

FACULTAD DE INGENIERIA

CARRERA DE INGENIERIA DE MINAS

"INFLUENCIA DEL GRADO DE MOLIENDA Y PH EN EL PORCENTAJE DE RECUPERACIÓN DE COBRE POR FLOTACIÓN DE MINERAL TIPO SULFURO, CONCHUCOS, PALLASCA, ANCASH."

Tesis para optar el título profesional de:

Ingeniero de Minas

Autor:

Bach. Jhonson Rafael Tavera Vargas

Asesor:

Mg. Ing. Gary C. Farfán Chilicaus

Cajamarca – Perú 2016

ÍNDICE DE CONTENIDOS

		Pág.
CAP	ÍTULO 1. INTRODUCCIÓN	12
1.1.	Realidad problemática	12
1.2.	Formulación del problema	13
1.3.	Justificación	13
1.4.	Limitaciones	14
1.5.	Objetivos	14
	1.5.1. Objetivo General	14
	1.5.2. Objetivos Específicos	14
CAP	ÍTULO 2. MARCO TEÓRICO	15
2.1.	Antecedentes	15
2.2.	Bases Teóricas	18
2.3.	Definición de términos básicos	36
CAP	ÍTULO 3. HIPÓTESIS	38
3.1.	Formulación de la hipótesis	38
3.2.	Operacionalización de variables	38
CAP	ÍTULO 4. MATERIAL Y MÉTODOS	40
4.1.	Tipo de diseño de investigación.	40
4.2.	Material	40
	4.2.1. Unidad de estudio	40
	4.2.2. Población	40
	4.2.3. Muestra	41
	4.3.1. Técnicas de recolección de datos y análisis de datos	42
	4.3.2. Procedimiento	42

CAPÍTULO 5. DESARROLLO	45
CAPÍTULO 6. RESULTADOS	48
CAPÍTULO 7. DISCUSIÓN	49
CAPÍTULO 8. CONCLUSIONES	51
CAPÍTULO 9. RECOMENDACIONES	52
CAPÍTULO 10. REFERENCIAS	53
CAPÍTULO 11 LINKOGRAFÍA	54

ÍNDICE DE TABLAS

	Pág.
Tabla N°1: Valores de pH para PCC de varios minerales	27
Tabla N°2: Definición operacional de las variables	39
Tabla N°3: Sistema de coordenadas de la extracción de la muestra	41
Tabla N°4: Análisis granulométrico del mineral	48
Tabla N°5: Porcentaje de recuperación del cobre	48
Tabla N°6: Recuperación de cobre por flotación de un mineral por la influencia	
de la granulometría y pH	55
Tabla N°7: Balance metalúrgico por flotación a pH 8.5 y granulometría de	
55% -m200	55
Tabla N°8: Balance metalúrgico por flotación a pH 8.5 y granulometría de	
60% -m200	56
Tabla N°9: Balance metalúrgico por flotación a pH 8.5 y granulometría de	
65% -m200	57
Tabla N°10: Balance metalúrgico por flotación a pH 10 y granulometría de	
55% -m200	57
Tabla N°11: Balance metalúrgico por flotación a pH 10 y granulometría de	
60% -m200	58
Tabla N°12: Balance metalúrgico por flotación a pH 11.5 y granulometría de	
55% -m200	59

Tabla N°13: Balance metalurgico por flotación a pH 11.5 y granulometria de	
55% -m200	.59
Tabla N°14: Balance metalúrgico por flotación a pH 11.5 y granulometría de	
60% -m200	.60
Tabla N°15: Balance metalúrgico por flotación a pH 11.5 y granulometría de	
65% -m200	.61
Tabla N°16: Recuperación de cobre por flotación selectiva por la influencia de los	
colectores AP-3418 y AR- 404	.63
Tabla N°17: Cuadro resumen del análisis de varianza para la recuperación de	
cobre	.68

Tavera Vargas, J Pág. viii

ÍNDICE DE FIGURAS

	Pág.
Figura N°1: Adsorción de un colector en la superficie de un espumante	19
Figura N°1.1:Acción de un espumante	20
Figura N°2: Mecanismo de flotación por espuma	20
Figura N°3: Representación esquemática de la doble capa eléctrica	25
Figura N°4: Modelos de la doble capa eléctrica	25
Figura N°5: Representación esquemática de la doble capa eléctrica	
en la presencia de un colector aniónico	28
Figura N°6: Angulo de contacto de un sólido	30
Figura N°7: Curva: % de Recuperación vs. Tiempo de flotación	31
Figura N°8: Procedimiento experimental de flotación de minera	44
Figura N°9: Resultados de la recuperación de cobre por flotación	
con la influencia del pH y la granulometría	50

Tavera Vargas, J Pág. ix

RESUMEN

Se estudió la influencia del grado de molienda y pH en el porcentaje de recuperación de cobre por flotación de mineral tipo sulfuro, Conchucos, Pallasca, Ancash.

El estudio experimental se realizó en una celda de flotación de laboratorio, modelo Denver D-12, utilizando mineral con diferentes granulometrías a 55, 60 y 65 % -200 mallas con una ley de 7.8 % de cobre.

