

# FACULTAD DE INGENIERÍA

Carrera de Ingeniería Geológica

"ESTIMACIÓN DEL COMPORTAMIENTO GEOMECÁNICO, MEDIANTE MÉTODO DE KRIGING PARA EL MACIZO ROCOSO DEL CERRO CALLACPUMA - SECTOR HUAYRAPONGO, 2020"

Tesis para optar el título profesional de:

INGENIERO GEÓLOGO

Autor: Bach. Alex Fredy Valdivia Donayre

> Asesor: Ing. Daniel Alva Huamán

> > Cajamarca - Perú

2020



### Tabla de contenidos

| DEDI | ICATORI      | A                                                                          | 2            |
|------|--------------|----------------------------------------------------------------------------|--------------|
| AGR  | ADECIMI      | ENTO                                                                       | 3            |
| ÍNDI | CE DE TA     | BLAS                                                                       | 6            |
| ÍNDI | CE DE FI     | GURAS                                                                      | 7            |
| RESU | J <b>MEN</b> |                                                                            | 9            |
| CAPÍ | TULO I. I    | INTRODUCCIÓN                                                               | 10           |
| 1.1. | Realidad     | l problemática                                                             | 10           |
| 1.2. | Formula      | ción del problema                                                          | 13           |
| 1.3. | Objetivo     | 08                                                                         | 13           |
|      | 1.3.1.       | Objetivo general                                                           | 13           |
|      | 1.3.2.       | Objetivos específicos                                                      | 13           |
| 1.4. | Hipótesi     | is                                                                         | 13           |
|      | 1.4.1.       | Hipótesis general                                                          | 13           |
| CAPÍ | TULO II.     | METODOLOGÍA                                                                | 14           |
| 2.1. | Tipo de      | investigación                                                              | 14           |
| 2.2. | Població     | ón y muestra (Materiales y métodos)                                        | 14           |
| 2.3. | Técnicas     | s e instrumentos de recolección y análisis de datos                        | 15           |
| 2.4. | Procedia     | niento                                                                     | 16           |
| 2.5. | Aspecto      | s generales                                                                |              |
| 2.6. | Geologí      | a local                                                                    |              |
| CAPÍ | TULO III     | . RESULTADOS                                                               | 31           |
| 3.1. | Geologí      | a estructural                                                              | 31           |
| 3.2. | Caracter     | ización granulométrica                                                     | 34           |
| 3.3. | Caracter     | ización de pendientes                                                      | 35           |
| 3.4. | Registro     | de estimación                                                              | 38           |
| 3.5. | Análisis     | geoestadístico                                                             | 46           |
|      | 3.5.1.       | Análisis exploratorio de datos                                             | 52           |
|      | 3.5.2.       | Análisis de correlación bivarial y multivarial                             | 59           |
|      | 3.5.3.       | Variografía                                                                | 66           |
|      |              | 3.5.3.1. Comportamiento estructural y definición del modelo del variograma | a teórico 82 |
|      |              | 3.5.3.2. Predicción mediante Kriging de los parámetros geomecánicos        | 88           |
| CAPÍ | TULO IV      | . DISCUSIÓN Y CONCLUSIONES                                                 | 97           |
| REFI | ERENCIA      | S                                                                          | 102          |
| ANE  | XOS          |                                                                            | 104          |
| ANEX | XO N°1. P€   | endientes promedio en la zona de estudio                                   | 104          |
| ANEX | XO N°2. V    | viviendas cercanas a las laderas del cerro Callacpuma.                     | 105          |
| ANEX | XO N°3. D    | Desprendimiento de roca                                                    | 106          |



| ANEXO Nº4. Presencia de turistas en el cerro Callacpuma             | 107 |
|---------------------------------------------------------------------|-----|
| ANEXO N°5. Coordenadas de las estaciones geomecánicas.              | 108 |
| ANEXO N°6 Plano geológico de la zona de estudio                     | 110 |
| ANEXO N°7 Rumbos y buzamientos de los estratos.                     | 111 |
| ANEXO N°8 Probabilidad de precipitación                             | 113 |
| ANEXO N°9 Vegetación en la zona de estudio                          | 114 |
| ANEXO N°10 Estación geomecánica N° 7                                | 115 |
| ANEXO Nº11. Validación cruzada RCU                                  | 116 |
| ANEXO N°12. Validación cruzada JRC                                  | 118 |
| ANEXO N°13. Validación cruzada RQD Lineal                           | 120 |
| ANEXO Nº14. Validación cruzada de Espaciado de las discontinuidades | 122 |



