

FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA CIVIL

"COMPORTAMIENTO ESTRUCTURAL AL INCORPORAR LA INTERACCIÓN SUELO - ESTRUCTURA DE UNA EDIFICACIÓN DE CUATRO NIVELES EN LA MOLINA - CAJAMARCA"

Tesis para optar el título profesional de:

INGENIERO CIVIL

Autores:

Marleny Ocas Llanos Willan Omar López Campos

Asesor:

Dr. Ing. Miguel Ángel Mosqueira Moreno

Cajamarca – Perú 2021

ACTA DE AUTORIZACIÓN PARA SUSTENTACIÓN DE TESIS

El asesor Dr. Ing. Miguel Ángel Mosqueira Moreno, docente de la Universidad Privada del Norte, Facultad de Ingeniería, Carrera profesional de **INGENIERÍA CIVIL**, ha realizado el seguimiento del proceso de formulación y desarrollo de la tesis de los bachilleres:

- Ocas Llanos, Marleny
- López Campos, Willan Omar

Por cuanto, **CONSIDERA** que la tesis titulada: "Comportamiento estructural al incorporar la interacción suelo - estructura de una edificación de cuatro niveles en la Molina – Cajamarca". para aspirar al título profesional de: **Ingeniero Civil** por la Universidad Privada del Norte, reúne las condiciones adecuadas, por lo cual, **AUTORIZA** a los interesados para su presentación.

Dr. Ing. Miguel Angel Mosqueira Moreno

Asesor

Ocas Llanos, M López Campos, W

ACTA DE APROBACIÓN DE LA TESIS

Los miembros del jurado evaluador asignados han procedido a realizar la evaluación de la tesis de los estudiantes: Ocas Llanos Marleny y López Campos Willan Omar para aspirar al título profesional con la tesis denominada: Comportamiento estructural al incorporar la interacción suelo - estructura de una edificación de cuatro niveles en la Molina - Cajamarca.

Luego de la revisión del trabajo, en forma y contenido, los miembros del jurado concuerdan:

() Aprobación por unani	midad	() Aprobación por mayoría
Calificativo:		Calificativo:
() Excelente [20 - 18]		() Excelente [20 - 18]
() Sobresaliente [17 - 15]		() Sobresaliente [17 - 15]
() Bueno [14 - 13]		() Bueno [14 - 13]
() Desaprobado		
Firman en señal de conform	midad:	
	Dr. Ing. Orlando Aguila Jurado Presidente	ur Aliaga
	Ing. /Lic. /Dr. /Mg. Nombre Jurado	y Apellidos
	Ing. /Lic. /Dr. /Mg. Nombre	y Apellidos

DEDICATORIA

A DIOS por guiarnos en todo momento para seguir luchando por nuestras metas y objetivos.

Dedicado a mis padres Víctor y Martha, por su apoyo constante y su perseverancia en la culminación de mi carrera profesional y por inculcarme sus valores y hacer de mí una persona de bien.

Dedicado a toda mi familia en especial a mis padres Gilberto y Yolanda quienes con mucho amor y sacrificio hicieron de mí una persona profesional.

AGRADECIMIENTO

Gracias a Dios por habernos permitido conseguir terminar el desarrollo de esta investigación y así cumplir nuestras metas y objetivos profesionales.

Queremos agradecer a nuestros padres y hermanos, por habernos ayudado a llegar hasta aquí. A nuestros amigos que nos acompañaron todos estos años tanto dentro como fuera de la universidad.

A mi asesor de Tesis, Dr. Ing. Miguel Ángel Mosqueira Moreno, por su paciencia, trato, comprensión, apoyo, sugerencias, revisión y contribución a la realización de la presente tesis de investigación.

TABLA DE CONTENIDOS

DEDICATORIA	4
AGRADECIMIENTO	5
ÍNDICE DE TABLAS	9
ÍNDICE DE FIGURAS	11
ÍNDICE DE ECUACIONES	15
ÍNDICE DE DIAGRAMAS DE FLUJO	16
ÍNDICE DE GRÁFICOS	17
RESUMEN	18
1. INTRODUCCIÓN	19
1.1. Realidad problemática	19
1.2. Formulación del problema	25
1.3. Justificación	25
1.4. Limitaciones	26
1.5. Objetivos	26
1.5.1. Objetivos generales	26
1.5.2. Objetivos específicos	27
1.6. Hipótesis	27
1.6.1. Identificación de variables	27
1.6.2. Operacionalización de variables	28
2. METODOLOGÍA	30
2.1. Tipo de investigación.	30
2.1.1. De acuerdo al propósito de la investigación	30
2.1.2. Según el nivel de conocimiento	30
2.1.3. Según la naturaleza de datos	30
2.2. Población y muestra.	30
2.2.1. Población	30
2.2.2. Muestra	31

2.3. Técnicas y materiales	31
2.3.1. Técnicas de recolección de datos	31
2.3.2. Materiales de recolección de datos.	33
2.4. Procedimiento de recolección de datos.	33
2.4.1. Recopilación de información.	33
2.4.2. Modelamiento de la edificación.	33
2.4.3. Análisis sísmico de la edificación	33
2.4.4. Criterios de modelamiento.	34
2.5. Procedimiento de tratamiento y análisis de datos	35
2.5.1. Procedimiento de tratamiento de datos	35
2.5.2. Incorporación de recolección de datos	37
2.5.3. Análisis de datos	38
2.6. Procedimiento de la investigación	38
2.6.1. Mecánica de suelos	38
2.6.2 Metrado de cargas de la edificación	39
2.6.3 Modelamiento sísmico estático de la edificación	40
2.6.4 Modelamiento sísmico dinámico de la edificación	50
2.6.5 Modelamiento con base flexible D.D. Barkan – O.A. Savinov	52
2.6.6 Modelamiento con base flexible Norma Rusa	60
3. RESULTADOS	64
3.1. Modelo de empotramiento de las bases	64
3.1.1. Análisis sísmico estático de la edificación	64
3.1.2. Análisis sísmico dinámico de la edificación	68
a. Periodo natural de vibración con empotramiento en las bases	68
b. Modos de vibración de la estructura con modelo empotrado la base	69
c. Desplazamiento y distorsiones con análisis dinámico	70
d. Fuerzas internas máximas con análisis dinámico	75
3.2. Modelo dinámico con base Flexible D.D. Barkan – O.A. Savinov	78
a. Periodo natural de vibración según Barkan – Savinov	78
b. Modos de vibración de la estructura según Barkan – Savinov	79

c. Desplazamiento y distorsiones según Barkan – Savinov	80
d. Fuerzas internas máximas según Barkan – Savinov	85
3.3. Modelo dinámico según la Norma Rusa SNIP 2.02.05-87	88
a. Periodo natural de vibración según Norma Rusa	88
b. Modos de vibración de la estructura según Norma Rusa	89
c. Desplazamiento y distorsiones según la Norma Rusa	90
d. Fuerzas internas máximas según Norma Rusa	95
3.4. Comparación de Modelos dinámicos	98
4. DISCUSIÓN Y CONCLUSIONES	106
4.1. Discusión	106
4.2. Conclusiones	109
REFERENCIAS	111
ANEYOS	113

ÍNDICE DE TABLAS

Tabla 1. Sismicidad histórica.	22
Tabla 2. Evaluación de daños a las viviendas.	23
Tabla 3. Operacionalización de Variables Independientes.	28
Tabla 4. Operacionalización de Variables Dependientes.	28
Tabla 5. Herramientas, equipos y útiles de recolección de datos.	33
Tabla 6. Capacidad portante del suelo.	39
Tabla 7. Capacidad de áreas totales.	39
Tabla 8. Ambientes y áreas de la edificación por nivel.	40
Tabla 9. Cargas de la edificación por nivel.	40
Tabla 10. Datos según norma E.30.	42
Tabla 11. Cálculos de fuerzas sísmicas.	43
Tabla 12. Cálculos excentricidad de la edificación.	43
Tabla 13. Cálculo de masas traslacionales y rotacionales de entrepiso	50
Tabla 14. Cálculo de masas traslacionales de zapatas según modelo Barkan.	52
Tabla 15. Cálculo de masas rotacionales de zapatas según modelo Barkan	53
Tabla 16. Cálculo de presión estática según modelo Barkan	54
Tabla 17. Cálculo de Coeficientes de Rigidez según modelo Barkan	55
Tabla 18. Cálculo de rigideces según modelo Barkan	56
Tabla 19. Cálculo de masas traslacionales de zapatas según Norma Rusa	60
Tabla 20. Cálculo de masas rotacionales de zapatas según Norma Rusa.	61
Tabla 21. Cálculo de coeficientes de rigidez según Norma Rusa	62
Tabla 22. Cálculo de Rigideces según Norma Rusa (K)	63
Tabla 23. Desplazamiento con análisis estático	64
Tabla 24. Fuerzas internas máximas estáticas	64
Tabla 25. Periodos de la estructura con base flexible empotrado en la base	68
Tabla 26. Modos de vibración según modelo empotrado en la base	69
Tabla 27. Desplazamiento y distorsiones en eje X, Y según modelo empotrado en la base.	70
Tabla 28. Fuerzas internas máximas según modelo empotrado en la base	75

Tabla 29. Periodos de la estructura con base flexible según modelo Barkan	78
Tabla 30. Modos de vibración de la estructura según modelo Barkan	79
Tabla 31. Desplazamiento y distorsiones de la edificación según modelo Barkan	80
Tabla 32. Fuerzas internas máximas según modelo Barkan	85
Tabla 33. Periodos de la estructura con base flexible según Norma Rusa	88
Tabla 34. Modos de la vibración de la estructura según Norma Rusa.	89
Tabla 35. Desplazamiento y distorsiones de la edificación según Norma Rusa	90
Tabla 36. Fuerzas internas máximas aplicando Norma Rusa	95
Tabla 37. Resumen de periodos de vibración de la edificación	99
Tabla 38. Resumen de desplazamiento en la dirección X (mm) de la edificación	100
Tabla 39. Resumen de desplazamiento en la dirección Y (mm) de la edificación	101
Tabla 40. Resumen de distorsiones en la dirección X (mm) de la edificación	102
Tabla 41. Resumen de distorsiones en la dirección Y (mm) de la edificación	103
Tabla 42. Resumen de fuerzas internas máximas en la dirección sismo X (T*m) en la	
edificación	104
Tabla 43. Resumen de fuerzas internas máximas en la dirección sismo Y (T*m) en la	
edificación	105

ÍNDICE DE FIGURAS

Figura 1. Subducción de Placas Tectónicas y generación de Sismos	19
Figura 2. Mapa de zonificación sísmica	20
Figura 3. Plano Geológico Cajamarca.	24
Figura 4. Localización y ubicación de la zona de estudio.	25
Figura 5. Población y Muestra.	31
Figura 6. Instrumentos de recolección de datos.	37
Figura 7. Edición de ejes en dirección "X" y "Y"; SAP2000	45
Figura 8. Vista en Planta y 3D, de la edificación; SAP2000.	45
Figura 9. Definición de las propiedades del concreto f°c = 210 kg/cm2; SAP2000	46
Figura 10. Definición de las propiedades del acero fy = 4200 kg/cm2; SAP2000	46
Figura 11. Definición de Columnas; SAP 2000.	47
Figura 12. Definición de Vigas; SAP 2000.	47
Figura 13. Definición de brazos rígidos; SAP2000.	48
Figura 14. Definición de diafragmas; SAP 2000.	48
Figura 15. Vista planta de la edificación; SAP2000.	49
Figura 16. Vista 3D de la edificación; SAP2000.	49
Figura 17. Espectrograma; SAP2000.	51
Figura 18. Definición del Material Rígido; según Barkan; SAP2000.	57
Figura 19. Definición de Zapata Rígida; según Barkan.	57
Figura 20. Dibujo de zapatas en la base; según Barkan; SAP2000.	58
Figura 21. Asignación de masas en zapatas; según Barkan, SAP2000	58
Figura 22. Asignamos coeficientes de rigidez a zapatas; según Barkan; SAP2000	59
Figura 23. Vista 3D de la edificación con base flexible; según Barkan; SAP2000	59
Figura 24. Fuerza normal máxima, para dirección X; SAP2000.	65
Figura 25. Fuerza cortante máxima, para dirección X; SAP2000	65
Figura 26. Momento máximo, para dirección X; SAP2000.	66
Figura 27. Fuerza normal máxima, para dirección Y; SAP 2000.	66

Figura 28. Fuerza cortante máxima, para dirección Y; SAP2000
Figura 29. Momento máximo, para dirección Y; SAP2000
Figura 30. Modal 1; Empotrado en la base; SAP2000
Figura 31. Desplazamiento de 1er nivel dirección X; Empotrado en la base; SAP2000 71
Figura 32. Desplazamiento de 2do nivel dirección X; Empotrado en la base; SAP2000 71
Figura 33. Desplazamiento de 3er nivel dirección X; Empotrado en la base; SAP2000 72
Figura 34. Desplazamiento de 4to nivel dirección X; Empotrado en la base; SAP2000 72
Figura 35. Desplazamiento de 1er nivel dirección Y; Empotrado en la base; SAP2000 73
Figura 36. Desplazamiento de 2do nivel dirección Y; Empotrado en la base; SAP2000 73
Figura 37. Desplazamiento de 3er nivel dirección Y; Empotrado en la base; SAP2000 74
Figura 38. Desplazamiento de 4to nivel dirección Y; Empotrado en la base; SAP2000 74
Figura 39. Fuerza normal máxima, para dirección X; Empotrado en la base; SAP2000 75
Figura 40. Fuerza cortante máxima, para dirección X; Empotrado en la base; SAP 2000 76
Figura 41. Momento máximo, para dirección X; Empotrado en la base; SAP 2000
Figura 42. Fuerza normal máxima, para dirección Y; Empotrado en la base; SAP2000 77
Figura 43. Fuerza cortante máxima, para dirección Y; Empotrado en la base; SAP2000 77
Figura 44. Momento máximo, para dirección Y; Empotrado en la base; SAP2000
Figura 45. Primer modo de vibración; según Barkan; SAP2000.
Figura 46. Desplazamiento primer nivel en dirección de X; según Barkan; SAP2000 81
Figura 47. Desplazamiento segundo nivel en dirección de X; según Barkan; SAP2000 81
Figura 48. Desplazamiento tercer nivel en dirección de X; según Barkan; SAP2000
Figura 49. Desplazamiento cuarto nivel en dirección de X; según Barkan; SAP2000 82
Figura 50. Desplazamiento 1er nivel en dirección de Y; según Barkan; SAP2000
Figura 51. Desplazamiento segundo nivel en dirección de Y; según Barkan; SAP2000 83
Figura 52. Desplazamiento tercer nivel en dirección de Y; según Barkan; SAP2000 84
Figura 53. Desplazamiento cuarto nivel en dirección de Y; según Barkan; SAP2000 84
Figura 54. Fuerza Normal máxima, para dirección X; según Barkan; SAP2000 85
Figura 55. Fuerza cortante máxima, para dirección X; según Barkan; SAP2000 86
Figura 56. Momento máximo, para dirección X; según Barkan; SAP2000
Figura 57. Fuerza normal máxima, para dirección Y; según Barkan; SAP2000

Figura 58. Fuerza cortante máxima, para dirección Y; según Barkan; SAP2000	87
Figura 59. Momento máximo, para dirección Y; según Barkan; SAP2000	88
Figura 60. Primer modo de vibración según Norma Rusa, SAP 2000.	90
Figura 61. Desplazamiento primer nivel en dirección X, según Noma Rusa, SAP2000	91
Figura 62. Desplazamiento segundo nivel en dirección X, según Norma Rusa, SAP2000.	91
Figura 63. Desplazamiento tercer nivel en dirección X, según Norma Rusa, SAP2000	92
Figura 64. Desplazamiento cuarto nivel en dirección X, según Norma Rusa, SAP2000	92
Figura 65. Desplazamiento primer nivel en dirección de Y, según Norma Rusa, SAP2000) 93
Figura 66. Desplazamiento 2do nivel en dirección de Y, según Norma Rusa, SAP2000	93
Figura 67. Desplazamiento tercer nivel en dirección de Y, según Norma Rusa, SAP2000.	94
Figura 68. Desplazamiento cuarto nivel en dirección de Y; Norma Rusa; SAP2000	94
Figura 69. Fuerza normal máxima, dirección X; según Norma Rusa; SAP2000	95
Figura 70. Fuerza cortante máxima, dirección X; según Norma Rusa; SAP2000	96
Figura 71. Momento máximo dirección X; según Norma Rusa, SAP2000	96
Figura 72. Fuerza Normal máxima, dirección Y; según Norma Rusa; SAP2000	97
Figura 73. Fuerza cortante máxima, dirección Y; según Norma Rusa; SAP2000	97
Figura 74. Momento máximo, dirección Y; según Norma Rusa; SAP2000	98
Figura 75. Modal 2; Empotrado en la base; SAP2000.	. 129
Figura 76. Modal 3; Empotrado en la base; SAP2000.	. 129
Figura 77. Modal 4; Empotrado en la base; SAP2000.	. 130
Figura 78. Modal 5; Empotrado en la base; SAP2000.	. 130
Figura 79. Modal 6; Empotrado en la base; SAP2000.	. 131
Figura 80. Modal 7; Empotrado en la base; SAP2000.	. 131
Figura 81. Modal 8; Empotrado en la base; SAP2000.	. 132
Figura 82. Modal 9; Empotrado en la base; SAP2000.	. 132
Figura 83. Modal 10; Empotrado en la base; SAP2000.	. 133
Figura 84. Modal 11; Empotrado en la base; SAP2000.	. 133
Figura 85. Modal 12; Empotrado en la base; SAP2000.	. 134
Figura 86. Segundo modo de vibración; según Barkan; SAP200.	. 134
Figura 87. Tercer modo de vibración; según Barkan; SAP2000	. 135

Figura 8	38. Cuarto modo de vibración; según Barkan; SAP2000 1	35
Figura 8	39. Quinto modo de vibración; según Barkan; SAP20001	36
Figura 9	00. Sexto modo de vibración; según Barkan; SAP20001	36
Figura 9	91. Séptimo modo de vibración; según Barkan; SAP2000 1	37
Figura 9	92. Octavo modo de vibración; según Barkan; SAP2000 1	37
Figura 9	93. Noveno modo de vibración; según Barkan; SAP2000 1	38
Figura 9	94. Decimo modo de vibración; según Barkan; SAP2000 1	38
Figura 9	95. Onceavo modo de vibración; según Barkan; SAP2000 1	39
Figura 9	96. Doceavo modo de vibración; según Barkan; SAP20001	39
Figura 9	97. Segundo modo de vibración según Norma Rusa, SAP2000	40
Figura 9	98. Tercer modo de vibración según Norma Rusa, SAP2000	40
Figura 9	99. Cuarto modo de vibración según Norma Rusa, SAP20001	41
Figura 1	00. Quinto modo de vibración según Norma Rusa, SAP2000	41
Figura 1	01. Sexto modo de vibración según Norma Rusa, SAP2000 1	42
Figura 1	02. Séptimo modo de vibración según Norma Rusa, SAP2000	42
Figura 1	03. Octavo modo de vibración según Norma Rusa, SAP2000	43
Figura 1	04. Noveno modo de vibración según Norma Rusa, SAP2000 1	43
Figura 1	05. Decimo modo de vibración según Norma Rusa, SAP2000 1	44
Figura 1	106. Onceavo modo de vibración según Norma Rusa, SAP2000	44
Figura 1	07. Doceavo modo de vibración según Norma Rusa, SAP2000	45

ÍNDICE DE ECUACIONES

Ecuación 1. Capacidad Portante	38
Ecuación 2. Periodo fundamental de vibración de la estructura	41
Ecuación 3. Factor de ampliación sísmica	41
Ecuación 4. Fuerza cortante en la base de la estructura	41
Ecuación 6. Cálculo de las fuerzas sísmicas por la altura de la edificación	43
Ecuación 7. Cálculo coeficiente D0 para Barkan – Savinov	54

ÍNDICE DE DIAGRAMAS DE FLUJO

Diagrama de Flujo 1. Técnicas de Recopilación de datos	32
Diagrama de Flujo 2. Procedimiento de recolección de datos	34
Diagrama de Flujo 3. Procedimiento de tratamiento de datos	36

ÍNDICE DE GRÁFICOS

Grafico 1. Comparación de Periodos de Vibración de la edificación.	99
Grafico 2. Comparación de desplazamiento en la dirección X (mm) de la edificación 1	00
Grafico 3. Comparación de desplazamiento en la dirección Y (mm) de la edificación 1	01
Grafico 4. Comparación de distorsiones en la dirección X (mm) de la edificación	02
Grafico 5. Comparación de distorsiones en la dirección Y (mm) de la edificación	03
Grafico 6. Comparación fuerzas internas en la dirección sismo X en la edificación	04
Grafico 7. Comparación fuerzas internas en la dirección sismo Y en la edificación	05

RESUMEN

Esta investigación, presenta el comportamiento estructural al incorporar la interacción suelo estructura de una edificación con modelos dinámicos con base flexible de: Empotramiento en la base, D.D. Barkan - O.A. Savinov y Norma Rusa SNIP 2.02.05-87, aplicando periodos de vibración, desplazamientos, distorsiones, fuerzas internas máximas en las direcciones X -Y; con la finalidad de determinar la variación del comportamiento estructural incorporando la interacción suelo-estructura de una edificación de cuatro niveles en la Molina - Baños del Inca - Cajamarca 2021, utilizando el software SAP 2000, se pretende dar mayor importancia en el comportamiento y diseño de edificaciones considerando la interacción de suelo, ingeniería sismorresistente y estructuras. El cual es fundamental para el análisis de la base de fundación debido a que el suelo ayuda a disipar la energía liberada por los sismos. Los resultados muestran que el efecto de interacción suelo - estructura, nos permite determinar con más precisión el comportamiento real de una edificación durante un movimiento sísmico, ya que al incorporar todas las características de la estructura y de la demanda sísmica, el efecto interacción suelo-estructura produce que los edificios presenten mejor respuesta estructural siempre y cuando cumplan con los requerimientos mínimos de la Norma Sismoresistente E.0.30, la comparación de los períodos de vibración de la edificación presenta una variación entre modelos: Empotrado versus Barkan 8% y Norma Rusa 7%, Barkan versus norma rusa 1%. Los modelos dinámicos más similares para interacción suelo estructura son Barkan – Sanoviv y Norma Rusa presentan una variación de <5% ya que son muy similares.

Palabras claves: Interacción de suelo - estructura, ingeniería sismorresistente, modelo dinámico y respuesta sísmica.

1. INTRODUCCIÓN

1.1. Realidad problemática

En el Perú, en la mayoría de las edificaciones no se realiza el estudio de mecánica de suelos, tampoco se diseñan aplicando la Ingeniería Sismoresistente, esto es una amenaza para las construcciones ante cualquier fenómeno natural que se presente; ya que nuestra circunscripción peruana está situada sobre un cinturón de fuego del Pacífico en la placa tectónica Sudamericana. Donde la placa de Nazca en la colisión subduce a la Sudamericana generando sismos los cuales afectan a las construcciones **Almazán** (2003).

Quito
Guayaquil

A M A Z O Placa
S I N
PER U Sudamericana

Placa
Nazca

Sismos producidos en la zona de subducción.

Sismos producidos en fallas locales.

Figura 1.Subducción de Placas Tectónicas y generación de Sismos.

Nota. Geólogo Sergio Almazán (2003).

En nuestro país, la información científica es importante, ya que evidencia la presencia de áreas con acumulación de energía sísmica en la zona de contacto entre las placas tectónicas Nazca y Sudamericana. Se ubican, frente a la región central de Perú y cuya liberación de energía sísmica, se estima que podría generar un sismo de magnitud menor o igual a 8.8 Mw. De acuerdo al mapa de zonificación sísmica para la demarcación peruana, la ciudad de Cajamarca está ubicada dentro de la zona sísmica 3, donde los sismos pueden aparecer hasta de moderada a alta magnitud **Juber (2015).**

ZONA

4 0.45

3 0.35

2 0.25

1 0.10

Figura 2. *Mapa de zonificación sísmica.*

Nota. Juber (2015)

La zona sísmica en Perú, tiene que ver en gran medida con la calidad del suelo, esto hace que aumente la aceleración sísmica y el daño sea mayor, en muchos lugares de nuestro país existen suelos de resistencia pobre, placas tectónicas cercanas (Placa de Nazca y Placa sudamericana) en el cinturón del pacifico, incluso complejidad en la superficie del pavimento. Estas zonas con sobresaliente amenaza sísmica, son ocupadas gran parte por la población, el cual contra un movimiento sísmico, los daños serían irremediables **Valderrama & Meza** (2014)

El comportamiento dinámico de las estructuras en nuestro país, está ligado a su nivel de fijación con el suelo de cimentación, el sistema empotrado en su base, espera que los movimientos de la base de la estructura sean iguales a los del pavimento de empinamiento. Cuando esta condición no se cumple, los desplazamientos adicionales que produzcan en la almohadilla del establecimiento inducen un comportamiento distinto al esperado para la estructura empotrada. **Garay (2017).**

Teniendo en cuenta a **Villareal** (2013), en su libro "Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas". Nos presenta algunos modelos que nos permiten idealizar matemáticamente la interacción suelo-estructura, de los cuales se ha tomado el Modelo Dinamico D.D. Barkan – O.A. Savinov y el modelo de la Norma Rusa Snip 2.02.05-87, como se muestra en la siguiente tabla.

Ocas Llanos, M López Campos, W

Tabla 1. *Sismicidad histórica.*

Comportamiento estructural al incorporar la interacción suelo-estructura de una edificación de cuatro niveles en la Molina - Cajamarca.

