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ABSTRACT 

This paper presents a forecast model of the active power of a photovoltaic (PV) power generation system. In this model, 

a feed-forward neural network (FNN) is combined with bootstrap aggregation techniques using the Box–Cox 

transformation, seasonal and trend decomposition using Loess, and a moving block bootstrap (MBB) technique. An 

analysis is conducted using the data provided by the active power of the PV power generation system; the data are 

collected every 30 min for 12 months. The FNN method combined with MBB techniques consistently outperformed the 

original FNN in terms of forecasting accuracy based on the root mean squared error, on the forecast from one day of 

anticipation. The results are statistically significant as demonstrated through the Ljung–Box test, which verifies that the 

forecast errors are not correlated, thereby validating the proposed model. 
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INTRODUCTION 

Electricity demand growth is particularly relevant in the residential sector, which currently uses approximately 

40% of global energy resources and generates approximately one-third of the greenhouse gas emissions [1]. In 

addition to the risk of an energy crisis owing to the exclusive use of conventional energy generation, a marked 

variability in demand exists owing to variations in daily and seasonal environmental conditions, thereby creating 

simultaneity problems between demand and energy production [2]. Electricity microgeneration systems using 

photovoltaic (PV) panels are the most appropriate technical alternative for this problem [3]. The use of PV power 

plants and the ability to forecast the generation of solar energy can enhance the reliability of the system and reduce 

the price of energy, thereby improving electricity production planning [4]. Therefore, forecasting the production of 

PV energy is crucial for improving the integration of this sustainable energy. 

In this regard, energy production is forecasted in terms of minutes, hours, days, months, or years to ensure 

demand coverage with the highest possible productivity margin [5]. Furthermore, the selection of the most suitable 

forecasting method depends on different factors, such as the complexity, nature, and purpose of the installed 

system, or the precision and adaptability of the estimation based on forecast, among others [6].A systematic review 

that identified several forecasting methods was presented by Jimenez et al. (2019) [5]. The results obtained by the 
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authors indicate a classification based on physical methods established in satellite image data, solar irradiance, and cloud 

index forecast. In the forecasting process, the precision of time series methods such as autoregressive moving average, 

autoregressive integrated moving average, and sp

nonlinearity of cloud movement and climatic fluctuations. 

In this regard, the author emphasizes that artificial neural networks (ANNs) and support vector machines are more 

reliable solutions for predicting the production of PV energy in terms of global and horizontal solar irradiance 

in accordance with other studies [7], [8]

forecast the demand and production of electricity, owing

series (i.e., daily and hourly recordings, etc.), the variance changes over time and in a nonsystematic manner in many 

cases, such that the high and low variance periods alternate. This gener

consequently, a higher level of time series noise. The noise level affects the ANN learning process, decreasing the 

generalization capacity and causing overfitting. However, the implicationsof this might be reduced

smoothing the variation in the time series using bootstrap techniques 

Some studies showed a high predictive power and fewer errors in the bootstrap technique when the latter was used 

with other forecasting methods, e.g., a random forest algorithm was used in 

determine the forecasting performance in a hybrid form of the ANN feed

the active power data of a PV system. 

METHODOLOGY 

Fig. 1 shows the steps performed to obtain the result analysis. First, a Box

a seasonal-trend decomposition using Loess (STL) of the sample into three parts: seasonal, trend, and remainder. Next, 100 

subseries of the residual part were created using the bootstrap technique. Subsequently, each one of them was joined with 

the original seasonal and trend components, in which a reverse Box

versions of bootstrap series identical to t

feed-forward ANN model. Finally, the average of the 100 forecasts was obtained for the final forecast.

Figure 1: 
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ed on physical methods established in satellite image data, solar irradiance, and cloud 

index forecast. In the forecasting process, the precision of time series methods such as autoregressive moving average, 

autoregressive integrated moving average, and space–time autoregressive moving average models are restricted by the 

nonlinearity of cloud movement and climatic fluctuations.  

In this regard, the author emphasizes that artificial neural networks (ANNs) and support vector machines are more 

ons for predicting the production of PV energy in terms of global and horizontal solar irradiance 

[8], [9], [10], [11], [12], [13], in which ANN methods have been used extensively to 

forecast the demand and production of electricity, owing to their better performances.However, for a high

series (i.e., daily and hourly recordings, etc.), the variance changes over time and in a nonsystematic manner in many 

cases, such that the high and low variance periods alternate. This generates a higher level of particularity and, 

consequently, a higher level of time series noise. The noise level affects the ANN learning process, decreasing the 

generalization capacity and causing overfitting. However, the implicationsof this might be reduced

smoothing the variation in the time series using bootstrap techniques [14]. 

