

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Ambiental

"EVALUACIÓN DEL COMPORTAMIENTO DE LA CONCENTRACIÓN DE PM10 Y PM2.5 Y SU COMPARACIÓN CON LOS ESTÁNDARES DE CALIDAD AMBIENTAL EN LA CIUDAD DE CAJAMARCA EN EL PERÍODO 2012 – 2018"

Tesis para optar el título profesional de:

Ingeniero Ambiental

Autores:

Jorge Antonio Durand Ortiz Víctor Bladimir Burga Estela

Asesor:

M. Sc. Marieta Cervantes Peralta

Cajamarca - Perú

2021

DEDICATORIA

A la memoria de mi padre Jorge, apoyo incondicional de mi madre Rosa y a mis Hijos Iveth, Renzo y Maju, porque espero haber sido, ser y seguir siendo su digno ejemplo.

Jorge.

A mis padres, Aurora y Alfredo, por su abnegación y ternura, a mis hermanos por su cariño especial.

A mi esposa, Socorro, por su amor y apoyo incondicional en cada momento de mi desarrollo profesional y humano.

Y a la motivación diaria de mis queridos hijos Fabián y Diego.

Víctor.

AGRADECIMIENTO

Agradecer a Dios, por darme fortaleza, para cumplir mis metas trazadas.

Igualmente expresar mi más sincero agradecimiento a mi asesora de Tesis, M. Sc. Marieta Cervantes Peralta, por haber hecho posible que este trabajo se haya hecho realidad, mediante su inestimable labor y constante apoyo mostrados a lo largo de las distintas fases de su elaboración.

Manifestar mis agradecimientos de igual manera al Ing. José Bardales Escalante del área de Medio Ambiente de la Municipalidad Provincial de Cajamarca, por su valiosa colaboración y apoyo, mis infinitas gracias.

Jorge.

A Dios por ser mi fortaleza y mi refugio, al apoyo desinteresado de los profesionales que laboran en la Universidad Privada del Norte, que han aportado significativamente en el desarrollo y formulación del presente trabajo de investigación, así como a la asesora, la M. Sc. Marieta Cervantes Peralta por su apoyo incondicional en la realización de la tesis.

Víctor.

Tabla de contenidos

DEI	DICATORIA	4
AG	RADECIMIENTO	3
ÍND	DICE DE TABLAS	5
ÍND	DICE DE FIGURAS	6
RES	SUMEN	8
ABS	STRACT	9
CA	PÍTULO I: INTRODUCCIÓN	10
1.1.	Realidad problemática	10
1.2	Antecedentes	12
1.3.	Bases Teóricas	13
	1.3.1. Medio ambiente	13
	1.3.2. Contaminación	13
	1.3.3. Contaminación del aire	14
	1.3.4. Fuentes de contaminación	14
	1.3.5. Tipos de contaminantes	16
	1.3.6. El material particulado y sus efectos sobre la salud	17
	1.3.7. Calidad del aire	19
1.4.	Formulación del problema	22

1.5. Objetivos		22
1.6. Hipótesis		23
CAPÍTULO II: METODOLOGÍA		27
2.1. Tipo de investigación		27
2.2. Materiales, instrumentos y métodos		27
2.2.1. Materiales		27
2.2.2. Instrumentos de recopilación y	recolección de información	27
2.3. Técnicas e instrumentos de recolección	on y análisis de datos	28
2.4. Procedimiento		28
CAPÍTULO III: RESULTADOS		30
CAPÍTULO IV: DISCUSIÓN Y CONC	LUSIONES	41
REFERENCIAS		44
ANEXOS		47

ÍNDICE DE TABLAS

Tabla 1. Estándares nacionales de la calidad ambiental del aire D.S.N° 074-2001-PCM	22
Tabla 2. Estándares nacionales de la calidad ambiental del aire D.S.N°006-2013-MINAM	22
Tabla 3. Estándares nacionales de la calidad ambiental del aire D.S.N°003-2017-MINAM	23
Tabla 4. Etapas de la Investigación	26
Tabla 5. Evolución de la concentración de PM10 en Cajamarca en el periodo 2012-2018	32
Tabla 6. Evolución de la concentración del PM 2.5 en Caiamarca en el periodo 2012-2018	38