Año	Mes	Intensidad	Epicentro
1606	23 Marzo	-	Lambayeque (Zaña)
1614	14 Febrero	VIII	Trujillo
1725	6 Enero	-	Trujillo
1759	2 Setiembre	VI	Lambayeque
1814	10 Febrero	VII	Piura
1857	20 Agosto	-	Piura
1877	26 Noviembre	-	Chachapoyas
1906	28 Setiembre	VI-VII	(Trujillo-Cajamarca)
1907	20 Junio	IV	Nor - Este del Perú
1912	24 Junio	IX-X	Piura
1917	20 Mayo	VI	Trujillo
1928	14 Mayo	X	Chachapoyas
1937	21 Junio	VII	Nor - Este del Perú
1951	8 Mayo	IV	Nor - Este del Perú
1953	12 Diciembre	VII-VIII	Nor - Este del Perú-Sur Ecuador
1955	9 Marzo	-	Cajamarca (San Ignacio)
1955	3 Mayo	V	Chimbote
1957	8 Agosto	V-VI	Nor - Este del Perú
1960	30 Noviembre	-	Nor - Este del Perú
1963	30 Agosto	VIII	Nor - Este del Perú
1969	3 Febrero	VII	Nor - Este del Perú
1970	9 Diciembre	VII	Nor - Este del Perú
1971	10 Julio	-	Sullana
2019	26 Mayo	VI-VIII	Loreto

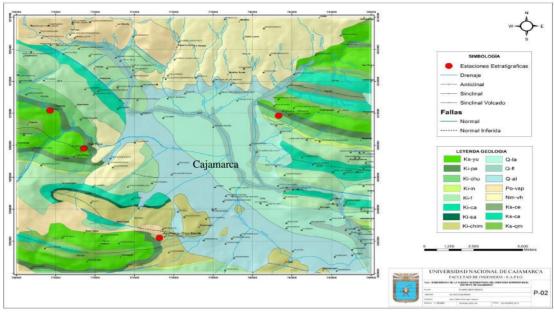
Nota. INDECI (2020).

Podemos afirmar que, en Perú toda actividad sísmica origina pérdida de vidas y daños a las edificaciones; ya sean viviendas, centros educativos, hospitales, entre otros, es por ello el análisis y diseño de los edificios, debemos considerar como un factor principal, el momento de plantear la construcción; para así tener un buen comportamiento sísmico ante la ocurrencia de un evento natural **Almazán** (2003).

INDECI (2007) resalta que, el terremoto registrado en la ciudad de Pisco en el año 2007, originó daños considerables a varias construcciones de la ciudad, en la siguiente tabla se muestra la evaluación de daños de las edificaciones de viviendas en las regiones: Ica, Lima, Junín, Ayacucho y Huancavelica.

Tabla 2. *Evaluación de daños a las viviendas.*

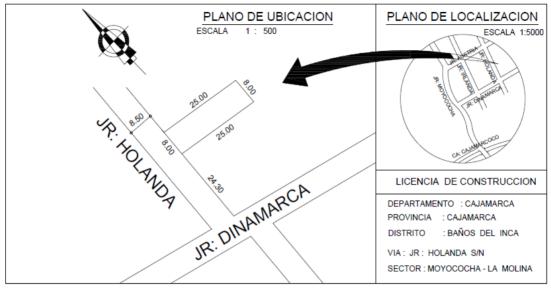
Danantamanta	Familias		Viviendas	
Departamento	Damnificados	Afectadas	Destruida	Afectada
Ica	45,403	6,308	45,403	6,308
Lima	5,784	3,743	5,784	3,743
Junin	4	4	4	4
Ayacucho	92	490	92	490
Huancavelica	5,080	4,418	5,080	4,418
Total	56,363	14,963	56,363	14,963


Nota. INDECI (2007).

En la región Cajamarca, afloran litologías de rocas sedimentarias del cretáceo (Areniscas, Calizas, Margas y Lutitas), rocas volcánicas del Paleógeno-Neógeno (Tobas, Ignimbritas, Andesitas, Traquitas, Dacitas, etc.) y depósitos cuaternarios que principalmente está constituida la ciudad de Cajamarca como se muestra en la siguiente figura. **Rodriguez (2016)**

Figura 3. Plano Geológico Cajamarca.

Comportamiento estructural al incorporar la interacción suelo-estructura de una edificación de cuatro niveles en la Molina - Cajamarca.



Nota. Rodriguez (2016)

La presente investigación se realizará en la zona norte del Territorio Peruano, comprendido en departamento y provincia de Cajamarca, distrito de Baños del Inca sector La Molina. Se basa en determinar el comportamiento sísmico de una edificación en el sector La Molina, mediante la determinación de periodos de vibración, frecuencias, desplazamientos laterales y fuerzas internas de los elementos estructurales y empotramiento en la base, D.D. Barkan – O.A. Savinov y Norma Rusa SNIP 2.02.05-87, aplicando periodos de vibración, desplazamientos, distorsiones, fuerzas internas máximas en las direcciones X –Y; con la finalidad de determinar la variación del comportamiento estructural incorporando la interacción suelo-estructura de una edificación de cuatro niveles en La Molina - Baños del Inca – Cajamarca 2021.

Figura 4. *Localización y ubicación de la zona de estudio.*

Nota. Elaboración Propia, (2021).

1.2. Formulación del problema

¿En cuánto varía el comportamiento estructural de una edificación de cuatro niveles al incorporar la interacción suelo - estructura?

1.3. Justificación

En esta investigación se realiza la comparación estructural de una edificación aplicando modelos dinámicos Internacionales de Barkan – Savinov, Norma Rusa y modelo empotrado en las bases para dar mayor importancia en el diseño y comportamiento estructural de un edificio considerando la interacción suelo-estructura. En nuestro país tenemos zonas de alta sismicidad, por esta razón esta investigación pretende dar importancia en el diseño sismo resistente y análisis del comportamiento estructural de la edificación considerando la interacción suelo-estructura ante una acción sísmica, ya que este efecto influirá directamente en la respuesta estructural.

Con el desarrollo de esta investigación se enfoca a la importancia del efecto de interacción suelo - estructura en el análisis y diseño sismorresistente de futuras edificaciones de tal manera que garantice la durabilidad y seguridad estructural, además que tener en cuenta los procedimientos y metodologías de un diseño sismorresistente (análisis estático y análisis dinámico) según especificaciones establecidas por la normativa peruana, así como también incorporar el análisis sísmico con los modelos dinámicos de Barkan – Savinov y la Norma Rusa; además se presenta las pautas de configuraciones básicas para el modelamiento de los edificios en el software SAP 2000.

1.4. Limitaciones

La principal limitación que se tiene para el desarrollo de esta investigación es que el efecto de interacción suelo – estructura no está considerado en la normativa peruana. A pesar de estas limitaciones se realizó el estudio planteado ya que existen investigaciones realizadas por el Dr. Genner Villarreal Castro sobre interacción suelo – estructura. Además, no se cuenta con ensayos para determinar el módulo de Poisson y coeficiente de balasto, el cual se usará las tablas bibliográficas.

1.5. Objetivos

1.5.1. Objetivos generales

Determinar la variación del comportamiento estructural al incorporar la interacción suelo-estructura de una edificación de cuatro niveles en la Molina - Baños del Inca - Cajamarca.

1.5.2. Objetivos específicos

- Determinar el comportamiento estructural mediante los periodos de vibración, desplazamientos, distorsiones, fuerzas internas máximas en las direcciones X -Y al incorporar la interacción suelo - estructura de la edificación.
- Incorporar la interacción suelo estructura en el análisis sísmico estructural de la edificación utilizando los modelos dinámicos de D. D. Barkan – O. A. Savinov y Norma Rusa SNIP 2.02.05-87.
- Describir y comparar los resultados obtenidos en los análisis de los modelos dinámicos.

1.6. Hipótesis

Los efectos de la incorporación de interacción suelo – estructura varían un 10% en el comportamiento estructural de una edificación de cuatro niveles.

1.6.1. Identificación de variables

a. Variable independiente

Incorporación de interacción suelo estructura y el empotramiento de la base.

b. Variable dependiente

Comportamiento estructural considerando y sin considerar la interacción suelo - estructura.

1.6.2. Operacionalización de variables

Tabla 3. *Operacionalización de Variables Independientes.*

Variable Independiente	Definición	Dimenciones	Indicadores
Periodos de vibración	vibración Parametros que nasas de entrepiso, definen las respuesta	Análisis de la edificación con base empotrada	Datos obtenidos del análisis sismico según norma de diseño sismorresistente E.030.
fuerzas internas		Análisis de la edificación con Barkan- Savinov Análisis de la edificación con Norma Rusa	Datos obtenidos según fórmulas de D.D. Barkan-Savinov y norma Rusa además valores de mecánica de suelos .

Nota. Elaboración propia (2021).

Tabla 4. *Operacionalización de Variables Dependientes.*

Variable Dependiente	Definición	Dimenciones	Indicadores
		Análisis sísmico estático	
Respuesta estrcutural considerando y sin considerar la interacción suelo-estructura.	Reacción de la estructura al ser sometida fuerzas externas generadas por un fenómeno natural. (Aquino Carmona, 2015)	considerando y sin considerar la interacción suelo- estrcutura. Análisis sísmicos modelos dinámicos Barkan- Sanoviv y Norma Rusa considerado	Control de periodos de vibración, masas de entrepiso desplazamientos, distorsiones y fuerzas internas máximas. máximas.

Fuente: Elaboración propia (2021).

1.7. Delimitación

Para la presente investigación no se realizó el estudio de mecánica de suelos de la edificación propia, debido a que se no contaba con laboratorio por temas de pandemia COVID-19, se utilizó los datos del estudio de suelos del expediente técnico de Santa Bárbara: "Construcción del sistema de alcantarillado sanitario del centro poblado Santa Bárbara y anexos, distrito de los Baños del Inca - Cajamarca", pero se recomienda para las futuras edificaciones realizarlo, ya que es muy fundamental para el diseño estructural y análisis sismoresistente.

Con respecto a los datos del coeficiente de balasto, módulo de Poisson no se realizó los ensayos por falta de laboratorio por restricción de pandemia COVID-19, el cual se procederá a obtener datos de tablas publicadas en la literatura.

2. METODOLOGÍA

2.1. Tipo de investigación.

2.1.1. De acuerdo al propósito de la investigación

Es una investigación aplicada, porque busca poner en práctica la teoría para determinar: "El Comportamiento Estructural considerando la interacción suelo-estructura de una edificación de cuatro niveles en La Molina -Cajamarca".

2.1.2. Según el nivel de conocimiento

La presente investigación es descriptiva, cuantitativa y transversal; porque permite calcular el análisis sísmico del comportamiento estructural de la edificación considerando interacción suelo-estructura, con una base empotrada y base flexible con los modelos dinámicos D.D. Barkan – Savinov y Norma Rusa SNIP 2.02.05-87.

2.1.3. Según la naturaleza de datos

La investigación está dentro del paradigma positivista (de carácter cualitativo - cuantitativo) porque nos permite dar mayor seguridad a la edificación ante un evento sísmico ya que la interacción suelo – estructura ayuda a disipar la energía a través de las fundaciones.

2.2. Población y muestra.

2.2.1. Población

La población para la presente investigación está constituida por las edificaciones entre 3 y 4 niveles, en el sector La Molina-Baños del Inca - Cajamarca, el cual nos permite determinar el análisis y comportamiento estructural considerando la interacción suelo-estructura.

Figura 5. *Población y Muestra.*

Nota. Bing Maps

2.2.2. Muestra.

La técnica de muestreo utilizada es aleatoria, por conveniencia se ha considerado una edificación de 04 niveles en la manzana H, para el modelamiento de la estructura y análisis sísmico considerando interacción suelo - estructura.

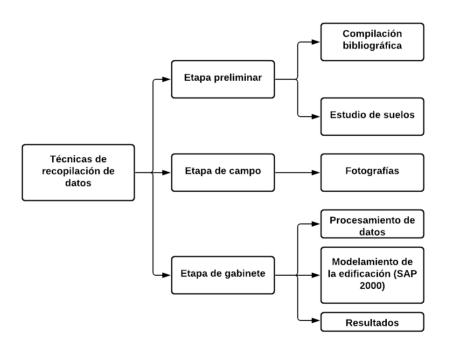
2.3. Técnicas y materiales

2.3.1. Técnicas de recolección de datos

Las técnicas de recopilación de datos para esta investigación se realizan de la siguiente manera:

a. Etapa preliminar de gabinete

Se realiza la compilación de información bibliográfica, expediente técnico, planos, estudio de mecánica de suelos existentes de la zona y tecnología disponible.


b. Etapa de campo

Se realizará la visita técnica (Fotografías).

c. Etapa de gabinete

Se realiza el modelamiento de la edificación con software SAP 2000, para luego hacer el análisis sísmico por los modelos dinámicos de D. D. Barkan – O. A. Savinov y Norma Rusa SNIP 2.02.05-87 y Normas Peruanas E.020, E.030, E.060 y E.070 como se muestra en el siguiente diagrama de Flujo.

Diagrama de Flujo 1. Técnicas de Recopilación de datos

Nota. Elaboración propia, (2021).

2.3.2. Materiales de recolección de datos.

Para la recolección de datos se utilizó lo siguiente:

Tabla 5. *Herramientas, equipos y útiles de recolección de datos.*

Herramientas	Equipos	Útiles	
Palana	Cámara	Libreta de Campo	
Picota	GPS Navegatorio	Protáctor 1/1,000	
Flexómetro	Computadora	Lápiz 2B, Lapiceros	

Nota. Elaboración propia, (2021).

2.4. Procedimiento de recolección de datos.

Para esta investigación se realizará de la siguiente manera:

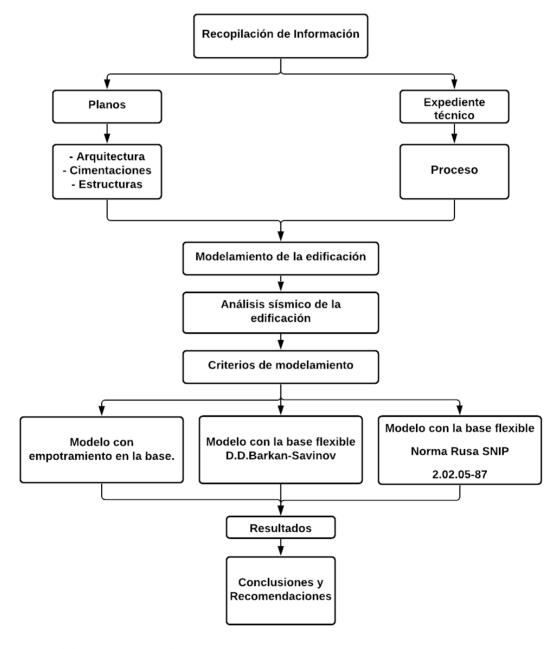
2.4.1. Recopilación de información.

Consiste en la búsqueda, revisión y análisis de la información existente sobre los trabajos realizados en la zona, así como de estudios que comprenden el mismo fundamento en otras partes del país y el mundo, para esta investigación lo más importante es contar con: expediente técnico y planos (arquitectura, cimentaciones y estructuras).

2.4.2. Modelamiento de la edificación.

Se realiza con el software SAP 2000, considerando los requisitos mínimos expresados en las Normas Peruanas E.020, E.030, E.060 y E.070.

2.4.3. Análisis sísmico de la edificación.


Se realiza el análisis sísmico dinámico con los modelos de empotrado en las bases, Barkan y Norma Rusa, se compara los resultados de periodos de vibración, desplazamientos, distorsiones, fuerzas internas máximas.

2.4.4. Criterios de modelamiento.

Se realiza el análisis del comportamiento estructural considerando la interacción suelo – estructura de la edificación teniendo en cuenta el modelo con empotramiento en la base, Modelo con la base flexible de D.D. Barkan - Savinov y Norma Rusa SNIP 2.02.05-87.

Diagrama de Flujo 2. Procedimiento de recolección de datos

Nota. Elaboración propia, (2021)

2.5. Procedimiento de tratamiento y análisis de datos

2.5.1. Procedimiento de tratamiento de datos

Se realizará de la siguiente manera:

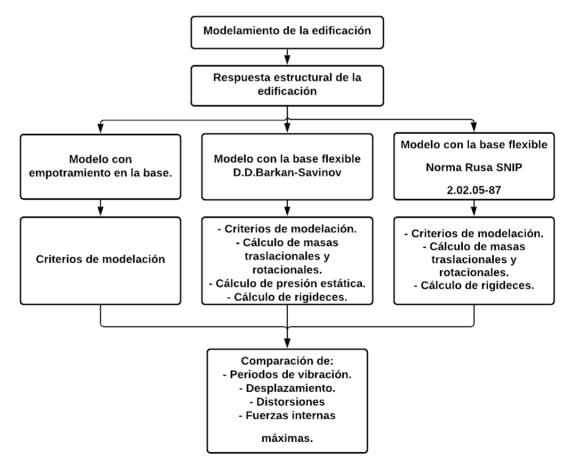
a. Modelamiento de edificación

Se realiza con el software SAP 2000, se ingresará los datos de acuerdo a la ciudad y zona, considerando las Normas Peruanas E.020, E.030, E.060 y E.070.

b. Respuesta estructural de la edificación

Una vez modelada la edificación, se realiza la comparación de datos considerando la interacción suelo - estructura del modelo con empotramiento en la base, modelo con la base flexible D.D. Barkan - Savinov y Norma Rusa SNIP 2.02.05-87.

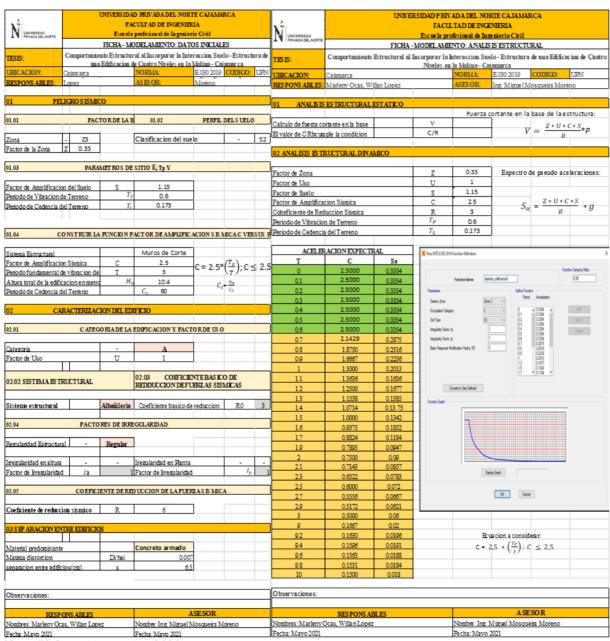
b.1. Modelo con empotramiento en la base: Se tiene en cuenta el tratamiento de datos según las Normas Peruanas para el criterio de modelamiento de la edificación y poder comparar los periodos de vibración, desplazamientos, distorsiones y fuerzas internas máximas con los modelos con la base flexible D.D. Barkan - Savinov y Norma Rusa SNIP 2.02.05-87.


b.2. Modelo con la base flexible D.D. Barkan - Savinov: Se tiene en cuenta el criterio de modelamiento, cálculo de masas, presión estática y rigideces, para luego comparar los periodos de vibración, desplazamientos, distorsiones y fuerzas internas máximas con el modelo con empotramiento en la base y modelo con la base flexible Norma Rusa SNIP 2.02.05-87.

b.3. Modelo con la base flexible Norma Rusa SNIP 2.02.05-87:

Para este modelo también se tiene en cuenta el criterio de modelamiento, cálculo de masas, presión estática y rigideces, para luego comparar los periodos de vibración, desplazamientos, distorsiones y fuerzas internas máximas con el modelo con empotramiento en la base y modelo con la base flexible D.D. Barkan-Savinov

Diagrama de Flujo 3. Procedimiento de tratamiento de datos


Nota. Elaboración propia (2021)

2.5.2. Incorporación de recolección de datos

Se presentan los formatos para la recolección de datos para el análisis sismo de la edificación.

Figura 6. *Instrumentos de recolección de datos.*

2.5.3. Análisis de datos

El análisis de datos se realiza desde los datos de la mecánica de suelos, el cual se calcula

su capacidad portante y coeficiente de balasto. Además, a partir del modelamiento de la

edificación en software SAP 2000 considerando los parámetros de las normas peruanas,

se realiza el análisis sísmico y comparación estructural de periodos de vibración, derivas

máximas y fuerza internas máximas con los siguientes métodos:

Modelo con empotramiento en la base.

Modelo con la base flexible D.D. Barkan - Savinov.

Modelo con la base flexible Norma Rusa SNIP 2.02.05-87.

2.6. Procedimiento de la investigación

2.6.1. Mecánica de suelos

Se presentan los datos más importantes que se usa para el análisis del comportamiento

estructural de la interacción suelo - estructura, datos que son del expediente técnico de

Santa Bárbara: "Construcción del sistema de alcantarillado sanitario del centro poblado

Santa Bárbara y anexos, distrito de los Baños del Inca - Cajamarca".

a. Capacidad portante

Se calcula de siguiente manera:

 $qadm = \frac{qd}{FS}$ Ecuación 1. Capacidad Portante

Donde:

q_d: Carga límite

q_{adm}: Carga admisible

FS: Factor de seguridad, Terzaghi recomienda FS no debe ser < 3

Tabla 6.Capacidad portante del suelo.

Capacidad portante del suelo							
Carga Límite qd 2.10 kg/ cm2							
Carga admisible	q_{adm}	0.70 kg/ cm^2					
Factor de seguridad	FS	3					

Nota. Municipalidad Baños del Inca (2010).

b. Coeficiente de balasto

La clasificación según la Norma E.030 es S2 (suelos intermedios - suelo cohesivo compacto).

Para el coeficiente de balasto recurrimos la tabla 2 del libro de Interacción Sísmica suelo-estructura en edificaciones con zapatas aisladas de Genner Villareal (2006), obteniendo un C0 = Balasto 2.00 kg/cm3, además se tiene el coeficiente de poisson del suelo μ = 0.30, según tabla de Antonio Jaramillo (mayo 2018). Ver tablas en anexos.

2.6.2 Metrado de cargas de la edificación

a. Caracterización de la edificación

La edificación tiene las siguientes medidas:

Tabla 7.Capacidad de áreas totales.

Área	
200.00 m2	
564.00 m2	
56.00 m2	
	200.00 m2 564.00 m2

Tabla 8. *Ambientes y áreas de la edificación por nivel.*

Nivel	Distribución	Área Total Techada
Primer	Sala, comedor, cocina, comedor del diario, estudio, garaje, 01 baño y lavandería.	144.00 m ²
Segundo	03 dormitorios, 01 estudio, 01 estar-TV y 03 baños	140.00 m^2
Tercer	Sala, comedor, cocina, lavandería, 03 baños y 03 dormitorios.	140.00 m^2
Cuarto	Sala, comedor, cocina, lavandería, 03 baños y 03 dormitorios.	140.00 m ²

Nota. Elaboración propia (2021).

b. Peso de la edificación considerando carga muerta y viva.

Se presentan los datos más importantes que se usa para el análisis sísmico de la edificación (interacción suelo-estructura). El detalle de los cálculos se muestra en anexos.

Tabla 9.Cargas de la edificación por nivel.

Nivel	Carga muerta	Carga viva	Peso (Tn)
Nivel 1	114,50	20,11	134.61 T
Nivel 2	123,68	20,63	144.31 T
Nivel 3	125,44	20,63	146.06 T
Nivel 4	125,44	10,31	135.75 T
Total			560.73 T

Nota. Elaboración propia (2021).

2.6.3 Modelamiento sísmico estático de la edificación

a. Periodo fundamental de vibración de la estructura.

Según Norma E.030-2019.

$$T = \frac{h_n}{c_T}$$
..... Ecuación 2. Periodo fundamental de vibración de la estructura

Donde:

h_n: Altura total de la edificación en metros

C_T: Coeficiente para estimar el periodo fundamental de una edificación

Calculamos:

$$h_n = (4*2.6) \text{ m} = 10.4 \text{ m}$$

$$C_T = 60$$

según Norma E.030-2019

$$T = \frac{10.4}{60} = 0.173$$

b. Factor de ampliación sísmica

Según Norma E.030-2019, aplicamos la siguiente fórmula.

T < TP, C = 2.5... Ecuación 3. Factor de ampliación sísmica

Tenemos un tipo de suelo intermedio S2, los datos según E.030-2019 son:

$$T = 0.173 \text{ y } TP = 0.6$$

$$1.173 < 0.6$$
 entonces $C = 2.5$

c. Fuerza cortante en la base de la estructura

Según Norma E.030-2019, aplicamos la siguiente fórmula.

$$V = \frac{Z*U*C*S}{R} * P \dots Ecuación 4.$$
 Fuerza cortante en la base de la estructura

Coeficiente básico de reducción de las fuerzas sísmicas

$$R = R0 * Ia * I...$$
 Ecuación 5. Coeficiente básico de reducción de las fuerzas

sísmicas

Donde:

Tabla 10.Datos según norma E.30.

Según norma E.30					
Z	0.35	Zona 3 (Baños del Inca)			
U	1	Factor de uso (edificación)			
C	2.5	Ampliación sísmica			
S	1.15	Suelo S2			
P	560.73	Peso sísmico (toneladas)			
$R = R0 \cdot \mathbf{Ia} \cdot \mathbf{Ip}$	3	Factor de reducción			
R0 =	3	Coeficiente básico de reducción			
Ia =	1	Regular en altura			
Ip =	1	Regular en planta			

Nota. Elaboración propia (2021).

