

FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA INDUSTRIAL

"PROPUESTA DE IMPLEMENTACIÓN DE LEAN MANUFACTURING EN LA LÍNEA DE PRODUCCIÓN DE MARCOS Y TAPAS TERMOPLÁSTICOS PARA INCREMENTAR LA PRODUCTIVIDAD EN LA EMPRESA CONCYSSA INDUSTRIAL S.A.C."

Tesis para optar el título profesional de:

Ingeniera Industrial

Autora:

Tabita Liseth Baltodano Quispe

Asesor:

Ing. Marcos Baca López

Trujillo - Perú

2016

INDICE

1.	GENERALIDADES DE LA INVESTIGACIÓN	
	1.1. Descripción del Problema de Investigación	02
	1.2. Formulación del Problema	06
	1.3. Delimitación de la investigación	06
	1.4. Objetivos	06
	1.4.1. Objetivo general	06
	1.4.2. Objetivos específicos	06
	1.5. Justificación	07
	1.5.1. Criterio Teórico	07
	1.5.2. Criterio Aplicativo	07
	1.5.3. Criterio Valorativo	07
	1.5.4. Criterio Académico	07
	1.6. Tipo de Investigación	80
	1.6.1. De acuerdo al fin que se persigue	80
	1.6.2. De acuerdo al diseño de investigación	07
	1.7. Hipótesis	80
	1.8. Variables	80
	1.8.1. De acuerdo al fin que se persigue	80
	1.8.2. De acuerdo al diseño de investigación	80
	1.9. Diseño de la Investigación	10
	1.9.1. Material	10
	1.9.2. Método	10
2.	REVISIÓN DE LA LITERATURA	
	2.1. Marco Teórico	12
	2.1.1. Antecedentes	12
	2.2. Base Teórica	16
	A. Lean Manufacturing	16

	A.1. Definición	16
	A.2. Estructura	16
	A.3. Técnicas	18
	a. SMED	18
	b. Estandarización	18
	c. Control Visual	19
	d. Técnicas de Calidad	19
В.	. Calidad y Competitividad	20
C.	. Productividad	26
	C.1. Definición	26
	C.2. Importancia	29
D.	. Medición de Desempeño	29
	D.1. Aspectos Generales	30
Ε.	. Variabilidad y pensamiento estadístico	33
	E.1. Definiciones	33
	a. Variabilidad	34
	b. Pensamiento estadístico	36
	F. Círculo de Deming	37
	F.1. Aspectos Generales	37
	F.2. Pasos	38
	a. Seleccionar y caracterizar el problema.	39
	b. Buscar todas las posibles causas.	39
	c. Investigar las causas más importantes.	39
	d. Considerar las medidas remedio.	39
	e. Implementar las medidas remedio.	40
	f. Revisar los resultados obtenidos.	40
	g. Prevenir recurrencia del mismo problema.	40
	h. Conclusión.	40

G. Planificación de la Distribución	41
G.1. Definición	41
G.2. Aspectos Estratégicos	41
G.3. Tipos de Distribución	41
a. Distribución de flujo flexible	41
b. Distribución de flujo en línea	42
c. Distribuciones híbridas	42
d. Distribuciones de posición fija	43
G.4. Distribución Orientada al Proceso	43
H. Balance de Línea	44
H.1. Definición	44
H.2. Aspectos Estratégicos	45
a. Diagrama de precedencia	45
b. Tasa de producción deseada	45
c. Tiempo de ciclo	45
d. Mínimo teórico	46
e. Tiempo ocioso, eficiencia y retraso del balanceo	46
I. Muestreo del Trabajo	47
I.1. Definición	47
I.2. Ventajas	48
I.3. Planeación del Estudio de Muestreo del Trabajo	48
I.4. Determinación del Número Necesario de Observaciones	49
I.5. Determinación de la frecuencia de Observaciones	51
I.6. Diseño de un formulario e muestreo del trabajo	52
I.7. Uso de Gráficas de Control	52
I.8. Registro de Observaciones	54
I.19. Determinación del Tiempo Estándar	55
I.10. Determinación de Holguras	55