ÍNDICE DE FIGURAS

Figura 01. Fuentes de la contaminación atmosférica	16
Figura 02. Concentración de PM10 en los meses de junio-diciembre del 2012	27
Figura 03. Concentración de PM10 en los meses de enero-diciembre del 2013	27
Figura 04. Concentración de PM10 en los meses de enero-diciembre del 2014	28
Figura 05. Concentración de PM10 en los meses de enero-noviembre del 2015	29
Figura 06. Concentración de PM10 en los meses de enero-diciembre del 2016	29
Figura 07. Concentración de PM10 en los meses de enero-octubre del 2017	30
Figura 08. Concentración de PM10 en los meses de enero-diciembre del 2018	31
Figura 09. Concentración de PM10 del parque automotor en el periodo 2012-2018	32
Figura 10. Concentración de PM2.5 en los meses de julio-diciembre del 2012	32
Figura 11. Concentración de PM2.5 en los meses de enero-diciembre del 2013	33
Figura 12. Concentración de PM2.5 en los meses de enero-diciembre del 2014	34
Figura 13. Concentración de PM2.5 en los meses de enero-noviembre del 2015	34
Figura 14. Concentración de PM2.5 en los meses de enero-noviembre del 2016	35
Figura 15. Concentración de PM2.5 en los meses de enero-noviembre del 2017	36
Figura 16. Concentración de PM2.5 en los meses de mayo-diciembre del 2018	36
Figura 17. Concentración de PM2.5 en los meses de mayo-diciembre del 2018	37

RESUMEN

En Cajamarca, además de realizar mediciones de la concentración de PM₁₀ y PM_{2.5}, es necesario evaluar su comportamiento en el tiempo; permitiendo orientar estrategias de control y realizar seguimiento por parte de las autoridades ambientales interesadas. El objetivo general de esta investigación fue evaluar el comportamiento de la concentración de PM₁₀ y PM_{2.5} y su comparación con los Estándares de Calidad Ambiental en la ciudad de Cajamarca en el periodo 2012 – 2018. La metodología utilizada es del tipo descriptivo explicativo, de un nivel aplicativo, no experimental. Obteniéndose que la concentración promedio de PM₁₀ más altas fueron 75.58 y 64.63 µg/m³, correspondiente a los años 2012 y 2013 respectivamente, y las concentraciones más bajas fueron 43.91 y 47.81 μg/m³, correspondientes a los años 2014 y 2015, respectivamente. En general, las concentraciones de PM₁₀, respecto a los años evaluados presentan una tendencia decreciente. Así mismo las concentraciones de PM_{2.5}, respecto a los años evaluados presentan una tendencia decreciente, mostrando las concentraciones más altas registrada en los años 2012 y 2016, con 65.91 y 57.10 μg/m³ respectivamente, los resultados más bajos fueron de 49.13 μg/m³, y se registró en el 2018. La concentración de PM₁₀, respecto a los años evaluados no sobrepasa el ECA, mientras que las concentraciones de PM_{2.5} sobrepasan el ECA a excepción del año 2018.

Palabras clave: Correlación, concentración, material particulado PM₁₀ y PM_{2.5}, parque automotor.

ABSTRACT

In Cajamarca, in addition to measuring the concentration of PM₁₀ and PM_{2.5}, it is necessary to evaluate their behavior over time; allowing to orient control strategies and carry out monitoring by the interested environmental authorities. The general objective of this research was to evaluate the behavior of the concentration of PM₁₀ and PM_{2.5} and its comparison with the Environmental Quality Standards in the city of Cajamarca in the period 2012 - 2018. The methodology used is of the descriptive explanatory type, of an applicative level, not an experimental one. Obtaining that the highest average concentration of PM₁₀ were 75.58 and 64.63 μ g/m³, corresponding to the years 2012 and 2013 respectively, and the lowest concentrations were 43.91 and 47.81 µg/m3, corresponding to the years 2014 and 2015, respectively. In general, PM₁₀ concentrations, with respect to the years evaluated, show a decreasing trend. Likewise, the concentrations of PM_{2.5}, with respect to the evaluated years present a decreasing trend, showing the highest concentrations recorded in the years 2012 and 2016, with 65.91 and 57.10 µg/m3 respectively, the lowest results were 49.13 μg/m3, and was recorded in 2018. The concentration of PM₁₀, with respect to the evaluated years does not exceed the ECA, while the concentrations of PM_{2.5} exceed the ECA except for the year 2018.

