	5.01	4.636
					3	48.44	37.26	3.73	3.350
		1.60			5	82.26	51.41	5.14	4.765
					4	65.15	40.72	4.07	3.696
					3	48.44	30.28	3.03	2.652
		1.90			5	82.26	43.29	4.33	3.953
					4	65.15	34.29	3.43	3.053
					3	48.44	25.49	2.55	2.173

Anexo 170

Capacidad neta de la Calicata 5 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Esp. (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C-5	100	1.10	0.020	0.00268	5	82.26	74.78	7.48	7.230
C-3	100	1.10	0.020	0.00208	4	65.15	59.23	5.92	5.675
					3	48.44	44.04	4.40	4.156
		1.30			5	82.26	63.28	6.33	6.080
		1.50			4	65.15	50.12	5.01	4.764
					3	48.44	37.26	3.73	3.478
		1.60			5	82.26	51.41	5.14	4.893
		1.00			4	65.15	40.72	4.07	3.824
					3	48.44	30.28	3.03	2.780
		1.90			5	82.26	43.29	4.33	4.081
					4	65.15	34.29	3.43	3.181
					3	48.44	25.49	2.55	2.301
	120	1.10	0.020	0.00268	5	82.26	74.78	7.48	7.177
					4	65.15	59.23	5.92	5.621
					3	48.44	44.04	4.40	4.102
		1.30			5	82.26	63.28	6.33	6.026
					4	65.15	50.12	5.01	4.710
					3	48.44	37.26	3.73	3.425
		1.60			5	82.26	51.41	5.14	4.840
					4	65.15	40.72	4.07	3.770
					3	48.44	30.28	3.03	2.726
		1.90			5	82.26	43.29	4.33	4.028
					4	65.15	34.29	3.43	3.127
					3	48.44	25.49	2.55	2.248
	150	1.10	0.020	0.00268	5	82.26	74.78	7.48	7.096
					4	65.15	59.23	5.92	5.541
					3	48.44	44.04	4.40	4.022
		1.30			5	82.26	63.28	6.33	5.946
					4	65.15	50.12	5.01	4.630
					3	48.44	37.26	3.73	3.344
		1.60			5	82.26	51.41	5.14	4.759
					4	65.15	40.72	4.07	3.690
					3	48.44	30.28	3.03	2.646
		1.90			5	82.26	43.29	4.33	3.947
					4	65.15	34.29	3.43	3.047
					3	48.44	25.49	2.55	2.167

Anexo 171Capacidad neta de la Calicata 6 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Esp. (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C-6	100	1.10	0.020	0.00266	5	82.26	74.78	7.48	7.232
			0.000		4	65.15	59.23	5.92	5.677
					3	48.44	44.04	4.40	4.158
		1.30			5	82.26	63.28	6.33	6.082
					4	65.15	50.12	5.01	4.766
					3	48.44	37.26	3.73	3.480
		1.60			5	82.26	51.41	5.14	4.895
					4	65.15	40.72	4.07	3.826
					3	48.44	30.28	3.03	2.782
		1.90			5	82.26	43.29	4.33	4.083
					4	65.15	34.29	3.43	3.183
					3	48.44	25.49	2.55	2.303
	120	1.10	0.020	0.00266	5	82.26	74.78	7.48	7.179
					4	65.15	59.23	5.92	5.624
					3	48.44	44.04	4.40	4.104
		1.30			5	82.26	63.28	6.33	6.028
					4	65.15	50.12	5.01	4.712
					3	48.44	37.26	3.73	3.427
		1.60			5	82.26	51.41	5.14	4.842
					4	65.15	40.72	4.07	3.773
					3	48.44	30.28	3.03	2.728
		1.90			5	82.26	43.29	4.33	4.030
					4	65.15	34.29	3.43	3.130
					3	48.44	25.49	2.55	2.250
	150	1.10	0.020	0.00266	5	82.26	74.78	7.48	7.099
					4	65.15	59.23	5.92	5.544
					3	48.44	44.04	4.40	4.025
		1.30			5	82.26	63.28	6.33	5.949
					4	65.15	50.12	5.01	4.633
					3	48.44	37.26	3.73	3.347
		1.60			5	82.26	51.41	5.14	4.762
					4	65.15	40.72	4.07	3.693
					3	48.44	30.28	3.03	2.649
		1.90			5	82.26	43.29	4.33	3.950
					4	65.15	34.29	3.43	3.050
					3	48.44	25.49	2.55	2.170

Anexo 172

Capacidad neta de la Calicata 7 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Esp. (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C-7	100	1.10	0.020	0.00257	5	82.26	74.78	7.48	7.241
					4	65.15	59.23	5.92	5.686
					3	48.44	44.04	4.40	4.167
		1.30			5	82.26	63.28	6.33	6.091
					4	65.15	50.12	5.01	4.775
					3	48.44	37.26	3.73	3.489
		1.60			5	82.26	51.41	5.14	4.904
					4	65.15	40.72	4.07	3.835
					3	48.44	30.28	3.03	2.791
		1.90			5	82.26	43.29	4.33	4.092
					4	65.15	34.29	3.43	3.192
					3	48.44	25.49	2.55	2.312
	120	1.10	0.020	0.00257	5	82.26	74.78	7.48	7.190
					4	65.15	59.23	5.92	5.634
					3	48.44	44.04	4.40	4.115
		1.30			5	82.26	63.28	6.33	6.039
					4	65.15	50.12	5.01	4.723
					3	48.44	37.26	3.73	3.438
		1.60			5	82.26	51.41	5.14	4.853
					4	65.15	40.72	4.07	3.783
					3	48.44	30.28	3.03	2.739
		1.90			5	82.26	43.29	4.33	4.041
					4	65.15	34.29	3.43	3.141
					3	48.44	25.49	2.55	2.261
	150	1.10	0.020	0.00257	5	82.26	74.78	7.48	7.113
					4	65.15	59.23	5.92	5.557
					3	48.44	44.04	4.40	4.038
		1.30			5	82.26	63.28	6.33	5.962
					4	65.15	50.12	5.01	4.646
					3	48.44	37.26	3.73	3.361
		1.60			5	82.26	51.41	5.14	4.776
					4	65.15	40.72	4.07	3.706
					3	48.44	30.28	3.03	2.662
		1.90			5	82.26	43.29	4.33	3.964
					4	65.15	34.29	3.43	3.063
					3	48.44	25.49	2.55	2.184