	a. Métodos de Calificación	56
J. P	laneación de Requerimiento de Materiales (MRP)	63
J	.1. Definición	63
J	.2. Demanda Dependiente	63
J	.3. Requerimientos del Modelo de Inventario Dependiente:	64
	a. Programa de producción maestro	65
	b. Listas estructuradas de materiales	67
	c. Listas modulares	68
	d. Listas de planeación y listas fantasma:	68
	e. Exactitud en los registros de inventario	69
	f. Órdenes de compra pendientes	69
	g. Tiempos de entrega para componentes	69
2.3. Marco	Conceptual	70
• Pro	oducción	70
• Pro	oductividad	70
• Cu	ello de botella	70
• Tie	empo de Ciclo	70
• Tie	empo de preparación	70
• Tie	empo de procesamiento	70
• Tie	empo de espera	70
• Tie	empo ocioso o tiempos muertos	70
• Efi	ciencia	70
• Efi	cacia	70
• Cio	clo PHVA	70
• Te	rmoplásticos	70
• Mc	oldeo por Inyección	70
• Mc	olde o Matriz	71
• Sis	stema de Enfriamiento (para el molde)	71

	Colada	71
	Marco y Tapa	71
	Procesos de Manufactura	71
	Diagrama de Flujo	71
	Balanceo de Línea	71
	Takt Time	71
	• Kaizen	71
	Lean Manufacturing	71
	Mapa de Procesos	71
3.	DIAGNÓSTICO DEL PROBLEMA	
	3.1. Organización	73
	3.2. Descripción del Problema	74
	A. Compra de Materia Prima	74
	B. Compra de Materiales	74
	C. Solicitud de material por parte de producción	74
	D. Fabricación de Anillos y Tapitas	74
	E. Fabricación de Marcos	74
	F. Fabricación de Tapas	74
	G. Ensamble	74
	H. Verificación por control de calidad	74
	I. Embalaje	74
	3.3. Diagrama de Operaciones	75
	3.4. Análisis de Causas del Problema	76
4.	SOLUCIÓN DEL PROBLEMA	
	4.1. Desarrollo de Propuesta	81
	4.1.1. Kaizen (Mejora Continua)	81
	 a. Diseño de molde genera desperdicio de materia prima / Cantido colada generada.81 	lad de

		b. Falla de un sistema de pesas para evitar deformaciones del	producic
		después de proceso de inyección / cantidad de No co	
	4.4.0	generado.	86
	4.1.2.	Value Stream Mapping (Mapeo de Procesos)	87
	;	a. Mala asignación de personal a estaciones de trabajo	89
	I	o. Falta de un balance de línea	90
	4.1.3.	SMED – Value Stream Mapping	104
	;	a. Movimientos y desplazamientos innecesarios	104
	4.1.4.	Single Minute Exchange of Die	106
	;	a. Falta de identificación de material en estaciones de trabajo /	-
		por falta de orden en puesto de trabajo.	106
	4.2. Descr	ipción del Proceso Mejorada	108
	A. Co	ompra de Materia Prima	108
	B. Co	ompra de Materiales	108
	C. Sc	licitud de material por parte de producción	108
	D. Fa	bricación de Anillos y Tapitas	108
	E. Fa	bricación de Marcos y Tapas / Ensamble	108
	F. Ve	rificación por control de calidad	108
	G. En	nbalaje	108
	4.3. Diagra	ama de Operaciones	109
5.	EVALUAC	IÓN ECONÓMICA Y FINANCIERA	
	5.1. Egres	os	113
	5.1.1	Inversión en la implementación de un sistema de pesas pa deformaciones de producto después de proceso de inyección.	ara evita 113
	5.1.2	Inversión en el desarrollo de molde para evitar generar despe materia prima	erdicio de 113
	5.2. Ingres	SOS	113
	5.2.1	Ahorro por inversión en implementación de sistema de pesas	113
	5.2.2	Ahorro por inversión en molde, cero coladas	113