Por lo tanto:

$$\frac{C}{R} \ge 0.125$$

Calculamos:

$$V = \frac{0.35 * 1 * 2.5 * 1.15}{3} * 560.73$$

$$v = 188.078$$

Entonces:

$$\frac{c}{R} = 0.833$$
 $\frac{c}{R} = 0.833 \ge 0.125, Cumple$

d. Cálculo de las fuerzas sísmicas por la altura de la edificación

 $\alpha_i = \frac{P_i(h_i)^k}{\sum_{j=l}^m P_j(h_j)^k}$Ecuación 6. Cálculo de las fuerzas sísmicas por la altura de la edificación

Tabla 11.Cálculos de fuerzas sísmicas.

T= 0.173<0.5 Entonces k = 1					
Q 1 =	0.096				
Q .2 =	0.206				
Q .3 =	0.312				
C .4 =	0.387				
Fuerz	as sismicas				
F1 =	18.027 T				
F2 =	38.651 T				
F3=	58.682 T				
F4 =	72.718 T				

Nota. Elaboración propia (2021).

e. Cálculo de la excentricidad accidental

Tabla 12.Cálculos excentricidad de la edificación.

e _x =	0.05 x 20.1	=	1
$\mathbf{e}_{y} =$	0.05 x 8	=	0.4

Nota. Elaboración propia (2021).

f. Especificaciones técnicas de los materiales

2 Concreto

Resistencia a la compresión: f'c: 210 kg/cm².

Peso por unidad de volumen: $\gamma = 2.4 \text{ T/m}^3$.

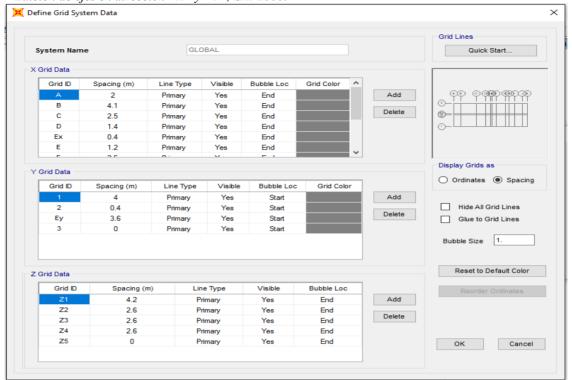
Módulo de elasticidad: $Ec = 2173706.512 \text{ T/m}^2$.

Módulo de Poisson: μ=0.20

Acero

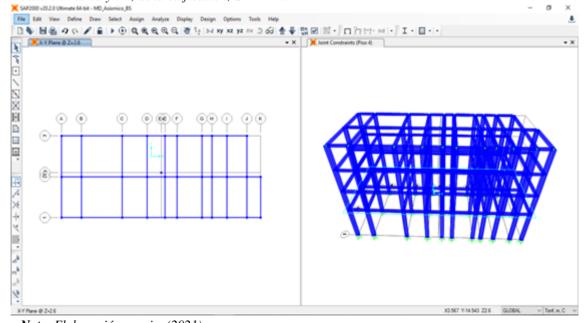
Esfuerzo de fluencia: fy=4200.00 kg/cm2.

Módulo de elasticidad: Es=21x10^6 Tn/m².

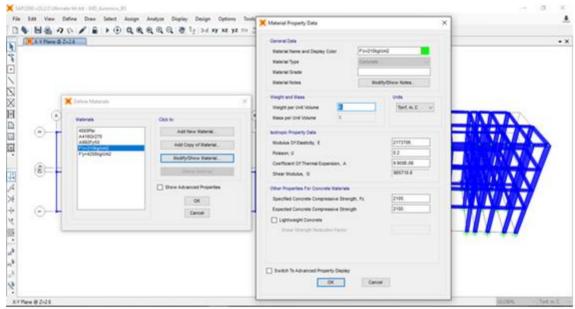

g. Modelamiento de la edificación empotrada en la base

El modelado de la edificación se realiza en el software SAP 2000, direccionando los ejes.

Figura 7


Edición de ejes en dirección "X" y "Y"; SAP2000.

Nota. Elaboración propia, (2021)


Figura 8.

Vista en Planta y 3D, de la edificación; SAP2000.

Figura 9.Definición de las propiedades del concreto f'c = 210 kg/cm2; SAP2000.

Nota. Elaboración propia (2021)

Figura 10.Definición de las propiedades del acero fy = 4200 kg/cm2; SAP2000.

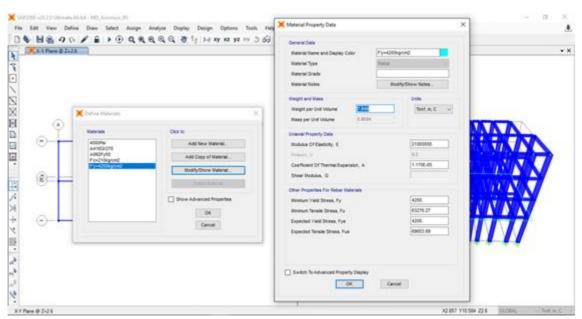
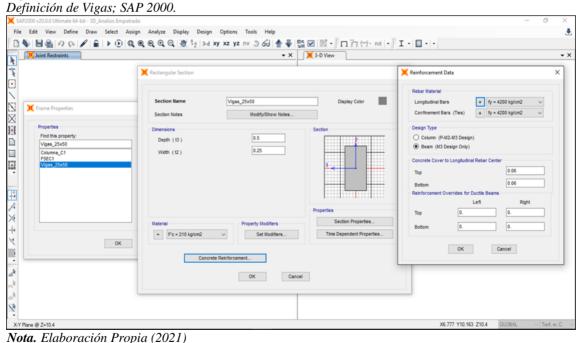
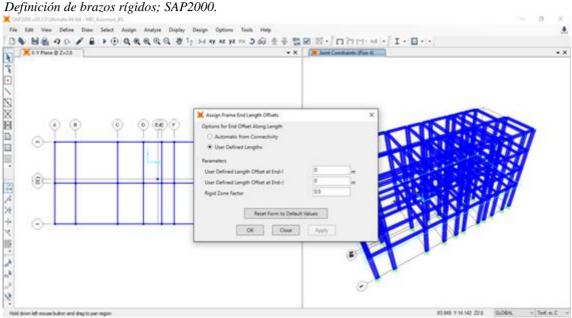


Figura 11.

Definición de Columnas; SAP 2000. File Edit View Define Draw Select Assign Analyze Display Design Options Tools Help Joint Restraints ▼ X JE 3-D View + fy = 4200 kp/cm2 Longitudinal Bars Confinement Bars (Ties) + fy = 4200 kg/cm2 /四区暦回回職・ X Frame Properties (P.M2-M3 Design Modify/Show Notes O Beam (M3 Design Only) 0.15 ● Ties O Circular Width (t2) Number of Longit Bars Along 3-dir Face Number of Longit Bars Along 2-dir Face Longitudinal Bar Size Confinement Bars Confinement Bar Size OK + Fc + 210 kg/cm2 Longitudinal Spacing of Confinement Bars Number of Confinement Bars in 3-dir Number of Confinement Bars in 2-dir OK Cancel OK Reinforcement to be Designed Cancel X-4,474 Y11.596 Z10.4 GLOBAL

Nota. Elaboración Propia (2021)

Figura 12.

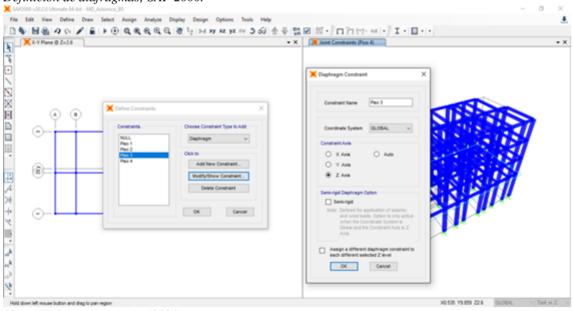


Figura 13.

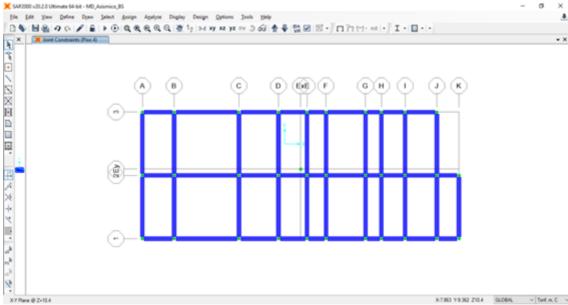

Nota. Elaboración propia (2021)

Figura 14.Definición de diafragmas; SAP 2000.

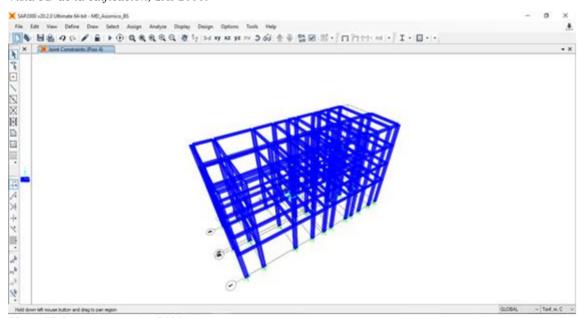


Figura 15. *Vista planta de la edificación; SAP2000.*

Nota. Elaboración propia (2021)

Figura 16. *Vista 3D de la edificación; SAP2000.*

2.6.4 Modelamiento sísmico dinámico de la edificación

a. Cálculo de masas a nivel de entrepisos

Tabla 13.Cálculo de masas traslacionales y rotacionales de entrepiso

Nivel	Peso	Masa traslacional	Masa rotacional	
	(Tn)	$(Tn.s^2/m)$	$(Tn.s^2/m)$	
Nivel 1	134.61	13.722	612.214	
Nivel 2	144.31	14.71	656.293	
Nivel 3	146.06	14.889	664.29	
Nivel 4	135.75	13.838	617.382	

Nota. Elaboración propia (2021).

b. Cálculo del factor de escala

$$F.E. = ZUSg/R$$

$$F.E. = 1.316$$

Siendo:

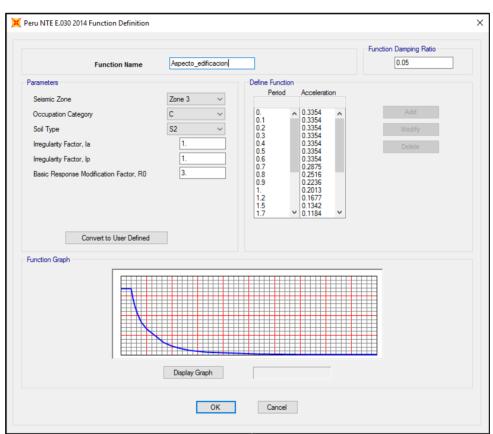
$$U = 1.00$$
 (Edificación)

$$S = 1.15$$
 (Suelo S2)

$$g = 9.81 \text{ (m/s2)}$$

$$R = R_0 \cdot I_a \cdot I_p = 3 * 1 * 1 = 3$$

Donde:


Ro = 3 Albañilería armada o confinada

Ia = 1 Regula la Altura

Ip = 1 Regular en planta

c. Cálculo del espectro de diseño según norma E.030

Figura 17. *Espectrograma; SAP2000.*

2.6.5 Modelamiento con base flexible D.D. Barkan – O.A. Savinov

a. Cálculo de masas traslacionales de zapatas según Barkan - Savinov.

Tabla 14.Cálculo de masas traslacionales de zapatas según modelo Barkan.

Zapata	a (m)	b (m)	c (m)	Peso (Tn)	Mx (Tn.s2/m)	My (Tn.s2/m)	Mz (Tn.s2/m)
Z-1	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z -2	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-3	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-4	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-5	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-6	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-7	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-8	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z -9	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-10	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-11	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-12	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-13	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-14	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-15	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-16	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-17	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-18	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-19	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-20	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-21	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-22	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-23	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-24	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-25	1.20	1.20	0.60	2.074	0.211	0.211	0.211
Z-26	1.50	1.50	0.60	3.240	0.330	0.330	0.330
Z-27	1.50	1.50	0.60	3.240	0.330	0.330	0.330
Z-28	1.50	1.50	0.60	3.240	0.330	0.330	0.330

 ${\it Nota.}\ Elaboraci\'on\ propia\ (2021).$

b. Cálculo de masas rotacionales de zapatas según Barkan - Savinov.

Tabla 15.Cálculo de masas rotacionales de zapatas según modelo Barkan

Zapata	Mt (m)	b2+c2	a2+c2	a2+b2	Mφx (Tn.s2/m)	Mφy (Tn.s2/m)	Mφz (Tn.s2/m)
Z -1	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-2	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-3	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z -4	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-5	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-6	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z -7	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-8	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z -9	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-10	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-11	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-12	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-13	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-14	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-15	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-16	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-17	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-18	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-19	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-20	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-21	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-22	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-23	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-24	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-25	0.21	1.80	1.80	2.880	0.051	0.051	0.051
Z-26	0.33	2.61	2.61	4.500	0.102	0.102	0.124
Z-27	0.33	2.61	2.61	4.500	0.102	0.102	0.124
Z-28	0.33	2.61	2.61	4.500	0.102	0.102	0.124

c. Cálculo de presión estática según Barkan - Savinov.

Tabla 16.Cálculo de presión estática según modelo Barkan

	Presión		Presión
Zapata	estática	Zapata	estática
	(kg/cm2)		(kg/cm2)
Z -1	1.535	Z-15	1.535
Z -2	1.535	Z-16	1.535
Z -3	1.535	Z-17	1.535
Z -4	1.535	Z-18	1.535
Z-5	1.535	Z-19	1.535
Z -6	1.535	Z -20	1.535
Z -7	1.535	Z -21	1.535
Z-8	1.535	Z-22	1.535
Z -9	1.535	Z-23	1.535
Z-10	1.535	Z-24	1.535
Z -11	1.535	Z-25	1.535
Z-12	1.535	Z-26	1.616
Z-13	1.535	Z-27	1.616
Z-14	1.535	Z-28	1.616

Nota. Elaboración propia (2021).

d. Cálculo coeficiente D0 según Barkan - Savinov.

Se cálcula con la siguiente fórmula:

 $D0 = [(1-\mu)/(1-0.5\mu)]*C0)...$ **Ecuación 7.** Cálculo coeficiente D0 para Barkan – Savinov.

Donde:

C0 = Balasto 2.00 kg/cm3 segun la tabla N 2 del libro de Interaccion Sismica Suelo-Estructura en Edificaciones con Zapatas Aisladas del Genner Villareal (2006) y coeficiente de poisson del suelo μ = 0.30, según tabla de Antonio Jaramillo. Ver tablas en anexos.

Entonces calculamos:

Cálculo de rigideces para Barkan – Savinov.

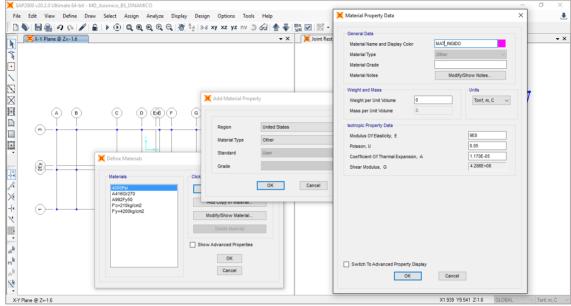
e. Cálculo de coeficientes de rigidez según Barkan (C)

Tabla 17.Cálculo de Coeficientes de Rigidez según modelo Barkan

Zapata	Cx	Cy	Cz	Сфх	Сфу
<i>∟</i> apata	(kg/cm3)	(kg/cm3)	(kg/cm3)	(kg/cm3)	(kg/cm3)
Z -1	19.771	19.771	24.008	42.475	42.475
Z-2	19.771	19.771	24.008	42.475	42.475
Z-3	19.771	19.771	24.008	42.475	42.475
Z-4	19.771	19.771	24.008	42.475	42.475
Z-5	19.771	19.771	24.008	42.475	42.475
Z-6	19.771	19.771	24.008	42.475	42.475
Z -7	19.771	19.771	24.008	42.475	42.475
Z-8	19.771	19.771	24.008	42.475	42.475
Z -9	19.771	19.771	24.008	42.475	42.475
Z -10	19.771	19.771	24.008	42.475	42.475
Z -11	19.771	19.771	24.008	42.475	42.475
Z-12	19.771	19.771	24.008	42.475	42.475
Z-13	19.771	19.771	24.008	42.475	42.475
Z-14	19.771	19.771	24.008	42.475	42.475
Z-15	19.771	19.771	24.008	42.475	42.475
Z-16	19.771	19.771	24.008	42.475	42.475
Z-17	19.771	19.771	24.008	42.475	42.475
Z-18	19.771	19.771	24.008	42.475	42.475
Z-19	19.771	19.771	24.008	42.475	42.475
Z-20	19.771	19.771	24.008	42.475	42.475
Z-21	19.771	19.771	24.008	42.475	42.475
Z-22	19.771	19.771	24.008	42.475	42.475
Z-23	19.771	19.771	24.008	42.475	42.475
Z-24	19.771	19.771	24.008	42.475	42.475
Z-25	19.771	19.771	24.008	42.475	42.475
Z-26	17.165	17.165	20.843	36.002	36.002
Z -27	17.165	17.165	20.843	36.002	36.002
Z-28	17.165	17.165	20.843	36.002	36.002

f. Cálculo de rigideces según Barkan (K)

Tabla 18.Cálculo de rigideces según modelo Barkan


Zanata	Kx	Ky	Kz	Кфх	Кфу
Zapata	(Tn/m)	(Tn/m)	(Tn/m)	(Tn/m)	(Tn/m)
Z -1	28470.228	28470.228	34570.991	7339.687	7339.687
Z-2	28470.228	28470.228	34570.991	7339.687	7339.687
Z-3	28470.228	28470.228	34570.991	7339.687	7339.687
Z -4	28470.228	28470.228	34570.991	7339.687	7339.687
Z-5	28470.228	28470.228	34570.991	7339.687	7339.687
Z -6	28470.228	28470.228	34570.991	7339.687	7339.687
Z-7	28470.228	28470.228	34570.991	7339.687	7339.687
Z-8	28470.228	28470.228	34570.991	7339.687	7339.687
Z -9	28470.228	28470.228	34570.991	7339.687	7339.687
Z-10	28470.228	28470.228	34570.991	7339.687	7339.687
Z-11	28470.228	28470.228	34570.991	7339.687	7339.687
Z-12	28470.228	28470.228	34570.991	7339.687	7339.687
Z-13	28470.228	28470.228	34570.991	7339.687	7339.687
Z -14	28470.228	28470.228	34570.991	7339.687	7339.687
Z-15	28470.228	28470.228	34570.991	7339.687	7339.687
Z-16	28470.228	28470.228	34570.991	7339.687	7339.687
Z-17	28470.228	28470.228	34570.991	7339.687	7339.687
Z-18	28470.228	28470.228	34570.991	7339.687	7339.687
Z-19	28470.228	28470.228	34570.991	7339.687	7339.687
Z-20	28470.228	28470.228	34570.991	7339.687	7339.687
Z-21	28470.228	28470.228	34570.991	7339.687	7339.687
Z-22	28470.228	28470.228	34570.991	7339.687	7339.687
Z-23	28470.228	28470.228	34570.991	7339.687	7339.687
Z-24	28470.228	28470.228	34570.991	7339.687	7339.687
Z-25	28470.228	28470.228	34570.991	7339.687	7339.687
Z-26	24717.746	24717.746	30014.406	6221.168	6221.168
Z-27	24717.746	24717.746	30014.406	6221.168	6221.168
Z-28	24717.746	24717.746	30014.406	6221.168	6221.168

g. Modelamiento de la edificación con base flexible según (modelo dinámico D.D.

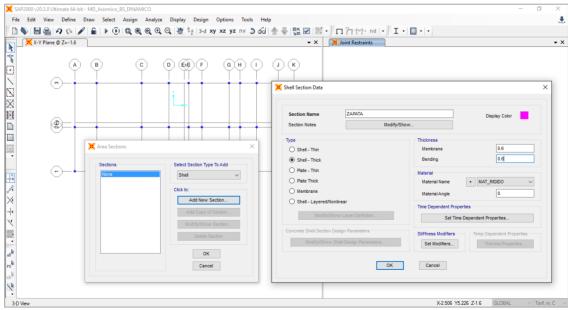

Barkan - O.A. Savinov.

Figura 18.Definición del Material Rígido; según Barkan; SAP2000.

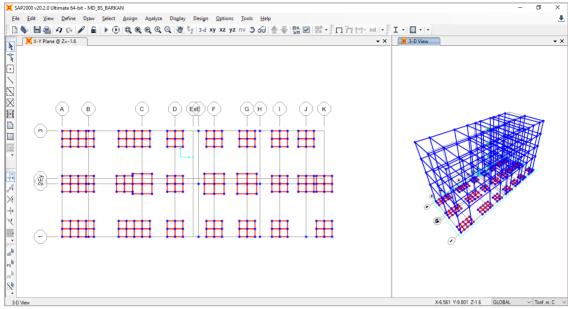
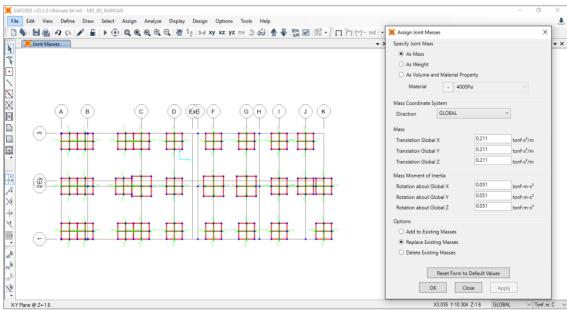
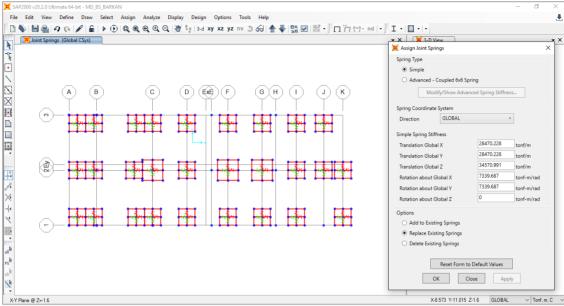

Nota. Elaboración propia (2021).

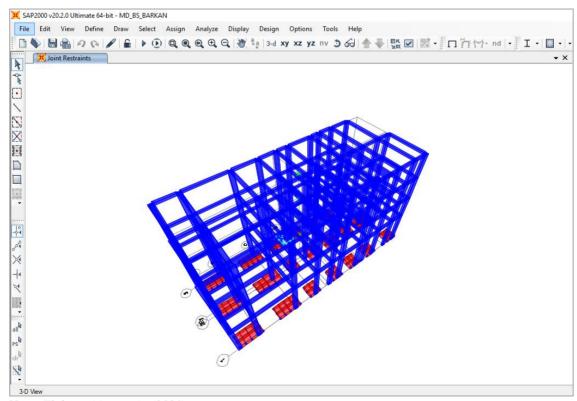
Figura 19.Definición de Zapata Rígida; según Barkan.

Figura 20.Dibujo de zapatas en la base; según Barkan; SAP2000.

Nota. Elaboración propia (2021).

Figura 21. *Asignación de masas en zapatas; según Barkan, SAP2000.*


Figura 22.

Asignamos coeficientes de rigidez a zapatas; según Barkan; SAP2000.

Nota. Elaboración propia (2021).

Figura 23. Vista 3D de la edificación con base flexible; según Barkan; SAP2000.

2.6.6 Modelamiento con base flexible Norma Rusa

a. Cálculo de masas traslacionales de zapatas según Norma Rusa

Tabla 19.Cálculo de masas traslacionales de zapatas según Norma Rusa

Zapata	a (m)	b (m)	c (m)	Peso	Mx	My	Mz
Z apata	a (III)	D (III)	C (III)	(Tn)	(Tn.s2/m)	(Tn.s2/m)	(Tn.s2/m)
Z -1	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-2	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-3	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-4	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-5	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-6	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-7	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-8	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z -9	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-10	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-11	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-12	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-13	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-14	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-15	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-16	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-17	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-18	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-19	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-20	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-21	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-22	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-23	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-24	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-25	1.200	1.200	0.600	2.074	0.211	0.211	0.211
Z-26	1.500	1.500	0.600	3.240	0.330	0.330	0.330
Z-27	1.500	1.500	0.600	3.240	0.330	0.330	0.330
Z-28	1.500	1.500	0.600	3.240	0.330	0.330	0.330

b. Cálculo de masas rotacionales de zapatas según la Norma Rusa

Tabla 20.Cálculo de masas rotacionales de zapatas según Norma Rusa.