## ÍNDICE DE TABLAS

## Pág.

| Tabla 1 Valores típicos del peso específico y porosidad de las rocas   | 17  |
|------------------------------------------------------------------------|-----|
| Tabla 2 Estimación en terreno de la resistencia en compresión uniaxial | 20  |
| Tabla 3 Correlación del JRC                                            | 22  |
| Tabla 4 Clasificación de la calidad del macizo rocoso según RQD        | 24  |
| Tabla 5 Descripción del espaciado                                      | 25  |
| Tabla 6 Coordenadas UTM WGS84 del área de estudio                      | 27  |
| Tabla 7 Accesibilidad al área de estudio                               |     |
| Tabla 8 Valores RCU de cada estación geomecánica                       |     |
| Tabla 9 Valores JRC de cada estación geomecánica.                      | 40  |
| Tabla 10 Valores RQD obtenidos en cada estación geomecánica            | 42  |
| Tabla 11 Valores de Espaciado obtenidos en cada estación geomecánica   | 44  |
| Tabla 12 Coordenadas UTM WGS84 de las estaciones geomeánicas           | 108 |
| Tabla 17 Rumbos y buzamientos de los estratos.                         | 111 |
| Tabla 13 Validación cruzada RCU                                        | 116 |
| Tabla 14 Validación cruzada JRC                                        | 118 |
| Tabla 15 Validación cruzada de RQD Lineal                              | 120 |
| Tabla 16 Validación cruzada de Espaciado de las discontinuidades       |     |



## ÍNDICE DE FIGURAS

| Figura 1 Malla de muestreo                                           | .15   |
|----------------------------------------------------------------------|-------|
| Figura 2 Toma de datos para RCU.                                     | .18   |
| Figura 3 Gráfico de correlación para el martillo Schmidt.            | .19   |
| Figura 4 Diagrama para determinar JRC.                               | .21   |
| Figura 5 Toma de datos JRC.                                          | .22   |
| Figura 6 Toma de datos para RQD Lineal.                              | .23   |
| Figura 7 Toma de datos para Espaciamiento de las discontinuidades.   | .25   |
| Figura 8 Plano de ubicación del área de estudio                      | .27   |
| Figura 9 Accesibilidad al área de estudio.                           | .28   |
| Figura 10 Formación Farrat (Ki-fa).                                  | .30   |
| Figura 11 Plano estructural del área de estudio.                     | .32   |
| Figura 12 Diagrama de rosas de la zona de estudio                    | .33   |
| Figura 13 Diagrama de polos de la zona de estudio.                   | .33   |
| Figura 14 Arenisca blanca de grano fino                              | .34   |
| Figura 15 Microconglomerado                                          | 34    |
| Figura 16 Pendientes pronunciadas de la zona de estudio              | 36    |
| Figura 17 Plano de nendientes                                        | 37    |
| Figura 18 Análisis estadístico de RCU                                | 17    |
| Figura 10 Histograma de RCU                                          | 17    |
| Figura 20 Apálisis estadístico de IPC                                | 18    |
| Figure 21 Histograms do IDC                                          | 40    |
| Figure 22 Apólicie este dístice de DOD                               | 47    |
| Figura 22 Aliansis estadístico de RQD.                               | .49   |
| Figura 25 Histograma de RQD Lineal.                                  | .30   |
| Figura 24 Analisis estadístico de Espaciado de las discontinuidades. | 51    |
| Figura 25 Histograma de Espaciado de las discontinuidades.           | .51   |
| Figura 26 Test de normalidad RCU (Mpa).                              | .53   |
| Figura 27 Test de normalidad JRC.                                    | .54   |
| Figura 28 Test de normalidad RQD Lineal (%).                         | .55   |
| Figura 29 Test de normalidad Espaciado (m).                          | .56   |
| Figura 30 Análisis de tendencia RCU (Mpa).                           | .57   |
| Figura 31 Análisis de tendencia JRC.                                 | .57   |
| Figura 32 Análisis de tendencia RQD Lineal (%).                      | .58   |
| Figura 33 Análisis de tendencia Espaciado (m)                        | .59   |
| Figura 34 Análisis bivariado JRC vs. RCU (Mpa).                      | .60   |
| Figura 35 Análisis bivariado RQD Lineal vs. RCU (Mpa).               | .61   |
| Figura 36 Análisis bivariado Espaciado (m) vs. RCU (Mpa).            | .62   |
| Figura 37 Análisis bivariado JRC vs. RQD Lineal %.                   | .63   |
| Figura 38 Análisis bivariado JRC vs. Espaciado (m).                  | .64   |
| Figura 39 Análisis bivariado RQD Lineal % vs. Espaciado (m).         | .65   |
| Figura 40 Matriz de correlación multivariable.                       | .66   |
| Figura 41 Modelo esférico con ángulo de 0°                           | .67   |
| Figura 42 Modelo esférico con ángulo de 45°                          | .67   |
| Figura 43, Modelo esférico con ángulo de 90°.                        | .67   |
| Figura 44 Modelo esférico con ángulo de 135°                         | .68   |
| Figura 45 Modelo exponencial con ángulo de 0°.                       | .68   |
| Figura 46 Modelo exponencial con ángulo de 45°.                      | .68   |
| Figura 47 Modelo Exponencial con ángulo de 90°.                      | .69   |
| Figura 48 Modelo exponencial con ángulo de 135°.                     | .69   |
| Figura 49 Modelo Gaussiano con ángulo de 0°.                         | .69   |
| Figura 50 Modelo Gaussiano con ángulo de 45°                         | 70    |
| Figura 51 Modelo Gaussiano con ángulo de 90°                         | 70    |
| Figura 52 Modelo Gaussiano con ángulo de 135º                        | 70    |
| Figura 53 Modelo esférico con ángulo de 0º                           | 71    |
| Figura 54 Modelo esférico con ángulo de 45°                          | 71    |
|                                                                      | . / 1 |



