FACULTAD DE INGENIERÍA

Carrera de Ingeniería Industrial

"PROPUESTA DE IMPLEMENTACIÓN DE UN PLAN DE MANTENIMIENTO PREVENTIVO EN LA EMPRESA FUXION BIOTECH SAC, APLICANDO LA METODOLOGÍA RCM PARA LA MEJORA DE LA DISPONIBILIDAD EN LAS MÁQUINAS ENVASADORAS"

Tesis para optar el título profesional de: Ingeniero Industrial

Autores:

Bach. Segundo Gilberto Garcia Saboya Bach. Arnold Jhoel Muñoz Camones

Asesor:

Mg. Ing. Fernando Páez Espinal

Lima - Perú

2021

ACTA DE APROBACIÓN DE LA TESIS

Los miembros del jurado evaluador asignados Han procedido a realizar la evaluación de la tesis de los estudiantes: Garcia Saboya, Segundo Gilberto y Muñoz Camones, Arnold Jhoel; para aspirar al título profesional con la tesis denominada: "Propuesta de Implementación de un Plan de Mantenimiento Preventivo en la Empresa Fuxion Biotech SAC, aplicando la Metodología RCM para la mejora de la Disponibilidad en las Máquinas Envasadoras"

Luego de la revisión del trabajo, en forma y contenido, los miembros del jurado concuerdan:

() Aprobación por unanimida	d () Aprobación por mayoría
Calificativo:	Calificativo:
() Excelente [20 - 18]	() Excelente [20 - 18]
() Sobresaliente [17 - 15]	() Sobresaliente [17 - 15]
() Bueno [14 - 13]	() Bueno [14 - 13]
) Desaprobado	
Firman en señal de conformidad:	
	Ing./Lic./Dr./Mg. Nombre y Apellidos
	Jurado Presidente
	Ing./Lic./Dr./Mg. Nombre y Apellidos Jurado
	Ing./Lic./Dr./Mg. Nombre y Apellidos

DEDICATORIA

El presente trabajo está dedicado en primer lugar a Dios, por darnos la vida, y permitir que logremos una de nuestras grandes metas en el ámbito profesional.

A nuestros padres, hermanos y demás familiares que nos brindaron su apoyo de fortaleza y ánimo constante.

A los docentes que nos ayudaron en nuestras consultas, por brindarnos todo su conocimiento personal y profesional para que se haga posible el presente trabajo.

A mi madre Nola Camones y mi abuelita Crispina Molina, quien siempre fue, es y será uno de mis razones para seguir avanzando.

Agradecer a mi madre Rosita Saboya y hermanos, ya que estuvieron incansablemente comprometidos y preocupados por mi desarrollo profesional.

AGRADECIMIENTO

Agradecemos el apoyo brindado por el Ing. Guillermo Cruz Jefe de planta de la empresa Fuxion Biotech S.A.C. A todas las personas que apoyaron en forma directa o indirecta con la información necesaria para lograr esta investigación. Nuestro agradecimiento a nuestro asesor el Ing. Mg. Fernando Páez Espinal por su orientación en la realización de esta investigación y a todos los profesores que nos brindaron su apoyo y soporte incondicional con conocimientos relevantes a lo largo de nuestra carrera profesional.

Tabla de contenidos

ACTA DE APROBACIÓN DE LA TESIS	2
DEDICATORIA	3
AGRADECIMIENTO	4
ÍNDICE DE TABLAS	6
ÍNDICE DE FIGURAS	8
ÍNDICE DE ECUACIONES	11
RESUMEN	12
CAPÍTULO I. INTRODUCCIÓN	13
CAPÍTULO II. METODOLOGÍA	57
CAPÍTULO III. RESULTADOS	161
CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES	170
RECOMENDACIONES	176
REFERENCIAS	177
ANEXOS	182

ÍNDICE DE TABLAS

Tabla1: Resultados Generales del Ranking de Competitividad Mundial 202015
Tabla 2: Consolidado de Reporte de fallos tiempo-modo falla por cada máquina17
Tabla 3: Posición de las causas según datos recolectados
Tabla 4:
Tabla 5: Tiempo medio entre reparaciones de máquinas en el año 2018 31
Tabla 6. Disponibilidad de máquinas en el año 201833
Tabla 7: Procedimientos propuestos para el trabajo de investigación62
Tabla 8: productos de la empresa Fuxion Biotech SAC71
Tabla 9: Clasificación de productos72
Tabla 10: Ejemplos de Modo de Falla en las maquinas envasadoras74
Tabla 11: Evidencias aleatorias de Reporte de trabajos diarios correctivos en la planta 95
Tabla 12: AMEF del sistema de Alimentación y Dosificación
Tabla 13: AMEF del sistema de sellado99
Tabla 14: AMEF del sistema de Motriz99
Tabla 15: Hoja de decisión del sistema alimentación y dosificación101
Tabla 16: Hoja de decisión del sistema de sellado102
Tabla 17: Hoja de decisión del sistema de Motriz102
Tabla 18: Tareas de plan de mantenimiento RCM108
Tabla 19: Porcentaje de mensual de MTBF122
Tabla 20: Porcentaje de mensual de MTTR esperado122
Tabla 21: Porcentaje de mensual de Disponibilidad esperado123
Tabla 22: Propuesta de Programa para capacitación interna de personal137
Tabla 23: Costos del mantenimiento netamente correctivo actual
Tabla 24: Costos de Mantenimiento preventivo con metodología RCM propuesto 148
Tabla 25: Costos de materiales para la implementación del mantenimiento preventivo basado en la metodología RCM150
Tabla 26: Costos en el posible escenario de registros de los mantenimientos correctivos, luego de la implementación del Mantenimiento Preventivo con la metodología RCM 151

Tabla 27: Costos de capacitación de personal 155
Tabla 28: Costos de materiales para acondicionamiento de almacén155
Tabla 29: Historial de costo de piezas en los últimos 6 meses para almacén propuesto 156
Tabla 30: Historial de costo de piezas en los últimos 6 meses para almacén propuesto 157
Tabla 31: : Costos globales de las piezas y repuestos propuestos 158
Tabla 32: Resumen de costos para llevar a cabo la implementación de un mantenimiento preventivo con la metodología RCM
Tabla 33: Cálculo de VAN y TIR 159
Tabla 34: Resumen de formatos a implementar para la propuesta de implementación de mantenimiento preventivo aplicando la metodología RCM en las maquinas envasadoras 162
Tabla 35: Formatos propuestos para implementar el almacén
Tabla 36: Comparativo de proveedores locales para piezas y repuestos166
Cabla 37: Comparación de tiempos promedio esperado de entrega de piezas y repuestos actual y propuesto

ÍNDICE DE FIGURAS

Fig. 1 Diagrama de isnikawa 6M/S25
Fig. 2 Diagrama de Pareto 6M's para26
Fig. 3. Tiempo medio entre fallas
Fig. 4. Tiempo medio para reparaciones
Fig. 5. Disponibilidad33
Fig. 6. Estrategias del mantenimiento
Fig. 7 Árbol de decisiones RCM50
Fig. 8. Flujograma de implementación del RCM52
Fig. 9. Diagrama de flujo de la elaboración del plan de mantenimiento preventivo basado en e análisis de fallos RCM
Fig.10. Alcances de la Investigación58
Fig. 11. Cuadro de técnica e instrumentos
Fig. 12 Ficha técnica de Maquina envasadora 67
Fig. 13 Cuaderno de Ocurrencias
Fig. 14. Ventas por tipo de producto73
Fig. 15 Niveles de organización de los niveles de la planta
Fig. 16. Listado y codificación de las maquinas envasadoras78
Fig. 17. Plano de la planta de producción vista superior
Fig. 18. Plano del área de envasado vista superior79
Fig. 19. Maquinas envasadoras en operación80
Fig. 20 Máquina envasadora automática de polvo80
Fig. 21 Producto final82
Fig. 22 Repuesto principal: Resistencia de cartucho Ultramax83
Fig. 23 Repuestos principales: controladores de temperatura 83
Fig. 24 Repuestos principales: Relay de estado solido
Fig. 25 Repuestos principales: termocupla tipo K tornillo
Fig. 26 Pieza principales, cuchillas horizontales
Fig. 27 Pieza principales: Rueda de tracción

Fig. 28 Pieza principales: eje roscado de mordazas horizontales	87
Fig. 29. Pieza principales: Tambor regulador de peso	88
Fig. 30. Pieza principales: Mordazas horizontales selladoras	89
Fig. 31. Tabla de RCM propuesto para la presente investigación (a)	91
Fig. 32. Tabla de RCM propuesto para la presente investigación	92
Fig. 33. Tabla de RCM propuesto en la presente investigacion (c)	93
Fig. 34. Ponderación del NPR	97
Fig. 35. Escala de severidad, ocurrencia y probabilidad de detección	97
Fig. 36. Horario propuesto para asistentes de mantenimiento	111
Fig. 37. Cronograma mensual de mantenimiento preventivo de las maquinas envasado	
Fig. 38. Formato de Mantenimiento Preventivo	115
Fig. 39. Checklist diario de máquinas envasadoras	117
Fig. 40. Formato propuesto de Ticket de trabajo en cada correctivo	118
Fig. 41. Registro de mantenimiento correctivo	119
Fig. 42. Disponibilidad esperada posterior a la implementación de RCM	123
Fig. 43. Kardex de control propuesto para repuestos	125
Fig. 44. Kardex de control propuesto para piezas	126
Fig. 45. Propuesta de ubicación de almacén de piezas y repuestos	128
Fig. 46. Tabla en Excel para el control del inventario actual, brindando un horizonte más de piezas y repuestos faltantes en stock	real 129
Fig. 47. Formato propuesto de capacitación para el personal de planta	130
Fig. 48. Manual de operatividad de máquinas envasadoras propuesto	131
Fig. 49. Formato de evaluación de operatividad de máquinas envasadoras propuesto	132
Fig. 51. Procedimiento para la evaluación del maquinista en la operatividad de máqui envasadoras propuesto	
Fig. 52. Formato para la evaluación del asistente de mantenimiento para ser optimo brinda soluciones en el área	
Fig. 53. Gráfico de TIR	159
Fig. 54. Promedio de Mejora en indicadores MTTR y MTBF	163

Fig. 55. Costo del antes y después del mantenimiento correctivo en Fuxion Biotech Fuente: Elaboración Propia	
Fig. 56. Disponibilidad de las maquinas envasadoras promedio actual y esperado	

ÍNDICE DE ECUACIONES

Ecuación 1: Indicador MTBF	28
Ecuación 2: Indicador MTTR	30
Ecuación 3: Indicador de disponibilidad	32
Ecuación 4: Costo de mano de obra	53

RESUMEN

En el presente trabajo de investigación se inicia por la usencia de una adecuada gestión de mantenimiento preventivo de las máquinas envasadoras de la empresa Fuxion Biotech S.A.C. por tanto el objetivo principal será de mejorar la disponibilidad utilizando la metodología RCM, con la ayuda del historial otorgado, obteniendo y analizando los primeros resultados como MTTR, MTBF y su disponibilidad de 73% actualmente. A su vez utilizando herramientas de ingeniería para establecer, y proponer procedimientos, identificando y evaluando los modos de fallas, y demoras en reparaciones. Para el presente estudio también se propone la implementación de un almacén de piezas y repuestos, y capacitación de todo el personal. Por la cual se espera obtener una mejora en la disponibilidad de 90% y un ahorro del 71% en tiempo de paradas promedio respectivamente a favor de la empresa para incrementar su producción en todas las maquinas envasadoras. Finalmente, se desarrolló un análisis económico y financiero para evaluar la viabilidad económica de la implementación de la propuesta de mejora, obteniendo un valor actual neto (VAN) de S/ 103,646.01; una tasa interna de retorno (TIR) del 39.11% lo cual se interpreta como un proyecto rentable y viable para ejecutar en la empresa en estudio.

Palabras clave: Gestión de mantenimiento, Fallas, RCM (mantenimiento centrado en la confiabilidad), Mantenimiento Preventivo, Disponibilidad.

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

El mantenimiento centrado en confiabilidad, tiene sus primeros conceptos en la industria de la aviación a finales de los años 60 y los inicios de 70, las principales aplicaciones del RCM fue elaborada por Stanley Nowlan y Howard Heap, en una publicación llamada mantenimiento centrado en confiabilidad. Este era un reporte que se realizó para la empresa United Airlines, dicha investigación demostró que existe una correlación entre la edad del activo con su tasa de fallos, además desmiente que la premisa básica que tenía el mantenimiento basado en el tiempo no aplicaba en la mayoría de sus equipos y también algunos estudios adicionales provistos por el Departamento de Defensa ratificaron lo expuesto por Nowlan y Heap. (Soto, 2018)

Entre los años 60 hasta finales de los años 80, la técnica predominante fue le mantenimiento preventivo utilizado por la mayoría de la industria, se basaba en dos principios los cuales eran los siguientes:

- 1. Existe una relación entre la edad del equipo y la tasa de fallos.
- 2. La probabilidad de falla de un componente y un equipo se puede determinar estadísticamente.

Por lo tanto, con estas premisas las piezas pueden ser rectificadas o sustituidas antes de la falla. El RCM empleó las características que se presentaron en esa época, como es el caso del mantenimiento preventivo, el mantenimiento reactivo y técnicas del mantenimiento

proactivo que existían en esas fechas, todas ellas se acoplaron de una manera más adecuada con el fin de aumentar la probabilidad que un equipo, componente funcione durante el ciclo de vida con un mínimo mantenimiento posible. (Moubray ,2004)

Mantenimiento centrado en confiabilidad, es un proceso utilizado para determinar que se debe hacer para asegurar que cualquier activo físico continúe haciendo lo que sus usuarios quieren que haga en su contexto operacional actual. (Moubray ,2004)

La globalización ha permitido no solo el crecimiento tecnológico, sino también la necesidad de un factor relevante dentro de las grandes y pequeñas empresas, la cual es la competitividad. El aumento de las grandes y pequeñas industrias contribuyen en los procesos de desarrollo económico de los países latinoamericanos, de acuerdo con estadísticas del Sistema Económico Latinoamericano y del Caribe, a su contribución al empleo (alrededor del 35-40% de la población económicamente activa), su aporte al PBI regional (alrededor del 33%) y en promedio el 25% de las exportaciones (Ortiz, Rodríguez, Izquierdo, 2013).

El Índice Global de Competitividad del año 2019 de un total de 141 países analizados, indica que las economías más competitivas del mundo son Europa, Asia y América del Norte. Ocupando el primer lugar Singapur como uno de la países con mayor variación en su Índice (84.78%) seguido de EE.UU (83.67%). Datos Macros,2019: Índice de competitividad, recuperado de https://datosmacro.expansion.com/estado/indice-competitividad-global

Cabe resaltar que el Perú se mantiene en el puesto 63 a nivel mundial con una puntuación de 61.3 mostrado en el cuadro a continuación.

Tabla1:

Resultados Generales del Ranking de Competitividad Mundial 2020. Fuente: Base de datos de World Economic Forum

Ranking de Competitividad Global 2020								
Posición Mundial	País	Puntuación						
1	Singapur	100.0						
2	Dinamarca	99.5						
3	Suiza	98.4						
50	Rusia	56.5						
51	Rumanía	55.6						
52	Perú	54.9						

1.1.1. Problemática local

Fuxion Biotech SAC es una compañía multinacional, constituida en el año 2006, que cambia la vida de las personas, con su particular forma de ver el mundo con presencia en 17 países.

Fuxion produce investiga y desarrolla alimentos nutracéuticos únicos que ayudan a alcanzar un alto potencial de salud en el organismo; y los comercializa dando oportunidades a distribuidores de tener un negocio propio que va de la mano con un sostenido crecimiento personal y financiero.

Actualmente la Empresa Fuxion Biotech SAC, tiene como misión transformar la sociedad a través de las familias que viven en Salud Plena, por medio de una franquicia con productos únicos que integran la tradición milenaria de su cultura de origen y la

biotecnología de punta: lo que llaman Fusión Nutracéutica. Ciertamente la misión de la empresa es la entrega de sus productos a tiempo, optimizando la cadena de abastecimiento, en las áreas de Dosimetría, Mezclado, Envasado y de Empaquetado, pero principalmente nuestro punto de estudio es en el área de envasado, donde están ubicadas estratégicamente las máquinas Envasadoras.

Actualmente Fuxion Biotech SAC, cuenta con 11 máquinas envasadoras, los cuales siguen una estructura de Mantenimiento netamente correctivo.

En el estudio del presente proyecto, se observó las constantes paradas en las maquinas envasadoras ocasionado por las fallas de las mismas, recurriendo a sus mantenimientos correctivos correspondientes, lo cual reduce la disponibilidad de las maquinas mencionadas generando altos costos de mantenimiento correctivo y lucro cesante. Así como también el deficiente proceso operacional de la planta y los programas planificados del área de mantenimiento como: ausencia de supervisión de la vida útil de las máquinas, falta de conocimiento del personal técnico y operativo, gestión de stock de piezas y repuestos entre otros problemas que retrasan el programa de producción, reportando pérdida de horas hombre y baja productividad al no llegar a las metas establecidas por el proceso. Por tal motivo es necesaria la implementación de un programa de Mantenimiento Preventivo aplicando la metodología RCM para mejorar la disponibilidad operacional de las máquinas envasadoras.

En la tabla 2 se presenta el reporte de fallo por cada máquina comprendido desde Enero y Junio 2018 respectivamente.

Tabla 2:

Consolidado de Reporte de fallos tiempo-modo falla por cada máquina (Basada en la información de la

Empresa Fuxion Biotech) Fuente: Elaboración Propia

FU	Xi	ОИ				MAN	TENIMIENTO CORRECTIVOS 2018 FUXION BIOTECH SAC
ACTIVO	ENERO	FEBRERO	MARZO		МАҮО	JUNIO	MODO FALLA (Que Ocurrió)
			1200	os			Mordazas horizontales y pernos rotos y con desgaste se desmontan y se cambian,
			1200	550			proveedor ingresa a montar la pieza Brazos verticales y pernos rotos y con desgaste se desmontan y se cambian, se
	2200						solicita a proveedor sacar las características de las resistencias Ejes deslizantes horizontales con desgastes y ruedas de tracción no ajusta se cambian, se desmonta las piezas
					660		Cutter para cortar bobina sin filo se cambian para los abrefáciles
, T			600		000		sensor inductivo NC (PNP) cuadrado no activa y resistencias verticales quemadas se
				500			cambian controlador de temperatura 20x40 no marca el parámetro, se cambia también los
dora N						1200	cables Cuchilla dentada de corte de stick roto, se cambian por nuevo, se cuadra los niveladores
Máquina Envasadora N°	1350						Brazos verticales rotos, resistencias horizontales muy ancho, se retira y se coloca nuevos
nina					300		Resistencia eléctrica verticales 220V 100W quemados, se solicita fabricación
Máqu			890				Formador de refrescos de empaque roto, se desmonta y se cambia
				660			fotocélula encapsulada no detecta la taca, se cambia por uno nuevo
						980	Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia
		1200.0					Termocupla tipo k vertical no sensa, resistencia vertical quemada, dientes de mordaza horizontal con desgaste y controlador de temperatura 72 x 72 de temperatura se cambian descalibrado
			780				relay de estado sólido (40 AMP) no controla la temperatura se cambia, Se solicita a proveedor ingrese a planta para sacar características del repuesto
					900		controlador de temperatura 20x40, no controla la temperatura se cambia
	1200						Mordaza vertical descuadrada, rodamientos de regulación roto, se desmontan y se cambian
			300				sensor de codificador tubular NO (NPN) 5,8 cm malogrado se cambia
				890			Controlador de temperatura 72x72 en mal estado se desmonta de la parte eléctrica y se cambia por uno nuevo
					400		Cuchilla dentada de corte de stick, roto y no tenía filo se lo cambia
7						1200	Cutter para cortar bobina, no tiene filo se cambia 3 unidades
Š		1260					pistón compacto 63x20 (PARA MORDAZA VERTICAL) no regula y cuchilla dentada de stick rota, se cambia
asadı			500				Manguera neumática con hueco, se cambió tee unión 8mm niquelado y manguera
Máquina Envasadora				650			fotocélula encapsulada no detecta la taca, se cambia por uno nuevo
uina					890		Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian
Máq						890	Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia
			500				pistón compacto 63x20 de apertura de mordaza deteriorado, fotocélula encapsulada no lee la taca se cambian
			890				eje central de plato golpea demasiado, desmontaje y cambio
				890			Brazo vertical roto y sensor inductivo NC (PNP) cuadrado malogrado se cambian
						890	pulsador de emergencia no activa, se cambia y se solicita al proveedor validar el circuito interno dentro del PLC

1	i		ı	ı	Ī	ì	
			700				Bocinas interiores de bronces con desgaste no da un buen pesaje, se cambian se solicita a proveedor desmontar y sacar las medidas exactas
					700		Ruedas de tracción presentan desgaste, se desmonta y se solicita fabricación
	1500						proveedor ingresa a sacar medidas anillo de sujeción de tolva sin ajuste, cambio de rodamiento de regulador de peso y
							compuertas de producto rotos se cambian. Pulsador verde 3-4 (NO), no activan se cambia, se solicita al proveedor que saque
				800			medidas de brazo vertical
						890	Ejes deslizantes horizontales presentan desgaste, se solicita su fabricación
			900				motor eléctrico no arranca, se desmontará y se solicita su compra
i	1100						relay de estado sólido (40 AMP) inoperativo, se cambia por nuevo
ı				620			electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia
1					650		Resistencia eléctrica horizontales 220V 100W, quemados se solicita cambios.
1		800					pulsador de emergencia con falso contacto, se lo cambia
Ì				210			condensador 340-408 uf de motor eléctrico malogrado, se cambia
					980		Cuchilla dentada de corte de stick, roto y no tenía filo se lo cambia
						800	pulsador de emergencia, no activa se cambia.
3			450				unidad de mantenimiento obstruido aire no ingresa con presión, se cambia regulador de caudal de 1/8x6
, N				470			Ruedas de tracción con desgaste, se desmonta y se cambia
Máquina Envasadora N°			400				cucharas recogedoras de polvo roto y mordazas verticales presenta desgastes se cambian
Enva					890		fotocélula encapsulada no detecta la taca, se cambia por uno nuevo
uina						1800	Cutter para cortar bobina sin filo se cambian para los abrefáciles
Máq			980				faja de fechador roto, se cambia
				560			Resistencia eléctrica verticales 220V 100W quemados, se solicita fabricación
			1300				Pernos, 06,08,12, 16, inox y de grado 8 y tipo mariposa rota y con desgaste, se cambian
						1200	Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia
	900						sensor inductivo NC (PNP) cuadrado malogrado, se cambian
				890			controlador de temperatura 20x40, no controla la temperatura se cambia
			800				motor trabado por rodamiento roto, se cambian
				1200			sensor inductivo NC (PNP) cuadrado, no censa se lo cambia
						1200	Ejes deslizantes horizontales con desgastes y ruedas de tracción no ajusta se cambian, se solicita a proveedor para realizar medidas de las piezas
	980						anillo de ajuste de tolva sin ajuste y ejes deslizantes horizontales trabados se
	300						desmontan y se cambian, se solicita a proveedor sacar medidas Bielas verticales rotas se cambian, se solicita sacar medida a proveedor para la
				1200			fabricación para tener en stock
4					900		Cutter para cortar bobina sin filo se cambian para los abrefáciles
ra n°						1200	faja A-20, rota se cambia
sado			920				tope de caída descentrado se desmonta y se cambian
Enva.					698		pulsador de emergencia, no activa se cambia.
Máquina Envasadora n°		1500					cuchilla dentada rota se cambia, se solicita al proveedor ingresar para sacar los planos de la cuchilla
Má				568			fotocélula encapsulada no detecta la taca, se cambia por uno nuevo
1			870				sensor de codificador tubular NO (NPN) 5,8 cm en mal estado se cambia
1			960				mordaza horizontal y vertical descentrados se cambia y se cuadra
				950			Pulsador verde 3-4 (NO), no activan se cambia
			960	950			· · · · · · · · · · · · · · · · · · ·

					568		faja A-22 rota se cambia
			850				bielas verticales desgastadas, se desmonta y se cambia
				550			Controlador de temperatura 72x72 no detecta la temperatura, se cambia
					900		Cuchilla dentada de corte de stick roto, se cambian por nuevo
						1890	condensador 340-408 uf de motor eléctrico malogrado, se cambia
			960				selector eléctrico de arranque deteriorado, se cambia
		1400					bocinas de plato giratorio roto se lo cambia, se solicita ingreso de proveedor a sacar medidas
				890			regulador de caudal de 1/8x6, malogrado se cambia
		800					resistencia vertical de fechador quemado se cambia
				780			Brazo vertical roto s y sensor inductivo NC (PNP) cuadrado malogrado se cambian
			1200				cambio de ejes deslizantes horizontales nuevos y desmontaje de piezas
				800			Brazo vertical roto se cambia y sensor inductivo NC (PNP) cuadrado malogrado se cambian
					1100		Mordaza horizontal se solicita a proveedor
						890	Eje central de plato con desgaste se cambia
		900					Resistencia eléctrica verticales 220V 100W quemado se cambia
		300		890			Bielas verticales rotas se cambian
					710		faja A-20 roto, se cambia
					710	1200	Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita
	600						fabricación variador de frecuencia de motor no activa se revisa y se cambia
				689			Formador de proteínas roto se cambia, se ingresa a sacar medidas
				005		1000	Ruedas de tracción con desgaste, se desmonta y se cambia
		400.0				1000	controlador de temperatura 20x40 no controla la temperatura se cambia
		100.0	690				Brazo vertical roto se cambia y sensor inductivo NC (PNP) cuadrado malogrado se
			680				cambian
					890		Cuchilla dentada de corte de stick roto, se cambian por nuevo
ا، 5	890						cambio de resistencia vertical de codificador
asadora N°	600						Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian
asadı				560			controlador de temperatura 20x40 no controla la temperatura se cambia
						1700	Mordazas verticales presenta desgaste, se cambia
Máquina En			1500				ventilador eléctrico de tablero de control quemado, se cambia
Mác					790		pistón compacto 63x20 (PARA MORDAZA VERTICAL), se cambia presenta fuga
		400.0					Resistencia eléctrica verticales 220V 100W no calienta, se cambia
	450						Resistencia eléctrica horizontales 220V 100W, quemados se solicita cambios.
					450		faja A-22 rota se cambia
		450					vibrador de tolva de caída no funciona, se lo repara
					600		Polea dentada de motor con desgaste se solicita la fabricación
	800						cable suelto en resistencias horizontales, se lo empalma.
				920	<u> </u>		Mordaza horizontal con desgaste se cambia
						800	regulador de caudal de 1/8x6 en mal estado se cambia
		450					Pulsador verde 3-4 (NO) no activa, se necesita cambiarlo
			900				Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian
]		890		Regulador de peso con rodamiento roto, se cambia, se solicita a proveedor desmontar y sacar las medidas correctas.

I	500		ĺ	Î	ĺ		cableado de sensores de la maquina se revisa y se pone operativo la maquina		
				1100			sensor inductivo NC (PNP) cuadrado no activa y resistencias verticales quemadas se		
					500		cambian Eje central de plato con desgaste se cambia y se solicita a proveedor ingresar a		
						1100	sacar medidas exactas Compuertas de producto presentan desgaste se cambian y se solicita a proveedor		
	900						sacar medidas para su fabricación Resistencia eléctrica verticales 220V 100W y termocupla tipo k quemados se		
	900						cambian		
				1350			Compuertas de producto presentan desgaste se cambian		
					989		faja A-20 roto, se cambia		
						800	electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia		
		300					Resistencia eléctrica verticales 220V 100W quemada, se cambia		
			850				Mordazas verticales presenta desgaste, se cambia		
			710				switch de encendido de caja codificadora inoperativo se cambian		
					1200		Pulsador verde 3-4 (NO) no activa, se necesita cambiarlo		
		300					interruptor unipolar quemado, se cambia		
9 N e			880				Controlador de temperatura 72x72 no detecta la temperatura, se cambia		
Máquina Envasadora N°		700					cable de codificador de 8 puerto roto, se cambia		
ıvasî					1500		relay de estado sólido (25 AMP) no detecta la temperatura		
na Er	890						Resistencia eléctrica verticales 220V 100W quemada por el trabajo diario, se cambia		
áquii				1700			Mordaza de codificadores con desgaste se solicita la fabricación, solo se da más		
Σ						1850	presión. Cuchilla dentada de corte de stick, roto y no tenía filo se lo cambia, se cuadra las		
						1030	bocinas reguladoras tee unión 8mm niquelado y codo de 16x16 roto se necesita cambiar, se solicita a		
		500					proveedor validar las características exactas		
			380				unión recta niquelado 6x6 con fuga se cambia		
					1200		regulador de caudal de 1/8x6, malogrado se cambia, se solicita a proveedor validar las características del repuesto		
			300				regulador de caudal de 1/4x08 con fuga se realiza el cambio		
				1200			Eje helicoidal vertical presenta desgaste se solicita la fabricación y cambio		
					890		Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian		
						1400	Copa de productos presenta desgaste se realiza el cambio, se solicita al proveedor desmontar para sacar medidas exactas		
	1200						interruptor de apagado, mangueras de dosificado, termocupla tipo k, se brindó		
							solución dando algunos ajustes Formador de proteínas roto se cambia, se solicita desmontaje a proveedor para		
				1200			tener las medidas exactas		
7						1320	faja A-20 roto, se cambia		
ž		600					potenciómetro de 100 k inoperativo, se cambia		
adora			560				Mordaza de codificadores con desgaste se solicita la fabricación		
ıvasa					569		Regulador de peso con rodamiento roto, se cambia		
Máquina Envasadora N°			470				chumaceras de ejes deslizantes horizontales con desgaste se cambian		
áqui					890		Regulador de peso con rodamiento roto, se cambia		
Σ	900						resistencia horizontal suelta del fechador se empalma y deja operativo		
		900					Ruedas de tracción presentan desgaste, se desmonta y se solicita fabricación		
					670		Cuchilla dentada de corte de stick, roto y no tenía filo se lo cambia		
						890	Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian		

700			ĺ			Resistencia de fechador quemada se verifica y se empalma, se dejó operativo
					800	pulsador de emergencia, no activa se cambia.
	900					termocupla tipo k de mordaza vertical no sensa, se cambia
				890		unión recta niquelado 6x6 con fuga se cambia
	790					Jebes blancos de rodillos rotos se cambian, se solicita a proveedor sacar las medidas
	790					copas de producto presenta ruptura se desmonta y se cambian
	750		900			Controlador de temperatura 72x72 no detecta la temperatura, se cambia
			300	1500		termocuplas tipo K roto se cambia
				1300	1200	electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia
		450				rueda de tracción no jala la bobina por desgaste, se cambia
1240						copas dosificadoras con desgaste, se cambian
			980			fotocélula encapsulada no detecta la taca, se cambia por uno nuevo
					1200	Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia
	1600					eje sin fin dosificador roto las aletas, se solicita su fabricación y montaje
				789		diferencial de maquina quemado se cambia
		400				Mordaza horizontal presenta desgaste, se cambia
		980				resistencias horizontales, se cambian por estar quemadas hubo corto circuito
			800			Eje central de plato con desgaste se cambia
					1200	Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian
700						producto liqui fibra no cae, se limpia la tolva y se pone operativo la maquina
	700.0					termocuplas tipo K roto se cambia
			1730			controlador de temperatura 20x40, no controla la temperatura
				670		Formador de proteínas roto se cambia
					1200	tee unión 8mm niquelado y codo de 16x16 roto se necesita cambiar
	700.0					tipos del fechador no imprime desgaste y resistencia quemada y cambio de pernos y anillos seeguer 7, se realiza cambio, se solicita a proveedor que valide el tamaño de resistencia para su fabricación
		790				relay de estado sólido (25 AMP), se hace seguimiento cable roto, se da solución
			890			Regulador de peso presenta desgaste interno, se realiza el cambio
					1900	sensor inductivo NC (PNP) cuadrado, no censa se lo cambia
900						Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian
		450				Anillo de ajuste de tolva, Se desmonta para solicitar su fabricación
				1900		Cuchilla dentada de corte de stick roto, se cambian por nuevo
					800	Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian
2200						tipos del fechador no imprime desgaste / resistencia quemada / cambio de pernos y anillos seeguer 7, se brinda atención a lo solicitado
	1500					Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian
		1200				codo de 16x16 presenta fuga, se cambia, se solicita a proveedor sacar las características exactas del repuesto
				900		seeguer 7 mm roto se cambia
					1200	Eje helicoidal vertical, se cambia por estar roto
1200						Termocupla tipo k vertical no sensa, resistencia vertical quemada, dientes de mordaza horizontal vertical con desgaste / controlador de temperatura 72 x 72 de temperatura se cambian descalibrado
	1200					Resistencia eléctrica horizontales 220V 100W, quemados se solicita cambios.

	1		900	I			termocuplas tipo K roto se cambia
				1000			Mordazas verticales presenta desgaste, se cambia y se solicita a proveedor ingresar a sacar medidas
					500		Copa de productos presenta desgaste se realiza el cambio
						1000	pistón compacto 63x20 (PARA MORDAZA VERTICAL) presenta fuga, se lo regula se solicita a proveedor sacar las características para la compra local
	1500						interruptor de motor desbobinadora, se brinda solución
		1500					Ruedas de tracción presentan desgaste, se desmonta y se solicita fabricación, adicional sacar medida del brazo vertical
				1600			Bases de portatipos presentan desgastes, se cambian
					790		Ruedas de tracción presentan desgaste, se desmonta y se solicita fabricación
			650				Bielas de codificador con desgaste, se brinda ajuste
•		1200					fotocélula encapsulada no sensa, se regula dando solución al problema
			790				Regulador de peso presenta desgaste interno, se realiza el cambio
					780		Resistencia eléctrica horizontales 220V 100W, quemados se solicita cambios.
∞		800					Centrado de bielas por estar sueltas
ra N°			989				Bocinas interiores de bronce con desgaste, se cambian
sado						800	Cuchilla dentada de corte de stick roto, se cambian por nuevo
Enva			890				formador de tés rota, se solicita la fabricación
rina					890		diferencial de máquina, se cambia los cables por haber falso contacto
Máquina Envasadora N°			700				rueda de tracción jalador de bobina con desgaste, se brinda más ajuste
	3000						sensor inductivo NC (PNP) cuadrado de polín jalador de bobina roto, se cambia
		700					termocuplas tipo K suelto se cambia
				1300			Anillo de ajuste de tolva, Se desmonta para solicitar su fabricación
					1200		Eje central de plato con desgaste se cambia, se solicita desmontar y sacar las medidas correctas
	1200						Equipo codificador descentrado se cuadra en dirección a la bobina.
				920			relay de estado sólido (40 AMP) no controla la temperatura se cambia
					900		Mordaza de codificadores con desgaste se cambia y se solicita la fabricación
			1100				resortes jaladores de mordaza vertical roto, se cortan y vuelven a colocar
	1600						mordaza horizontal se rompió el resorte, se corta y se vuelve a colocarlo
6 .1		600					Controlador de temperatura 72x72 no detecta la temperatura, se cambia
ora N						1400	relay de estado sólido (25 AMP) no detecta la temperatura
Máquina Envasadora N°	790						se coloca tornillo de ajuste a regulador de peso evitando que se mueva y brinde el peso correcto.
na Er			680				Tapa de tolva rota se lleva a soldar y se solicita su fabricación
áqui				1240			controlador de temperatura 20x40 no controla la temperatura se cambia
Σ					1500		Regulador de peso presenta desgaste interno, se realiza el cambio
						1300	termocuplas tipo K, sueltos los cables se vuelven a instalar
		500.0					Mordaza horizontal vertical con desgaste se cambia, se solicita al proveedor ingrese a montarlo
					900		pulsador de emergencia no activa, se cambia
						798	Eje sujetador de bobina escalonado, presenta desgaste, se cambia y posteriormente se solicita sacar las medidas para su fabricación
ina dora O	900						equipo codificador con problemas con el potenciómetro, se lo regula
Máquina Envasadora N° 10			790				Pulsador verde 3-4 (NO) no activa, se necesita cambiarlo
Ευ					970		formador de tés rota, se solicita la fabricación

	1800					mordaza vertical descuadradas, se cuadra y se pone operativa
					1000	mordaza horizontal se rompió el resorte, se corta y se vuelve a colocarlo
1700						se regula la salida del pistón de las copas de producto
	790					Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia
		2300				Jebes blancos de rodillos rotos se cambian
				1500		Tapa de tolva rota se lleva a soldar y se solicita su fabricación
1100						resistencia vertical se suelta cable, se vuelve a empalmar
	1200					Resistencia eléctrica horizontales 220V 100W, se movió los cables
			1000			Formador de proteínas roto se cambia, se deja soldando con soldadura de plata y s saca medidas
					1200	Pulsador verde 3-4 (NO) no activa, se necesita cambiarlo, se realiza seguimiento para detectar el problema
970						resistencias verticales hizo cortocircuito se cambia
	1200					Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita fabricación
		780				seeguer 7 mm roto se cambia
			500			pistón compacto 63x20 (PARA MORDAZA VERTICAL) presenta fuga, se lo regula
				890		tee unión 8mm niquelado
					1200	relay de estado sólido (40 AMP) no controla la temperatura se cambia
2200						problemas con bobina, se busca el problema ya que la fotocélula no detecta la taca se brinda solución
	900					electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia
		790				termocuplas tipo K roto se cambia
			790			Eje escalonado presenta desgaste, se cambia
					1600	diferencial de maquina quemado se cambia
1500						mordaza horizontal y regulador de presión se revisaron y dieron ajustes.
	1500					bocinas sujetadoras de cuchilla presentan desgastes, se cambian, se solicita al proveedor ingresar a sacar medidas
		980				Bocinas interiores de bronce con desgaste, se cambian
				1500		Tolva de inox roto se cambia
880						polea conducida del reductor/ prisioneros robados, se desmonta y se brinda solución
			883			Bielas horizontales presentan desgaste, se desmonta, cambian y se dan ajuste
820						mordaza horizontal, descuadrada se desmonta y se cambia
	900.0					Ejes deslizantes horizontales descuadrados, se desmonta limpia y aceita y se vuelve a montar
		1000				relay de estado sólido (40 AMP) no controla la temperatura se cambia
				980		Bases de portatipos presentan desgastes, se cambian
890						Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita fabricación
			660			bocinas sujetadoras de cuchilla presentan desgaste se cambian
	1600					mordaza vertical con desgaste se cambia, sujeción y cambio de perno roto, se solicita a proveedor apoyo en el montaje
		1200				Formador de refrescos roto, se cambia
			600			Jebes blancos de rodillos rotos se cambian, se solicita a proveedor sacar las medida
				800		Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita fabricación
960						sensor de fechador roto, se empalma

	1	900					Polines dentados están desgastados, se cambian		
				974			seeguer 7 mm roto se cambia		
					1300		sensor inductivo NC (PNP) cuadrado, no censa se lo cambia		
						1600	Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian, adicional se solicita a proveedor para sacar medidas		
		750					equipo codificador la lectura de sensor retardada, se dio solución		
				750			Formador de refrescos roto, se cambia		
					810		bocinas sujetadoras de cuchilla presentan desgaste se cambian		
						1400	formador de tes rota, se solicita la fabricación		
		750					pistón neumático de apertura de mordaza deteriorado, fotocélula no lee la taca y sensor contador de stick malogrado, se brinda ajustes quedando operativos		
			890				Tolva de inox roto se cambia		
					800		Regulador de peso con rodamiento roto, se cambia		
		1000					cuchilla dentada rota se cambia		
			653				faja A-24 rota se cambia		
4					989		Pulsador verde 3-4 (NO) en mal estado se cambia		
N° 1			600				copas dosificadoras con desgaste, se cambian		
dora	800						mordazas descuadradas por trabajo diario, se vuelve a cuadrar		
Vasa		1110					Regulador de peso presenta desgaste interno, se realiza el cambio		
Máquina Envasadora N° 11			710				Jebes blancos de rodillos rotos se cambian		
áquir				1500			Bocinas interiores de bronce con desgaste, se cambian		
Š					896		Mordaza horizontal presenta desgaste, se cambia		
						1712	Jebes blancos de rodillos rotos se cambian		
	1200						fotocélula encapsulada no sensa, se regula y se cambia		
						1500	electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia		
	920						mordaza horizontal descentrada, bobina de electroválvula inoperativa, se cambian		
		1872					Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita fabricación		
			876				sensor inductivo NC (PNP) cuadrado, no censa se lo cambia		
					1900		Cuchilla dentada de corte de stick roto, se cambian por nuevo		
	1200						se regula la salida del pistón de las copas de producto		
						1500	Eje escalonado presenta desgaste, se cambia		

1.1.2 Situación Actual

De acuerdo a la evidencia alcanzada por el área de mantenimiento de planta (tabla 2) Se ha desarrollado la evaluación de los factores necesarios para hallar la disponibilidad actual en las maquinas envasadoras, como consecuencia estas fallas frecuentes siguen incrementando el tiempo de reparación en el mantenimiento correctivo al no contar con un plan de mantenimiento preventivo.

