

FACULTAD DE INGENIERÍA INDUSTRIAL

ESCUELA DE INGENIERÍA INDUSTRIAL

"OPTIMIZACIÓN EN ANÁLISIS DE INSECTICIDAS MEDIANTE LA UTILIZACIÓN DE UN AUTOSAMPLER EN CROMATOGRAFÍA DE GASES - 2018"

Trabajo de investigación para optar al grado de:

Bachiller en ingeniería industrial

Autor:

Lorenzo, Nima Rosas

Asesor:

Mg. Gina Rosas Díaz

Lima – Perú

2018

ÍNDICE DE CONTENIDOS

DEDICATORIA	4
AGRADECIMIENTO	5
ÍNDICE DE CONTENIDOS	6
ÍNDICE DE TABLAS	7
ÍNDICE DE FIGURAS	8
RESUMEN	9
CAPÍTULO I INTRODUCCIÓN	10
1.1. Realidad problemática	10
1.2. Formulación del problema	17
1.2.1. Problema general	17
1.2.2. Problemas específicos	17
1.3. Objetivos	17
1.3.1. Objetivo general	17
1.3.2. Objetivos específicos	17
CAPÍTULO II METODOLOGÍA	18
CAPÍTULO III RESULTADOS	24
CAPÍTULO IV DISCUSIÓN Y CONCLUSIONES	27
4.1. Discusión	27
4.2. Conclusiones	27
REFERENCIAS	28
ANEXOS	29
ANEXO Nº 1. Consumibles del cromatógrafo	29
ANEXO Nº 2. Estuche de la columna del cromatógrafo	30
ANEXO Nº 3. Columna cromatográfica	31
ANEXO Nº 4. Cromatógrafo con autosampler	32
ANEXO Nº 5. Técnicas clásicas de separación	33
ANEXO Nº 6. Análisis Ishikawa	34

ÍNDICE DE TABLAS

Tabla N° 1. Muestras Recibidas y muestras analizadas	15
Tabla N° 2. Detalles de los productos que se analizan en Farmagro	15
Tabla N° 3. Muestras recepcionadas vs Muestras analizadas Año 2017	16
Tabla N° 4. Comparación DAP Actual Vs DAP Proyectado	24
Tabla N° 5. Comparación de tiempos de análisis actúales Vs Proyectado	24
Tabla N° 6. Comparación de beneficios económicos actual versus proyectado	25
Tabla N° 7. Comparación económica analizando 1057 muestras de insecticidas formuladas	25
Tabla N° 8. Comparación de análisis de 7044 muestras de insecticidas al año	26
Tabla N° 9. Análisis al 100% de Muestras recepcionadas	26

ÍNDICE DE FIGURAS

Figura N° 1. Equipo Autosampler	13
Figura N° 2. Equipo cromatógrafo de Gases	14
Figura N° 3. Tabla comparativa de unidades recibida versus la cantidad de muestras analizadas	16
Figura N° 4. Septa Agilent Microperforada	19
Figura N° 5. Estuche de Septa Agilent	20
Figura N° 6. Conjunto de Viales	21
Figura N° 7. Agilent de uso manual (Jeringa)	22
Figura N° 8. Aguja Agilent para autosampler (Jeringa)	23

RESUMEN

Farmagro, como empresa Agro industrial y por estar entre las 5 mejores empresas del agro tiene que estar a la vanguardia de las nuevas tecnologías, innovando su metodología, y fórmulas para obtener mejores productos y de buena calidad como valor agregado para el cliente final.

En este trabajo de Tesis denominado Optimización en análisis de insecticidas, mediante utilización de autosampler en cromatografía de gases, cuyo objetivo de esta propuesta es demostrar que usando un autosampler en cromatografía de gases, se puede optimizar tiempo, costos y mejorar la calidad y analizar las muestras recibidas al 100% en el laboratorio de control de calidad de Farmagro SA.

En Farmagro hay un problema que se ha generado gracias a la explosión de ventas de sus productos agroindustriales, en donde el área de control de calidad no se da abasto para analizar todas las muestras de sus insecticidas que formulan, analizando un 15% del total de sus muestras que recibe. Para ello con la ayuda de herramientas como el Ishikawa, se ha llegado a la conclusión de automatizar el equipo en donde se analizan las muestras de los insecticidas formulados.

En reunión con los directivos de Farmagro, se determinó hacer la mejora optimizando el equipo con la compra de un autosampler y modernización del software del Cromatógrafo de Gases, haciendo estos cambios el área de control de calidad está comprometida en analizar las muestras al 100%, porque el autosampler cuenta con capacidad de analizar 16 muestras de una sola corrida, ahorrando tiempo y dinero.

NOTA DE ACCESO
No se puede acceder al toyte complete pues contiene dates confidenciales
No se puede acceder al texto completo pues contiene datos confidenciales.
No se puede acceder ai texto completo pues contiene datos confidenciales.
No se puede acceder ai texto completo pues contiene datos comidenciales.
No se puede acceder ai texto compieto pues contiene datos comidenciales.
No se puede acceder ai texto completo pues contiene datos comidenciales.
No se puede acceder ai texto compieto pues contiene datos comidenciales.
No se puede acceder ai texto compieto pues contiene datos comidenciales.
No se puede acceder al texto completo pues contiene datos confidenciales.
No se puede acceder ai texto completo pues contiene datos confidenciales.
No se puede acceder ai texto completo pues contiene datos comidenciales.

solo se analizaba un 15% de las muestras recepcionadas, pero hoy en día se analizan todas las muestras en su totalidad (100%)

De esta manera se obtendrá resultados positivos, garantizando la calidad y la eficacia de la propuesta, cuya finalidad es alcanzar la optimización en los resultados y así de esta manera la empresa cumplirá sus objetivos y mejorando la calidad de sus productos, minimizando los tiempos y sobre todo reduciendo los costos y disponibilidad de mano de obra porque el técnico que opera el equipo va a tener mayor tiempo para que haga otras labores, sin descuidar el proceso de análisis de todas las muestras que llegan de producción al área de control de calidad.

REFERENCIAS

Hernández. (2015). Introducción a la Cromatografía de Gases Primera Parte 05 de Agosto del 2015

https://lidiaconlaquimica.wordpress.com/2015/08/05/introduccion-a-la-cromatografia-de-gases/

Martínez Vidal / Garrido Frenich – (2005) Pesticide Protocols

https://books.google.com.pe/books?isbn=159259929X

Mendeley. (2017). Homepage | Mendeley. Recuperado 16 de mayo de 2017, a partir de https://www.mendeley.com/

Zotero. (2017). es:quick_start_guide [Zotero Documentation]. Recuperado 16 de mayo de 2017, a partir de https://www.zotero.org/support/es/Quick%20Start%20Guide