Some studies showed a high predictive power and fewer errors in the bootstrap technique when the latter was used 

with other forecasting methods, e.g., a random forest algorithm was used in [15]. Therefore, the objective of this study is to 

determine the forecasting performance in a hybrid form of the ANN feed-forward model and bootstrap techniques using 

eps performed to obtain the result analysis. First, a Box–Cox transformation was performed, followed by 

trend decomposition using Loess (STL) of the sample into three parts: seasonal, trend, and remainder. Next, 100 

t were created using the bootstrap technique. Subsequently, each one of them was joined with 

the original seasonal and trend components, in which a reverse Box–Cox transformation was applied to them to obtain 100 

versions of bootstrap series identical to the original. Next, forecasts were made with each of the bootstrap series using the 

forward ANN model. Finally, the average of the 100 forecasts was obtained for the final forecast.

Figure 1: Illustration of methodology sequence. 
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ed on physical methods established in satellite image data, solar irradiance, and cloud 

index forecast. In the forecasting process, the precision of time series methods such as autoregressive moving average, 

time autoregressive moving average models are restricted by the 

In this regard, the author emphasizes that artificial neural networks (ANNs) and support vector machines are more 

ons for predicting the production of PV energy in terms of global and horizontal solar irradiance [5]. This is 
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to their better performances.However, for a high-frequency time 
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ates a higher level of particularity and, 

consequently, a higher level of time series noise. The noise level affects the ANN learning process, decreasing the 

generalization capacity and causing overfitting. However, the implicationsof this might be reduced by stabilizing and 

Some studies showed a high predictive power and fewer errors in the bootstrap technique when the latter was used 

. Therefore, the objective of this study is to 

forward model and bootstrap techniques using 

Cox transformation was performed, followed by 

trend decomposition using Loess (STL) of the sample into three parts: seasonal, trend, and remainder. Next, 100 

t were created using the bootstrap technique. Subsequently, each one of them was joined with 

Cox transformation was applied to them to obtain 100 

he original. Next, forecasts were made with each of the bootstrap series using the 

forward ANN model. Finally, the average of the 100 forecasts was obtained for the final forecast. 
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A.Data Collection 

Fig. 2 shows the active power data of a 3.63 kWp PV system, in the state of Rio de Janeiro, Brazil. The data sample 

selected included data for an entire year, i.e., the series started on January 1, 2018, from 00:00 and ended on December 31 

(23:59) of the same year. The data were collected with readings taken every 10 s and averages of the values were obtained 

every 30 min. The data collected were stored in the EnergyLOG plus measurement device,and were then transferred to a 

personal computer. 

 
Figure 2: PV active power data used to evaluate the performance of the forecast model. 

The 3.63 kWp PV solar system comprised 11 polycrystalline silicon modules. They formed groups in series and in 

parallel to satisfy the voltage and current requirements of the inverter. The main characteristics of the panel are shown 

below in Table I. Hence, the characteristics of the inverter are shown in Table II. 

Table 1: Electrical Data Pv Module Under Stl 

Type 
POLY MODULE 330P 

Specification Data Unit 

1 Nominal Max. Power (Pmax) 330 W 

2 Opt. Operating Voltage (Vmp) 33.9 V 

3 Opt. Operating Current (Imp) 9.74 A 

4 Open Circuit Voltage (Voc) 41.1 V 

5 Module Efficiency 19.9 V 

 

Table 2: Table Type Styles 

Type 
Growatt 3000TL 

Specification Data Unit 

Input Data 

Max. DC power 3200 W 

Max. DC voltage 500 V 

Full load Mpp-Voltage range 250– 450 V 

PV voltage range MPPT 120–450 V 

Output (AC) 

Nominal AC output power 2850 W 

Max. AC power 3000 W 

Max. output current 13 A 

AC grid frequency range 50, 60 ±5% Hz 
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Type 
Growatt 3000TL 

Specification Data Unit 

Efficiency Max.efficiency 97 % 

 

B. Box–Cox Transformation 

Box–Cox transformations include logarithms and power transformations, which are determined by the parameter λ [16]. 