| Figura 55 Modelo esférico con ángulo de 90°                           | .71       |
|-----------------------------------------------------------------------|-----------|
| Figura 56 Modelo esférico con ángulo de 135°                          | .72       |
| Figura 57 Modelo exponencial con ángulo de 0°.                        | .72       |
| Figura 58 Modelo exponencial con ángulo de 45°.                       | .72       |
| Figura 59 Modelo exponencial con ángulo de 90°.                       | .73       |
| Figura 60 Modelo exponencial con ángulo de 135°.                      | .73       |
| Figura 61 Modelo gaussiano con ángulo de 0°                           | .73       |
| Figura 62 Modelo gaussiano con ángulo de 45°                          | .74       |
| Figura 63 Modelo gaussiano con ángulo de 90°                          | .74       |
| Figura 64 Modelo gaussiano con ángulo de 135°                         | .74       |
| Figura 65 Modelo esférico con ángulo de 0°                            | .75       |
| Figura 66 Modelo esférico con ángulo de 45°                           | .75       |
| Figura 67 Modelo esférico con ángulo de 90°                           | .75       |
| Figura 68 Modelo esférico con ángulo de 135°                          | .76       |
| Figura 69 Modelo exponencial con ángulo de 0°.                        | .76       |
| Figura 70 Modelo exponencial con ángulo de 45°.                       | .76       |
| Figura 71 Modelo exponencial con ángulo de 90°.                       | .77       |
| Figura 72 Modelo exponencial con ángulo de 90°.                       | .77       |
| Figura 73 Modelo gaussiano con ángulo de 0°                           | .77       |
| Figura 74 Modelo gaussiano con ángulo de 45°                          | .78       |
| Figura 75 Modelo gaussiano con ángulo de 90°                          | .78       |
| Figura 76 Modelo gaussiano con ángulo de 135°                         | .78       |
| Figura 77 Modelo esférico con ángulo de 0°                            | .79       |
| Figura 78 Modelo esférico con ángulo de 45°                           | .79       |
| Figura 79 Modelo esférico con ángulo de 90°                           | .79       |
| Figura 80 Modelo esférico con ángulo de 135°                          | .80       |
| Figura 81 Modelo exponencial con ángulo de 0°.                        | .80       |
| Figura 82 Modelo exponencial con ángulo de 45°.                       | .80       |
| Figura 83 Modelo exponencial con ángulo de 90°.                       | .80       |
| Figura 84 Modelo exponencial con ángulo de 135°.                      | .81       |
| Figura 85 Modelo gaussiano con ángulo de 0°                           | .81       |
| Figura 86 Modelo gaussiano con ángulo de 45°                          | .81       |
| Figura 87 Modelo gaussiano con ángulo de 90°                          | .82       |
| Figura 88 Modelo gaussiano con ángulo de 135°                         | .82       |
| Figura 89 Variograma de RCU.                                          | .83       |
| Figura 90 Reporte final del método, RCU.                              | .84       |
| Figura 91 Variograma de JRC.                                          | .84       |
| Figura 92 Reporte final del método, JRC.                              | .85       |
| Figura 93 Variograma de RQD lineal.                                   | .86       |
| Figura 94 Reporte final del metodo, RQD Lineal.                       | .87       |
| Figura 95 Variograma de Espaciado de las discontinuidades             | .8/       |
| Figura 96 Reporte final del metodo, Espaciado de las discontinuidades | .88       |
| Figura 97 Plano de estimación RCU.                                    | .89       |
| Figura 98 Plano de variación RCU.                                     | .90       |
| Figura 99 Plano de estimación JRC.                                    | .91       |
| Figura 100 Plano de variación JRC.                                    | .92       |
| Figura 101 Plano de estimación RQD Lineal.                            | .93       |
| Figura 102 Flatto de variación de Especiedo de los discontinuidados.  | .94       |
| Figura 105 Fiano de estiliación de Espaciado de las discontinuidades. | .93<br>04 |
| Figura 104 Fiano de variacion de Espaciado de las discontinuidades.   | .70       |
| Figura 105 rendicilles inoucladas a cimpiliadas.                      | 104       |
| Figura 100 vivicituas aicualias al macizo 1000s0                      | 102       |
| Figura 107 Desprendimento de loca                                     | 107       |
| Figura 100 Plano geológico del área de estudio                        | 1107      |
| Figura 110 Probabilidad diaria de precipitación en Llacapora          | 113       |
| Figura 111 Vegetación arbustiva y arbórea en la zona de estudio       | 114       |
| Figura 112 Estación geomecánica Nº7                                   | 115       |
| Bern - 1 = Tometon Beomeeninen 1. 1                                   |           |