Diagrama de Ishikawa Fuxion Biotech SAC

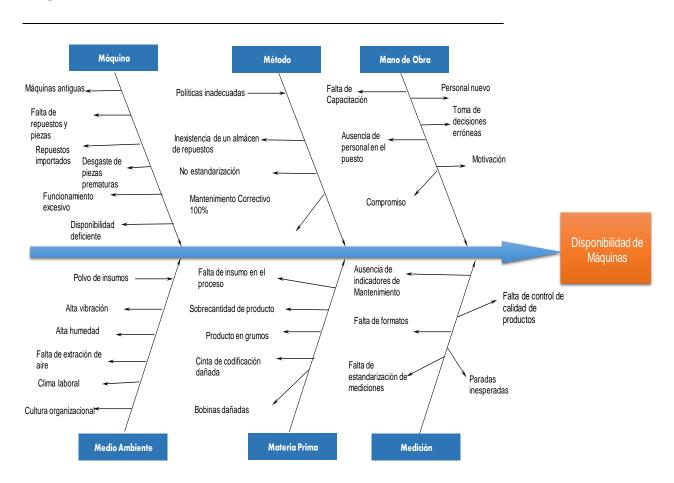
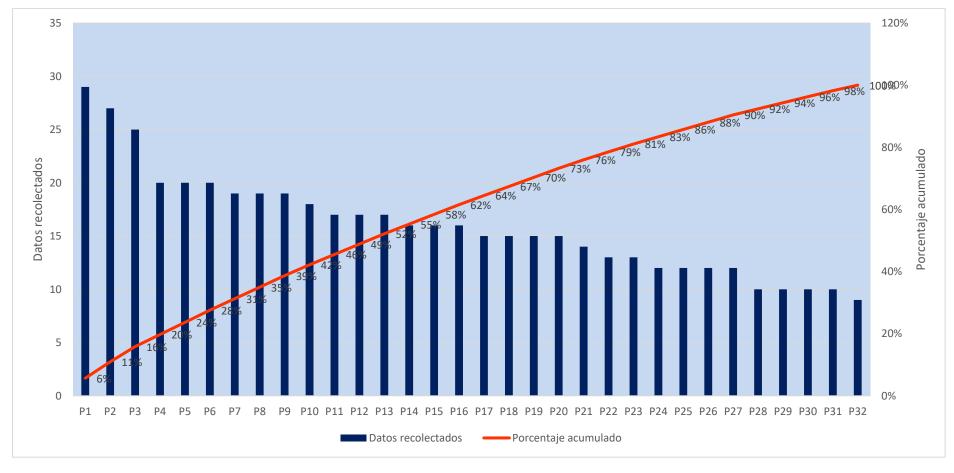


Fig. 1 Diagrama de Ishikawa 6M's para La empresa Fuxion Biotech SAC Fuente: Elaboración propia.

Nota: En el presente diagrama se tomó nota de las causas principales en cada una de las 6M's, con la cual se pudo realizar una análisis más conciso y minucioso.



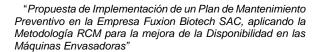

Fig. 2 Diagrama de Pareto 6M's para La empresa Fuxion Biotech SAC. Fuente: Elaboración propia.

Tabla 3:

Posición de las causas según datos recolectados. Fuente: Elaboración Propia

	Posición real (Causas y datos ordenados)		Frecuencia acumulada	Porcentaje	Porcentaje acumulado
1	Mantenimiento Correctivo 100%	29	29	6%	6%
2	Ausencia de indicadores de Mantenimiento	27	56	5%	11%
3	Falta de repuestos y piezas	25	81	5%	16%
4	Falta de Capacitación	20	101	4%	20%
5	Falta de formatos	20	121	4%	24%
6	Paradas inesperadas	20	141	4%	28%
7	Repuestos importados	19	160	4%	31%
8	No estandarización	19	179	4%	35%
9	Ausencia de personal en el puesto	19	198	4%	39%
10	Cinta de codificación dañada	18	216	4%	42%
11	Inexistencia de un almacén de repuestos	17	233	3%	46%
12	clima laboral	17	250	3%	49%
13	Falta de control de calidad de productos	17	267	3%	52%
14	Motivación	16	283	3%	55%
15	Cultura organizacional	16	299	3%	58%
16	Falta de estandarización de mediciones	16	315	3%	62%
17	Maquinas antiguas	15	330	3%	64%
18	Compromiso	15	345	3%	67%
19	Falta de extracción de aire	15	360	3%	70%
20	Alta vibración	15	375	3%	73%
21	Polvo de insumos	14	389	3%	76%
22	Disponibilidad deficiente	13	402	3%	79%
23	Políticas inadecuadas	13	415	3%	81%
24	Desgaste de piezas prematuras	12	427	2%	83%
25	Personal nuevo	12	439	2%	86%
26	Alta humedad	12	451	2%	88%
27	bobinas dañadas	12	463	2%	90%
28	Toma de decisiones erróneas	10	473	2%	92%
29	Sobre cantidad de producto	10	483	2%	94%
30	Producto en grumos	10	493	2%	96%
31	Falta de insumo en el proceso	10	503	2%	98%
32	Funcionamiento excesivo	9	512	2%	100%

Para el estudio con el diagrama Pareto se indagó a las personas encargadas de la operación de las maquinas envasadoras y el área técnica encargada de dar mantenimiento a las mismas. Ver anexo 2.

Por lo mismo que se observó que en primer lugar se encuentra los mantenimientos correctivos al 100%, los cuales consisten en las siguientes tareas y/o fallas de las maquinas envasadoras como por ejemplo:

- Cambio de resistencias eléctricas horizontal/vertical.
- Cambio de ejes deslizantes.
- Cambio de sensor fotoeléctrico, cuchillas.
- Cambio de mordazas de sellado horizontal/vertical.

1.2. Indicadores de disponibilidad

Para Caballero y Clavero (2016) existen dos indicadores en la medición de esta variable, a saber, el MTBF y el MTTR.

1.2.1. Tiempo Medio entre Fallos (MTBF)

Es el tiempo medio que transcurre entre dos averías consecutivas, es decir, cada cuántas horas de operación se produce una avería, la cual Nos permite conocer la frecuencia con que suceden las averías, se calcula de la siguiente manera:

 $MTBF = \frac{N^{\rm o}\,de\;Horas\;totales\;del\;periodo\;de\;tiempo\;analizado}{N^{\rm o}\;de\;averias}$

Ecuación 1: Indicador MTBF

Da una idea de la mejora técnica que se puede producir en el funcionamiento global de los equipos. Es el parámetro que mejor refleja el comportamiento del componente que estemos midiendo (Departamento, Sección o Máquina).

Tabla 4:

Tiempo medio entre fallas de máquinas en el año 2018

Fuente: Elaboración propia basada en la información entregada por la empresa

PORCENTAJE MENSUAL DE MTBF EN LAS MAQUINAS ENVASADORAS
(AÑO 2018)

Meses	Tiempo total del periodo analizado (horas)	N° Reparaciones correctivas o averías (Und.)	MTBF
ENERO	2200	42	52.4
FEBRERO	2112	45	46.9
MARZO	2376	55	43.2
ABRIL	2112	48	44.0
MAYO	2200	55	40.0
JUNIO	2288	45	50.8

Nota: Para un mejor control y desarrollo de nuestra investigación se procedió analizar el historial de fallas y tiempos alcanzado para lograr establecer la disponibilidad deseada en las maquinas envasadoras. Vale la pena seguir el historial para ver si este promedio aumenta con el tiempo.

Fig. 3. Tiempo medio entre fallas Fuente: Elaboración propia basada en la información entregada por la empresa

En la tabla 3 y figura 3, se observa que el desarrollo del indicador MTBF en el escenario actual números muy bajos en promedio 46.2%, este no refleja el deseo de tener el equipo disponible durante el mayor tiempo posible; ante ello se necesita la implementación del plan de mantenimiento preventivo utilizando la metodología RCM para lograr un mejor funcionamiento de las máquinas, haciendo que el tiempo que sucediera entre las fallas sea menor.

1.2.2. Tiempo Medio de Reparación (MTTR)

Es el tiempo medio que se encuentra parada la Máquina (o la Línea). La cual nos permite conocer la importancia de las averías que se producen en un equipo considerando el tiempo medio hasta su solución Se calcula de la siguiente forma:

$$MTTR = \frac{N^{\circ} de \ horas de \ paro \ por \ avería}{N^{\circ} de \ averías}$$

Ecuación 2: Indicador MTTR

Nota: Da una idea de la efectividad de los Servicios de Mantenimiento en la solución de las Averías, así como en su dificultad técnica (Mantenibilidad).

Tabla 5: Tiempo medio entre reparaciones de máquinas en el año 2018

Fuente: Elaboración propia basada en la información entregada por la empresa

PORCENTAJE MENSUAL DE MTTR EN MAQUINAS ENVASADORAS (AÑO 2018)						
Meses	Tiempo Total de reparación correctiva (Horas)	N° reparaciones correctivas o averías (Und)	MTTR			
ENERO	800.5	42	19.1			
FEBRERO	710.2	45	15.8			
MARZO	780.3	55	14.2			
ABRIL	720.9	48	15.0			
MAYO	845.3	55	15.4			
JUNIO	910	45	20.2			

Nota: Para un mejor control y desarrollo de nuestra investigación se procedió analizar el historial de fallas y tiempos alcanzado para lograr establecer la disponibilidad deseada en las maquinas envasadoras, siempre con el objetivo de maximizar los beneficios y reducir los riesgos.

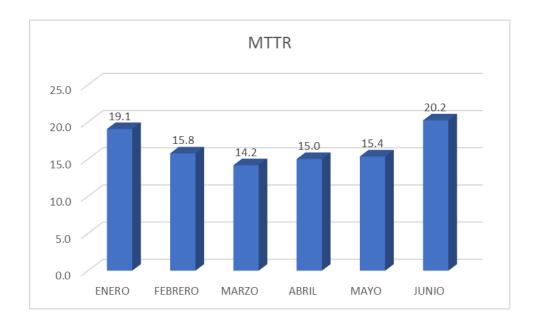


Fig. 4. Tiempo medio para reparaciones

Fuente: Elaboración propia basada en la

información entregada por la empresa

En la tabla 5 y figura 4, se observa que el desarrollo del indicador MTTR en el escenario actual números muy alto en promedio 16.6%, este no refleja el deseo de tener el equipo disponible durante el mayor tiempo posible; ante ello se necesita la implementación del plan de mantenimiento preventivo utilizando la metodología RCM para lograr un mejor funcionamiento para que el tiempo de reparación que sucediera en las maquinas sea el menor.

1.2.3. Disponibilidad

Capacidad de ellos para mantenerse en funcionamiento de forma adecuada durante el proceso que se esté desarrollando, sin la presencia de fallas o inconvenientes que afecten los parámetros establecidos (García, 2016, p.152)

Tradicionalmente son las Horas de Funcionamiento del componente medido respecto al total de Horas de Producción.

Se calcula de la siguiente forma:

$$Disponibilidad = \frac{MTBF}{MTBF + MTTR} * 100\%$$

Ecuación 3: Indicador de disponibilidad

Tabla 6.

Disponibilidad de máquinas en el año 2018 Fuente: Elaboración propia basada en la información entregada por la empresa

PORCENTAJE DE DISPONIBILIDAD DE MAQUINAS ENVASADORAS (AÑO 2018)							
MESES	MTBF	MTTR	DISPONIBILIDAD				
ENERO	52.4	19.1	73.3				
FEBRERO	46.9	15.8	74.8				
MARZO	43.2	14.2	75.3				
ABRIL	44.0	15.0	74.6				
MAYO	40.0	15.4	72.2				
JUNIO	50.8	20.2	71.5				

Fig. 5. Disponibilidad Fuente: Elaboración propia basada en la información entregada por la empresa

1.3. Justificación

Para un mejor control y desarrollo de nuestra investigación se logró obtener el índice de DISPONIBILIDAD actual de las maquinas envasadoras de la empresa FUXION BIOTECH SAC, siendo en los últimos 6 meses un promedio de 73.6 % un porcentaje muy

bajo por lo cual la empresa requiere una solución para aumentar la disponibilidad de sus máquinas envasadoras. (Ver Tabla 6)

En el presente estudio, nuestra meta es elevar el porcentaje de disponibilidad de las maquinas envasadoras, para ello bastará realizar un seguimiento de ahora en adelante una vez implementado el programa de mantenimiento preventivo utilizando la metodología RCM para ver si este promedio aumenta con el tiempo.

La Disponibilidad es un indicador muy popular interpretado como el porcentaje de tiempo de buen funcionamiento de la máquina, calculado sobre la base de un periodo largo. Otra interpretación la define como la probabilidad para que, en un instante cualquiera, la máquina (reparable) este en funcionamiento. Se considera que la Disponibilidad Mecánica debe ser mayor que 90 %. Ñavincopa, C.: Producción, Disponibilidad y Productividad en Equipo Trackless, recuperado de https://reliabilityweb.com/

1.4. Importancia:

La importancia de calcular y aplicar los Indicadores de Mantenimiento radicara por el quiebre de horas muertas que actualmente existe en la empresa en estudio, para ello se debe tener claro el aprendizaje y el conocimiento profundo de los procesos y actividades que la empresa desarrolla. De esta manera será posible entender lo que se está investigando y haciendo bien, dando un panorama más certero y visionando a un espacio para mejorar.

Por otro lado, establecer, cumplir y medir los objetivos a través de índices de mantenimiento asegura no sólo la productividad de la empresa, sino también del equipo o maquinas envasadoras, que está más motivado para crecer. La facturación se mantiene de

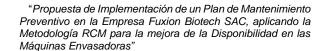
modo sano y planificado, sin rupturas ni pérdidas. La empresa mejorara su estabilidad, ya que las tasas de fiabilidad tienden a crecer con la reducción de los riesgos e interrupciones.

Finalmente, evitamos las reclamaciones de los clientes dado el caso dentro de una planta industrial (en nuestro caso el área de envasado), evitando la sobrecarga de trabajos y brindando las atenciones inmediata y oportuna.

1.5. Antecedentes

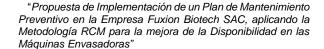
1.5.1. Internacionales

Lizcano Guerrero (2019) para optar el grado el grado de Especialista en Gerencia de Mantenimiento y Confiabilidad con su tesis titulada "ELABORACIÓN DE UNA PROPUESTA DE MANTENIMIENTO MEDIANTE LA METODOLOGÍA RCM (MANTENIMIENTO CENTRADO EN CONFIABILIDAD) PARA LOS CARGADORES FRONTALES DE BAJO PERFIL SANDVIK LHD410 EN LA SOCIEDAD MINERA DE SANTANDER S.A.S", de la UNIVERSIDAD PONTIFICIA BOLIVARIANA SECCIONAL BUCARAMANGA - Colombia.

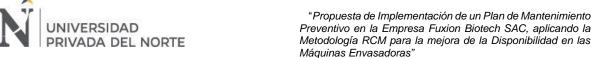

Menciona que se logró identificar cuáles serán los efectos y las consecuencias de un modo de fallo, y como estos afectarán la confiabilidad y disponibilidad a lo largo de la operación; de esta investigación se extraen las actividades que se resumen en servicios de mantenimiento controlados por las horas de operación y son el documento guía para que el departamento de mantenimiento logre alcanzar sus objetivos en los tiempos establecidos; adicionalmente con esta metodología fue posible definir un listado de repuestos críticos que son indispensables para cumplir con los requerimientos de operaciones. Por otra parte, se

calculó el costo de ciclo de vida para el activo en un periodo de cinco años de operación continua, identificando que la intervención de 2000 horas será la más crítica, lo que permite ratificar que la metodología RCM ayuda a reducir los costos de mantenimiento y optimizar los recursos de mano de obra y repuestos invertidos en el activo en los mantenimientos preventivos que serán ejecutados a futuro.

Concluye que, a partir del Análisis de Costo de Ciclo de Vida, fue posible afianzar que la metodología RCM permite reducir los gastos de mantenimiento y que este solo representa un 8% del valor total del ciclo de vida del activo proyectado a 5 años de operación continua. ADEMAS DE ELLO RECOMIENDA QUE El Análisis de Modo y Efecto de Falla es un documento que requiere ser actualizado permanentemente y que el aporte tanto del operador de la máquina como los especializados en mantenimiento ayudaran a alimentar la información consignada y hacer que esta se acerque más a las condiciones operacionales de una mina subterránea. De acuerdo con el Análisis de Modo y Efecto de Falla (AMEF) realizado de manera conjunta entre mantenimiento y operaciones, se logró identificar que en los Cargadores LHD410 el sistema hidráulico y el sistema eléctrico son los que representan mayor criticidad para la operación con una frecuencia de falla mayor a 2 veces por año que requieren generar acciones que ayuden a mitigar y reducir la no disponibilidad del activo. Los servicios de mantenimiento preventivos que surgieron del AMEF realizado a los Cargadores LHD410 son la pauta que permite establecer las acciones que deben ser llevadas a cabo por el personal técnico.

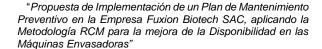

Confirma que los indicadores de confiabilidad de los Cargadores LHD410 reflejan que los equipos se encuentran en una etapa inicial de vida operativa. Sin embargo, estos activos han presentado fallas considerables que se ven reflejadas en las 73 órdenes de servicio ejecutadas

donde el tiempo medio entre fallas estimado es de 1684,24 y 2354,70 horas para cada equipo. adicionalmente el indicador de mano de obra demuestra que el equipo de mantenimiento dedica un 69.48% de su tiempo a corregir fallas afirmando la importancia de la aplicación de una metodología que promueva el cambio en la gestión del mantenimiento de la compañía.


Soto Ortega (2018) para optar el grado de Magister en gestión, con su tesis titulada "Propuesta de implantación del mantenimiento centrado en confiabilidad (RCM), de los activos críticos de la unidad nº1 de la Central Térmica El Descanso", de la universidad del Azuay - Ecuador. De acuerdo a su investigación propone implementar un sistema de gestión de mantenimiento como es el caso del RCM, en una central de propiedad de la empresa Electro Generadora del Austro. S.A. Debido a la gran demanda de centrales hidráulicas que se están presentando en la actualidad en el país ha determinado que la central térmica El Descanso sea un punto clave para el tema desarrollado de averiguar cuáles son los activos críticos de una unidad de generación que influyen para la pérdida de la disponibilidad. Se pudo proponer planes de mantenimiento que tendrán a la unidad de generación en óptimas condiciones para el funcionamiento y no sea alterada la disponibilidad de la misma y sus ganancias no se vean afectadas. Concluyendo que los resultados generales de la auditoría a la gestión de mantenimiento a la central térmica el Descanso, tenemos que en general alcanza el 64,75% de la meta a cumplir. La gestión por parte del departamento de compras y adquisiciones tienen una gran influencia debido a los procesos engorrosos que vienen por parte del sistema de compras públicas que provocan en si una pérdida de tiempo y calidad de los materiales y repuestos solicitados. Además de la manera de gestionar las ordenes de compras que por lo general la política interna de la empresa está provocando un retraso y

caos a la gestión de mantenimiento no solo en la central "El Descanso" sino en todas las centrales que pertenecen a la empresa. Basado ya en el diagrama de decisión que propone la metodología de RCM, se menciona las tareas más adecuadas para disminuir las fallas que provocan los activos críticos en la disponibilidad de la unidad de generación 1. Son tareas propuestas que cambian los cronogramas de mantenimiento que se vienen llevando en la actualidad en "El Descanso". En la mayoría de tareas se proponen acortar los tiempos; son el resultado del análisis con el equipo y se espera lograr con ello una mayor disponibilidad y confiabilidad de la unidad de generación 1. Se recomienda que para incrementar los porcentajes de la gestión de mantenimiento se debe restructurar el departamento de adquisiciones y compras, pues la tramitología en realizar un proceso de adquisición de un material o repuesto es muy extenso y muy problemático. Cabe mencionar que como se está sujeto a las leyes públicas como el SERCOP y la vigilancia de la Contraloría General del Estado obliga a buscar alternativas para ser más eficientes y dar paso a unas compras oportunas con materiales o repuestas de excelente calidad con la finalidad de aumentar la confiablidad de los activos de la empresa, y que la metodología del RCM, debería ser expuesta a todo el personal de mantenimiento para ellos se capaciten y puedan aportar para estos temas. Todo esto se realizaría con la finalidad de aportar con criterios de todos ellos para encontrar mejoras tareas de remediación.

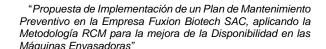
Valbuena Roja y Cortés Urrego (2020) en su "Propuesta de un plan de mantenimiento basada en la metodología RCM para los equipos de refrigeración del laboratorio de virología del Instituto Nacional de Salud" Bogotá D.C El presente trabajo se basa en una propuesta de mantenimiento basada en RCM (Mantenimiento Centrado en la Confiabilidad, para los equipos de refrigeración, del laboratorio de virología del Instituto Nacional de Salud, con el


se pretende mejorar el plan de mantenimiento actual, generando estrategias que permitan aumentar el índice de disponibilidad de los equipos, disminuir el número de fallas y lo costos de reparación Se realizó un estudio de los componentes de un sistemas de refrigeración, se clasificaron taxonómicamente sus elementos, se estudiaron las fallas significativas, se realizó un diagnóstico, para conocer el contexto del plan de mantenimiento e identificar las posibles desviaciones, con esta información se estableció la causa raíz del problema de

investigación, partiendo de ahí se definieron las estrategias y actividades asociadas, que

motivaron a la formulación de una propuesta de mantenimiento basada en RCM.

1.5.2. Nacionales


-Para PACHECO BADO (2018) en su investigación presenta una "PROPUESTA DE IMPLEMENTACIÓN DE UN SISTEMA DE GESTIÓN DE MANTENIMIENTO PREVENTIVO BASADO EN RCM PARA LA REDUCCIÓN DE FALLAS DE LA MAQUINARIA DE LA EMPRESA HYDRO PÁTAPO S.A.C" menciona un mantenimiento netamente correctivo en sus instalaciones de la empresa mencionada, la cual se encuentra en rubro de servicios y su especialidad es el desarrollo de proyectos de energía renovable, quien a su vez mantiene el uso de solo mantenimiento correctivo, pérdidas económicas, horas maquinas, etc. En su propuesta aborda un proyecto abocado a la construcción de una minicentral hidroeléctrica ubicada en el departamento de Lambayeque-Perú. Pacheco determino diferentes problemas encontrados en las diferentes maquinarias como, excavadoras, cortadora de concreto, etc. a las mismas que implantó los indicadores de un plan de mantenimiento preventivo aplicando la metodología basada la confiabilidad (RCM). Finalmente determino un análisis de costo beneficio a su propuesta ya que previo a

su estudio halló 125 939,06 dólares en pérdidas económicas y posterior aplicación de su propuesta una reducción de 21 933,84 dólares por año aproximado, con ello logrando las fallas, aumentando el indicador de disponibilidad y demostrando su viabilidad con el ámbito económico

-Lázaro Chávez (2018), presentó su Tesis para obtener el Título de Ingeniero de Minas, titulada: "PROPUESTA DE UN PLAN DE MANTENIMIENTO PREVENTIVO PARA OPTIMIZAR EL RENDIMIENTO DE LOS EQUIPOS MINEROS EN LA CALERA COLQUIRRUMI No49-B, PROVINCIA DE HUALGAYOC, CAJAMARCA, 2018" El objetivo de esta tesis fue Implementar un plan de mantenimiento preventivo para optimizar el rendimiento de los equipos mineros en la calera Colquirrumi No49-B, diagnosticar el estado actual del mantenimiento de los equipos, diseñar un plan de mantenimiento preventivo y evaluar la mejora en el rendimiento al implementar un plan de mantenimiento preventivo en los equipos mineros. Primero se describió el estado actual de los equipos mineros, se utilizó el diseño transversal porque se realizó en un espacio de tiempo determinado. El problema sucede que en la calera Colquirrumi No49-B, se cuenta con una excavadora JCB 220LC, una retroexcavadora JCB 3CXTT, un bobcat JCB, un volquete de 18 m³ y una camioneta; por lo que no se le realiza un mantenimiento preventivo, ya que la empresa cree que implica un alto costo de operatividad, solo esperan que se malogren para contratar un mecánico que repare el equipo. El plan de mantenimiento preventivo de los equipos mineros en la calera Colquirrumi No49-B, consistió en la aplicación de tres formatos básicos, el primero es el formato de inspección diaria del equipo. Con la implementación de un plan de mantenimiento en la calera Colquirrumi No49-B, se pretende llegar al rendimiento teórico de los equipos que del equipo principal que es la excavadora sea 134.25

m3/hora. Actualmente presentan deficiencias, se estima que el rendimiento del equipo principal que es la excavadora sea 134.25 m3/hora.

-Belli Hesse (2018) presentó su Tesis para obtener el Título de Ingeniero Industrial, titulada: "Propuesta de gestión de mantenimiento RCM en plantas de energía a gas natural" donde desarrollo El Mantenimiento Centrado en Confiabilidad la cual tiene un papel importante en las operaciones de las centrales de energía a gas. La producción de electricidad es no sólo la producción de un producto, sino que también se convierte en un servicio al cliente. La confiabilidad es el nivel más alto de calidad de este producto y servicio. Este trabajo presenta el análisis de la práctica RCM en la central térmica 3x2 MW, PISCO. El enfoque metodológico incluyó análisis de los cortes eléctricos no programados ("Blackouts") más significativos, la determinación de las principales causas de los daños, la aplicación de la metodología de evaluación de vida útil restante de los activos (Gensets) y, finalmente, las conclusiones y recomendaciones.

1.5.3. Locales

-Según Monge Nicolas y Irázabal Córdova, (2019), con su tesis "ESTRATEGIAS DEL RCM Y SU INFLUENCIA EN LA CONFIABILIDAD DE LOS EQUIPOS PARA LA TINTORERÍA DE LA EMPRESA SUR COLOR STAR S.A." para optar EL GRADO ACADÉMICO DE MAESTRO EN GERENCIA DEL MANTENIMIENTO de la universidad nacional del callao - Callao

Su investigación, tuvo como objetivo determinar la influencia en la confiabilidad de los equipos de la tintorería de la empresa SUR COLOR STAR S.A., al aplicar las estrategias

del RCM, a través del análisis de los indicadores de gestión del mantenimiento MTTR, MTBF, Disponibilidad y Cantidad de fallas de Equipos por mes, en un período de 12 meses entre los años 2017 y 2018. Se emplearon las estrategias del RCM siguientes: Análisis de criticidad, análisis de modo y efectos de falla y el diagrama de decisiones. Se elaboró una base de datos con el historial de los equipos estudiados, el cual se analizó a través del sofware SPSS, logrando resultados que permitieron corroborar las hipótesis planteadas. Como consecuencia de esta investigación y tomando en cuenta los resultados obtenidos, se llegó a la conclusión de que la implementación de las estrategias del RCM en los equipos para la tintorería de la empresa SUR COLOR STAR S. A., influye significativamente en la confiabilidad operacional de los equipos mencionados, logrando una mayor productividad. El empleo del análisis de criticidad en los equipos de la tintorería logró incrementar los niveles de productividad en 18,45% y disminuir los costos de reparación en 61,35%, asimismo la utilización del análisis de modo y efecto de falla logró incrementar la disponibilidad de los equipos de 81,60% a 98,20%, también concluyen que la utilización y el empleo del Diagrama de decisiones en los equipos para tintorería de la empresa SUR COLOR STAR S.A., es estratégico para mejorar la confiabilidad de los equipos involucrados, dado que permite definir de manera idónea, óptima y pertinente las actividades de mantenimiento a implementar con el objetivo de prevenir los eventos de falla, logrando incrementar el tiempo medio entre fallas (MTBF) de 34,5h para el año 2017 a 146,9h en el año 2018.

- Para Luján Lezama (2020) La presente investigación tiene como finalidad principal indicar cómo la aplicación de la implementación de la metodología de mantenimiento

centrado en la confiabilidad, aumenta la disponibilidad de las máquinas de soldadura en la empresa Welders Perú SAC (Lincoln Electric). Las máquinas de soldadura no tenían un plan de mantenimiento preventivo, se aplicaba correctiva siempre que era necesario, por ello se tomó en consideración poder en realizar esta aplicación de mantenimiento para mejorar los indicadores disponibilidad y confiabilidad de los equipos. Se considera muy importante tener los equipos disponibles y operativos al 100 % ya que estos con equipos se realizan diferentes actividades, los cuales cierran el procedimiento comercial y se espera poder cerrar los negocios que puedan presentarse. Con la aplicación de la metodología RCM se llegó a las siguientes conclusiones: la disponibilidad aumentó de 84,4 % del 2018 a 94,1% del 2019, los tiempos de reparación de las máquinas de soldar se redujo de 790 horas en el 2018 a 343 en el 2019 siendo un 43.4%, el número de fallas disminuyo de 84 fallas en el 2018 a 57 fallas en el 2019 siendo 67.9% y los costos de mantenimiento se redujeron de S/. 15.600,00 del 2018 a S/. 8.500,00 en el 2019 siendo un 54.5%. Obteniendo como resultado una productiva aplicación de la metodología RCM para las máquinas de soldar mejorando sus indicadores de producción

-Cubillas Pérez (2020) en su trabajo de suficiencia profesional "IMPLEMENTACIÓN DE LA METODOLOGÍA DE MANTENIMIENTO CENTRADO EN CONFIABILIDAD (RCM) Y LOS EFECTOS EN LA DISPONIBILIDAD DE LAS EXTRUSORAS HIDRÁULICAS, EN LA EMPRESA ITALSOLDER S.A.C." La investigación tiene como objetivo general, determinar cómo la implementación de la metodología de mantenimiento centrado en confiabilidad (RCM) mejora la disponibilidad de las extrusoras hidráulicas en la empresa Italsolder S.A.C El mantenimiento centrado en

la confiabilidad (RCM), es una metodología que nos permite aumentar la disponibilidad de un activo, mejorar la comprensión del funcionamiento de los equipos y también analizar todas las posibilidades de fallo de los sistemas y subsistemas. Las extrusoras hidráulicas de la empresa Italsolder S.A.C, no contaban con un plan de mantenimiento, es por ello que se implementó la metodología RCM en estos equipos, con ayuda de los reportes de mantenimiento, manual de la extrusora hidráulica e información disponible del personal de mantenimiento de la empresa. Las conclusiones de la investigación en la extrusora LP250 – 11, la disponibilidad tuvo un incremento de 10.4%. En la extrusora LP250 – 21 la disponibilidad tuvo un incremento de 8.5%. Los tiempos de reparación para la extrusora LP250 – 11, se redujeron en un 27.5%. En la extrusora LP250 – 21, se redujo en un 23.3%. El número de fallas para la extrusora LP250 – 11, se redujeron en un 82.4%. En la extrusora LP250 – 21, se redujo en un 73.3%. Los costos de mantenimiento en la extrusora LP250 – 11, se redujeron en un 82%. En la extrusora LP250 – 21, se redujo en un 71.2%.

1.6. Bases Teóricas

1.6.1. Sistemas de Mantenimiento.

Históricamente el mantenimiento ha evolucionado a través del tiempo, desde el punto de vista práctico del mantenimiento, se diferencian enfoques de mejores prácticas aplicadas cada una en épocas determinadas. Para una mejor comprensión de la evolución y desarrollo del mantenimiento desde sus inicios y hasta nuestros días, Moubray distingue tres generaciones a saber. (Moubray, 2004).

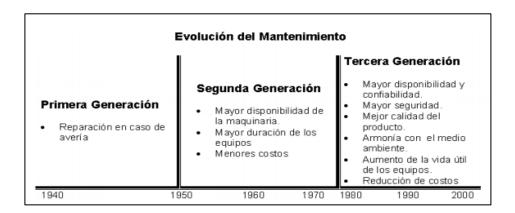


Fig. 4. Evolución del mantenimiento Fuente: Moubray, 2004

Según el estado actual, el mantenimiento se clasifica en dos grandes grupos:

1.6.2. Mantenimiento Operacional:

Se define como la acción de mantenimiento aplicada a un equipo o sistema a fin de mantener su continuidad operacional, el mismo es ejecutado en la mayoría de los casos con el activo en servicio sin afectar su operación natural. La planificación y programación de este tipo de mantenimiento es completamente dinámica, la aplicación de los planes de mantenimiento rutinario se efectúa durante todo el año con programas diarios que dependen de las necesidades que presente un equipo sobre las condiciones particulares de operación, en este sentido el objetivo de la acción de mantenimiento es garantizar la operatividad del equipo para las condiciones mínimas requeridas en cuanto a eficiencia, seguridad e integridad. El mantenimiento operacional en la industria petrolera es manejado por personal de dirección de la organización con un stock de materiales para consumo constante y los recursos de equipos, herramientas y personal artesanal para la ejecución de las tareas de campo son obtenidos de empresas de servicio.

1.6.3. Mantenimiento Mayor:

Es el mantenimiento aplicado a un equipo o instalación donde su alcance en cuanto a la cantidad de trabajos incluidos, el tiempo de ejecución, nivel de inversión o costo del mantenimiento y requerimientos de planificación y programación son de elevada magnitud, dado que la razón de este tipo de mantenimiento reside en la restitución general de las condiciones de servicio del activo, bien desde el punto de vista de diseño o para satisfacer un periodo de tiempo considerable con la mínima probabilidad de falla o interrupción del servicio y dentro de los niveles de desempeño o eficiencia requeridos. La diferencia entre ambos tipos de mantenimiento se basa en los tiempos de ejecución, los requerimientos de inversión, la magnitud y alcance de los trabajos, ya que el mantenimiento operacional se realiza durante la operación normal de los activos, y el mantenimiento mayor se aplica con el activo fuera de servicio. Por otra parte, la frecuencia con que se aplica el mismo es sumamente alta con respecto a la frecuencia de las actividades del mantenimiento operacional, la misma oscila entre cuatro y quince años dependiendo del grado de severidad del ambiente en que está expuesto el componente, la complejidad del proceso operacional, disponibilidad corporativa de las instalaciones, estrategias de mercado, nivel tecnológico de componentes y materiales, políticas de inversiones y disponibilidad presupuestaria, Según las actividades realizadas, el mantenimiento se clasifica en (Salguero, 2010).

1.6.4. Mantenimiento Correctivo:

También denominado mantenimiento reactivo, es aquel trabajo que involucra una cantidad determinada de tareas de reparación no programadas con el objetivo de restaurar la función de un activo una vez producido un paro imprevisto. Las causas que pueden

originar un paro imprevisto se deben a desperfectos no detectados durante las inspecciones predictivas, a errores operacionales, a la ausencia tareas de mantenimiento y, a requerimientos de producción que generan políticas como la de "repara cuando falle". Existen desventajas cuando dejamos trabajar una máquina hasta esta condición, ya que generalmente los costos por impacto total son mayores que si se hubiera inspeccionado y realizado las tareas de mantenimiento adecuadas que mitigaran o eliminaran las fallas (Salguero, 2010).

1.6.5. Mantenimiento Predictivo:

Es un mantenimiento planificado y programado que se fundamenta en el análisis técnico, programas de inspección y reparación de equipos, el cual se adelanta al suceso de las fallas, es decir, es un mantenimiento que detecta las fallas potenciales con el sistema en funcionamiento. Con los avances tecnológicos se hace más fácil detectar las fallas, ya que se cuenta con sistemas de vibraciones 19 mecánicas, análisis de aceite, análisis de termografía infrarrojo, análisis de ultrasonido, monitoreo de condición, entre otras (Sánchez, 2016).

1.6.6. Mantenimiento Proactivo:

Es aquel que engloba un conjunto de tareas de mantenimiento preventivo y predictivo que tienen por objeto lograr que los activos cumplan con las funciones requeridas dentro del contexto operacional donde se ubican, disminuir las acciones de mantenimiento correctivo, alargar sus ciclos de funcionamiento, obtener mejoras operacionales y aumentar la eficiencia de los procesos (Salguero, 2010).

1.7. Confiabilidad

Para Mora, (2009) indica que es "la probabilidad de que un equipo desempeñe satisfactoriamente las funciones para las cuales se diseña durante un período de tiempo específico y bajo condiciones normales de operación, ambientales y del entorno".

La confiabilidad es una condición para que exista validez. Difícilmente un instrumento poco confiable resulta ser válido. Pero, por otra parte, de nada sirve que sea confiable si no se mide lo que se pretende medir (Morone, 2013).

1.8. La metodología RCM

El mantenimiento centrado en fiabilidad (MCF) o RCM (Reliability Centered Maintenance) es una de las técnicas organizativas actuales aplicadas al mantenimiento que más significativamente mejora sus resultados.

Es un proceso para determinar cuáles son las operaciones que debemos hacer para que un equipo o sistema continúe desempeñando las funciones deseadas en su contexto operacional, siempre y cuando sean rentables para la empresa (Sánchez, 2016).

Fig. 6. Estrategias del mantenimiento Fuente: (Sánchez, 2016)

El mantenimiento centrado en fiabilidad se basa en el análisis de fallos, tanto aquellos que ya han ocurrido, como los que se están tratando de evitar con determinadas acciones preventivas, como por último aquellos que tienen cierta probabilidad de ocurrir y pueden tener consecuencias graves. Durante ese análisis de fallos debemos contestar a siete (7) preguntas claves:

- 1 ¿Cuáles son las funciones y los estándares de ejecución asociados con el activo (equipo a mantener) en su actual contexto operacional?
- 2 ¿De qué manera puede fallar y no cumplir las funciones y estándares anteriores?
- 3 ¿Qué causa cada fallo funcional?
- 4 ¿Qué ocurre cuando sucede un fallo?
- 5 ¿Qué ocurre cuando falla y qué repercusiones tiene? (Disponibilidad, costes, accidentes, etc.)
- 6 ¿Qué puede hacerse para prevenir cada fallo funcional?
- 7 ¿Qué puede hacerse si no se conoce una tarea de prevención adecuada a este fallo?

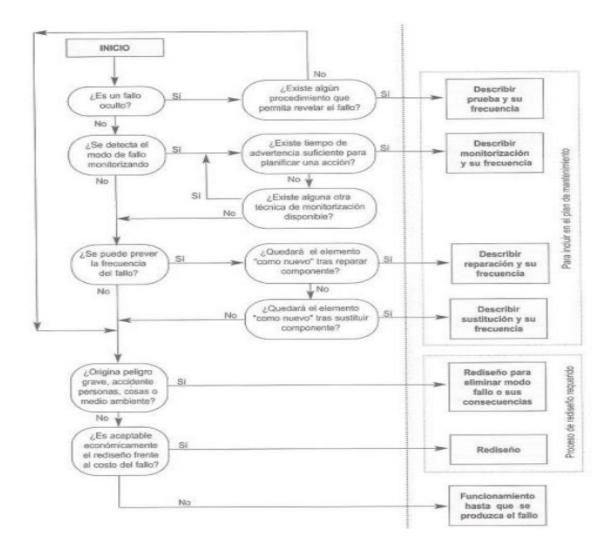


Fig. 7 Árbol de decisiones RCM Fuente: (Sánchez, 2016)

Este enfoque gradual de "arriba-abajo" significa que las tareas sistemáticas sólo se especifican para elementos que las necesitan realmente. Esta característica del RCM normalmente lleva a una reducción significativa en los trabajos rutinarios. También quiere decir que las tareas restantes son más probables que se hagan bien. Esto combinado con unas tareas útiles equilibradas llevará a un mantenimiento más efectivo. Si esto compara el enfoque gradual tradicional de abajo a arriba. Tradicionalmente, los requerimientos del mantenimiento se evaluaban en términos de sus características técnicas reales o supuestas, sin considerar de nuevo que en diferentes condiciones se aplican consecuencias diferentes.

Esto resulta en un gran número de planes que no sirven para nada, no porque sean "equivocados", sino porque no consiguen nada (Sánchez, 2016).

El proceso del RCM considera los requisitos del mantenimiento de cada elemento antes de preguntarse si es necesario volver a considerar el diseño. Esto es porque el ingeniero de mantenimiento que está de servicio hoy tiene que mantener los equipos como está funcionando hoy, y no como debería de estar o puede que esté en el futuro.

Los trabajos de RCM son arduos y tediosos, pues hay que analizar cada equipo, cada subconjunto, sus formas de fallo, las averías ocultas, etc. Conviene limitar las reuniones de forma rigurosa intentando no sobrepasar las 3 horas de duración. Los integrantes típicos de un grupo de trabajo son: el guía o facilitador, un técnico de ingeniería, uno de mantenimiento, operarios y un técnico de producción (Sánchez, 2016).

El técnico de ingeniería es el responsable del proyecto del equipo, de su compra y recepción. De no ser suficiente con él, puede contarse con la presencia del constructor e instalador.

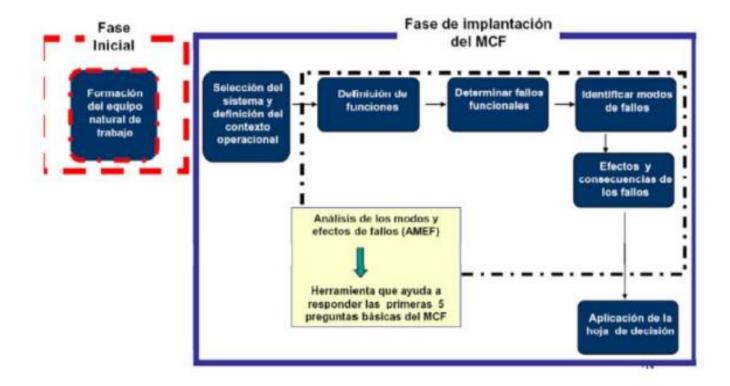


Fig. 8. Flujograma de implementación del RCM Fuente: (Sampieri, 2010)

1.8.1. Diferencias entre un plan de mantenimiento inicial y uno obtenido mediante RCM

Comparando el plan inicial, basado sobre todo en las recomendaciones del fabricante, con el nuevo, basado en el análisis de fallos, habrá diferencias notables:

- En algunos casos, habrá nuevas tareas de mantenimiento, allí donde el fabricante no consideró necesaria ninguna tarea.
- En otros casos, se habrán eliminado algunas de las tareas por considerarse que los fallos que trataban de evitar son perfectamente asumibles (es más

económico esperar el fallo y solucionarlo cuando se produzca que realizar determinadas tareas para evitarlo).