These transformations are typically used to stabilize the variance of a time series and were originally proposed in [16]. 

Next, the Box–Cox transformation in (1) is presented. 

�� = �����	�
,        � = 0;�	�� − 1�� ,    � ≠ 0. � (1) 

where yt is the original data of the sample shown in Fig. 2, and ωt is the transformed data. The Box–Cox 

transformation is the identity when λ = 1, it is the logarithm when λ = 0, or a transformation within the given range. The λ 

parameter is restricted to the range [0;1], and the Guerrero method was used to select its value, as described in [16]. 

C. STL Decomposition 

Once the transformed data (ωt) were obtained, they showed various patterns. Hence, it was convenient to divide them into 

different components. In this study, STL was used because it is a powerful method for decomposing time series [17]. STL 

divides the time series into its trend, seasonal, and remainder components. The division is additive, as indicated in (2) [16]. 

The stl () in the R Team Core function was used to decompose the time series into their seasonal, trend, and remainder 

components [18]. 

�� = �� + �� + �� , (2) 

where ωt is the time series data transformed; St, Tt, and Rt are the seasonal, trend-cycle, and remainder components, 

respectively.  

D. Bootstrapped Remainder 

A requirement for the forecast with time series is the stationarity of the data collected because they are typically correlated. 

It was achieved by initializing the remainder (Rt) using the moving block bootstrap (MBB) technique; the procedure 

described in [19] was used. For the active power PV series with a length n and a block size of L, [n / L] + 2 blocks from the 

remainder subseries of the STL decomposition were used. Subsequently, to obtain a series of the same length as the 

sample, the maximum possible values were discarded to reach the required length [19]. After performing the initialization 

of the residual (Rt), each bootstrap subseries was joined to the seasonal and trend components, yielding a total of 100 

similar series. Finally, the inverse Box–Cox transformation was performed in each of the bootstrap series, and 100 similar 

series were obtained for the original (xi, t). In R, the bld.mbb.bootstrap ( ) function was used. 

E. Artificial Neural Networks 

1) Neural Network Architecture 

Once the initialized series (xi, t) was performed, forecast was performed for each one. In this study, a feed-forward neural 

network (FNN) model comprising different layers was used, where each layer of nodes received inputs from the previous 
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layers, and these were input for the next layer. Next, the inputs for each node were combined via a weighted linear 

interaction [16]. The product was modified using a nonlinear function before being generated. The inputs to the hidden 

neuron, j, in Fig. 3, were combined linearly, as expressed in (3) 

Figure 

where zj corresponds to the level of internal activity of the neuro

weighted inputs (wi, j, xi, t) with another adjustable value called bias (b

(wi, j) and input data (xi, t). Therefore, parameters b

learned to use the observed data [16]. 

FNNs have been shown effective in solving complex tasks. The theoretic

learning tasks are attributed to the universal approximation theorem. This theorem imposes a nonlinearity condition on 

hidden nodes, i.e., the function must be continuous, limited, increase uniformly 

activation function is required by the weight update rules, and the differentiation condition becomes an algorithmic 

requirement. Therefore, the sigmoid function was used in the forecast model because it exhibits these properties 

output (s (z)) of the linear combination is

sigmoid function, S (z), which is shown in (4) 

2) Neural Network Autoregression 

The time series data can be used as input to an FNN, as shown in (5) 

was considered, and it is presented as FNN (p, P, k) [f]. This indicates that p non

inputs, and k neurons exist in the hidden layer; additionally, [f] is expressed by the frequency.

���,���, �
The nnetar () function in R [18]

specified, they are selected automatically, i.e., for the seasonal time series, P = 1; 

appropriate linear model according to the Akaike information criterion. If k is not specified, it is defined as (p + P + 1) /

approaching the nearest integer value. Finally, as the data presented in Fig. 2 were obtain

the daily frequency [f] was 48. 
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layers, and these were input for the next layer. Next, the inputs for each node were combined via a weighted linear 

. The product was modified using a nonlinear function before being generated. The inputs to the hidden 

neuron, j, in Fig. 3, were combined linearly, as expressed in (3) [16].  

 
Figure 4: Feed-forward ANN with a hidden layer. 