#### **RESUMEN**

En esta investigación se estimó mediante el método geoestadístico de Kriging, el comportamiento geomecánico del macizo rocoso del cerro Callacpuma en el sector Huayrapongo. Se consideró como muestra a las 43 estaciones geomecánicas macizo rocoso del cerro Callacpuma y la población total del macizo.

La investigación es aplicada, con alcance descriptivo y diseño no experimental. Se fundamenta en el análisis cuantitativo de los parámetros geomecánicos tales como: el coeficiente de rugosidad de las juntas (JRC) empleando el Peine de Barton, la resistencia a la compresión uniaxial (RCU) empleando el martillo Schmidt, la designación de la calidad de la roca (RQD) presente en un metro cuadrado, el espaciado de las discontinuidades representativas de los estratos. Se integró estos valores en una data geoestadística para finalmente analizarlos mediante planos de estimación. El tratamiento de la data se hizo con los softwares Excel, ArcGIS y Minitab 19. Los resultados fueron RCU (resistente a muy resistente), JRC (rugosa), RQD (media a buena), espaciado (medianamente junto). Los planos de estimación representan una fuente confiable para identificar las zonas críticas del macizo; y así ser tomadas en cuenta por parte de las autoridades pertinentes para establecer las medidas preventivas necesarias.

Palabras clave: Geoestadística, Kriging, Comportamiento Geomecánico.