	5.2.3	Ahorro	en	reasig	nación	de	person	al a	estac	iones	de	trabajo,
		minimiz	aciór	n de ga	stos adr	minis	trativos.					113
	5.2.4	Ahorro	de t	iempo	por me	ejora	en dist	ribuci	ón de	planta	a para	a evitar
		movimie	entos	y desp	olazamie	entos	inneces	arios				113
6.	RESULTAI	OOS Y D	ISCL	JSIÓN								
7.	CONCLUS	IONES Y	/ RE	COME	NDACIC	NES	3					
	7.1. Conclu	ısiones										119
	7.2. Recom	nendacio	nes									119
Re	ferencias Bi	bliográfic	as									120
An	exos											122

ÍNDICE DE DIAGRAMAS

Diagrama N° 01: Ishikawa de la problemática general	05
Diagrama N° 02: El proceso de planeación	66
Diagrama N° 03: Organigrama de Funciones	73
Diagrama N° 04: Diagrama de Operaciones S/ Mejora	75
Diagrama N° 05: Mapa del Proceso, sin mejora	90
Diagrama N° 06: Mapa del Proceso, con mejora	93
Diagrama N° 07: Distribución de Planta sin Mejora	104
Diagrama N° 08: Distribución de Planta con Mejora	105
Diagrama N° 09: Diagrama de Operaciones con Mejora	109

INDICE DE CUADROS

Cuadro N° 01: Subsector Fabril no Primario: Diciembre 2014	3
Cuadro N° 02: Matriz de Operacionalización de Variables	9
Cuadro N° 03: Matriz de Operacionalización (Valor Objetivo vs Valor Meta)	79
Cuadro N° 04: Valorización para Molde de Marco y Tapa	83
Cuadro N° 05: Cálculo del ROI (Und: Meses)	84
Cuadro N° 06: Total de Kg de polipropileno	85
Cuadro N° 07: Costo Total de Materia Prima	85
Cuadro N° 08: Porcentaje de NC por Deformación de Material (Enero – Agosto)	87
Cuadro N° 09: Porcentaje de NC por Deformación de Material (Setiembre – Noviembre)	88
Cuadro N° 10: Horas Hombre Vs Horas Máquina de Marcos	91
Cuadro N° 11: Porcentaje de Horas Hombre de Marcos	91
Cuadro N° 12: Horas Hombre Vs Horas Máquina de Tapas	92
Cuadro N° 13: Porcentaje de Horas Hombre de Marcos	92
Cuadro N° 14: Inyección de Anillo y Tapita	95
Cuadro N° 15: Factor de Valorización (Estación 1)	95
Cuadro N° 16: Tolerancias (Estación 1)	95
Cuadro N° 17: Tiempo Estándar para Inyección de Anillo y Tapita	96
Cuadro N° 18: Inyección de Marco	96
Cuadro N° 19: Tiempo Estándar para Inyección de Marco	96
Cuadro N° 20: Inyección de Tapa	97
Cuadro N° 21: Tiempo Estándar para Inyección de Tapa	97
Cuadro N° 22: Ensamble	97
Cuadro N° 23: Tiempo de estándar para ensamble	98
Cuadro N° 24: Inyección de Marco y Tapa – Ensamble	98
Cuadro N° 25: Factor de Valorización (Estación 2)	99
Cuadro N° 26: Tolerancias	99