Zapata	Mt (m)	b2+c2	a2+c2	a2+b2	Mφx (Tn.s2/m)	Μφy (Tn.s2/m)	Mφz (Tn.s2/m)
Z-1	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-2	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-3	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-4	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-5	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-6	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-7	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-8	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-9	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-10	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-11	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-12	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-13	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-14	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-15	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-16	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-17	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-18	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-19	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-20	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-21	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-22	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-23	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-24	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-25	0.211	1.800	1.800	2.880	0.051	0.051	0.051
Z-26	0.330	2.610	2.610	4.500	0.102	0.102	0.124
Z-27	0.330	2.610	2.610	4.500	0.102	0.102	0.124
Z-28	0.330	2.610	2.610	4.500	0.102	0.102	0.124

c. Cálculo de coeficientes de rigidez según Norma Rusa (C)

Tabla 21.Cálculo de coeficientes de rigidez según Norma Rusa

Zapata	Cx	Cy	Cz	Сфх	Сфу	Сфг
	(kg/cm3)	(kg/cm3)	(kg/cm3)	(kg/cm3)	(kg/cm3)	(kg/cm3)
Z -1	21.375	21.375	30.536	61.072	61.072	30.536
Z-2	21.375	21.375	30.536	61.072	61.072	30.536
Z-3	21.375	21.375	30.536	61.072	61.072	30.536
Z-4	21.375	21.375	30.536	61.072	61.072	30.536
Z-5	21.375	21.375	30.536	61.072	61.072	30.536
Z-6	21.375	21.375	30.536	61.072	61.072	30.536
Z-7	21.375	21.375	30.536	61.072	61.072	30.536
Z-8	21.375	21.375	30.536	61.072	61.072	30.536
Z -9	21.375	21.375	30.536	61.072	61.072	30.536
Z-10	21.375	21.375	30.536	61.072	61.072	30.536
Z-11	21.375	21.375	30.536	61.072	61.072	30.536
Z-12	21.375	21.375	30.536	61.072	61.072	30.536
Z-13	21.375	21.375	30.536	61.072	61.072	30.536
Z-14	21.375	21.375	30.536	61.072	61.072	30.536
Z-15	21.375	21.375	30.536	61.072	61.072	30.536
Z-16	21.375	21.375	30.536	61.072	61.072	30.536
Z-17	21.375	21.375	30.536	61.072	61.072	30.536
Z-18	21.375	21.375	30.536	61.072	61.072	30.536
Z-19	21.375	21.375	30.536	61.072	61.072	30.536
Z-20	21.375	21.375	30.536	61.072	61.072	30.536
Z-21	21.375	21.375	30.536	61.072	61.072	30.536
Z-22	21.375	21.375	30.536	61.072	61.072	30.536
Z-23	21.375	21.375	30.536	61.072	61.072	30.536
Z-24	21.375	21.375	30.536	61.072	61.072	30.536
Z-25	21.375	21.375	30.536	61.072	61.072	30.536
Z-26	18.276	18.276	26.109	52.218	52.218	26.109
Z-27	18.276	18.276	26.109	52.218	52.218	26.109
Z-28	18.276	18.276	26.109	52.218	52.218	26.109

d. Cálculo de Rigideces según Norma Rusa (K)

Tabla 22.Cálculo de Rigideces según Norma Rusa (K)

	Kx	Ку	Kz	Кфх	Кфу	Kφz
Zapata	(Tn/m)	(Tn/m)	(Tn/m)	(Tn.m)	(Tn.m)	(Tn.m)
Z-1	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-2	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-3	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-4	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-5	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-6	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-7	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-8	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z -9	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-10	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-11	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-12	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-13	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-14	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-15	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-16	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-17	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-18	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-19	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-20	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-21	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-22	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-23	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-24	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-25	30780.231	30780.231	43971.759	10553.222	10553.222	10553.222
Z-26	41121.289	41121.289	58744.699	9023.186	9023.186	9023.186
Z-27	41121.289	41121.289	58744.699	9023.186	9023.186	9023.186
Z-28	41121.289	41121.289	58744.699	9023.186	9023.186	9023.186

3. RESULTADOS

3.1. Modelo de empotramiento de las bases

3.1.1. Análisis sísmico estático de la edificación

a. Desplazamiento con análisis estático

Tabla 23.Desplazamiento con análisis estático

	Ux	Uy
Nivel	Desplazamiento	Desplazamiento
	X (mm)	Y (mm)
4	14.477	35.995
3	13.25	32.977
2	11.033	27.523
1	8.165	20.465

Nota. Elaboración propia (2021).


b. Fuerzas internas máximas con análisis estáticos

Tabla 24. Fuerzas internas máximas estáticas

Fuerza	Sismo X	Sismo Y
Interna	(T*m)	(T*m)
Nmax	43.44	17.547
Vmax	8.937	8.176
Mmax	16.14	18.45

Figura 24.Fuerza normal máxima, para dirección X; SAP2000.

Nota. Elaboración propia (2021)

Figura 25.
Fuerza cortante máxima, para dirección X; SAP2000.

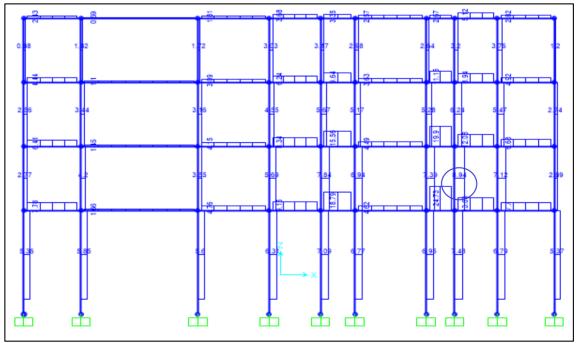
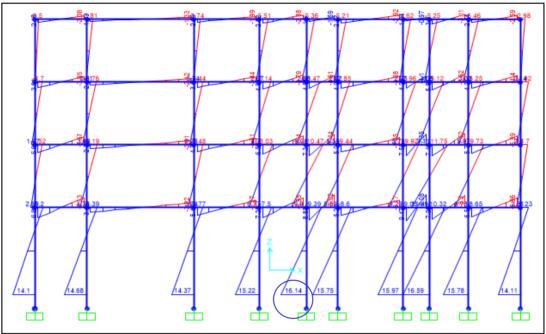
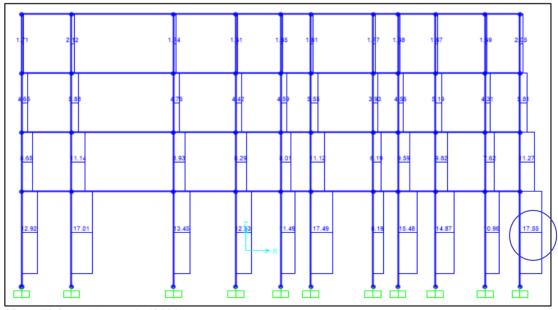
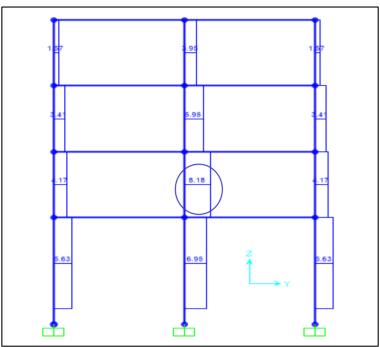



Figura 26.

Momento máximo, para dirección X; SAP2000.

Nota. Elaboración propia (2021)

Figura 27.
Fuerza normal máxima, para dirección Y; SAP 2000.

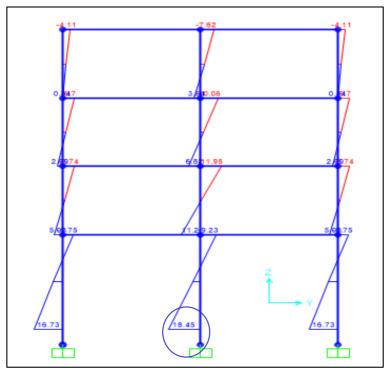


Figura 28.
Fuerza cortante máxima, para dirección Y; SAP2000.

Nota. Elaboración propia (2021)

Figura 29. Momento máximo, para dirección Y; SAP2000.

3.1.2. Análisis sísmico dinámico de la edificación

a. Periodo natural de vibración con empotramiento en las bases

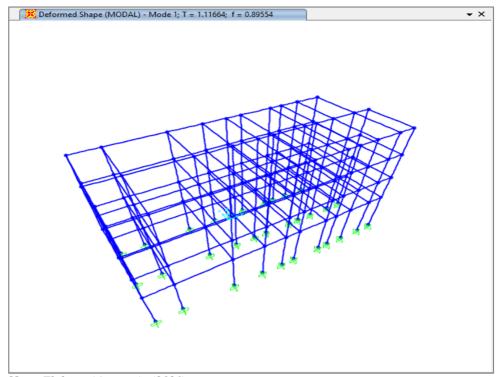
Tabla 25. *Periodos de la estructura con base flexible empotrado en la base*

Caso	Modo	Periodo (s)
Modal	1	1.117
Modal	2	0.852
Modal	3	0.62
Modal	4	0.321
Modal	5	0.248
Modal	6	0.182
Modal	7	0.156
Modal	8	0.123
Modal	9	0.096
Modal	10	0.091
Modal	11	0.077
Modal	12	0.058

b. Modos de vibración de la estructura con modelo empotrado la base

Tabla 26. *Modos de vibración según modelo empotrado en la base*

Coso Modo		D	Despl	Desplazamientos			Rotaciones		
Caso	Modo	Periodo (s)	UX	UY	UZ	RX	RY	RZ	
Modal	1	1.116645	0.000436	0.856655	0	0.109086	5.30E-05	0.02808	
Modal	2	0.852321	0.026796	0.027838	0	0.003927	0.003181	0.83577	
Modal	3	0.620416	0.866644	7.00E-05	0	1.70E-05	0.100699	0.027179	
Modal	4	0.321213	5.80E-05	0.085772	0	0.753096	0.00046	0.002927	
Modal	5	0.248359	0.002559	0.003374	0	0.029178	0.024209	0.07993	
Modal	6	0.181799	0.082496	7.53E-06	0	6.60E-05	0.7843	0.002597	
Modal	7	0.15629	2.00E-05	0.020911	0	0.07392	8.50E-05	0.000822	
Modal	8	0.123012	0.000556	0.001099	0	0.003849	0.001968	0.01831	
Modal	9	0.095964	1.88E-06	0.003982	0	0.025057	1.50E-05	0.000219	
Modal	10	0.090945	0.017079	4.31E-06	0	1.60E-05	0.061681	0.000561	
Modal	11	0.076942	0.000111	0.000286	0	0.001781	0.000766	0.003488	
Modal	12	0.0583008	0.003243	1.02E-06	0	6.19E-06	0.022583	0.000117	


Nota. Elaboración propia, 2021.

Se presenta el primer modal de los 12 periodos de vibración de la edificación con modelo empotrado en las bases y partir del segundo modal se presentan en los anexos:

Figura 30.

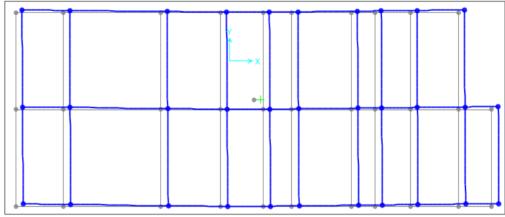
Modal 1; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)

c. Desplazamiento y distorsiones con análisis dinámico

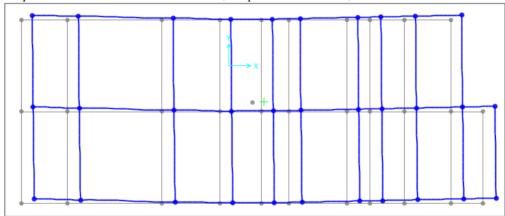
Tabla 27.Desplazamiento y distorsiones en eje X, Y según modelo empotrado en la base

Ux			Uy			
Nivel	Desplazamiento X (mm)	Distorsion X (mm)	Desplazamiento Y (mm)	Distorsion Y (mm)		
4	13.201	0.0002	22.626	0.001		
3	11.521	0.0003	19.507	0.0001		
2	9.012	0.0004	14.714	0.0002		
1	5.737	0.001	8.548	0.0002		

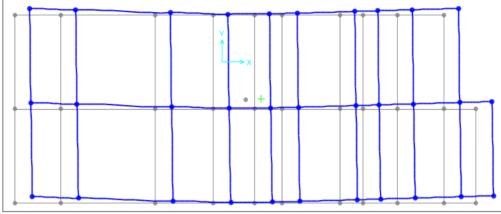

Nota. Elaboración propia (2021)

Distorsiones de entrepisos son ≤ 0.007 según la norma E.030, entonces cumple tanto para X y

Figura 31.


Desplazamiento de 1er nivel dirección X; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)


Figura 32.

Desplazamiento de 2do nivel dirección X; Empotrado en la base; SAP2000.

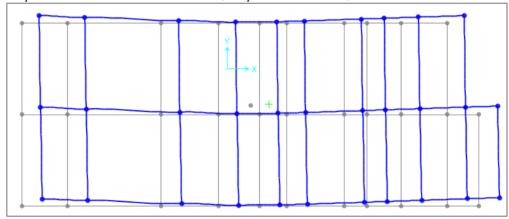


Figura 33.Desplazamiento de 3er nivel dirección X; Empotrado en la base; SAP2000.

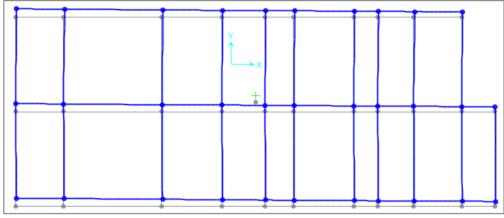

Nota. Elaboración propia (2021)

Figura 34.Desplazamiento de 4to nivel dirección X; Empotrado en la base; SAP2000.

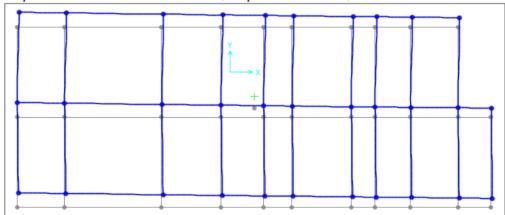


Figura 35.Desplazamiento de 1er nivel dirección Y; Empotrado en la base; SAP2000.

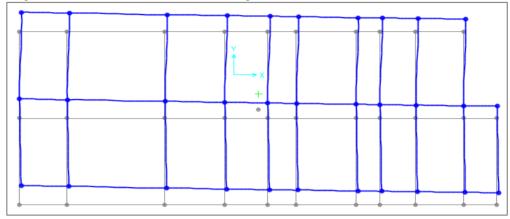

Nota. Elaboración propia (2021)

Figura 36.Desplazamiento de 2do nivel dirección Y; Empotrado en la base; SAP2000.

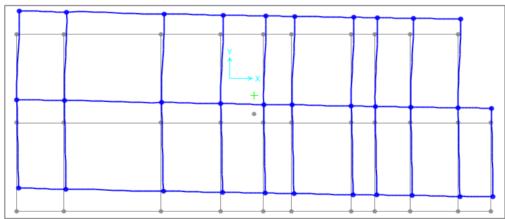


Figura 37.Desplazamiento de 3er nivel dirección Y; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)

Figura 38.Desplazamiento de 4to nivel dirección Y; Empotrado en la base; SAP2000.

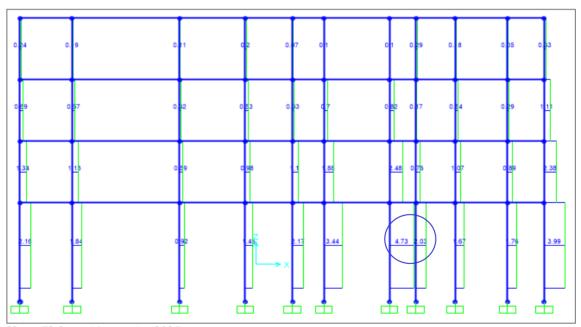
d. Fuerzas internas máximas con análisis dinámico

Tabla 28.Fuerzas internas máximas según modelo empotrado en la base

Fuerza	Sismo X	Sismo Y
Interna	(T *m)	(T *m)
Nmax	4.732	1.51
Vmax	0.985	0.498
Mmax	1.83	1.34

Nota. Elaboración propia (2021)

Figura 39.Fuerza normal máxima, para dirección X; Empotrado en la base; SAP2000.



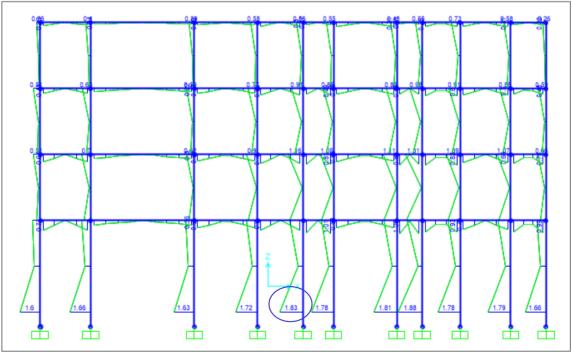


Figura 40.
Fuerza cortante máxima, para dirección X; Empotrado en la base; SAP 2000.

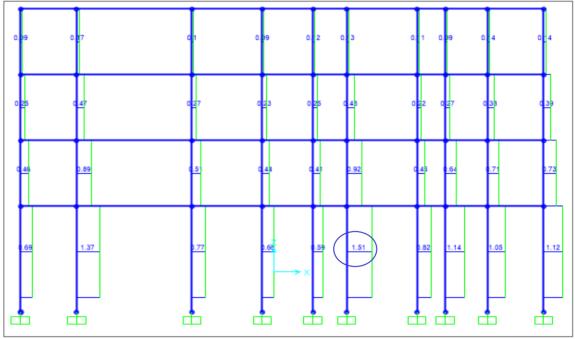

Nota. Elaboración propia (2021)

Figura 41. Momento máximo, para dirección X; Empotrado en la base; SAP 2000.

Figura 42.Fuerza normal máxima, para dirección Y; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)

Figura 43.Fuerza cortante máxima, para dirección Y; Empotrado en la base; SAP2000.

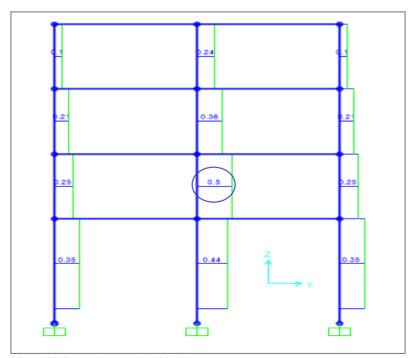
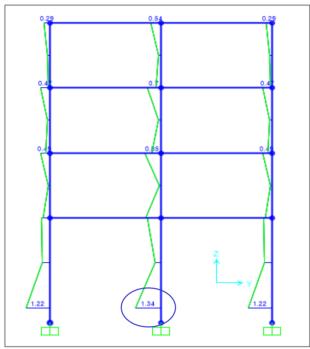



Figura 44.

Momento máximo, para dirección Y; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)

3.2. Modelo dinámico con base Flexible D.D. Barkan - O.A. Savinov.

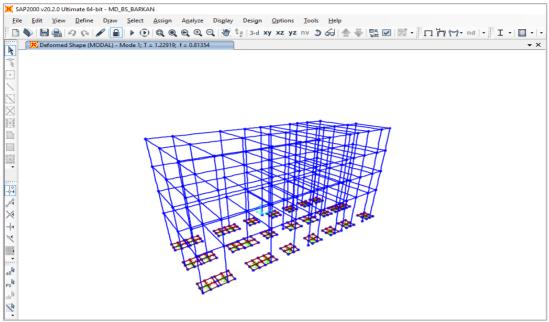
a. Periodo natural de vibración según Barkan - Savinov.

Tabla 29. *Periodos de la estructura con base flexible según modelo Barkan*

Caso	Modo	Periodo (s)
Modal	1.00	1.229
Modal	2.00	0.951
Modal	3.00	0.743
Modal	4.00	0.338
Modal	5.00	0.269
Modal	6.00	0.205
Modal	7.00	0.164
Modal	8.00	0.130
Modal	9.00	0.098
Modal	10.00	0.097
Modal	11.00	0.079
Modal	12.00	0.060

b. Modos de vibración de la estructura según Barkan – Savinov.

Tabla 30. *Modos de vibración de la estructura según modelo Barkan*


Caso	Modo	Periodo (s)	Γ	Desplazamientos			Rotaciones	
Cuso	171040	1 (11000 (5)	UX	UY	UZ	RX	RY	RZ
Modal	1	1.229	0.000	0.811	2.63E-13	0.167	3.40E-05	0.008
Modal	2	0.951	0.030	0.010	1.243E-11	0.001	0.005	0.789
Modal	3	0.743	0.810	2.6E-05	2.815E-10	3.537E-06	0.117	0.028
Modal	4	0.338	3.30E-05	0.066	1.894E-11	0.366	0.000	0.002
Modal	5	0.269	0.002	0.001	2.609E-09	0.000	0.010	0.059
Modal	6	0.205	0.054	4.366E-06	2.078E-07	3.20E-05	0.325	0.002
Modal	7	0.164	4.481E-06	0.012	4.451E-12	0.0215	5.11E-06	0.001
Modal	8	0.130	0.000	0.000	1.23E-09	0.000	0.000	0.010
Modal	9	0.098	2.6E-05	0.002	4.496E-10	4.700E-05	3.50E-05	0.000
Modal	10	0.097	0.007	1.412E-06	9.81E-08	0.010	0.103	0.000
Modal	11	0.079	5.3E-05	5.3E-05	4.307E-09	0.000	0.000	0.002
Modal	12	0.060	0.001	9.531E-08	3.248E-08	0.005	0.005	3.50E-05

Nota. Elaboración propia (2021)

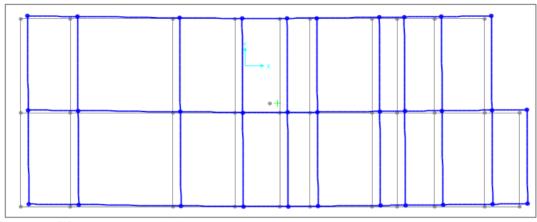
Se presenta el primer modal de los 12 periodos de vibración de la edificación con modelo D.D Barkan – O.A Savinov y partir del segundo modal se presentan en los anexos:

Figura 45. *Primer modo de vibración; según Barkan; SAP2000.*

Nota. Elaboración propia (2021)

c. Desplazamiento y distorsiones según Barkan - Savinov

Tabla 31.Desplazamiento y distorsiones de la edificación según modelo Barkan


Nivel	Desplazamiento	Distorsión	Desplazamiento	Distorsión
MIVEI	X (mm)	X (mm)	Y (mm)	Y (mm)
4	11.665	0.0002	21.578	0.001
3	9.952	0.0003	18.363	0.0001
2	7.332	0.0004	13.35	0.0002
1	4.015	0.0005	7.023	0.0003

Nota. Elaboración propia (2021).

Distorsiones de entrepisos son ≤ 0.007 según la norma E.030, entonces cumple tanto para X y Y.

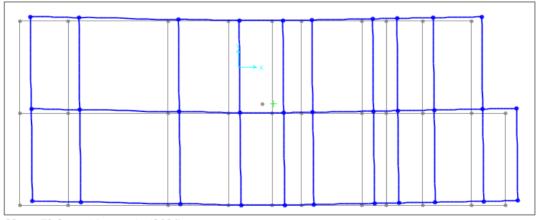


Figura 46.Desplazamiento primer nivel en dirección de X; según Barkan; SAP2000.

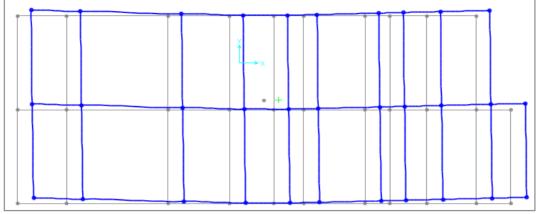

Nota. Elaboración propia (2021)

Figura 47.Desplazamiento segundo nivel en dirección de X; según Barkan; SAP2000.

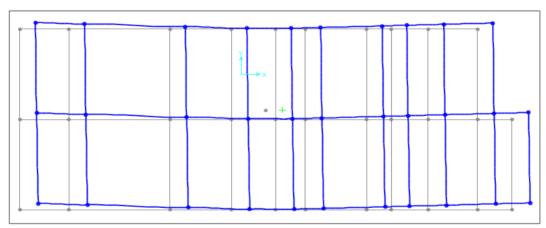


Figura 48.Desplazamiento tercer nivel en dirección de X; según Barkan; SAP2000.

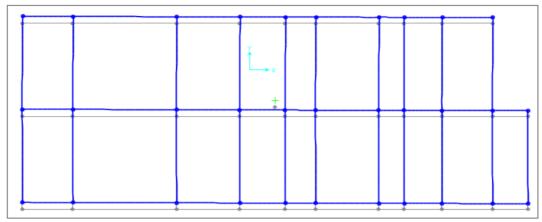

Nota. Elaboración propia (2021)

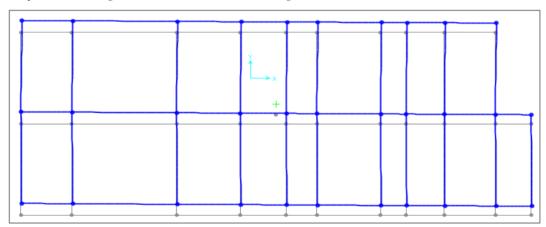
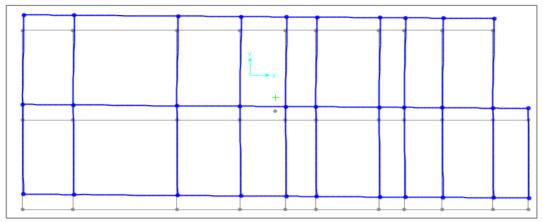
Figura 49.Desplazamiento cuarto nivel en dirección de X; según Barkan; SAP2000.

Figura 50.Desplazamiento 1er nivel en dirección de Y; según Barkan; SAP2000.

Nota. Elaboración propia (2021)

Figura 51.

Desplazamiento segundo nivel en dirección de Y; según Barkan; SAP2000.

