

FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA CIVIL

"COMPORTAMIENTO DEL ASERRÍN SOBRE LA RESISTENCIA A LA COMPRESIÓN, ABSORCIÓN, DENSIDAD Y ASENTAMIENTO DEL CONCRETO PARA BLOQUES EN LA CONSTRUCCIÓN"

Tesis para optar el título profesional de:

Ingeniera Civil

Autora:

Bach. Cynthia Nicole Sánchez García

Asesor:

Ing. Iván Eugenio Vásquez Alfaro

Trujillo – Perú 2017

ÍNDICE DE CONTENIDOS

APRO	BACIÓN D	E LA TESIS	ii iii
AGRA	DECIMIEN		iv
ÍNDIC	E DE CON	TENIDOS	٧
ÍNDIC	E DE TABL	AS	vii
ÍNDIC	E DE FIGU	RAS	ix
ÍNDIC	E DE ECUA	ACIONES	X
RESUMEN			хi
ABSTRACT			хii
CAPÍT	ULO 1.	INTRODUCCIÓN	13
1.1.	Realidad	problemática	13
1.2.	Formulad	sión del problema	16
1.3.	Justificad	ión	16
1.4.	Limitacio	nes	17
1.5.	epras		18
	1.5.1.	Objetivo general	18
	1.5.2.	Objetivos específicos	18
CAPÍT	ULO 2.	MARCO TEÓRICO	19
2.1.	Antecede	entes	19
2.2.	Bases te	óricas	21
	2.2.1.	El Concreto	21
	2.2.2.	Aserrín	27
	2.2.3.	Propiedades del concreto	29
	2.2.4.	Prefabricados de concreto	30
2.3.	Definició	n de términos básicos	34
2.4.	Total .		35
CAPÍT	ULO 3.	METODOLOGÍA	36
3.1.	Operacio	nalización de variables	36
	3.1.1.	Variable independiente	36
	3.1.2.	Variables dependientes	36
3.2.	Diseño d	e investigación	37
3.3.	Unidad d	e estudio	37
3.4.	Princip		37
3.5.	Batta		37
	3.5.1.	Determinación de la muestra	37
	3.5.2.	Diseño de contrastación	38
3.6.	Técnicas	, instrumentos y procedimientos de recolección de datos	39

	3.6.1.	Procedimiento experimental	39
	3.6.2.	Obtención de la materia prima	40
	3.6.3.	Tratamiento del aserrín entre las mallas N° 8 y N° 16	40
	3.6.4.	Caracterización de la materia prima	40
	3.6.5.	Elaboración del diseño de mezcla patrón	46
	3.6.6.	Porcentajes de sustitución de arena por aserrín	50
	3.6.7.	Elaboración de los diseños de mezcla a partir de aserrín como agregado fino	50
	3.6.8.	Mezcla, conformación, codificación y curado	52
	3.6.9.	Ensayos en estado fresco y endurecido	53
3.7.	Métodos,	instrumentos y procedimientos de análisis de datos	56
CAPÍTU	JLO 4.	RESULTADOS	57
4.1.	Caracteriz	zación de la materia prima	57
	4.1.1.	Contenido de humedad	57
	4.1.2.	Peso específico y absorción	57
	4.1.3.	Peso unitario	58
	4.1.4.	Granulometría	58
	4.1.5.	Resumen de la caracterización de la materia prima	60
4.2.	Diseños d	le mezcla y dosificaciones por volumen	61
4.3.	Ensayos e	en estado fresco y endurecido	62
	4.3.1.	Asentamiento	62
	4.3.2.	Resistencia a la compresión	64
	4.3.3.	Absorción y densidad	66
	4.3.4.	Resumen del concreto en estado fresco y endurecido	67
CAPÍTU	JLO 5.	DISCUSIÓN	68
5.1.	Caracteriz	zación de los agregados	68
5.2.	Diseño de	mezcla patrón	72
5.3.	Diseño de	mezcla con variación de la arena por aserrín	75
5.4.	Propiedad	des en estado fresco	76
5.5.	Propiedad	des en estado endurecido	78
5.6.	Ventajas o	de utilizar bloques de concreto como unidades de albañilería	82
5.7.		ción económica en un m ² de muro a base de bloques de concreto con aserrín y ladrillos d	
5.8.	Comparad	ción económica de un bloque de concreto con aserrín y un bloque de concreto comercial	83
5.9.		ción de cargas aplicadas por bloques de concreto con aserrín y ladrillos de arcilla cocida e	
CONC		muro	
		NICO.	
		NES	
ANEXO	າວ		91