Keywords: Correlation, concentration, PM₁₀ and PM_{2.5} particulate matter, vehicle fleet.

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad Problemática

Investigaciones recientes relacionadas con el material particulado se han realizado en todo el mundo. Varios estudios (Perrone et al., 2005; Viana et al., 2006; Wu et al., 2008; Sternbeck et al., 2002; Zhang et al., 2006; Wilhelm, Qianc & Ritz, 2009), han demostrado que el material particulado (MP) en la atmósfera son producidos por causas naturales y antropogénicas, manifestando además la necesidad de adelantar estudios detallados relacionados con los efectos causados por la presencia de este contaminante, con el fin de implementar estrategias para el control del mismo. Según el Departamento de Protección Ambiental de Hong Kong (HKEPD), el escape de los vehículos diésel es la principal causa del alto nivel de MP en las zonas urbanas (Quijano y Orozco, 2005). El Informe Nacional del Estado del Ambiente 2017 indica que la contaminación del aire es uno de los principales problemas ambientales del Perú. Señala también que el parque automotor es la mayor fuente de contaminación del aire en el país y que en los últimos años se ha evidenciado una relación directa entre el incremento del número de vehículos y la contaminación del aire.

En el caso de la metrópoli Lima-Callao, las principales causas de este problema, son el deficiente sistema de transporte urbano con un parque automotor antiguo, la mala organización de rutas y la sobreoferta de taxis (Informe Defensorial, 2008).

La congestión vehicular es un fenómeno en ascenso en la ciudad de Cajamarca, la oferta de vehículos más accesible, el ritmo de aumento del ingreso per cápita, la demanda de movilidad urbana, la falta de reglamentos técnicos vehiculares estrictos y la altura a la que se encuentra la ciudad (2750 msnm), limitan la combustión de los hidrocarburos y obligan a

un gran esfuerzo de los automotores para vencer las pronunciadas pendientes; además, del alto contenido de azufre en los combustibles que desgasta los motores y provoca altas emisiones de azufre y material particulado, especialmente en sitios puntuales de la ciudad donde puede ser molesta e incluso peligrosa, por las emisiones de gases que se descargan a la atmósfera (Quispe, 2017).

El Grupo Técnico Local de Gestión de Calidad del Aire (GTL Aires), constituido en el año 2005 por la Municipalidad Provincial de Cajamarca, ante la amenaza eventual de contaminación por el incremento de fuentes de emisión, como medida de protección a la salud de las personas, ha trabajado temas relacionados a la calidad del aire del distrito, que entra en proceso de deterioro progresivo y puede agravarse, si persiste la tendencia del crecimiento del número de vehículos o la estructura del parque automotor.

En la ciudad de Cajamarca, los puntos que mayor contaminación presentan son: la Plazuela Bolognesi, la intersección de los jirones Junín y Cruz de Piedra, el cruce de los jirones Guillermo Urrelo y Mario Urteaga (frente al ex local del hospital regional), la Av. Independencia (salida a la costa), el cruce de Jesús y los alrededores de los mercados y paradas de la ciudad de Cajamarca. Muchas de las unidades motorizadas no superan las revisiones técnicas; en otros casos, los motores solo son afinados para superar las evaluaciones exigidas por ley. Estos son los factores más graves de contaminación en el ambiente (SENATI, 2006).