 El plan de mantenimiento inicial está basado en las recomendaciones de los fabricantes más aportaciones puntuales de tareas propuestas por los responsables de mantenimiento en base a su experiencia, completadas con las exigencias legales de mantenimiento de determinados equipos:

Fig. 9. Diagrama de flujo de la elaboración del plan de mantenimiento preventivo basado en el análisis de fallos RCM

A continuación, definiremos los índices la cual nos ayudaran a alcanzar los resultados respondiendo al problema la cual tiene nuestra investigación, ¿De qué manera la implementación de un Mantenimiento Preventivo en la Empresa Fuxion Biotech SAC, mediante la metodología RCM mejora la Disponibilidad de las maquinas envasadora?

1.9. Indicadores de mantenimiento

Se describen los principales Índices cuya evolución será necesario controlar para evaluar la Gestión del área de Mantenimiento la cual, primordialmente estaremos centrados en la disponibilidad de las maquinas envasadoras:

1.9.1. Costes de materiales

Por Máquina en cuestión de mantenimientos preventivos y correctivos. Se pueden hacer tantas subdivisiones como se crea conveniente: por secciones, por tipo (eléctrico, mecánico, consumibles, repuestos genéricos, repuestos específicos, etc.)

Es el acumulado diario de Gastos de todas las Máquinas en cuanto a piezas y repuestos del mes actual. Dicho parámetro se debe comparar con:

- 1. Presupuesto mes actual (se tiene anual) desglosado por Tipo, Uso y Total
- 2. Gastos medios año anterior
- 3. Gastos medios año actual
- 4. Permitirá comprobar el aumento o disminución de los Costes de Mantenimiento.

1.9.2. Coste de Mano de Obra de mantenimiento tanto Propia como Subcontratada

Es el cociente de dividir el Nº total de horas empleadas en mantenimiento entre el coste total de la mano de obra:

 $Coste \ de \ hora \ medio = \frac{N^{\circ} \ de \ horas \ de \ mantenimiento}{Coste \ total \ de \ la \ mano \ de \ obra \ de \ mantenimiento}$

Ecuación 4: Costo de mano de obra

1.10. Formulación del problema

¿De qué manera la implementación de un Plan de Mantenimiento Preventivo en la Empresa Fuxion Biotech SAC, mediante Metodología RCM mejora la Disponibilidad de las máquinas envasadoras?

1.10.1. Problemas Específicos

- •¿Como desarrollar un plan de mantenimiento preventivo en base a la metodología RCM aplicado a las maquinas envasadoras de la empresa Fuxion Biotech?
- •¿Como influenciará la metodología RCM aplicado en la disponibilidad de las maquinas envasadoras de la empresa Fuxion Biotech SAC?
- •¿En qué influenciará la aplicación de un plan de mantenimiento preventivo con la metodología RCM en la implementación de un almacén de piezas y repuestos en stock para las máquinas envasadoras de la empresa Fuxion Biotech SAC?
- •¿Cómo impactará la implementación del plan de mantenimiento preventivo basada en la metodología RCM en el nivel de conocimiento del personal de mantenimiento y operativo para las maquinas envasadoras en la empresa Fuxion Biotech S.A.C.?

1.11. Objetivos

1.11.1. Objetivo general

• Determinar como la Implementación de un Plan de Mantenimiento Preventivo aplicando la Metodología RCM mejora la Disponibilidad de las máquinas envasadoras en la Empresa Fuxion Biotech SAC.

1.11.2. Objetivos específicos

- Determinar un plan de mantenimiento preventivo en base a la metodología RCM aplicado a las maquinas envasadoras de la empresa Fuxion Biotech
- Determinar la influencia de la metodología RCM aplicado en la disponibilidad de las maquinas envasadoras de la empresa Fuxion Biotech SAC
- Determinar la influencia de la aplicación de un plan de mantenimiento preventivo con la metodología RCM en la implementación de un almacén de piezas y repuestos en stock para las máquinas envasadoras de la empresa Fuxion Biotech SAC
- Determinar el impacto de la implementación del plan de mantenimiento preventivo basada en la metodología RCM en el nivel de conocimiento del personal de mantenimiento y operativo para las maquinas envasadoras en la empresa Fuxion Biotech S.A.C.

1.12. Hipótesis General

La implementación de un Plan de Mantenimiento Preventivo en la Empresa Fuxion Biotech SAC, mediante Metodología RCM mejora la Disponibilidad de las máquinas envasadoras

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

2.1.1. Enfoque de investigación:

Para (Sampieri, 2014) El enfoque cuantitativo (que representa, como dijimos, un conjunto de procesos) es secuencial y probatorio. Cada etapa precede a la siguiente y no podemos "brincar" o eludir pasos. El orden es riguroso, aunque desde luego, podemos redefinir alguna fase. Parte de una idea que va acotándose y, una vez delimitada, se derivan objetivos y preguntas de investigación, se revisa la literatura y se construye un marco o una perspectiva teórica. De las preguntas se establecen hipótesis y determinan variables; se traza un plan para probarlas (diseño); se miden las variables en un determinado contexto; se analizan las mediciones obtenidas utilizando métodos estadísticos, y se extrae una serie de conclusiones.

2.1.2. Alcance de la investigación:

Las investigaciones que se realizan en un campo de conocimiento específico pueden incluir diferentes alcances en las distintas etapas de su desarrollo. Es posible que una investigación se inicie como exploratoria, después puede ser descriptiva y correlacional, y terminar como explicativa (Ver Fig.10). (Sampieri, 2014)

En los estudios descriptivos se busca especificar las propiedades, las características y los perfiles de personas, grupos, comunidades, procesos, objetos o cualquier otro fenómeno que se someta a un análisis. Es decir, únicamente pretenden medir o recoger información de manera independiente o conjunta sobre los conceptos o las variables a las que se refieren, esto es, su objetivo no es indicar cómo se relacionan éstas. (Sampieri, 2014)

Fig. 10. Alcances de la Investigación. (Sampieri, 2014)

La investigación aplicada recibe el nombre de "investigación práctica o empírica", que se caracteriza porque busca la aplicación o utilización de los conocimientos adquiridos, a la vez que se adquieren otros, después de implementar y sistematizar la práctica basada en investigación. El uso del conocimiento y los resultados de investigación que da como resultado una forma rigurosa, organizada y sistemática de conocer la realidad. Con el fin de ofrecer un referente comprensible de la expresión "investigación aplicada", se exponen algunas de las ideas de Padrón (2006) al respecto, para quien la expresión se propagó durante el siglo XX para hacer referencia, en general, a aquel tipo de estudios científicos orientados a resolver problemas de la vida cotidiana o a controlar situaciones prácticas, haciendo dos distinciones (Murillo, 2008).

- La que incluye cualquier esfuerzo sistemático y socializado por resolver problemas o intervenir situaciones.
 - En ese sentido, se concibe como investigación aplicada tanto la innovación técnica, artesanal e industrial como la propiamente científica.
- La que sólo considera los estudios que explotan teorías científicas previamente validadas, para la solución de problemas prácticos y el control de situaciones de la vida cotidiana (Vargas, 2009).

Por lo anterior descrito el estudio de la investigación presentado tiene un enfoque cuantitativo ya que se analizan datos numéricos y estadísticos, con un alcance descriptivo de diseño no experimental, transversal y propósito aplicada.

2.2. Población

La población para la presente investigación está conformada por las máquinas envasadoras del área de envasado; las cuales poseen el mismo estudio de homogeneidad siendo todas de las mismas características funcionales con relación a aspectos técnicos que son: mecánicas, eléctricas, neumáticas y electrónicas, las cuales están ubicados en la planta de la empresa Fuxion Biotech SAC.

2.3. Muestra

Lo conforman 11 máquinas envasadoras que se encuentran instaladas estratégicamente en el área de envasado, según su tamaño y modelo, los mismos, caben en dicha área con un layout bien diseñado, haciendo que satisfaga la comodidad de los operarios.

2.4. Técnicas e instrumentos de recolección y análisis de datos

2.4.1. Validez

Si bien ningún procedimiento es infalible a la hora de establecer si existe o no validez interna, existen dos ayudas fundamentales: la revisión bibliográfica y la consulta a especialistas en el tema (Morone, 2013).

La validez, en términos generales, se refiere al grado en que un instrumento mide realmente la variable que pretende medir (Sampieri, 2014).

Para el presente trabajo se priorizó la validez de toda la información recopilada, basándonos en anteriores trabajos de investigación que tienen como objeto de estudio las mismas variables, a su vez las consultas a las personas especialistas y encargadas como el jefe de planta y de mantenimiento en la empresa Fuxion Biotech SAC, todas la anteriores con la finalidad de obtener la misma variable de estudio.

2.4.2. Técnicas

Se sostiene que la técnica de recolección de datos hace referencia a recolectar datos pertinentes sobre atributos, conceptos o variables de las unidades de análisis. Se puede dividir en fuentes primarias y secundarias. Siendo una de las primarias la observación (Sampieri, 2010).

La confiabilidad de un instrumento de medición se refiere al grado en que su aplicación repetida al mismo individuo u objeto produce resultados iguales (Sampieri, 2014)

En la figura N°11 se observa que para el presente trabajo de investigación es necesario usar las diferentes técnicas desde: investigación documental y de campo, con el objetivo de recolectar la mayor información para su análisis correspondiente.

Diseño	Técnicas	Ins	trumentos
Diseño de Investigación Documental	Análisis documental	Fichas Computadora y sus unidades de almacenaje	
	Análisis de contenido	Cuadro de registro y clasificación de las categorías	
Diseño de Investigación de Campo	Observación	Estructurada	Lista de cotejo Escala de estimación
		No Estructurada	Diario de campo Cámaras: fotográfica y de video
	Encuesta	Oral	Guía de encuesta (Tarjeta) Grabador Cámara de video
		Escrita	Cuestionario
	Entrevista	Estructurada	Guía de entrevista Grabador / Cámara de video
		No estructurada	Libreta de notas Grabador / Cámara de video

Fig. 11. Cuadro de técnica e instrumentos Fuente (Martínez, 2019)

2.4.3. Materiales

Los materiales a utilizar para el desarrollo de toda la investigación presentada:

- Hojas Bond A4
- Cuaderno espiral
- Laptop
- Útiles de escritorio
- Impresora multifuncional
- Disco de almacenamiento Externo
- Proyector multimedia
- Pizarra acrílica

2.4.4. Instrumentos

Los instrumentos con la cual desarrollará el presente trabajo de investigación, la cual a su vez se obtendrán datos exactos para un mejor control, serán mediante la creación de lo siguiente: reporte de fallas, fichas técnicas de equipos, cuaderno de ocurrencias, reportes de costos de mantenimiento correctivo. En las cuales se procesará la información recopilada para realizar el seguimiento y medición de la presente investigación, sustentado y complementado mediante índices relacionados a la metodología RCM, y así mostrar veracidad de los resultados detalladamente en el capítulo 3 del presente estudio.

2.5. Procedimiento

Tabla 7:

Procedimientos propuestos para el trabajo de investigación Fuente: Elaboración propia

PROCEDIMIENTOS PROPUESTOS		
Diagnóstico inicial	• Ishikawa	
	Diagrama Pareto	
Recolección de información.	Reporte de fallas	
	Fichas técnicas de equipos	
	Cuaderno de ocurrencias	
	• Reportes de costos de	
	mantenimiento correctivo	
Revisión y análisis de la información	Análisis de los datos recolectados	
Selección del equipo de trabajo RCM	Líder del RCM	

	Jefe de mantenimiento
	Técnicos de mantenimiento
Entrenamiento y capacitación	Capacitaciones continúas
Determinar el contexto operacional de	Verificar las condiciones en el cual
las maquinas envasadoras	operan las maquinas envasadoras
Se resolvió las 7 preguntas básicas del	• ¿Cuáles son las funciones?, ¿De qué
RCM	forma falla?, ¿Qué causa la falla?,
	¿Qué sucede cuando hay falla?,
	¿Qué ocurre si falla?, ¿Qué se puede
	hacer para predecir o prevenir las
	fallas?, ¿Qué sucede si no puede
	predecirse o prevenirse las fallas?
Fases para cada uno de los sistemas o	• Fase 0: listado y codificación de
elementos que componen las maquinas	equipos
envasadoras	• Fase 1: listado de funciones y
	especificaciones Fase 2:
	determinaciones de fallos
	funcionales y técnicos
	Fase 3: determinación de los modos
	de fallo Fase 4: análisis de la

	gravedad de los fallos. (Efectos de
	falla)
	• Fase 5: determinación de medidas
	preventivas
	• Fase 6: obtención del plan de
	mantenimiento
	• Fase 7: puesta en marcha de las
	medidas preventivas obtenidas
Cumplimiento de los objetivos propuestos	Mejorar la disponibilidad
	• Implementación de Gestión de
	repuestos
	Técnicos de Mantenimiento apto y
	capacitado.

2.5.1. Diagnóstico Inicial

Como se menciona inicialmente la problemática de la empresa Fuxion Biotech SAC es la necesidad de un plan de mantenimiento, ya que presenta en el área de envasado una baja disponibilidad en las maquinas envasadoras, 73% aproximadamente. (Ver Tabla. 6)

También se empleó herramientas como diagramas de Ishikawa y Pareto con el fin de dar un mayor alcance de la investigación. (Ver Fig. 1 y 2) Donde además podemos apreciar las principales causas que dan origen a la baja disponibilidad de las maquinas envasadoras.

2.5.2. Recolección de la información

Para la propuesta de implementación de Plan de mantenimiento preventivo en la empresa Fuxion Biotech SAC, y mejorar la disponibilidad de las maquinas envasadoras, se recopilo la siguiente información:

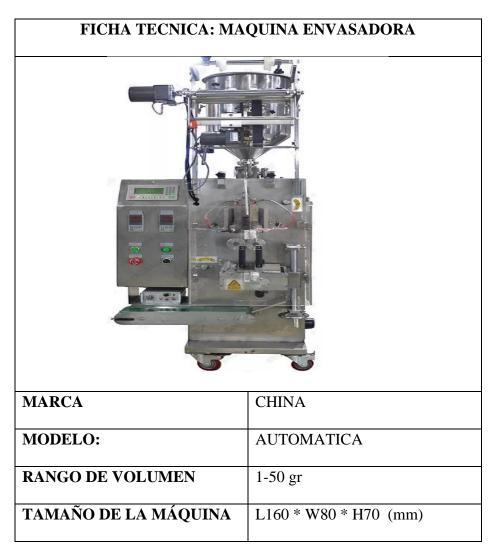
- Historial de fallas
- Fichas técnicas de equipos
- Cuaderno de ocurrencias
- Personal de Mantenimiento
- Reportes de costos de mantenimiento correctivo

2.5.3. Revisión y análisis de la información

Se obtienen de la Tabla. 2 los siguientes datos con respecto al historial de fallas:

- Existen un promedio de 48 paradas mensuales.
- Un alto tiempo de reparación ascendente a 794 horas mensuales en promedio,
 a su vez se verifican las máquinas que son más recurrentes en fallas (Ver.
 Tabla. 2)

2.5.3.1. Historial de fallas – (Número de fallas - Tiempo de reparación):


Toda la revisión y análisis del historial de fallas que se presentaron a lo largo del año mencionado en principio en las máquinas envasadoras fueron relevantes para obtener el cálculo de la disponibilidad en este intervalo de tiempo antes de la implementación de la metodología RCM tal como se observó en el capítulo I diagnóstico inicial. Para mayor información del historial de fallas (Ver. Tabla. 2)

2.5.3.2. Reporte y análisis de costos de mantenimiento de los equipos:

El reporte brindado por el área de mantenimiento se refiere en su mayoría a los costos directos de mantenimiento como mano de obra, repuestos y el contrato de un tercero para mantenimientos programado. A continuación, se detalla la información brindada y posterior a ello el análisis a una de las maquinas envasadoras de la empresa Fuxion Biotech S.A.C.

2.5.3.3. Ficha Técnica de Equipos:

La ficha técnica de las maquinas envasadoras nos otorga principales datos técnicos con el fin de conocer mejor el objeto de estudio a detalle.

VOLTAJE:	220V.60Hz.
POTENCIA	: 1KW
TIPO DE SELLADO:	3/4 lados de sellado
PESO DE LA MÁQUINA:	100 kg

Fig. 12 Ficha técnica de Maquina envasadora Fuente: Elaboración propia

2.5.3.4. Cuaderno de Ocurrencias:

En este cuaderno se puede observar las diversas ocurrencias en un dia laboral en las maquinas envasadoras en la planta de Fuxion Biotech SAC

Fig. 13 Cuaderno de Ocurrencias Fuente: Empresa Fuxion Biotech SAC

2.5.3.5. Personal de Mantenimiento

Se realizó una entrevista a los técnicos de mantenimiento, quienes también son nuestra principal fuente de recopilación de información.

Otorgando al trabajo de investigación temas principales sobre las problemáticas ocurridas a diario en las maquinas envasadoras.

2.5.4. Selección de equipo para propuesta de implementación de mantenimiento RCM

2.5.4.1. **Líder RCM**

Estará representada por los consultores contratados, quienes tendrán la principal función de impartir los conocimientos necesarios a todo el personal operativo y técnico, como también de mando superior como: Gerencia y jefe de mantenimiento. Este último será quien tome el liderazgo una vez establecido la metodología RCM.

2.5.4.2. Jefe de Mantenimiento:

Responsable de verificar y validar el procedimiento y la ejecución correcta de la metodología RCM, y del seguimiento de la implementación del plan de mantenimiento para las maquinas envasadoras.

2.5.4.3. Técnico de Mantenimiento:

Son responsables de la ejecución de las tareas de mantenimiento preventivo, de acuerdo a la metodología de RCM, evidenciándose en el correcto llenado de todos los formatos propuestos, lista de repuestos y piezas, herramientas, check list a utilizar en cada trabajo y por consiguiente llevar los controles necesarios de las maquinas envasadoras.

2.5.5. Entrenamiento y capacitación

Se propone realizar las capacitaciones para el personal operario, técnicos y administrativo, para ello se coordinará con el área de RRHH de la empresa, el cual se le pondrá en conocimiento que el horario establecido será fuera de la hora de trabajo. Los temas necesarios que abordara se detallan a continuación:

- Introducción a la metodología RCM
- Presentación de tabla propuesta con la metodología RCM
- Plan de Mantenimiento propuesto para las maquinas envasadoras

- Manejo de formatos propuestos para el seguimiento en la aplicación de la metodología RCM.
- Manejo y operatividad de las maquinas envasadoras

2.5.6. Determinación del contexto operacional de las maquinas envasadoras

Las 11 máquinas envasadoras las cuales son el principal objeto de estudio, se encuentran ubicadas en la planta de la empresa Fuxion Biotech SAC en Lurín- Lima, las cuales operan a una razón de 45 sticks golpes/min. En un turno de 7am -5pm de lunes a viernes.

2.5.6.1. Estándares de calidad:

El objetivo principal del presente estudio es mejorar la disponibilidad de las maquinas envasadoras, no obstante, lo que también se busca es que las maquinas cuenten con las condiciones básicas:

- Operacionales: Será importante tomar en cuenta los mayores estándares de calidad en todas las tareas de mantenimiento propuesta.
- Ambientales: Para su correcto funcionamiento de envasado, la empresa Fuxion Biotech SAC cuenta con un sistema de aire acondicionado para controlar la temperatura del ambiente con un set point 22 °C y así mismo para la empresa es imperante tener controlado la humedad en un rango de 50%-60%, para la cual se dispone de equipos deshumedecedores.

2.5.6.2. Estándares en el aspecto ambiental:

Con respecto al tema ambiental los desechos tóxicos producidos por las tareas de mantenimiento, como, por ejemplo: cambio de aceite de los reductores, restos de grasa industrial son controlados por una empresa externa especialista en reciclar y tratamiento de residuos.

Máquinas Envasadoras"

2.5.6.3. Estándares en el aspecto de seguridad:

Para la ejecución y/o desarrollo de cada reporte, reparación o monitoreo de cada una de las maquinas, se cumple con un procedimiento de seguridad estricto. Al ingresar a planta donde se encuentra las maquinas envasadoras es indispensable ingresar con los equipos de protección personal (EPP)correctos y en buen estado, tales como:

- Mascarilla de Seguridad KN 95 y toca para el cabello.
- Mandil esterilizado descartable.
- Uniforme personal.
- Botas de seguridad con punta de acero,
- Casco de seguridad
- Lentes de seguridad y barbiquejo.

2.5.7. Respuesta a las 7 preguntas básicas del RCM.

Pregunta 1: ¿Cuáles son las funciones? (funciones y criterios de funcionamiento).

Las funciones de las maquinas envasadoras en estudio, son de envasar, codificar, sellar, corte y la entrega del producto final en presentación sticks.

Tabla 8:

Algunas presentaciones de productos de la empresa Fuxion Biotech SAC Elaboración propia

PRODUCTO	PRESENTACION EN STICK
PRUNEX 1	PUNEXI PRUNEXI
THERMO T3	THERMO TS Williams To the state of the stat
VITAENERGÍA	VITAENERGIA TENENGRICA
BEAUTY-IN	FUXION BEAUTY-IN When the state of the sta

> Productos de Fuxion Biotech SAC

Fuxion tiene una cartera de 64 productos, los cuales están agrupados dentro de sus seis líneas de productos:

- Línea Inmunológica
- Línea Control de Peso
- Línea Anti edad
- Líneas Vigor Mental
- Línea Sport
- Línea Kids

De los 64 productos que actualmente Fuxion comercializa, 26 productos representan el 80% de sus ventas, 8 productos representan entre el 80 y 90% de sus ventas y 30 productos representan el último 10% de las ventas. Como se puede apreciar en la siguiente tabla.

Tabla 9: Clasificación de productos Elaboración propia.

Clasificación de productos	Número de productos
Α	26
В	8
C	30
Total general	64

En la figura 14 se muestra el Pareto de las ventas por tipo de producto, en esta se puede observar que el 30% de las ventas está representada por tres productos, que son: Prunex, Termo T3 y Vita Xtra Plus.

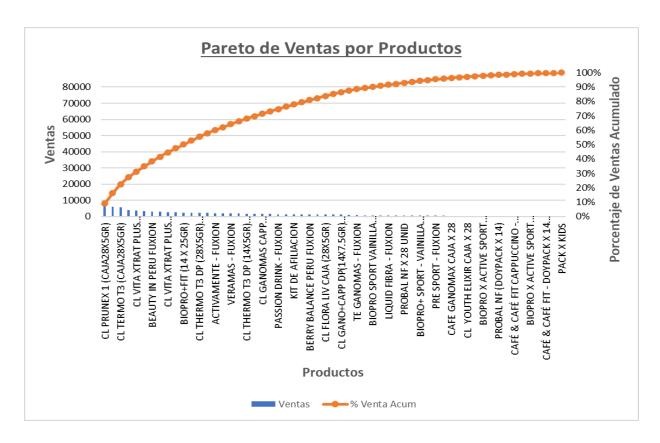


Fig. 14. Ventas por tipo de producto Fuente: Elaboración Propia

Pregunta 2: ¿De qué forma falla? (fallas funcionales).

La forma en que la maquina envasadora falla es cuando deja de entregar el producto final con los estándares de control de calidad en envasado con peso inadecuado, codificado incompleto, sellado y corte defectuoso. Como por ejemplo una de las fallas funcionales: motor de tolva no enciende por falta de mantenimiento preventivo.

Pregunta 3: ¿Qué causa la falla? (modos de fallas).

EL modo de falla es la causa de cada falla funcional el modo de falla es el que provoca la pérdida de función total o parcial de un activo en su contexto operacional

Algunos modos de fallo de las maquinas envasadoras Se detallará más adelante en el cuadro de RCM. (Ver. Fig. 31,32,33). Igualmente se describe algunos ejemplos a continuación:

Tabla 10: Ejemplos de Modo de Falla en las maquinas envasadoras. Elaboración propia

EJEMPLOS DE MODO DE FALLA
Lubricación inadecuada de ejes deslizantes
Adhesión de producto en las compuertas dosificadoras.
Montaje de máquinas incorrecta.
Desgaste de bielas horizontales
Obstrucción del formador de stick

Pregunta 4: ¿Qué sucede cuando hay falla? (efectos de las fallas).

Cuando ocurren las constantes fallas en la maquinas envasadoras, tiende a que el activo encuentre diferentes problemas como:

- Desgastes prematuros de repuestos
- Obliga a realizar algunas modificaciones a la maquina
- El tiempo de vida de la maquina sea menor
- No cumple con las funciones necesarias de trabajo

Pregunta 5: ¿Qué ocurre si falla? (consecuencia de las fallas).

Las consecuencias a cada falla de la maquina envasadora

• Consecuencias operacionales y no operacionales

El incumplimiento del plan de producción del día.

Led indicador de parada de emergencia quemado

• Consecuencias en la seguridad y el medio ambiente.

Atrapamiento de manos del operario

Derrame de aceite del reductor

Pregunta 6: ¿Qué se puede hacer para predecir o prevenir las fallas? (tareas

predictivas/preventivas).

El presente estudio tiene como objetivo mejorar la disponibilidad de las maquinas envasadoras través de diferentes herramientas como: los análisis de fallas, AMEF y la toma de decisiones que se detallan más adelante. Por lo cual se obtendrá una serie de tareas preventivas, formatos de monitoreo, las cuales son de vital importancia para elaborar un plan

de mantenimiento basado en la confiabilidad.

Pregunta 7: ¿Qué sucede si no puede predecirse o prevenirse las fallas? (tareas a "falta

de").

En este punto de las preguntas, lo que se debe realizar es volver a analizar y/o reestructuras todas las tareas, frecuencias y tiempos de ejecución del plan de mantenimiento propuesto

2.5.8. Fases para la implementación del RCM

Fase 0: Listado y codificación de equipos.

Siendo esta la primera fase para iniciar el análisis de fallo, además de ser un problema que se plantea al intentar realizar según la metodología del RCM es elaborar una lista ordenada de los equipos que hay en planta. Para realizar un inventario de los activos debemos expresar esta lista en forma de estructura arbórea, en la que se indiquen las relaciones de dependencia de cada uno de los ítems con los restantes.

En una planta industrial podemos distinguir los siguientes niveles, a la hora de elaborar esta estructura arbórea:

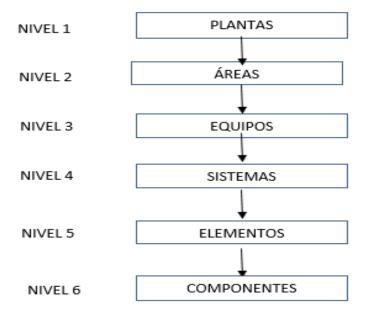


Fig. 15 Niveles de organización de los niveles de la planta. Fuente: (Sánchez, 2016)

Definamos en primer lugar qué entendemos por cada uno de estos términos:

Planta: Centro de trabajo, para el presente estudio: Empresa (Fuxion Biotech SAC), Planta de producción ubicada en el distrito de Lurín.

Área: Zona de la planta que tiene una característica común (centro de coste, similitud de máquinas, línea de producto, función, etc.)

Equipo o Máquina: Cada una de las unidades productivas que componen el área, que forman un conjunto único.

Sistema: Conjunto de elementos que tienen una función común dentro de un equipo o máquina.

Elementos: cada una de las partes que integran un sistema. Ej. La bomba del sistema de dosificación de producto.

Es importante diferenciar elemento y equipo. Un equipo puede estar conectado o dar servicio a más de un equipo. Un elemento, en cambio, solo puede pertenecer a un equipo. Si el ítem que tratamos de identificar puede estar conectado o dar servicio simultáneamente a más de un equipo, será un equipo, y no un elemento. Así, si una bomba de dosificación de producto, se tratará de un elemento de una envasadora. Si, en cambio, se trata de una bomba que dosifica a varias envasadoras, se tratará en realidad de otro equipo, y no de un elemento de alguno de ellos. (2016). Renove tecnología. Recuperado de: http://rcm3.org/123

Componentes: Partes en que puede subdividirse un elemento. Ej.: Rodamiento de un motor.

Pero teniendo en cuenta que en el trabajo de estudio expuesto solo nos enfocaremos en la zona de planta y puntualmente en el área de envasado.

Tomando en cuenta los conceptos de la primera fase 0, iniciaremos con el listado y codificación de las maquinas envasadoras, delimitando que nuestra población será las maquinas envasadoras, comencemos:

	LISTADO DE MÁQUINAS ENVASADORAS DEL ÁREA DE ENVASADO											
ITEM	CÓDIGO	EQUIPO	DESCRIPCIÓN- SERIE	PROCEDENCIA	MODELO	MEDIDA (ANCHO-LRGO- ALTO)	VOLTAJE					
1	MQ-01	MÁQUINA ENVASADORA	IC-49	CHINA	AUTOMÁTICA	80X70X1.60	220V - 60HZ					
2	MQ-02	MÁQUINA ENVASADORA	IC-47-F100	CHINA	SEMI AUTOMÁTICA	80X70X1.60	220V - 60HZ					
3	MQ-03	MÁQUINA ENVASADORA	I-DXDJ-1	CHINA	AUTOMÁTICA	80X70X1.60	220V - 60HZ					
4	MQ-04	MÁQUINA ENVASADORA	ALM-250-P10	CHINA	AUTOMÁTICA	80X70X1.60	220V - 60HZ					
5	MQ-05	MÁQUINA ENVASADORA	ES-5	CHINA	AUTOMÁTICA	80X70X1.60	220V - 60HZ					
6	MQ-06	MÁQUINA ENVASADORA	LD-420L	CHINA	SEMI AUTOMÁTICA	80X70X1.60	220V - 60HZ					
7	MQ-07	MÁQUINA ENVASADORA	LD-420D	CHINA	AUTOMÁTICA	80X70X1.60	220V - 60HZ					
8	MQ-08	MÁQUINA ENVASADORA	LD-220A	CHINA	AUTOMÁTICA	80X70X1.60	220V - 60HZ					
9	MQ-09	MÁQUINA ENVASADORA	LD-320D	CHINA	SEMI AUTOMÁTICA	80X70X1.60	220V - 60HZ					
10	MQ-10	MÁQUINA ENVASADORA	LD-240L	CHINA	AUTOMÁTICA	80X70X1.60	220V - 60HZ					
11	MQ-11	MÁQUINA ENVASADORA	LD240D	CHINA	AUTOMÁTICA	80X70X1.60	220V - 60HZ					

Fig. 16. Listado y codificación de las maquinas envasadoras Fuente: Fuxion Biotech SAC

Mediante esta lista y codificado de las máquinas se busca familiarizarnos más con los activos y saber exactamente en el plano de ubicación (Ver. Fig. 17), descendencia, datos técnicos, tamaño, las principales piezas y repuestos de la máquina. ubicadas en la empresa, del área principal mencionada con anterioridad.

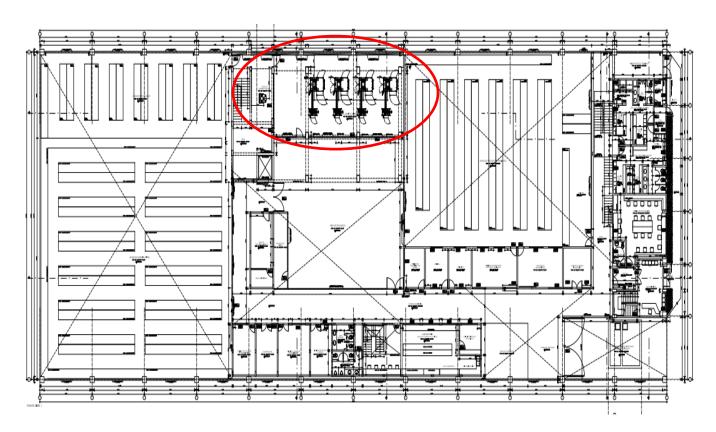


Fig. 17. Plano de la planta de producción vista superior Fuente: Fuxion Biotech SAC

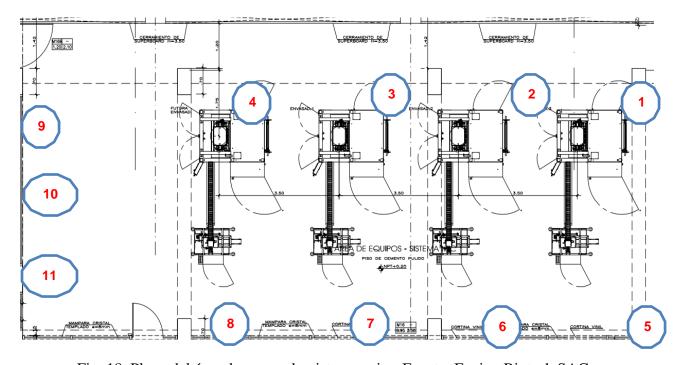


Fig. 18. Plano del área de envasado vista superior. Fuente: Fuxion Biotech SAC

Fig. 19. Maquinas envasadoras en operación Fuente: Fuxion Biotech SAC

Fig. 20 Máquina envasadora automática de polvo, las cuales son objeto de estudio del presente trabajo de investigación. Fuente: Fuxion Biotech

"Propuesta de Implementación de un Plan de Mantenimiento

Preventivo en la Empresa Fuxion Biotech SAC, aplicando la Metodología RCM para la mejora de la Disponibilidad en las

Máquinas Envasadoras"

Máquina envasadora adecuada para el envasado automático de polvos de alimentos,

medicamentos y productos químicos, como azúcar, café, harina, colorantes, etc. Fabricada

en acero inoxidable 304 es perfecta para la industria de alimentos, farmacéutica, química,

cosméticos, etc.

Características:

-Sistema de control fotoeléctrico de fuente de luz dual estable, asegurando el logotipo

completo de las bobinas de embalaje.

-Pantalla disponible en idioma inglés

-Posee un alcance de usos muy amplios.

-Tiene un sistema de regulación sencillo.

-Fácil de operar y limpiar.

-Reduce considerablemente los costos de producción.

-Es una máquina muy versátil y adaptable a las necesidades del cliente.

PARÁMETROS TÉCNICOS:

Aplicación del producto: polvo

Rango de volumen: 1-50 gr

Velocidad de la máquina: 40-60 / minuto

Ancho de la película: Max.230

Tamaño de la máquina: (mm) L160 * W80 * H70

Peso de la máquina: 100 kg

Tamaño de embalaje: Largo: 1-150

ancho:1-100

Voltaje:220V.60Hz.

Potencia:1KW

Tipo de sellado: 3/4 lados de sellado

Fig. 21 Producto final. Fuente: Fuxion Biotech SAC

A continuación, se describen algunos componentes principales que conforman la maquina envasadora.

Principales Repuestos (eléctricos, mecánicos, electrónicos)

• Resistencia de cartucho Ultramax (resistencia horizontal)

Fig. 22 Repuesto principal: Resistencia de cartucho Ultramax Fuente: Fuxion Biotech SAC

Ultramax es una nueva generación de elementos calefactores de alto voltaje, logrando alta potencia en un área limitada y asegurando, excelente confiabilidad bajo condiciones de arduo trabajo. La tecnología usada en su construcción, los convierten en el más avanzado tipo de elemento calefactor.

El cableado de cromo de níquel alrededor del núcleo de óxido de magnesio está situado en una posición periférica con una muy delgada capa aislante entre cable y lámina. Esto permite un eficiente intercambio de calor.

• Controlador de temperatura

Fig. 23 Repuestos principales: controladores de temperatura Fuente: Fuxion Biotech SAC

Especificaciones:

Alto rendimiento del procesador micro, como núcleo de control, Los controles de temperatura serie Andexport fueron creados para situaciones donde se requiere mucha estabilidad térmica. Poseen una salida principal a relé o SSR temperatura hasta 1.300°C, sintonia automática de los parámetros PID, doble display digital, termocuplas configurables J, K y PT-100, salida de alarmas y un menú de programación de fácil interpretación.

Línea de la pantalla dual de 6 dígitos. Máximo pantalla es 999999.

Señal de entrada: Señal de pulso de alta: 5-30V DC, Bajo: 0-2V DC (NPN y PNP)

Función falla de alimentación.

Salida: relé o SSR

Alimentación: 110/220V AC, 50/60Hz

• Relay de estado sólido.

Fig. 24 Repuestos principales: Relay de estado solido Fuente: Fuxion Biotech SAC

Un relé de estado sólido (SSR en inglés) es un dispositivo interruptor electrónico que conmuta el paso de la electricidad cuando una pequeña corriente es aplicada en sus

terminales de control. Los SSR consisten en un sensor que responde a una entrada apropiada (señal de control), un interruptor electrónico de estado sólido que conmuta el circuito de carga, y un mecanismo de acoplamiento a partir de la señal de control que activa este interruptor sin partes mecánicas. El relé puede estar diseñado para conmutar corriente alterna o continua. Hace la misma función que el relé electromecánico, pero sin partes móviles. (2021). ¿Cuál es la función de un relé? entrada de blog Recuperado de https://www.silge.com.ar/rele-estado-solido.

- 1. Tiene un led piloto brillante como indicación de entrada
- 2. Fuente de energía: AC 85V a 256V 50/60 Hz

• Termocupla tipo K

Fig. 25 Repuestos principales: termocupla tipo K tornillo Fuente: Fuxion Biotech SAC

Las termocuplas son el sensor de temperatura más común utilizado industrialmente. Una termocupla se hace con dós alambres de distinto material unidos en un extremo (soldados generalmente). Al aplicar temperatura en la unión de los metales se genera un voltaje muy pequeño (efecto Seebeck) del orden de los milivolts el cual aumenta con la temperatura. ARIAN control & instrumentación, recuperado de http://www.arian.cl

- Termocuplas tipo J, K en distintas medidas.
- Termocuplas aisladas y no aisladas, para uso normal.
- Aprobadas y fabricadas bajo Certificación Europea.

Principales Piezas Mecánicas

• Cuchillas Horizontales con proceso térmico

Fig. 26 Pieza principales, cuchillas horizontales Fuente: Fuxion Biotech SAC

Ideal para brindar el corte de la bobina en plena producción, su fabricación comprende con aleaciones que tenga tenacidad y resistencia tenacidad y resistencia a la flexión el proceso demora 7 días que comprende muestra, levantamiento plano, revisiones previas y mecanizado con una tolerancia de 5 décimas por lado, tratamiento térmico o revenido, rectificado de los dientes y de las caras, soldadura con plata a los dientes verticales.

• Ruedas de tracción jalador de bobina

Fig. 27 Pieza principales: Rueda de tracción Fuente: Fuxion Biotech SAC

Su uso se basa en el jalado de la bobina ya formado en sticks para su sellado correspondiente. Su proceso comprende la preparación y corte del material, se taladra y se rectifica para brindar un mejor acabado, se realiza el moleteado exterior que servirá para el jalado de la bobina. La demora en su fabricación es 5 días.

Ejes roscados para mordazas horizontales

Fig. 28 Pieza principales: eje roscado de mordazas horizontales Fuente: Fuxion Biotech

Su uso se baja en brindar presión a las mordazas verticales apoyándose con resortes y rodamiento. El material bonificado código acero de boller BCL, su trabajo se desarrolla en

el torno su proceso es: cilindrado escalonado, roscado en ambos extremos, corte y refrentado y luego es llevado a la fresadora para realizar el fresado de la muesca para la llave de universal mixta N° 13, para luego pasar por el proceso de nitrurado tiene una demora de 5 días.

• Regulador de Peso de acero inoxidable 304. (inferior y superior)

Fig. 29. Pieza principales: Tambor regulador de peso Fuente: Fuxion Biotech

Su uso se basa en bajar y subir el plato giratorio brindando el peso ideal de acuerdo a lo solicitado. Está compuesto por dos partes el proceso de fabricación comprende inferior (fijo) corte de material a medida aproximada, cilindrado escalonado exterior en torno,

perforado y cilindrado escalonado interior, cumpliendo siempre con la norma de tolerancia para el acabado final, luego se brinda el acabado escalonado interior y exterior, roscado interior M45x1.5x25 mm. taladrado y avellanado de 4 agujeros pasantes de 15 mm de diámetro

Fabricación de pieza reguladora parte superior móvil el proceso comprende, corte de pieza y cilindrado exterior e interior perforado, etapa previa al acabado cumpliendo siempre con la norma de tolerancia para el acabado final y luego para la segunda pieza se rectifica la parte exterior e interior escalonado, preparación de pieza postiza a soldar en regulador superior móvil con medidas acabadas y roscado se usa anillos de guía para soldar, moleteado o dentado exterior y mecanizado de canal interior para seguro seeguer. Todo este proceso demora 7 días.

• Mordazas horizontales de acero inoxidable 304 grado alimenticio

Fig. 30. Pieza principales: Mordazas horizontales selladoras Fuente: Fuxion Biotech

Su uso es para el sellado a los sticks, el proceso comprende: corte de material a medida aproximada, cepillado de todas las caras a mediadas aproximadas, fabricación de canal de alojamiento de cuchilla, la medida 3X25X150 MM, fabricación de filas dentadas para sellado de sticks, taladrado, fabricación de agujero pasante de 13mmx150mm, fabricación de agujeros roscantes para fijación de mordaza a máquina, rectificado de canal para que ingrese la cuchilla de corte. Tiempo de fabricación es de 7 días.