ÍNDICE DE TABLAS

Tabla n.° 1: Porcentajes típicos de los óxidos componentes del clínker	22
Tabla n.° 2: Requisitos granulométricos del agregado fino	25
Tabla n.° 3: Requisitos granulométricos del agregado grueso	26
Tabla n.° 4: Límites permisibles para el agua de mezcla y curado	27
Tabla n.° 5: Medidas principales normales de los bloques de concreto	33
Tabla n.º 6: Espesores mínimos de las paredes frontales y de los tabiques de los bloques	33
Tabla n.° 7: Operacionalización de la variable independiente	36
Tabla n.º 8: Operacionalización de las variables dependientes	36
Tabla n.° 9: Matriz de diseño	38
Tabla n.º 10: Composición aproximada del aserrín utilizado	40
Tabla n.º 11: Clasificación de los agregados, según su contenido de humedad	41
Tabla n.º 12: Clasificación de los agregados, según su peso específico	43
Tabla n.º 13: Clasificación de los agregados, según su peso unitario	44
Tabla n.º 14: Clasificación del agregado fino, según su módulo de finura	45
Tabla n.º 15: Resistencia requerida para definir la desviación estándar	46
Tabla n.º 16: Relación agua/cemento sobre la resistencia promedio	46
Tabla n.° 17: Cantidades de agua de mezcla en el concreto (l/m ³)	47
Tabla n.º 18: Volumen del agregado grueso compactado en seco por metro cúbico de concreto	48
Tabla n.º 19: Datos del diseño de mezcla con porcentaje de aserrín	51
Tabla n.º 20: Clasificación del concreto para bloques, según su asentamiento	53
Tabla n.º 21: Clasificación del concreto para bloques, según su resistencia a la compresión	54
Tabla n.° 22: Clasificación del concreto para bloques, según su absorcion	55
Tabla n.º 23: Clasificación del concreto para bloques, según su densidad	55
Tabla n.° 24: Contenido de humedad promedio, de la arena y el confitillo	57
Tabla n.º 25: Peso específico y absorción promedio, de la arena y el confitillo	57
Tabla n.º 26: Peso unitario suelto y compactado promedio, de la arena, confitillo y aserrín	58
Tabla n.° 27: Granulometría promedio de la arena	58
Tabla n.° 28: Granulometría promedio del confitillo	59
Tabla n.° 29: Ficha técnica de la arena, confitillo y el aserrín	60
Tabla n.º 30: Diseños de mezcla con porcentajes de sustitución de arena por aserrín	61
Tabla n.º 31: Dosificaciones para los diferentes diseños de mezcla con aserrín	61
Tabla n.º 32: Asentamiento frente a los distintos porcentajes de sustitución de arena por aserrín	62
Tabla n.º 33: Desviación, coeficiente y rango aceptable para el asentamiento	63
Tabla n.º 34: Resistencia a la compresión en sustitución de arena por aserrín	64
Tabla n.º 35: Desviación, coeficiente y rango aceptable para la compresión	65
Tabla n.º 36: Absorción y densidad con porcentajes de sustitución de arena por aserrín	66
Tabla n.° 37: Desviación estándar y coeficiente de variación para la absorción	67