La contaminación producida por el transporte público se debe al exceso de vehículos automotores y por la quema de combustibles fósiles en especial la gasolina, el diésel y el aceite. Los temas ambientales son muy delicados y muy complejos, y en los últimos años han ganado la importancia merecida en todo el mundo. Ahora más que nunca se está

analizando el impacto de las actividades humanas en el medio ambiente y, como consecuencia, en la salud de las personas. En el ámbito local, estos conceptos podrían orientar las políticas del gobierno municipal para minimizar los efectos perjudiciales de sus actividades sobre el medio ambiente, creando fuertes incentivos para que desarrollen sus capacidades proporcionando información relacionada con situaciones que se presentan. Se considera que una forma de contribuir al mejoramiento del medio ambiente, es plantearse las interrogantes: ¿cuánto cuesta contaminar?, ¿cuánto cuesta dejar de contaminar? (Galle, 2002).

Actualmente, no se conoce con precisión cual es la evolución de PM₁₀ Y PM_{2.5}, en los últimos años en la ciudad de Cajamarca, lo que impide formular políticas de control o disminución de concentración de estos contaminantes. En este contexto, la presente investigación analiza la evolución de las concentraciones de PM₁₀ y PM_{2.5} en los últimos años comparados con los establecidos por el ECA; cuyos resultados puedan servir para que las autoridades implanten decisiones de política y de gestión en mejora de la calidad del aire.

1.2. Antecedentes

De acuerdo a Inche (2001), la estimación de emisiones para vehículos automotores en circulación que generan una serie de contaminantes entre los que destacan, compuestos orgánicos volátiles (COV), monóxido de carbono (CO), óxidos de nitrógeno (NOx), óxidos de azufre (SOx), material particulado (PTS, PM₁₀ y PM_{2.5}), plomo y especies reductoras de la visibilidad, tienen impactos negativos sobre la salud pública y, según la Defensoría del Pueblo (2006), son los niños, enfermos, mujeres gestantes y ancianos de los sectores económicos más pobres y excluidos los más perjudicados.

Según La Guía metodológica para la estimación de emisiones atmosféricas de fuentes fijas y móviles en el Registro de Emisiones y Transferencia de Contaminantes (2009), la cantidad de emisiones que produce un vehículo automotor en funcionamiento depende de una serie de factores como por ejemplo el tipo y la calidad de combustible, la antigüedad del vehículo, su tecnología, el recorrido promedio que realiza, entre otros, y esto empeora aún más si se presenta un ambiente de congestión vehícular en donde las velocidades se reducen considerablemente y los vehículos permanecen un mayor tiempo en funcionamiento. En tal sentido, reducir los actuales niveles de riesgo para la salud de la población en Cajamarca pasa necesariamente por considerar medidas o herramientas de control dirigidas a cada una de las variables mencionadas anteriormente a fin de conseguir una reducción sostenible de las emisiones vehiculares. Pero antes de eso, es primordial conocer el funcionamiento de dichas variables y su relación con las emisiones vehiculares.

En el Perú, existen normas nacionales establecidas como el Reglamento Nacional para la aprobación de Estándares de Calidad Ambiental y Límites Máximos Permisibles, D.S N° 003 – 2017, MINAM, Asimismo esta norma dispone la derogatoria del Decreto Supremo N° 074-2001-PCM, el Decreto Supremo N° 069-2003-PCM, el Decreto Supremo N° 003-2008-MINAM y el Decreto Supremo N° 006-2013-MINAM para aire, que establecen criterios de medición de los niveles de contaminación. Sin embargo, la carencia de cultura, respeto al medio ambiente, derechos de las demás personas y el desconocimiento de la población sobre los daños que ocasionan a corto o largo plazo, con las emisiones producidas por el parque automotor, son factores contaminantes en el aire, que se deben medir en lugares dóciles a vigilancia que son representativos a la exposición de las poblaciones (FONAM, 2017).

El transporte automotor en la ciudad de Lima, consume más del 90% de material fósil en forma de petróleo o gasolina, la contaminación atmosférica de esta actividad tiene un impacto visible y significativo, las altas densidades de tráfico coinciden con altas concentraciones de poblaciones. Las emisiones de gases y humo particulado, se concentran en el funcionamiento de motores de combustión interna como: Monóxido de carbono (CO), hidrocarburos no combustionados (HC), plomo (Pb), óxidos de nitrógeno (NOx), óxidos de azufre (SOx) y dióxido de carbono (CO₂) y Material particulado PM₁₀ y PM_{2.5} (Maltoni y Scarnato 1977).