Anexo 173Capacidad neta de la Calicata 8 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Esp. (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
C-8	100	1.10	0.020	0.00267	5	82.26	74.78	7.48	7.231
					4	65.15	59.23	5.92	5.676
					3	48.44	44.04	4.40	4.157
		1.30			5	82.26	63.28	6.33	6.081
					4	65.15	50.12	5.01	4.765
					3	48.44	37.26	3.73	3.479
		1.60			5	82.26	51.41	5.14	4.894
					4	65.15	40.72	4.07	3.825
					3	48.44	30.28	3.03	2.781
		1.90			5	82.26	43.29	4.33	4.082
					4	65.15	34.29	3.43	3.182
					3	48.44	25.49	2.55	2.302
	120	1.10	0.020	0.00267	5	82.26	74.78	7.48	7.178
					4	65.15	59.23	5.92	5.622
					3	48.44	44.04	4.40	4.103
		1.30			5	82.26	63.28	6.33	6.027
					4	65.15	50.12	5.01	4.711
					3	48.44	37.26	3.73	3.426
		1.60			5	82.26	51.41	5.14	4.841
					4	65.15	40.72	4.07	3.771
					3	48.44	30.28	3.03	2.727
		1.90			5	82.26	43.29	4.33	4.029
					4	65.15	34.29	3.43	3.129
					3	48.44	25.49	2.55	2.249
	150	1.10	0.020	0.00267	5	82.26	74.78	7.48	7.098
					4	65.15	59.23	5.92	5.542
					3	48.44	44.04	4.40	4.023
		1.30			5	82.26	63.28	6.33	5.947
					4	65.15	50.12	5.01	4.631
					3	48.44	37.26	3.73	3.346
		1.60			5	82.26	51.41	5.14	4.761
					4	65.15	40.72	4.07	3.691
					3	48.44	30.28	3.03	2.647
		1.90			5	82.26	43.29	4.33	3.949
					4	65.15	34.29	3.43	3.048
					3	48.44	25.49	2.55	2.169

Anexo 174

Capacidad neta de la Calicata 9 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2)	Peso Esp. (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
					_				
C-9	100	1.10	0.020	0.00265	5	82.26	74.78	7.48	7.233
					4	65.15	59.23	5.92	5.678
					3	48.44	44.04	4.40	4.159
		1.30			5	82.26	63.28	6.33	6.083
					4	65.15	50.12	5.01	4.767
					3	48.44	37.26	3.73	3.481
		1.60			5	82.26	51.41	5.14	4.896
					4	65.15	40.72	4.07	3.827
					3	48.44	30.28	3.03	2.783
		1.90			5	82.26	43.29	4.33	4.084
					4	65.15	34.29	3.43	3.184
					3	48.44	25.49	2.55	2.304
	120	1.10	0.020	0.00265	5	82.26	74.78	7.48	7.180
					4	65.15	59.23	5.92	5.625
					3	48.44	44.04	4.40	4.106
		1.30			5	82.26	63.28	6.33	6.030
					4	65.15	50.12	5.01	4.714
					3	48.44	37.26	3.73	3.428
		1.60			5	82.26	51.41	5.14	4.843
					4	65.15	40.72	4.07	3.774
					3	48.44	30.28	3.03	2.730
		1.90			5	82.26	43.29	4.33	4.031
					4	65.15	34.29	3.43	3.131
					3	48.44	25.49	2.55	2.251
	150	1.10	0.020	0.00265	5	82.26	74.78	7.48	7.101
					4	65.15	59.23	5.92	5.545
					3	48.44	44.04	4.40	4.026
		1.30			5	82.26	63.28	6.33	5.950
					4	65.15	50.12	5.01	4.634
					3	48.44	37.26	3.73	3.349
		1.60			5	82.26	51.41	5.14	4.764
					4	65.15	40.72	4.07	3.694
					3	48.44	30.28	3.03	2.650
		1.90			5	82.26	43.29	4.33	3.952
					4	65.15	34.29	3.43	3.051
					3	48.44	25.49	2.55	2.172

Anexo 175Capacidad neta de la Calicata 9 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm2	Peso Esp. (kg/cm3)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm2)
$C \cap$	100	1 10	0.020	0.00264	5	92.26	71.70	7.49	7.234
C-9	100	1.10	0.020	0.00204	5 4	82.26 65.15	74.78 59.23	7.48 5.92	5.679
					3	48.44	39.23 44.04	3.92 4.40	4.160
		1.30			5	82.26	63.28	6.33	6.084
		1.50			4	65.15	50.12	5.01	4.768
					3	48.44	37.26	3.73	3.482
		1.60			5	82.26	51.41	5.14	4.897
		1.00			4	65.15	40.72	4.07	3.828
					3	48.44	30.28	3.03	2.784
		1.90			5	82.26	43.29	4.33	4.085
		1.50			4	65.15	34.29	3.43	3.185
					3	48.44	25.49	2.55	2.305
	120	1.10	0.020	0.00264	5	82.26	74.78	7.48	7.181
	120	1.10	0.020	0.00201	4	65.15	59.23	5.92	5.626
					3	48.44	44.04	4.40	4.107
		1.30			5	82.26	63.28	6.33	6.031
		-1.5			4	65.15	50.12	5.01	4.715
					3	48.44	37.26	3.73	3.429
		1.60			5	82.26	51.41	5.14	4.844
					4	65.15	40.72	4.07	3.775
					3	48.44	30.28	3.03	2.731
		1.90			5	82.26	43.29	4.33	4.033
					4	65.15	34.29	3.43	3.132
					3	48.44	25.49	2.55	2.253
	150	1.10	0.020	0.00264	5	82.26	74.78	7.48	7.102
					4	65.15	59.23	5.92	5.547
					3	48.44	44.04	4.40	4.028
		1.30			5	82.26	63.28	6.33	5.952
					4	65.15	50.12	5.01	4.636
					3	48.44	37.26	3.73	3.350
		1.60			5	82.26	51.41	5.14	4.765
					4	65.15	40.72	4.07	3.696
					3	48.44	30.28	3.03	2.652
		1.90			5	82.26	43.29	4.33	3.953
					4	65.15	34.29	3.43	3.053
					3	48.44	25.49	2.55	2.173