Tabla n.° 38: Desviación estándar y coeficiente de variación para la densidad67
Tabla n.° 39: Control de calidad del concreto
Tabla n.° 40: Dosificaciones del concreto con porcentajes de aserrín por m³
Tabla n.° 42: Clasificación de la compresión, según la NTP 399.600, NTP 399.602 y NTE E.07079
Tabla n.° 43: Clasificación de la densidad, según la NTP 399.600 y NTP 399.60281
Tabla n.° 44: Costo aproximado del m ² de muro a base de bloques de concreto (30% y 40% de aserrín) y ladrillos de arcilla, inc. I.G.V
Tabla n.º 45: Costo aproximado del bloque de concreto con 0%, 30%, 40% y comercial, inc. I.G.V83
Tabla n.º 46: Cargas aplicadas por bloques de concreto con aserrín y ladrillos de arcilla por m² de muro83 Tabla n.º 47: Volumen de compra mensual de la Maderera S.A.C., según especie forestal
Tabla n.° 49: Resultados de contenido de humedad de la arena y el confitillo
Tabla n.° 50: Resultados del peso específico y absorción de la arena
Tabla n.° 51: Resultados del peso específico y absorción del confitillo 105
Tabla n.° 52: Resultados del volumen del molde para peso unitario
Tabla n.º 53: Resultados del peso unitario suelto y compactado de la arena, confitillo y aserrín106
Tabla n.° 54: Resultados de la granulometría de la arena, muestra n.° 1107
Tabla n.° 55: Resultados de la granulometría de la arena, muestra n.° 2107
Tabla n.° 56: Resultados de la granulometría de la arena, muestra n.° 3108
Tabla n.° 57: Resultados de la granulometría del confitillo, muestra n.° 1
Tabla n.° 58: Resultados de la granulometría del confitillo, muestra n.° 2
Tabla n.° 59: Resultados de la granulometría del confitillo, muestra n.° 3
Tabla n.° 60: Diseño de mezcla sin corregir

ÍNDICE DE FIGURAS

Figura n.° 1: Aplicación del bloque de concreto en edificaciones	13
Figura n.° 2: Aserrín generado por máquina de aserrado en la ciudad de Trujillo	14
Figura n.° 3: Principales departamentos con mayor producción de madera aserrada en la región costa (m ³)15 Figura n.° 4: Partes de un bloque de concreto	33
Figura n.° 5: Dimensiones de la muestra cilíndrica	37
Figura n.° 6: Circuito de procedimiento experimental	39
Figura n.° 7: Curva granulométrica de la arena, bajo la norma NTP 400.037	59
Figura n.° 8: Curva granulométrica del confitillo - Huso n.° 8, bajo la norma NTP 400.037	60
Figura n.° 9: Contenido de humedad de los agregados y el aserrín	68
Figura n.° 10: Condición de humedad de los agregados	69
Figura n.° 11: Peso específico de los agregados y el aserrín	69
Figura n.° 12: Absorción de los agregados y el aserrín	70
Figura n.° 13: Peso unitario suelto y compactado de los agregados y el aserrín	70
Figura n.° 14: Asentamiento del concreto frente a los distintos porcentajes de aserrín	76
Figura n.º 15: Resistencia a la compresión del concreto frente a los distintos porcentajes de aserrín	78
Figura n.° 16: Absorción del concreto frente a los distintos porcentajes de aserrín	80
Figura n.° 17: Densidad del concreto frente a los distintos porcentajes de aserrín	81
Figura n.° 18: Comparación del precio de la arena y el aserrín (aproximado) para un m ³	92
Figura n.° 19: Muro de albañilería a base de ladrillos de arcilla	102
Figura n.° 20: Muro de albañilería a base de bloques de concreto	.103
Figura n.° 21: Confitillo de 3/8"	.117
Figura n.° 22: Arena media	.117
Figura n.° 23: Cemento Tipo ICo - Pacasmayo	.117
Figura n.° 24: Aserrín en diferentes tamaños	.117
Figura n.° 25: Tamizado del aserrín	.118
Figura n.° 26: Contenido de humedad, de la arena y el confitillo	.118
Figura n.° 27: Peso específico y absorción, de la arena	.119
Figura n.° 28: Peso específico y absorción, del confitillo	.119
Figura n.º 29: Peso unitario suelto y compactado, de la arena, el confitillo y el aserrín	120
Figura n.° 30: Granulometría, de la arena y el confitillo	.120
Figura n.° 31: Mezcla de todos los ingredientes	.121
Figura n.° 32: Conformación de probetas	.121
Figura n.° 33: Codificación de probetas	.121
Figura n.° 34: Curado de probetas	.121
Figura n.° 35: Ensayo de asentamiento del concreto fresco	.122
Figura n.° 36: Ensayo de resistencia a la compresión del concreto endurecido	.122
Figura n.º 37: Ensayo de absorción y densidad del concreto endurecido	122