� = ! +"#�, ��,� ,$
�%�  (3) 

corresponds to the level of internal activity of the neuron, which is obtained by combining the sum of the 

) with another adjustable value called bias (bj). The weighted entries comprised synaptic weights 

). Therefore, parameters bj and wi, j were obtained during the training phase, in which the network 

FNNs have been shown effective in solving complex tasks. The theoretical foundations for the solution of 

learning tasks are attributed to the universal approximation theorem. This theorem imposes a nonlinearity condition on 

hidden nodes, i.e., the function must be continuous, limited, increase uniformly [20].In this context, the derivative of the 

activation function is required by the weight update rules, and the differentiation condition becomes an algorithmic 

Therefore, the sigmoid function was used in the forecast model because it exhibits these properties 

output (s (z)) of the linear combination is then modified using a nonlinear function before the exit of each layer using the 

sigmoid function, S (z), which is shown in (4) [16]. 

&�'
 = 	 11 + )�'* (4) 

The time series data can be used as input to an FNN, as shown in (5) [21]. In this study, an FNN model with a hidden layer 

was considered, and it is presented as FNN (p, P, k) [f]. This indicates that p non-seasonal lagged inputs, P seasonal lagged 

the hidden layer; additionally, [f] is expressed by the frequency.

��,��+, …	 , ��,��-, ��,��. , ��,��+. , ��,��/.� (5) 

[18] fits the FNN (p, P, k) f model. For this function, when the p and P values are not 

specified, they are selected automatically, i.e., for the seasonal time series, P = 1; furthermore, p is selected from the 

appropriate linear model according to the Akaike information criterion. If k is not specified, it is defined as (p + P + 1) /

approaching the nearest integer value. Finally, as the data presented in Fig. 2 were obtained with values read every 30 min, 

                                                      12483 

                                                                editor@tjprc.org 

layers, and these were input for the next layer. Next, the inputs for each node were combined via a weighted linear 

. The product was modified using a nonlinear function before being generated. The inputs to the hidden 

 

n, which is obtained by combining the sum of the 

). The weighted entries comprised synaptic weights 

during the training phase, in which the network 

al foundations for the solution of 

learning tasks are attributed to the universal approximation theorem. This theorem imposes a nonlinearity condition on 

.In this context, the derivative of the 

activation function is required by the weight update rules, and the differentiation condition becomes an algorithmic 

Therefore, the sigmoid function was used in the forecast model because it exhibits these properties [20]. The 

then modified using a nonlinear function before the exit of each layer using the 

. In this study, an FNN model with a hidden layer 

seasonal lagged inputs, P seasonal lagged 

the hidden layer; additionally, [f] is expressed by the frequency. 

fits the FNN (p, P, k) f model. For this function, when the p and P values are not 

furthermore, p is selected from the 

appropriate linear model according to the Akaike information criterion. If k is not specified, it is defined as (p + P + 1) / 2, 

ed with values read every 30 min, 
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3) Learning Process of Neural Networks 

The p, P, and k values in the learning process of the FNN were used for the network training. Therefore, the PV active 

power data were separated into training and test data. The size of the dataset for training was determined to be 80% [16]. 

Once the parameters that fit the model with the nnetar () function were obtained for both the original series (yt) and the 

initialized series (xi, t), they were verified by tabbing the number of internal neurons (k), recording the mean squared error 

(MSE) for each case. The MSE is the performance function used by the neural network. 

4) Evaluation of Forecast Accuracy 

Once the parameters of the FNN models were verified, both the original series data and the bootstrap series were used, and 

forecasts were made to determine the performance. Finally, the performance of the forecasts was evaluated using the 

procedure proposed, which involves performing a cross-validation of the forecasts [22].The two most used independent 

scale measures are based on absolute errors or square errors and are expressed by the mean absolute percentage error 

(MAPE) [23] and root mean square error (RMSE) [12] respectively, as shown in (6) and (7), respectively. 

0123 = 4 " 5)�	�5 /ℎ
89:

�%89� ;�	100% (6) 

 

�0�3 = = " �)�
+/ℎ8%:
�%89� , (7) 

 

where the estimation of the forecast error (et) is expressed by the difference between the observed value (yt) and 

its forecast (et), i.e., the unpredictable part of the observation, as indicated in (8). Furthermore, (h) is the number of cases 

evaluated [16]. 

)� = 	>��	� (8) 

If the models do not fit the data and result in strongly correlated errors, this occurrence can be easily perceived by verifying 

the residuals for the serial correlation using the Ljung–Box test. The Ljung–Box test statistic has a chi-square distribution 

with u – n degrees of freedom and is expressed as shown in (9) [22]. 