Cuadro N° 27: Tiempo Estandar para Inyección de Marco y Tapa / Ensamble	99
Cuadro N° 28: Control de calidad	100
Cuadro N° 29: Factor de Valorización (Estación 3)	100
Cuadro N° 30: Tolerancias (Estación 3)	100
Cuadro N° 31: Tiempo Estándar para Control de Calidad	100
Cuadro N° 32: Embalaje	101
Cuadro N° 33: Factor de Valorización (Estación 4)	101
Cuadro N° 34: Tolerancias (Estación 3)	101
Cuadro N° 35: Tiempo Estándar para Embalaje	102
Cuadro N° 36: Balance de Línea	102
Cuadro N° 37: Producción Diaria y Mensual	103
Cuadro N° 38: Precedencias	104
Cuadro N° 39: Nivel de Importancia según precedencia	104
Cuadro N° 40: Costo de Mano de Obra Directa sin Mejora	110
Cuadro N° 41: Costo de Mano de Obra Directa con Mejora	110
Cuadro N° 42: Costo de Mano de Obra	111
Cuadro N° 43: Resumen de tiempos por operación (Sin Mejora Vs. Con Mejora)	111
Cuadro N° 44: Cuadro Resumen (Egresos e Ingresos)	114
Cuadro N° 45: Flujo de Caja (Junio – Diciembre 2016)	115

INDICE DE FIGURAS

Figura N° 01: Adaptación actualizada de la casa Toyota	17
Figura N° 02: Esquema de un proceso. Sobre los productos se miden las variable salida	es de 21
Figura N° 03: Factores de la Competitividad	23
Figura N° 04: Con fallas y deficiencias no es posible competir en calidad ni en p menos en tiempo de entrega	recio, 24
Figura N° 05: Al mejorar la calidad se da una reacción en cadena	25
Figura N° 06: La productividad y sus componentes	28
Figura N° 07: Evolución de los criterios para determinar el desempeño de la	
empresa.	31
Figura N° 08: Medición del desempeño de una organización	32
Figura N° 09: Indicadores para las guías clave del negocio	33
Figura N° 10: Pensamiento estadístico en los tres niveles de la organización	37
Figura N° 11: Distribución de una línea de producción	43

INDICE DE TABLAS

Tabla N° 01: Ocho pasos en la solución de un problema	38
Tabla N° 02: Calificación según nivel de Habilidad y Esfuerzo	57
Tabla N° 03: Calificación según nivel de Condiciones y Consistencia	57
Tabla N° 04: Nivel de Importancia por Causa	76
Tabla N° 05: Porcentaie Acumulado por Causa	77

INDICE DE GRÁFICOS

Gráfico N° 01: Porcentaje acumulado del tiempo de funcionamiento.	49
Gráfico N° 02: Gráfica de control de la muestra	53
Gráfico N° 03: Diagrama Pareto – Causas Vs Nivel de Importancia	77
Gráfico N° 04: Porcentaje de Tiempos Muertos en Inyección de Marcos	91
Gráfico N° 05: Porcentaje de Tiempos Muertos en Inyección de Tapas	92
Gráfico N° 06: Porcentaje de Actividad e Inactividad (Sin Mejora)	106
Gráfico N° 07: Porcentaje de Actividad e Inactividad (Con Mejora)	107

INDICE DE IMÁGENES

Imagen N° 01: Molde de Marco y Molde de Tapa	81
Imagen N° 02: Diseño de Molde para Marco y Tapa	82
Imagen N° 03: Sistema de Pesas	86
Imagen N° 04: Identificación de Materiales	107

RESUMEN

El presente trabajo tuvo como objetivo general la Implementación de Lean Manufacturing en la línea de producción de marcos y tapas para incrementar la productividad de la empresa CONCYSSA INDUSTRIAL S.A.C

El estudio se inició recabando información mediante investigación, encuestas, toma de datos, durante las visitas a la planta, luego fueron analizadas, procesadas y contrastadas a fin de plantear mejoras, dando como resultado un incremento en los índices de productividad de la empresa

Los resultados que se lograron son:

- Disminución de No Conformes.
- Disminución del porcentaje de coladas o desperdicios.
- Optimización de recursos
- Diminución de los tiempos muertos.

ABSTRACT

This work had as a general objective the Lean Manufacturing Implementation in the production line of to increase the production of frames and covers of the company CONCYSSA INDUSTRIAL S.A.C

This study started collecting information by researches, interviews, data colleting during the visits to the plant, the they were analysed, processed and compared in order to make proposes which will make an increase of the company productivity.