ÍNDICE DE ECUACIONES

Ecuación n.º 1: Humedad de los agregados	
Ecuación n.º 2: Peso específico de la arena	41
Ecuación n.º 3: Peso especifico superficialmente seco de la arena	41
Ecuación n.º 4: Peso específico aparente de la arena	42
Ecuación n.º 5: Absorción de la arena	42
Ecuación n.º 6: Peso específico del confitillo	42
Ecuación n.º 7: Peso especifico superficialmente seco del confitillo	42
Ecuación n.º 8: Peso específico aparente del confitillo	42
Ecuación n.º 9: Absorción del confitillo	42
Ecuación n.º 10: Volumen del molde para peso unitario	43
Ecuación n.º 11: Peso unitario suelto de los agregados	43
Ecuación n.º 12: Peso unitario compactado de los agregados	44
Ecuación n.º 13: Peso retenido por cada malla	45
Ecuación n.º 14: Porcentaje de peso retenido por cada malla	45
Ecuación n.º 15: Porcentaje de peso retenido acumulado por cada malla	45
Ecuación n.º 16: Porcentaje que pasa por cada malla	45
Ecuación n.º 17: Módulo de finura de los agregados	45
Ecuación n.º 18: Cantidad de cemento (kg/m ³)	
Ecuación n.º 19: Cantidad de confitillo (kg/m ³)	48
Ecuación n.º 20: Volumen absoluto (cemento, confitillo y agua)	48
Ecuación n.º 21: Volumen absoluto del aire atrapado	48
Ecuación n.º 22: Volumen absoluto de la arena	49
Ecuación n.° 23: Cantidad de arena (kg/m³)	49
Ecuación n.º 24: Corrección por humedad de los agregados (fino y grueso)	49
Ecuación n.º 25: Contribución de agua del confitillo (kg/m³)	49
Ecuación n.º 26: Contribución de agua de la arena (kg/m ³)	49
Ecuación n.° 27: Agua de mezcla corregida (I/m ³)	50
Ecuación n.º 28: Dosificación de cada material (m ³)	50
Ecuación n.º 29: Factor de relación	
Ecuación n.º 30: Cantidad de arena reemplazada (kg/m ³)	
Ecuación n.º 31: Cantidad de aserrín utilizado (kg/m ³)	
Ecuación n.º 32: Resistencia a la compresión de una probeta cilíndrica (kg/cm ²)	
Ecuación n.º 33: Absorción de una probeta cilíndrica (%)	
Ecuación n.º 34: Densidad de una probeta cilíndrica (kg/m ³)	
Ecuación n.º 35: Desviación estándar	
Ecuación n.º 36: Coeficiente de variación	56

RESUMEN

En la presente tesis de grado, se investigó el comportamiento del aserrín como material particulado en bloques para la construcción de muros de mampostería sobre su resistencia a la compresión, asentamiento, absorción y densidad. Se sustituyó arena por aserrín al 0%, 10%, 20%, 30%, 40% y 50% para cada diseño de mezcla. El concreto se diseñó para 70 kg/cm² a base de Cemento Portland Compuesto Tipo ICo de la empresa Pacasmayo, arena y confitillo de la cantera "Los Mellizos" en el distrito de Huanchaco, una relación agua/cemento constante de 0.90 y aserrín de la "Maderera Santana S.A.C." ubicada en la Av. Miraflores, Trujillo. La caracterización de los agregados naturales y del aserrín se realizó bajo las Normas Técnicas Peruanas como el contenido de humedad (NTP 399.185), peso específico y absorción (NTP 400.022 y NTP 400.021), peso unitario (NTP 400.017) y granulometría (NTP 400.012). Se conformaron probetas cilíndricas de 10 cm de diámetro y 20 cm de alto; curadas a los 28 días haciendo uso de una poza con hidróxido de calcio (NTP 339.183). Para determinar su resistencia a la compresión se empleó la norma NTP 339.034, para el asentamiento la NTP 339.035 y la NTP 339.187 para absorción y densidad. Con la aplicación del aserrín en el concreto, se produjo un concreto para bloques menos pesado, pero aumentando su grado de absorción y a su vez reduciendo el asentamiento y su resistencia a la compresión. El diseño patrón o mezcla con 0% de sustitución de arena por aserrín alcanzó una resistencia a la compresión de 108 kg/cm², un asentamiento de 2 ¾", una absorción de 6.1% y densidad de 2124 kg/m³. El diseño más óptimo del concreto para bloques portantes se dio al 30% de sustitución de arena por aserrín presentándose un valor de resistencia de 72 kg/cm², asentamiento de 1", absorción de 9.5% y densidad de 1916 kg/m³. Mientras que para el concreto aplicado en bloques no portantes se dio al 40% con una resistencia de 49 kg/cm², asentamiento de ¾", absorción de 10.7% y densidad de 1883 kg/m³.