Mediciones realizadas en las emisiones de gases de 3 248 vehículos del parque automotor en circulación en Lima dieron como resultado las siguientes conclusiones: De los vehículos inspeccionados el 75% corresponde al año 90; sin embargo, todavía se encuentran vehículos de los años 60 en circulación. De los 2 144 vehículos de gasolina medidos, el 16% sobrepasa las 600 µg/m3. Para el caso de los vehículos de combustible diésel, de los 1 104 vehículos monitoreados, el 67% sobrepasa el valor de ECA, 3.8 µg/m3. Respecto de la cantidad y antigüedad de transporte público urbano (ómnibus, microbuses, y camiones rurales), en lima, los vehículos autorizados tienen un promedio de 16 años (22 314 unidades) y en el callao el transporte público tiene una antigüedad de 12 años (1 540 unidades con convenio y 5 705 unidades sin convenio). Por último, se estima que existen 23 000 unidades informales con una antigüedad desconocida. Asimismo, cabe mencionar, de una manera comparativa, que en algunas ciudades latinoamericanas (Bogotá, Curitiba, Sao Paulo, Quito y Santiago de Chile) la antigüedad promedio de flota está entre 3.3 y 14 años, y el número de vehículos de transporte público, por cada mil habitantes oscila entre 0.6 a 3.7. En Lima, esta cifra se eleva a 7 vehículos por cada mil habitantes (M T C, 2001).

Según García (2003) en la tesis "Análisis del incremento de la emisión de gases y humos particulados por vehículos automotores de transporte urbano de pasajeros en la ciudad de Cajamarca" manifiesta que se realizó en el 2003, un convenio entre la Municipalidad Provincial y SENATI – Cajamarca, para realizar un proyecto piloto demostrativo ambiental, donde se planteaba determinar el incremento de la emisión de gases y humos particulados (de acuerdo al tipo de combustible utilizado) de vehículos automotores de transporte de pasajeros en la modalidad de camiones rurales, station wagon y autos. En la tesis se concluye: 1ero. El inadecuado mantenimiento y/o reparación de sistemas de emisión de gases y humos particulados presentes en los vehículos automotores se debe a que los mecánicos no tienen ninguna capacitación. 2do. Escasa conciencia ambiental por los propietarios de vehículos.

1.3. Bases Teóricas

1.3.1. Medio ambiente

Es el entorno vital del sistema constituido por los elementos físicos, biológicos, económicos, sociales, culturales y estéticos donde interactúan entre sí el individuo y la comunidad en la que vive; lo que determina la forma, el carácter, el comportamiento y la supervivencia de ambos (Gómez, 2003).

1.3.2. Contaminación

Se denomina contaminación a la presencia en el ambiente de cualquier agente químico, físico o biológico nocivo para la salud o el bienestar de la población humana, de la vida animal, o vegetal. Esta degradación del medio ambiente por un contaminante externo puede provocar daños en la vida cotidiana del ser humano y alterar las condiciones de supervivencia de la flora y la fauna. Alrededor de 2 millones de personas podrían morir cada año por alguna causa atribuible a la contaminación atmosférica,

asegura la Organización Mundial de la Salud. Según este estudio, la mayor cantidad de muertes se produce en los países en desarrollo, donde se concentran altas densidades de partículas nocivas para la salud (Inche, 2008).

1.3.3. Contaminación del aire

Según la Organización Mundial de la Salud (OMS), existe contaminación del aire cuando en su composición aparecen una o varias sustancias extrañas, en determinadas cantidades y durante determinados periodos de tiempo, que pueden resultar nocivas para el ser humano, los animales, las plantas, y/o perturbar el bienestar y el uso de los bienes.

El llamado aire puro en realidad no existe, puesto que hay un intercambio constante de materia entre los seres vivos, la hidrósfera, la atmósfera y la litósfera. Sin embargo, es posible que nunca antes la contaminación del aire haya sido tan importante como lo es en la actualidad (Flores, 1997).