Anexo 176Capacidad neta de la Calicata 10 en cimientos aislados

Calicata	Df (cm)	B (m)	S/C (kg/cm ²)	Peso Esp. (kg/cm ³)	N° Pisos	P (tn)	P/B (Tn/m)	P/B (kg/cm)	qn (kg/cm ²)
			(118/ 4111)	(118, 6111)	1 1505		(===,===)	(118, 0111)	(118/ 4111)
C-10	100	1.10	0.020	0.00264	5	82.26	74.78	7.48	7.234
					4	65.15	59.23	5.92	5.679
					3	48.44	44.04	4.40	4.160
		1.30			5	82.26	63.28	6.33	6.084
					4	65.15	50.12	5.01	4.768
					3	48.44	37.26	3.73	3.482
		1.60			5	82.26	51.41	5.14	4.897
					4	65.15	40.72	4.07	3.828
					3	48.44	30.28	3.03	2.784
		1.90			5	82.26	43.29	4.33	4.085
					4	65.15	34.29	3.43	3.185
					3	48.44	25.49	2.55	2.305
	120	1.10	0.020	0.00264	5	82.26	74.78	7.48	7.181
					4	65.15	59.23	5.92	5.626
					3	48.44	44.04	4.40	4.107
		1.30			5	82.26	63.28	6.33	6.031
					4	65.15	50.12	5.01	4.715
					3	48.44	37.26	3.73	3.429
		1.60			5	82.26	51.41	5.14	4.844
					4	65.15	40.72	4.07	3.775
					3	48.44	30.28	3.03	2.731
		1.90			5	82.26	43.29	4.33	4.033
					4	65.15	34.29	3.43	3.132
					3	48.44	25.49	2.55	2.253
	150	1.10	0.020	0.00264	5	82.26	74.78	7.48	7.102
					4	65.15	59.23	5.92	5.547
					3	48.44	44.04	4.40	4.028
		1.30			5	82.26	63.28	6.33	5.952
					4	65.15	50.12	5.01	4.636
		4			3	48.44	37.26	3.73	3.350
		1.60			5	82.26	51.41	5.14	4.765
					4	65.15	40.72	4.07	3.696
		1.00			3	48.44	30.28	3.03	2.652
		1.90			5	82.26	43.29	4.33	3.953
					4	65.15	34.29	3.43	3.053
					3	48.44	25.49	2.55	2.173

CARGA ADMISIBLE Y NETA DEL SUELO

Anexo 177

Comparativa enre la capacidad admisible y neta de la Calicata 1 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm2)		qadm (kg/d	em2)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-1	100	0.60	1	8.895	1.238	2.435	1.981	1.967	2.156
			2	17.790	2.720				
			3	26.685	4.203				
		0.80	1	8.895	0.867	2.604	2.114	2.095	2.347
			2	17.790	1.979				
			3	26.685	3.091				
		1.00	1	8.895	0.645	2.773	2.247	2.223	2.538
			2	17.790	1.534				
			3	26.685	2.424				
		1.20	1	8.895	0.496	2.942	2.380	2.351	2.729
			2	17.790	1.238				
_			3	26.685	1.979				
	120	0.60	1	8.895	1.185	2.821	2.298	2.283	2.472
			2	17.790	2.667				
			3	26.685	4.150				
		0.80	1	8.895	0.814	2.990	2.431	2.411	2.663
			2	17.790	1.926				
			3	26.685	3.038				
		1.00	1	8.895	0.592	3.159	2.564	2.540	2.854
			2	17.790	1.481				
			3	26.685	2.371				
		1.20	1	8.895	0.443	3.328	2.697	2.668	3.045
			2	17.790	1.185				
			3	26.685	1.926				
	150	0.60	1	8.895	1.105	3.400	2.772	2.758	2.947
			2	17.790	2.588				
			3	26.685	4.070				
		0.80	1	8.895	0.734	3.569	2.905	2.886	3.138
			2	17.790	1.846				
			3	26.685	2.958				
		1.00	1	8.895	0.512	3.737	3.038	3.014	3.329
			2	17.790	1.402				
			3	26.685	2.291				
		1.20	1	8.895	0.364	3.906	3.172	3.143	3.520
			2	17.790	1.105				
			3	26.685	1.846				

Anexo 178

Comparativa enre la capacidad admisible y neta de la Calicata 2 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm2)		qadm (kg/	(cm2)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-2	100	0.60	1	8.895	1.234	2.878	2.349	2.326	2.549
			2	17.790	2.716				
			3	26.685	4.199				
		0.80	1	8.895	0.863	3.082	2.516	2.485	2.782
			2	17.790	1.975				
			3	26.685	3.087				
		1.00	1	8.895	0.641	3.285	2.682	2.643	3.015
			2	17.790	1.530				
			3	26.685	2.420				
		1.20	1	8.895	0.492	3.489	2.849	2.802	3.248
			2	17.790	1.234				
			3	26.685	1.975				
	120	0.60	1	8.895	1.180	3.331	2.719	2.696	2.919
			2	17.790	2.662				
			3	26.685	4.145				
		0.80	1	8.895	0.809	3.535	2.886	2.854	3.152
			2	17.790	1.921				
			3	26.685	3.033				
		1.00	1	8.895	0.587	3.739	3.052	3.013	3.385
			2	17.790	1.476				
			3	26.685	2.366				
		1.20	1	8.895	0.438	3.942	3.219	3.172	3.618
			2	17.790	1.180				
			3	26.685	1.921				
	150	0.60	1	8.895	1.099	4.011	3.274	3.251	3.474
			2	17.790	2.582				
			3	26.685	4.064				
		0.80	1	8.895	0.728	4.215	3.441	3.409	3.707
			2	17.790	1.840				
			3	26.685	2.952				
		1.00	1	8.895	0.506	4.419	3.607	3.568	3.940
			2	17.790	1.396				
			3	26.685	2.285				
		1.20	1	8.895	0.358	4.622	3.774	3.727	4.173
			2	17.790	1.099				
			3	26.685	1.840				

Anexo 179

Comparativa enre la capacidad admisible y neta de la Calicata 3 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kg/d	em²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-3	100	0.60	1	8.895	1.236	2.385	1.939	1.926	2.110
			2	17.790	2.718				
			3	26.685	4.201				
		0.80	1	8.895	0.865	2.549	2.068	2.050	2.296
			2	17.790	1.977				
			3	26.685	3.089				
		1.00	1	8.895	0.643	2.714	2.197	2.174	2.482
			2	17.790	1.532				
			3	26.685	2.422				
		1.20	1	8.895	0.494	2.879	2.325	2.299	2.668
			2	17.790	1.236				
			3	26.685	1.977				
	120	0.60	1	8.895	1.182	2.763	2.249	2.236	2.421
			2	17.790	2.665				
			3	26.685	4.147				
		0.80	1	8.895	0.811	2.927	2.378	2.360	2.607
			2	17.790	1.923				
			3	26.685	3.035				
		1.00	1	8.895	0.589	3.092	2.507	2.485	2.793
			2	17.790	1.479				
			3	26.685	2.368				
		1.20	1	8.895	0.441	3.257	2.636	2.609	2.979
			2	17.790	1.182				
			3	26.685	1.923				
	150	0.60	1	8.895	1.102	3.330	2.715	2.702	2.887
			2	17.790	2.585				
			3	26.685	4.067				
		0.80	1	8.895	0.731	3.495	2.844	2.826	3.073
			2	17.790	1.843				
			3	26.685	2.955				
		1.00	1	8.895	0.509	3.659	2.973	2.951	3.259
			2	17.790	1.399				
			3	26.685	2.288				
		1.20	1	8.895	0.361	3.824	3.102	3.075	3.445
			2	17.790	1.102				
			3	26.685	1.843				