ABSTRACT

In this thesis, the behavior of sawdust was investigated such as particulate material for the construction of masonry units on its compressive strength, slump, absorption and density. Sand was replaced with 0%, 10%, 20%, 30%, 40% and 50% sawdust for each blend design. The concrete was designed for 70 kg/cm² based on Compound Portland Cement Type ICo of the company Pacasmayo, sand and confluence of the quarry "Los Mellizos" of Huanchaco, a relation water/cement ratio of 0.90 and sawdust of the "Maderera Santana SAC" located at Miraflores Avenue, Trujillo. Characterization of natural aggregates and sawdust was performed under the Peruvian Technical Standards such as moisture content (NTP 399.185), specific gravity and absorption (NTP 400.022 and NTP 400.021), unit weight (NTP 400.017) and granulometry (NTP 400.012). The cylindrical specimens used were of 10 cm diameter and 20 cm high, cured in a calcium hydroxide solution and assayed at a 28 days (NTP 339.183). The standard NTP 339.034 was used to determine its compressive strength, for its slump the NTP 339.035, and the NTP 339.187 for absorption and density. With the application of the sawdust in the concrete, was produced a concrete for less heavy blocks, but increasing its degree of absorption and, in turn, reducing the slump and its compressive strength. The pattern design or mixture with 0% sand substitution by sawdust achieved a compressive strength of 108 kg/cm², a slump of 2 3/4 in, an absorption of 6.1% and a density of 2124 kg/m³. The most optimum design for load-bearing concrete masonry units was given at 30% sand substitution by sawdust with a compressive strength value of 72 kg/cm², slump of 1 in, 9.5% absorbency and 1916 kg/m³ density.

While for the concrete applied in non-load-bearing concrete masonry units was given at 40% with a compressive strength of 49 kg/cm², slump of ¾ ", absorption of 10.7% and density of 1883 kg/m³.

ciales

REFERENCIAS

- Abarca, R. (2014). Determinación de los pesos unitarios. [En línea]. Recuperado de http://documents.tips/documents/peso-unitario-leshdocx.html
- ACI 211.1. Proporcionamiento de materiales para el diseño de mezclas de concreto de peso normal y denso.
- ACI 211.3. Guide for Selecting Proportions for No-Slump Concrete.
- Álvarez, M., Río, O., Rodríguez Monteverde, P. & Barbero, J. (1990). Bloques de hormigón, análisis de la normativa UNE, ISO, en comparación con otras normas internacionales. [En línea].
 Recuperado de http://digital.csic.es/bitstream/10261/54976/1/818.pdf
- Apuntes de Arquitectura (2014). Técnicas constructivas La albañilería de concreto. [En línea].
 Recuperado de http://apuntesdearquitecturadigital.blogspot.pe/2014/07/tecnicas-constructivas-la-albanileria.html
- Arrieta, J. & Peñaherrera, E. (2001). *Fabricación de bloques de concreto con una mesa vibratoria*. Programa Científico. UNI, Lima, Perú.
- ASTM C143. Método de Ensayo Normalizado para Asentamiento de Concreto de Cemento Hidráulico.
- ASTM C670. Método de Ensayo Normalizado para la preparación de declaraciones sobre precisión y sesgo para métodos de ensayo de materiales de construcción.
- ASTM C39. Método de Ensayo Normalizado para Resistencia a la Compresión de Especímenes Cilíndricos de Concreto.
- Cementos Pacasmayo (2017). Plantas de prefabricados de concreto. [En línea]. Recuperado de http://www.cementospacasmayo.com.pe/nosotros/plantas-de-produccion/plantas-deprefabricados
- Cementos Pacasmayo (2017). *Prefabricados de concreto*. [En línea]. Recuperado de http://www.cementospacasmayo.com.pe/productos-y-servicios/prefabricados
- De La Sotta, J. (2010). Análisis comparativo entre mortero de junta para albañilería fabricado en obra y mortero premezclado húmedo para albañilería. (Tesis de Licenciatura). UA, Región de los Ríos, Valdivia, Chile.
- Escobar, E. (2014). Compatibilidad del aserrín de eucalyptus globulus labill con pretratamientos y cemento portland para la manufactura de tableros cemento-madera. (Tesis de Licenciatura). Universidad Nacional del Centro del Perú, UNCP, Huancayo, Junín, Perú.
- Fernández, M. (2013). Hormigón. (10^a. ed.). Madrid, España.