Fase 1: Listado de funciones y especificaciones

Significa detallar todas las funciones que tiene el sistema que se está estudiando, cuantificando cuando sea posible como se lleva a cabo esa función (especificación a alcanzar por el sistema). Para que el sistema cumpla su función cada uno de los elementos en que se subdivide deben cumplir la suya. Para ello, será necesario listar también las funciones de cada uno de los elementos. Por último, cada uno de los elementos está compuesto por una serie de componentes. Posiblemente será conveniente detallar la función de cada uno de estos componentes, por más pequeño que fuera, pero esto haría que el trabajo fuera interminable, y que los recursos que deberíamos asignar para la realización de este estudio fueran tan grandes que lo harían inviable. Tendremos, pues, tres listados de funciones:

- Las funciones del sistema en su conjunto.
- Las funciones de cada uno de los elementos que lo componen.
- Las funciones de cada uno de los componentes.

En este proceso es donde se inicia con estudiar las funciones y partes de las máquinas, los equipos y partes de la cual está constituida mediante una tabla en RCM.

								ME	DIDAS PREVENTIVAS	
EQUIPO	SISTEMA	TIPO DE FALLO	DESCRIPCIO N DEL FALLO	DESCRIPCION MODO DE FALLO	CLASIFICACION	MODO DE FALLO	TAREAS DE MANTENIMIENTO	MEJORAS	PROCEDIMIENTOS DE PRODUCCIÓN	PROCEDIMIENTOS DE MANTENIMIENTO
				ROTOR METALICO MOVIL DAÑADO	A EVITAR	POR FALTA DE LUBRICACIÓN	* Comprobar el estado del lubricante * Lubricacion del rotor con el lubricante adecuado	Analisis de Aceite	Realizar el check list de inicio de producción.	Realizar el protocolo de lubricación de la máquina.
		FUNCIONAL	BOMBA NO ESTA SUMINISTRANDO PRODUCTO	DESGASTE EN SELLO MECANICO	A EVITAR	DESGASTE EN SELLO MECANICO	* Verificar estado de los sellos mecanicos	Tener en stock sellos para el cambio instantaneo	Realizar el la inspección al inicio de producción.	* Cambio periodico de los sellos mecanicos
				OBSTRUCCION DEL FILTRO DE INGRESO	A EVITAR	POR FALTA DE LIMPIEZA EN FILTRO	* Verificar el estado de los filtros	colocar malla protectora evitando que lo caiga polvo y asi tenga mas tiempo de vida	Realizar el check list de inicio de producción.	Realizar el cambio de los filtros.
		FUNCIONAL	FALLO EN CONTROL DEL	SENSOR CAPACITIVO DAÑADO	A EVITAR	SENSOR CAPACITIVO DAÑADO	* Verificar el estado del sensor *Revision y calibracion del transmisor de corriente 4-20 mA.	MEJORAR BASE DEL SENSOR PARA TENER BUEN SOPORTE Y NO SE ESTE CAYENDO A CADA MONENTO	Verificacion del sensor por sistema SCADA.	* Calibracion de los transmisores y senso con patron cada 3 meses
			NIVEL DE TOLVA	FALLA DE CONTACTO RELÉ	A EVITAR	BOBINADO FUNDIDO	* Realizar el ajuste de bomes. * Verificar el estado del bobinado	realizar formato de sopleteado cada semana	siempre percatarse que no este rosando al tomillo q detecta el sensor	* Reemplazo de Relay y/o base si fuese necasario
	AUMENTACION Y	FUNCIONAL	FALLOS DE APERTURA DE	DESGASTE DE SOLENOIDE	A EVITAR	DESGASTE DE SOLENOIDE	* Realizar el ajuste de bornes. * Verificar el estado del bobinado	colocar guarda	evitar que al momento de lavar las maquinas los operarios no mojar	Reemplazo de Relay y/o base si fuese necasario
	DOSIFICACION	PUNCIONAL	VALVULA	BAJA PRESION DE AIRE	A EVITAR	FUGAS DE MANGUERAS NEUMATICAS	* Verificar presion del compresor. * Verificar el estado de las mangueras neumatica	Tener en stock mangueras para el cambio instantaneo.	evitar doblar las mangueras	* Cambio de manguera neumaticas periodicamente. Mtto, general del compresor
				DESGASTE DE MANGUERA	A AMORTIGUAR	DESGASTE DE MANGUERA	* Verificar de presion de agua * Verificar el estado de las mangueras	* Reemplazo de manguera con otro proveedor		* Realizar el cambio de mangueras periodicamente.
			FILTRACION DE AGUA	FALLA EN FILTROS PURGADORES	A AMORTIGUAR	FALLO POR SUCIEDAD	Verificar condicion interna de los filtros Realizar una limpieza interna.	colocar guarda para evitar el contacto con el polvo	no golpear los purgadores	* Realizar instalacion y pruebas de filtros.
				DESGASTE DE CONECTOR NEUMATICO	A AMORTIGUAR	FALLA POR DESGASTE	* Verificacion estado de conectores	realizar programaciones semanales de limpieza de parte neumatica		* Reemplazo de conectores
		TECNICO		OBSTRUCCION DE PRODUCTO	A AMORTIGUAR	OBSTRUCCION DE PRODUCTO	* Verificacion de estado de tornillo sin fin	implementar un vibrador a la tolva	Realizar el check list de inicio de producción.	
			FALLO DE TORNILLO SIN FIN	APERTURA DE SENSOR DE CORRIENTE	A AMORTIGUAR	SENSOR DE CORRIENTE ALTERADO	* Realizar medicion de corriente consumo. * Verificar estado del sensor . Revision de llaves termicas.			* Reemplazo de conectores
			PROBLEMA CON BAJO VACIO	CONJUNTO DE TIEMPOS MUY CORTO	A AMORTIGUAR	FALLOCONTROL OUT PLC	* Verificacion del programa en el PLC * Revisar tarjetas auxiliares de salida.	verificar desgastes en el sin fin		* Arreglo de tiempos en el programa del PLC * Ajuste de la tarjeta de salida para actuadores

Fig. 31. Tabla de RCM propuesto para la presente investigación (a)

		FUNCIONAL	MAQUINA NO SELLA LA PERFECCION	RESISTENCIA DAÑADA POR RECALENTAMIENTO	A EVITAR	RESISTENCIA CON MUY BAIO OHMIAJE	* Medicion de la resistencia. * Verificar bornes de voltaje.	* Verificacion de la temperatura mediante un medidor infrarrojo.	Realizar el check list de inicio de producción.	* Reemplazo por protocolo de la resistencia
NDORA				RESISTENCIA NO LLEGA A TEMPERATURA ADECUADA	A EVITAR	FALLO EN VOLTAJE SUMINISTRADO	* Medicion de voltaje en el suministro de energia * Verificar el estado de los cables. Revisar el diferencial del circuito			Ajuste de pernos y verificación de tensión en cadena de arrastre.
MAQUINA ENVASADORA	SISTEMA DE SELLADO		FALLA DE	ALINEACION INCORRECTA	A AMORTIGUAR	FALLA POR MALA CALIBRACION	*Comprobar el estado de las mordasas * revision de rajaduras en las mordas Revision del alineamiento	* Verificar el alineamiento con respecto a las recomendaciones del fabricante.		* Alineamiento y lubricacion de las partes moviles
MAG		TECNICO	MORDASAS	PISTONES HORIZONTALES DEFECTUOSOS	A AMORTIGUAR	FALLA POR MAL USO	*Revisar la presion de ingreso * Revision de estado del cilindro neumatico Revision de conectores neumaticos			Reemplazo de pistones neumaticos.
		TECNICO	EL CALENTAMIENTO ES PARADA	RELAY DE TEMPERATURA DEFECTUOSO	A AMORTIGUAR	FALLO POR FALTA DE MANTENIMINTO	*Revision de socket para relay solido * Revision de estado de contactos -Revision del sensor que lo activa			Limpieza general de los componentes para el relay
				SENSOR DE TEMPERATURA DAÑADO	A AMORTIGUAR	DESCALIBRADO	*Inspeccion visual del sensor * Revision de estado de cables		Corroborar con las pruebas de funcionamiento previo, alcanzando los parametros de temperatura previos	Reemplazo del sensor si fuera necesario- Calibracion con patron de temperatura FLUKE
		FUNCIONAL	RUIDO ANOMALO AL SELLAR	FUGA CAUSADA POR VALVULA SOLENOIDE	A EVITAR	ROTURA DE RESORTE DE EMBOLO	*Inspeccion visual del sensor * Revision de estado de cables			

Fig. 32. Tabla de RCM propuesto para la presente investigación (b)

 1			-			ı		-
	FUNCIONAL	BOCA DE ASPIRACION NO	FILTRO SUCIO POR FALTA DE MANTENIMIENTO	A EVITAR	FALLO POR FILTRO SUCIO	*Inspecciondel estado de las boquillas * Revision de sobras de producto		
	FUNCIONAL	SUCCIONA	BAJA PRESION	A EVITAR	FALLO POR OBSTRUCCION	*Inspecciondel de la presion de ingreso * Revision de los ductos que conducen el aire comprimido		Limpieza General de los ductosRevision general del compresor
		PROBLEMAS CON CABLES DE CORRIENTE	RUPTURA DE CABLE POR DESGASTE	A AMORTIGUAR	CONDUCTIVIDAD EN CABLE	*Inspeccion y medicion de los cables	Recubrir el Cable con proteccion anti humedad	Aislar los cables fuera del area donde se ve propenso por restos de producto o agua
Sistema Motriz	TECNICO	NO LECTURA DE TACA DE BOBINA	FALLA DE SENSOR FOTO CELDA	A AMORTIGUAR	FALLA POR CALIBRACION	*Corroborar señal de recepcion * Revision de voltajes para celda		Ajuste de borneras, calibracion y puesta en marcha
			FALTA DE ACEITE	A AMORTIGUAR	DEPOSITO DE ACEITE VACIO	*Revision del estado del aceite * inspeccion de fuga de aceite	Tener siempre disponible el suministro de aciete	Reemplazo del aceite
	TECNICO	FALLA DE MOTO REDUCTOR	DESGASTE DE PIÑONES	A AMORTIGUAR	DESGASTE DE PIÑONES	*Revision del alineamiento Revision si los piñones se encuntran quebrados	Realizar un analisis vibracional	Realizar el cambio de piñones- Realizar la lubricacion de los mismos
	TECNICO	FALLA EN PUNTO DE CAIDA DE	TUBO DE ASPIRACION OBSTRUIDO	A AMORTIGUAR	FALLA POR FALTA DE MANTENIMIENTO	*Inspeccion y medicion de la bomba de vacio * Revision de sobras de producto	Ingresar a periodo de manteniemiento con mas frecuencia	Mantenimiento general de bomba de vacio. Limpieza general del tubo de aspiracion
SISTEMA DE		PRODUCTO	DESGASTE EN HERMETICIDAD EN SOLDADURA	A AMORTIGUAR	DESGASTE EN HERMETICIDAD EN SOLDADURA	*Inspeccion visual la soldadura * Revision las partes unidas por esta union	Realizar pruebas de destruccion	Cambio de pieza completa
SISTEMA DE CODIFICACION INKJET MARKEM	TECNICO	PROBLEMA EN SALIDA CON CANJILONES	DAÑO EN FOTOSENSOR POR RECALENTAMIENTO	A AMORTIGUAR	DAÑO EN FOTOSENSOR POR RECALENTAMIENTO	*Corroborar señal de recepcion * Revision de voltajes para fotosensor	Reubicacion del sensor ante la temperatura de otros equipos	ajuste de bomeras, limpieza de celda (emisor). Cambio de cables hermeticos
			FALLA EN MOTOR ASINCRONO	A AMORTIGUAR	FALLA POR SOBRECALENTAMIENTO	*Inspeccion de voltajes *Medicion de bobinas del motor	Realizar la medicion de temperatura mediante infrarrojo FLUKE	Alineamiento, rebobinado

Fig. 33. Tabla de RCM propuesto en la presente investigación (c)

En la presente tabla de RCM (Ver. Fig. 31,32,33), describimos todos los equipos principales críticos y no críticos que componen la máquina, además de ellos los repuestos que necesitan cada componente, las mejoras, la descripción de los fallos, sus clasificaciones, los procedimientos que debería tener en cuenta el área de producción, etc. Con este documento nos estamos adentrando más a nuestro objetivo a lograr.

Fase 2: Determinación de fallos funcionales y/o técnicos.

Un fallo es la incapacidad de un ítem para cumplir alguna de sus funciones. Por ello tendremos un posible fallo por cada función que tenga el ítem y no se cumpla. Puede ser conveniente hacer una distinción entre fallos funcionales y fallos técnicos. Definiremos como fallo funcional aquel fallo que impide al sistema en su conjunto cumplir su función principal, y al fallo técnico a aquello que tenga implicancia a una manipulación o manejo indebido o inapropiado por parte del ser humano.

Fase 3: Determinación de los modos de fallo.

Una vez determinados todos los fallos que se pueden presentar en un sistema, un elemento o uno de los componentes significativos que lo componen, deben estudiarse los modos de fallo. Podríamos definir 'modo de fallo' como la causa primaria de un fallo, o como las principales circunstancias que dan origen a un fallo concreto.

La tabla RCM (Ver. Fig. 31,32,33) ayuda a apreciar las fases 2 y 3 tanto para los fallos funcionales/técnicos y los modos de fallo.

Para ello también se adjunta la siguiente Tabla 11 para evidenciar algunos de los reportes de fallo de las maquinas en una semana de operación.

Tabla 11:

Evidencias aleatorias de Reporte de trabajos diarios correctivos en la planta Fuente:

Fuxion Biotech

3					_					
	<u> </u>	Q	ON		R	EPORTE DE TRABAJOS DIARIOS COR	<u> </u>			
MES : Fecha de Realizació n	Hora de Inicio		ero-18 Tipo Trabajo	Maquina o equipo	Componente	Descripción del Problematcausas	16 h:50 min Tiempo Estimado / min	Repuestos utilizados	Observacio nes	ASISTENTE DE MANTENIMIEN TO
	07:00	17:00		M#01,02,06,09,10,11,	NO TRABAJO	no programadas	600 min			Hector
02/01/2018	10:00	10:30	ELECTRICO	M#03	EQUIPO CODIFICADOR	sensor no accionaba correctamente el fechador (giraba loco), se detectó que el sensor estaba suelto y los cables de la bornera hacian falso	30 min			Gonzalo
	07:00	17:00		M#01	NO TRABAJO	no programadas	600 min			Diego
	07:00	14:30		M#09	NO TRABAJO	no hubo maquinista, trabajó a partir de las 14:30 Hrs.	450 min			Delmer
03/01/2018	13:30	17:00		M#13	NO TRABAJO	no hubo maquinista, trabajó hasta las 13:30 Hrs.	210 min			Max
	14:40	15:30	MECANICO	M#03	CUCHILLA DE MORDAZAS HORZONTALES	La suciedad en las mordazas provocó que la cuchilla se rompiera. Se procedió a soldar y se realizaron pruebas de corte, quedando	50 min			Gonzalo
	07:00	17:00		M#01,02,06	NO TRABAJO	no programadas	600 min			Diego
04/01/2018	08:00	09:30		M#07	GRANEL DE HGH	producto defectuoso, no cae, se pega en las paredes de las	90 min			Delmer
	07:00	17:00		M#01,02,11	NO TRABAJO	no programadas	600 min			Delmer
05/01/2018	07:30	08:20	MECANICO	M#13	FORMADOR DE BOBINA	presentaba mucho juego con la bobina del BioproFit, por lo cual se cerró las guias del formador, quedado operativa la máquina.	50 min			Hector
08/01/2018	07:00	17:00		M#02,10	NO TRABAJO	no programadas	600 min			Diego
	07:00	13:00		M#01	maquinista	maquina trabajó a partir de las 13:00 Hrs.	360 min			Delmer
	12:00	17:00		M#09	maquinista	maquina trabajó hasta las 12:00 Hrs.	300 min			Max
09/01/2018	08:30	09:10	ELECTRICO	M# 09	FIBRA OPTICA	presentaba falla al momento de emitir señal para corte de stick. Se realizó cambio de fibra optica y se cuadro sensor de fotocelula.	40 min	01 fibra optica		
	09:00	09:15	MECANICO	M#11	MORDAZA HORIZONTAL	se rompio perno hexagonal en eje deslizante de la mordaza	15 min	01 perno hex. M10x4i)	Hector
						horizontal, se cambio perno				

En la tabla 11 se evidencia que, en un reporte semanal de trabajos correctivos, la magnitud de paradas en las máquinas envasadoras, para dicho caso se propondrá realizar formatos de órdenes de trabajos, check list y tickets, para realizar el seguimiento de las fallas, y el área encargada de realizarlo será mantenimiento

Fase 4: Análisis de la gravedad de los fallos (Criticidad)

El siguiente paso es determinar los efectos o consecuencias de cada modo de fallo y, una vez determinados, clasificarlos según su gravedad. La primera pregunta a responder en cada modo de fallo es, pues: ¿qué pasa si ocurre? Una sencilla explicación lo que sucederá será suficiente. A partir de esta explicación, estaremos en condiciones de valorar sus consecuencias para la seguridad y el medio ambiente, para la producción y para el mantenimiento. Consideraremos tres posibles casos: que el fallo sea crítico, que el fallo sea importante o que sea tolerable. Para que un fallo sea crítico, debe cumplir alguna de estas condiciones:

- Que pueda ocasionar un accidente que afecte a la seguridad o al medioambiente,
 y que existan ciertas posibilidades de que ocurra.
- Que suponga una parada de planta o afecte al rendimiento o a la capacidad de producción.
- **3.** Que la reparación del fallo más los fallos que provoque este (fallos secundarios) sea superior a cierta cantidad.

Número prioritario de riesgo (NPR)

"Es un valor que establece una jerarquización de los problemas a través de la multiplicación del grado de ocurrencia, severidad y detección, éste provee la prioridad con la que debe de atacarse cada modo de falla identificado". (Cubillas, 2020)

NPR = Ocurre	encia * Severidad * Detección
500 - 1000	Alto riesgo de falla
125 – 499	Riesgo de falla medio
1 – 124	Riesgo de falla bajo
0	No existe riesgo de falla

Fig. 34. Ponderación del NPR Fuente: (Lean Solutions, s.f.)

La figura 34, ponderación del NPR nos muestra a detalle la toma de decisión frente al resultado obtenido por el nivel de ocurrencia, severidad o detección.

La figura 35, escala de severidad, ocurrencia y probabilidad de detección podemos observar el intervalo donde se encontrará nuestro modo y efecto de falla según nuestra decisión.

Intervalo	Severidad (S)	Ocurrencia (O)	Detección (P)
10-9	Efecto principal/ Muy alta severidad	Muy alta probabilidad de ocurrencia	Prácticamente imposible de detectar
8-6	Inconveniente mayor	Alta probabilidad de ocurrencia	Baja capacidad de detección
5-3	Inconveniente menor	Moderada probabilidad de ocurrencia	Alta capacidad de detección
2-1	Mínimo efecto/Sin efecto	Baja probabilidad de ocurrencia	Muy alta capacidad de detección

Fig. 35. Escala de severidad, ocurrencia y probabilidad de detección. Fuente: Scielo

Tabla 12:

AMEF del sistema de Alimentación y Dosificación Elaboración propia

					ANÁLISIS D	E MODO Y EFECTO DE FALLOS (AMEF)							
Fl	FUXION		MÁQUINA/EQUIPO		MÁQUINA ENVASADORA	ELABORADO POR: SEGUNDO G. / AR	NC	LD	М.	FECHA: 27-05-2018			
		•	SISTEMA:	ΑL	IMENTACIÓN Y DOSIFICACION	CÓDIGO: FX				HOJA: 1			
	COMPONENTE		FALLO FUNCIONAL		MODO DE FALLO	EFECTO DE FALLO	G	0	D	NRP			
	Rotor			1	falta de lubricación	La máquina no puede iniciar la	9	5	3	135	Importante		
FX-001	sello mecánico	Α	motor no suministra	2	desgaste en sello mecánico	producción al no tener producto en	3	8	6	144	importante		
	filtro de ingreso		producto		falta de limpieza lleno de polvo	la tolva		3	4	60	Tolerable		
FX-002	Sensor capacitivo	В	Fallo en control de	1	Sensor capacitivo dañado	sensores inoperativos no sensan por consecuencia no abastece	3	3	7	63	Tolerable		
	relé térmico		nivel de tolva	2	bobinado fundido	producto a la tolva	4	6	8	192	Tolerable		
FX-003	X-003 solenoide C	С	fallo de apertura de	1	desgaste de solenoide	baja de presión en los manómetros	4	2	8	64	Tolerable		
						válvula	2	mangueras neumáticas rotas	máquina no puede arrancar	5	3	8	120

Tabla 13:

AMEF del sistema de sellado Elaboración propia

					ANÁLISIS E	DE MODO Y EFECTO DE FALLOS (AMEF)				
Fl	COMPONENTE		MÁQUINA/EQUIPO			ELABORADO POR: SEGUNDO G. / AR	NO	LD I	М.	FECHA: 27-05-2018	
' '			SISTEMA:	SISTEMA DE SELLADO		CÓDIGO: FX		HOJA: 2			
			FALLO FUNCIONAL	MODO DE FALLO		EFECTO DE FALLO G O D		D	NRP		
FX-004	Resistencia eléctrica	Máquina no sella a la		1	resistencia fallada no llega al ohmeaje adecuado	no sella correctamente los stick, al no tener la corriente necesaria en	9	6	3	162	Importante
	llave térmica		perfección	2	llave térmica con borne sulfatado	los dispositivos eléctricos	3	8	9	216	Importante
FX-005	válvula de selenoide	В	ruido anómalo al sellar	1	Ruptura de resorte del embolo	el sonido de la válvula de selenoide repercute al personal, deteniendo la maquina para su reparación	3	5	4	60	tolerable

Tabla 14:

AMEF del sistema de Motriz Elaboración Propia

					ANÁLISIS I	DE MODO Y EFECTO DE FALLOS (AMEI	F)				
FL	FUXION		MÁQUINA/EQUIPO:	N	MÁQUINA ENVASADORA	ELABORADO POR: SEGUNDO G. / AI	RNC	DLD	М.	FECHA: 27-05-2018	
			SISTEMA:	SISTEMA MOTRIZ		CÓDIGO: FX		HOJA: 3			
C	COMPONENTE		FALLO FUNCIONAL		MODO DE FALLO	EFECTO DE FALLO	G	0	D	NRP	
	FX-006 filtro de aire A		Roca de asniración no	1	filtro sucio	Falta de presión de aire	9	5	3	135	Importante
FX-006			succiona	aspiración no ucciona filt pa		comprimido, la máquina no puede accionar para iniciar producción		8	5	120	tolerable

Fase 5: Determinación de medidas preventivas

Una vez encontrados los modos de fallo del sistema que se analiza y clasificados estos modos de fallo según su criticidad, el siguiente paso es determinar las medidas preventivas que permiten bien evitar el fallo bien minimizar sus efectos dentro de un sistema. Tomando en cuenta que, este es el punto fundamental de un estudio RCM.

Las medidas preventivas que se pueden tomar son de cinco tipos: tareas de mantenimiento, mejoras, formación del personal, modificación de instrucciones de operación y modificación de instrucciones de mantenimiento. Es aquí donde se ve la enorme potencia del análisis de fallos: no solo se obtiene un conjunto de tareas de mantenimiento que evitarán estos fallos, sino que además se obtendrán todo un conjunto de otras medidas, como un listado de modificaciones, un plan de formación, una lista de procedimientos de operación necesarios. Y todo ello, con la garantía de que tendrán un efecto muy importante en la mejora de resultados de una instalación (Sánchez, 2016).

Tabla 15:

Hoja de decisión del sistema alimentación y dosificación Elaboración propia

	HOJA DE DE	CISIÓN DE RCM	
	SISTEMA:	ELABORADO POR:	FFCUA: 27 OF 2024
FUXION	ALIMENTACIÓN Y DOSIFICACION	SEGUNDO G. / ARNOLD M.	FECHA: 27-05-2021
	MÁQUINA/EQUIPO	CODIGO:	HOJA: 1
	MÁQUINA ENVASADORA	FX	VERSION: 1
MODO DE FALLO	TAREAS PROPUESTAS	FRECUENCIA	ENCARGADO POR:
falta de lubricación	Comprobar el estado del aceite lubricante y/o cambio	TRIMESTRAL	Asistente de mantenimiento
desgaste en sello mecánico	Verificar estado y/o cambio de los sellos mecánicos	MENSUAL	Asistente de mantenimiento
falta de limpieza lleno de polvo	Verificar estado y/o cambio de los filtros de aire	MENSUAL	Asistente de mantenimiento
Sensor capacitivo dañado	Verificar estado y/o cambio del sensor inductivo o capacitivo	MENSUAL	Asistente de mantenimiento
bobinado fundido	Verificar el estado del bobinado del solenoide interno (sopletear)	SEMANAL	Asistente de mantenimiento
desgaste de solenoide	Realizar el ajuste y/o cambio de las borneras eléctricas.	SEMANAL	Asistente de mantenimiento
mangueras neumáticas rotas	Verificar estado y/o cambio de las mangueras neumáticas	MENSUAL	Asistente de mantenimiento

Tabla 16:

Hoja de decisión del sistema de sellado Elaboración propia

	HOJA DE DECISIÓN DE RCM				
	SISTEMA:	ELABORADO POR:	FECHA: 27-05-2021		
FUXION	SISTEMA DE SELLADO	SEGUNDO G. / ARNOLD M.			
	MÁQUINA/EQUIPO:	CODIGO:	HOJA: 2		
	MÁQUINA ENVASADORA	FX	VERSION: 1		
MODO DE FALLO	TAREAS PROPUESTAS	FRECUENCIA	ENCARGADO POR:		
resistencia fallada no llega al homenaje adecuado	Medición de homenaje en resistencias eléctricas y/o cambio de ser necesario, verificar estado de los bornes de conexión, verificación de cablerías	SEMANAL	Asistente de mantenimiento		
llave térmica con borne sulfatado	Verificar el estado y/o cambio de los dispositivos electrónicos de mando relay o diferencial de las resistencias eléctricas	SEMANAL	Asistente de mantenimiento		
Ruptura de resorte del embolo	Verificar el estado y/o cambio de los cilindros y conectores neumáticos	SEMANAL	Asistente de mantenimiento		

Tabla 17:

Hoja de decisión del sistema de Motriz Elaboración propia

_	HOJA DE DECISIÓN DE RCM				
	SISTEMA: ELABORADO PO		FECHA: 27-05-2021		
FUXION	MOTRIZ	SEGUNDO G. / ARNOLD M.	TECHA. 27-03-2021		
	MÁQUINA/EQUIPO:	CODIGO:	HOJA: 3		
	MÁQUINA ENVASADORA	FX	VERSION: 1		
MODO DE FALLO	TAREAS PROPUESTAS	FRECUENCIA	ENCARGADO POR:		
filtro sucio	Revisión de las boquillas obstruidas de los filtros, limpieza de producto atascado en ello	SEMANAL	Asistente de mantenimiento		
filtro obstruido con partículas de polvo	Verificación de la línea de aire comprimido posible fugas de aire, ajustar las uniones si fuesen necesarios, de lo contrario soldar	SEMANAL	Asistente de mantenimiento		

Tareas de mantenimiento

Son los trabajos que podemos realizar para cumplir el objetivo de evitar el fallo o minimizar sus efectos. Las tareas de mantenimiento pueden, a su vez, ser de los siguientes tipos:

Tipo 1: Inspecciones visuales:

En cualquier modelo de mantenimiento aplicable, las inspecciones visuales poseen un coste muy por debajo de las demás tareas a describir, por lo tanto parece interesante realizar una inspección visual a todos los equipos de la planta cuando este lo requiera.

Tipo 2: Lubricación.

Igual que en el caso anterior, las tareas de lubricación, por su bajo coste, siempre son rentables. Para el presente estudio se propone que cada maquina cuente con un aceitero manual conteniendo aceite mineral de grado alimenticio, siendo el punto principal los ejes deslizantes horizontales.

Tipo 3: Verificaciones del correcto funcionamiento (interno):

Realizado con instrumentos propios del equipo (verificaciones on-line). Este tipo de tareas consiste en la toma de datos de una serie de parámetros de funcionamiento utilizando los propios medios.

Tipo 4: Verificaciones del correcto funcionamiento (externo):

Se realiza con instrumentos externos del equipo. Con la cual se busca, con este tipo de tareas, determinar si el equipo cumple con unas especificaciones prefijadas, pero para cuya determinación es necesario desplazar determinados instrumentos o herramientas especiales, que pueden ser usadas por varios equipos simultáneamente, y que, por tanto, no están permanentemente conectadas a un equipo.

Tipo 5: Tareas condicionales.

Se realizan dependiendo del estado en que se encuentre el equipo. No es necesario realizarlas si el equipo no da síntomas de encontrarse en mal estado. Estas tareas pueden ser: Limpiezas condicionales, si el equipo da muestras de encontrase sucio. Ajustes condicionales, si el comportamiento del equipo refleja un desajuste en alguno de sus parámetros. Cambio de piezas, si tras una inspección o verificación se observa que es necesario realizar la sustitución de algún elemento.

Tipo 6: Tareas sistemáticas:

Cada cierta hora de funcionamiento, o cada cierto tiempo, sin importar como se encuentre el equipo. Estas tareas pueden ser: Limpiezas, Ajustes, Sustitución de piezas.

Tipo 7: Mantenimiento Overhaul:

También llamados Mantenimiento Cero Horas, o Hard Time, que tienen como objetivo dejar el equipo como si tuviera cero horas de funcionamiento.

Una vez determinado los modos de fallo posibles en un ítem, es necesario determinar qué tareas de mantenimiento podrían evitar o minimizar los efectos de un fallo. Pero lógicamente, no es posible realizar cualquier tarea que se nos ocurra que pueda evitar un fallo. Cuanto mayor sea la gravedad de un fallo, mayores recursos podremos destinar a su mantenimiento, y por ello, más complejas y costosas podrán ser las tareas de mantenimiento que tratan de evitarlo (Sánchez, 2016).

Una vez determinadas las tareas, es necesario determinar con qué frecuencia será necesario realizarlas. Existen tres posibilidades para determinar esta frecuencia:

• Si tenemos datos históricos que nos permitan conocer la frecuencia con la que se produce el fallo, podemos utilizar cualquier técnica estadística que nos permita determinar cada cuanto tiempo se produce el fallo si no actuamos sobre el equipo. Deberemos contar con un número mínimo de valores (recomendable más de 10, aunque cuanto mayor sea la población más exactos serán los resultados). La frecuencia estará en función del coste del fallo y del coste de la tarea de mantenimiento (mano de obra + materiales + pérdida de producción durante la intervención) (Sánchez, 2016).

Si disponemos de una función matemática que permitan predecir la vida útil de una pieza, podemos estimar la frecuencia de intervención a partir de dicha función. Suele ser aplicable para estimar la vida de determinados elementos, como los alabes de una turbina de gas, los cojinetes o rodamientos de un equipo rotativo o la vida de una herramienta de corte.

Si no disponemos de las informaciones anteriores, la determinación de la frecuencia con la que deben realizarse las tareas de mantenimiento propuestas debe hacerse en base a la opinión de expertos. Es la más subjetiva, la menos precisa de las formas de determinar la frecuencia de intervención y sin embargo, la más utilizada. No siempre es posible disponer de información histórica o de modelos matemáticos que nos permitan predecir el comportamiento de una pieza (Sánchez, 2016).

Para dichos casos, podemos hacer uso de los siguientes consejos:

 Es conveniente fijar una frecuencia diaria para tareas de muy bajo coste, como las inspecciones visuales o las lecturas de parámetros

- La frecuencia mensual es aconsejable para tareas que supongan montajes o desmontajes complejos y no esté justificado hacer a diario
- 3. La frecuencia anual se reserva para tareas que necesitan que la planta esté parada, y que no se justifica realizarlas con frecuencia mensual Estas frecuencias indicativas no son sino meras guías de referencia. Para cada caso, es conveniente comprobar si la frecuencia propuesta es la más indicada.
- 4. Por último, y con el fin de facilitar la elaboración del plan de mantenimiento, es conveniente especificar la especialidad de la tarea (mecánica, eléctrica, predictiva, de operación, de lubricación, etc.) (Sánchez, 2016).

Mejoras y modificaciones de la instalación

Determinados fallos pueden prevenirse más fácilmente modificando la instalación o introduciendo mejoras. Las mejoras pueden ser, entre otras, de los siguientes tipos:

- Cambios en los materiales. Manteniendo el diseño de las piezas, el único cambio que se realiza es en la calidad de los materiales que se emplean.
- Cambios en el diseño de una pieza. La geometría de algunas piezas hace que en
 determinados puntos acumulen tensiones que facilitan su falla. Un simple cambio en
 el diseño de estas piezas puede hacer que cumplan su función perfectamente y que
 su probabilidad de rotura disminuya sensiblemente.
- Instalación de sistemas de detección, bien de aviso o bien para evitar que el equipo funcione en condiciones que puedan ser perjudiciales.
- Cambios en el diseño de una instalación. En ocasiones no es una pieza, sino todo un conjunto el que debe ser rediseñado, para evitar determinados modos de fallo.

 Cambios en las condiciones de trabajo del ítem. Por último, en ocasiones la forma de evitar la falla de una pieza o un equipo no es actuar sobre estos, sino sobre el medio que los rodea (Sánchez, 2016).

Fase 6: Obtención del plan de mantenimiento y agrupación de medidas preventivas.

Determinadas las medidas preventivas para evitar los fallos potenciales de un sistema, el siguiente paso es agrupar estas medidas por tipos (tareas de mantenimiento, mejoras, procedimientos de operación, procedimientos de mantenimiento y formación), lo que luego nos facilitara su implementación.

El resultado de esta agrupación será:

- Plan de Mantenimiento. Era inicialmente el principal objetivo buscado. El plan de mantenimiento lo componen el conjunto de tareas de mantenimiento resultante del análisis de fallos. Puede verse que, aunque era el objetivo inicial de este análisis, no es el único resultado útil.
- Lista de mejoras técnicas a implementar. Tras el estudio, tendremos una lista de mejoras y modificaciones, que es conveniente realizar en la instalación. Es conveniente depurar estas mejoras, pues habrá que justificar económicamente ante la Dirección de la planta y los gestores económicos la necesidad de estos cambios.
- Actividades de formación. Las actividades de formación determinadas estarán divididas normalmente en formación para personal de mantenimiento y formación para personal de operación. En algunos casos, es posible que se sugiera formación para contratistas, en tareas en que estos estén involucrados.

• Lista de Procedimientos de operación y mantenimiento a modificar. Habremos generado una lista de procedimientos a elaborar o a modificar que tienen como objetivo evitar fallos o minimizar sus efectos. Como ya se ha comentado, habrá un tipo especial de procedimientos, que serán los que hagan referencia a medidas provisionales en caso de fallo. (Sánchez, 2016).

Tabla 18:

Tareas de plan de mantenimiento RCM Elaboración Propia

Trabajos propuestos a desarrollar en el Mantenimiento Preventivo	Tiempo (min)	frecuencia	Veces en un semestre	a cargo de:
Comprobar el estado del aceite lubricante y cambio	30	TRIMESTRAL	2	Asistente de Mantenimiento
Verificar estado de los sellos mecánicos	15	MENSUAL	6	Asistente de Mantenimiento
Verificar estado y cambio de los filtros de aire	25	MENSUAL	6	Asistente de Mantenimiento
Verificar estado y/o cambio del sensor inductivo o capacitivo	20	MENSUAL	6	Asistente de Mantenimiento
Revisión y calibración de transmisor de corriente 4-20 MA	25	MENSUAL	6	Asistente / proveedor
Realizar el ajuste y/o cambio de las borneras eléctricas.	15	MENSUAL	6	Asistente de Mantenimiento
Verificar el estado del bobinado del relé térmico interno (sopletear)	20	MENSUAL	6	Asistente de Mantenimiento
Verificar el estado del bobinado del solenoide interno (sopletear)	20	MENSUAL	6	Asistente de Mantenimiento
Verificar la carga de la presión en el compresor y limpieza del mismo	20	MENSUAL	6	Asistente de Mantenimiento
Verificar estado y/o cambio de las mangueras neumáticas	15	MENSUAL	6	Asistente de Mantenimiento
Verificar la carga de la presión de agua para la limpieza a presión de las máquinas	20	MENSUAL	6	Asistente de Mantenimiento
Verificar estado y/o cambio de las mangueras de agua	10	MENSUAL	6	Asistente de Mantenimiento
Verificar estado y/o cambio de los filtros de agua internos, realizar limpieza	10	MENSUAL	6	Asistente de Mantenimiento
Verificar estado y/o cambio de los conectores neumáticos	10	MENSUAL	6	Asistente de Mantenimiento

Verificar desgaste del tornillo sin fin de entrega de polvo a las máquinas, cambio si es necesario	10	TRIMESTRAL	2	Asistente de Mantenimiento
Realizar medición de consumo de corriente, verificar estado de las llaves térmicas y cambio de los sensores si es necesario	10	MENSUAL	6	Asistente de Mantenimiento
Verificar estado del panel de control PLC, sopletear polvo interno y revisión de tarjetas auxiliares de salida	10	MENSUAL	6	Asistente de Mantenimiento
Medición de ohmeaje en resistencias eléctricas y/o cambio de ser necesario, verificar estado de los bornes de conexión	10	MENSUAL	6	Asistente de Mantenimiento
Verificar el estado y/o cambio de los cables en mal estado de las resistencias eléctricas	10	MENSUAL	6	Asistente de Mantenimiento
Verificar el estado y/o cambio de los dispositivos electrónicos de mando relay o diferencial de las resistencias eléctricas	10	MENSUAL	6	Asistente de Mantenimiento
verificar el estado de las mordazas verticales y horizontales, cuadrar o alinear, cambiar si presentan rajaduras o desgastes	20	MENSUAL	6	Asistente / proveedor
Verificar el estado y/o cambio de los cilindros y conectores neumáticos	20	MENSUAL	6	Asistente de Mantenimiento
Revisión de los terminales del relay de estado sólido, cambiar si fuese necesario, validar sensor de activación (termocupla)	20	MENSUAL	6	Asistente de Mantenimiento
Inspección de desgaste de los sensores inductivos, verificar estado de los cables	15	MENSUAL	6	Asistente de Mantenimiento
Revisión de las boquillas obstruidas de los filtros, limpieza de producto atascado en ello	20	MENSUAL	6	Asistente de Mantenimiento
Verificación de la línea de aire comprimido posible fugas de aire, ajustar las uniones si fuesen necesarios, de lo contrario soldar	15	MENSUAL	6	Asistente de Mantenimiento
Revisión y cambio de aceite de los reductores, verificar el estado de los piñones	15	TRIMESTRAL	2	Asistente / proveedor
Inspección de la bomba de vacío, revisar si se encuentra sobra de producto le pueda afectar su funcionamiento	20	MENSUAL	6	Asistente de Mantenimiento
Verificar estado y /o cambio de sensores fotoeléctricos, validar ingreso de señal	15	MENSUAL	6	Asistente de Mantenimiento
Inspección de voltaje y medición de bobina de motores eléctricos	20	MENSUAL	6	Asistente / proveedor

En esta fase proponemos nuestro plan de mantenimiento adecuado a las maquinas envasadoras, siendo este solo una propuesta y que como ejemplo enlistamos en el formato las tareas a ejecutar.

De acuerdo al cronograma de mantenimiento preventivo propuesto (Ver. Fig. 37), se propone iniciar con una frecuencia (semanal) dado que la producción es de lunes viernes en el horario habitual que actualmente tienen (de 07:00 am – 17:00 pm) los días sábados se realiza la limpieza general de planta y por ello los mantenimientos se realizaran los días domingos, a su vez, estará a cargo de los técnicos de mantenimientos (4 técnicos), cada técnico tendrá a su cargo una máquina y un asistente de mantenimiento brindando apoyo. Por encargo del jefe de planta se requiere también que los técnicos estén presenten los días sábados para el apoyo en la limpieza ya que son ellos los encargados en des energizar las máquinas y mover de un lugar a otro para su limpieza. Por ello se planteará el horario de los técnicos de lunes a domingo con un día de descanso en la semana (no se considera día sábado y domingo para descanso) de esta forma todos los técnicos estarán presentes el día del mantenimiento y limpieza profunda.

La actualización del horario mes a mes estará a cargo del jefe de mantenimiento en coordinación con sus técnicos. (Ver. Fig. 36)

EII	KION									ŀ	1OR	RAR	10 E)E P	ERS	ON	AL L	DE I	MAI	NTE	NIN	1IEI	VT0									
FU	ION															EN	VER	0														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
PUESTO	APELLIDOS NOMBRES	DOMINGO	LUNES	MARTES	MIERCOLES	JUEVES	VIERNES	SÁBADO	DOMINGO	LUNES	MARTES	MIÉRCOLES	JUEVES	VIERNES	SÁBADO	DOMINGO	LUNES	MARTES	MIÉRCOLES	JUEVES	VIERNES	SÁBADO	DOMINGO	LUNES	MARTES	MIÉRCOLES	JUEVES	VIERNES	SÁBADO	DOMINGO	LUNES	MARTES
ASISTENTE	HECTOR OLAYA YARLEQUE		T1	D	T1	T1	T1	T1	T1	T1	D	T1	T1	T1	T1	T1	T1	D	T1	T1	T1	T1	T1	T1	D	T1	T1	T1	T1	T1	T1	D
ASISTENTE	GONZALO CRUZATT LOZANO	F	T1	TI	T1	T1	D	T1	T1	T1	TI	T1	T1	D	T1	T1	T1	TI	T1	T1	D	T1	T1	T1	TI	T1	T1	D	T1	T1	T1	TI
ASISTENTE	MAX YAÑEZ QUISPE		T1	T1	D	T1	T1	T1	T1	T1	T1	D	T1	T1	T1	T1	T1	T1	D	T1	T1	T1	T1	T1	T1	D	T1	T1	T1	T1	T1	T1
VOLANTE	DELMER INUMA GARCIA		D	T1	T1	T1	T1	T1	T1	D	T1	T1	T1	T1	T1	T1	D	T1	T1	T1	T1	T1	T1	D	T1	T1	T1	T1	T1	T1	D	T1

LEYENDA
T1: TURNO 1
D: DESCANSO
F: FERIADO

Fig. 36. Horario propuesto para asistentes de mantenimiento. Fuente: Elaboración Propia

Si podemos darnos cuenta en el cronograma de mantenimiento de mantenimiento propuesto (Ver. Fig. 37) podemos validar que para que se cumpla el ciclo en asistir a todas las maquinas con el mantenimiento preventivo debe haber transcurrido aproximadamente un mes, de acuerdo al comportamiento del plan de mantenimiento, se deberá sustentar con la información recopilada que el mantenimiento pase a ser diariamente y esto se tendrá que coordinar con las áreas involucradas (producción, control de calidad y almacén PT) y presentar la propuesta a gerencia.