Anexo 180

Comparativa enre la capacidad admisible y neta de la Calicata 4 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kg/	/cm ²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-4	100	0.60	1	8.895	1.239	2.824	2.306	2.283	2.502
			2	17.790	2.721				
			3	26.685	4.204				
		0.80	1	8.895	0.868	3.024	2.469	2.438	2.731
			2	17.790	1.980				
			3	26.685	3.092				
		1.00	1	8.895	0.646	3.224	2.632	2.594	2.959
			2	17.790	1.535				
			3	26.685	2.425				
		1.20	1	8.895	0.497	3.424	2.796	2.750	3.188
			2	17.790	1.239				
			3	26.685	1.980				
	120	0.60	1	8.895	1.186	3.269	2.669	2.646	2.865
			2	17.790	2.668				
			3	26.685	4.151				
		0.80	1	8.895	0.815	3.469	2.832	2.801	3.094
			2	17.790	1.927				
			3	26.685	3.039				
		1.00	1	8.895	0.593	3.669	2.995	2.957	3.322
			2	17.790	1.482				
			3	26.685	2.372				
		1.20	1	8.895	0.444	3.869	3.159	3.113	3.551
			2	17.790	1.186				
			3	26.685	1.927				
	150	0.60	1	8.895	1.107	3.937	3.213	3.190	3.410
			2	17.790	2.589				
			3	26.685	4.072				
		0.80	1	8.895	0.736	4.137	3.377	3.346	3.638
			2	17.790	1.848				
			3	26.685	2.960				
		1.00	1	8.895	0.514	4.337	3.540	3.502	3.867
			2	17.790	1.403				
			3	26.685	2.293				
		1.20	1	8.895	0.365	4.537	3.703	3.657	4.096
			2	17.790	1.107				
			3	26.685	1.848				

Anexo 181

Comparativa enre la capacidad admisible y neta de la Calicata 5 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm2)		qadm (kg/	(cm2)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-5	100	0.60	1	8.895	1.235	2.598	2.116	2.099	2.300
			2	17.790	2.717				
			3	26.685	4.200				
		0.80	1	8.895	0.864	2.780	2.261	2.238	2.506
			2	17.790	1.976				
			3	26.685	3.088				
		1.00	1	8.895	0.642	2.961	2.41	2.377	2.713
			2	17.790	1.531				
			3	26.685	2.421				
		1.20	1	8.895	0.493	3.143	2.551	2.516	2.919
			2	17.790	1.235				
			3	26.685	1.976				
	120	0.60	1	8.895	1.181	3.009	2.453	2.435	2.637
			2	17.790	2.663				
			3	26.685	4.146				
		0.80	1	8.895	0.810	3.191	2.598	2.574	2.843
			2	17.790	1.922				
			3	26.685	3.034				
		1.00	1	8.895	0.588	3.372	2.742	2.713	3.049
			2	17.790	1.477				
			3	26.685	2.367				
		1.20	1	8.895	0.440	3.553	2.887	2.852	3.255
			2	17.790	1.181				
			3	26.685	1.922				
	150	0.60	1	8.895	1.101	3.625	2.957	2.940	3.141
			2	17.790	2.583				
			3	26.685	4.066				
		0.80	1	8.895	0.730	3.807	3.102	3.079	3.347
			2	17.790	1.842				
			3	26.685	2.954				
		1.00	1	8.895	0.508	3.988	3.247	3.218	3.554
			2	17.790	1.397				
			3	26.685	2.287				
		1.20	1	8.895	0.359	4.170	3.392	3.357	3.760
			2	17.790	1.101				
			3	26.685	1.842				

Anexo 182

Comparativa enre la capacidad admisible y neta de la Calicata 6 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)					
						Terzaghi	Meyerhof	Hansen	Vesic	
C-6	100	0.60	1	8.895	1.237	2.229	1.810	1.800	1.972	
			2	17.790	2.719					
			3	26.685	4.202					
		0.80	1	8.895	0.866	2.382	1.927	1.913	2.144	
			2	17.790	1.978					
			3	26.685	3.090					
		1.00	1	8.895	0.644	2.535	2.045	2.027	2.315	
			2	17.790	1.533					
			3	26.685	2.423					
		1.20	1	8.895	0.495	2.687	2.162	2.141	2.487	
			2	17.790	1.237					
			3	26.685	1.978					
	120	0.60	1	8.895	1.183	2.584	2.102	2.091	2.264	
			2	17.790	2.666					
			3	26.685	4.148					
		0.80	1	8.895	0.813	2.736	2.219	2.205	2.435	
			2	17.790	1.925					
			3	26.685	3.036					
		1.00	1	8.895	0.590	2.889	2.336	2.319	2.607	
			2	17.790	1.480					
			3	26.685	2.369					
		1.20	1	8.895	0.442	3.041	2.454	2.433	2.778	
			2	17.790	1.183					
			3	26.685	1.925					
	150	0.60	1	8.895	1.104	3.115	2.539	2.528	2.701	
			2	17.790	2.586					
			3	26.685	4.069					
		0.80	1	8.895	0.733	3.268	2.656	2.642	2.873	
			2	17.790	1.845					
			3	26.685	2.957					
		1.00	1	8.895	0.511	3.420	2.774	2.756	3.044	
			2	17.790	1.400					
			3	26.685	2.290					
		1.20	1	8.895	0.362	3.573	2.891	2.870	3.216	
			2	17.790	1.104					
			3	26.685	1.845					

Anexo 183

Comparativa enre la capacidad admisible y neta de la Calicata 7 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm2)					
					-	Terzaghi	Meyerhof	Hansen	Vesic	
C-7	100	0.60	1	8.895	1.246	2.038	1.653	1.644	1.802	
			2	17.790	2.728					
			3	26.685	4.211					
		0.80	1	8.895	0.875	2.176	1.758	1.747	1.957	
			2	17.790	1.987					
			3	26.685	3.099					
		1.00	1	8.895	0.653	2.315	1.863	1.849	2.112	
			2	17.790	1.542					
			3	26.685	2.432					
		1.20	1	8.895	0.504	2.453	1.968	1.951	2.267	
			2	17.790	1.246					
			3	26.685	1.987					
·	120	0.60	1	8.895	1.194	2.362	1.920	1.912	2.070	
			2	17.790	2.677					
			3	26.685	4.159					
		0.80	1	8.895	0.823	2.501	2.025	2.014	2.225	
			2	17.790	1.935					
			3	26.685	3.047					
		1.00	1	8.895	0.601	2.639	2.130	2.116	2.380	
			2	17.790	1.491					
			3	26.685	2.380					
		1.20	1	8.895	0.453	2.778	2.235	2.218	2.535	
			2	17.790	1.194					
			3	26.685	1.935					
·	150	0.60	1	8.895	1.117	2.849	2.322	2.313	2.471	
			2	17.790	2.600					
			3	26.685	4.082					
		0.80	1	8.895	0.746	2.987	2.427	2.415	2.626	
			2	17.790	1.858					
			3	26.685	2.970					
		1.00	1	8.895	0.524	3.126	2.532	2.518	2.781	
			2	17.790	1.414					
			3	26.685	2.303					
		1.20	1	8.895	0.376	3.264	2.637	2.620	2.936	
			2	17.790	1.117					
			3	26.685	1.858					