1.3.4. Fuentes de contaminación

Según Mcgraw (2009), las fuentes de contaminantes atmosféricas se pueden agrupar en dos tipos según su origen:

- Fuentes naturales

Comprenden las emisiones de contaminantes generados por la actividad natural de la geósfera, biósfera e hidrósfera. Entre las cuales se encuentran (Mcgraw, 2009):

Erupciones volcánicas: Aportan a la atmósfera compuestos de azufre y gran cantidad de partículas que se diseminan como consecuencia de la acción del viento convirtiéndose en una de las principales causas de contaminación.

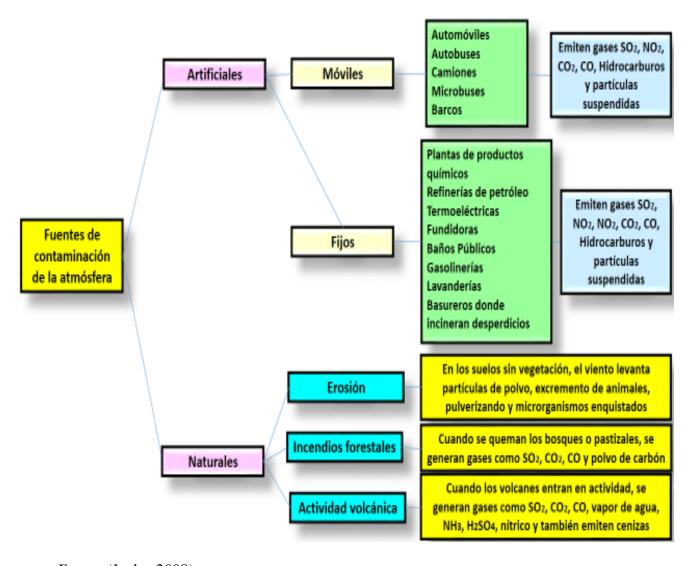
Incendios forestales: Los que producen de forma natural y emiten altas concentraciones de dióxido de carbono (CO₂), óxido de nitrógeno (NOx), humo, polvo y cenizas.

Ciertas actividades de los seres vivos: Como por ejemplo, procesos de respiración, los cuales incrementan la cantidad de CO₂ en el ambiente; procesos de reproducción y floración en plantas anemófilas (las que se polinizan a través del aire) como las gramíneas y los olivos, las cuales producen polen y esporas que, al concentrarse en el aire, se convierte en la causa principal de alergias respiratorias (puede llegar a afectar a más del 20 por ciento de la población en un ambiente urbano), etc.

- Fuentes artificiales o antropogénicas

Es consecuencia de las actividades humanas y cuya mayor parte proviene del uso de combustible fósil (carbón, petróleo y gas). Entre las principales actividades generadoras de contaminación atmosférica podemos destacar las siguientes (Mcgraw, 2009):

En el hogar: El uso de calefacción y otros aparatos domésticos que emplean como fuente de generación de calor el combustible de origen fósil. El mayor o menor grado de dicha contaminación se debe al tipo de combustible, así como al diseño y estado de conservación de los aparatos empleados.


En el transporte: Las emisiones provenientes de la combustión en los vehículos generan una gran cantidad de contaminantes atmosféricos siendo el automóvil y el avión los que un mayor grado de contaminación ocasionan.

Para el caso específico del automóvil, la magnitud de contaminación depende de la clase de combustible utilizado, del tipo de motor, el uso de catalizadores y la densidad del tráfico.

En la industria: La contaminación del aire en este sector depende del tipo de actividad que se realice, siendo las centrales térmicas, cementeras, siderometalúrgicas, papeleras y químicas las que más contaminan.

Figura 1Fuentes de la contaminación atmosférica

Fuente:(Inche, 2008)

1.3.5. Tipos de contaminantes

Los contaminantes se dividen en dos grandes grupos con el criterio de si han sido emitidos desde una fuente conocida o se han formado en la atmósfera. Es así que existen contaminantes primarios y secundarios (Mcgraw, 2009):

- Contaminantes Primarios

Son sustancias de naturaleza y composición química variada, emitidas directamente a la atmósfera desde distintas fuentes perfectamente identificables. Se incluyen dentro de este grupo al plomo (Pb), monóxido de carbono (CO), óxidos de azufre (SOx), hidrocarburos (HC), material particulado (PM), entre otros (Mcgraw, 2009).