- Fonseca, E. & Tierra, L. (2011). Desarrollo de un proceso tecnológico para la obtención de briquetas de aserrín de madera y cascarilla de arroz, y pruebas de producción de gas pobre.
 (Tesis de Licenciatura). Escuela Superior Politécnica de Chimborazo, ESPOCH, Riobamba, Ecuador.
- García, I. (2015). Tecnología del concreto. [En línea]. Recuperado de http://tecnoconcreto2015irvingarcia.blogspot.pe
- Garcés, L. (2004). *Hormigón de aserrín*. (Tesis de Licenciatura). Universidad Austral, UA, Región de los Ríos, Valdivia, Chile.
- Gago, J. (2011). Fabricación y caracterización de compuestos madera (metacrilato de metilo, resina poliéster) por irradiación gamma, empleandos maderas nativas del Perú (Hura crepitans L, Aniba amazónica Meiz y Calycophy spruceanum Be). (Tesis de Maestría). Universidad Nacional de Ingeniería, UNI, Lima, Perú.
- Glace, A. (2014). Concreto Endurecido. [En línea]. Recuperado de https://prezi.com/xwtykdmbzfin/concreto-endurecido
- Gómez, E. (2014). Propiedades de la madera. [En línea]. Recuperado de http://ievirucarpinteria.blogspot.pe/
- Huamán, C. (2015). Influencia del porcentaje de agregado fino y módulo de finura sobre la resistencia a la compresión y absorción en morteros para la construcción. (Tesis de licenciatura).
 UNT, Trujillo, La Libertad, Perú.
- Instituto del Cemento Portland Argentino (2015). *Hormigones livianos*. [En línea]. Recuperado de http://www.concretonline.com/pdf/00hormigon/art_tec/hormliv2.pdf
- Instituto Nacional de Estadística e Informática (2015). *Anuario de Estadísticas Ambientales 2014*.

 [En línea]. Recuperado de http://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1197/libro.pdf
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2006).
 Norma Técnica Peruana 339.088 Agua de mezcla utilizada en la producción de concreto de cemento Portland. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 339.034 Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndricas. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 339.035 Método de ensayo para la medición del asentamiento del concreto de Cemento Portland. Lima, Perú.

- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 339.185 Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 339.187 Método de ensayo normalizado para determinar la densidad, absorción y porcentaje de vacíos en el concreto endurecido. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 399.600 Bloques de concreto para usos no estructurales. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 399.602 Bloques de concreto para usos estructurales. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 400.011 Definición y clasificación de agregados para uso en morteros y concretos. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 400.021 Método de ensayo normalizado para peso específico y absorción del agregado grueso. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 400.022 Método de ensayo normalizado para peso específico y absorción del agregado fino. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2002).
 Norma Técnica Peruana 400.037 Especificaciones normalizadas para agregados en el concreto. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2001).
 Norma Técnica Peruana 334.001 Definiciones y nomenclatura de los cementos. Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (2001).
 Norma Técnica Peruana 400.012 Análisis granulométrico del agregado fino, grueso y global.
 Lima, Perú.
- Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad (1999).
 Norma Técnica Peruana 400.017 Método de ensayo para determinar el peso unitario del agregado. Lima, Perú.
- Ladrillos Lark (2017). Ficha técnica del Ladrillo King Kong 18 huecos. [En línea]. Recuperado de http://www.ladrilloslark.com.pe/detalle-producto.php?id=2&tipo=1