The results achieved are:

- · Decrease of No Conformed.
- Percentage in waste reduction.
- Optimization of resources.
- Death time reduction.

NOTA DE ACCESO
No se puede acceder al texto completo pues contiene datos confidenciales

Referencias Bibliográficas

1. TEXTOS

- Andris Freibals & Benjamin W. Niebel (2014). Ingeniería Industrial: Métodos, estándares y diseño del Trabajo. Treceava Edición. México: Mc. Graw Hill.
- Barry Render & JayHeizer (2010). Dirección de la Producción y de operaciones.
 Séptima Edición. Madrid: Pearson Education.
- Correa Alexander & Gutiérrez Fabiana & Rojas Miguel (2012). Sistemas de Control de Gestión. Primera Edición. Colombia: Ediciones de la U.
- Gutiérrez Pulido H. & De la Vara Salazar R. (2013). Control Estadístico de la Calidad y Seis Sigma. Tercera Edición. México: McGraw Hill.
- García Criollo, Roberto (2010). Estudio del Trabajo. Segunda Edición. México: McGraw Hill.
- Gutiérrez Pulido, Humberto (2014).Calidad y Productividad. Cuarta Edición.
 México: Mc. Graw Hill Education.
- Groover, Mikell P. (2014). Introducción a los procesos de manufactura. Primera Edición. México: Mc. Graw Hill Education
- Krajewski Lee J. & Ritzman L. P. & Malhotra M.K. (2011). Administración de Operaciones. Novena Edición. Madrid: Pearson Education.
- Hernández M. Juan Carlos & Vizán I. Antonio (2013). Lean Manufacturing: Conceptos Técnicas e Implantación. Primera Edición. Madrid: Pearson Education.
- Richard B. Chase &F. Robert Jacobs (2013). Administración de operaciones, producción y cadena de suministros: Producción y Cadena de Suministros.
 Treceava Edición. México: Mc. Graw Hill Education.
- Schroeder, R., Meyer, S. & Rungtusanatham, M. (2011). Administración de operaciones: conceptos y casos contemporáneos. Quinta Edición. México: Mc. Graw Hill Education.
- Villaseñor Contreras, Alberto (2009). Manual del Lean Manufacturing. Segunda Edición. México: Limusa.

2. TESIS

 Castrejon Castrejon J. & Jimenez Ubillus J. (2012). Propuesta de mejora de la productividad en la planta de revisión técnica vehicular-SENATI, aplicando estudio de tiempo y movimientos. Universidad Privada del Norte. (Tesis de Titulación). Trujillo, Perú.

- Cano Marcapura, N. (2013). Diseño e implementación de un sistema de planeamiento y control de operaciones en la empresa embotelladora Chavez S.A.C. para mejorar la productividad. (Tesis de Titulación). Universidad Privada del Norte. Cajamarca, Perú.
- Corrales Riveros, C. (2012). Aplicación de herramientas de Lean Manufacturing en las líneas de envasado de una planta envasadora de lubricantes. Universidad Católica del Perú. Lima, Perú.
- Gómez García J. & Lozano Camarillo D. (2004). Propuesta de rediseño y mejora del área de ensamble de cafeteras KF 400 en la empresa A. G. Universal Motors S. A. de C. V. Universidad de las Américas Puebla. México 2004. Realizada por
- Gualotuña Segarra A. &Meneses Viteri, L. (2006) Diseño e implementación del Sistema de Producción Esbelta (Lean Manufacturing) para la empresa ESMETAL S.A. Escuela Politécnica Nacional. Ecuador.
- Marreros Sandoval, L. (2008). Implementación de un Sistema de Planeamiento y Control de la Producción y su influencia en la reducción de costos de producción en la Empresa Imprenta Editora Grafica Real S.A.C. Universidad Privada del Norte. (Tesis de Titulación). Trujillo, Perú.