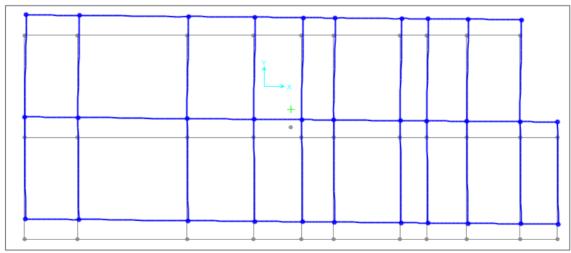


Figura 52. Desplazamiento tercer nivel en dirección de Y; según Barkan; SAP2000.

Nota. Elaboración propia (2021)

Figura 53.Desplazamiento cuarto nivel en dirección de Y; según Barkan; SAP2000.

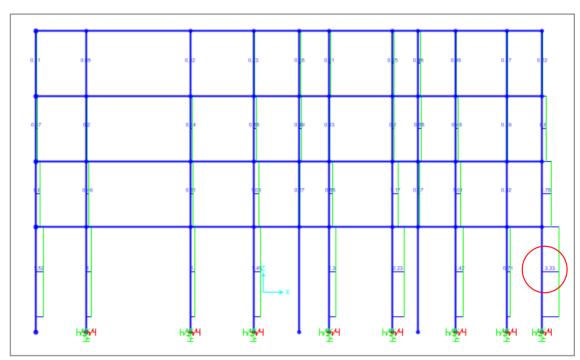
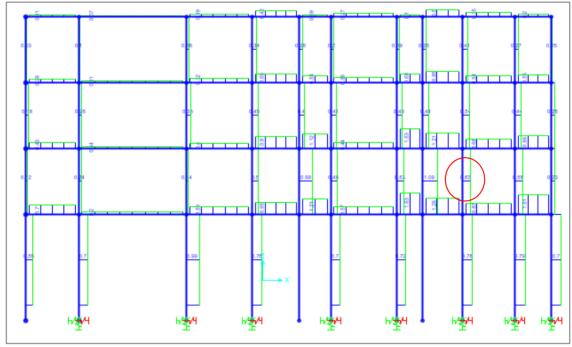
d. Fuerzas internas máximas según Barkan - Savinov

Tabla 32. Fuerzas internas máximas según modelo Barkan

Fuerza	Sismo X	Sismo Y
Interna	(T * m)	(T * m)
Nmax	4.732	1.51
Vmax	0.985	0.498
Mmax	1.83	1.34

Nota. Elaboración propia (2021)

Figura 54.Fuerza Normal máxima, para dirección X; según Barkan; SAP2000.

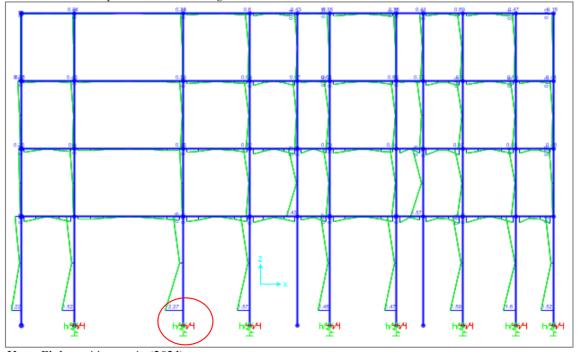


Figura 55.
Fuerza cortante máxima, para dirección X; según Barkan; SAP2000.

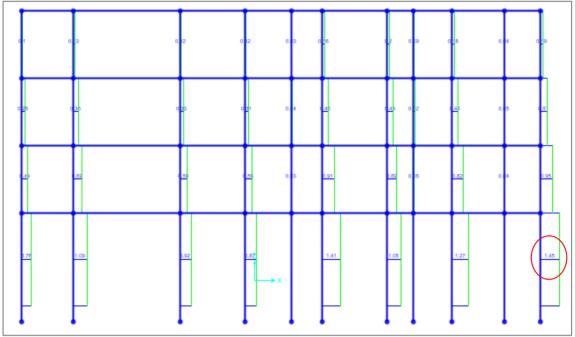

Nota. Elaboración propia (2021).

Figura 56. *Momento máximo, para dirección X; según Barkan; SAP2000.*

Figura 57.Fuerza normal máxima, para dirección Y; según Barkan; SAP2000.

Nota. Elaboración propia (2021)

Figura 58.Fuerza cortante máxima, para dirección Y; según Barkan; SAP2000.

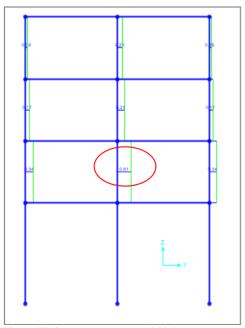
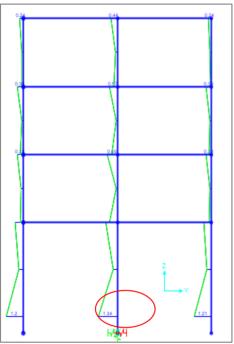



Figura 59.

Momento máximo, para dirección Y; según Barkan; SAP2000.

Nota. Elaboración propia (2021)

3.3. Modelo dinámico según la Norma Rusa SNIP 2.02.05-87

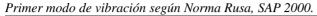
a. Periodo natural de vibración según Norma Rusa

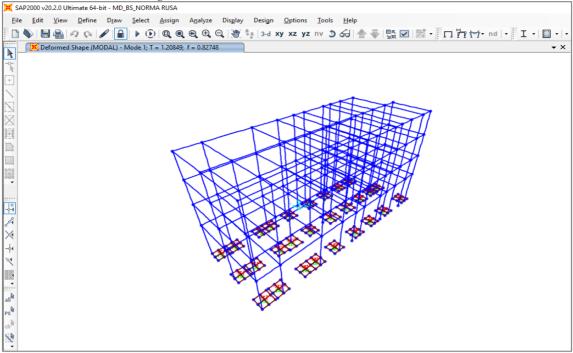
Tabla 33. *Periodos de la estructura con base flexible según Norma Rusa*

Caso	Modo	Periodo (s)
Modal	1	1.2085
Modal	2	0.9373
Modal	3	0.7236
Modal	4	0.3367
Modal	5	0.2665
Modal	6	0.1634
Modal	7	0.1292
Modal	8	0.0978
Modal	9	0.0962
Modal	10	0.0786
Modal	11	0.0596

b. Modos de vibración de la estructura según Norma Rusa.

Tabla 34. *Modos de la vibración de la estructura según Norma Rusa.*


Caso	Modo	Periodo (s)	D	Desplazamientos			Rotaciones	
Caso	MOUO	r eriodo (8)	UX	UY	UZ	RX	RY	RZ
Modal	1	1.208	0.000	0.807	1.01E-14	0.169	3.70E-05	0.009
Modal	2	0.094	0.028	0.011	5.28E-13	0.002	0.004	0.788
Modal	3	0.724	0.809	2.40E-05	1.55E-11	3.67E-06	0.120	0.026
Modal	4	0.337	3.40E-05	0.068	5.68E-13	0.362	0.000	0.002
Modal	5	0.267	0.002	0.001	7.93E-11	0.010	0.010	0.061
Modal	6	0.202	0.056	4.36E-06	6.59E-09	2.90E-05	0.033	0.002
Modal	7	0.163	5.10E-06	0.013	1.59E-13	0.022	5.84E-06	0.000
Modal	8	0.129	0.000	0.000	3.93E-11	0.005	0.000	0.011
Modal	9	0.098	2.00E-05	0.002	1.01E-11	0.008	3.60E-05	0.000
Modal	10	0.096	0.007	5.31E-07	3.08E-09	2.87E-06	0.011	0.000
Modal	11	0.077	5.90E-05	5.70E-05	1.34E-10	0.000	0.000	0.002
Modal	12	0.060	0.001	1.04E-07	1.04E-07	6.13E-07	0.005	3.80E-05


Nota. Elaboración propia (2021)

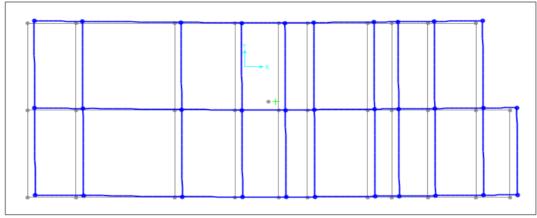
Se presenta el primer modal de los 12 periodos de vibración de la edificación con modelo Norma Rusa y partir del segundo modal se presentan en anexos:

Figura 60.

Nota. Elaboración propia (2021)

c. Desplazamiento y distorsiones según la Norma Rusa

Tabla 35.Desplazamiento y distorsiones de la edificación según Norma Rusa


	Ux		Uy	
Piso	Desplazamiento	Distorsion	Desplazamiento	Distorsion
	X (mm)	X (mm)	Y (mm)	Y (mm)
4	13.201	0.0002	22.626	0.001
3	11.521	0.0003	19.507	0.0001
2	9.012	0.0004	14.714	0.0002
1	5.737	0.001	8.548	0.0002

Nota. Elaboración propia (2021)

Distorsiones de entrepisos son ≤ 0.007 según la norma E.030 - 2019, entonces cumple tanto para X y Y.

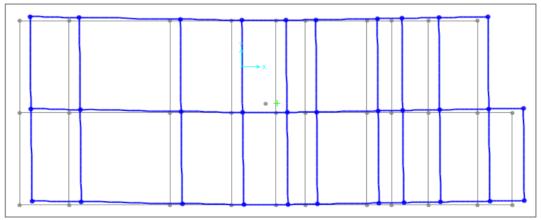


Figura 61.Desplazamiento primer nivel en dirección X, según Noma Rusa, SAP2000.

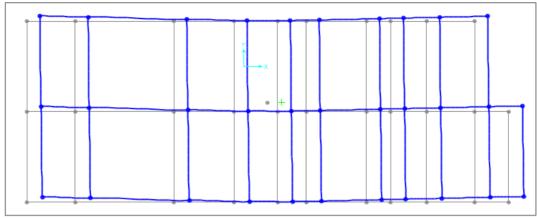

Nota. Elaboración propia (2021)

Figura 62.Desplazamiento segundo nivel en dirección X, según Norma Rusa, SAP2000.

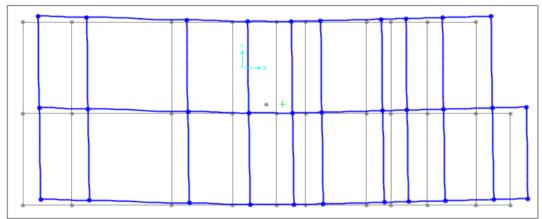


Figura 63.Desplazamiento tercer nivel en dirección X, según Norma Rusa, SAP2000.

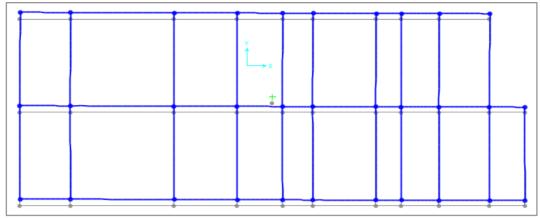

Nota. Elaboración propia (2021)

Figura 64.Desplazamiento cuarto nivel en dirección X, según Norma Rusa, SAP2000.

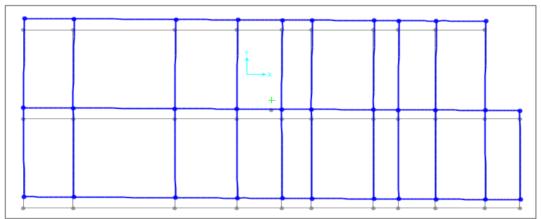


Figura 65.Desplazamiento primer nivel en dirección de Y, según Norma Rusa, SAP2000.

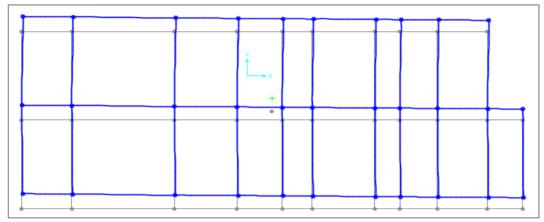
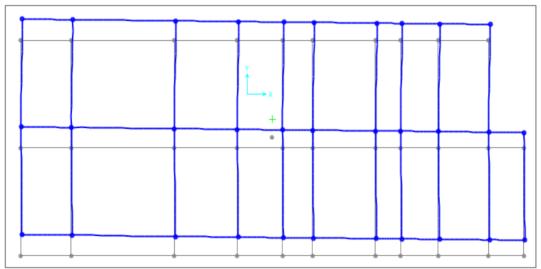

Nota. Elaboración propia (2021).

Figura 66.Desplazamiento 2do nivel en dirección de Y, según Norma Rusa, SAP2000.


Figura 67.Desplazamiento tercer nivel en dirección de Y, según Norma Rusa, SAP2000.

Nota. Elaboración propia (2021).

Figura 68.

Desplazamiento cuarto nivel en dirección de Y; Norma Rusa; SAP2000.

e. Fuerzas internas máximas según Norma Rusa

Tabla 36. *Fuerzas internas máximas aplicando Norma Rusa*

Fuerza Interna	Sismo X (T*m)	Sismo Y (T*m)
Nmax	3.430	1.487
Vmax	1.116	0.611
Mmax	2.360	1.330

Nota. Elaboración propia (2021)

Figura 69.Fuerza normal máxima, dirección X; según Norma Rusa; SAP2000.

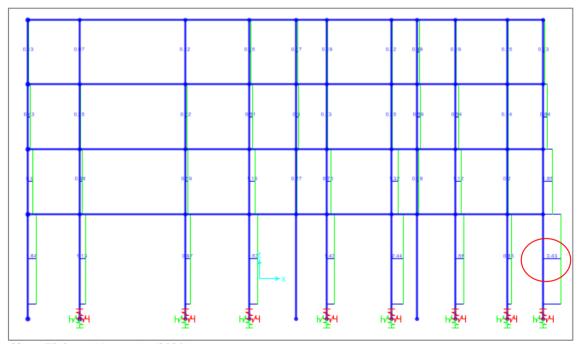
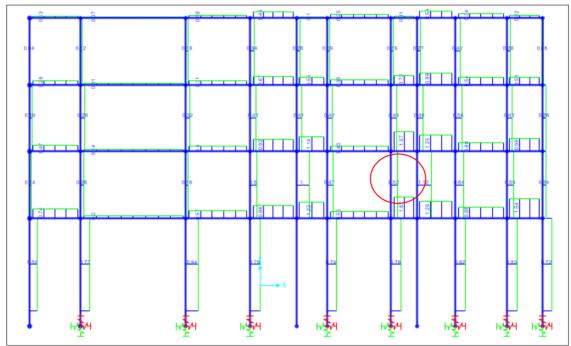
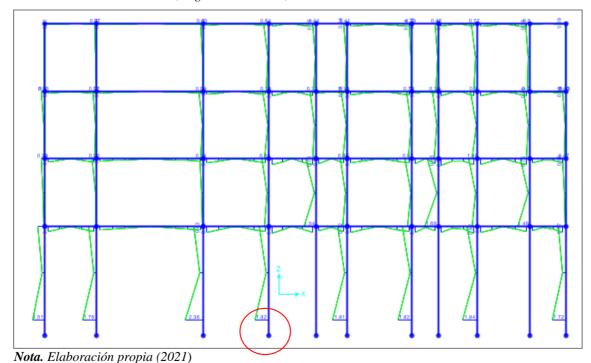
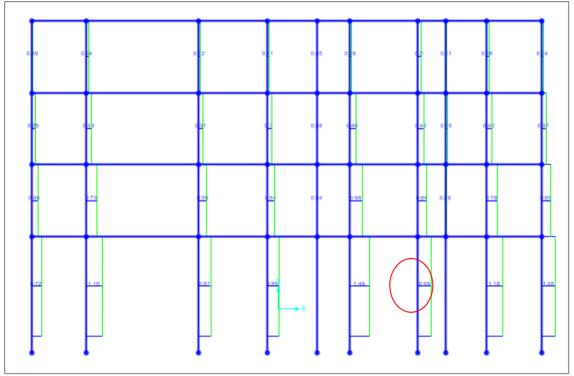


Figura 70.

Fuerza cortante máxima, dirección X; según Norma Rusa; SAP2000.


Figura 71.

Momento máximo dirección X; según Norma Rusa, SAP2000.

Figura 72.Fuerza Normal máxima, dirección Y; según Norma Rusa; SAP2000.

Nota. Elaboración propia (2021).

Figura 73.
Fuerza cortante máxima, dirección Y; según Norma Rusa; SAP2000.

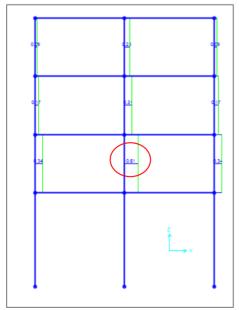
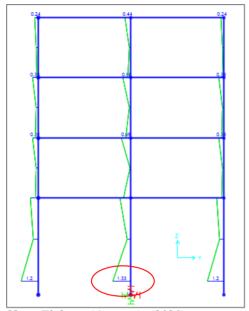



Figura 74.

Momento máximo, dirección Y; según Norma Rusa; SAP2000.

Nota. Elaboración propia (2021)

3.4. Comparación de Modelos dinámicos

Se presenta la comparación de los modelos dinámicos (empotrado en la base, Barkan – Savinov y Norma Rusa) del comportamiento estructural al incorporar la Interacción Suelo – Estructura de la edificación de cuatro niveles en La Molina – Baños del Inca – Cajamarca.

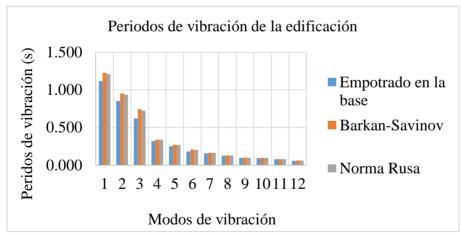


Tabla 37. *Resumen de periodos de vibración de la edificación*

Modo	Empotrado en la Base	Barkan- Savinov	Norma Rusa
1	1.117	1.229	1.208
2	0.852	0.951	0.937
3	0.62	0.743	0.724
4	0.321	0.338	0.337
5	0.248	0.269	0.267
6	0.182	0.205	0.202
7	0.156	0.164	0.163
8	0.123	0.13	0.129
9	0.096	0.098	0.098
10	0.091	0.097	0.096
11	0.077	0.079	0.079
12	0.058	0.06	0.06

Nota. Elaboración propia (2021)

Gráfico 1. *Comparación de Periodos de Vibración de la edificación.*

Nota. Elaboración propia (2021)

La variación promedio del desplazamiento en la dirección X de la edificación para los modelos dinámicos se tiene:

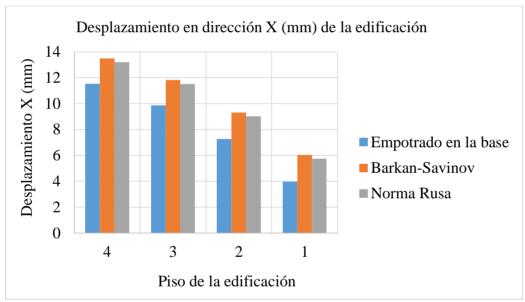


Tabla 38. *Resumen de desplazamiento en la dirección X (mm) de la edificación*

Nivel	Empotrado en la Base	Barkan- Savinov	Norma Rusa
4	11.543	13.501	13.201
3	9.865	11.814	11.521
2	7.268	9.314	9.012
1	3.98	6.038	5.737

Nota. Elaboración propia (2021)

Gráfico 2.Comparación de desplazamiento en la dirección X (mm) de la edificación.

Nota. Elaboración propia (2021)

La variación promedio del desplazamiento en la dirección Y de la edificación para los modelos dinámicos se tiene:

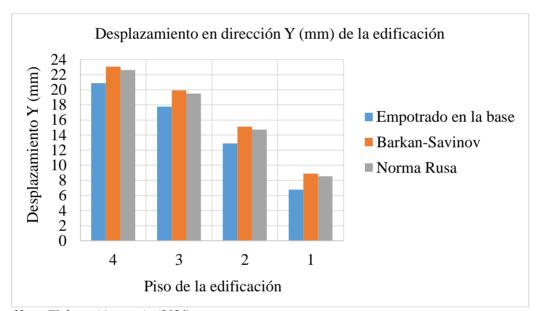


Tabla 39.Resumen de desplazamiento en la dirección Y (mm) de la edificación

Nivel	Empotrado en la Base	Barkan- Savinov	Norma Rusa
4	20.876	23.082	22.626
3	17.76	19.929	19.507
2	12.905	15.112	14.714
1	6.78	8.909	8.548

Nota. Elaboración propia (2021)

Gráfico 3.Comparación de desplazamiento en la dirección Y (mm) de la edificación.

Nota. Elaboración propia (2021)

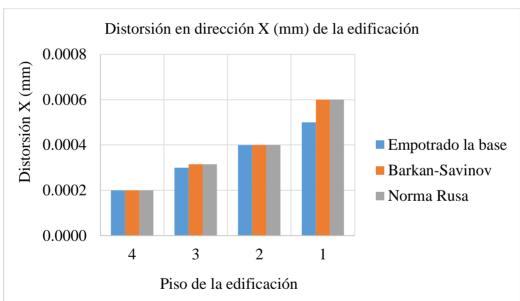

La variación promedio de la distorsión en la dirección X de la edificación para los modelos dinámicos se tiene:

Tabla 40. *Resumen de distorsiones en la dirección X (mm) de la edificación*

Nivel	Empotrado en la Base	Barkan- Savinov	Norma Rusa
4	0.0002	0.0002	0.0002
3	0.0003	0.0003	0.0003
2	0.0004	0.0004	0.0004
1	0.0005	0.0006	0.0006

Nota. Elaboración propia (2021)

Gráfico 4. *Comparación de distorsiones en la dirección X (mm) de la edificación.*

Nota. Elaboración propia (2021)

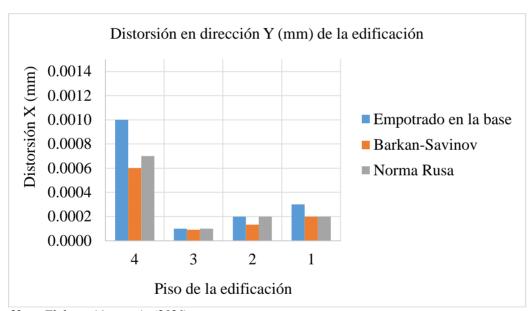

La variación promedio de la distorsión en la dirección Y de la edificación para los modelos dinámicos se tiene:

Tabla 41.Resumen de distorsiones en la dirección Y (mm) de la edificación

Nivel	Empotrado	Barkan-	Norma
	en la Base	Savinov	Rusa
4	0.001	0.0006	0.0007
3	0.0001	0.0001	0.0001
2	0.0002	0.0001	0.0002
1	0.0003	0.0002	0.0002

Nota. Elaboración propia (2021).

Gráfico 5. *Comparación de distorsiones en la dirección Y (mm) de la edificación.*

Nota. Elaboración propia (2021)

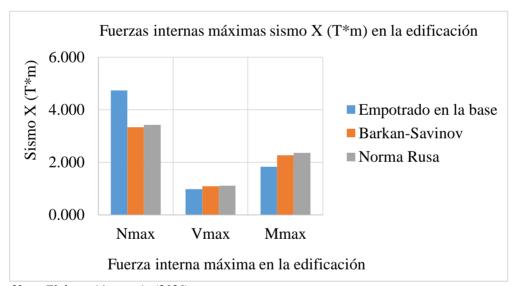

La variación promedio de las fuerzas internas máximas en la dirección X de la edificación para los modelos dinámicos se tiene:

Tabla 42. Resumen de fuerzas internas máximas en la dirección sismo $X(T^*m)$ en la edificación

Fuerza	Empotrado	Barkan-	Norma
Interna	en la Base	Savinov	Rusa
Nmax	4.732	3.334	3.43
Vmax	0.985	1.092	1.116
Mmax	1.83	2.27	2.36

Nota. Elaboración propia (2021)

Gráfico 6.Comparación fuerzas internas en la dirección sismo X en la edificación.

Nota. Elaboración propia (2021)

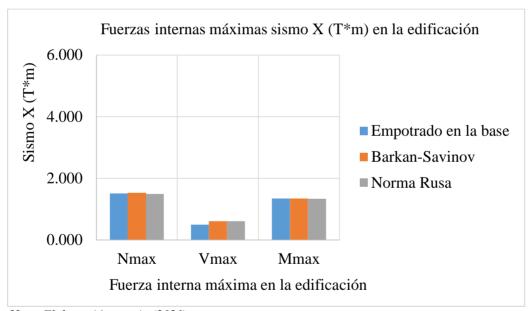

La variación promedio de las fuerzas internas máximas en la dirección Y de la edificación para los modelos dinámicos se tiene:

Tabla 43. Resumen de fuerzas internas máximas en la dirección sismo Y(T*m) en la edificación

Fuerza	Empotrado	Barkan-	Norma
Interna	en la Base	Savinov	Rusa
Nmax	1.51	1.516	1.487
Vmax	0.498	0.607	0.611
Mmax	1.34	1.34	1.33

Nota. Elaboración propia (2021)

Gráfico 7.Comparación fuerzas internas en la dirección sismo Y en la edificación.

4. DISCUSIÓN Y CONCLUSIONES

4.1. Discusión

Por lo tanto, la hipótesis es verdadera porque se determina que las edificaciones construidas considerando los efectos de interacción suelo - estructura varía un 8%, aplicando los modelos dinámicos de Empotrado en la base, Barkan-Savinov y Norma Rusa es más seguro a una respuesta sísmica debido a que la parte de la energía liberada es absorbida por el suelo a través de las fundaciones.

Para la discusión se realizará a partir de la comparación del comportamiento estructural al incorporar la Interacción Suelo – Estructura de la edificación de cuatro niveles en la Molina – Baños del Inca – Cajamarca con los resultados obtenidos para los modelos dinámicos de empotrado en la base, Barkan – Savinov y Norma Rusa.