## NOTA DE ACCESO

No se puede acceder al texto completo pues contiene datos confidenciales



#### REFERENCIAS

- Barton, N. R., & Bandis, S. C. (1982). *Effects of block size on the shear behavior of.* 23rd U.S. symp. on rock mechanics, 739-760.
- Barton, N., & Choubey, V. (1977). The shear strength of rock joints in theory and practice. Rock mechanics. *Rock mechanics*, 10(1-2), 1-54.
- Bieniawski, Z. (1976). *Rock Mass Classification in Rock Engineering*. Symposium Proceedings of Exploration for Rock Engineering. 1, 97-106.
- Cely Pulido, J., Siabato Vaca, W., Sánchez Ipia, A., & Rangel Sotter, A. (2002). *Geoestadística Aplicada a Estudios de Contaminación Ambiental*. Ciencia Investigación Academia Desarrollo, 2(2), 31-38.
- Egaña E., M. (2008). *Geoestadística Aplicada a Parámetros Geotécnicos (Tesis de Pregrado)*. Santiago de Chile.
- Emery, X. (2007). *Apunte de Geoestadística*. Santiago: Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile.
- Ferrari, F. (2014). Rock Mass Characterization And Spatial Estimation Of Geomechanical Properties Through Geostatistical Techniques (Tesis Doctoral). Milano.
- Ferrari, F., Apuani, T., & Giani, G. P. (2014). Rock Mass Rating spatial estimation by geostatistical analysis. International Journal of Rock Mechanics & Mining Sciences. 70, 162-176. doi:10.1016/j.ijrmms.2014.04.016
- Ferrer, M., & Gonzales, L. (2007). Manual de campo para la descripción y caracterización de macizos rocosos en afloramientos (2° ed) Serie: guías y manuales, N° 4. Madrid: Publicaciones del Instituto Geológico y Minero de España.
- Gonzales de Vallejo, L., Ferrer, M., Ortuño , L., & Oteo , C. (2002). *Ingeniería Geológica*. Madrid: Pearson Eduación.
- Heras, K. (2017). Estudio de las estructuras de emplazamiento de cuerpos ígneos plutónicos entre la comunidad de Michiquillay y el sector el Punre. Cajamarca: Universidad Nacional de Cajamarca.
- Hoek, E., & Brown, E. (1997). Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34(8), 1165-1186. doi: 10.1016/S1365-1609(97)80069-X.
- Instituto Nacional de Defensa Civil (INDECI); Programa De Prevención Y Medidas De Mitigación Ante Desastres Ciudad De Cajamarca. Cajamarca.
- ISRM. (1978). Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and, 15(6):319–368.
- Johnston, K., Ver Hoef, J., Krivoruchko, K., & Lucas, N. (2004). Using ArcGIS Geostatistical Analyst. ESRI, 300.
- Londoño, L., & Valdés, J. C. (2012). *Geoestadística Aplicada: Generación de Mapas de Interpolación para el Estudio de Fenómenos Distribuidos Espacialmente*. Alemania: Academia Española.
- Luza, C., & Sosa, N. (2016). Caída de rocas en el sector de Huamatambo. Distrito Huamatambo, provincia Castrovirreyna, departamento Huancavelica. N° A6702. https://hdl.handle.net/20.500.12544/1183. Huancavelica: Instituto Geológico Minero y Metalúrgico.
- McBratney, A., Webster, R., & Burgess, T. (1981). The Design of Optimal Sampling Schemes for Local Estimation and Mapping of Regionalized Variables I. Computers and Geosciences. 7(4), 331-334.



- Miller, R. P. (1966). *Engineering classification and index properties for intact rock. Ph. D. thesis* Universidad de Illinois. EEUU. Illinois.
- Minitab. (2019). https://support.minitab.com/es-mx/minitab/18/help-and-how-to/statistics/basicstatistics/how-to/normality-test/interpret-the-results/keyresults/#:~:text=Por% 20lo% 20general% 2C% 20un% 20nivel,s% C3% AD% 20siguen% 20una % 20distribuci% C3% B3n% 20normal.
- Ordaz, A., Esquivel, R., Hernández, J., & Cabadas, H. (2019). Susceptibilidad A Desprendimentos De Rocas En La Urbanización La Teresona-Zopilocalco Norte, Tolucas: Premisas Para El Desarrollo Comunitario. Investigaciones Geográficas • Instituto de Geografía • UNAM, 99(59888), 2448-7279. doi:10.14350/rig.59888.
- Ortiz, J. (2006). *Apuntes de Simulación Geoestadística*. Cátedra CODELCO de Evaluación de Yacimientos. Santiago: Depto. de Ingeniería de Minas, Universidad de Chile.
- Palmstrom, A. (1982). *The volumetric joint count: a useful and simple measure of the degree of rock mass jointing.* Proceedings of the IAEG congress. New Delhi, 221–28.
- Priest, S. D., & Hudson, J. A. (1976). *Discontinuity spacings in rock*. International Journal of Rock Mechanics and Mining Sciences & Geomechanics. 13, 135–148.
- Rodríguez, S. (2018). Impactos Geotécnico-Ambientales En Cabeceras De Subcuencas Por Implantación De Minas Conga Cajamarca-Perú. (Tesis Doctoral). Universidad Nacional de Cajamarca.
- Rojas, V. M. (2011). Metodlogía de la investigación. Diseño y ejecución. Bogotá: Ediciones de la U.
- Tarrillo, R. (2018). Grado De Estabilidad De Los Taludes Críticos De La Carretera Baños Del Inca - Llacanora (Tesis de Pregrado). Cajamarca.
- Weather Spark. (s.f. de s.f. de s.f.). © *Cedar Lake Ventures, Inc.* Obtenido de https://weatherspark.com/
- Zavala, B., & Roxana, B. (2007). Zonas Críticas Por Peligros Geológicos Y Geohidrológicos En La Región Cajamarca. Lima: Instituto Geológico Minero y Metalúrgico.