Anexo 184

Comparativa enre la capacidad admisible y neta de la Calicata 8 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm2)		qadm (kg/	(cm2)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-8	100	0.60	1	8.895	1.236	2.107	1.709	1.700	1.864
			2	17.790	2.718				
			3	26.685	4.201				
		0.80	1	8.895	0.865	2.250	1.817	1.806	2.024
			2	17.790	1.977				
			3	26.685	3.089				
		1.00	1	8.895	0.643	2.393	1.925	1.911	2.184
			2	17.790	1.532				
			3	26.685	2.422				
		1.20	1	8.895	0.494	2.536	2.034	2.017	2.344
			2	17.790	1.236				
			3	26.685	1.977				
	120	0.60	1	8.895	1.182	2.442	1.985	1.977	2.140
			2	17.790	2.665				
			3	26.685	4.147				
		0.80	1	8.895	0.811	2.586	2.094	2.082	2.300
			2	17.790	1.923				
			3	26.685	3.035				
		1.00	1	8.895	0.589	2.729	2.202	2.188	2.460
			2	17.790	1.479				
			3	26.685	2.368				
		1.20	1	8.895	0.441	2.872	2.310	2.293	2.620
			2	17.790	1.182				
			3	26.685	1.923				
	150	0.60	1	8.895	1.102	2.946	2.401	2.392	2.555
			2	17.790	2.585				
			3	26.685	4.067				
		0.80	1	8.895	0.731	3.089	2.509	2.498	2.715
			2	17.790	1.843				
			3	26.685	2.955				
		1.00	1	8.895	0.509	3.232	2.617	2.603	2.875
			2	17.790	1.399				
			3	26.685	2.288				
		1.20	1	8.895	0.361	3.375	2.726	2.709	3.035
			2	17.790	1.102				
			3	26.685	1.843				

Anexo 185

Comparativa enre la capacidad admisible y neta de la Calicata 9 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kg/	cm ²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-9	100	0.60	1	8.895	1.238	2.899	2.368	2.343	2.568
			2	17.790	2.720				
			3	26.685	4.203				
		0.80	1	8.895	0.867	3.105	2.537	2.504	2.804
			2	17.790	1.979				
			3	26.685	3.091				
		1.00	1	8.895	0.645	3.311	2.707	2.665	3.040
			2	17.790	1.534				
			3	26.685	2.424				
		1.20	1	8.895	0.496	3.517	2.876	2.826	3.276
			2	17.790	1.238				
			3	26.685	1.979				
	120	0.60	1	8.895	1.185	3.356	2.740	2.716	2.941
			2	17.790	2.667				
			3	26.685	4.150				
		0.80	1	8.895	0.814	3.562	2.909	2.877	3.177
			2	17.790	1.926				
			3	26.685	3.038				
		1.00	1	8.895	0.592	3.768	3.079	3.038	3.412
			2	17.790	1.481				
			3	26.685	2.371				
		1.20	1	8.895	0.443	3.974	3.248	3.198	3.648
			2	17.790	1.185				
			3	26.685	1.926				
	150	0.60	1	8.895	1.105	4.040	3.299	3.274	3.499
			2	17.790	2.588				
			3	26.685	4.070				
		0.80	1	8.895	0.734	4.246	3.468	3.435	3.735
			2	17.790	1.846				
			3	26.685	2.958				
		1.00	1	8.895	0.512	4.452	3.637	3.596	3.971
			2	17.790	1.402				
			3	26.685	2.291				
		1.20	1	8.895	0.364	4.658	3.806	3.757	4.207
			2	17.790	1.105				
			3	26.685	1.846				

Anexo 186

Comparativa enre la capacidad admisible y neta de la Calicata 10 en cimientos corridos

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kg/	/cm²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-10	100	0.60	1	8.895	1.239	2.213	1.796	1.786	1.958
			2	17.790	2.721				
			3	26.685	4.204				
		0.80	1	8.895	0.868	2.364	1.913	1.899	2.128
			2	17.790	1.980				
			3	26.685	3.092				
		1.00	1	8.895	0.646	2.515	2.029	2.012	2.298
			2	17.790	1.535				
			3	26.685	2.425				
		1.20	1	8.895	0.497	2.667	2.146	2.125	2.468
			2	17.790	1.239				
			3	26.685	1.980				
	120	0.60	1	8.895	1.186	2.564	2.086	2.075	2.247
			2	17.790	2.668				
			3	26.685	4.151				
		0.80	1	8.895	0.815	2.716	2.202	2.188	2.417
			2	17.790	1.927				
			3	26.685	3.039				
		1.00	1	8.895	0.593	2.867	2.319	2.301	2.587
			2	17.790	1.482				
			3	26.685	2.372				
		1.20	1	8.895	0.444	3.019	2.435	2.414	2.757
			2	17.790	1.186				
			3	26.685	1.927				
	150	0.60	1	8.895	1.107	3.092	2.520	2.509	2.681
			2	17.790	2.589				
			3	26.685	4.072				
		0.80	1	8.895	0.736	3.243	2.636	2.622	2.851
			2	17.790	1.848				
			3	26.685	2.960				
		1.00	1	8.895	0.514	3.395	2.753	2.735	3.021
			2	17.790	1.403				
			3	26.685	2.293				
		1.20	1	8.895	0.365	3.546	2.869	2.848	3.192
			2	17.790	1.107				
			3	26.685	1.848				