Según el gráfico 1: La variación promedio de los periodos de vibración para los modelos dinámicos se tiene:

- El modelo de empotramiento versus Barkan-Savinov tiene una variación de 8%, principalmente se observa del periodo 1 al 4.
- El modelo de empotramiento versus Norma Rusa presenta una variación de 7%, principalmente se observa del periodo 1 al 4, el cual es similar con Barkan.
- El modelo Barkan-Savinov versus Norma Rusa tiene una variación de 1%, se determina que son casi similares.

Según el gráfico 2: La variación promedio del desplazamiento en la dirección X de la edificación para los modelos dinámicos se tiene:

- El modelo de empotramiento versus Barkan-Savinov tiene una variación de 29%, el cual es notoria la diferencia, comportándose en mejores condiciones para la liberación de energía el modelo de Barkan.
- El modelo de empotramiento versus Norma Rusa tiene una variación de 25%, el cual es notoria se comporta el modelo de Norma Rusa.
- El modelo Barkan-Savinov versus Norma Rusa tiene una variación de 3%, se determina que son casi similares, con un comportamiento ligero para el modelo de Barkan.

Según el gráfico 3: La variación promedio del desplazamiento en la dirección Y de la edificación para los modelos dinámicos se tiene:

- El modelo de empotramiento versus Barkan-Savinov tiene una variación de 18%, el cual es notoria la diferencia, comportándose en mejores condiciones para la liberación de energía el modelo de Barkan.
- El modelo de empotramiento versus Norma Rusa tiene una variación de 15%, el cual es notoria se comporta el modelo de Norma Rusa.
- El modelo Barkan-Savinov versus Norma Rusa tiene una variación de 3%, se determina que son casi similares, con un comportamiento ligero para el modelo de Barkan.

Según el gráfico 4: La variación promedio de la distorsión en la dirección X de la edificación para los modelos dinámicos se tiene:

- El modelo de empotramiento versus Barkan-Savinov tiene una variación de 5%, el cual se comporta en mejores condiciones para la liberación de energía el modelo de Barkan.
- El modelo de empotramiento versus Norma Rusa tiene una variación de 5%, el cual es notoria se comporta el modelo de Norma Rusa.
- El modelo Barkan-Savinov versus Norma Rusa tiene una variación de 0%, se determina que son casi similares.

Según el gráfico 5: La variación promedio de la distorsión en la dirección Y de la edificación para los modelos dinámicos se tiene:

- El modelo de empotramiento versus Barkan-Savinov tiene una variación de 31%, el cual se comporta en mejores condiciones para la liberación de energía el modelo de Empotramiento.
- El modelo de empotramiento versus Norma Rusa tiene una variación de 16%, el cual es notoria se comporta el modelo de Empotramiento.
- El modelo Barkan-Savinov versus Norma Rusa tiene una variación de 29%, se determina que se comporta mejor Barkan.

Según el gráfico 6: La variación promedio de las fuerzas internas máximas en la dirección X de la edificación para los modelos dinámicos se tiene:

- El modelo de empotramiento versus Barkan para fuerza normal se tiene una variación de 30%, similar, fuerza cortante 11% y momento máximo 24%
- El modelo de empotramiento versus Norma Rusa para fuerza normal se tiene una variación de 28%, similar, fuerza cortante 13% y momento máximo 29%
- El modelo Barkan-Savinov versus Norma Rusa para fuerza normal se tiene una variación de 3%, similar, fuerza cortante 2% y momento máximo 4%

Según el gráfico 7: La variación promedio de las fuerzas internas máximas en la dirección Y de la edificación para los modelos dinámicos se tiene:

El modelo de empotramiento versus Barkan para fuerza normal se tiene una variación de 0%, similar, fuerza cortante 2% y momento máximo 2%

- El modelo de empotramiento versus Norma Rusa para fuerza normal se tiene una variación de 22%, similar, fuerza cortante 23% y momento máximo 1%
- El modelo Barkan-Savinov versus Norma Rusa para fuerza normal se tiene una variación de 0%, similar, fuerza cortante 1% y momento máximo 1%

4.2. Conclusiones

- El Los efectos de la incorporación suelo estructura varían un 8% en el comportamiento estructural de la edificación considerando los modelos dinámicos Barkan-Savinov, Norma Rusa y Empotrado en la base, el cual corrobora la hipótesis como válida.
- La comparación de los períodos de vibración de la edificación presenta una variación entre modelos: Empotrado versus Barkan 8% y Norma Rusa 7%, Barkan versus norma rusa 1%.
- ☑ El desplazamiento en dirección X de la edificación la variación de los modelos dinámicos: Empotrado versus Barkan 29% y Norma Rusa 25%, Barkan versus Norma Rusa 3%. En dirección Y de la edificación la variación de los modelos dinámicos: Empotrado versus Barkan 18% y Norma Rusa 15%, Barkan versus Norma Rusa 3%.
- ☑ Las distorsiones en dirección X de la edificación la variación de los modelos dinámicos: Empotrado versus Barkan 5%, y Norma Rusa 5%, Barkan versus Norma Rusa 0%. En dirección Y de la edificación la variación de los modelos dinámicos: Empotrado versus Barkan 31% y Norma Rusa 16%, Barkan versus Norma Rusa 0%.
- ☑ Las fuerzas máximas normales en dirección X, tiene una variación de modelos: Empotrado versus Barkan 30% y Norma Rusa 28%, Barkan versus Norma Rusa 3%. Dirección Y, Empotrado versus Barkan 0% y Norma Rusa 2%, Barkan versus Norma Rusa 1%. Para las

fuerzas máximas cortantes en dirección X, tiene una variación de modelos: Empotrado versus Barkan 11%, Norma Rusa 13% y Barkan versus Norma Rusa 2%. Dirección Y, Empotrado versus Barkan 22% Y Norma Rusa 23% y Barkan versus Norma Rusa 1%.

☑ Los momentos máximos en dirección X, tiene una variación de modelos: Empotrado versus Barkan 24% y Norma Rusa 29%, Barkan versus Norma Rusa 4%. Dirección Y, Empotrado versus Barkan 0% y Norma Rusa 1%, Barkan versus Norma Rusa 1%.

REFERENCIAS

- Almazán, S. (2003). Placas Tectónicas y generación de Sismos.
- Garay, R. (2017). INFLUENCIA DE LA INTERACCIÓN SUELO-ESTRUCTURA EN EL COMPORTAMIENTO SÍSMICO DE UN EDIFICIO DE 7 NIVELES DEL PROYECTO "MULTIFAMILIAR LOS BALCONES DEL VALLE" BARRIO COLUMBO-CAJAMARCA. Universidad Nacional de Cajamarca.
- INDECI, O. (2007). COMPENDIO ESTADÍSTICO DE PREVENCIÓN Y ATENCIÓN DE DESASTRES 2007. 14.
- Juber, R. (2015). ESCENARIO SÍSMICO EN BASE A LAS INTENSIDADES MÁXIMAS ESPERADAS EN UN PROBABLE SISMO FRENTE A LA ZONA COSTERA DE LIMA (Marzo 2015)/ Perú.
- Rodriguez, R. (2016). Método de Integración de la Carta Geológica del Ingemmet (1:100 000) y su Aplicación para la Poligonización Regional. Ejemplo Cuenca Cajamarca. 3.
- Valderrama, C., & Meza, R. (2014). *INFLUENCIA DE LA INTERACCIÓN SUELO- ESTRUCTURA EN LA REDUCCIÓN DE ESFUERZOS DE UNA EDIFICACIÓN APORTICADA CON ZAPATAS AISLADAS*. Universidad Peruana de Ciencias Aplicadas.
- Villareal, G. (2013). INTERACCIÓN SÍSMICA SUELO-ESTRUCTURA Y SU IMPACTO AMBIENTAL EN EDIFICACIONES CON ZAPATAS AISLADAS. 6.
- VILLARREAL CASTRO, G. (2009). "Interacción sísmica suelo estructura en edificaciones con zapatas aisladas" (pág. 24 74). Lima-Perú.
- BRAJA M. DAS, (2013). "Fundamentos de Ingeniería Geotécnica", (pág. 49-90 y 228-260). USA.
- CRESPO VILLALAZ, C. (2008). "Mecánica de suelos y cimentaciones" (pág. 18 29). México: Limusa.
- ASLAM, K. (2015). "Análisis Estructural", (pág. 17-48). México.

GONZÁLEZ CUEVAS, O. (2008). Análisis estructural (pág. 23). México: Limusa.

- TEODORO, H. (2004). "Diseño de estructuras de concreto armado", (pág.317-346). PUCP-Lima-Perú.
- MORALES MORALES, R. (2006). "Diseño en concreto armado". Lima-Perú: ICG.
- ALVA HURTADO, J. (2015). "Diseño de cimentaciones". Lima-Perú: ICG.
- SALAZAR TRUJILLO. J. (2007). "Resistencia de materiales básica para estudiantes de ingeniería". Colombia.
- DELGADO CONTERAS, G (2012). "El ABC de los metrados y lectura de planos en edificaciones". Lima Perú: Edicivil.
- NORMA TÉCNICA DE EDIFICACIÓN E.060. (2016). "Concreto armado". Lima: Ministerio de Vivienda, Construcción y Saneamiento.
- NORMA TÉCNICA DE EDIFICACIÓN E.050. (2016). "Suelos y cimentaciones". Lima: Ministerio de Vivienda, Construcción y Saneamiento.
- NORMA TÉCNICA DE EDIFICACIÓN E.030. (2016). "Diseño sismorresistente". Lima: Ministerio de Vivienda, Construcción y Saneamiento.
- NORMA TÉCNICA DE EDIFICACIÓN E.020. (2016). "Cargas". Lima: Ministerio de Vivienda, Construcción y Saneamiento.
- NORMA RUSA- SNIP II-7-81 (1995). La construcción en zonas sísmicas. Actas de la IV Conferencia Internacional de Ingeniería Sísmica.
- JINES CABEZAS, R (2017). "Tesis Magistral: Interacción sísmica suelo estructura en edificaciones de sistema dual en la ciudad de Moquegua". Tacna Perú.
- VALDERRAMA CARPIO, C (2014). "Tesis de grado: influencia de la interacción suelo estructura en la reducción de esfuerzos de una edificación aporticada con zapatas aisladas". Lima Perú
- HERNÁNDEZ ROJAS, E. (2014), "Manual de Aplicación del Programa SAP2000 v14". California.

ANEXOS

- Valores del Coeficiente de balasto, C0 cuando ρ 0 = 0,2 kg / cm.
- 2 Valores orientativos del coeficiente de Poisson del suelo
- Cálculo de cargas de la edificación de primer nivel
- Cálculo de cargas de la edificación de segundo nivel
- Cálculo de cargas de la edificación de tercer nivel
- Cálculo de cargas de la edificación de cuarto nivel
- Estudio de mecánica de suelos
- Periodos de vibración modelo empotrado en las bases
- Periodos de vibración modelo D.D. Barkan O.A. Savinov
- Periodos de vibración modelo Norma Rusa
- Plano A-1: Arquitectura primer nivel
- Plano A-2: Arquitectura segundo nivel
- Plano A-3: Arquitectura tercer y cuarto nivel
- Plano E-1: Cimentaciones de la edificación
- Plano E-2: Estructuras de la edificación

Tabla 2. Valores del Coeficiente de balasto, C0 cuando $\rho 0 = 0.2 \text{ kg} / \text{cm}$.

Tipo de	Características de	Suelo	C_0 (kg
Perfil	la base de fundación		/cm ²⁾
	_	Arcilla y arena arcillosa dura ($I_L < 0$)	3.0
S1	Roca o suelos muy rígidos	Arena compacta ($I_L < 0$)	2.2
		Cascajo, grava, canto rodado, arena densa	2.6
		Arcilla y arena arcillosa plástica (0.25 <	2.0
		$I_L < 0.5)$	
S2	Suelos Intermedios	Arenas plástica ($0 < I_L < 0I_L \le 0.5$)	1.6
	intermeuros	Arena polvorosa medio densa y densa($e \le$	1.4
		$0.80) I_L < 0$	
		Arenas de grano fino, mediano y grueso.	1.0
		Independientes de su densidad y humedad	1.8
	G 1 G 11	Arcilla y arena arcillosa de baja plasticidad	0.0
S 3	Suelos flexibles o con estratos de	$(0.5 < I_L < 0.75)$	0.8
	gran espesor	Arena plástica $(0.5 < I_L < 01)$	1.0
		Arena polvorosa, saturada, porosa ($e > 0.80$)	1.2
G.4	G III	Arcilla y arena arcillosa muy blanda ($I_L >$	0.6
S4	S4 Condiciones excepcionales 0.75)		
		Arena movediza ($I_L > 1$)	0.6

Nota. Libro del Dr. Genner V.C "Interacción sísmica suelo-estructura en edificaciones con zapatas aisladas" (2006)

Tabla D.24: Valores orientativos del coeficiente de Poisson del suelo

Tipo de suelo	Coeficiente de Poisson
Arcillas blandas normalmente consolidadas	0.40
Arcillas medias	0.30
Arcillas duras preconsolidadas	0.15
Arenas y suelos granulares	0.30

Tema 2 Antonio Jaramillo Morilla E.T.S.A (mayo 2008)

Cálculo de cargas de la edificación de primer nivel

1. C1 C2 C3 C4 C5 C6 C7	2 3 4 5 6 7	1 2 4 10 6 3 2	0.75 0.60 0.45 0.75 0.45	0.15 0.15 0.20 0.15 0.15	2.70 2.70 2.70 2.70 2.70	2.40 2.40 2.40	Parcial (Tn) 18.01 0.73 1.17 2.33	Total (Tn)
C1 C2 C3 C4 C5 C6 C7	1 2 3 4 5 5 6 7	2 4 10 6 3	0.75 0.60 0.45 0.75 0.45	0.15 0.20 0.15	2.70 2.70 2.70	2.40 2.40	18.01 0.73 1.17	, ,
C2 C3 C4 C5 C6 C7	2 3 4 5 6 7	2 4 10 6 3	0.60 0.45 0.75 0.45	0.15 0.20 0.15	2.70 2.70	2.40	1.17	
C3 C4 C5 C6 C7	3 4 5 6 7	4 10 6 3	0.45 0.75 0.45	0.20 0.15	2.70			
C4 C5 C6 C7	4 5 6 7 8	10 6 3	0.75 0.45	0.15		2.40	2.33	_
C5 C6 C7	5 6 7 8	6 3	0.45		2.70			
C6 C7	5 7 8	3		0.15	2.70	2.40	7.29	
C7	7		0.45	0.13	2.70	2.40	2.62	
	8	2	0.43	0.15	2.70	2.40	1.31	
C8			0.25	0.25	2.70	2.40	0.81	
		6	0.30	0.15	2.70	2.40	1.75	
2.	Vigas				<u> </u>	<u> </u>	15.16	
Lo	ongitudinales						8.65	
Eje	e A: V.S. (0.25x0.20)	1	16.35	0.25	0.20	2.40	1.96	
Eje	e A/B: V.S. (0.25x0.20)	1	2.90	0.25	0.20	2.40	0.35	
Eje	e B: V.C. (0.25x0.20)	1	13.30	0.25	0.20	2.40	1.60	
Eje	e B: V.CH. (0.50x0.20)	1	5.85	0.50	0.20	2.40	1.40	
Eje	e B: V.E. (0.15x0.20)	1	1.80	0.15	0.20	2.40	0.13	
	e B/C: V.S. (0.25x0.20)	1	11.85	0.25	0.20	2.40	1.42	114.50
M Eje	e C: V.S. (0.25x0.20)	1	9.00	0.25	0.20	2.40	1.08	114.30
Eje	e C: V.E. (0.15x0.20)	1	9.90	0.15	0.20	2.40	0.71	
Tra	ransversales						6.50	
Eje	e 1: V.A. (0.25X0.20)	1	5.35	0.25	0.20	2.40	0.64	
Eje	e 2: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
Eje	e 3: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
Eje	e 4: V.A. (0.25X0.20)	1	4.23	0.25	0.20	2.40	0.51	
Eje	e 4/5: V.A. (0.25X0.20)	1	1.63	0.25	0.20	2.40	0.20	
Eje	e 4/5: V.E. (0.15X0.20)	1	2.65	0.15	0.20	2.40	0.19	
Eje	e 5: V.A. (0.25X0.20)	1	4.23	0.25	0.20	2.40	0.51	
Eje	e 5/6: V.A. (0.25X0.20)	1	2.45	0.25	0.20	2.40	0.29	
Eje	e 5/6: V.E. (0.15X0.20)	1	4.15	0.15	0.20	2.40	0.30	
Eje	e 6: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
Eje	e 6/7: V.A. (0.25X0.20)	1	4.00	0.25	0.20	2.40	0.48	
Eje	e 7: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
Eje	e 7/8: V.A. (0.25X0.20)	1	4.05	0.25	0.20	2.40	0.49	
3.	Escalera						7.94	

Primer nivel	Cantidad	Largo (m)	Ancho	Altura	y (Tr. (-2)	Parcial (Tn)	Total (Tn)
Escalera pasadizo		(111)	(m)	(m)	(Tn/m3)	4.33	(111)
Tramo 1-2 rampa	1	4.28	1.20	0.10	2.40	1.23	
(Contrapasos tramo 1-2)/2	14	0.25	1.20	0.10	2.40	0.88	
Descanso	1	2.40	1.20	0.18	4.40	2.22	
Escalera interior	1	2.40	1.20	0.16	4.40	3.61	
Tramo 1-2 rampa	1	4.28	1.00	0.10	2.40	1.03	
(Contrapasos tramo 1-2)/2	14	0.25	1.00	0.10	2.40	0.74	
Descanso	1	2.40	1.00	0.18	4.40	1.85	
4. Muros de albañilería	1	2.40	1.00	0.10	7.70	43.22	
Longitudinales						32.59	
Eje A	1	14.90	0.15	2.70	1.80	10.86	
Eje B	1	10.35	0.15	2.70	1.80	7.55	
Eje B-C	1	3.15	0.15	2.70	1.80	2.30	
Eje C	1	16.30	0.15	2.70	1.80	11.88	
Transversales	1	10.50	0.15	2.70	1.00	10.64	
	1	1.50	0.15	1.05	1.80	0.43	
Eje 1	1	0.55	0.15	2.70	1.80	0.40	
Eje 3	1	1.65	0.15	2.70	1.80	1.20	
Eje 4	1	0.45	0.15	2.70	1.80	0.33	
Eje 4-5		1.90	0.15	2.70	1.80	1.39	
•	1	1.60	0.15	1.00	1.80	0.43	
Eje 5	1	0.35	0.15	2.70	1.80	0.26	
	1	4.05	0.15	2.70	1.80	2.95	
Eje 5-6	1	0.80	0.15	1.80	1.80	0.39	
Eje 6	1	0.30	0.15	1.80	1.80	0.15	
Eje 6-7	1	2.70	0.15	1.80	1.80	1.31	
Eje 7	1	1.75	0.15	0.90	1.80	0.43	
Eje 7-8	2	0.68	0.15	2.70	1.80	0.98	
5. losa e=0.20 m			l	l		30.16	
Ejes A-B a 1-2	1	1.30	3.60		0.30	1.40	
Ejes A-B a 2-3	1	4.10	3.60		0.30	4.43	
Ejes A-B a 3-4	1	2.30	3.48		0.30	2.40	
Ejes A-B a 4-5	1	2.40	0.98		0.30	0.70	
Ejes A-B a 5-6	1	3.50	3.60		0.30	3.78	
Ejes A-B a 6-7	1	3.40	3.60		0.30	3.67	
Ejes B-C a 1-2	1	1.30	1.00		0.30	0.39	
Ejes B-C a 1-2	1	0.53	2.40		0.30	0.38	

			Largo	Ancho	Altura	- Cajamarc	Parcial	Total
	Primer nivel	Cantidad	(m)	(m)	(m)	(Tn/m3)	(Tn)	(Tn)
	Ejes B-C a 2-3	1	4.10	3.65		0.30	4.49	
	Ejes B-C a 3-4	1	1.20	2.50		0.30	0.90	
	Ejes B-C a 3-4/5	1	4.05	0.88		0.30	1.06	
	Ejes B-C a 4/5-6	1	3.70	1.45		0.30	1.61	
	Ejes B-C a 5-6	1	1.10	2.05		0.30	0.68	
	Ejes B-C a 5/6-7	1	2.00	1.10		0.30	0.66	
	Ejes B-C a 6/7-7/8	1	3.30	3.65		0.30	3.61	
	6. losa e=0.20 m (Vivienda)						20.11	
	Ejes A-B a 1-2	1	1.30	3.60		0.20	0.94	
	Ejes A-B a 2-3	1	4.10	3.60		0.20	2.95	
	Ejes A-B a 3-4	1	2.30	3.48		0.20	1.60	
	Ejes A-B a 4-5	1	2.40	0.98		0.20	0.47	
	Ejes A-B a 5-6	1	3.50	3.60		0.20	2.52	
	Ejes A-B a 6-7	1	3.40	3.60		0.20	2.45	
C.V	Ejes B-C a 1-2	1	1.30	1.00		0.20	0.26	20.11
C. V	Ejes B-C a 1-2	1	0.53	2.40		0.20	0.25	20.11
	Ejes B-C a 2-3	1	4.10	3.65		0.20	2.99	
	Ejes B-C a 3-4	1	1.20	2.50		0.20	0.60	
	Ejes B-C a 3-4/5	1	4.05	0.88		0.20	0.71	
	Ejes B-C a 4/5-6	1	3.70	1.45		0.20	1.07	
	Ejes B-C a 5-6	1	1.10	2.05		0.20	0.45	
	Ejes B-C a 5/6-7	1	2.00	1.10		0.20	0.44	
	Ejes B-C a 6/7-7/8	1	3.30	3.65		0.20	2.41	
		Total Peso	o del 1er N	ivel	-			134.61

Cálculo de cargas de la edificación de segundo nivel

	Segundo nivel	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Y (Tn/m3)	Parcial (Tn)	Total (Tn)
	1. Columnas		. ,	<u> </u>			15.50	. ,
	C1	1	0.75	0.15	2.55	2.40	0.69	
	C2	2	0.60	0.15	2.55	2.40	1.10	
	C3	4	0.45	0.20	2.55	2.40	2.20	
	C4	10	0.75	0.15	2.55	2.40	6.89	
	C5	5	0.45	0.15	2.55	2.40	2.07	
	C6	1	0.45	0.15	2.55	2.40	0.41	
	C7	2	0.25	0.25	2.55	2.40	0.77	
	C8	5	0.30	0.15	2.55	2.40	1.38	
	2. Vigas					•	15.79	
	Longitudinales						9.26	
	Eje A: V.S. (0.25x0.20)	1	16.35	0.25	0.20	2.40	1.96	
	Eje A/B: V.A. (0.25x0.20)	1	1.80	0.25	0.20	2.40	0.22	
	Eje A/B: V.S. (0.25x0.20)	1	2.90	0.25	0.20	2.40	0.35	
	Eje B: V.C. (0.25x0.20)	1	7.40	0.25	0.20	2.40	0.89	
	Eje B: V.CH. (0.50x0.20)	1	11.55	0.50	0.20	2.40	2.77	123.68
C.	Eje B: V.E. (0.15x0.20)	1	1.80	0.15	0.20	2.40	0.13	
M	Eje B/C: V.A. (0.25x0.20)	1	1.80	0.25	0.20	2.40	0.22	
	Eje B/C: V.S. (0.25x0.20)	1	7.30	0.25	0.20	2.40	0.88	
	Eje C: V.S. (0.25x0.20)	1	12.95	0.25	0.20	2.40	1.55	
	Eje C: V.E. (0.15x0.20)	1	4.15	0.15	0.20	2.40	0.30	
	Transversales						6.53	
	Eje 1: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
	Eje 2: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
	Eje 3: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
	Eje 4: V.A. (0.25X0.20)	1	4.15	0.25	0.20	2.40	0.50	
	Eje 4/5: V.E. (0.15X0.20)	1	2.90	0.15	0.20	2.40	0.21	
	Eje 5: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
	Eje 5/6: V.A. (0.25X0.20)	1	4.15	0.25	0.20	2.40	0.50	
	Eje 6: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
	Eje 6/7: V.A. (0.25X0.20)	1	4.00	0.25	0.20	2.40	0.48	
	Eje 7: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
	Eje 7/8: V.A. (0.25X0.20)	1	4.05	0.25	0.20	2.40	0.49	
	3. Escalera						4.33	