Después del primer periodo de aplicación y evaluación del plan de mantenimiento con la metodología RCM, se propondrá que sea una máquina por día por 3 horas a cargo de 2 técnicos de mantenimiento y el tercero asistirá a las demás máquinas en los correctivos si así amerita o en todo caso trabajos adicionales pendientes en planta y el cuarto técnico cubrirá descansos. Todo lo anterior dependiendo de los resultados obtenidos de la primera etapa de implementación.

Importante:

En primera instancia no se podrá iniciar el plan de mantenimiento con la frecuencia diaria debido a que el área de producción no brindará autorización para intervenir las máquinas en horas de producción, para ello primero se pretende obtener los primeros resultados del plan de mantenimiento centrado en la confiabilidad propuesto. Para luego plantear la nueva frecuencia a gerencia.

T1= TURNO 1 DE 7 A 15 HRS (DOMINGOS)

F= FERIADO

UXION	Leyenda:	P: Progra								C	CRON	IOGR	RAMA	A ME	NSUA	L DE	MAN	VTTC					E MA DAD		INAS	S ENV	'ASA	DORA	AS CI	ENTR	ADO	EN I	LA
		A: Anula	do																			ERO											
			9	8	9	'n	ia	ס		1	2			6	7 8	9	10 1									21 22					28	29 3	
MAQUINA / EQUIPO	ACTIVIDADES	Eléctrico	Mecánico	neumático	hidráulico	Operado	Frecuenc	Prioridad	Tiempo estimado	DOMING	LUNES	MIERCOLES	JUEVES	VIERNES	DOMING	LUNES	MARTES	JUEVES	VIERNES	SÁBADO	DOMINGO	LUNES	MIÉRCOLES	JUEVES	VIERNES	SÁBADO	LUNES	MARTES	MIERCOLES	VIERNES	SÁBADO	DOMING	LUNES
MAQUINA ENVASADORA N° 1	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	Х	Х	Х		Х	SEMANAL	ALTA	7h						Р																	Р	
MAQUINA ENVASADORA N° 2	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	χ	χ			χ	SEMANAL	ALTA	7h						P																		
MAQUINA ENVASADORA N° 3	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	Х	х	Х		Х	SEMANAL	ALTA	7h						P																		
MAQUINA ENVASADORA N° 4	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	Х	Х			Х	SEMANAL	ALTA	7h						AINA					Z	P					ANTA					ANTA		
MAQUINA ENVASADORA N° 5	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	Х	Х	Х		Х	SEMANAL	ALTA	7h						A DE PL					A DE PL	P					A DE PL					A DE PL		
MAQUINA ENVASADORA N° 6	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	Х	Х			Х	SEMANAL	ALTA	7h	F					Orono					OFUND	P					ZAPROFUNDA					OFUND		
MAQUINA ENVASADORA N° 7	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	Х	х	Х		Х	SEMANAL	ALTA	7h						EZA PR					LIMPIEZA PROFUNDA						EZA PR					EZAPR		
MAQUINA ENVASADORA N° 8	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	Х	Х	Х		Х	SEMANAL	ALTA	7h											LIMPI						P					LIMPI		
MAQUINA ENVASADORA N° 9	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	Х	Х			Х	SEMANAL	ALTA	7h																	P							
MAQUINA ENVASADORA N° 10	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	Х	Х			Х	SEMANAL	ALTA	7h																							Р	
MAQUINA ENVASADORA N° 11	MANTENIMIENTO PREVENTIVO DE LA MAQUINA ENVASADORA	х	х	Х		х	SEMANAL	ALTA	7h																							P	

Fig. 37. Cronograma mensual de mantenimiento preventivo de las maquinas envasadoras. Fuente: Elaboración Propia

Dicho cronograma de mantenimiento preventivo propuesto (Ver. Fig. 37), deberá ser actualizado mensualmente por la jefatura de mantenimiento y entregado a los técnicos para su posterior uso, además de ello debe ser enviado al área de producción para tener en cuenta las fechas que serán programadas o quizás si requieran alguna intervención especifica por algún problema que haya ocurrido en la semana en dichas maquinas envasadoras.

El formato propuesto (Ver. Fig. 38) será de gran ayuda, el uso y llenado estará a cargo de los técnicos de mantenimiento, este formato está de acuerdo a la información alcanzada por la empresa por medio del historial de fallos ocurridos en las paradas correctivas y que a su vez se enlista las tareas que se desarrollaran en cada máquina envasadora, esperando su cumplimiento semanalmente por los técnicos de mantenimiento, dicho formato será entregado al finalizar su turno a la jefatura de mantenimiento para su V°B° y posteriormente tener un control por medio de sus indicadores que deberá ser presentado a gerencia y jefaturas que lo soliciten.

								REVISADO PO	OR:	SG/AM
	ION	FORMATO MANTENIMIENTO PREVENTIVO DE LA MAQU	INA	L EN	IVAS	ADORA		APROBADO I	POR:	GC
		-						VERSION		1
FECH	A DE EJECUCION:							FECHA		6/03/2018
								I LCIIA		0,03,2010
IVIAQ	UINA/EQUIPO:									
item	Sistema	DESCRIPCION DE LA OPERACION	MECANICO	ELECTRICO PR	NEUMATICO SAM	realizado (si ó no)	ESCALA	DE REFERENCIA	TIEMPO / MIN APROX	Pieza o dispositivo que se cambio
1	PRIORIDAD	Comprobar el estado del aceite lubricante y/o cambio	$\overline{\mathbf{A}}$			SI		2	30	
2	PRIORIDAD	Verificar estado y/o cambio de los sellos mecánicos	>			SI		2	15	
3	PRIORIDAD	Verificar estado y/o cambio de los filtros de aire			~	SI		3	25	
4	PRIORIDAD	Verificar estado y/o cambio del sensor inductivo o capacitivo		>		SI		3	20	
5	PRIORIDAD	Revisión y calibración de transmisor de corriente 4-20 MA		K		SI		2	25	
6	PRIORIDAD	Realizar el ajuste y/o cambio de las borneras eléctricas.		$\overline{\mathbf{A}}$		SI		4	15	
7	PRIORIDAD	Verificar el estado del bobinado del relé térmico interno (sopletear)				SI		3	20	
8	PRIORIDAD	Verificar el estado del bobinado del selenoide interno (sopletear)		2		SI		2	20	
9	PRIORIDAD	Verificar la carga de la presión en el compresor y limpieza del mismo	N		_	SI		2	20	
10	PRIORIDAD	Verificar estado y/o cambio de las mangueras neumáticas		1	~	SI		3	15	
11	PRIORIDAD	Verificar la carga de la presión de agua para la limpieza a presión de las máquinas			$\overline{\mathbf{z}}$	SI		3	20	
12	PRIORIDAD	Verificar estado y/o cambio de las mangueras	3			SI		4	10	
13	PRIORIDAD	Verificar estado y/o cambio de los filtros de agua internos, realizar limpieza	7			SI		3	10	
14	PRIORIDAD	Verificar estado y/o cambio de los conectores neumáticos				SI		3	10	
15	PRIORIDAD	Verificar desgaste del tornillo sin fin de entrega de polvo a las máquinas, cambio si es necesario	~			SI		3	10	
16	PRIORIDAD	Realizar medición de consumo de corriente, verificar estado de las llaves térmicas y cambio de los sensores si es necesario		✓		SI		3	10	
17	PRIORIDAD	Verificar estado del panel de control PLC, sopleatear polvo interno y revisión de tarjetas auxiliares de salida		V		SI		3	10	
18	PRIORIDAD	Medición de ohmeaje en resistencias eléctricas y/o cambio de ser necesario, verificar estado de los bornes de conexión		☑		SI		2	10	
19	PRIORIDAD	Verificar el estado y/o cambio de los cables en mal estado de las resistencias eléctricas		\		SI		2	10	
20	PRIORIDAD	Verificar el estado y/o cambio de los dipositivos electrónicos de mando relay o diferencial de las resistencias eléctricas		~		SI		2	10	
21	PRIORIDAD	verificar el estado de las mordazas verticales y horizontales, cuadrar o alinear, cambiar si presentan rajaduras o desgastes	~			SI		4	20	
22	PRIORIDAD	Verificar el estado y/o cambio de los cilíndros y conectores neumáticos	1	V	1	SI		2	20	
23	PRIORIDAD	Revisión de los terminales del relay de estado sólido, cambiar si fuese necesario, validar	1	l <u>ə</u>	-	31		2	20	
24	PRIORIDAD	Inspección de desgaste de los sensores inductivos, verificar estado de los cables	1	Ť		SI		2	15	
25	PRIORIDAD	Revisión de las boquillas obstruidas de los filtros, limpieza de producto atascado en ello	\sim			SI		2	20	
26	PRIORIDAD	Verificación de la línea de aire comprimido posible fugas de aire, ajustar las uniones si fuesen necesarios, de lo contrario soldar	\square			SI		3	15	
27	PRIORIDAD	Revisión y cambio de aceite de los reductores, verificar el estado de los piñones	IVI	1		SI		2	15	
28	PRIORIDAD	Inspeccion de la bomba de vacio, revisar si se encuentra sobra de producto le pueda				SI		2	20	
29	PRIORIDAD	Verificar estado y/o cambio de sensores fotoeléctricos, corrobar ingreso de señal				SI		1	15	
30	PRIORIDAD	Inspección de voltaje y medición de bobina de motores eléctricos	1	121		SI		3	20	
		inspection de voitage y medicion de posma de motores electricos				<u> </u>	тот	AL TIEMPO	495min	
OBSER	RVACIONES:								•	l
v° B° A	SISTENTE DE MANTENIMIENT	o						EFE DE MANTEN		
Е	SCALA DE REFERENCIA	LEYENDA	1							
	1	CRITICO	1							
	2	IMPORTANTE								
ľ	3	REGULAR	1							

Fig. 38. Formato de Mantenimiento Preventivo Fuente: Elaboración propia

El formato propuesto para verificación diaria de máquinas envasadoras (Ver Fig. 39) muestra una serie de verificaciones (check) que se debe de realizar al iniciar el turno de trabajo por el personal operario supervisado por el personal técnico de mantenimiento, se realiza esto con el fin de no tener paradas imprevistas en plena producción, como por ejemplo: ejes deslizantes atascados por el producto mismo, atascamiento en el llenado del stick por pernos o tuercas sueltos, que muchas veces se desajustan por la misma vibración y por ende cae al producto siendo esto detectados por el área de control de calidad (con el equipo detector de metales), limpieza de restos de plástico que se pega en las mordazas horizontales y verticales por el constante sellado del stick, etc. Dicho formato debe ser llenado diariamente para luego ser archivado en el área de mantenimiento, con este formato aseguraremos que la maquina está iniciándose minimizándose los posibles fallos que pueda presentarse en el día. El tiempo de verificación no debe tardar más de 20 min. Que también debería sumarse al control que llevara el jefe de mantenimiento.

												Código: R-M	IT-10	Versión: 01	
FU X	ION		REGIS	TRO DE V	/ERIFICA	CIÓN DIAI	RIA DE MÁQ	UINAS ENV	/ASADORAS	S		Aprobado: J	IMT	Revisado: JMT	
												Fecha: 25.09	9.2017	Página 1 de 1	
FECHA:															
HORA:															
ASISTENTE															\vdash
ASISTENTE							CHECI	VIICT						1	\vdash
N° de m	águina	Verificar no	rnos y tuercas	Verificar	nernos v	Verificar no	ernos y tuercas		nos y tuercas	Fies lin	mpios y	Estado de	Mordaras	-	
envasa			ertas (copas)	tuercas			ra de producto		le codificado		cados	hor./		OBSERVACIONES	
Circoso		SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	SI	NO	1	
máquin	a n° 1														
máquin	a n* 2														
máquin	a n° 3														
máquin	a n° 4														
máquin	a n° 5														
máquin	a n° 6														
máquin	a n° 7														
máquin	a n° 8														
máquin	a n° 9														
máquino	a n° 10														
máquino	a n° 11														
	V°B°	ASISTENTE (DE MANTENIM	IENTO							V°B° JEF	E DE MANTE	NIMIENTO		

Fig. 39. Checklist diario de máquinas envasadoras Fuente: Elaboración Propia

FU)	ION	TICKET DE F	FALLAS DIARIA EN I ENVASADORAS	MÁQU	INAS	Código: Aprobado: SG/AM	Versión: 01 Revisado:
						Fecha:	Página 1 de 1
Fecha	Máquina envasadora	descripcion de la falla	Reportado por (nombre, firma):	eiec	po de ución	Reparado por (nombre, firma)	Observaciones
	elivasauora	ue la lalla	(nombre, mma).	DE:	A:	(lioilibre, lillia)	

Fig. 40. Formato propuesto de Ticket de trabajo en cada correctivo, el cual servirá de apoyo al Plan de Mantenimiento Preventivo.

Fuente: Elaboración Propia.

El formato propuesto es un ticket de solicitud de pedido para un mantenimiento correctivo (Ver. Fig. 40) el personal operario encargado de la maquina envasadora durante el día deberá solicitar al personal de mantenimiento de turno, el dicho ticket se llevará un control desde el momento que el operario solicite a mantenimiento ya que muchas veces el personal técnico está ocupado en otras actividades y demora en

brindar atención, dicho tiempo también deberá ser contabilizado por la jefatura de producción y mantenimiento. Este ticket será usado cada vez que ocurriera un mantenimiento correctivo en los turnos de producción, después de brindar la atención al requerimiento deberá ser entregado al jefe de mantenimiento para su control.

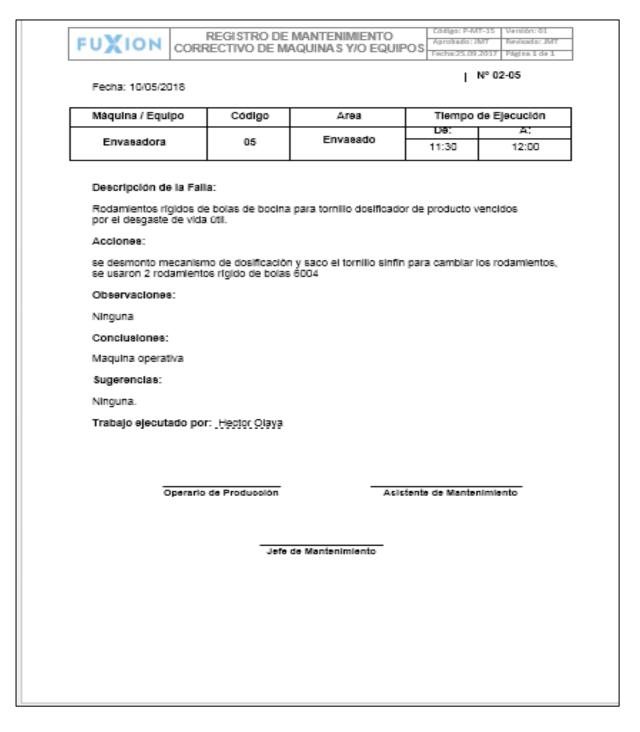


Fig. 41. Registro de mantenimiento correctivo Fuente: Elaboración propia

El formato de registro del mantenimiento correctivo (Ver Fig. 41) fue creado para el control de los mantenimientos correctivos sirviendo como evidencia de su ejecución, dicho formato debe ser manejado por los técnicos de manteamiento diariamente.

En el caso ocurrieran fallas imprevistas que en teoría debería de ser mínimos y controlados en tiempos reducidos. Terminado la atención el formato debe ser firmado por los responsables mencionados en dicho formato siendo también el operario que dará su V°B° dando fe que el trabajo fue desarrollado de acuerdo a su solicitud, luego será entregado a la jefatura de mantenimiento para su control y posteriormente archivarlo.

Fase 7: Puesta en marcha de las medidas preventivas obtenidas.

Ya hemos visto que tras el estudio de RCM se obtienen una serie de medidas preventivas, entre las que destaca el Plan de Mantenimiento a desarrollar en la empresa Fuxion Biotech. Sin embargo, una vez obtenidas todas estas medidas y agrupadas de forma operativa, es necesario implementarlas.

Puesta en marcha del plan de mantenimiento.

Determinado el nuevo plan de mantenimiento, hay que sustituir el plan anterior por el resultante del estudio realizado. Es conveniente repasarlo una vez más, por si se hubieran olvidado tareas. Sobre todo, es necesario comprobar que las tareas recomendadas por los fabricantes han sido tenidas en cuenta, para asegurar que no se olvida en el nuevo plan ninguna tarea importante. Pero una vez revisado, hay que tratar de que la implementación sea lo más rápida posible.

UNIVERSIDAD PRIVADA DEL NORTE

Para alguna de las tareas que se detallen en el nuevo plan es posible que no se disponga

en planta de los medios necesarios. Por ello, es necesario que los responsables del

mantenimiento se aseguren de que se dispone de los medios técnicos o de los materiales

necesarios.

También es imprescindible formar al personal de mantenimiento en el nuevo plan,

explicando en que consiste, cuáles son las diferencias con el anterior, y que fallos se pretenden

evitar con estos cambios (Sánchez, 2016).

Implementación de mejoras técnicas.

La lista de mejoras obtenida y depurada hay que presentarla a la Gerencia de planta para

su realización. Habrá que calcular el coste que supone, solicitar algunos presupuestos y

preseleccionar posibles contratistas (en el caso de que no puedan implementarse con personal

de la planta). También habrá que exponer y calcular los beneficios que se obtienen de la

implementación de cada una de ellas. (Sánchez, 2016).

Puesta en marcha de las acciones formativas.

Para implementar las acciones formativas determinadas en el análisis, solo hay que

incluirlas en el Plan de Formación de la planta. La gran diferencia entre las acciones formativas

propuestas por el RCM y la mayoría de las que suelen formar parte de los planes de formación

suele ser que los propuestos por el RCM tienen como objetivo la solución a problemas tangibles,

y, por tanto, se traducen rápidamente en una mejora de los resultados.

Puesta en marcha de cambios en procedimientos de operación y mantenimiento.

Para la implementación de los cambios en procedimientos de operación y/o mantenimiento es necesario asegurar que todos los miembros involucrados con la metodología RCM conozcan y comprendan los cambios. Para ello es necesario organizar sesiones formativas en los que se explique a todo el personal que tiene que llevarlos a cabo cada uno de los puntos detallados en los nuevos procedimientos, verificando que se han entendido perfectamente. Este aspecto formativo es el más importante para asegurar la implementación efectiva de los cambios en procedimientos (Sánchez, 2016).

2.5.9. Cumplimiento de los objetivos propuestos

2.5.9.1.Mejorar la disponibilidad

Tabla 19:

Porcentaje de mensual de MTBF esperado Elaboración Propia

PORCE	NTAJE MENSUAL ESPERADO D	DE MTBF EN LAS MAQUINAS	ENVASADORAS
MESES	Tiempo total del periodo analizado (horas)	N° reparaciones correctivas o averías (und)	MTBF
ENERO	2200	25	88.0
FEBRERO	2112	27	78.2
MARZO	2376	28	84.9
ABRIL	2112	29	72.8
MAYO	2200	25	88.0
JUNIO	2288	26	88.0

Tabla 20: Porcentaje de mensual de MTTR esperado Elaboración Propia

PORCE	ENTAJE MENSUAL ESPERADO DE	MTTR EN LAS MAQUINAS E	NVASADORAS
MESES	Tiempo Total de reparación correctiva (Horas)	N° reparaciones correctivas o averías (und)	MTTR
ENERO	225.0	25.0	9.0
FEBRERO	235.0	27.0	8.7
MARZO	227.0	28.0	8.1
ABRIL	232.0	29.0	8.0
MAYO	230.0	25.0	9.2

JUNIO	225.0	26.0	8.7
-------	-------	------	-----

Tabla 21:

Porcentaje de mensual de Disponibilidad esperado Elaboración Propia

PORCEN	ITAJE DE DIS	SPONIBILID	AD ESPERADO DE MAQUINAS ENVASADORAS
MESES	MTBF	MTTR	DISPONIBILIDAD
ENERO	88.0	9.0	90.7
FEBRERO	78.2	8.7	90.0
MARZO	84.9	8.1	91.3
ABRIL	72.8	8.0	90.1
MAYO	88.0	9.2	90.5
JUNIO	88.0	8.7	91.0

Fig. 42. Disponibilidad esperada posterior a la implementación de RCM

2.6. Implementación de Gestión de un almacén para piezas y repuestos

2.6.1. Ausencia de stock en Piezas y Repuestos

Uno de los principales problemas también que presenta el área de mantenimiento dentro del área de envasado de la empresa Fuxion Biotech SAC es el siguiente: Inexistencia de un almacén de repuestos y piezas en stock, incurre ante una posible parada correctiva cual sea el problema no se cuenta en el momento con los repuestos o piezas por lo que carecen de una

gestión de compra de los mismos. A su vez origina que la empresa incumpla con las órdenes de producción planteada, por ende, las maquinas quedan inoperativas por días hasta que llegue el repuesto, más aún si es pieza para reemplazar tendrá que esperar de 15 a 20 días para su importación o fabricación.

Algunas de las deficiencias encontradas son las siguientes:

- Falta de repuestos y piezas
- > Desorden de repuestos y piezas
- Falta de precisión de los datos
- Espacio desaprovechado
- ➤ Demora en llegada de repuestos y/o piezas
- > Exceso de gastos en compras

Por ello se plantea con los datos alcanzados enlistar los principales repuestos y piezas implementando los formatos y Kardex para su control e inventario capacitando luego al personal encargado.

	<u> </u>		KARDEY	OF CONTR	OL DE REPU	FSTOS LIT	ILIZARIES	CREADO POR	:	SG-AM
	FU	XION			JINAS ENVA			FECHA DE CRE	ACIÓN:	
	1			ENIVIACO	TINAS ENVA	SADORAS	Nro.	VERSION:		1
ITEM	CÓDIGO	Materiales	Fecha de Ingreso	cant.	Fecha de Salida	cant.	Máquina en que se uso	Stock Actual	CONSUMO	Observaciones
1	CMQ1	cuchillas maquina 1 (par)								
2	CMQ2	cuchillas maquina 2,3,4								
3	CMQ3	cuchillas maquina 5,6								
4	F01	faja (A-20) M 5 y 6 no se utiliza								
5	F02	faja A-22 maq. 5 y 6								
6	F03	faja A-24 maq. 6								
7	CB01	Cuchilla de corte de bobina maq 7 y 11								
8	SG01	seeger 7 mm								
9	CR01	resistencia horizontales maq.1 modelo antiguo 220V 100W (A1)								
10	CR02	resistencia verticales maquina 1 modelo antiguo 220V 100W (B1)								
11	К	termocuplas tipo K								
12	FT01	fotocelula encapsuladas								
13	DM01	diferencial de maquina n° 10 y 13								
15	SC01	sensor de codificador tubular NO (NPN) 5,8 cm (maq. 1,2,3,4,5,6,9,10)								
16	SIO1	sensor inductivo NC (PNP) cuadrado								
17	PM01	pirometro 72x72 de maquina nº 10								
18	RT01	relay del tunel								
19	PE02	pulsador de emergencia								
20	PE03	Pulsador verde 3-4 (NO)								
21	CD01	condensador 340-408 uf de motor electrico								
22	RSS01	relay de estado solido (25 AMP)								
23	EB01	electrovalvula boble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC								
25	RG01	regulador de caudal de 1/8x6								
26	UN01	union recto niquelado 6x6								
27	TN01	tee union 8mm niquelado								
28	CN01	codo de 16x16								
29	PC01	piston compacto 63x20 (PARA MORDAZA VERTICAL) MQ 7 Y 11 VASTAGO MAS ANCHO 20 MM.								

Fig. 43. Kardex de control propuesto para repuestos Fuente: Elaboración Propia.

			KARDEX DE CONTROL DE PIEZAS UTILIZABLES EN				CREADO POR:	SG-AM		
		XION	KANDLA		NAS ENVAS		ABLL3 LIN	FECHA DE CRE	ACIÓN:	
				MAQUII	NAS ENVAS	ADORAS		VERSION:	1	1
ITEM	CÓDIGO	Materiales	Fecha de Ingreso	cant.	Fecha de Salida	cant.	Nro. Maquina en que se uso	Stock Actual	CONSUMO	Observaciones
1	AA01	brazo vertical								
2	AA02	ruedas dentadas								
3	AA03	compuerta de polvo								
4	AA04	plato de tolva								
5	AA05	mordaza horizontal								
6	AA06	ejes deslizantes horizontales								
7	AA07	bocinas interiores								
8	AA08	mordazas verticales								
9	AA09	biela verticales	***************************************							
10	AA10	eje central de plato								
11	AA11	formador de tes								
12	AA12	tapa de tolva								
13	AA13	tolva de inox								
15	AA14	bielas horizontales								
16	AA15	formador de refrescos								
17	AA16	ruedas de traccion								
18	AA17	eje helicoidal vertical								
19	AA18	mordaza de codificadores								
20	AA19	eje sujetador de bobina escalondo								
21	AA20	bocinas de bronce								
22	AA21	ejes escalonado								
23	AA22	polines dentadas								
25	AA23	bases de portatitos								
26	AA24	copa de productos								
27	AA25	compuertas de producto								
28	AA26	polea dentada de motor								
29	AA27	formador de proteinas								

Fig. 44. Kardex de control propuesto para piezas Fuente: Elaboración Propia.

El Kardex de control propuesto de repuestos (Ver. Fig. 43) y de piezas (Ver. Fig. 44), consta de una lista de repuestos y piezas principales correspondientemente, esta información fue alcanzado por el jefe de mantenimiento, dichos formatos serán usados diariamente por los técnicos de mantenimiento quienes llevarán un control al ingreso y salida de los repuestos y/o piezas al almacén, para dicho caso se debe delegar a un técnico quien liderará este puesto y brindará información de su stock final al jefe de mantenimiento, quien a su vez será el responsable de la supervisión de su uso y solicitar los pedidos mensuales.

Los formatos propuestos para llevar con éxito la implementación de un almacén de piezas y repuestos, son en primera instancia de manera física para ser llenados en campo de ser necesario y posteriormente trascribir la información en los formatos digitalizados, ya que con esto se optimiza la entrega eficaz de información a la jefatura de mantenimiento.

2.6.2. Designación de espacio, materiales y herramientas para un almacén de repuestos y piezas y Fuxion Biotech SAC

- ➤ En las visitas realizadas en planta, se sugirió determinar un ambiente para ser destinado y acondicionado como almacén de piezas y repuestos, por la cual el jefe de mantenimiento indicó un lugar cerca de la oficina de mantenimiento que está actualmente usándose como punto de acopio de chatarra, la misma que tiene una medida aproximada de 12 metros cuadrados.
- Para dicho almacén también será necesario la obtención de materiales como: Anaqueles, rótulos y bandejas. Donde todas las piezas y repuestos serán almacenados de manera ordenada y correcta según su tipo.

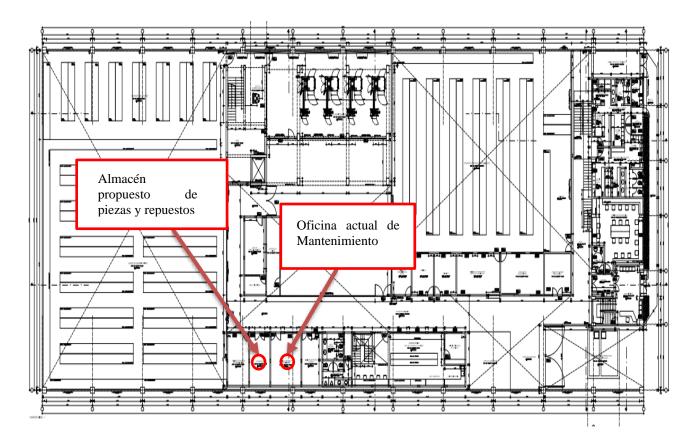


Fig. 45. Propuesta de ubicación de almacén de piezas y repuestos. Fuente: Fuxion Biotech

En la tabla general de control de piezas y repuestos (Ver. Fig. 28) será manejado por la jefatura de mantenimiento, este a su vez será llenado con los entregables actualizados de los Kardex del almacén, que deberán ser alcanzados por los técnicos sobre el ingreso y salida de piezas y/o repuestos, dicha tabla mostrará los consumos reales que se realizara mensual y mediante el historial se sabrá cuanto es en promedio del consumo mensual, semanal y hasta cuantos días soportara su stock actual, conociendo lo antes mencionado automáticamente con ayuda de la herramienta Excel se mostrará la cantidad a requerir, la cual se procederá a solicitar la compra de acuerdo a la cantidad brindado en la tabla, además mostrará la acción a tomar : "adelantar compras" o "no hay problema".

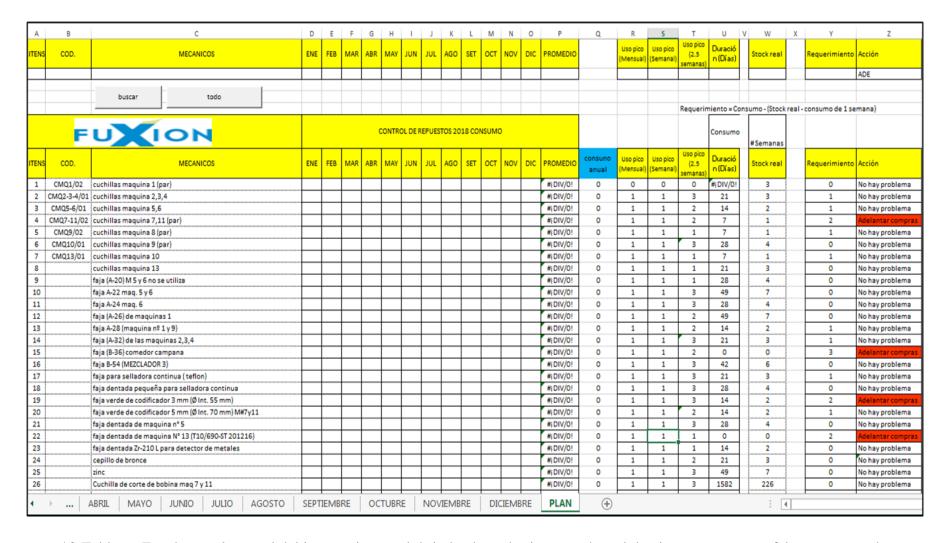


Fig. 46. Tabla en Excel para el control del inventario actual, brindando un horizonte más real de piezas y repuestos faltantes en stock.

Fuente: Elaboración Propia.

2.7. TÉCNICOS DE MANTENIMIENTO APTO Y CAPACITADO.

Capacitaciones al personal de planta manejo de máquinas envasadoras, uso de los formatos y procedimientos.

				CONTROL	DE ASIST	FNCIA		: FAM-15	Versión: 03
	TEMA CAPACIT LUGAR AREA I -	ION						o por: SG	Revisado por:CNMR
				ENTRENAMIE	NTO Y CAPACITA	CION	Fecha:	08.03.18	Página 1 de 1
	TEMA -							1	
	✓ Proc	esos				☐ Externo			
	✓ Espe	ecífico				✓ Interno			FECHA
	☐ Otro)				I Interno			15/10/2016
								J	
FA	ACILITADOR	GONZALO (CRUZAT	T LOZANO			HORA	INICIO	
	TEMA	CAPACITAC	ION DE	OPERATIVIDAD DE MA	QUINAS ENVASAE	OORAS	HORA 1	TÉRMINO	
	LUGAR	AREA I - II							
N°		APELLID	OS Y N	OMBRES	CAR	GO / Área		FI	RMA
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
-10									
11									
12									
13									
14									
15									
	1								

Fig. 47. Formato propuesto de capacitación para el personal de planta, uso correcto y procedimientos de los formatos y manuales, que servirá de apoyo al plan de mantenimiento preventivo. Fuente: Elaboración propia.

El formato de control de asistencia (Ver Fig. 47) será llenado por el personal destinado (operarios, asistentes de mantenimiento, jefe, supervisores de producción y gerencia) y supervisado por el jefe de mantenimiento.

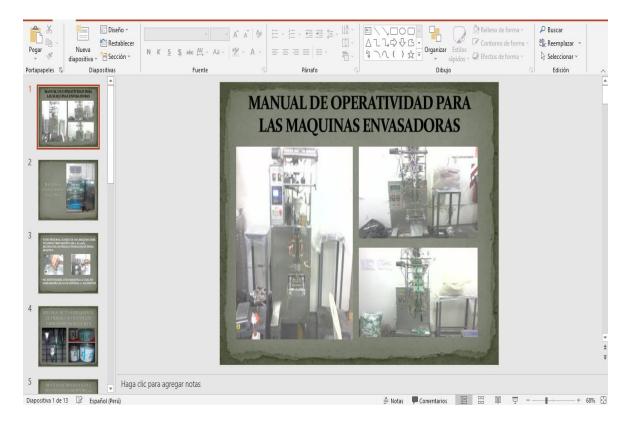


Fig. 48. Manual de operatividad de máquinas envasadoras propuesto, la PPT servirá para la capacitación para el personal de planta, uso correcto procedimiento, manejo, armado y cuidados que se deberá cumplir en las maquinas envasadoras. Fuente: Elaboración propia.

En dicho manual (Ver Linkografía) se muestra el correcto armado de las partes y piezas de las maquinas envasadoras, colocar la bobina, colocar los códigos de fecha, llenado de las tolvas, parámetros de temperaturas a manejar, pesos adecuados solicitados por control de calidad, además de ello el uso correcto de los EPPS y los cuidados por parte de seguridad.

	FUX(ION	EXAMEN DE	EVALUACIÓN	I DE OPERATI	VIDAD EN MA	ÁQUINAS EN	VASADORAS	
MA	QUINISTA:								
FEC	HA:								
C~	nple el armado (-		cuenta un m	aquinista		PUNTAJE	
	-			iluai				PUNTAJE	
1	Limpia la máqu	iina ai inicio d	ei armado						
2	Limpia y desinf	fecta las pieza	S						
3	Coloca del prin	ner plato más	regulador						
4	Coloca el segur	ndo plato de l	as compuerta	y copas corre	ectamente				
5 Monta y verifica el ajuste de la barredora con el nivel exacto									
6 Ajusta de la tuerca (utiliza las herramientas apropiadas)									
7 Coloca la tolva con el ajuste correcto									
8 Verifica la limpieza de la cuchilla									
9 Cuadra de las mordazas horizontales y la cuchilla									
10	Cuadra de las n	nordazas verti	icales						
11	Cuadraa el forr	mador correct	amente						
13	Coloca la cinta	codificadora							
14	Ingresa correct	amente al par	nel de contra	ol para activa	r las opciones	a ejecutarse	!		
15	Verifica la buei	na presentacio	ón del stick						
16	Verifica el cort	e, sellado y co	odificado exa	cto del stick					
17	Lubrica los ejes	s deslizantes y	demás elem	entos según	procedimien	to			
OTR									
	Mantiene limp	•							
_	Evita utilizar la:								
20 Presta atención a su su labor como operario PUNTAJE									
						FUN	IAJL		
Vº B	Bº JEFE DE PLANTA Vº Bº ASISTENTE DE MANTTO. Vº Bº JEFE DE MANTENIMIENTO								

Fig. 49. Formato de evaluación de operatividad de máquinas envasadoras propuesto, con el cual se medirá su conocimiento y posterior conveniencia en la empresa. Fuente: Elaboración propia.

El presente formato (Ver Fig. 49) una vez que el personal culminó la capacitación será solo el personal operario maquinista quien pasará por un primer examen in situ en base a 20

preguntas un punto por pregunta, que será evaluado por las personas encargados a firmar el formato concerniente a todo lo aprendido; de acuerdo a su puntaje aprobatorio será comunicado al área de RRHH para su posterior permanencia y contratación en la empresa.

FUX(ION

TEST DE CONOCIMIENTOS

OPERACIONES BASICAS QUE DEBE CONOCER Y REALIZAR UN MAQUINISTA EN MÁQUINAS ENVASADORAS

NOMBRES Y APELLIDOS:	
AREA:	TURNO:N° DE MAQ.:
FECHA:/2016	
envasadoras seguido de algunos pro	tareas principales referentes a la operación de máquinas cedimientos, por favor lea con atención y maque con (V) nda. La duración de la prueba es de 20min. Suerte.
-	e una y dos horas en realizar. () o desmontar las mordazas. ()
- Para cuadrar el formador ut	otro papel para cuadrar el formador. ()
- Cuadrar una mordaza no af	no es importante que la maquina deje de funcionar. ()
- Al iniciar el turno de trabajo	icales. de mordazas evito que mi stick burbujee. () o no inspecciono el cuadre las mordazas. () s importante cuidar con los cables conectados a ella. ()
6. Dar presión a ruedas de tracción. - Dar golpes con el martillo e	s suficiente para dar presión. ()

. Fig. 50. Formato de evaluación, test de operaciones básicas de operatividad de máquinas envasadoras propuesto, con el cual se medirá su conocimiento y posterior permanencia en la empresa. Fuente: Elaboración propia

El presente formato (Ver. Fig. 50) será tomado un test de preguntas rápidas en "V" o "F" una vez que el personal llevó la capacitación serán solo el personal operario maquinista quien pasará por un segundo examen in situ adjuntado al primer examen, que serán evaluados por las personas encargados a firmar el formato concerniente a todo lo aprendido, con estos exámenes básicos aseguramos que el personal esta apto para manipular la maquina al 100% de acuerdo a su puntaje aprobatorio será comunicado al área de RRHH para su posterior permanencia y contratación en la empresa.

U	MAQUINISTAS POR PARTE DEL AREA MANTENIMIENTO	DE
PROCE	DIMIENTOS	TIEMPO DISPONIBLE (min.)
•	PRIMER PASO Se recibe un cronograma por parte de área de producción previo conocimiento de RR-HH, con una lista de personas a capacitarse por grupos de 3 personas todo el proceso constará de 2:20 horas	10
•	El área de mantenimiento recibe al personal y se da una breve charla del porqué de estas capacitaciones, se comunica los beneficios que tendrán y cuál será nuestra meta a alcanzar por su persona, se comunicará los principales aspectos que se necesita de su persona (iniciativa, motivación, rapidez, orden) también se comunica que el tiempo en máquina es primordial, el cual será controlado.	20
•	<u>TERCER PASO</u> Se capacita al personal con un manual que se entregará en la capacitación ligado a la metodología RCM (manual de operatividad de maquina envasadoras) estará la máquina envasadora como muestra in situ.	20
•	CUARTO PASO El maquinista también recibe en la capacitación de breve prácticas de las operaciones básicas primordiales que deberá hacer en máquinas envasadoras, luego de todo ello deberá pasar por un primer examen escrito de que consta de 20 preguntas de manejo operativo de máquinas envasadoras.	60
٠	QUINTO PASO Después del primer examen se comunicará al maquinista que tendrá un día en máquina en producción liderado por su compañero para poner en práctica lo aprendido de su capacitación, luego se tomará un segundo examen práctico de 15 preguntas en los cuales habrá de 2 a 4 alternativas para marcar (v ó f), con lo básico del montaje y operación en máquinas envasadoras, este deberá alcanzar el puntaje aprobatorio. (ojo: en ambos exámenes tiene que aprobar >= 12, el examen se tomará después de la producción) será evaluado por un asistente de mantenimiento en el día designado al maquinista ingresante.	20
•	SEXTO PASO los exámenes resueltos por los maquinistas ingresantes, serán discutidos por jefatura de producción, mantenimiento y representante de RR-HH siendo la nota aprobatoria => a 12 y desaprobatoria =< a 11 para así determinar la permanencia del maquinista.	10

Fig. 51. Procedimiento para la evaluación del maquinista en la operatividad de máquinas envasadoras propuesto. Fuente: Elaboración propia

El procedimiento estará a cargo del área de mantenimiento para tener en cuenta en el momento de brindar las capacitaciones y tomar los exámenes propuestos, lo cual esta detallado paso a paso (Ver Fig. 51).