Según Mcgraw (2009), todos ellos constituyen con más del 90 % de los contaminantes del aire.

- Contaminantes Secundarios

Los contaminantes secundarios no provienen directamente de los focos emisores, sino que se originan a partir de los contaminantes primarios mediante reacciones químicas que tienen lugar en la atmósfera. Entre los más importantes se encuentran el ozono troposférico (O₃), nitratos de peroxiacetilo (PAN), sulfatos (SO₄), nitratos (NO₃), ácido sulfúrico (H₂SO₄), entre otros.

1.3.6. El material particulado y sus efectos sobre la salud

El término PM se refiere a partículas discretas (gotas de líquido o sólido) de un amplio rango de tamaños. Las partículas primarias son emitidas directamente al aire del ambiente, mientras las secundarias son formadas en la atmósfera por

transformaciones de las emisiones gaseosas como los óxidos de azufre y nitrógeno y los compuestos orgánicos volátiles. Para fines regulatorios, el material particulado se designa comúnmente como PM₁₀ y PM_{2.5} lo que refiere a partículas con diámetro aerodinámico menor de 2,5 μm y 10 μm, respectivamente (Díaz y Páez, 2006).

Para material particulado existen un sinnúmero de estudios epidemiológicos que muestran incremento de mortalidad y morbilidad (admisiones hospitalarias), síntomas respiratorios, disminución de la función pulmonar, etc.). Desde este punto de vista, el material particulado que mayor interés tiene son las partículas con diámetros menores a 10 µm ya que son fácilmente respirables y penetran en los pulmones. Las partículas de tamaño comprendido en el intervalo 2.5 – 10 μm se depositan en la tráquea, bronquios y bronquiolos. Las partículas de tamaño inferior a 2.5 µm, incluyendo las nanopartículas, con medidas del orden de micrómetros, son capaces de llegar al interior de los alvéolos pulmonares, donde las más hidrosolubles se disuelven y las menos hidrosolubles se depositan. En general todas estas partículas pueden acumularse en el sistema respiratorio y producir diversos efectos negativos en la salud que se expresan en el aumento de enfermedades respiratorias como la bronquitis, y exacerbar los efectos de otras enfermedades cardiovasculares. En efecto, estudios sistematizados por la Organización Mundial de la Salud y otras fuentes reportan que al aumentar en 10 μg.m³ PM10 se genera un incremento de por lo menos el 8% en el número de consultas por enfermedades respiratorias en los niños entre 5 y 14 años de edad.

Características generales del material particulado

Las partículas atmosféricas se originan de una variedad de fuentes y procesos morfológicos, químicos y físicos. Ejemplos de partículas atmosféricas son las partículas producidas por los procesos de combustión, procesos fotoquímicos, partículas de sal formadas por el spray del océano y partículas de tierra resuspendidas. Las partículas atmosféricas contienen iones inorgánicos, componentes metálicos, carbón elemental, compuestos orgánicos y compuestos en forma de cristales. La parte orgánica es especialmente compleja porque contienen miles de compuestos. Dentro de las fuentes antropogénicas o emisiones generadas por el hombre, se encuentran los procesos industriales y de combustión, el transporte vehicular, la presencia de aditivos tanto en combustibles líquidos como gasolina y petróleo, como en los diferentes tipos de aceite que usan los motores de combustión interna. A continuación, se describirán los criterios principales de una caracterización química de la formación del MP (Rojano et al., 2014).

Fracción Insoluble: es una fracción emitida por el motor, constituido por partículas llamadas "primarias". Se encuentra en fase sólida y compuesta primordialmente por carbono, pero también incluye pequeños tamaños como cenizas no combustibles. Las cenizas son derivadas principalmente de lubricantes, aditivos de combustibles y del desgaste propio del motor.