- Laucata, J. (2013). Análisis de la vulnerabilidad sísmica de las viviendas informales en la ciudad de Trujillo. (Tesis de Licenciatura). Pontificia Universidad Católica del Perú, PUCP, Lima, Perú.
- Luna G., Orosco M., Ramos N. (2017). Análisis de precios unitarios. En Revista Costos, (278.ª ed) pp.85-124.
- Macuarisma, B. & Martínez, R. (2010). Estudio de la resistencia a la compresión en bloques huecos de cemento, arena y aserrín de pino caribe. (Tesis de Licenciatura). Universidad de Oriente, UDO, Bolívar, Venezuela.
- Martell, C. (2007). Influencia del porcentaje de reemplazo de arena gruesa por caliza sobre la resistencia a la compresión, absorción y variación dimensional, en la fabricación de bloques de concreto tipo 14. (Tesis de Licenciatura). Universidad Nacional de Trujillo, UNT, Trujillo, La Libertad, Perú.
- Ministerio de Vivienda, Construcción y Saneamiento del Perú (2006). Norma Técnica de Edificaciones E. 070 Albañilería. Lima, Perú.
- Monroy, A. (1999). Integración de aserrín en la fabricación de bloques de concreto. (Tesis de Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey, ITESM, Monterrey, Nuevo León, México.
- Moretti, J. (2016). 7 materiales de construcción inusuales pero increíbles. [En línea].
 Recuperado de https://www.homify.com.ar/libros_de_ideas/520535/7-materiales-de-construccion-inusuales-pero-increibles
- Municipalidad Provincial de Trujillo (1995). *Plan de desarrollo metropolitano de Trujillo al año 2010.* Trujillo, La Libertad, Perú.
- Oña, C. (2015). Producción de bloques huecos de hormigón a escala de taller local, aplicando diferentes formulaciones del Cemento de Bajo Carbono. (Tesis de Licenciatura). Universidad Central "Marta Abreu" de Las Villas, UCLV, Santa Clara, Cuba.
- Osorio, M. & Rojas, F. (2010). Introducción al proceso de subproductos. [En línea]. Recuperado de http://tirsomestre.blogspot.pe/2010/05/introduccion-al-proceso-de-subproductos.html
- Pasquel, E. (1998). Tópicos de tecnología del concreto. (2ª. ed.). Lima, Perú.
- Patrón, & Pineda, (2010). Determinación de las propiedades físicas de diversos materiales en la industria. [En línea]. Recuperado de http://www.infohab.org.co/entac2010/artigos/paper_204.pdf
- Pereira, A. & Sánchez, J. (2006). *Diseño de un bloque compuesto de concreto ligero con aserrín.* (Tesis de Licenciatura). Universidad de Rafael Urdaneta, URU, Maracaibo, Venezuela.
- Rodas, C. & Ordoñez, J. (2016). Desarrollo tecnológico, investigativo y experimental de ecobloques de hormigón en base a vidrio y polietileno de tereftalato (PET) reciclado, como

alternativa sustentable al bloque tradicional. (Tesis de Maestría). Universidad del Azuay, UDA, Cuenca, Azuay, Ecuador.

- Sánchez, A. (2009). Diseño experimental y elaboración de bloques de conglomerado madera cemento. (Tesis de Maestría). Universidad de Cuenca, UC, Cuenca, Azuay, Ecuador.
- Sánchez, D. (2001). Tecnología del concreto y del mortero. (5ª. ed.). Bogotá, Colombia.
- Sucoshañay, D. (2009). Propuesta de un plan de acciones para el aprovechamiento integral del aserrín y la rehabilitación ambiental del sector Barrio del Chofer. (Tesis de Licenciatura).
 Universidad Estatal Amazónica, UEA, Puyo, Pastaza, Ecuador.
- Diseño experimental y elaboración de bloques de conglomerado madera cemento. (Tesis de Maestría). Universidad de Cuenca, UC, Cuenca, Azuay, Ecuador.
- Unión Andina de Cementos (2014). UNACEM invierte US\$16 millones en construcción de nueva planta de bloques de concreto. [En línea]. Recuperado de http://www.unacem.com.pe/?p=7450
- Unión de Concreteras (2017). Elementos de Pared Koncreto. [En línea]. Recuperado de http://www.unicon.com.pe/repositorioaps/0/0/jer/prodbloque/files/Ficha%20Tecnica%20Bloques %20abril%202013.pdf
- Valencia, G. & Ibarra, M. (2013). Estudio experimental para determinar patrones de correlación entre la resistencia a la compresión y la velocidad de pulso ultrasónico en concreto simple.
 (Tesis de Licenciatura). PUCP, Lima, Perú.