El resultado del estudio de la flotación concluyó que la recuperación de cobre a pH de 8.5 y 55 % -m200 fue de 71.334% y a medida que ambas variables aumentaban, la recuperación también aumentaban, es así que se llegó obtener una recuperación de 86.667 % a pH 11.5 y 65 % - 200 mallas

Los resultados son confirmados mediante análisis de varianza para un nivel de confianza de 95%. De esto se concluye que la recuperación de cobre por la influencia del pH es de F₀= 154446.964 es mayor al F_{0.05;2;18}= 3.55, y la influencia de la granulometría es de F₀=12530.2433 es mayor al F_{0.05;2;18}= 3.55 y con la influencia del pH y la granulometría es de F₀=1359.48974 es mayor al F_{0.05;4;18}= 2.93, obtenido de manera tabular. Esto confirma la aceptación de la hipótesis alterna, por lo tanto, la influencia de pH y granulometría de manera individual como en conjunto si afectan significativamente en la recuperación de cobre.

Tavera Vargas, J Pág. x

ABSTRACT

The influence of grinding and pH on the percentage of copper recovery by sulfur - type mineral flotation from Conchucos, Pallasca and Ancash was studied.

The experimental study was carried out in a laboratory flotation cell, Denver D-12, using different grades at 55, 60 and 65% -200 mesh with a 7.8% copper grade.

The results of the flotation study concluded that recovery of copper at pH 8.5 and 55% -m200 was 71.334% and as both variables increased, recovery also increased, so it was necessary to obtain a recovery of 86.667% a PH 11.5 and 65% - 200 mesh

The results are confirmed by analysis of variance for a confidence level of 95%. From this it is concluded that copper recovery by the influence of pH is F0 = 154446.964 is greater than F0.05; 2; 18 = 3.55, and the influence of the granulometry is F0 = 12530.2433 is greater than F0.05; 2; 18 = 3.55 and with the influence of pH and the granulometry is F0 = 1359.48974 is greater than F0.05; 4.18 = 2.93, obtained in a tabular manner. This confirms the acceptance of the alternative hypothesis, therefore, the influence of pH and granulometry individually as a whole if they affect significantly in copper recovery.

Tavera Vargas, J Pág. xi

NOTA DE ACCESO
No se puede acceder al texto completo pues contiene datos confidenciales

CAPÍTULO 10. REFERENCIAS

- Abarca, R. J. (2011). Flotación de Minerales. Universidad Nacional José Faustino Sánchez Carrión, Lima, Huacho.
- Arbiter, & Collin, H. N. (1962). Flotación Machines. New Yord, Estados Unidos.
- Astucuri, V. (1994). Introducción a la flotación de minerales. Lima: Universidad de Lima.
- Astucuri, V. (1999). Introducción a la flotación de minerales. Lima, Perú.
- Astucuri, V. T. (1999). Introducción a la flotación de minerales. Lima, Perú.
- Bravo, A. (2010). Manual de flotación de minerales. Obtenido de http://www.monografias.com/trabajos-pdf5/manual-flotacion-minerales/manual-flotacion-minerales2.shtml
- Cenepa, C. (1995). Rol de mineralogía (Microscópica) en la flotación. Lima: Universidad Nacional de Ingeniería.
- Chía, J. (1985). Influencia de molienda y clasificación en la flotación de minerales sulfurados. Lima: Universidad Nacional de Ingeniería.
- Concentración de minerales. (2003). Flotación de minerales. Lima: Tecsup.
- Cuadros, J. (2010). Fuerzas intermoleculares. Fuerzas de Van der Waals. México.
- Harris, C. (1976). Flotatión Machine Design and Scale-up.
- Harris, C. C. (1976). Flotation Machines and Scale-up.
- Pavez, O. (2000). Apuntes de concentración de minerales. Atacama: Universidad de Atacama.
- Porras, D. (2002). Concentración de minerales. Lima: Tecsup.
- Reyes, I. (2015). Procesamiento de Minerales II. Trujillo: Universidad nacional de trujillo.
- Rodriguez, Í., Villarreal, E., Acosta, J., & Chirif, H. (2011). Informe geoeconómico de la región Ancash. Lima: INGEMET.
- Rubio, J. (1993). Nuevas tecnologías para el tratamiento de partículas minerales finas y ultrafinas. Atacama: Universidad de Atacama.
- Sutulov, A. (1963). Flotación De Minerales. Concepción, Chile.
- Sutulov, A. (1993). Flotación de minerales. Santiago de Chile: Edit.
- Wark, K. L. (1955). Principles of Flotation . Melbourne.

CAPÍTULO 11. LINKOGRAFÍA

http://procesaminerales.blogspot.pe/2012/10/cinetica-flotacion.html

http://procesaminerales.blogspot.pe/2012/10/cinetica-flotacion.html

https://spanish.alibaba.com/product-gs/best-quality-denver-d12-laboratory-flotation-machine-1953959403.html

https://spanish.alibaba.com/product-gs/best-quality-denver-d12-laboratory-flotation-machine-1953959403.htm

http://www.southernperu.com/.

http://www.definicionabc.com/ciencia/oxidacion.php

http://www.elmundo.es/diccionarios/

http://definicion.mx/reaccion-quimica/

https://es.wikipedia.org/wiki/Hidr%C3%B3lisis

https://es.wikipedia.org/wiki/Cat%C3%A1lisis

http://www.southernperu.com/.

http://www.cytec.com/