Segundo nivel	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Υ (Tn/m3)	Parcial (Tn)	Total (Tn)
Escalera pasadiso						4.33	
Tramo 1-2 rampa	1	4.28	1.20	0.10	2.40	1.23	
(Contrapasos tramo 1-2)/2	14	0.25	1.20	0.18	2.40	0.88	
Descanso	1	2.40	1.20	0.18	4.40	2.22	
4. Muros de albañilería						57.12	
Longitudinales					•	36.19	
Eje A	1	15.45	0.15	2.55	1.80	10.64	
	1	0.30	0.15	0.90	1.80	0.07	
Eje A-B	1	0.60	0.15	2.55	1.80	0.41	
	1	1.00	0.15	1.80	1.80	0.49	
Eje B	1	9.90	0.15	2.55	1.80	6.82	
Eje B-C	1	8.95	0.15	2.55	1.80	6.16	
Eje C	1	16.85	0.15	2.55	1.80	11.60	
Transversales				<u>-</u>		20.93	
	1	0.30	0.15	2.55	1.80	0.21	
Di. 1	1	1.50	0.15	0.90	1.80	0.36	
Eje 1	1	1.05	0.15	0.90	1.80	0.26	
	1	1.20	0.15	2.55	1.80	0.83	
E:- 1.0	1	0.90	0.15	2.55	1.80	0.62	
Eje 1-2	1	1.60	0.15	1.80	1.80	0.78	
Eje 2-3	1	5.45	0.15	2.55	1.80	3.75	
Eje 3	1	2.20	0.15	2.55	1.80	1.51	
Ti. A	1	1.60	0.15	0.90	1.80	0.39	
Eje 4	1	1.75	0.15	2.55	1.80	1.20	
Eje 4-5	1	1.90	0.15	2.55	1.80	1.31	
Ti. F	1	1.60	0.15	0.90	1.80	0.39	
Eje 5	1	1.60	0.15	2.55	1.80	1.10	
T'	1	3.45	0.15	2.55	1.80	2.38	
Eje 5-6	1	0.80	0.15	1.80	1.80	0.39	
Eje 6	1	2.90	0.15	2.55	1.80	2.00	
Eje 6-7	1	0.60	0.15	2.55	1.80	0.41	
E: 7	1	1.60	0.15	0.90	1.80	0.39	
Eje 7	1	1.65	0.15	2.55	1.80	1.14	
E: 70	2	0.58	0.15	2.55	1.80	0.79	
Eje 7-8	1	3.00	0.15	0.90	1.80	0.73	
5. losa e=0.20 m			<u> </u>	<u> </u>	1	30.94	
Ejes A-B a 1-2	1	0.80	3.15		0.30	0.76	

	Segundo nivel	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Y (Tn/m3)	Parcial (Tn)	Total (Tn)			
	Ejes A-B a 2-3	1	4.10	3.41		0.30	4.19				
	Ejes A-B a 3-4	1	2.30	3.41		0.30	2.35				
	Ejes A-B a 4-5	1	2.40	0.91		0.30	0.65				
	Ejes A-B a 5-6	1	3.50	3.60		0.30	3.78				
	Ejes A-B a 6-7	1	3.40	3.60		0.30	3.67				
	Ejes B-C a 1-2	1	0.80	3.34		0.30	0.80				
	Ejes B-C a 2-3	1	4.10	3.60		0.30	4.43				
	Ejes B-C a 3-4	1	1.20	2.50		0.30	0.90				
	Ejes B-C a 3-4/5	1	4.30	0.94		0.30	1.21				
	Ejes B-C a 4/5-6	1	2.35	1.45		0.30	1.02				
	Ejes B-C a 5/6-6/7	1	3.25	3.65		0.30	3.56				
	Ejes B-C a 6/7-7/8	1	3.30	3.65		0.30	3.61				
	6. losa e=0.20 m (Vivienda)	•		•		•	20.63				
	Ejes A-B a 1-2	1	0.80	3.15		0.20	0.50				
	Ejes A-B a 2-3	1	4.10	3.41		0.20	2.79				
	Ejes A-B a 3-4	1	2.30	3.41		0.20	1.57				
	Ejes A-B a 4-5	1	2.40	0.91		0.20	0.44				
	Ejes A-B a 5-6	1	3.50	3.60		0.20	2.52				
C.V	Ejes A-B a 6-7	1	3.40	3.60		0.20	2.45	20.63			
C.V	Ejes B-C a 1-2	1	0.80	3.34		0.20	0.53	20.03			
	Ejes B-C a 2-3	1	4.10	3.60		0.20	2.95				
	Ejes B-C a 3-4	1	1.20	2.50		0.20	0.60				
	Ejes B-C a 3-4/5	1	4.30	0.94		0.20	0.81				
	Ejes B-C a 4/5-6	1	2.35	1.45		0.20	0.68				
	Ejes B-C a 5/6-6/7	1	3.25	3.65		0.20	2.37				
	Ejes B-C a 6/7-7/8	1	3.30	3.65		0.20	2.41				
		Total Peso del 2do Nivel									

Cálculo de Cargas de la Edificación de Tercer Nivel

	Tercer Nivel	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Υ (Tn/m3)	Parcial (Tn)	Total (Tn)
	1. Columnas		. ,	<u> </u>			14.95	` ,
	C1	1	0.75	0.15	2.55	2.40	0.69	
	C2	2	0.60	0.15	2.55	2.40	1.10	
	C3	4	0.45	0.20	2.55	2.40	2.20	
	C4	10	0.75	0.15	2.55	2.40	6.89	
	C5	5	0.45	0.15	2.55	2.40	2.07	
	C6	1	0.45	0.15	2.55	2.40	0.41	
	C7	2	0.25	0.25	2.55	2.40	0.77	
	C8	3	0.30	0.15	2.55	2.40	0.83	
	2. Vigas	,		-	-	•	15.79	
	Longitudinales			•	•	•	9.26	
	Eje A: V.S. (0.25x0.20)	1	16.35	0.25	0.20	2.40	1.96	
	Eje A/B: V.A. (0.25x0.20)	1	1.80	0.25	0.20	2.40	0.22	
	Eje A/B: V.S. (0.25x0.20)	1	2.90	0.25	0.20	2.40	0.35	
	Eje B: V.C. (0.25x0.20)	1	7.40	0.25	0.20	2.40	0.89	
	Eje B: V.CH. (0.50x0.20)	1	11.55	0.50	0.20	2.40	2.77	125.44
C.	Eje B: V.E. (0.15x0.20)	1	1.80	0.15	0.20	2.40	0.13	
M	Eje B/C: V.A. (0.25x0.20)	1	1.80	0.25	0.20	2.40	0.22	
	Eje B/C: V.S. (0.25x0.20)	1	7.30	0.25	0.20	2.40	0.88	
	Eje C: V.S. (0.25x0.20)	1	12.95	0.25	0.20	2.40	1.55	
	Eje C: V.E. (0.15x0.20)	1	4.15	0.15	0.20	2.40	0.30	
	Transversales						6.53	
	Eje 1: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
	Eje 2: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
	Eje 3: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
	Eje 4: V.A. (0.25X0.20)	1	4.15	0.25	0.20	2.40	0.50	
	Eje 4/5: V.E. (0.15X0.20)	1	2.90	0.15	0.20	2.40	0.21	
	Eje 5: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
	Eje 5/6: V.A. (0.25X0.20)	1	4.15	0.25	0.20	2.40	0.50	
	Eje 6: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
	Eje 6/7: V.A. (0.25X0.20)	1	4.00	0.25	0.20	2.40	0.48	
	Eje 7: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
	Eje 7/8: V.A. (0.25X0.20)	1	4.05	0.25	0.20	2.40	0.49	
	3. Escalera						4.33	

Tercer Nivel	Cantidad	Largo	Ancho	Altura	Y	Parcial	Total
		(m)	(m)	(m)	(Tn/m3)	(Tn)	(Tn)
Escalera pasadizo		Г	1	1	1	4.33	
Tramo 1-2 rampa	1	4.28	1.20	0.10	2.40	1.23	
(Contrapasos tramo 1-2)/2	14	0.25	1.20	0.18	2.40	0.88	
Descanso	1	2.40	1.20	0.18	4.40	2.22	
4. Muros de albañilería				·		59.43	
Longitudinales						38.29	
Eje A	1	15.45	0.15	2.55	1.80	10.64	
	1	0.30	0.15	0.90	1.80	0.07	
Eje A-B	1	4.00	0.15	2.55	1.80	2.75	
	1	0.90	0.25	1.80	1.80	0.73	
Eje B	1	9.60	0.15	2.55	1.80	6.61	
Eje B-C	1	8.40	0.15	2.55	1.80	5.78	
Eje C	1	17.00	0.15	2.55	1.80	11.70	
Transversales		-	•	<u>.</u>	•	21.14	
P:- 1	1	2.05	0.15	2.55	1.80	1.41	
Eje 1	1	2.65	0.15	0.90	1.80	0.64	
Eje 1-2	1	0.80	0.15	2.55	1.80	0.55	
Eje 2-3	1	4.40	0.15	2.55	1.80	3.03	
D: 0	1	1.45	0.15	2.55	1.80	1.00	
Eje 3	1	0.75	0.15	1.80	1.80	0.36	
T	1	1.30	0.15	2.55	1.80	0.90	
Eje 4	1	1.90	0.15	1.00	1.80	0.51	
Eje 4-5	1	1.90	0.15	2.55	1.80	1.31	
	1	1.60	0.15	2.55	1.80	1.10	
Eje 5	1	1.60	0.15	0.90	1.80	0.39	
	1	3.65	0.15	2.55	1.80	2.51	
Eje 5-6	1	0.85	0.15	1.80	1.80	0.41	
Eje 6	1	2.90	0.15	2.55	1.80	2.00	
Eje 6-7	1	2.85	0.15	2.55	1.80	1.96	
	1	1.60	0.15	0.90	1.80	0.39	
Eje 7	1	1.65	0.15	2.55	1.80	1.14	
	2	0.58	0.15	2.55	1.80	0.79	
Eje 7-8	1	3.00	0.15	0.90	1.80	0.73	
5. losa e=0.20 m	1 *	1 2.00	1 3.10	1 3.70	1.00	30.94	
Ejes A-B a 1-2	1	0.80	3.15		0.30	0.76	
Ejes A-B a 2-3	1	4.10	3.41		0.30	4.19	
Ejes A-B a 3-4	1	2.30	3.41		0.30	2.35	
_ шјоз л-ш а <i>э-</i> т	1	2.50	J. ⊤ 1		0.50	2.55	1

	Tercer Nivel	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Υ (Tn/m3)	Parcial (Tn)	Total (Tn)
	Ejes A-B a 4-5	1	2.40	0.91		0.30	0.65	
	Ejes A-B a 5-6	1	3.50	3.60		0.30	3.78	
	Ejes A-B a 6-7	1	3.40	3.60		0.30	3.67	
	Ejes B-C a 1-2	1	0.80	3.34		0.30	0.80	
	Ejes B-C a 2-3	1	4.10	3.60		0.30	4.43	
	Ejes B-C a 3-4	1	1.20	2.50		0.30	0.90	
	Ejes B-C a 3-4/5	1	4.30	0.94		0.30	1.21	
	Ejes B-C a 4/5-6	1	2.35	1.45		0.30	1.02	
	Ejes B-C a 5/6-6/7	1	3.25	3.65		0.30	3.56	
	Ejes B-C a 6/7-7/8	1	3.30	3.65		0.30	3.61	
	5. losa e=0.20 m (Vivienda)						20.63	
	Ejes A-B a 1-2	1	0.80	3.15		0.20	0.50	
	Ejes A-B a 2-3	1	4.10	3.41		0.20	2.79	
	Ejes A-B a 3-4	1	2.30	3.41		0.20	1.57	
	Ejes A-B a 4-5	1	2.40	0.91		0.20	0.44	
	Ejes A-B a 5-6	1	3.50	3.60		0.20	2.52	
C.V	Ejes A-B a 6-7	1	3.40	3.60		0.20	2.45	20.63
C. V	Ejes B-C a 1-2	1	0.80	3.34		0.20	0.53	20.03
	Ejes B-C a 2-3	1	4.10	3.60		0.20	2.95	
	Ejes B-C a 3-4	1	1.20	2.50		0.20	0.60	
	Ejes B-C a 3-4/5	1	4.30	0.94		0.20	0.81	
	Ejes B-C a 4/5-6	1	2.35	1.45		0.20	0.68	
	Ejes B-C a 5/6-6/7	1	3.25	3.65		0.20	2.37	
	Ejes B-C a 6/7-7/8	1	3.30	3.65		0.20	2.41	
		Total Pes	o del 3er N	ivel				146.06

Cálculo de Cargas de la Edificación de Cuarto Nivel

	Cuarto Nivel	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Υ (Tn/m3)	Parcial (Tn)	Total (Tn)
	1. Columnas		. ,	<u> </u>			14.95	` ,
	C1	1	0.75	0.15	2.55	2.40	0.69	
	C2	2	0.60	0.15	2.55	2.40	1.10	
	C3	4	0.45	0.20	2.55	2.40	2.20	
	C4	10	0.75	0.15	2.55	2.40	6.89	
	C5	5	0.45	0.15	2.55	2.40	2.07	
	C6	1	0.45	0.15	2.55	2.40	0.41	
	C7	2	0.25	0.25	2.55	2.40	0.77	
	C8	3	0.30	0.15	2.55	2.40	0.83	
	2. Vigas					•	15.79	
	Longitudinales					•	9.26	
	Eje A: V.S. (0.25x0.20)	1	16.35	0.25	0.20	2.40	1.96	
	Eje A/B: V.A. (0.25x0.20)	1	1.80	0.25	0.20	2.40	0.22	
	Eje A/B: V.S. (0.25x0.20)	1	2.90	0.25	0.20	2.40	0.35	
	Eje B: V.C. (0.25x0.20)	1	7.40	0.25	0.20	2.40	0.89	
	Eje B: V.CH. (0.50x0.20)	1	11.55	0.50	0.20	2.40	2.77	
C.	Eje B: V.E. (0.15x0.20)	1	1.80	0.15	0.20	2.40	0.13	125.44
M	Eje B/C: V.A. (0.25x0.20)	1	1.80	0.25	0.20	2.40	0.22	
	Eje B/C: V.S. (0.25x0.20)	1	7.30	0.25	0.20	2.40	0.88	
	Eje C: V.S. (0.25x0.20)	1	12.95	0.25	0.20	2.40	1.55	
	Eje C: V.E. (0.15x0.20)	1	4.15	0.15	0.20	2.40	0.30	
	Transversales						6.53	
	Eje 1: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
	Eje 2: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
	Eje 3: V.A. (0.25X0.20)	1	8.00	0.25	0.20	2.40	0.96	
	Eje 4: V.A. (0.25X0.20)	1	4.15	0.25	0.20	2.40	0.50	
	Eje 4/5: V.E. (0.15X0.20)	1	2.90	0.15	0.20	2.40	0.21	
	Eje 5: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
	Eje 5/6: V.A. (0.25X0.20)	1	4.15	0.25	0.20	2.40	0.50	
	Eje 6: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
	Eje 6/7: V.A. (0.25X0.20)	1	4.00	0.25	0.20	2.40	0.48	
	Eje 7: V.A. (0.25X0.20)	1	4.10	0.25	0.20	2.40	0.49	
	Eje 7/8: V.A. (0.25X0.20)	1	4.05	0.25	0.20	2.40	0.49	
	3. Escalera						4.33	

Cuarto Nivel	Cantidad	Largo (m)	Ancho (m)	Altura (m)	Y	Parcial (Tn)	Total (Tn)
Escalera pasadizo		(m) (m) (Tn/m3)				4.33	(111)
Tramo 1-2 rampa	1	4.28	1.20	0.10	2.40	1.23	
(Contrapasos tramo 1-2)/2	14	0.25	1.20	0.18	2.40	0.88	
Descanso	1	2.40	1.20	0.18	4.40	2.22	
4. Muros de albañilería		20	1.20	0.10		59.43	
Longitudinales			•		•	38.29	
Eje A	1	15.45	0.15	2.55	1.80	10.64	
J.	1	0.30	0.15	0.90	1.80	0.07	
Eje A-B	1	4.00	0.15	2.55	1.80	2.75	
L ₁ 0 11 L	1	0.90	0.25	1.80	1.80	0.73	
Eje B	1	9.60	0.15	2.55	1.80	6.61	
Eje B-C	1	8.40	0.15	2.55	1.80	5.78	
Eje C	1	17.00	0.15	2.55	1.80	11.70	
Transversales				<u>l</u>		21.14	
	1	2.05	0.15	2.55	1.80	1.41	
Eje 1	1	2.65	0.15	0.90	1.80	0.64	
Eje 1-2	1	0.80	0.15	2.55	1.80	0.55	
Eje 2-3	1	4.40	0.15	2.55	1.80	3.03	
-	1	1.45	0.15	2.55	1.80	1.00	
Eje 3	1	0.75	0.15	1.80	1.80	0.36	
	1	1.30	0.15	2.55	1.80	0.90	
Eje 4	1	1.90	0.15	1.00	1.80	0.51	
Eje 4-5	1	1.90	0.15	2.55	1.80	1.31	
	1	1.60	0.15	2.55	1.80	1.10	
Eje 5	1	1.60	0.15	0.90	1.80	0.39	
	1	3.65	0.15	2.55	1.80	2.51	
Eje 5-6	1	0.85	0.15	1.80	1.80	0.41	
Eje 6	1	2.90	0.15	2.55	1.80	2.00	
Eje 6-7	1	2.85	0.15	2.55	1.80	1.96	
	1	1.60	0.15	0.90	1.80	0.39	
Eje 7	1	1.65	0.15	2.55	1.80	1.14	
Eje 7-8	2	0.58	0.15	2.55	1.80	0.79	
	1	3.00	0.15	0.90	1.80	0.73	
5. losa e=0.20 m			1		1	30.94	
Ejes A-B a 1-2	1	0.80	3.15		0.30	0.76	
Ejes A-B a 2-3	1	4.10	3.41		0.30	4.19	
Ejes A-B a 3-4	1	2.30	3.41		0.30	2.35	

	Cuarto Nivel	Cantidad	Largo (m)	Ancho (m)	Altura (m)	γ (Tn/m3)	Parcial (Tn)	Total (Tn)
	Ejes A-B a 4-5	1	2.40	0.91		0.30	0.65	
	Ejes A-B a 5-6	1	3.50	3.60		0.30	3.78	
	Ejes A-B a 6-7	1	3.40	3.60		0.30	3.67	
	Ejes B-C a 1-2	1	0.80	3.34		0.30	0.80	
	Ejes B-C a 2-3	1	4.10	3.60		0.30	4.43	
	Ejes B-C a 3-4	1	1.20	2.50		0.30	0.90	
	Ejes B-C a 3-4/5	1	4.30	0.94		0.30	1.21	
	Ejes B-C a 4/5-6	1	2.35	1.45		0.30	1.02	
	Ejes B-C a 5/6-6/7	1	3.25	3.65		0.30	3.56	
	Ejes B-C a 6/7-7/8	1	3.30	3.65		0.30	3.61	
	5. losa e=0.20 m (Azotea-vivienda)							
	Ejes A-B a 1-2	1	0.80	3.15		0.10	0.25	10.31
C.V	Ejes A-B a 2-3	1	4.10	3.41		0.10	1.40	
	Ejes A-B a 3-4	1	2.30	3.41		0.10	0.78	
	Ejes A-B a 4-5	1	2.40	0.91		0.10	0.22	
	Ejes A-B a 5-6	1	3.50	3.60		0.10	1.26	
	Ejes A-B a 6-7	1	3.40	3.60		0.10	1.22	
	Ejes B-C a 1-2	1	0.80	3.34		0.10	0.27	
	Ejes B-C a 2-3	1	4.10	3.60		0.10	1.48	
	Ejes B-C a 3-4	1	1.20	2.50		0.10	0.30	
	Ejes B-C a 3-4/5	1	4.30	0.94		0.10	0.40	
	Ejes B-C a 4/5-6	1	2.35	1.45		0.10	0.34	
	Ejes B-C a 5/6-6/7	1	3.25	3.65		0.10	1.19	
	Ejes B-C a 6/7-7/8	1	3.30	3.65		0.10	1.20	
Total Peso del 4to Nivel						135.75		

ESTUDIO DE MECANICA DE SUELOS

RECOLECCION, TRATAMIENTO Y DISPOSICION FINAL DE LOS RESIDUOS LIQUIDOS (Aguas Servidas) DE LA LOCALIDAD DE SANTA BARBARA – BAÑOS DEL INCA – CAJAMARCA

1.0 GENERALIDADES

1.1 Antecedentes

Por encargo de la Municipalidad Distrital de Los Baños del Inca, se realizo el Estudio de Mecánica de Suelos, para el proyecto: "CONSTRUCCION DEL SISTEMA DE ALCANTARILLADO SANITARIO DEL CENTRO POBLADO SANTA BARBARA Y ANEXOS, DISTRITO DE LOS BANOS DEL INCA - CAJAMARCA – CAJAMARCA".

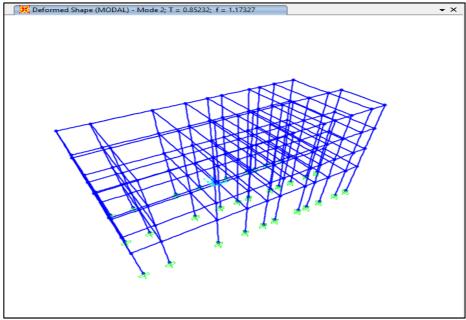
6.3 Cálculo de la Capacidad Portante admisible

Se ha determinado la capacidad portante admisible del terreno en base a las características del subsuelo y se han propuesto dimensiones recomendables para la cimentación.

El factor de capacidad de carga se obtendrá:

С	= 0.30 (kg/cm2)		
Φ	= O ₀		
FS	= 3		
<u>Df</u>	= 1.40m	Nc = 5.14	Sc = 1.00
В	= 1.20m	$N\tau = 0$	Sτ= 0.60
δ1	= 0.90 gr/cm3 (sumergido)	Ng = 1.00	<u>Sq</u> = 1.19
δ2	= 1.80 gr/cm3		
Do (1) as tions			

De (1) se tiene:


 $= 2.10 \text{ kg/cm}^2$

qui	- 2, 10 kg/cm2
qad	= 0,70 kg/cm2 (trabajar con qadm = 0.70 kg/cm2)

Periodos de vibración modelo empotrado en las bases

Figura 75. *Modal 2; Empotrado en la base; SAP2000.*

Nota. Elaboración propia (2021).

Figura 76. *Modal 3; Empotrado en la base; SAP2000.*

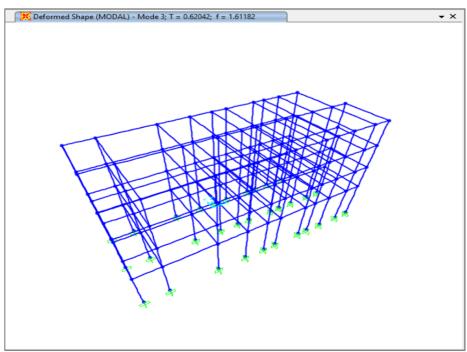
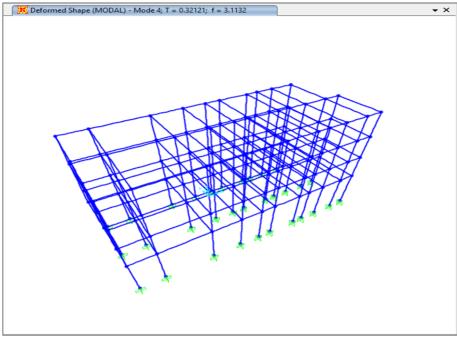



Figura 77.

Modal 4; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)

Figura 78. *Modal 5; Empotrado en la base; SAP2000.*

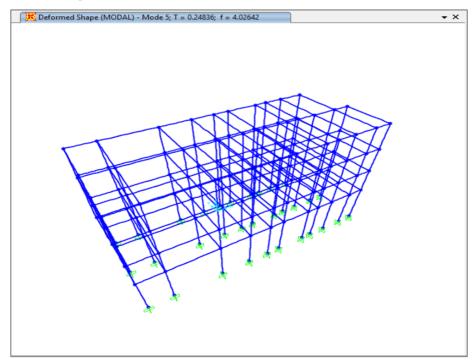
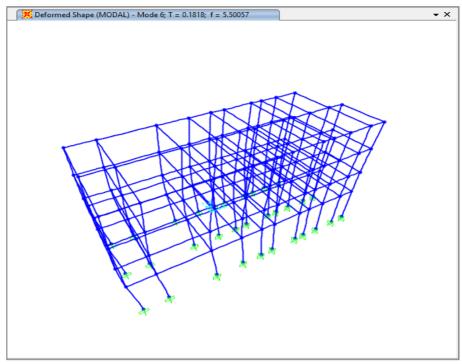



Figura 79.

Modal 6; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)

Figura 80. *Modal 7; Empotrado en la base; SAP2000.*

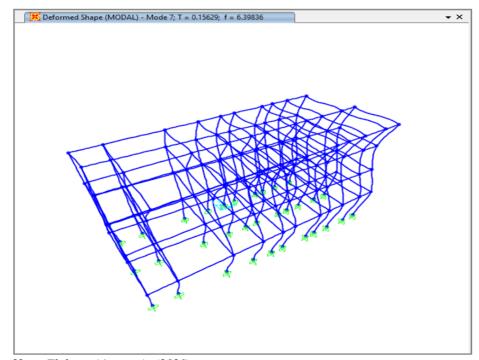
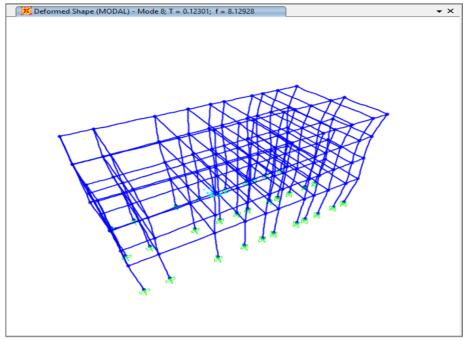



Figura 81.