	FUXION	EXAMEN DE EVALUACIÓN PARA ASISTENTE DE MANTENIM	IENTO						
ASIS	STENTE/TÉCNICO:								
FEC									
		que debe tener en cuenta un técnico de mantenimiento te al área de mantenimiento y llenado de los formatos que fue							
_ Ct	imple con los puntos referen	capacitado	PUNTAJE						
1	Correcto llenado del formato								
2	Envia a tiempo la tabla en ex	cel solicitado por la jefatura							
3	Cumple con el correcto llena	do del kardex de materiales							
4	Resueve fallos mecánicos								
5	Resuelve fallos neumáticos	_							
6	Resuelve fallos eléctricos								
7	resuelve fallos electrónicos								
8	Suelda piezas de acero inoxidables								
9	Monta y desmonta la máqui	a envasadora							
10	tiene buena iniciativa para e	nseñar a los operarios los trabajos básicos							
11	Realiza consultas a su jefatu	a los problemas que no tiene conocimiento							
12	Muestra iniciativa y rapidez a	ll desarrolar el trabajo propuesto							
13	Cumple con el llenado de inv	rentario cuando retira repuestos o piezas							
14	Valida y e informa en su info	rme los repuestos y piezas críticas							
15	Utiliza su seguridad al usar lo	s equipos eléctricos de trabajo							
16	Cumple con las tareas en el i	nantenimiento preventivo							
17	Elabora y propone ideas en l	os trabajos que se le asigna							
OTR									
	Mantiene limpia y ordenada	•							
19 20	Evita utilizar las herramienta Presta atención a su su labor								
20	i resta atericioni a su su labor	PUNTAJE							
	00 IFFE DE DI ANTA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
ΛōΕ	º JEFE DE PLANTA	Vº Bº JEFE DE MANTENIMIE	ENIO						

Fig. 52. Formato para la evaluación del asistente de mantenimiento para ser optimo brindando soluciones en el área. Fuente: Elaboración propia.

El presente formato de evaluación (Ver. Fig. 52) estará a cargo del área de mantenimiento y será el jefe de mantenimiento quien tomará los exámenes para después tomar las acciones sobre el técnico, lo cual coordinará con el área de RR-HH para su permanencia.

Tabla 22:

Propuesta de Programa para capacitación interna de personal Fuxion Biotech SAC Fuente:
elaboración Propia

		PRO	GRAMA SI	EMESTRAL DE	CAPACITAC	ÓN DE MANTE	NIMIENTO		
ITEM	TEMAS	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE	NRO. DE VECES (EN EL SEMESTRE)	DURACIÓN (min)
1	Introducción a la metodología RCM		Х						60
2	Presentación de tabla propuesta con la metodología RCM		Х					1	60
3	Plan de mantenimiento propuesto para las máquinas envasadoras		x			Х		_	30
4	Manejo de formatos propuestos para el seguimiento en la aplicación en la metodología RCM					Х		1	60
5	Manejo y operatividad de las máquinas envasadoras					Х			300
5	Manejo y operatividad de las máquinas					х	TOTAL	2	

2.8. COSTOS DE MANTENIMIENTO CORRECTIVO ACTUAL DE LAS MAQUINAS ENVASADORAS EN LA EMPRESA FUXION BIOTECH SAC

Tabla 23:

Costos del mantenimiento netamente correctivo actual en Fuxion Biotech SAC Fuente: Elaboración propia

		Tiempo		Costos de Mantenimiento Correctivo (enero-junio 2018)						
0		(min)		Costo d	e personal	Co	sto personal e	xterno		
ACTIVO	Historial de Trabajos desarrollados - Mantenimiento Correctivo	acumulado en los últimos 6 meses	Mantenimiento a cargo de:	н.н.	Costo total personal tecnico	н.н.	Costo total personal externo	(Repuestos / Piezas)	TOTAL SEMESTRAL	
	Mordazas horizontales y pernos rotos y con desgaste se desmontan y se cambian, proveedor ingresa a montar la pieza	1200	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 120.00	S/10.00	S/ 200.00	S/428.00	S/ 748.00	
	Brazos verticales y pernos rotos y con desgaste se desmontan y se cambian, se solicita a proveedor sacar las características de las resistencias	550	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 55.00	S/10.00	S/ 91.67	\$/53.00	S/ 199.67	
	Ejes deslizantes horizontales con desgastes y ruedas de tracción no ajusta se cambian, se desmonta las piezas	2200	Asist. de Mantenimiento	S/6.00	S/ 220.00			S/440.00	S/ 660.00	
	Cutter para cortar bobina sin filo se cambian para los abrefáciles	660	Asist. de Mantenimiento	S/6.00	S/ 66.00			S/20.00	S/ 86.00	
	sensor inductivo NC (PNP) cuadrado no activa y resistencias verticales quemadas se cambian	600	Asist. de Mantenimiento	S/6.00	S/ 60.00			S/210.00	S/ 270.00	
	controlador de temperatura 20x40 no marca el parámetro, se cambia también los cables	500	Asist. de Mantenimiento	S/6.00	S/ 50.00			S/160.00	S/ 210.00	
VA 1	Cuchilla dentada de corte de stick roto, se cambian por nuevo, se cuadra los niveladores	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/320.00	S/ 440.00	
MAQUINA	Brazos verticales rotos, resistencias horizontales muy ancho, se retira y se coloca nuevos	1350	Asist. de Mantenimiento	S/6.00	S/ 135.00			S/355.00	S/ 490.00	
Σ	Resistencia eléctrica verticales 220V 100W quemados, se solicita fabricación	300	proveedor			S/10.00	S/ 50.00	S/40.00	S/ 90.00	
	Formador de refrescos de empaque roto, se desmonta y se cambia	890	proveedor			S/10.00	S/ 148.33	S/450.00	S/ 598.33	
	fotocélula encapsulada no detecta la taca, se cambia por uno nuevo	660	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 66.00	S/10.00	S/ 110.00	S/120.00	S/ 296.00	
	Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia	980	Asist. de Mantenimiento	S/6.00	S/ 98.00			S/190.00	S/ 288.00	
	Termocupla tipo k vertical no sensa, resistencia vertical quemada, dientes de mordaza horizontal con desgaste y controlador de temperatura 72 x 72 de temperatura se cambian descalibrado	1200	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 120.00	S/10.00	S/ 200.00	S/220.00	S/ 540.00	
	relay de estado sólido (40 AMP) no controla la temperatura se cambia, Se solicita a proveedor ingrese a planta para sacar características del repuesto	780	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 78.00	S/10.00	S/ 130.00	S/150.00	S/ 358.00	
	controlador de temperatura 20x40, no controla la temperatura se cambia	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/160.00	S/ 250.00	
MAQ	Mordaza vertical descuadrada, rodamientos de regulación roto, se desmontan y se cambian	1200	Asistente de Mantenimiento/Proveedor	\$/6.00	S/ 120.00	S/10.00	S/ 200.00	S/600.00	S/ 920.00	
2 :	sensor de codificador tubular NO (NPN) 5,8 cm malogrado se cambia	300	Asist. de Mantenimiento	S/6.00	S/ 30.00			S/190.00	S/ 220.00	

Controlador de temperatura 72x72 en mal estado se desmonta de la parte eléctrica y		Asist. de Mantenimiento	S/6.00	S/ 89.00			S/220.00	S/ 309.00
se cambia por uno nuevo	890		-,	-,			-,	-,
Cuchilla dentada de corte de stick, roto y no tenía filo se lo cambia	400	Asist. de Mantenimiento	S/6.00	S/ 40.00			S/320.00	S/ 360.00
Cutter para cortar bobina, no tiene filo se cambia 3 unidades	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/20.00	S/ 140.00
pistón compacto 63x20 (PARA MORDAZA VERTICAL) no regula y cuchilla dentada de stick rota, se cambia	1260	Asist. de Mantenimiento	S/6.00	S/ 126.00			S/640.00	S/ 766.00
Manguera neumática con hueco, se cambió tee unión 8mm niquelado y manguera	500	Asist. de Mantenimiento	S/6.00	S/ 50.00			S/50.00	S/ 100.00
fotocélula encapsulada no detecta la taca, se cambia por uno nuevo	650	Asist. de Mantenimiento	S/6.00	S/ 65.00			S/120.00	S/ 185.00
Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/40.00	S/ 129.00
Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/190.00	S/ 279.00
pistón compacto 63x20 de apertura de mordaza deteriorado, fotocélula encapsulada no lee la taca se cambian	500	Asist. de Mantenimiento	S/6.00	S/ 50.00			S/320.00	S/ 370.00
eje central de plato golpea demasiado, desmontaje y cambio	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/180.00	S/ 269.00
Brazo vertical roto y sensor inductivo NC (PNP) cuadrado malogrado se cambian	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/490.00	S/ 579.00
pulsador de emergencia no activa, se cambia y se solicita al proveedor validar el circuito interno dentro del PLC	890	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 89.00	S/10.00	S/ 148.33	S/300.00	S/ 537.33
Bocinas interiores de bronces con desgaste no da un buen pesaje, se cambian se solicita a proveedor desmontar y sacar las medidas exactas	700	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 70.00	S/10.00	S/ 116.67	S/180.00	S/ 366.67
Ruedas de tracción presentan desgaste, se desmonta y se solicita fabricación proveedor ingresa a sacar medidas	700	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 70.00	S/10.00	S/ 116.67	S/220.00	S/ 406.67
anillo de sujeción de tolva sin ajuste, cambio de rodamiento de regulador de peso y compuertas de producto rotos se cambian.	1500	Asist. de Mantenimiento	\$/6.00	S/ 150.00			S/700.00	S/ 850.00
Pulsador verde 3-4 (NO), no activan se cambia, se solicita al proveedor que saque medidas de brazo vertical	800	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 80.00	S/10.00	S/ 133.33	S/42.00	S/ 255.33
Ejes deslizantes horizontales presentan desgaste, se solicita su fabricación	890	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 89.00	S/10.00	S/ 148.33	S/520.00	S/ 757.33
motor eléctrico no arranca, se desmontará y se solicita su compra	900	proveedor			S/10.00	S/ 150.00	S/180.00	S/ 330.00
relay de estado sólido (40 AMP) inoperativo, se cambia por nuevo	1100	Asist. de Mantenimiento	S/6.00	S/ 110.00			S/150.00	S/ 260.00
electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia	620	Asist. de Mantenimiento	S/6.00	S/ 62.00			S/352.00	S/ 414.00
Resistencia eléctrica horizontales 220V 100W, quemados se solicita cambios.	650	Asist. de Mantenimiento	S/6.00	S/ 65.00			S/35.00	S/ 100.00
pulsador de emergencia con falso contacto, se lo cambia	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/45.00	S/ 125.00
condensador 340-408 uf de motor eléctrico malogrado, se cambia	210	Asist. de Mantenimiento	S/6.00	S/ 21.00			S/50.00	S/ 71.00
Cuchilla dentada de corte de stick, roto y no tenía filo se lo cambia	980	Asist. de Mantenimiento	S/6.00	S/ 98.00			S/320.00	S/ 418.00
pulsador de emergencia, no activa se cambia.	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/45.00	S/ 125.00
unidad de mantenimiento obstruido aire no ingresa con presión, se cambia regulador de caudal de 1/8x6	450	Asist. de Mantenimiento	S/6.00	S/ 45.00			S/35.00	s/ 80.00
Ruedas de tracción con desgaste, se desmonta y se cambia	470	Asist. de Mantenimiento	S/6.00	S/ 47.00			S/220.00	S/ 267.00

	cucharas recogedoras de polvo roto y mordazas verticales presenta desgastes se cambian	400	Asist. de Mantenimiento	S/6.00	S/ 40.00			S/380.00	S/ 420.00
1	otocélula encapsulada no detecta la taca, se cambia por uno nuevo	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/120.00	S/ 209.00
	Cutter para cortar bobina sin filo se cambian para los abrefáciles	1800	Asist. de Mantenimiento	S/6.00	S/ 180.00			S/20.00	S/ 200.00
1	aja de fechador roto, se cambia	980	Asist. de Mantenimiento	S/6.00	S/ 98.00			S/30.00	S/ 128.00
	Resistencia eléctrica verticales 220V 100W quemados, se solicita fabricación	560	proveedor			S/10.00	S/ 93.33	S/40.00	S/ 133.33
	Pernos, 06,08,12, 16, inox y de grado 8 y tipo mariposa rota y con desgaste, se cambian	1300	Asist. de Mantenimiento	S/6.00	S/ 130.00			S/23.00	S/ 153.00
	Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/190.00	S/ 310.00
:	sensor inductivo NC (PNP) cuadrado malogrado, se cambian	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/170.00	S/ 260.00
	controlador de temperatura 20x40, no controla la temperatura se cambia	890	proveedor			S/10.00	S/ 148.33	S/150.00	S/ 298.33
I	motor trabado por rodamiento roto, se cambian	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/30.00	S/ 110.00
:	sensor inductivo NC (PNP) cuadrado, no censa se lo cambia	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/170.00	S/ 290.00
	Ejes deslizantes horizontales con desgastes y ruedas de tracción no ajusta se cambian, se solicita a proveedor para realizar medidas de las piezas	1200	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 120.00	S/10.00	S/ 200.00	S/440.00	S/ 760.00
	anillo de ajuste de tolva sin ajuste y ejes deslizantes horizontales trabados se desmontan y se cambian, se solicita a proveedor sacar medidas	980	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 98.00	S/10.00	S/ 163.33	\$/660.00	S/ 921.33
	Bielas verticales rotas se cambian, se solicita sacar medida a proveedor para la abricación para tener en stock	1200	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 120.00	S/10.00	S/ 200.00	\$/350.00	S/ 670.00
-	Cutter para cortar bobina sin filo se cambian para los abrefáciles	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/20.00	S/ 110.00
1	aja A-20, rota se cambia	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/32.00	S/ 152.00
	ope de caída descentrado se desmonta y se cambian	920	Asist. de Mantenimiento	S/6.00	S/ 92.00			S/100.00	S/ 192.00
Ш	pulsador de emergencia, no activa se cambia.	698	Asist. de Mantenimiento	S/6.00	S/ 69.80			S/45.00	S/ 114.80
	cuchilla dentada rota se cambia, se solicita al proveedor ingresar para sacar los olanos de la cuchilla	1500	Asistente de Mantenimiento/Proveedor	\$/6.00	S/ 150.00	S/10.00	S/ 250.00	S/320.00	S/ 720.00
MAQUINA 4	otocélula encapsulada no detecta la taca, se cambia por uno nuevo	568	Asist. de Mantenimiento	S/6.00	S/ 56.80			S/120.00	S/ 176.80
	sensor de codificador tubular NO (NPN) 5,8 cm en mal estado se cambia	870	Asist. de Mantenimiento	S/6.00	S/ 87.00			S/190.00	S/ 277.00
140	mordaza horizontal y vertical descentrados se cambia y se cuadra	960	Asist. de Mantenimiento	S/6.00	S/ 96.00			S/420.00	S/ 516.00
2	Pulsador verde 3-4 (NO), no activan se cambia	950	Asist. de Mantenimiento	S/6.00	S/ 95.00			S/42.00	S/ 137.00
1	aja A-22 rota se cambia	568	Asist. de Mantenimiento	S/6.00	S/ 56.80			S/30.00	S/ 86.80
	pielas verticales desgastadas, se desmonta y se cambia	850	Asist. de Mantenimiento	S/6.00	S/ 85.00			S/350.00	S/ 435.00
(Controlador de temperatura 72x72 no detecta la temperatura, se cambia	550	Asist. de Mantenimiento	S/6.00	S/ 55.00			S/220.00	S/ 275.00
	Cuchilla dentada de corte de stick roto, se cambian por nuevo	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/320.00	S/ 410.00
	condensador 340-408 uf de motor eléctrico malogrado, se cambia	1890	Asist. de Mantenimiento	S/6.00	S/ 189.00			S/50.00	S/ 239.00
:	selector eléctrico de arranque deteriorado, se cambia	960	Asist. de Mantenimiento	S/6.00	S/ 96.00			450	S/ 546.00
	bocinas de plato giratorio roto se lo cambia, se solicita ingreso de proveedor a sacar nedidas	1400	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 140.00	S/10.00	S/ 233.33	\$/350.00	S/ 723.33
	egulador de caudal de 1/8x6, malogrado se cambia	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/35.00	S/ 124.00

	resistencia vertical de fechador quemado se cambia	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/40.00	S/ 120.00
	Brazo vertical roto s y sensor inductivo NC (PNP) cuadrado malogrado se cambian	780	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 78.00	S/10.00	S/ 130.00	S/490.00	S/ 698.00
	cambio de ejes deslizantes horizontales nuevos y desmontaje de piezas	1200	proveedor			S/10.00	S/ 200.00	S/180.00	S/ 380.00
	Brazo vertical roto se cambia y sensor inductivo NC (PNP) cuadrado malogrado se cambian	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/490.00	S/ 570.00
	Mordaza horizontal se solicita a proveedor	1100	proveedor					S/420.00	S/ 420.00
	Eje central de plato con desgaste se cambia	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/180.00	S/ 269.00
	Resistencia eléctrica verticales 220V 100W quemado se cambia	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/40.00	S/ 130.00
	Bielas verticales rotas se cambian	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/350.00	S/ 439.00
	faja A-20 roto, se cambia	710	Asist. de Mantenimiento	S/6.00	S/ 71.00			S/32.00	S/ 103.00
	Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita fabricación	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/220.00	S/ 340.00
	variador de frecuencia de motor no activa se revisa y se cambia	600	Asist. de Mantenimiento	S/6.00	S/ 60.00			S/35.00	S/ 95.00
	Formador de proteínas roto se cambia, se ingresa a sacar medidas	689	proveedor			S/10.00	S/ 114.83	S/450.00	S/ 564.83
	Ruedas de tracción con desgaste, se desmonta y se cambia	1000	Asist. de Mantenimiento	S/6.00	S/ 100.00			S/220.00	S/ 320.00
	controlador de temperatura 20x40 no controla la temperatura se cambia	400	Asist. de Mantenimiento	S/6.00	S/ 40.00			S/160.00	S/ 200.00
	Brazo vertical roto se cambia y sensor inductivo NC (PNP) cuadrado malogrado se cambian	680	Asist. de Mantenimiento	S/6.00	S/ 68.00			S/490.00	S/ 558.00
	Cuchilla dentada de corte de stick roto, se cambian por nuevo	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/320.00	S/ 409.00
	cambio de resistencia vertical de codificador	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/40.00	S/ 129.00
	Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian	600	Asist. de Mantenimiento	S/6.00	S/ 60.00			S/40.00	S/ 100.00
7 5	controlador de temperatura 20x40 no controla la temperatura se cambia	560	Asist. de Mantenimiento	S/6.00	S/ 56.00			S/160.00	S/ 216.00
Ž	Mordazas verticales presenta desgaste, se cambia	1700	Asist. de Mantenimiento	S/6.00	S/ 170.00			S/380.00	S/ 550.00
MAQUINA	ventilador eléctrico de tablero de control quemado, se cambia	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00			S/70.00	S/ 220.00
Ž	pistón compacto 63x20 (PARA MORDAZA VERTICAL), se cambia presenta fuga	790	Asist. de Mantenimiento	S/6.00	S/ 79.00			S/320.00	S/ 399.00
	Resistencia eléctrica verticales 220V 100W no calienta, se cambia	400	Asist. de Mantenimiento	S/6.00	S/ 40.00			S/40.00	S/ 80.00
	Resistencia eléctrica horizontales 220V 100W, quemados se solicita cambios.	450	Asist. de Mantenimiento	S/6.00	S/ 45.00			S/35.00	S/ 80.00
	faja A-22 rota se cambia	450	Asist. de Mantenimiento	S/6.00	S/ 45.00			S/30.00	S/ 75.00
	vibrador de tolva de caída no funciona, se lo repara	450	Asist. de Mantenimiento	S/6.00	S/ 45.00				S/ 45.00
	Polea dentada de motor con desgaste se solicita la fabricación	600	proveedor			S/10.00	S/ 100.00	S/180.00	S/ 280.00
	cable suelto en resistencias horizontales, se lo empalma.	800	Asist. de Mantenimiento	S/6.00	S/ 80.00				S/ 80.00
	Mordaza horizontal con desgaste se cambia	920	proveedor			S/10.00	S/ 153.33	S/420.00	S/ 573.33
	regulador de caudal de 1/8x6 en mal estado se cambia	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/35.00	S/ 115.00
	Pulsador verde 3-4 (NO) no activa, se necesita cambiarlo	450	Asist. de Mantenimiento	S/6.00	S/ 45.00			S/42.00	S/ 87.00
	Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/8.00	S/ 98.00
	Regulador de peso con rodamiento roto, se cambia, se solicita a proveedor desmontar y sacar las medidas correctas.	890	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 89.00	S/10.00	S/ 148.33	S/700.00	S/ 937.33
	cableado de sensores de la maquina se revisa y se pone operativo la maquina	500	Asist. de Mantenimiento	S/6.00	S/ 50.00			S/400.00	S/ 450.00

	sensor inductivo NC (PNP) cuadrado no activa y resistencias verticales quemadas se cambian	1100	Asist. de Mantenimiento	S/6.00	S/ 110.00			S/210.00	S/ 320.00
	Eje central de plato con desgaste se cambia y se solicita a proveedor ingresar a sacar medidas exactas	500	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 50.00	S/10.00	S/ 83.33	S/210.00	S/ 343.33
	Compuertas de producto presentan desgaste se cambian y se solicita a proveedor sacar medidas para su fabricación	1100	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 110.00	S/10.00	S/ 183.33	S/180.00	S/ 473.33
	Resistencia eléctrica verticales 220V 100W y termocupla tipo k quemados se cambian	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/85.00	S/ 175.00
	Compuertas de producto presentan desgaste se cambian	1350	Asist. de Mantenimiento	S/6.00	S/ 135.00			S/180.00	S/ 315.00
	faja A-20 roto, se cambia	989	Asist. de Mantenimiento	S/6.00	S/ 98.90			S/32.00	S/ 130.90
	electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia	800	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 80.00	S/10.00	S/ 250.00	\$/352.00	S/ 682.00
	Resistencia eléctrica verticales 220V 100W quemada, se cambia	300	Asist. de Mantenimiento	S/6.00	S/ 30.00			S/40.00	S/ 70.00
	Mordazas verticales presenta desgaste, se cambia	850	Asist. de Mantenimiento	S/6.00	S/ 85.00			S/380.00	S/ 465.00
ĺ	switch de encendido de caja codificadora inoperativo se cambian	710	Asist. de Mantenimiento	S/6.00	S/ 71.00			S/25.00	S/ 96.00
	Pulsador verde 3-4 (NO) no activa, se necesita cambiarlo	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/42.00	S/ 162.00
	interruptor unipolar quemado, se cambia	300	Asist. de Mantenimiento	S/6.00	S/ 30.00			S/18.00	S/ 48.00
	Controlador de temperatura 72x72 no detecta la temperatura, se cambia	880	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 88.00	S/10.00	S/ 146.67	S/220.00	S/ 454.67
	cable de codificador de 8 puerto roto, se cambia	700	Asist. de Mantenimiento	S/6.00	S/ 70.00			S/70.00	S/ 140.00
A 6	relay de estado sólido (25 AMP) no detecta la temperatura	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00			S/78.00	S/ 228.00
N I	Resistencia eléctrica verticales 220V 100W quemada por el trabajo diario, se cambia	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/40.00	S/ 129.00
MAQUINA	Mordaza de codificadores con desgaste se solicita la fabricación, solo se da más presión.	1700	Asist. de Mantenimiento	S/6.00	S/ 170.00				S/ 170.00
	Cuchilla dentada de corte de stick, roto y no tenía filo se lo cambia, se cuadra las bocinas reguladoras	1850	Asist. de Mantenimiento	S/6.00	S/ 185.00			S/320.00	S/ 505.00
	tee unión 8mm niquelado y codo de 16x16 roto se necesita cambiar, se solicita a proveedor validar las características exactas	500	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 50.00	S/10.00	S/ 83.33	S/85.00	S/ 218.33
	unión recta niquelado 6x6 con fuga se cambia	380	Asist. de Mantenimiento	S/6.00	S/ 38.00			S/50.00	S/ 88.00
	regulador de caudal de 1/8x6, malogrado se cambia, se solicita a proveedor validar las características del repuesto	1200	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 120.00	S/10.00	S/ 200.00	\$/35.00	S/ 355.00
	regulador de caudal de 1/4x08 con fuga se realiza el cambio	300	Asist. de Mantenimiento	S/6.00	S/ 30.00			S/190.00	S/ 220.00
	Eje helicoidal vertical presenta desgaste se solicita la fabricación y cambio	1200	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 120.00	S/10.00	S/ 200.00	S/500.00	S/ 820.00
	Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/40.00	S/ 129.00
	Copa de productos presenta desgaste se realiza el cambio, se solicita al proveedor desmontar para sacar medidas exactas	1400	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 140.00	S/10.00	S/ 233.33	S/120.00	S/ 493.33
MAQUI	interruptor de apagado, mangueras de dosificado, termocupla tipo k, se brindó solución dando algunos ajustes	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00	_			S/ 120.00
MA ,	Formador de proteínas roto se cambia, se solicita desmontaje a proveedor para tener las medidas exactas	1200	proveedor			S/10.00	S/ 200.00	S/450.00	S/ 650.00

faja A-20 roto, se cambia	1320	Asist. de Mantenimiento	S/6.00	S/ 132.00			S/32.00	S/ 164.00
potenciómetro de 100 k inoperativo, se cambia	600	Asist. de Mantenimiento	S/6.00	S/ 60.00			S/35.00	S/ 95.00
Mordaza de codificadores con desgaste se solicita la fabricación	560	proveedor			S/10.00	S/ 93.33		S/ 93.33
Regulador de peso con rodamiento roto, se cambia	569	Asist. de Mantenimiento	S/6.00	S/ 56.90			S/700.00	S/ 756.90
chumaceras de ejes deslizantes horizontales con desgaste se cambian	470	Asist. de Mantenimiento	S/6.00	S/ 47.00			S/45.00	S/ 92.00
Regulador de peso con rodamiento roto, se cambia	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/700.00	S/ 789.00
resistencia horizontal suelta del fechador se empalma y deja operativo	900	Asist. de Mantenimiento	S/6.00	S/ 90.00				S/ 90.00
Ruedas de tracción presentan desgaste, se desmonta y se solicita fabricación	900	proveedor			S/10.00	S/ 150.00		S/ 150.00
Cuchilla dentada de corte de stick, roto y no tenía filo se lo cambia	670	Asist. de Mantenimiento	S/6.00	S/ 67.00			S/320.00	S/ 387.00
Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/8.00	S/ 97.00
Resistencia de fechador quemada se verifica y se empalma, se dejó operativo	700	Asist. de Mantenimiento	S/6.00	S/ 70.00				S/ 70.00
pulsador de emergencia, no activa se cambia.	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/45.00	S/ 125.00
termocupla tipo k de mordaza vertical no sensa, se cambia	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/45.00	S/ 135.00
unión recta niquelado 6x6 con fuga se cambia	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/50.00	S/ 139.00
Jebes blancos de rodillos rotos se cambian, se solicita a proveedor sacar las medidas	790	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 79.00	S/10.00	S/ 131.67	S/50.00	S/ 260.67
copas de producto presenta ruptura se desmonta y se cambian	790	Asist. de Mantenimiento	S/6.00	S/ 79.00			S/120.00	S/ 199.00
Controlador de temperatura 72x72 no detecta la temperatura, se cambia	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/220.00	S/ 310.00
termocuplas tipo K roto se cambia	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00			S/45.00	S/ 195.00
electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia	1200	Asist. de Mantenimiento	\$/6.00	S/ 120.00			S/352.00	S/ 472.00
rueda de tracción no jala la bobina por desgaste, se cambia	450	Asist. de Mantenimiento	S/6.00	S/ 45.00			S/220.00	S/ 265.00
copas dosificadoras con desgaste, se cambian	1240	Asist. de Mantenimiento	S/6.00	S/ 124.00			S/120.00	S/ 244.00
fotocélula encapsulada no detecta la taca, se cambia por uno nuevo	980	Asist. de Mantenimiento	S/6.00	S/ 98.00			S/120.00	S/ 218.00
Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/190.00	S/ 310.00
eje sin fin dosificador roto las aletas, se solicita su fabricación y montaje	1600	proveedor			S/10.00	S/ 266.67	S/200.00	S/ 466.67
diferencial de maquina quemado se cambia	789	Asist. de Mantenimiento	S/6.00	S/ 78.90			S/170.00	S/ 248.90
Mordaza horizontal presenta desgaste, se cambia	400	Asist. de Mantenimiento	S/6.00	S/ 40.00			S/420.00	S/ 460.00
resistencias horizontales, se cambian por estar quemadas hubo corto circuito	980	Asist. de Mantenimiento	S/6.00	S/ 98.00			S/35.00	S/ 133.00
Eje central de plato con desgaste se cambia	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/180.00	S/ 260.00
Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/40.00	S/ 160.00
producto liqui fibra no cae, se limpia la tolva y se pone operativo la maquina	700	Asist. de Mantenimiento	S/6.00	S/ 70.00				S/ 70.00
termocuplas tipo K roto se cambia	700	Asist. de Mantenimiento	S/6.00	S/ 70.00			S/45.00	S/ 115.00
controlador de temperatura 20x40, no controla la temperatura	1730	Asist. de Mantenimiento	S/6.00	S/ 173.00			S/160.00	S/ 333.00
Formador de proteínas roto se cambia	670	proveedor			S/10.00	S/ 111.67	S/450.00	S/ 561.67
tee unión 8mm niquelado y codo de 16x16 roto se necesita cambiar	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/85.00	S/ 205.00

tipos del fechador no imprime desgaste y resistencia quemada y cambio de pernos y anillos seeguer 7, se realiza cambio, se solicita a proveedor que valide el tamaño de resistencia para su fabricación	700	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 70.00	S/10.00	S/ 116.67	S/80.00	S/ 266.67
relay de estado sólido (25 AMP), se hace seguimiento cable roto, se da solución	790	Asist. de Mantenimiento	S/6.00	S/ 79.00			S/78.00	S/ 157.00
Regulador de peso presenta desgaste interno, se realiza el cambio	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/700.00	S/ 789.00
sensor inductivo NC (PNP) cuadrado, no censa se lo cambia	1900	Asist. de Mantenimiento	S/6.00	S/ 190.00			S/170.00	S/ 360.00
Resistencia eléctrica verticales 220V 100W, se desmonta mordaza y se cambian	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/40.00	S/ 130.00
Anillo de ajuste de tolva, Se desmonta para solicitar su fabricación	450	proveedor			S/10.00	S/ 75.00	S/440.00	S/ 515.00
Cuchilla dentada de corte de stick roto, se cambian por nuevo	1900	proveedor			S/10.00	S/ 316.67	S/320.00	S/ 636.67
Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/8.00	S/ 88.00
tipos del fechador no imprime desgaste / resistencia quemada / cambio de pernos y anillos seeguer 7, se brinda atención a lo solicitado	2200	Asist. de Mantenimiento	S/6.00	S/ 220.00			S/80.00	S/ 300.00
Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00			S/8.00	S/ 158.00
codo de 16x16 presenta fuga, se cambia, se solicita a proveedor sacar las características exactas del repuesto	1200	Asistente de Mantenimiento/Proveedor	\$/6.00	S/ 120.00	S/10.00	S/ 200.00	S/35.00	S/ 355.00
seeguer 7 mm roto se cambia	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			\$/3.00	S/ 93.00
Eje helicoidal vertical, se cambia por estar roto	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/400.00	S/ 520.00
Termocupla tipo k vertical no sensa, resistencia vertical quemada, dientes de mordaza horizontal vertical con desgaste / controlador de temperatura 72 x 72 de temperatura se cambian descalibrado	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/560.00	S/ 680.00
Resistencia eléctrica horizontales 220V 100W, quemados se solicita cambios.	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/35.00	S/ 155.00
termocuplas tipo K roto se cambia	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/45.00	S/ 135.00
Mordazas verticales presenta desgaste, se cambia y se solicita a proveedor ingresar a sacar medidas	1000	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 100.00	S/10.00	S/ 166.67	S/180.00	S/ 446.67
Copa de productos presenta desgaste se realiza el cambio	500	Asist. de Mantenimiento	S/6.00	S/ 50.00			S/120.00	S/ 170.00
pistón compacto 63x20 (PARA MORDAZA VERTICAL) presenta fuga, se lo regula se solicita a proveedor sacar las características para la compra local	1000	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 100.00	S/10.00	S/ 166.67	S/180.00	S/ 446.67
interruptor de motor desbobinadora, se brinda solución	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00				S/ 150.00
Ruedas de tracción presentan desgaste, se desmonta y se solicita fabricación, adicional sacar medida del brazo vertical	1500	proveedor			S/10.00	S/ 250.00		S/ 250.00
Bases de portatipos presentan desgastes, se cambian	1600	Asist. de Mantenimiento	S/6.00	S/ 160.00			S/180.00	S/ 340.00
Ruedas de tracción presentan desgaste, se desmonta y se solicita fabricación	790	proveedor			S/10.00	S/ 131.67		S/ 131.67
Bielas de codificador con desgaste, se brinda ajuste	650	Asist. de Mantenimiento	S/6.00	S/ 65.00				S/ 65.00
fotocélula encapsulada no sensa, se regula dando solución al problema	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00				S/ 120.00
Regulador de peso presenta desgaste interno, se realiza el cambio	790	Asist. de Mantenimiento	S/6.00	S/ 79.00			S/700.00	S/ 779.00
Regulador de peso presenta desgaste interno, se realiza el cambio Resistencia eléctrica horizontales 220V 100W, quemados se solicita cambios. Centrado de bielas por estar sueltas Bocinas interiores de bronce con desgaste, se cambian	780	Asist. de Mantenimiento	S/6.00	S/ 78.00			S/35.00	S/ 113.00
Centrado de bielas por estar sueltas	800	Asist. de Mantenimiento	S/6.00	S/ 80.00				S/ 80.00
Bocinas interiores de bronce con desgaste, se cambian	989	Asist. de Mantenimiento	S/6.00	S/ 98.90			S/180.00	S/ 278.90
Cuchilla dentada de corte de stick roto, se cambian por nuevo	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/320.00	S/ 400.00
formador de tés rota, se solicita la fabricación	890	proveedor			S/10.00	S/ 148.33	S/450.00	S/ 598.33

	diferencial de máquina, se cambia los cables por haber falso contacto	890	Asist. de Mantenimiento	S/6.00	S/ 89.00				S/ 89.00
	rueda de tracción jalador de bobina con desgaste, se brinda más ajuste	700	Asist. de Mantenimiento	S/6.00	S/ 70.00				S/ 70.00
	sensor inductivo NC (PNP) cuadrado de polín jalador de bobina roto, se cambia	3000	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 300.00	S/10.00	S/ 500.00	S/120.00	S/ 920.00
	termocuplas tipo K suelto se cambia	700	Asist. de Mantenimiento	S/6.00	S/ 70.00			S/45.00	S/ 115.00
	Anillo de ajuste de tolva, Se desmonta para solicitar su fabricación	1300	proveedor			S/10.00	S/ 216.67	S/440.00	S/ 656.67
	Eje central de plato con desgaste se cambia, se solicita desmontar y sacar las medidas correctas	1200	Asistente de Mantenimiento/Proveedor	\$/6.00	S/ 120.00	S/10.00	S/ 200.00	S/180.00	S/ 500.00
	Equipo codificador descentrado se cuadra en dirección a la bobina.	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/235.00	S/ 355.00
	relay de estado sólido (40 AMP) no controla la temperatura se cambia	920	Asist. de Mantenimiento	S/6.00	S/ 92.00			S/150.00	S/ 242.00
	Mordaza de codificadores con desgaste se cambia y se solicita la fabricación	900	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 90.00	S/10.00	S/ 150.00	S/180.00	S/ 420.00
	resortes jaladores de mordaza vertical roto, se cortan y vuelven a colocar	1100	Asist. de Mantenimiento	S/6.00	S/ 110.00				S/ 110.00
	mordaza horizontal se rompió el resorte, se corta y se vuelve a colocarlo	1600	Asist. de Mantenimiento	S/6.00	S/ 160.00				S/ 160.00
	Controlador de temperatura 72x72 no detecta la temperatura, se cambia	600	Asist. de Mantenimiento	S/6.00	S/ 60.00			S/220.00	S/ 280.00
6	relay de estado sólido (25 AMP) no detecta la temperatura	1400	Asist. de Mantenimiento	S/6.00	S/ 140.00			S/78.00	S/ 218.00
MAQUINA	se coloca tornillo de ajuste a regulador de peso evitando que se mueva y brinde el peso correcto.	790	Asist. de Mantenimiento	S/6.00	S/ 79.00				S/ 79.00
JAC	Tapa de tolva rota se lleva a soldar y se solicita su fabricación	680	proveedor			S/10.00	S/ 113.33	S/220.00	S/ 333.33
2	controlador de temperatura 20x40 no controla la temperatura se cambia	1240	Asist. de Mantenimiento	S/6.00	S/ 124.00			S/160.00	S/ 284.00
	Regulador de peso presenta desgaste interno, se realiza el cambio	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00			S/700.00	S/ 850.00
	termocuplas tipo K, sueltos los cables se vuelven a instalar	1300	Asist. de Mantenimiento	S/6.00	S/ 130.00				S/ 130.00
	Mordaza horizontal vertical con desgaste se cambia, se solicita al proveedor ingrese a montarlo	500	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 50.00	S/10.00	S/ 83.33	\$/380.00	S/ 513.33
	pulsador de emergencia no activa, se cambia	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/45.00	S/ 135.00
	Eje sujetador de bobina escalonado, presenta desgaste, se cambia y posteriormente se solicita sacar las medidas para su fabricación	798	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 79.80	S/10.00	S/ 133.00	S/190.00	S/ 402.80
	equipo codificador con problemas con el potenciómetro, se lo regula	900	Asist. de Mantenimiento	S/6.00	S/ 90.00				S/ 90.00
	Pulsador verde 3-4 (NO) no activa, se necesita cambiarlo	790	Asist. de Mantenimiento	S/6.00	S/ 79.00			S/42.00	S/ 121.00
	formador de tés rota, se solicita la fabricación	970	proveedor			S/10.00	S/ 161.67	S/450.00	S/ 611.67
	mordaza vertical descuadradas, se cuadra y se pone operativa	1800	Asist. de Mantenimiento	S/6.00	S/ 180.00				S/ 180.00
۱ 10	mordaza horizontal se rompió el resorte, se corta y se vuelve a colocarlo	1000	Asist. de Mantenimiento	S/6.00	S/ 100.00				S/ 100.00
l	se regula la salida del pistón de las copas de producto	1700	Asist. de Mantenimiento	S/6.00	S/ 170.00			S/120.00	S/ 290.00
MAQUINA	Sensor de codificador tubular NO (NPN) 5,8 cm, presenta ruptura en los cables, se cambia	790	Asist. de Mantenimiento	\$/6.00	S/ 79.00			S/190.00	S/ 269.00
	Jebes blancos de rodillos rotos se cambian	2300	Asist. de Mantenimiento	S/6.00	S/ 230.00			S/50.00	S/ 280.00
	Tapa de tolva rota se lleva a soldar y se solicita su fabricación	1500	proveedor			S/10.00	S/ 250.00	S/220.00	S/ 470.00
	resistencia vertical se suelta cable, se vuelve a empalmar	1100	Asist. de Mantenimiento	S/6.00	S/ 110.00				S/ 110.00
	Resistencia eléctrica horizontales 220V 100W, se movió los cables	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00				S/ 120.00