? = @�@ + 2
∑ �@ − C
��D�%� ED+, (9) 

where u is the number of lags used, i.e., 15; ru is the estimated value of the u umpteenth serial autocorrelation 

coefficient; the p-value is expressed as Prob [Q ≥ χ2G.L]. The Ljung–Box test was implemented in R using the Box.test () 

function [18]. 

RESULTS AND DISCUSSIONS 

In this section, the results of the forecast of active PV power are presented. For this purpose, the FNN (30, 1, 16) 48 and 

MBB-FNN (30, 1, 15) 48 models were obtained for the original data (yt) and initialized series (xi, t), respectively. The 
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verification of these models based on the tabulation of the number of neurons in the hidden layer (k) is shown in Fig. 4. As 

shown, the number of hidden neurons for the FNN and MBB-FNN models were 16 and 15, respectively, as determined by 

the MSE registry.  

 
Figure 5: The number of hidden neurons for the FNN and MBB-FNN models. 

In Fig. 5, the results of the forecasts are presented based on the performance of the defined forecast models, both 

for the original and initialized series. The results for three weeks of different months, randomly selected from the forecast 

set, are shown. The first week corresponds to the period from February 19 to 25, the second from June 2 to 8, and the last 

from December 23 to 29, 2018, for the FNN and MBB-FNN models.In Fig. 5, the forecast with the resampling data from 

the original series based on the MBB technique show a better generalization that is similar to the real data. For the 

February and June forecasts, the FNN model performed well although not better than the MBB-FNN model. However, the 

performance in December was worse for the FNN, whereas the MBB-FNN demonstrated better performance owing to its 

better generalization, based on the resampling of the time series. 

 
Figure 6: Forecasting from FNN and MBB-FNN models. 
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Consequently, Fig. 6 presents the results of the model performance. The MBB-FNN and FNN models demonstrated RMSE 

values of 12.15 × 10
-2

 and 11.13 × 10
-2

 W, respectively. This difference might be because the generated bootstrap series 

was previously smoothed, resulting in a slightly higher RMSE, as shown in the selection of the number of hidden neurons 

in Fig. 4. However, in the evaluation of the performance of the forecast, MBB-FNN demonstrated a better forecast 

consistency on the horizon than the FNN model, with RMSE values of 13.46 × 10
-2

 and 17.66 × 10
-2

 W, respectively. 

 

Figure 7: Forecasting performances of FNN and MBB-FNN models. 

For the validation based on the MAPE indicator in percentage, the performances of the FNN and MBB-FNN 

models were 4.48% and 3.14%, respectively. Therefore, it can be affirmed that, when using the resampling of residuals in 

the time series using the MBB technique, uncertainties in the forecast active PV power reduced significantly. This is 

consistent with [15], where the author demonstrated high predictive power and less forecast uncertainty when using the 

MBB technique with the random forest algorithm method. Similarly, the result coincides with those of other studies using 

the bootstrap approach with the autoregressive integrated moving averagemodel, which was used for the monthly forecast 

of electrical loads [19]. The results show that combining these techniques with the FNN model for forecasting every 30 

min substantially improved the performance. 

 

Figure 8: Ljung–Box test for the MBB-FNN model. 

Finally, considering the better forecasting performance of the MBB-FNN model, the results obtained from the 

Ljung–Box test was then verified, as shown in Fig. 7. The results show that the mean of the values obtained for the entire 

horizon was close to unity, indicating that the results are statistically significant, thereby verifying the non-correlation of 

the forecast errors and validating the proposed model. 
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CONCLUSIONS 

Herein, the modeling of the forecast of PV active power was presented. As demonstrated, the resampling of the time series 

using the bootstrap technique made it possible to obtain a better performance of the FNN. Furthermore, stability against 

forecast uncertainties was demonstrated because the MBB techniques guaranteed the generalization of forecasts when 

initializing the residual of the time series. 

The FNN, combined with MBB techniques, consistently outperformed the forecast accuracy compared with the 

original FNN based on the RMSE and MAPE values, in predicting a day of anticipation with a frequency of 30 min. The 

results were statistically significant, as demonstrated through the Ljung–Box test, thereby verifying the non-correlation of 

the forecast errors and validating the proposed model. 
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