Modal 8; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)

Figura 82. *Modal 9; Empotrado en la base; SAP2000.*

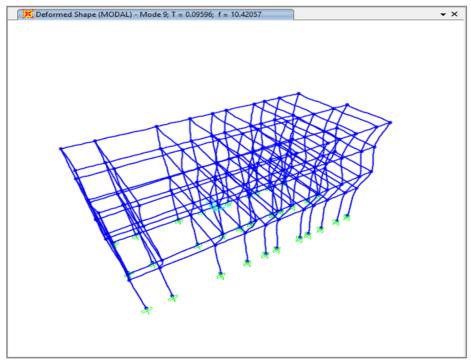
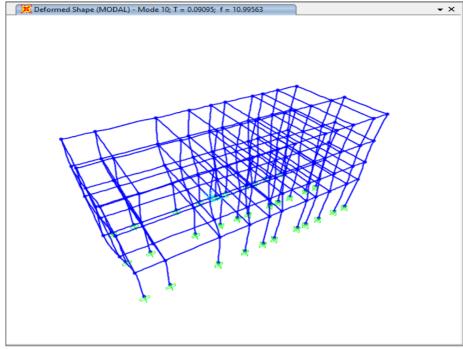



Figura 83.

Modal 10; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)

Figura 84. *Modal 11; Empotrado en la base; SAP2000.*

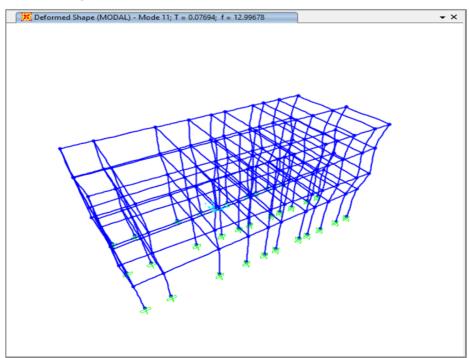
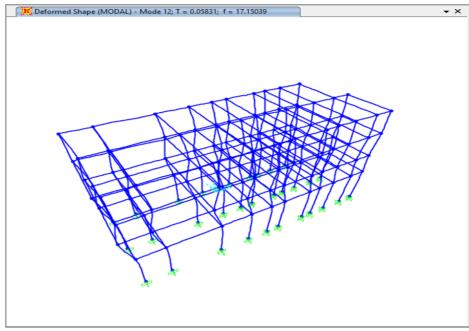



Figura 85.

Modal 12; Empotrado en la base; SAP2000.

Nota. Elaboración propia (2021)

Periodos de vibración modelo D.D. Barkan - O.A. Savinov

Figura 86.Segundo modo de vibración; según Barkan; SAP200.

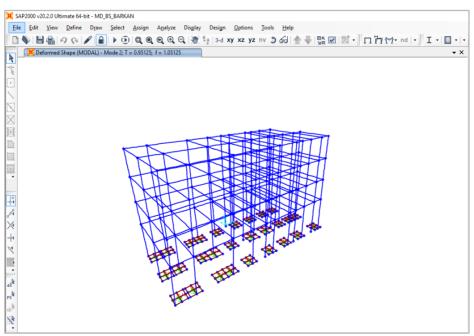
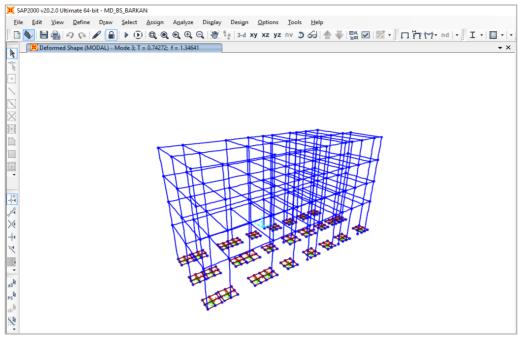



Figura 87.

Tercer modo de vibración; según Barkan; SAP2000.

Nota. Elaboración propia (2021)

Figura 88.Cuarto modo de vibración; según Barkan; SAP2000.

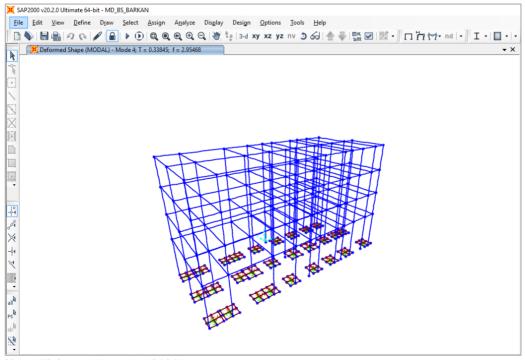
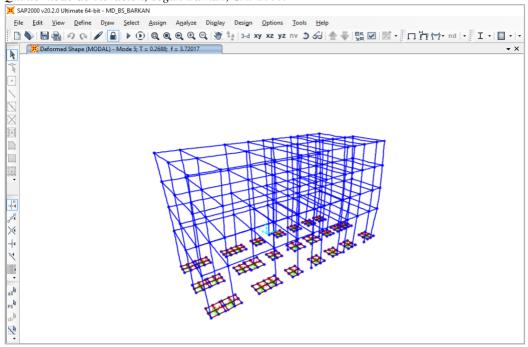



Figura 89.

Quinto modo de vibración; según Barkan; SAP2000.

Nota. Elaboración propia (2021)

Figura 90.

Sexto modo de vibración; según Barkan; SAP2000.

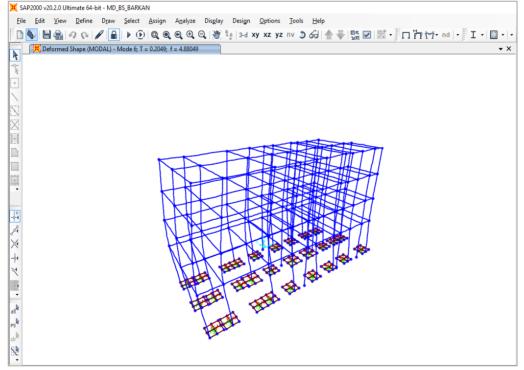
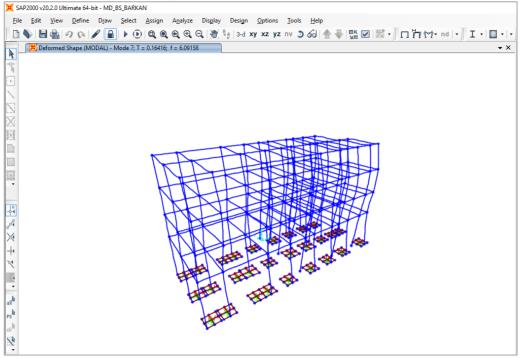



Figura 91.

Séptimo modo de vibración; según Barkan; SAP2000.

Nota. Elaboración propia (2021)

Figura 92.

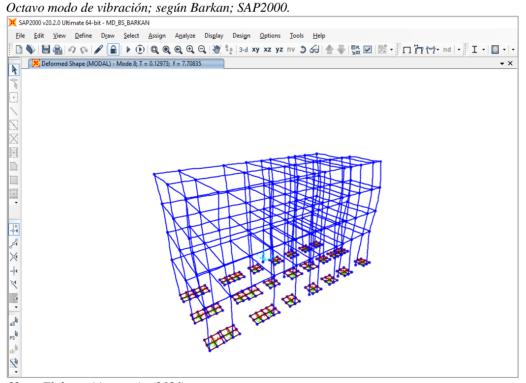
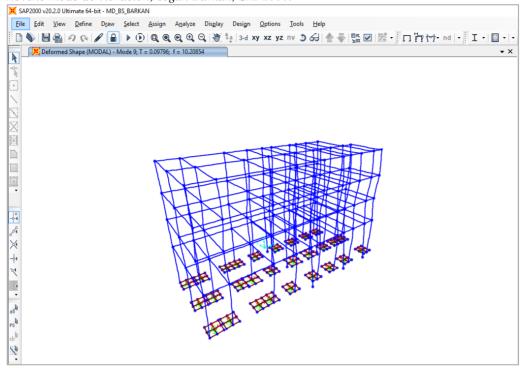



Figura 93.

Noveno modo de vibración; según Barkan; SAP2000.

Nota. Elaboración propia (2021)

Figura 94.

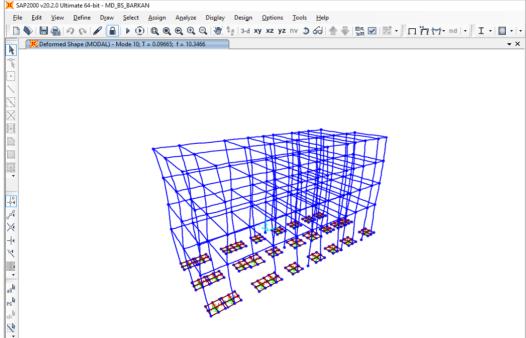
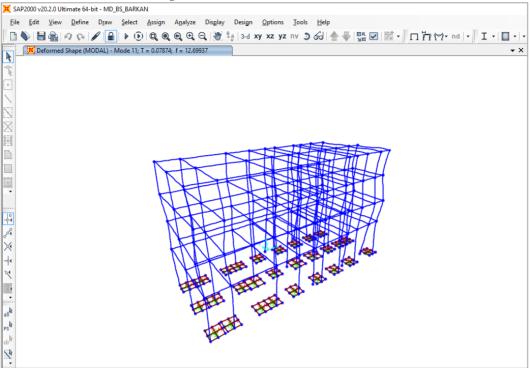
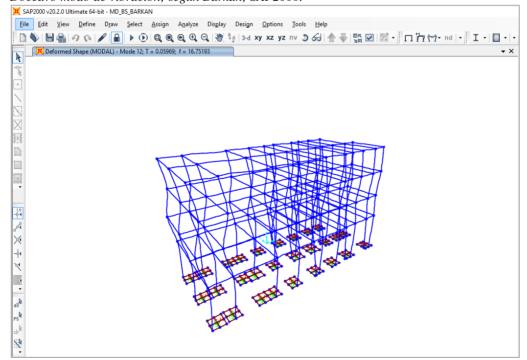
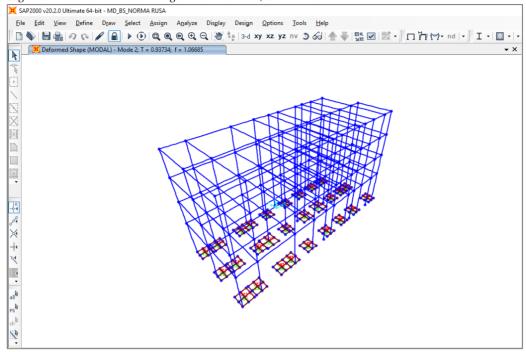



Figura 95.


Onceavo modo de vibración; según Barkan; SAP2000.

Nota. Elaboración propia (2021)


Figura 96.

Doceavo modo de vibración; según Barkan; SAP2000.

Periodos de vibración modelo Norma Rusa.

Figura 97.Segundo modo de vibración según Norma Rusa, SAP2000.

Nota. Elaboración propia (2021)

Figura 98. *Tercer modo de vibración según Norma Rusa, SAP2000.*

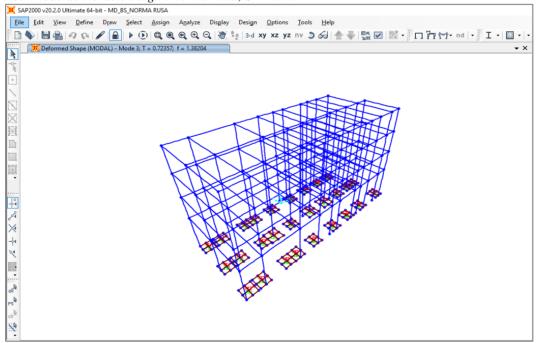
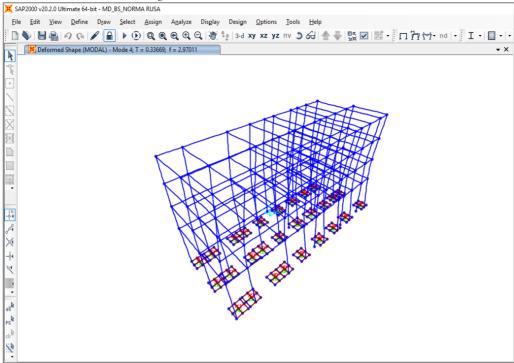



Figura 99.

Cuarto modo de vibración según Norma Rusa, SAP2000.

Nota. Elaboración propia (2021)

Figura 100.

Quinto modo de vibración según Norma Rusa, SAP2000.

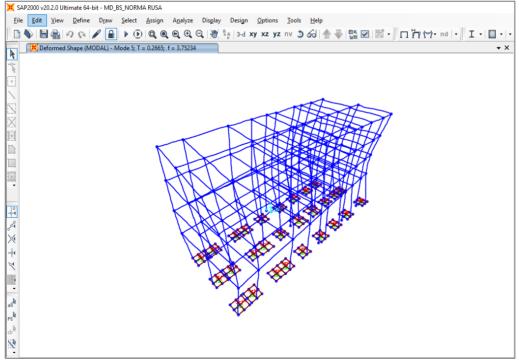
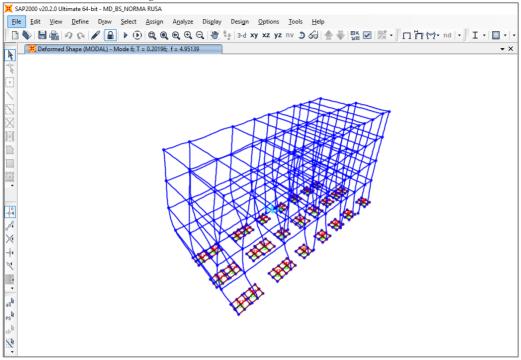



Figura 101.

Sexto modo de vibración según Norma Rusa, SAP2000.

Nota. Elaboración propia (2021)

Figura 102.

Séptimo modo de vibración según Norma Rusa, SAP2000.

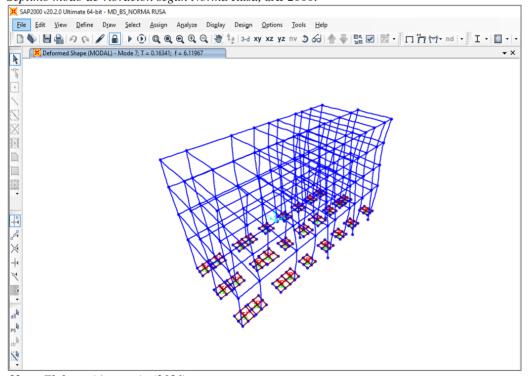
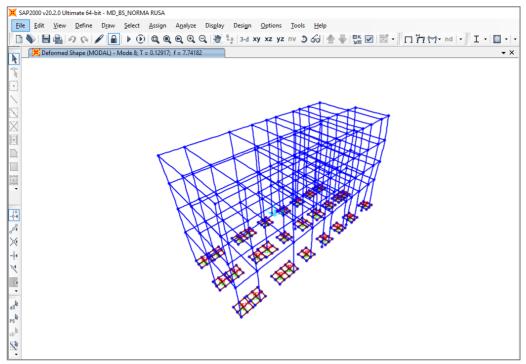



Figura 103.

Octavo modo de vibración según Norma Rusa, SAP2000.

Nota. Elaboración propia (2021)

Figura 104.Noveno modo de vibración según Norma Rusa, SAP2000.

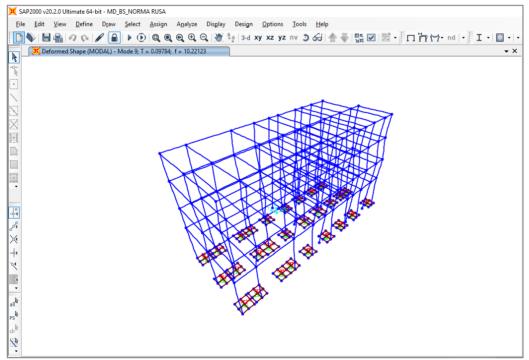
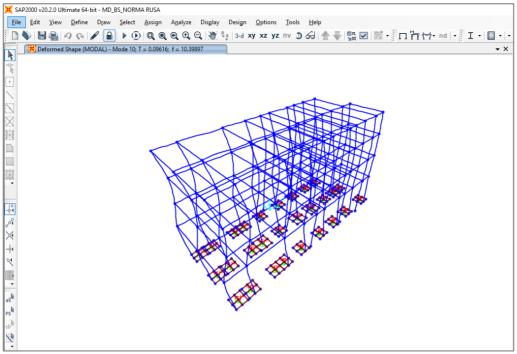
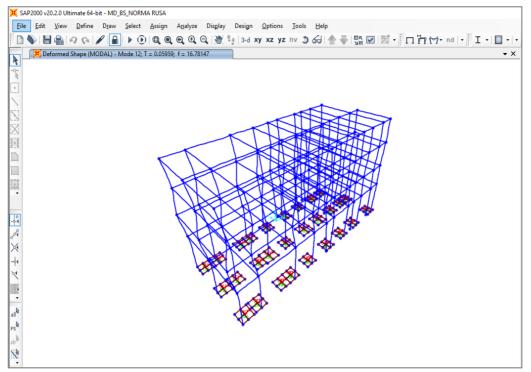



Figura 105.

Decimo modo de vibración según Norma Rusa, SAP2000.

Nota. Elaboración propia (2021)

Figura 106. *Onceavo modo de vibración según Norma Rusa, SAP2000.*

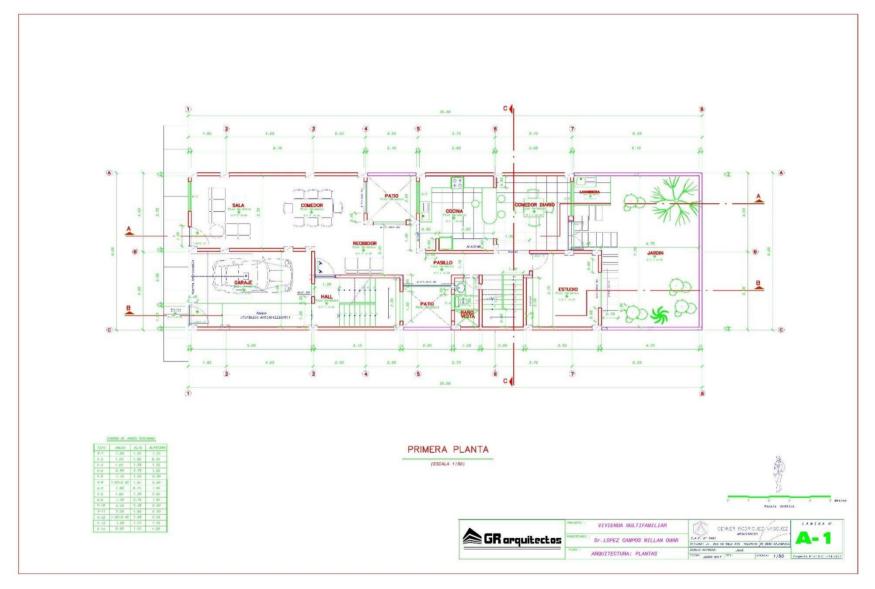
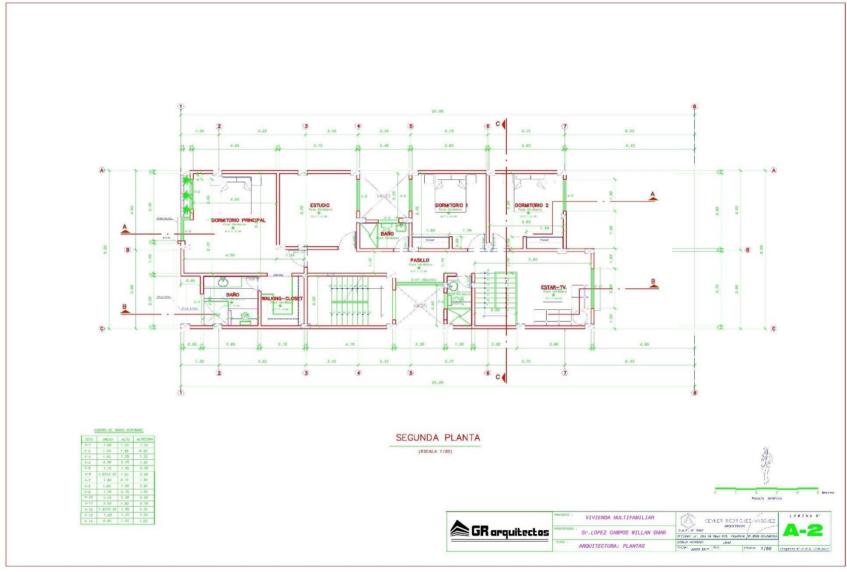
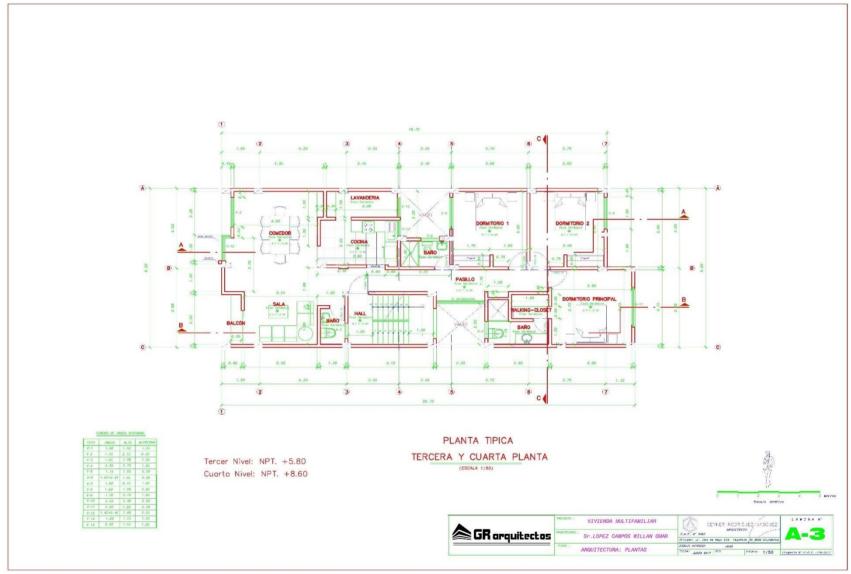
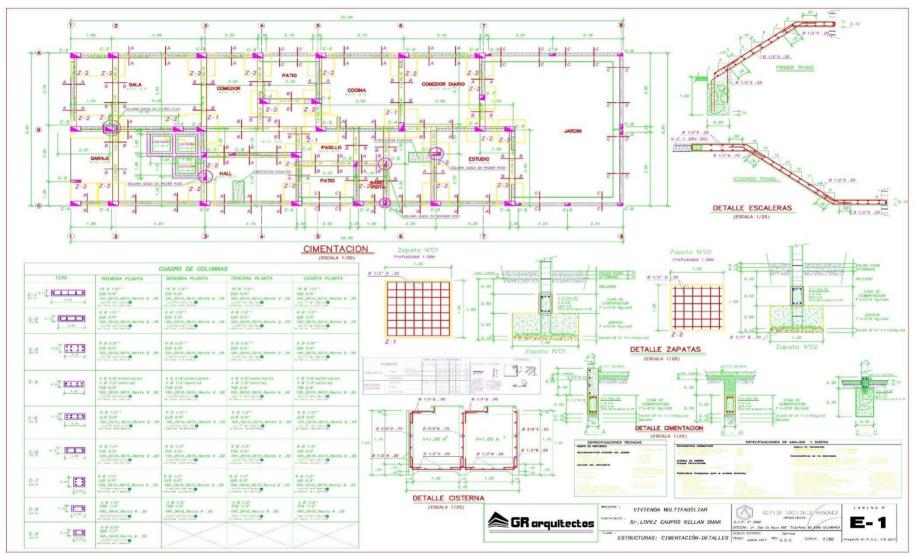


Figura 107.

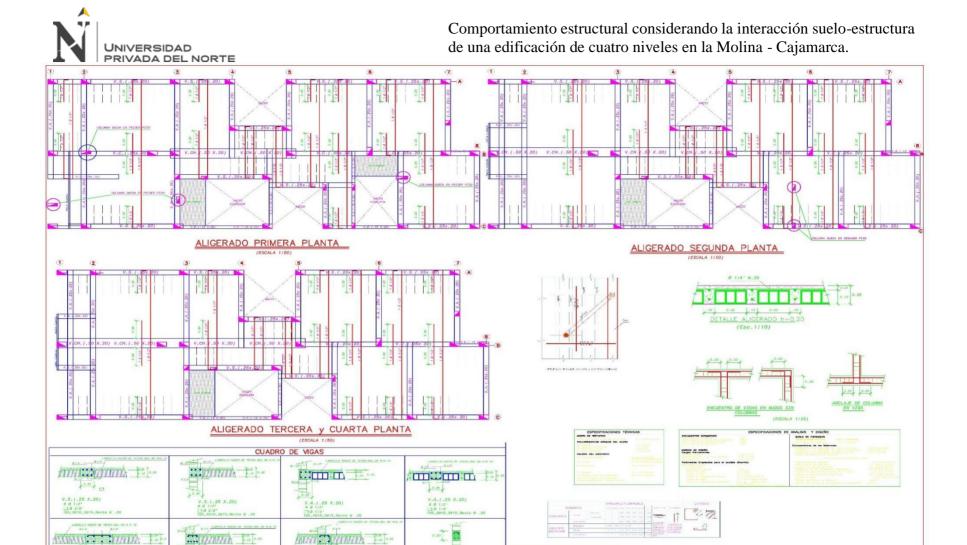
Doceavo modo de vibración según Norma Rusa, SAP2000.




Plano A-1: Arquitectura primer nivel



Plano A-2: Arquitectura segundo nivel



Plano A-3: Arquitectura tercer y cuarto nivel

Plano E-1: Cimentaciones de la edificación

GR arquitectos

Plano E-2: Estructuras de la edificación

V.CH. (.50 X.20)
5 5 5/3"
1 6 3/3"
160,2870,2870 Wester 8 .20

Diseño: Fachada de la edificación.