Formador de proteínas roto se cambia, se deja soldando con soldadura de plata y se saca medidas	1000	proveedor			S/10.00	S/ 166.67	S/450.00	S/ 616.67
Pulsador verde 3-4 (NO) no activa, se necesita cambiarlo, se realiza seguimiento para detectar el problema	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/42.00	S/ 162.00
resistencias verticales hizo cortocircuito se cambia	970	Asist. de Mantenimiento	S/6.00	S/ 97.00			S/40.00	S/ 137.00
Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita fabricación	1200	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 120.00	S/10.00	S/ 200.00	S/220.00	S/ 540.00
seeguer 7 mm roto se cambia	780	Asist. de Mantenimiento	S/6.00	S/ 78.00			S/3.00	S/ 81.00
pistón compacto 63x20 (PARA MORDAZA VERTICAL) presenta fuga, se lo regula	500	Asist. de Mantenimiento	S/6.00	S/ 50.00			S/320.00	S/ 370.00
tee unión 8mm niquelado	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/50.00	S/ 139.00
relay de estado sólido (40 AMP) no controla la temperatura se cambia	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/150.00	S/ 270.00
problemas con bobina, se busca el problema ya que la fotocélula no detecta la taca, se brinda solución	2200	Asist. de Mantenimiento	S/6.00	S/ 220.00				S/ 220.00
electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia	900	Asist. de Mantenimiento	S/6.00	S/ 90.00			S/352.00	S/ 442.00
termocuplas tipo K roto se cambia	790	Asist. de Mantenimiento	S/6.00	S/ 79.00			S/45.00	S/ 124.00
Eje escalonado presenta desgaste, se cambia	790	Asist. de Mantenimiento	S/6.00	S/ 79.00			S/220.00	S/ 299.00
diferencial de maquina quemado se cambia	1600	Asist. de Mantenimiento	S/6.00	S/ 160.00			S/170.00	S/ 330.00
mordaza horizontal y regulador de presión se revisaron y dieron ajustes.	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00				S/ 150.00
bocinas sujetadoras de cuchilla presentan desgastes, se cambian, se solicita al proveedor ingresar a sacar medidas	1500	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 150.00	S/10.00	S/ 250.00	S/170.00	S/ 570.00
Bocinas interiores de bronce con desgaste, se cambian	980	Asist. de Mantenimiento	S/6.00	S/ 98.00			S/180.00	S/ 278.00
Tolva de inox roto se cambia	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00			S/340.00	S/ 490.00
polea conducida del reductor/ prisioneros robados, se desmonta y se brinda solución	880	Asist. de Mantenimiento	S/6.00	S/ 88.00				S/ 88.00
Bielas horizontales presentan desgaste, se desmonta, cambian y se dan ajuste	883	Asist. de Mantenimiento	S/6.00	S/ 88.30			S/220.00	S/ 308.30
mordaza horizontal, descuadrada se desmonta y se cambia	820	Asist. de Mantenimiento	S/6.00	S/ 82.00			S/440.00	S/ 522.00
Ejes deslizantes horizontales descuadrados, se desmonta limpia y aceita y se vuelve a montar	900	Asist. de Mantenimiento	S/6.00	S/ 90.00				S/ 90.00
relay de estado sólido (40 AMP) no controla la temperatura se cambia	1000	Asist. de Mantenimiento	S/6.00	S/ 100.00			S/150.00	S/ 250.00
Bases de portatipos presentan desgastes, se cambian	980	Asist. de Mantenimiento	S/6.00	S/ 98.00			S/180.00	S/ 278.00
Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita fabricación	890	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 89.00	S/10.00	S/ 148.33	S/220.00	S/ 457.33
bocinas sujetadoras de cuchilla presentan desgaste se cambian	660	Asist. de Mantenimiento	S/6.00	S/ 66.00			S/170.00	S/ 236.00
mordaza vertical con desgaste se cambia, sujeción y cambio de perno roto, se solicita a proveedor apoyo en el montaje	1600	Asistente de Mantenimiento/Proveedor	\$/6.00	S/ 160.00	S/10.00	S/ 266.67	S/388.00	S/ 814.67
Formador de refrescos roto, se cambia	1200	proveedor			S/10.00	S/ 200.00	S/450.00	S/ 650.00
Jebes blancos de rodillos rotos se cambian, se solicita a proveedor sacar las medidas	600	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 60.00	S/10.00	S/ 100.00	S/50.00	S/ 210.00
Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita fabricación	800	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 80.00	S/10.00	S/ 133.33	S/220.00	S/ 433.33

	sensor de fechador roto, se empalma	960	Asist. de Mantenimiento	S/6.00	S/ 96.00				S/ 96.00
	Polines dentados están desgastados, se cambian	900	proveedor			S/10.00	S/ 150.00	S/180.00	S/ 330.00
	seeguer 7 mm roto se cambia	974	Asist. de Mantenimiento	S/6.00	S/ 97.40			S/3.00	S/ 100.40
	sensor inductivo NC (PNP) cuadrado, no censa se lo cambia	1300	Asist. de Mantenimiento	S/6.00	S/ 130.00			S/530.00	S/ 660.00
	Pernos, 06,08,12, 16, inox y de grado 8, rotos se cambian, adicional se solicita a proveedor para sacar medidas	1600	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 160.00	S/10.00	S/ 266.67	S/8.00	S/ 434.67
	equipo codificador la lectura de sensor retardada, se dio solución	750	Asist. de Mantenimiento	S/6.00	S/ 75.00			S/650.00	S/ 725.00
	Formador de refrescos roto, se cambia	750	proveedor			S/10.00	S/ 125.00	S/450.00	S/ 575.00
	bocinas sujetadoras de cuchilla presentan desgaste se cambian	810	Asist. de Mantenimiento	S/6.00	S/ 81.00			S/170.00	S/ 251.00
	formador de tes rota, se solicita la fabricación	1400	proveedor			S/10.00	S/ 233.33	S/450.00	S/ 683.33
	pistón neumático de apertura de mordaza deteriorado, fotocélula no lee la taca y sensor contador de stick malogrado, se brinda ajustes quedando operativos	750	Asist. de Mantenimiento	S/6.00	S/ 75.00				S/ 75.00
	Tolva de inox roto se cambia	890	Asist. de Mantenimiento	S/6.00	S/ 89.00			S/340.00	S/ 429.00
	Regulador de peso con rodamiento roto, se cambia	800	Asist. de Mantenimiento	S/6.00	S/ 80.00			S/700.00	S/ 780.00
	cuchilla dentada rota se cambia	1000	Asist. de Mantenimiento	S/6.00	S/ 100.00			S/320.00	S/ 420.00
	faja A-24 rota se cambia	653	Asist. de Mantenimiento	S/6.00	S/ 65.30			S/28.00	S/ 93.30
	Pulsador verde 3-4 (NO) en mal estado se cambia	989	Asist. de Mantenimiento	S/6.00	S/ 98.90			S/42.00	S/ 140.90
	copas dosificadoras con desgaste, se cambian	600	Asist. de Mantenimiento	S/6.00	S/ 60.00			S/120.00	S/ 180.00
11	mordazas descuadradas por trabajo diario, se vuelve a cuadrar	800	Asist. de Mantenimiento	S/6.00	S/ 80.00				S/ 80.00
INA	Regulador de peso presenta desgaste interno, se realiza el cambio	1110	Asist. de Mantenimiento	S/6.00	S/ 111.00			S/700.00	S/ 811.00
αn	Jebes blancos de rodillos rotos se cambian	710	Asist. de Mantenimiento	S/6.00	S/ 71.00			S/50.00	S/ 121.00
MAQUINA	Bocinas interiores de bronce con desgaste, se cambian	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00			S/180.00	S/ 330.00
	Mordaza horizontal presenta desgaste, se cambia	896	Asist. de Mantenimiento	S/6.00	S/ 89.60			S/440.00	S/ 529.60
	Jebes blancos de rodillos rotos se cambian	1712	Asist. de Mantenimiento	S/6.00	S/ 171.20			S/50.00	S/ 221.20
	fotocélula encapsulada no sensa, se regula y se cambia	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00			S/120.00	S/ 240.00
	electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC, no activan se desmonta todo el grupo y se cambia	1500	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 150.00	S/10.00	S/ 250.00	S/352.00	S/ 752.00
	mordaza horizontal descentrada, bobina de electroválvula inoperativa, se cambian	920	Asist. de Mantenimiento	S/6.00	S/ 92.00			S/620.00	S/ 712.00
	Ruedas de tracción presentan desgaste, se desmonta, cambia y se solicita fabricación	1872	Asistente de Mantenimiento/Proveedor	S/6.00	S/ 187.20	S/10.00	S/ 312.00	S/220.00	S/ 719.20
	sensor inductivo NC (PNP) cuadrado, no censa se lo cambia	876	Asist. de Mantenimiento	S/6.00	S/ 87.60			S/170.00	S/ 257.60
	Cuchilla dentada de corte de stick roto, se cambian por nuevo	1900	Asist. de Mantenimiento	S/6.00	S/ 190.00			S/320.00	S/ 510.00
	se regula la salida del pistón de las copas de producto	1200	Asist. de Mantenimiento	S/6.00	S/ 120.00				S/ 120.00
	Eje escalonado presenta desgaste, se cambia	1500	Asist. de Mantenimiento	S/6.00	S/ 150.00			S/220.00	S/ 370.00
	<u> </u>	285932		COSTO S	SEMESTRAL DE	L MANTENIN	/IENTO CORRE	CTIVO ACTUAL	S/ 92,928.47

Nota: en la tabla 23 se muestra los costos de mantenimiento correctivo actual en los últimos 6 meses en cada máquina envasadora, los mismos que son ejecutados por el personal de mantenimiento (propio y externo) tomando en cuenta el producto entre la mano de obra externa y/o interna y el tiempo acumulado en el rango de los meses mencionados que a su vez se agrega el costo de piezas y/o repuestos, teniendo un costo total de S/ 92,928.47 semestral.

2.9.Costos de la propuesta de Plan de Mantenimiento Preventivo con la Metodología RCM y mejorar la disponibilidad de las maquinas envasadoras.

Tabla 24:

Costos de Mantenimiento preventivo con metodología RCM propuesto. Fuente: Elaboración propia

					Costos	del Programa d	e Mantenimiento Pre	ventivo Propu	esto
Trabajos propuestos a desarrollar en el Mantenimiento	Tiempo	frecuencia	Veces en un	a cargo de:		Costo	de personal	Costo	
Preventivo	(min)	rrecuencia	semestre	a cargo de.	Repuestos / Piezas	н.н.	Costo total personal tecnico	personal externo	TOTAL SEMESTRAL
Comprobar el estado del aceite lubricante y cambio	30	TRIMESTRAL	2	Asistente de Mantenimiento	S/10.00	S/6.00	\$/3.00		S/26.00
Verificar estado de los sellos mecánicos	15	MENSUAL	6	Asistente de Mantenimiento	\$/15.00	S/6.00	\$/1.50		\$/99.00
Verificar estado y cambio de los filtros de aire	25	MENSUAL	6	Asistente de Mantenimiento	S/18.00	S/6.00	S/2.50		S/123.00
Verificar estado y/o cambio del sensor inductivo o capacitivo	20	MENSUAL	6	Asistente de Mantenimiento	\$/25.00	S/6.00	S/2.00		S/162.00
Revisión y calibración de transmisor de corriente 4-20 MA	25	MENSUAL	6	Asistente / proveedor		S/6.00	S/2.50	S/150.00	S/915.00
Realizar el ajuste y/o cambio de las borneras eléctricas.	15	MENSUAL	6	Asistente de Mantenimiento	S/5.00	S/6.00	S/1.50		\$/39.00
Verificar el estado del bobinado del relé térmico interno (sopletear)	20	MENSUAL	6	Asistente de Mantenimiento		S/6.00	S/2.00		S/12.00
Verificar el estado del bobinado del selenoide interno (sopletear)	20	MENSUAL	6	Asistente de Mantenimiento		S/6.00	S/2.00		S/12.00
Verificar la carga de la presión en el compresor y limpieza del mismo	20	MENSUAL	6	Asistente de Mantenimiento		S/6.00	\$/2.00		\$/12.00
Verificar estado y/o cambio de las mangueras neumáticas	15	MENSUAL	6	Asistente de Mantenimiento	S/11.00	S/6.00	\$/1.50		\$/75.00
Verificar la carga de la presión de agua para la limpieza a presión de las máquinas	20	MENSUAL	6	Asistente de Mantenimiento		S/6.00	S/2.00		S/12.00
Verificar estado y/o cambio de las mangueras de agua	10	MENSUAL	6	Asistente de Mantenimiento	S/15.00	S/6.00	S/1.00		\$/96.00

Verificar estado y/o cambio de los filtros de agua internos, realizar limpieza	10	MENSUAL	6	Asistente de Mantenimiento	S/20.00	S/6.00	S/1.00		S/126.00
Verificar estado y/o cambio de los conectores neumáticos	10	MENSUAL	6	Asistente de Mantenimiento	S/9.00	S/6.00	S/1.00		S/60.00
Verificar desgaste del tornillo sin fin de entrega de polvo a las máquinas, cambio si es necesario	10	TRIMESTRAL	2	Asistente de Mantenimiento	\$/80.00	S/6.00	S/1.00		S/162.00
Realizar medición de consumo de corriente, verificar estado de las llaves térmicas y cambio de los sensores si es necesario	10	MENSUAL	6	Asistente de Mantenimiento	\$/35.00	S/6.00	S/1.00		S/216.00
Verificar estado del panel de control PLC, sopleatear polvo interno y revisión de tarjetas auxiliares de salida	10	MENSUAL	6	Asistente de Mantenimiento		S/6.00	S/1.00		S/6.00
Medición de ohmeaje en resistencias eléctricas y/o cambio de ser necesario, verificar estado de los bornes de conexión	10	MENSUAL	6	Asistente de Mantenimiento	S/19.00	S/6.00	S/1.00		S/120.00
Verificar el estado y/o cambio de los cables en mal estado de las resistencias eléctricas	10	MENSUAL	6	Asistente de Mantenimiento	S/8.00	S/6.00	S/1.00		S/54.00
Verificar el estado y/o cambio de los dipositivos electrónicos de mando relay o diferencial de las resistencias eléctricas	10	MENSUAL	6	Asistente de Mantenimiento	\$/23.00	S/6.00	S/1.00		S/144.00
verificar el estado de las mordazas verticales y horizontales, cuadrar o alinear, cambiar si presentan rajaduras o desgastes	20	MENSUAL	6	Asistente / proveedor	S/100.00	S/6.00	S/2.00	S/150.00	S/1,512.00
Verificar el estado y/o cambio de los cilíndros y conectores neumáticos	20	MENSUAL	6	Asistente de Mantenimiento		S/6.00	S/2.00		S/12.00
Revisión de los terminales del relay de estado sólido, cambiar si fuese necesario, validar sensor de activación (termocupla)	20	MENSUAL	6	Asistente de Mantenimiento		S/6.00	S/2.00		S/12.00
Inspección de desgaste de los sensores inductivos, verificar estado de los cables	15	MENSUAL	6	Asistente de Mantenimiento		S/6.00	S/1.50		S/9.00
Revisión de las boquillas obstruidas de los filtros, limpieza de producto atascado en ello	20	MENSUAL	6	Asistente de Mantenimiento		S/6.00	S/2.00		S/12.00
Verificación de la línea de aire comprimido posible fugas de aire, ajustar las uniones si fuesen necesarios, de lo contrario soldar	15	MENSUAL	6	Asistente / proveedor	S/11.00	\$/6.00	S/1.50	S/150.00	\$/975.00
Revisión y cambio de aceite de los reductores, verificar el estado de los piñones	15	TRIMESTRAL	2	Asistente / proveedor	\$/42.00	S/6.00	S/1.50	S/150.00	S/387.00
Inspeccion de la bomba de vacio, revisar si se encuentra sobra de producto le pueda afectar su funcionamiento	20	MENSUAL	6	Asistente de Mantenimiento		S/6.00	S/2.00		S/12.00
Verificar estado y /o cambio de sensores fotoeléctricos, validar ingreso de señal	15	MENSUAL	6	Asistente de Mantenimiento		S/6.00	\$/1.50		S/9.00
Inspección de voltaje y medición de bobina de motores eléctricos	20	MENSUAL	6	Asistente / proveedor	S/50.00	S/6.00	S/2.00	S/150.00	S/1,212.00
			·		COSTO DEL MANTEN	IMIENTO PREVEN	NTIVO SEMESTRAL PO	R MAQUINA	\$/6,623.00
					COSTO DEL MANTENIM	IIENTO PREVENT	IVO SEMESTRAL POR :	11 MAQUINAS	S/ 72,853.00

Nota: Según la tabla 24 se muestra los costos de las tareas de mantenimiento preventivo propuestas en las 11 máquinas envasadoras, siendo un costo total de **S/ 72,853.00** en los primeros 6 meses. Donde también se indica que algunas tareas son realizadas por personal externo al de planta.

2.10. COSTOS DE MATERIALES PARA IMPLEMENTACIÓN DE UN PLAN DE MANTENIMIENTO PREVENTICO CON METODOLOGIA RCM

Tabla 25:

Costos de materiales para la implementación del mantenimiento preventivo basado en la metodología RCM. Fuente: elaboración Propia

	COSTOS PARA LA IMPLEMENTACION DE UN PLAN DE MANTENIMIENTO PREVENTIVO USANDO LA METODOLOGIA RCM (MATERIALES)							
CANT.	MATERIAL	COSTO UNITARIO	TOTAL					
1	LAPTOP	2600	S/2,600.00					
2	CUADERNO ESPIRAL TAMAÑO A4	10	S/20.00					
2	LAPICEROS	3	S/6.00					
2	CORRECTOR	15	S/30.00					
1	MOVILIDAD	200	S/200.00					
20	PAPEL BOND	0.2	S/4.00					
2	LAPIZ	6	S/12.00					
2	ING. PARA LEVANTAR INFORMACION	6000	S/12,000.00					
			S/14,872.00					

2.11. Costos de mantenimiento correctivo posterior a la implementación de la metodología RCM

Tabla 26:

Costos en el posible escenario de registros de los mantenimientos correctivos, luego de la implementación del Mantenimiento Preventivo con la metodología RCM Fuente: Elaboración Propia

		Tiempo		Costos M		iento Corre iesto en los		la metodol 6 meses	ogía RCM
ACTIVOS	Historial de Trabajos desarrollados - Mantenimiento Correctivo propuesto	(min) acumulado	A cargo de:			sto de rsonal		personal erno	
ACT	instanta de masajos desambilidados mantenimiento con eduto propaesto	en los primeros 6 meses)	in out go act.	(Repuestos / Piezas)	н.н.	Costo total personal técnico	н.н.	Costo total personal externo	TOTAL SEMESTRAL
	CENTRADO Y AJUSTES MORDAZAS VERTICALES	520	Asist. Mantenimiento		S/6.00	S/52.00			S/52.00
۸ 1	DESMONTAJE Y CENTRADO EJES DESLIZANTES CON DESGASTES, SE AJUSTA RUEDA DE TRACCION	1200	Asistente de Mantenimiento/proveedor		S/6.00	S/120.00	S/10.00	S/200.00	S/320.00
Ì	SE AJUSTA BORNERA SENSOR INDUCTIVO	1300	Asist. Mantenimiento		S/6.00	S/130.00			S/130.00
MAQUINA	SE CENTRA LOS BRAZO VERTICALES Y AJUSTE DE BORNERAS DE RESISTENCIAS	700	Asist. Mantenimiento		S/6.00	S/70.00			S/70.00
Ž	SE INTERCAMBIA FORMADOR DE EMPAQUE	1400	Asist. Mantenimiento		S/6.00	S/140.00			S/140.00
	SE AJUSTA PARAMETROS DE TEMPERATURA Y DENTRO DEL PIROMETRO	800	Asistente de Mantenimiento/proveedor		S/6.00	S/80.00	S/10.00	S/133.33	S/213.33
	SE CUADRA MORDAZA HORIZONTAL Y SE AJUSTA	760	Asist. Mantenimiento		S/6.00	S/76.00			S/76.00
	SE AJUSTA BORNERAS SENSOR FOTOELECTRICO / REGULACION	900	Asist. Mantenimiento		S/6.00	S/90.00			S/90.00
2	SE REGULA SALIDA DEL PISTON DE CODIFICADOR DE FECHA	680	Asistente de Mantenimiento/proveedor		S/6.00	S/68.00	S/10.00	S/113.33	S/181.33
¥	SE CAMBIA REEMPLAZA PISTON DE SALIDA DE CUCHILLAS	790	Asist. Mantenimiento		S/6.00	S/79.00			S/79.00
MAQUINA	SE REGULA PARAMETROS DE PISTON NEUMATICO DE APERTURA DE MORDAZA / FOTOCELULA / SENSOR CAPACITIVO	950	Asistente de Mantenimiento/proveedor		S/6.00	S/95.00	S/10.00	S/158.33	S/253.33
	SE ALINEA EJE PRINCIPAL DE MAQUINA	690	Asistente de Mantenimiento/proveedor		S/6.00	S/69.00	S/10.00	S/115.00	S/184.00
	SE NIVELA COPAS DE PRODUCTO DE PLATO GIRATORIO	670	Asist. Mantenimiento		S/6.00	S/67.00			S/67.00
	SE REEMPLAZA COPAS DE PRODUCTO	1200	Asist. Mantenimiento		S/6.00	S/120.00			S/120.00
	VALIDACION DE CORRIENTE EN MOTOR ELECTRICO	530	Asist. Mantenimiento		S/6.00	S/53.00			S/53.00
	SE REEMPLAZA RELAY DE ESTADO SOLIDO	710	Asist. Mantenimiento		S/6.00	S/71.00			S/71.00
A3	SE AJUSTA BORNERAS DE PULSADOR DE EMERGENCIA	700	Asist. Mantenimiento		S/6.00	S/70.00			S/70.00
	SE PURGA LA UNIDAD DE MANTENIMIENTO OBSTRUIDO	640	Asist. Mantenimiento		S/6.00	S/64.00			S/64.00
MAQUINA3	SE REGULA SALIDA DE CUCHARAS RECOGEDORAS DE POLVO	900	Asistente de Mantenimiento/proveedor		S/6.00	S/90.00	S/10.00	S/150.00	S/240.00
	SE REEMPLAZA FAJA DE FECHADOR	1500	Asist. Mantenimiento		S/6.00	S/150.00			S/150.00
	SE COLOCA Y AJUSTA PERNOS TIPO MARIPOSA	600	Asist. Mantenimiento		S/6.00	S/60.00			S/60.00

l ı	SE ENCINTA CABLE DE SENSOR DE CODIFICADOR	600	Asist. Mantenimiento	S/6.00	\$/60.00	1		S/60.00
	SE MIDE VOLTAJE EN MOTOR ELECTRICO	800	Asist. Mantenimiento	S/6.00		<u> </u>		S/80.00
	SE MIDE VOLTAGE EN MOTOR ELECTRICO	800	Asistente de	3/0.00	3/80.00	+		3/80.00
	SE LEVANTA A NIVEL PLATO GIRATORIO DE PRODUCTO	640	Mantenimiento/proveedor	S/6.00	S/64.00	S/10.00	S/106.67	S/170.67
	SE CENTRA TOPE DE CAIDA	600	Asist. Mantenimiento	S/6.00	S/60.00			S/60.00
	SE COLOCA CUCHILLA DE SACHET	800	Asist. Mantenimiento	S/6.00		 		S/80.00
4	SE REGULA SENSOR TUBULAR NPN	700	Asist. Mantenimiento	S/6.00		-		S/70.00
	CENTRADO DE MORDAZA HORIZONTAL Y VERTICAL	900	Asist. Mantenimiento	S/6.00		<u> </u>		S/90.00
MAQUINA	SE ALINEA BIELAS VERTICALES	600	Asist. Mantenimiento	S/6.00		<u> </u>		S/60.00
È –	AJUSTE DEL SELECTOR ELECTRICO DE ARRANQUE	800	Asist. Mantenimiento	S/6.00	· ·			S/80.00
	ACOMODAR Y ALINEAR BOCINAS DE PLATO GIRATORIO	800	Asist. Mantenimiento	S/6.00				S/80.00
	REEMPLAZA RESISTENCIA DE FECHADOR	750	Asist. Mantenimiento	S/6.00		<u> </u>		S/75.00
	REEMPLAZO DE EJES NUEVOS	710	Asist. Mantenimiento	S/6.00	· ·	-		S/71.00
	AJUSTE DE BORNERA RESISTENCIA	680	Asist. Mantenimiento	S/6.00	S/68.00	<u> </u>		S/68.00
	AUSTE DE BONNENA NESISTENCIA	000	Asistente de	3,0.00	3,00.00	 		3/00.00
	AJUSTE DE BORNERAS DE VARIADOR DE FRECUENCIA DE MOTOR	690	Mantenimiento/proveedor	S/6.00	S/69.00	S/10.00	S/115.00	S/184.00
	SE CONFIGURA PIROMETRO DE 72X72	710	Asist. Mantenimiento	\$/6.00	S/71.00	 		S/71.00
			Asistente de	-,		1		
	AJUSTE DE BORNERAS DE RESISTENCIA DE CODIFICADOR	680	Mantenimiento/proveedor	S/6.00	S/68.00	S/10.00	S/113.33	S/181.33
A 5	SE COLOCA RESISTENCIA HORIZONTAL	942	Asist. Mantenimiento	\$/6.00	S/94.20			S/94.20
MAQUINA			Asistente de	- /		-/	-/	
AQ	SE LIMPIA POLVO DE VENTILADOR ELECTRICO DE TABLERO DE CONTROL	900	Mantenimiento/proveedor	S/6.00	S/90.00	\$/10.00	S/150.00	S/240.00
Σ	AJUSTE DE BORNERAS RESISTENCIA TUBULAR DE MORDAZAS VERTICALES	860	Asist. Mantenimiento	\$/6.00	S/86.00			S/86.00
	SE REEMPLAZA RESISTENCIA DE MORDAZA HORIZONTAL	760	Asist. Mantenimiento	\$/6.00	S/76.00			S/76.00
	SE CENTRA VIBRADOR DE TOLVA DE CAIDA	960	Asist. Mantenimiento	\$/6.00	S/96.00			S/96.00
	CABLE SUELTO SE AJUSTA BORNERAS RESISTENCIAS HORIZONTALES	900	Asist. Mantenimiento	\$/6.00	S/90.00			S/90.00
	SE AJUSTA BORNERAS PULSADOR DE STOP	760	Asist. Mantenimiento	\$/6.00	S/76.00			S/76.00
	CABLEADO DE SENSORES DE LA MAQUINA SE ENCINTA	600	Asist. Mantenimiento	\$/6.00	S/60.00			S/60.00
	SE AJUSTA RESISTENCIA HORIZONTAL / TERMOCUPLA	760	Asist. Mantenimiento	\$/6.00	S/76.00			S/76.00
	SE REEMPLAZ RESISTENCIA VERTICAL	680	Asist. Mantenimiento	\$/6.00	S/68.00			S/68.00
	AJUSTE DE SWICH DE ENCENDIDO DE CAJA CODIFICADORA	700	Asist. Mantenimiento	\$/6.00	S/70.00			S/70.00
NA 6	REEMPLAZO INTERRUPTOR UNIPOLAR	800	Asistente de Mantenimiento/proveedor	\$/6.00	S/80.00	S/10.00	S/133.33	S/213.33
MAQUINA	SE REEMPLAZA CABLE DE CODIFICADOR DE 8 PUERTO	900	Asist. Mantenimiento	\$/6.00	\$/90.00	1		S/90.00
\{	SE REEIVIPLAZA CABLE DE CODIFICADOR DE 8 POERTO	900	Asistente de	3/0.00	3/90.00	1		3/90.00
	SE CUADRA MORDAZA VERTICAL	960	Mantenimiento/proveedor	S/6.00	S/96.00	S/10.00	S/160.00	S/256.00
	SE REEMPLZA CODO Y TEE NEUMATICO POR FUGA	670	Asist. Mantenimiento	S/6.00	S/67.00			S/67.00
	SE REEMPLAZA REGULADOR DE CAUDAL DE 1/4X08	845	Asist. Mantenimiento	\$/6.00				S/84.50
	AJUSTES DE INTERRUPTOR DE APAGADO/ MANGUERAS DE DOSIFICADO/ TERMOCUPLA	660	Asist. Mantenimiento	\$/6.00	\$/66.00			\$/66.00
MAQ	SE REEMPLAZA POTENCIOMETRO DE 100 K	680	Asist. Mantenimiento	\$/6.00				S/68.00
				1 -, 1	, ,			,

I 1	RESISTENCIA SUELTA N°2 DEL FECHADOR SE AJUSTA	670	Asist. Mantenimiento	\$/6.00	\$/67.00	1		S/67.00
	SE REEMPLAZA RESISTENCIA DE FECHADOR Nº 6	900	Asist. Mantenimiento	\$/6.00	\$/90.00			\$/90.00
	TEMOCUPLA DE MORDAZA VERTICAL SE REEMPLAZA	670	Asist. Mantenimiento	\$/6.00				S/67.00
ĺ	SE AJUSTAN Y SE PONE MAS PRESION A JEBES BLANCO DE RODILLOS	850	Asist. Mantenimiento	\$/6.00				S/85.00
	SE BRINDA ALTURA A DOSIFICACION DE COPAS	763	Asist. Mantenimiento	\$/6.00	S/76.30			S/76.30
ĺ	POLINES RANURADOS NO JALA LA BOBINA SE REEMPLAZA	640	Asist. Mantenimiento	\$/6.00	S/64.00			S/64.00
	SE BRINDA ALTURA A DOSIFICACION DE COPAS / SENSORES	690	Asistente de Mantenimiento/proveedor	\$/6.00	\$/69.00	S/10.00	S/115.00	S/184.00
ĺ	EJE SIN FIN DOSIFICADOR ROTO LAS ALETAS	960	Asist. Mantenimiento	\$/6.00	S/96.00			S/96.00
	SE CUADRA DE MORDAZAS VERTICAL	763	Asist. Mantenimiento	\$/6.00	S/76.30			S/76.30
Ì	SE REEMPLAZA RESITENCIAS HORIZONTALES	780	Asist. Mantenimiento	\$/6.00	S/78.00			S/78.00
Ì	SE AJUSTA CAIDA PARA PRODUCTO LIQUIDFIBRA	650	Asist. Mantenimiento	\$/6.00	S/65.00			S/65.00
	SE ALINEA TIPOS DEL FECHADOR	947	Asist. Mantenimiento	\$/6.00	S/94.70			S/94.70
Ì	SE REEMPLZA FECHADOR N°3 / RESISTENCIA	923	Asist. Mantenimiento	\$/6.00	S/92.30			S/92.30
Ì	SE ALINEA TIPOS DEL FECHADOR NO IMPRIME DESGASTE / CAMBIO DE PERNOS Y ANILLOS SEEGUER	630	Asist. Mantenimiento	\$/6.00	S/63.00			S/63.00
	SE ACTUALIZA PARAMETROS PARA TERMOCUPLA M. HORIZONTAL	960	Asist. Mantenimiento	\$/6.00	S/96.00			S/96.00
	SE AJUSTA TAPA DE INTERRUPTOR DE MOTOR DESBOBINADOR	1202	Asistente de mantenimiento/proveedor	S/6.00	S/120.20	S/10.00	S/200.33	S/320.53
	SE ALINEA BIELA DE CODIFICADOR	690	Asist. Mantenimiento	S/6.00	S/69.00			S/69.00
8 1	SE CALIBRA FOTOCELULA ENCAPSULADA	768	Asistente de Mantenimiento/proveedor	S/6.00	S/76.80	S/10.00	S/128.00	S/204.80
Ž	SE AJUSTA TERMOCUPLA / CENTRADO DE BIELAS	710	Asist. Mantenimiento	\$/6.00	S/71.00			S/71.00
MAQUINA	SE REEMPLAZA FORMADOR DE EMPAQUETADURA	745	Asist. Mantenimiento	S/6.00	S/74.50			S/74.50
M/	SE ALINEA RUEDA DE TRACCION JALADOR DE BOBINA	1000	Asistente de Mantenimiento/proveedor	S/6.00	S/100.00	S/10.00	S/166.67	S/266.67
	SE REGULA SENSOR DE POLIN JALADOR DE BOBINA / CONDENSADOR	800	Asist. Mantenimiento	S/6.00	S/80.00			S/80.00
6	E. CODIFICADOR / REGULACION DE SENSOR	650	Asist. Mantenimiento	S/6.00	S/65.00			S/65.00
¥	SE REEMPLAZA RESORTES JALADORES DE MORDAZA VERTICAL	800	Asist. Mantenimiento	S/6.00	S/80.00			S/80.00
	SE ALINEA MORDAZA HORIZONTAL / RESORTE	660	Asist. Mantenimiento	S/6.00	S/66.00			\$/66.00
MAQUINA	VARIADOR DE PESO / REGULACION	1300	Asist. Mantenimiento	S/6.00	S/130.00			S/130.00
_	SE CUADRA MORDAZA HORIZONTAL	750	Asist. Mantenimiento	S/6.00	S/75.00			S/75.00
	SE REGULA LA DISTANCIA EQUIPO DOSIFICADOR	610	Asistente de Mantenimiento/proveedor	S/6.00	S/61.00	S/10.00	S/101.67	S/162.67
	SE CUADRA MORDAZA VERTICAL Y AJUSTE DE TERMOCUPLA	650	Asist. Mantenimiento	S/6.00	S/65.00			S/65.00
، 10	DOSIFICACION DE COPAS / REGULADOR DE CAUDAL	1300	Asist. Mantenimiento	\$/6.00	S/130.00			S/130.00
MAQUINA	SE AJUSTA TERMINAL RESISTENCIA VERTICAL N°4	780	Asist. Mantenimiento	S/6.00	S/78.00			S/78.00
OO.	SE ALINEA BLOQUE DE RESISTENCIAS VERTICALES	650	Asist. Mantenimiento	\$/6.00	S/65.00			S/65.00
MA	SE CUADRA EL FORMADOR DE BOBINA	760	Asist. Mantenimiento	S/6.00	S/76.00			S/76.00
	SE CUADRA M. HORIZONTAL/ELECTRO VALVULA	800	Asist. Mantenimiento	S/6.00	S/80.00			S/80.00
	SE CENTRA LA POLEA CONDUCIDA DEL REDUCTOR	960	Asistente de Mantenimiento/proveedor	S/6.00	S/96.00	S/10.00	S/160.00	S/256.00

1 1	CC CUADA MODELEM MODIFICATION	607			6/60 70	1		6/60.70
	SE CUADRA MORDAZA HORIZONTAL	697	Asist. Mantenimiento		S/69.70			S/69.70
	RUEDAS DE TRACCION CALIBRACION POR USO DIARIO	600	Asist. Mantenimiento	\$/6.00	S/60.00			S/60.00
	MORDAZA VERTICAL, SUJECION DE PERNO ROTO	710	Asist. Mantenimiento	S/6.00	S/71.00			S/71.00
	SE REEMPLAZA SENSOR DE FECHADOR	710	Asist. Mantenimiento	\$/6.00	S/71.00			S/71.00
	E. CODIFICADOR/ LECTURA DE SENSOR RETARDADA, SE REGULA	800	Asist. Mantenimiento	S/6.00	S/80.00			S/80.00
	SE REGULA SALIDA DE PISTON NEUMATICO DE APERTURA DE MORDAZA HORIZONTAL	800	Asist. Mantenimiento	\$/6.00	S/80.00			S/80.00
	REGULADOR DE PESO CON RODAMIENTO FLOJO, SE RELLENA	740	Asistente de Mantenimiento/proveedor	\$/6.00	S/74.00	S/10.00	S/123.33	S/197.33
111	CUCHILLA DE SACHET ROTA, SE REEMPLAZA	690	Asist. Mantenimiento	\$/6.00	S/69.00			S/69.00
Z	SE ALINEA COPAS DOSIFICADORAS	695	Asist. Mantenimiento	\$/6.00	S/69.50			S/69.50
MAQUINA	BOBINA DESCUADRADA POR TRABAJO DIARIO, SE CUADRA	800	Asistente de Mantenimiento/proveedor	\$/6.00	S/80.00	S/10.00	S/133.33	S/213.33
	FOTOCELULA SUCIA, SE LIMPIA EL LENTE	800	Asist. Mantenimiento	\$/6.00	S/80.00			S/80.00
	SE CUADRA Y REGULA MORDAZA HORIZONTAL /BOBINA DE ELECTROVALVULA	800	Asistente de Mantenimiento/proveedor	\$/6.00	S/80.00	S/10.00	S/133.33	S/213.33
	SE REEMPLAZA CORTE DE STICK	600	Asist. Mantenimiento	\$/6.00	S/60.00			\$/60.00
		82,440	COSTO DEL MANTEI	NIMIENTO CORRECTIV	O APLICAN	IDO EL RCI	M	S/11,154.00

Nota: Según la tabla xx se determina los gastos de mantenimiento correctivo propuesto en los primeros 6 meses después de la implementación de la metodología RCM. Siendo un total de S/11,154.00.

2.12. Costos de capacitación de personal

Tabla 27:

Costos de capacitación de personal de Fuxion Biotech SAC

NRO. DE PERSONAL	CAPACITACIÓN	NUMERO DE VECES PARA CAPACITACIÓN (TRIMESTRAL)	CANTIDAD DE HORAS EXTRA PARA CAPACITACIÓN	COSTO H.H.	COSTO TOTAL
4	TÉCNICO	2	2.5	S/ 6.0	S/120.00
11	OPERARIOS	2	2.5	S/ 4.5	S/247.50
1	JEFE DE MANTENIMIENTO	2	2.5	S/ 18.0	S/90.00
1	JEFE DE PLANTA	2	2.5	S/ 22.0	S/110.00
3	SUPERVISORES DE PRODUCCION	2	2.5	S/ 15.0	S/225.00
1	CAPACITADOR	2	2.5	S/ 100.0	S/500.00
1	GERENTE DE PLANTA	2	2.5	S/ 40.0	S/200.0
20	REFRIGERIO	2	1	S/ 5.0	S/200.0

2.13. Costos para la implementación de almacén de piezas y repuestos

Tabla 28: Costos de materiales para acondicionamiento de almacén

Cost	Costos de Materiales para almacenar los repuestos y piezas										
Cant.	Materiales	Costo									
50	bandejas pequeñas para pernos	S/ 500.00									
6	Instalación de anaqueles	S/ 900.00									
6	Compra de anaqueles (1.2mt x 1.mt x 1.8 mt)	S/ 1,800.00									
1	Rotulado y etiquetado	S/ 300.00									
	TOTAL	S/ 3,500.00									

Tabla 29:

Historial de costo de repuesto en los últimos 6 meses para almacén propuesto. Fuente: Elaboración propia

ITEM	CÓDIGO	Unidad	Materiales (repuestos)	Costo (S/)	CONSUMO EN 6 MESES	total (S/)	ACUMULADO	CATEGORIA
1	CR02	Unidad	Resistencia eléctrica verticales 220V 100W	S/40.00	18	S/720.00	5%	Α
2	SI01	Unidad	sensor inductivo NC (PNP) cuadrado	S/170.00	12	\$/2,040.00	18%	Α
3	FT01	Unidad	fotocélulas encapsuladas	S/120.00	9	S/1,080.00	25%	Α
4	K	Unidad	termocuplas tipo K	S/45.00	8	\$/360.00	28%	Α
5	PE03	Unidad	Pulsador verde 3-4 (NO)	S/42.00	7	S/294.00	30%	Α
6	CT1	Unidad	controlador de temperatura 20x40	S/160.00	7	S/1,120.00	37%	Α
7	SC01	Unidad	sensor de codificador tubular NO (NPN) 5,8 cm	S/190.00	7	S/1,330.00	46%	Α
8	CT2	Unidad	Controlador de temperatura 72x72	S/220.00	7	S/1,540.00	56%	В
9	EB01	Unidad	electroválvula doble bobina 5-2 model 4V220-08, pressure 0.15 0.8mp 24 V DC	S/352.00	6	S/2,112.00	70%	В
10	CB01	Unidad	Pernos, 06,08,12, 16, inox y de grado 8	S/8.00	6	S/48.00	70%	В
11	CR01	Unidad	Resistencia eléctrica horizontales 220V 100W	S/35.00	6	S/210.00	72%	В
12	PE02	Unidad	pulsador de emergencia	S/45.00	6	S/270.00	74%	В
13	PC01	Unidad	pistón compacto 63x20 (PARA MORDAZA VERTICAL)	S/320.00	5	S/1,600.00	84%	В
14	CMQ3	Unidad	Jebes blancos de rodillos	S/50.00	5	S/250.00	86%	С
15	SG01	Unidad	seeguer 7 mm	\$/3.00	5	S/15.00	86%	С
16	TN01	Unidad	Tee unión 8mm niquelado	S/50.00	4	S/200.00	87%	С
17	CMQ1	Unidad	Cutter para cortar bobina	S/20.00	4	\$/80.00	88%	С
18	F01	Unidad	faja A-20	S/32.00	4	S/128.00	89%	С
19	RT01	Unidad	relay de estado sólido (40 AMP)	S/150.00	4	S/600.00	93%	С
20	RG01	Unidad	regulador de caudal de 1/8x6	S/35.00	4	S/140.00	94%	С
21	CN01	Unidad	codo de 16x16	S/35.00	3	S/105.00	94%	С
22	RSS01	Unidad	relay de estado sólido (25 AMP)	S/78.00	3	S/234.00	96%	С
23	UN01	Unidad	unión recta niquelado 6x6	S/50.00	2	S/100.00	97%	С
24	F02	Unidad	faja A-22	S/30.00	2	S/60.00	97%	С
25	DM01	Unidad	diferencial de maquina	S/170.00	2	\$/340.00	99%	С
26	CD01	Unidad	condensador 340-408 uf de motor eléctrico	S/50.00	2	S/100.00	100%	С
27	F03	Unidad	faja A-24	S/28.00	1	S/28.00	100%	С
	•	•	•			\$/15 104 00		

S/15,104.00

Tabla 30: Historial de costo de piezas en los últimos 6 meses para almacén propuesto. Fuente: Elaboración propia

ITEM	CÓDIGO	Unidad	Materiales (piezas)	Costo (S/)	CONSUMO EN 6 MESES	total (S/)	ACUMULADO	CATEGORIA
1	AA16	par	Ruedas de tracción	\$/220.00	14	\$/3,080.00	9%	Α
2	AA03	Unidad	Cuchilla dentada de corte de stick	\$/320.00	13	\$/4,160.00	21%	Α
3	AA02	par	Regulador de peso	\$/700.00	9	\$/6,300.00	39%	Α
4	AA05	par	Mordaza horizontal	\$/420.00	8	\$/3,360.00	48%	Α
5	AA06	Unidad	Ejes deslizantes horizontales	\$/220.00	7	S/1,540.00	53%	Α
6	AA01	Unidad	Brazo vertical	\$/320.00	6	\$/1,920.00	58%	В
7	AA10	Unidad	Eje central de plato	\$/180.00	5	\$/900.00	61%	В
8	AA24	Unidad	Copa de productos	\$/120.00	5	\$/600.00	62%	В
9	AA27	Unidad	Formador de proteínas	\$/450.00	4	\$/1,800.00	67%	В
10	AA07	Unidad	Bocinas interiores de bronce	S/180.00	4	S/720.00	69%	В
11	AA08	par	Mordazas verticales	\$/380.00	4	\$/1,520.00	74%	В
12	AA25	Unidad	Compuertas de producto	S/180.00	3	\$/540.00	75%	В
13	AA11	Unidad	Formador de tes	\$/450.00	3	\$/1,350.00	79%	В
14	AA15	Unidad	Formador de refrescos	\$/450.00	3	\$/1,350.00	83%	В
15	AA18	Unidad	Mordaza de codificadores	\$/180.00	3	\$/540.00	85%	В
16	AA20	Unidad	bocinas sujetadoras de cuchilla	\$/170.00	3	\$/510.00	86%	С
17	AA04	Unidad	Anillo de ajuste de tolva	\$/440.00	2	\$/880.00	88%	С
18	AA12	Unidad	Tapa de tolva	S/220.00	2	S/440.00	90%	С
19	AA13	Unidad	Tolva de inox	\$/340.00	2	\$/680.00	92%	С
20	AA17	Unidad	Eje helicoidal vertical	\$/500.00	2	\$/1,000.00	95%	С
21	AA21	Unidad	Eje escalonado	S/220.00	2	\$/440.00	96%	С
22	AA23	Unidad	Bases de portatipos	\$/180.00	2	\$/360.00	97%	С
23	AA09	Unidad	Bielas verticales	\$/350.00	1	\$/350.00	98%	С
24	AA14	Unidad	Bielas horizontales	\$/220.00	1	\$/220.00	98%	С
25	AA19	Unidad	Eje sujetador de bobina escalonado	\$/190.00	1	\$/190.00	99%	С
26	AA22	Unidad	Polines dentados	S/180.00	1	S/180.00	99%	С
27	AA26	Unidad	Polea dentada de motor	\$/180.00	1	\$/180.00	100%	С
						\$/35,110.00		

Nota: La tabla 29 y tabla 30 presentan el costo de los principales piezas y repuestos de los cuales para determinar la cantidad de los SKU para iniciar la implementación de un almacén para mantenimiento preventivo RCM, se ha recurrido con el historial de consumo de los meses en estudio (Tabla 2) y a la herramienta ABC. Dicha herramienta definimos a través del producto de la cantidad de consumo y costo de la pieza o repuesto, clasificándolos en A,B y C. Siendo "A" las de mayor costo y rotación según el acumulado, este historial de repuestos va disminuir en función a la implementación del RCM en los próximos meses.