Anexo 187

Comparativa enre la capacidad admisible y neta de la Calicata 1 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kg	g/cm²)	
					_	Terzaghi	Meyerhof	Hansen	Vesic
C-1	100	1.10	5	82.26	7.233	2.672	3.581	3.415	3.773
			4	65.15	5.678				
			3	48.44	4.159				
		1.30	5	82.26	6.083	2.807	3.560	3.396	3.787
			4	65.15	4.767				
			3	48.44	3.481				
		1.60	5	82.26	4.896	3.009	3.576	3.412	3.855
			4	65.15	3.827				
			3	48.44	2.783				
		1.90	5	82.26	4.084	3.212	3.625	3.460	3.956
			4	65.15	3.184				
			3	48.44	2.304				
	120	1.10	5	82.26	7.180	3.058	4.140	3.947	4.332
			4	65.15	5.625				
			3	48.44	4.106				
		1.30	5	82.26	6.030	3.193	4.302	4.102	4.528
			4	65.15	4.714				
			3	48.44	3.428				
		1.60	5	82.26	4.843	3.395	4.272	4.074	4.551
			4	65.15	3.774				
			3	48.44	2.730				
		1.90	5	82.26	4.031	3.598	4.289	4.092	4.620
			4	65.15	3.131				
			3	48.44	2.251				
	150	1.10	5	82.26	7.101	3.636	5.184	4.940	5.376
			4	65.15	5.545				
			3	48.44	4.026				
		1.30	5	82.26	5.950	3.771	5.176	4.934	5.402
			4	65.15	4.634				
			3	48.44	3.349				
		1.60	5	82.26	4.764	3.974	5.383	5.132	5.662
			4	65.15	3.694				
			3	48.44	2.650				
		1.90	5	82.26	3.952	4.176	5.342	5.095	5.674
			4	65.15	3.051				
			3	48.44	2.172				

Anexo 188

Comparativa enre la capacidad admisible y neta de la Calicata 2 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kg	g/cm²)	
					<u> </u>	Terzaghi	Meyerhof	Hansen	Vesic
C-2	100	1.10	5	82.26	7.229	3.163	4.272	4.046	4.492
			4	65.15	5.674				
			3	48.44	4.155				
		1.30	5	82.26	6.079	3.326	4.254	4.031	4.514
			4	65.15	4.763				
			3	48.44	3.477				
		1.60	5	82.26	4.892	3.570	4.284	4.059	4.603
			4	65.15	3.823				
			3	48.44	2.779				
		1.90	5	82.26	4.080	3.815	4.351	4.124	4.731
			4	65.15	3.180				
			3	48.44	2.300				
	120	1.10	5	82.26	7.175	3.616	4.936	4.675	5.155
			4	65.15	5.620				
			3	48.44	4.101				
		1.30	5	82.26	6.025	3.779	5.130	4.859	5.390
			4	65.15	4.709				
			3	48.44	3.423				
		1.60	5	82.26	4.838	4.024	5.106	4.838	5.426
			4	65.15	3.769				
			3	48.44	2.725				
		1.90	5	82.26	4.027	4.268	5.137	4.868	5.517
			4	65.15	3.126				
			3	48.44	2.247				
	150	1.10	5	82.26	7.095	4.297	6.169	5.842	6.389
			4	65.15	5.539				
			3	48.44	4.020				
		1.30	5	82.26	5.944	4.460	6.167	5.841	6.427
			4	65.15	4.628				
			3	48.44	3.343				
		1.60	5	82.26	4.758	4.704	6.418	6.079	6.738
			4	65.15	3.688				
			3	48.44	2.644				
		1.90	5	82.26	3.946	4.948	6.382	6.046	6.762
			4	65.15	3.045				
			3	48.44	2.166				

Anexo 189

Comparativa enre la capacidad admisible y neta de la Calicata 3 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm ²)		qadm (kg	g/cm²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-3	100	1.10	5	82.26	7.231	2.615	3.500	3.341	3.689
			4	65.15	5.676				
			3	48.44	4.157				
		1.30	5	82.26	6.081	2.747	3.479	3.322	3.702
			4	65.15	4.765				
			3	48.44	3.479				
		1.60	5	82.26	4.894	2.945	3.492	3.336	3.767
			4	65.15	3.825				
			3	48.44	2.781				
		1.90	5	82.26	4.082	3.142	3.538	3.382	3.864
			4	65.15	3.182				
			3	48.44	2.302				
	120	1.10	5	82.26	7.178	2.993	4.047	3.863	4.236
			4	65.15	5.622				
			3	48.44	4.103				
		1.30	5	82.26	6.027	3.125	4.205	4.014	4.428
			4	65.15	4.711				
			3	48.44	3.426				
		1.60	5	82.26	4.841	3.323	4.173	3.985	4.448
			4	65.15	3.771				
			3	48.44	2.727				
		1.90	5	82.26	4.029	3.520	4.189	4.001	4.515
			4	65.15	3.129				
			3	48.44	2.249				
	150	1.10	5	82.26	7.098	3.560	5.069	4.836	5.257
			4	65.15	5.542				
			3	48.44	4.023				
		1.30	5	82.26	5.947	3.692	5.060	4.829	5.283
			4	65.15	4.631				
			3	48.44	3.346				
		1.60	5	82.26	4.761	3.890	5.261	5.022	5.536
			4	65.15	3.691				
			3	48.44	2.647				
		1.90	5	82.26	3.949	4.087	5.220	4.984	5.546
			4	65.15	3.048				
			3	48.44	2.169				

Anexo 190

Comparativa enre la capacidad admisible y neta de la Calicata 4 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm ²)		qadm (kg	g/cm²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-4	100	1.10	5	82.26	7.234	3.104	4.192	3.971	4.408
			4	65.15	5.679				
			3	48.44	4.160				
		1.30	5	82.26	6.084	3.264	4.175	3.956	4.430
			4	65.15	4.768				
			3	48.44	3.482				
		1.60	5	82.26	4.897	3.504	4.204	3.984	4.518
			4	65.15	3.828				
			3	48.44	2.784				
		1.90	5	82.26	4.085	3.744	4.270	4.047	4.643
			4	65.15	3.185				
			3	48.44	2.305				
	120	1.10	5	82.26	7.181	3.549	4.844	4.588	5.060
			4	65.15	5.626				
			3	48.44	4.107				
		1.30	5	82.26	6.031	3.709	5.035	4.769	5.290
			4	65.15	4.715				
			3	48.44	3.429				
		1.60	5	82.26	4.844	3.949	5.011	4.748	5.325
			4	65.15	3.775				
			3	48.44	2.731				
		1.90	5	82.26	4.033	4.189	5.041	4.777	5.414
			4	65.15	3.132				
			3	48.44	2.253				
	150	1.10	5	82.26	7.102	4.217	6.055	5.734	6.270
			4	65.15	5.547				
			3	48.44	4.028				
		1.30	5	82.26	5.952	4.377	6.052	5.732	6.307
			4	65.15	4.636				
			3	48.44	3.350				
		1.60	5	82.26	4.765	4.616	6.299	5.966	6.613
			4	65.15	3.696				
			3	48.44	2.652				
		1.90	5	82.26	3.953	4.856	6.264	5.934	6.636
			4	65.15	3.053				
			3	48.18	2.173				

Anexo 191

Comparativa enre la capacidad admisible y neta de la Calicata 5 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm ²)		qadm (kg	g/cm²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-5	100	1.10	5	82.26	7.230	2.852	3.834	3.647	4.036
			4	65.15	5.675				
			3	48.44	4.156				
		1.30	5	82.26	6.080	2.997	3.814	3.629	4.053
			4	65.15	4.764				
			3	48.44	3.478				
		1.60	5	82.26	4.893	3.215	3.834	3.649	4.128
			4	65.15	3.824				
			3	48.44	2.780				
		1.90	5	82.26	4.081	3.433	3.889	3.703	4.238
			4	65.15	3.181				
			3	48.44	2.301				
	120	1.10	5	82.26	7.177	3.263	4.431	4.215	4.633
			4	65.15	5.621				
			3	48.44	4.102				
		1.30	5	82.26	6.026	3.408	4.605	4.380	4.844
			4	65.15	4.710				
			3	48.44	3.425				
		1.60	5	82.26	4.840	3.626	4.576	4.355	4.870
			4	65.15	3.770				
			3	48.44	2.726				
		1.90	5	82.26	4.028	3.844	4.598	4.376	4.947
			4	65.15	3.127				
			3	48.44	2.248				
	150	1.10	5	82.26	7.096	3.879	5.545	5.273	5.747
			4	65.15	5.541				
			3	48.44	4.022				
		1.30	5	82.26	5.946	4.024	5.538	5.267	5.777
			4	65.15	4.630				
			3	48.44	3.344				
		1.60	5	82.26	4.759	4.242	5.761	5.481	6.056
			4	65.15	3.690				
			3	48.44	2.646				
		1.90	5	82.26	3.947	4.460	5.722	5.444	6.071
			4	65.15	3.047				
			3	48.44	2.167				

Anexo 192

Comparativa enre la capacidad admisible y neta de la Calicata 6 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kg	g/cm ²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-6	100	1.10	5	82.26	7.232	2.443	3.260	3.120	3.438
			4	65.15	5.677				
			3	48.44	4.158				
		1.30	5	82.26	6.082	2.565	3.237	3.099	3.448
			4	65.15	4.766				
			3	48.44	3.480				
		1.60	5	82.26	4.895	2.748	3.246	3.110	3.506
			4	65.15	3.826				
			3	48.44	2.782				
		1.90	5	82.26	4.083	2.931	3.286	3.149	3.595
			4	65.15	3.183				
			3	48.44	2.303				
	120	1.10	5	82.26	7.179	2.797	3.770	2.974	3.949
			4	65.15	5.624				
			3	48.44	4.104				
		1.30	5	82.26	6.028	2.919	3.916	3.042	4.127
			4	65.15	4.712				
			3	48.44	3.427				
		1.60	5	82.26	4.842	3.102	3.883	3.144	4.143
			4	65.15	3.773				
			3	48.44	2.728				
		1.90	5	82.26	4.030	3.286	3.894	3.247	4.202
			4	65.15	3.130				
			3	48.44	2.250				
	150	1.10	5	82.26	7.099	3.329	4.725	4.519	4.904
			4	65.15	5.544				
			3	48.44	4.025				
		1.30	5	82.26	5.949	3.451	4.714	4.510	4.925
			4	65.15	4.633				
			3	48.44	3.347				
		1.60	5	82.26	4.762	3.634	4.900	4.690	5.160
			4	65.15	3.693				
			3	48.44	2.649				
		1.90	5	82.26	3.950	3.817	4.858	4.651	5.166
			4	65.15	3.050				
			3	48.44	2.170				

Anexo 193

Comparativa enre la capacidad admisible y neta de la Calicata 7 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kg	g/cm²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-7	100	1.10	5	82.26	7.241	2.232	2.968	2.847	3.255
			4	65.15	5.686				
			3	48.44	4.167				
		1.30	5	82.26	6.091	2.342	2.945	2.826	3.262
			4	65.15	4.775				
			3	48.44	3.489				
		1.60	5	82.26	4.904	2.508	2.952	2.834	3.315
			4	65.15	3.835				
			3	48.44	2.791				
		1.90	5	82.26	4.092	2.675	2.986	2.868	3.397
			4	65.15	3.192				
			3	48.44	2.312				
	120	1.10	5	82.26	7.190	2.556	3.433	3.292	3.738
			4	65.15	5.634				
			3	48.44	4.115				
		1.30	5	82.26	6.039	2.667	3.566	3.420	3.907
			4	65.15	4.723				
			3	48.44	3.438				
		1.60	5	82.26	4.853	2.833	3.533	3.390	3.919
			4	65.15	3.783				
			3	48.44	2.739				
		1.90	5	82.26	4.041	2.999	3.540	3.399	3.974
			4	65.15	3.141				
			3	48.44	2.261				
	150	1.10	5	82.26	7.113	3.043	4.306	4.127	4.644
			4	65.15	5.557				
			3	48.44	4.038				
		1.30	5	82.26	5.962	3.154	4.294	4.117	4.663
			4	65.15	4.646				
			3	48.44	3.361				
		1.60	5	82.26	4.776	3.320	4.463	4.280	4.885
			4	65.15	3.706				
			3	48.44	2.662				
		1.90	5	82.26	3.964	3.486	4.421	4.242	4.889
			4	65.15	3.063				
			3	48.44	2.184				

Anexo 194

Comparativa enre la capacidad admisible y neta de la Calicata 8 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kg	g/cm ²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-8	100	1.10	5	82.26	7.231	2.307	3.068	2.943	3.238
			4	65.15	5.676				
			3	48.44	4.157				
		1.30	5	82.26	6.081	2.422	3.044	2.922	3.246
			4	65.15	4.765				
			3	48.44	3.479				
		1.60	5	82.26	4.894	2.593	3.050	2.929	3.298
			4	65.15	3.825				
			3	48.44	2.781				
		1.90	5	82.26	4.082	2.765	3.085	2.964	3.380
			4	65.15	3.182				
			3	48.44	2.302				
	120	1.10	5	82.26	7.178	2.643	3.549	3.404	3.720
			4	65.15	5.622				
			3	48.44	4.103				
		1.30	5	82.26	6.027	2.757	3.686	3.536	3.887
			4	65.15	4.711				
			3	48.44	3.426				
		1.60	5	82.26	4.841	2.929	3.652	3.505	3.900
			4	65.15	3.771				
			3	48.44	2.727				
		1.90	5	82.26	4.029	3.101	3.659	3.513	3.953
			4	65.15	3.129				
			3	48.44	2.249				
	150	1.10	5	82.26	7.098	3.146	4.451	4.267	4.621
			4	65.15	5.542				
			3	48.44	4.023				
		1.30	5	82.26	5.947	3.261	4.438	4.257	4.640
			4	65.15	4.631				
			3	48.44	3.346				
		1.60	5	82.26	4.761	3.432	4.613	4.425	4.861
			4	65.15	3.691				
			3	48.44	2.647				
		1.90	5	82.26	3.949	3.604	4.570	4.385	4.864
			4	65.15	3.048				
			3	48.44	2.169				