Tabla 31:

Costos globales de las piezas y repuestos propuestos para la implementación de una almacén en Fuxion Biotech SAC Fuente: Elaboración Propia

Costos de Materiales para almacenar los repuestos y piezas				
Material	Costo en los 6 meses			
Piezas	GLB	S/35,110.00		
Repuestos	GLB	S/15,104.00		
	TOTAL	S/50,214.00		

Tabla 32:

Resumen de costos para llevar a cabo la implementación de un mantenimiento preventivo con la metodología RCM para mejorar la disponibilidad de las maquinas envasadoras

ETAPAS DE IMPLEMENTACION	соѕто
Mantenimiento de mantenimiento (preventivo + correctivo esperado)	S/ 84,007.00
Materiales para Metodología Centrada en la confiabilidad (RCM)	S/ 14,872.00
Capacitación de personal	S/ 1,692.50
Implementación de Almacén	S/ 3,500.00
Piezas y repuestos para stock de almacén	S/50,214.00
	S/154,285.50

2.14. Cálculo de la tasa interna de retorno (TIR)

DETALLE	Periodos Mensuales						
	0	1	2	3	4	5	6
Flujo neto de efectivo de caja proyectado	S/154,285.50	S/ 70,000					

Tabla 33: Cálculo de VAN y TIR

Tasa de descuento	VAN
0%	S/. 265,714.50
5%	S/. 201,012.94
10%	S/. 150,582.75
15%	S/. 110,628.29
20%	S/. 78,500.21
25%	S/. 52,314.18
30%	S/. 30,706.72
35%	S/. 12,675.46
55%	S/36,190.71
80%	S/69,358.10
85%	S/73,986.79
90%	S/78,160.95
TIR	39.11%

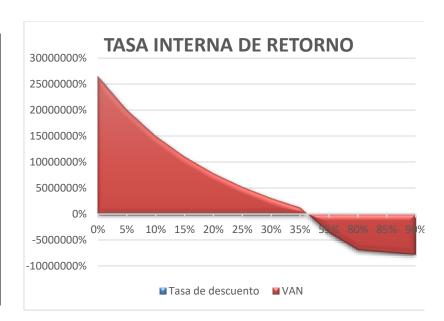


Fig. 53. Gráfico de TIR Fuente: Elaboración Propia

Nota: Con la implementación de la metodología RCM se espera ahorrar un 70% de tiempo de paradas, adquiriendo una utilidad adicional de S/. 70,000 en el flujo de caja, se realiza el cálculo del VAN y TIR, teniendo los siguientes resultados: S/. 103,646.01 y 39.11% respectivamente, siendo viable el presente estudio.

2.15. Aspectos Éticos

La ética desde cualquier ámbito es un tema que cada vez recibe más atención, y que, desde la perspectiva educativa, entre los científicos de las ciencias sociales y los gestores de la actividad académica y docente en particular, buscan integrar la cientificidad y la responsabilidad de ejercer investigación, con el hecho de permear las acciones hacia el desarrollo de lo humano en las producciones de conocimientos (Colina, Vargas; 2017).

Para (Koepsell, Chávez, 2015), la ética en la investigación científica adopta los principios de comunidad, universalidad, escepticismo organizado e imparcialidad.

 Autonomía: Como valor en el presente trabajo de investigación, nos dejamos llevar por nuestra libertad evadiendo cualquier tipo de presión o coacción, con los principios morales bien formados.

- Justicia: Siendo equitativos por las partes autoras del trabajo de investigación, minimizando el conflicto de intereses.
- Beneficencia: Por la cual se busca brindar conocimiento a nivel mental y social.
- Utilización de Datos: Se prioriza la veracidad de la información brindada con respecto a la sociedad justificando la mismos evitando fraude.

CAPÍTULO III. RESULTADOS

En el presente capítulo en mención se mostrará los resultados obtenidos y esperados, en la cual se presentará datos reales (brindados por la empresa), propuestas y observaciones útiles para el desarrollo del presente estudio, donde también se añaden formatos.

Dando realce y firmeza a la investigación por medio de figuras y tablas brindando el sustento adecuado en cada propuesta añadida al estudio, para después de ello dar a conocer si la presente propuesta de investigación es viable para el área de mantenimiento a beneficio de la empresa mencionada, donde al finalizar daremos validez y respondernos a la pregunta del problema general: ¿De qué manera la implementación de un Plan de Mantenimiento Preventivo en la Empresa Fuxion Biotech SAC, mediante Metodología RCM mejora la Disponibilidad de las máquinas envasadoras?

3.1 Resultados respecto al objetivo 1

Determinar un plan de mantenimiento preventivo en base a la metodología RCM aplicado a las maquinas envasadoras de la empresa Fuxion Biotech

Los procedimientos que se llevaron a cabo para la propuesta del presente estudio, con la finalidad de obtener respuesta al objetivo 1:

- Propuesta de tareas de mantenimiento Preventivo con la aplicación de la metodología RCM.
 - Se propone 30 tareas de mantenimiento preventivo a desarrollarse de acuerdo a la frecuencia propuesta para cada máquina envasadora con ayuda del cuadro de RCM. (Ver. Tabla 18)
- Implementación de un cronograma de Mantenimiento Preventivo basado en la metodología RCM. (Ver Fig. 37)

Elaboración propia

"Propuesta de Implementación de un Plan de Mantenimiento Preventivo en la Empresa Fuxion Biotech SAC, aplicando la Metodología RCM para la mejora de la Disponibilidad en las Máquinas Envasadoras"

3. Implementación de formatos de verificación e inspección para utilización en el mantenimiento preventivo con metodología RCM.

Tabla 34:
Resumen de formatos a implementar para la propuesta de implementación de mantenimiento preventivo aplicando la metodología RCM en las maquinas envasadoras. Fuente:

	FO	RMATOS	PROPUESTO	OS A IMPLEI	MENTAR
ITEM	NOMBRE DEL FORMATO	FRECUENCIA	EJECUTADO POR:	SUPERVISADO POR:	USO
1	REPORTES DE TRABAJOS DIARIOS CORRECTIVOS / HISTORIAL	DIARIO	TÉCNICOS DE MANTENIMIENTO	JEFE DE MANTENIMIENTO	SE DEBE LLENAR EN EL EXCEL Y ENVIO POR CORREO DIARIAMENTE EL CONSOLIDADO
2	HORARIO DE PERSONAL DE MANTENIMIENTO	MENSUAL	JEFE DE MANTENIMIENTO	GERENTE DE PLANTA	SE DEBE ACTUALIZAR POR MES
3	CRONOGRAMA MENSUAL DE MANTENIMIENTO PREVENTIVO DE MÁQUINAS ENVASADORAS	MENSUAL	JEFE DE MANTENIMIENTO	GERENTE DE PLANTA	SE DEBE ACTUALIZAR POR MES
4	FORMATO MANTENIMIENTO PREVENTIVO DE LA MÁQUINA ENVASADORA	SEMANAL	TÉCNICOS DE MANTENIMIENTO	JEFE DE MANTENIMIENTO	SE DEBE LLENAR FISICAMENTE IN SITU Y ARCHIVARLO
5	REGISTO DE VERIFICACIÓN DIARIA DE MÁQUINAS ENVASADORAS	DIARIO	OPERARIOS	TÉCNICOS DE MANTENIMIENTO	SE DEBE LLENAR FISICAMENTE IN SITU Y ARCHIVARLO
6	TICKET DE FALLA DIARIA EN MAQUINAS ENVASADORAS	DIARIO	OPERARIOS	TÉCNICOS DE MANTENIMIENTO	SE DEBE LLENAR FISICAMENTE IN SITU Y ALCAZAR A LOS TECNICOS DE MANTENIMIENTO
7	REGISTRO DE MANTEMIENTO CORRECTIVO DE MÁQUINA Y/O EQUIPO	DIARIO	TÉCNICOS DE MANTENIMIENTO	JEFE DE MANTENIMIENTO	SE DEBE LLENAR FISICAMENTE IN SITU Y ARCHIVARLO

 Propuesta reducción de tiempos en reparaciones (MTTR) y tiempo entre fallas (MTBF)de los mantenimientos correctivos.

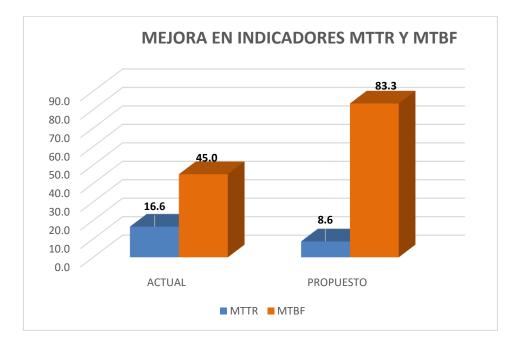


Fig. 54. Promedio de Mejora en indicadores MTTR y MTBF Fuente: Elaboración propia.

- 5. Se propone un horario específico para el personal técnico quien ejecutará los mantenimientos preventivos con la metodología RCM en la empresa. (Ver Fig. 36)
- Ahorro de costos en mantenimientos correctivos posterior a la implementación de la propuesta de mantenimiento preventivo con metodología RCM.

Fig. 55. Costo del antes y después del mantenimiento correctivo en Fuxion Biotech SAC Fuente: Elaboración Propia

7. El costo del mantenimiento preventivo con la metodología RCM en las maquinas envasadoras se espera que sea S/11,154.00 el cual incluye en su mayoría por personal técnico de mantenimiento de la empresa en mención.

3.2. Resultados con respecto al objetivo 2

Determinar la influencia de la metodología RCM aplicado en la disponibilidad de las maquinas envasadoras de la empresa Fuxion Biotech SAC

Se espera lograr incrementar la disponibilidad de las máquinas envasadoras en un 17% posterior a la implementación de la metodología RCM.

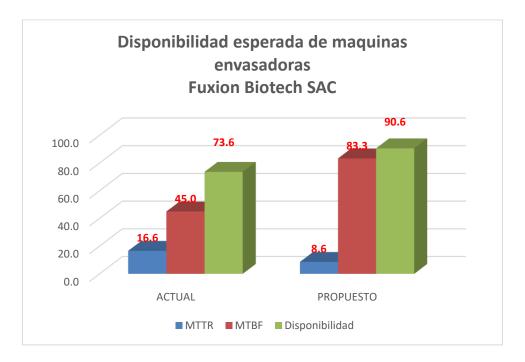


Fig. 56. Disponibilidad de las maquinas envasadoras promedio actual y esperado Fuente: Elaboración propia.

3.3 Resultados respecto al objetivo 3:

Determinar la influencia de la aplicación de un plan de mantenimiento preventivo con la metodología RCM en la implementación de un almacén de piezas y repuestos en stock para las máquinas envasadoras de la empresa Fuxion Biotech SAC

3.3.1. Implementación de formatos

Tabla 35:

Formatos propuestos para implementar el almacén Fuente: Elaboración Propia

	FORMA	ATOS PRO	PROPUESTOS A IMPLEMENTAR				
ITEM	NOMBRE DEL FORMATO	FRECUENCIA	EJECUTADO POR:	SUPERVISADO POR:	USO		
1	KARDEX DE CONTROL DE REPUESTOS UTILIZABLES EN MÁQUINAS ENVASADORAS	DIARIO	TÉCNICOS DE MANTENIMIENTO	JEFE DE MANTENIMIENTO	SE DEBE LLENAR FISICAMENTE IN SITU Y ENVIAR A JEFATURA		
2	KARDEX DE CONTROL DE PIEZAS UTILIZABLES EN MÁQUINAS ENVASADORAS	DIARIO	TÉCNICOS DE MANTENIMIENTO	JEFE DE MANTENIMIENTO	SE DEBE LLENAR FISICAMENTE IN SITU Y ENVIAR A JEFATURA		
3	TABLA EN EXCEL CONTROL DE REPUESTOS Y PIEZAS CONSOLIDADO	SEMANAL	JEFE DE MANTENIMIENTO	GERENTE DE PLANTA	SE DEBE LLENAR SEMANALMENTE Y SOLICITAR EL REQUERIMIENTO		

La utilización de formatos ayudará a la gestión del nuevo almacén a implementar, con los mismos que serán de utilidad para el personal técnico y jefe de mantenimiento, con el fin de recabar la información actualizada cada día y renovar el stock con días de anticipación.

3.3.2. Propuesta de gestión con proveedores

- Se realizará la gestión con los proveedores para las compras globalizadas de las piezas y repuestos (semestrales o anuales) logrando reducir los costos y tiempo de entrega cada mes.
- Se gestionará con proveedores nacionales para la fabricación de las piezas y venta de repuestos en el menor tiempo posible. Excluyendo las piezas y repuestos que son netamente de importación, sin embargo, se realizarán los pedidos con anticipación con ayuda de los formatos propuestos anteriormente. (Ver Fig. 43, Fig. 44 y Fig. 46)
- Se solicitará al proveedor que levante los planos de las piezas y/o repuestos

• Solo las piezas y repuestos más críticos (por falta de tecnología o manufactura local) serán importados. Ejemplo: Fuente estabilizada de placa electrónica, interfaz de control, etc.

Tabla 36:

Comparativo de proveedores locales para piezas y repuestos Fuente: Elaboración Propia

		COMPARATIVO DE PROVEEDORES LO	CALES PARA EN	TREGA DE PIEZ	AS Y REPUESTO:	S		
			NRO. DE D					
STATUS	PRODUCTO	DESCRIPCIÓN DE REPUESTO O PIEZAS	PROMERKO SAC	SERVICIOS INTEGRALES 2A EIRL	SERMAT EIRL	MECANICA & CONTROL EIRL	PROMEDIO DE DÍAS	
				20601643198	20566530156	20552320167		
	Fabricación PIEZAS	Ruedas de tracción	6	5	6	7	7	
		Cuchilla dentada de corte de stick	10	9	8	8		
Fabricación		Regulador de peso	9	7	8	9		
		Mordaza horizontal	10	8	7	6		
		Ejes deslizantes horizontales	9	8	8	7		
		Resistencia eléctrica verticales 220V 100W	4	5	4	6		
Adquisición	DEDLIECTOS	sensor inductivo NC (PNP) cuadrado	5	6	6	4	l _	
0 adantable	REPUESTOS	fotocélulas encapsuladas	6	4	5	6	5	
adaptable		termocuplas tipo K	5	5	5	4		
		Pulsador verde 3-4 (NO)	4	6	5	5		

Nota: La tabla 36 se realizó una encuesta a 4 proveedores locales, todos clasificados en el rubro de matricería y repuestos industriales, tanto la adquisición y/o fabricación de piezas y repuestos, 5 unidades de cada una como muestra, obteniendo el lead time (tiempo de entrega) 7 y 5 días de piezas y repuestos respectivamente. Siendo así, una optimización de tiempo con respecto a la importación de los mismos.

3.3.3. Stock de piezas y repuestos

• Se implementará un almacén con 27 SKU de las principales piezas y repuestos para su utilización en los mantenimientos preventivos y correctivos en la empresa Fuxion Biotech SAC. Estos también contarán con un stock mínimo de acuerdo a su historial de consumo de los 6 meses, para luego realizar su clasificación ABC obteniendo los repuestos de alta rotación (A).

• Se tendrá mejor control y acceso de las piezas y repuestos en sitios estratégicos y rotulados dentro del almacén propuesto, esto a su vez mejorará los tiempos en su búsqueda.

Tabla 37:

Comparación de tiempos promedio esperado de entrega de piezas y repuestos actual y

Pedido a	Tiempo promedio en	Tiempo promedio en días propuesto
Proveedor	días Actual	(proveedor local)
Piezas	15	7
Repuestos	10	5

3.4 Resultados respecto al objetivo 4

propuesto Fuente: Elaboración propia.

Determinar el impacto de la implementación del plan de mantenimiento preventivo basada en la metodología RCM en el nivel de conocimiento del personal de mantenimiento y operativo para las maquinas envasadoras en la empresa Fuxion Biotech S.A.C.

Actualmente el personal de técnico y operativo cuenta con el conocimiento básico con respecto a la metodología RCM y el uso correcto y operatividad de las maquinas envasadoras.

Con la propuesta de capacitaciones trimestrales para el personal técnico y operativo se espera obtener lo siguiente:

 Un 90% de aprobados en los test de conocimiento del personal técnico y operario respectivamente, con el objetivo de optimizar el tiempo en las atenciones de los correctivos posterior a la implementación.

- Un alto nivel de atención de los correctivos por parte del personal técnico, siendo solucionados en el tiempo óptimo.
- Un alto nivel de aviso previo ante un posible desperfecto (ruidos anormales, golpes de mecanismos no comunes, envasado errado, etc.) por parte del operario de máquina, evitando posibles fallas.
- Llenado correcto de formatos propuestos, como por ejemplo: tickets en el caso de operarios y Kardex, check list, libro de ocurrencias para el caso del personal de mantenimiento.
- Correcto uso y manejo de máquinas envasadoras, tomando en cuenta todo lo expuesto en las capacitaciones propuestas. (Ver Linkografía)

3.5 Resultados con respecto al objetivo principal.

Determinar como la Implementación de un Plan de Mantenimiento Preventivo aplicando la Metodología RCM mejora la Disponibilidad de las máquinas envasadoras en la Empresa Fuxion Biotech SAC.

En base al objetivo general se esperar lograr lo siguiente:

- Reducir los tiempos en los mantenimientos correctivos.
- La implementación de un almacén para reducir el tiempo de reparación para las maquinas envasadoras.
- Asegurarse que el personal siga los procedimientos en base a los estándares de calidad y seguridad dentro de la empresa.
- Realizar, reportar las tareas propuestas, quienes a su vez darán como resultado la disponibilidad de la maquinas envasadoras y analizarlos cada periodo de tiempo.

• Establecer una cultura solida de la metodología RCM en toda el área de envasado de la empresa Fuxion Biotech SAC.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión

4.1.1 Limitaciones:

El presente estudio se encuentra limitado por:

 No se logró obtener datos solicitados en un tiempo de un año, por lo mismo que solo se realizó el análisis del presente estudio dentro de un tiempo de 6 meses.

4.1.2 Comparativa:

Comparativa con respecto al objetivo 1:

Del presente estudio realizado para la propuesta de implementación de un plan de mantenimiento preventivo con la metodología RCM en la empresa Fuxion Biotech SAC servirá para incrementar la disponibilidad en las maquinas envasadoras, se tiene previsto minimizar los tiempos de reparaciones utilizados actualmente para los mantenimientos correctivos, con la cual se propone implementar nuevas tareas y actividades que se desarrollarán en los mantenimientos preventivos a raíz de nuestro estudio realizado en beneficio de las maquinas envasadoras, procedimientos que coinciden con el autor Cubillas (2020) en su tesis: "implementación de la metodología de mantenimiento centrado en confiabilidad (RCM) y los efectos en la disponibilidad de las extrusoras hidráulicas, en la empresa Italsolder S.A.C." quien muestra los procedimientos para lograr su primer objetivo, minimizar los tiempos de reparación, mantenimientos programados para sus máquinas extrusoras, analizar los reportes de tiempo medio de reparación del año 2019 y tener una estrategia de trabajo para la ejecución de sus tareas de mantenimiento propuestas.

Además los resultados expuestos por Llerena (2016) en la que presenta "Mantenimiento Centrado en la Confiabilidad a equipos más consumidores de energía

eléctrica del Hotel "Cayo Santa María" aplico el sistema de mantenimiento centrado en confiabilidad, con la finalidad de identificar y reconocer las actividades de mantenimiento preventivo a aplicar a los equipos consumidores de energía, concluyendo que no solo basta una programación de un plan de mantenimiento si no va acompañada de una metodología como la del RCM, afianzándose en su objetivo.

Comparativa con respecto al objetivo 2:

De lo expuesto se espera un aumento del MTBF de 45 a 83 horas, esperando con ello, una disponibilidad de 90% en promedio de las maquinas envasadoras, igualmente, este resultado guarda relación con los resultados obtenidos del autor Palomares (2015), en su tesis : "Implementación del mantenimiento Centrado en la confiabilidad (RCM) al sistema de izaje mineral, de la compañía minera Milpo, unidad el Porvenir" quien alcanza el objetivo de incrementar su MTBF de 50 a 100 horas y con ello alcanzando una disponibilidad de 92% en promedio.

Reafirmando la importancia de aumentar la disponibilidad de equipos, se referenciara la tesis del autor Cormilluni, (2019) "Propuesta de mejora en el Sistema de Gestión de Mantenimiento utilizando el RCM en el proceso de producción y extendido de asfalto" el cual aplica la metodología del mantenimiento centrado en confiabilidad (RCM) en la cual describe el incremento de las dimensiones de la metodología mencionada, tales como MTBF incrementando en 39% y el MTTR disminuyendo en 25% obteniendo una gran eficiencia en su objeto de estudio.

Comparativo con respecto el objetivo 3

Se realizó una propuesta de implementación de un almacén de piezas y repuestos para minimizar los tiempos de reparaciones (MTTR) de las maquinas envasadoras, para cual

se calculó un costo S/ 53,714.00 incluyendo los materiales para el acondicionamiento del lugar propuesto, estos resultados tienen concordancia con el autor Pacheco (2018), en su tesis para obtención de título profesional : "Propuesta de implementación de un sistema de gestión de mantenimiento preventivo basado en RCM para la reducción de fallas de la maquinaria de la empresa Hydro Pátapo SAC". Obtiene el costo de \$ 36 674,04 anuales para los repuestos del mantenimiento de las máquinas con la implementación de sistema propuesto.

Comparativa con respecto el objetivo 4

Se propone la capacitación al personal técnico y operario con respecto a la metodología RCM y los manejos correctos de las maquinas envasadoras, esperando obtener una ahorro de S/70,000 de las perdidas, tal cual como el autor Calderón, (2020) en su tesis: "Propuesta de implementación de un plan de mantenimiento centrado en la fiabilidad (RCM) para reducir los costos operativos de una empresa manufacturera de calzado" quien tiene un ahorro de sus pérdidas ascendente a S/ 47,442 sobre los costos operativos de la empresa manufacturera de calzado.

De igual manera en la presente investigación se propone la aplicación de tareas preventivas para cada modo de falla encontrado. Salguero (2010) en su tesis "Diseño e implementación de un sistema de mantenimiento estratégico aplicando las filosofías RCM y FMEA a las máquinas y herramientas de la empresa weatherford south america inc." En la cual hace referencia a la optimización en promedio de un 53% de los costos de operación originados por los mantenimientos preventivos a realizar aplicando la metodología RCM.

4.1.3 Implicancias:

De acuerdo a la presente investigación presentada se tendrá que cumplir con el plan de mantenimiento y formatos propuestos, lo cual llevará a una mejora en el área de envasado y mantenimiento, obteniendo resultados favorables para la incrementación de la disponibilidad de las máquinas con ayuda de la metodología RCM, caso contrario implicaría no solo perdida en recursos de la empresa sino a su vez permanecer en la política actual , donde normalmente se busca solo reparar lo que se avería, antes que evitarlo mediante un análisis correcto y tomada de decisiones exactas.

Una aplicación fiel y correcta de la metodología RCM conlleva a un plan programado más eficiente, llevando consigo un compromiso con todo el personal a cargo del área mencionada.

4.2 Conclusiones

Conclusión Con respecto al objetivo 1

Analizando la información obtenida, es relevante mencionar que el número de fallas que se presentan en las maquinas envasadoras, se deben a la inexistencia de un plan de mantenimiento preventivo, causando daños en los sistemas/componentes más críticos y más costosos de las maquinas, siendo necesario la implementación de la propuesta de un plan de mantenimiento preventivo con la metodología RCM, cumpliendo no solo con las tareas sino también con las frecuencias propuestas para su ejecución; logrando considerablemente la reducción del número de fallas y por consiguiente la disponibilidad de las maquinas envasadoras.

El tener un programa de mantenimiento preventivo tiene un impacto considerable en la reducción tiempos de mantenimiento pues con él se reducen las reparaciones mayores (las de mayor impacto) y las paradas bruscas en la producción, y por lo tanto ayuda a

establecer un flujo de trabajo constante. Es por ello que todo sistema de mantenimiento se basa en la prevención de eventos, utilizando las medidas, tareas o actividades de preventivas, la cuales fueron propuestas en este trabajo de investigación.

En las 11 máquinas envasadoras los tiempos de reparación en promedio de los 6 meses de estudio (Enero a Junio) fue 794.5 horas, luego de la propuesta de implementación de un plan de mantenimiento con la metodología RCM el resultado esperado en los siguientes 6 meses es de 229.8 horas. Siendo una reducción total de 71% con respecto a la situación actual. Igualmente, el número de fallas promedio que pasa de 48 a 26 semestral.

Conclusión con respecto al objetivo 2

En las 11 máquinas envasadoras, la disponibilidad promedio de los 6 meses de enero a junio fue de 73%, luego de la propuesta de implementación del plan de mantenimiento preventivo con la metodología RCM el resultado final esperado en los siguientes 6 meses será de 90% en promedio, manteniendo mayor tiempo de operatividad de las máquinas.

El impacto con respecto a los costos de mantenimiento correctivo actual a comparación del esperado existe un ahorro del 88% del actual (S/ 92,928.47) semestral.

Conclusión con respecto al objetivo 3

Posterior a la implementación de un almacén para poder tener un stock de las piezas y repuestos principales recopilados del presente estudio, con el fin de reducir los tiempos de entrega de los proveedores y con esto realizar las correcciones a tiempo. Reduciendo así un tiempo promedio de 15 días hábiles a aproximadamente 7 días hábiles para la obtención de alguna pieza que se solicitará a fabricar. (si no hubiese stock en almacén). Esto demuestra

que la gestión de un almacén es relevante para realizar con éxito los trabajos preventivos y/o correctivos en el menor tiempo posible y con ello mejorar la productividad.

Conclusión con respecto al objetivo 4

Durante el proceso de implementación del Plan de mantenimiento, las capacitaciones darán como consecuencia que todo el personal involucrado en el área, disponga a mejorar continuamente sus actividades para el beneficio propio y al de la empresa. Resguardando la vida útil de los activos en estudio.

Con los cálculos del VAN (S/ 103,646.01) y TIR (39.11%) concluimos que la inversión para la implementación de un plan de mantenimiento preventivo aplicando la metodología RCM para la mejora de las maquinas envasadoras se recuperaría en un plazo de 2 meses aproximadamente, la cual hace viable la propuesta.

Todas las mejoras como consecuencia del nuevo plan establecido redundan a su vez a un ambiente de trabajo más óptimo y fluido a todos los niveles jerárquicos de la empresa.

Está demostrado que la aplicación de la metodología RCM acompañado de un plan de mantenimiento preventivo, elimina los fallos críticos principales de un proceso dado, generando con ello una disminución de riesgo y seguridad ambiental

Se estima que evitando la creación de una cultura inapropiada en mantenimiento invasivo traerá grandes beneficios para cualquier organización con fines de generar valor en su desarrollo empresarial.

RECOMENDACIONES

- Se recomienda a medida que la implementación del presente estudio se vaya ejecutando, se adquiera un software de gestión de Mantenimiento (ERP) para el establecimiento correcto de tareas y stocks en el almacén.
- Dependiendo de los resultados obtenidos en los primeros 6 meses de implementación del presente estudio, la frecuencia del mantenimiento preventivo podría ser modificada para su intervención de cada máquina de forma diaria (por día, 1 maquina en un lapso de 4 horas)
- Uno de los aspectos más importantes para que haya resultados del estudio será él compromiso por parte de la directiva de la empresa y con ello tomas las mediciones sobre las máquinas que se están estudiando, exactamente el indicador principal de esta metodología aplicada (RCM), la cual es: La disponibilidad de las envasadoras.
- A medida que el proyecto va desarrollándose y dependiendo a los resultados obtenidos se recomienda migrar a la metodología de mantenimiento productivo total (TPM) en el que se involucrara con mayor frecuencia a los operarios de cada máquina envasadora.

REFERENCIAS

- Alejos, A., & Ray, A. (2015). "Diseño de un plan de mantenimiento centrado en la confiabilidad basado en la metodología análisis de modo y efecto de falla para aumentar la eficiencia en tiempo de vida de los neumáticos en camiones de acarreo CAT 793F, Compañía Minera Antamina SA–Región Ancash
- ¿Cuál es la función de un relé? (2021).entrada de blog Recuperado de https://www.silge.com.ar/rele-estado-solido.
- Alejos, A., & Ray, A. (2015). "Diseño de un plan de mantenimiento centrado en la confiabilidad basado en la metodología análisis de modo y efecto de falla para aumentar la eficiencia en tiempo de vida de los neumáticos en camiones de acarreo CAT 793F, Compañía Minera Antamina SA–Región Ancash
- Arguedas-Rocha, F. (2015). Elaboración de un Programa de Mantenimiento Preventivo basado en RCM para la Ranuradora y Molduradora en PLYCEM CONSTUSISTEMAS
- Barco Sandoval, D. T. (2017). Aplicación del mantenimiento preventivo para mejorar la productividad en la empresa tejidos Global SAC del distrito de Ate Vitarte, Lima.
- Belli Hesse, O. (2018). Propuesta de gestión de mantenimiento RCM en plantas de energía a gas natural. Universidad Privada de Ciencias
- Caballero, C., & Clavero, J. (2016). UF1466 Sistemas de almacenamiento. Madrid, España: Ediciones Paraninfo.
- Carrazco Galvez, L. V. (2017). Implementación del mantenimiento preventivo para incrementar la productividad en el área de envasado de talcos de la empresa Yobel SCM, Lima, 2017.

- Castellón González, L. I. (2018). Plan de mantenimiento preventivo para las máquinas productoras de helado de la fábrica Belén de la ciudad de Estelí, realizado en el segundo semestre de 2017 (Doctoral dissertation, Universidad Nacional Autónoma de Nicaragua, Managua).
- Colina y Vargas (2017) La ética del docente investigador y sus principios Revista Científica
- Cormilluni Leandro, J. (2019). Propuesta de mejora en el sistema de gestión de mantenimiento utilizando el RCM en el proceso de producción y extendido de asfalto".
- Cubillas pérez,(2020)"implementación de la metodología de mantenimiento centrado en confiabilidad (RCM) y los efectos en la disponibilidad de las extrusoras hidráulicas, en la empresa italsolder s.a.c." universidad privada del norte"
- Datos Macros,2019: Índice de competitividad, recuperado de https://datosmacro.expansion.com/estado/indice-competitividad-global
- Flores, L., & Antonio, A. (2016). Propuesta de un programa de mantenimiento preventivo para reducir los costos operativos en el caldero de la empresa industrial Center Wash.
- Francisco, J. C. (2016). Características de los sistemas TPM y RCM en la ingeniería del mantenimiento. 3C Tecnología, 5(3), 68-75.
- "García, I. (2016). Anatomía de sistemas: Su análisis y su apoyo. Madrid, España: Diaz Santos" Hintelholher, A., & Marissa, R. (2013). Identidad y diferenciación entre Método y Metodología. Estudios políticos (México), (28), 81-103.
- Koepsell, D. R., & de Chávez, M. H. R. (2015). Ética de la investigación: Integridad científica. Comisión Nacional de Bioética/Secretaría de Salud.

- Lázaro Chávez (2018), "propuesta de un plan de mantenimiento preventivo para optimizar el rendimiento de los equipos mineros en la calera colquirrumi no49-b, provincia de hualgayoc, cajamarca, 2018" Universidad Privada el norte
- Lizcano Guerrero (2019)"Elaboración de una propuesta de mantenimiento mediante la metodología rcm (mantenimiento centrado en confiabilidad) para los cargadores frontales de bajo perfil sandvik lhd410 en la sociedad minera de santander s.a.s", de la universidad pontificia bolivariana seccional bucaramanga Colombia
- "Luján Lezama (2020) "Aplicación de la metodología de mantenimiento centrado en la confiabilidad (RCM) y sus efectos en la disponibilidad de máquinas de soldadura en la empresa welders PERU SAC" Universidad Privada del Norte"
- "Martinez Limo, M.A. "Plan de mantenimiento preventivo para incrementar la eficiencia de la flota vehicular de la Empresa de Transportes M. Catalán SAC. Dedicada al transporte de combustibles líquidos" Universidad Pedro Luiz Gallo"
- Mgs, A. M. C. V., & de Carrasquero, I. C. V. (2017). LA ÉTICA DEL DOCENTE INVESTIGADOR Y SUS PRINCIPIOS THE ETHICS OF THE RESEARCH TEACHER AND ITS PRINCIPLES. Revista Científica ECOCIENCIA, 4(5).
- "Mora Gutiérrez, L. (2009). MANTENIMIENTO Planeación, ejecución y control . Ciudad De Mexico: Alfaomega."
- Morone, G. (2013). Métodos y técnicas de la investigación científica. Documento de trabajo. Valparaíso, Chile: Pontificia Universidad Católica de Valparaíso. Sistema de Biblioteca.
- Moubray, J. (2004). Mantenimiento Centrado en la Confiabilidad (RCM). Editorial Butterworth Heinemann.
- "Moubray, John. (2004). Mantenimiento centrado en la confiabilidad RCM II: Traducido

por Ellman Suerios y Asociados. USA: Lillington – Carolina del Norte" Murillo, W. (2008). La investigación científica.

- Nicolas y Irázabal Córdova, (2019) ESTRATEGIAS DEL RCM Y SU INFLUENCIA EN LA CONFIABILIDAD DE LOS EQUIPOS PARA LA TINTORERÍA DE LA EMPRESA SUR COLOR STAR S.A."universidad nacional del callao
- Ñavincopa, C.: Producción, Disponibilidad y Productividad en Equipo Trackless, recuperado de https://reliabilityweb.com/
- Ortiz Useche, A., Rodríguez Monroy, C., & Izquierdo, H. (2013). Gestión de mantenimiento en pymes industriales. Revista Venezolana de Gerencia, 18(61).
- Pacheco Bado (2018) "propuesta de implementación de un sistema de gestión de mantenimiento preventivo basado en RCM para la reducción de fallas de la maquinaria de la empresa hydro pátapo s.a.c" universidad católica santo toribio de mogrovejo"
- Padrón, J. (2006). Bases del concepto de investigación aplicada
- Palomares Quintanilla, E. D. (2015). Implementación del mantenimiento centrado en la confiabilidad (RCM) al sistema de izaje mineral de la compañía minera Milpo, unidad El Porvenir.

Renove tecnología.(2016). Recuperado de: http://rcm3.org/123

Rivera Rubio, E. M. (2011). Sistema de gestión del mantenimiento industrial.

Salguero Manosalvas, M. F. (2010). Diseño e implementación de un sistema de mantenimiento estratégico aplicando las filosofías RCM y FMEA a las máquinas y herramientas de la empresa Weatherford South America Inc, base1, Francisco De Orellana."

Sampieri, (2010) Metodología de la investigación. Quinta edición. México: McGrawHill"

Sampieri, (2014) Metodología de la investigación. Sexta edición. México: McGrawHill"

Sánchez Sánchez de Puerta, B. (2016) Diseño de un plan de mantenimiento mediante

metodología RCM para una línea de valorización de PEBD

- Soto Ortega, M.V. (2018). "Propuesta de implantacion del mantenimiento centrado en la confiabilidad (RCM), de los activos criticos de la unidad nº 1 de la central termina EL Descanso" Universidad de Azuay
- Valbuena Roja y Cortés Urrego (2020) "Propuesta de un plan de mantenimiento basada en la metodología RCM para los equipos de refrigeración del laboratorio de virología del Instituto Nacional de Salud" Bogotá D.C Universidad ECCI Dirección de Posgrados
- VARGAS CORDERO, Z. R. (2009). La investigación aplicada. La Investigación

 Aplicada: Una forma de conocer las realidades con Evidencia. Primera edición.

 Costa Rica
- Villegas Arenas, J. C. (2017). Propuesta de mejora en la gestión del área de mantenimiento, para la optimización del desempeño de la empresa Manfer SRL
 Contratistas Generales, Arequipa 2016.

El formato de la tesis, las citas y las referencias se harán de acuerdo con el Manual de Publicaciones de la American Psychological Association, sexta edición, los cuales se encuentran disponibles en todos los Centros de Información de UPN, bajo la siguiente referencia:

Código: 808.06615 APA/D

También se puede consultar la siguiente página web:

http://www.apastyle.org/learn/tutorials/index.aspx

ANEXOS

Anexo 1: Carta de autorización de uso de información

CARTA DE AUTORIZACIÓN DE USO DE INFORMACIÓN DE EMPRESA PARA OBTENCIÓN DE TÍTULO PROFESIONAL

Yo: Guillermo Antonio Cruz Vásquez identificado con DNI Nº 40479174, en mi calidad de Jefe de Planta del área de Producción de la empresa, FUXION BIOTECH S.A.C. con R.U.C N°20513081238 ubicada en la ciudad de Lima - Lurin

OTORGO LA AUTORIZACIÓN,

A los señores: García Saboya, Segundo Gilberto y Muñoz Camones, Arnold Jhoel, identificados con DNI Nº 41897794 - 47547826 respectivamente, bachiller en la carrera de Ingenieria Industrial, para que utilice la información del área de Mêntenimiento de planta, de esta empresa; con la finalidad de que pueda desarrollar su Tesis (X) o Trabajo de Suficiencia Profesional () y de esta manera optar al Titulio Profesional.

11 de mayo de 2019

Adjunto a esta carta, está la siguiente documentación:

Sólo Para Modalidad Suficiencia Profesional: Adjunta Vigencia Poder Del Representante Legal de la Empresa con vigencia no menor a 90 días.

Jafe de Pfonts
FWXION STOTECH TAG

Firma del Representante de la Empresa DNI: 40479174

El Bachiller declara que los datos emitidos en esta carta y en la Tesis o Trabajo de Suficiencia Profesional son auténticos. En caso de comprobarse la falsedad de datos, el Bachiller será sometido al inicio del procedimiento disciplinario correspondiente; y asimismo, asumirá toda la responsabilidad ente posibles acciones legales que la empresa, otorgante de información, pueda ejecutar.

Firma del Bachiller DNI: 41897794 Firma del Bachiller DNI: 47547826

Codigo: COR-F-REC-SA-17.08

Pág.: 1 de 2

UNIVERSIDAD PRIVADA DEL NORTE S.A.C.

Vigencia: 06/06/2018 Versión: 02

Anexo 2. Encuesta de Satisfacción para los maquinistas. (observaciones obtenidas por cada operario)

	Encuesta de satizfación a los	maquinistas de la empresa Fuxion Bio	otech SAC		Aprobado Por: SG/AM/GC		
ea a rea	nlizar la encuesta:	Área de envasado	Fecha:		15/05/2019		
sona a	realizar la encuesta:	Segundo Garcia - Arnold Muñoz	Nombre de l	os equipos:	Envasadoras de polvo		
Item	Fecha	Nombre y Firma del Maquinista	Hora Inicio	Hora Final	Comentario del Maquinista		
1	15/05/19	Luis Ruiz LAL	09:05	09:10	No existr procedimientos		
2	15/05/19	Deliner Inum DA	09:10	09:15	El producto no cae falta de mentenmiente		
3	15/05/19	Freddy Pistil	Apq:16	09:21	Producto grunoso, tiene q' tobyzren byzveloud.		
4	15/05/19	Armendo Lopes Da	209:22	09:27	El mentremento es muy lanto damoran se messedo		
5	15/05/19	Pedro Rejeno Redor	01:27	09:32	No trane Popuestos ni Plezzo para su cambio		
6	15/05/19	Crelmer Nuive 3 Hopen	04:33	04:38	No engrissin (as ages ni zceiten el polvo se paga en las eges		
7	15/05/19	James Remions Junk			falta mas tacnicos de mantenimiento		
8	15/05/19	Francisco Remoj Ange	09:45	09:50	falta de mantonamiento 2 los equipos novamento		
9	15/05/19	Manuel chaves qually	09:51	09:56	No traven preges Para		
.0	15/05/19	Lucs Rios Jones	09:57	10:03	Slomore en inizio de producción no hay procedimiento:		
re y Fir	rma del Encuestador Responsable:	Segundo Gilberto Garcia Saboya			The		
		Arnol Jhoel Muñoz Camones			- Andrews		

Anexo 3: Recorrido en planta, validando parámetros en tablero de control.

LINKOGRAFIA:

Manual de operatividad para maquinas envasadoras

https://drive.google.com/file/d/1q8PNKsig0XsUrGHPE9QIMzJ7JbfuQHVS/view?usp=sharing