Anexo 195

Comparativa enre la capacidad admisible y neta de la Calicata 9 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (k	g/cm ²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-9	100	1.10	5	82.26	7.233	3.188	4.309	4.078	4.529
			4	65.15	5.678				
			3	48.44	4.159				
		1.30	5	82.26	6.083	3.352	4.293	4.063	4.553
			4	65.15	4.767				
			3	48.44	3.481				
		1.60	5	82.26	4.896	3.600	4.324	4.093	4.644
			4	65.15	3.827				
			3	48.44	2.783				
		1.90	5	82.26	4.084	3.847	4.393	4.159	4.774
			4	65.15	3.184				
			3	48.44	2.304				
	120	1.10	5	82.26	7.180	3.644	4.978	4.710	5.198
			4	65.15	5.625				
			3	48.44	4.106				
		1.30	5	82.26	6.030	3.809	5.175	4.897	5.435
			4	65.15	4.714				
			3	48.44	3.428				
		1.60	5	82.26	4.843	4.056	5.152	4.876	5.473
			4	65.15	3.774				
			3	48.44	2.730				
		1.90	5	82.26	4.031	4.303	5.185	4.908	5.566
			4	65.15	3.131				
			3	48.44	2.251				
	150	1.10	5	82.26	7.101	4.329	6.221	5.885	6.441
			4	65.15	5.545				
			3	48.44	4.026				
		1.30	5	82.26	5.950	4.493	6.220	5.885	6.480
			4	65.15	4.634				
			3	48.44	3.349				
		1.60	5	82.26	4.764	4.740	6.474	6.126	6.794
			4	65.15	3.694				
			3	48.44	2.650				
		1.90	5	82.26	3.952	4.987	6.439	6.094	6.820
			4	65.15	3.051				
			3	48.44	2.172				

Anexo 196

Comparativa enre la capacidad admisible y neta de la Calicata 10 en cimientos aisladas

Calicata	Df (cm)	B (m)	N° Pisos	P (tn)	qn (kg/cm²)		qadm (kạ	g/cm²)	
						Terzaghi	Meyerhof	Hansen	Vesic
C-10	100	1.10	5	82.26	7.234	2.425	3.235	3.096	3.412
			4	65.15	5.679				
			3	48.44	4.160				
		1.30	5	82.26	6.084	2.546	3.212	3.076	3.422
			4	65.15	4.768				
			3	48.44	3.482				
		1.60	5	82.26	4.897	2.727	3.222	3.086	3.480
			4	65.15	3.828				
			3	48.44	2.784				
		1.90	5	82.26	4.085	2.909	3.261	3.125	3.567
			4	65.15	3.185				
			3	48.44	2.305				
	120	1.10	5	82.26	7.181	2.776	3.741	3.580	3.919
			4	65.15	5.626				
			3	48.44	4.107				
		1.30	5	82.26	6.031	2.897	3.886	3.719	4.096
			4	65.15	4.715				
			3	48.44	3.429				
		1.60	5	82.26	4.844	3.079	3.854	3.690	4.111
			4	65.15	3.775				
			3	48.44	2.731				
		1.90	5	82.26	4.033	3.261	3.864	3.701	4.170
			4	65.15	3.132				
			3	48.44	2.253				
	150	1.10	5	82.26	7.102	3.304	4.689	4.485	4.866
			4	65.15	5.547				
			3	48.44	4.028				
		1.30	5	82.26	5.952	3.425	4.678	4.476	4.888
			4	65.15	4.636				
			3	48.44	3.350				
		1.60	5	82.26	4.765	3.607	4.863	4.654	5.121
			4	65.15	3.696				
			3	48.44	2.652				
		1.90	5	82.26	3.953	3.788	4.821	4.616	5.127
			4	65.15	3.053				
			3	48.44	2.173				

PANEL FOTOGRÁFICO

Anexo 197

Primera inspección ocular en el área de estudio

Primera inspección ocular en el área de estudio

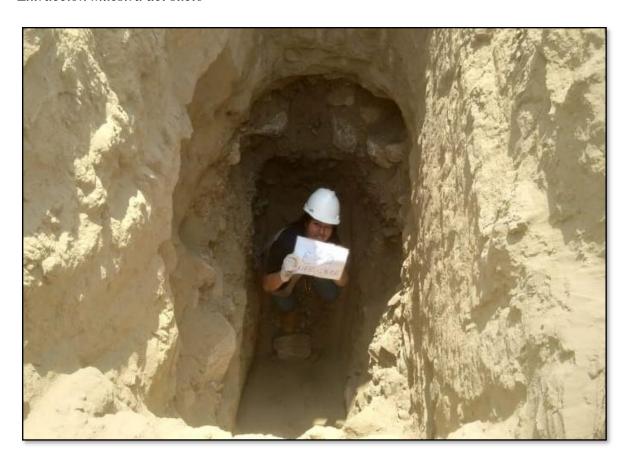
Identificación de calicata

Identificación de calicata para extracción de muestra

Extracción de muestra de suelo

Extracción muestra del suelo

Extracción muestra del suelo



Anexo 204 Extracción muestra del suelo

Extracción muestra del suelo

Muestras en laboratorio almacenadas para el ensayo de contenido de humedad

Muestra húmeda

Secado en horno a temperatura de $110^{\circ}C$ +- $5^{\circ}C$

Ensayo de Gravedad Específica

Ensayo de Gravedad Específica

Cuarteo de muestra para ensayo de Granulometría

Muestra obtenida por cuarteo

Lavado de material para eliminación de finos a través del tamiz $N^{\circ}200$

Colocación de juego de mallas en el vibrador mecánico

Clasificación de suelos- Gravas

Clasificación de suelos- Arenas

Equipamiento para realizar Limites de Atterberg

Cerrado de surco a 7 golpes

La muestra de suelo indica que no presenta consistencia

La muestra de suelo no se puede moldear por lo tanto no presenta consistencia plástica

Llenado de molde metálico estándar

Proctor estándar con muestra de suelo

Enrasado de material excedente

Densidad Seca Suelta para cálculo de densidad mínima

Ensayo de Densidad Saturada Compacta para cálculo de densidad máxima

Densidad Saturada Compacta

Densidad Natural In Situ

Densidad Natural In Situ

Entrevistando a pobladores de la zona

Entrevistando a pobladores de la zona