Sulfatos: los sulfatos son derivados de compuestos de sulfuros del combustible y en una cantidad menor del aceite lubricante. El sulfato es emitido por el motor como anhídrido sulfuroso (SO₂) junto a una menor cantidad de anhídrido

sulfúrico (SO₃). Los sulfatos son formados de la reacción entre SO₃ y H₂O, lo que provoca un aumento de masa producto del H2O. El SO₂ no es un problema debido a que no contribuye directamente al MP. No obstante, el SO₄-2 se combina con el amoniaco para formar cristales de sulfato de amonio.

Fracción Soluble: la fracción soluble es llamada igualmente Fracción Orgánica Soluble (SOF). Involucra compuestos orgánicos de alto peso molecular y muy complejos.

1.3.7. Calidad del aire

- La atmósfera

Es una masa gaseosa que cubre a la tierra con espesor cercano a los dos mil kilómetros. Está formada por una mezcla de gases permanentes (nitrógeno, oxígeno, argón, entre otros) y por otros gases y partículas que no son parte de su composición normal, a lo que llamamos "contaminantes del aire" (Gómez, 2003).

- Composición del aire

Cuando se habla de la contaminación del aire, se hace referencia a la alteración de su composición natural. El aire que se respira está compuesto, por los gases de nitrógeno 78,08%, oxígeno 20,95%, dióxido de carbono 0,03%, y otros gases raros 0,94%, estos son helio, neón, argón, kriptón, xenón y radón, y, además, la atmósfera contiene cantidades mínimas de metano, polvo, cenizas y vapor de agua (Gómez, 2003).

Normas de la calidad del aire

Las normas son recomendaciones para los niveles de exposición a contaminantes atmosféricos, a fin de reducir los riesgos o proteger los efectos nocivos. La Organización Mundial de Salud (OMS), mediante la aplicación de normas sobre la calidad del aire y varios de América Latina, han establecido sus propias normas. Las normas o estándares de la calidad del aire establecen los niveles de concentración máxima de contaminación del aire durante un período definido, que, en su condición de cuerpo receptor es recomendable que no exceda para evitar el riesgo en la salud humana (Reglamento de estándares nacionales de calidad ambiental del aire.D.S.N°074-2001-PCM). La unidad en que se expresan normalmente estos niveles son microgramos de contaminante por metro cúbico de aire, medidos durante un período de tiempo determinado (Lacasaña et al, 1999).

- Estándares nacionales de la calidad ambiental del aire

Para controlar las emisiones de agentes contaminantes, precisamente, ha sido creado por el Consejo Nacional del Ambiente - Perú (CONAM); en julio del 2001 se aprobó, por D.S.Nº 074-2001-PCM, el Reglamento de Estándares Nacionales de Calidad Ambiental (ECA). Los estándares de la calidad ambiental del aire (ECA) consideran los niveles de concentración máxima de los contaminantes para un período determinado de tiempo. En la tabla1 se muestran los estándares aprobados en dicho reglamento.

Tabla 1Estándares nacionales de la calidad ambiental del aire D.S.N° 074-2001-PCM

Contaminante	Período	Valor	Forma estándar	Método de análisis
PM-10 -	Anual	50	Media aritmética anual	Separación inercial/
111110	24 horas	150	NE más de 3 veces/año	filtración (Gravimetría)
DM 2.5	Anual	15	Media aritmética anual	Separación inercial/
PM-2.5	24 horas	50	NE más de 3 veces/año	filtración (gravimetría)

Fuente: Consejo Nacional del Ambiente del Aire – Perú (CONAM)-D.S.N° 074-2001-PCM.

En julio del 20013 se aprobó, por D.S.N° 074-2001-PCM, el Reglamento de Estándares

Nacionales de Calidad Ambiental (ECA) el mismo que entra en vigencia el año 2014.

Tabla 2Estándares nacionales de la calidad ambiental del aire D.S.N°006-2013-MINAM

Contaminante	Período	Valor	Forma estándar	Método de análisis
PM-10 _	Anual	50	Media aritmética anual	Separación inercial/
r 1VI-10 —	24 horas	150	NE más de 7 veces/año	filtración (Gravimetría)
PM-2.5 -	Anual	50	Media aritmética anual	Separación inercial/
F IVI-2.3 =	24 horas	25	NE más de 7 veces al año	filtración (gravimetría)

Fuente: Consejo Nacional del Ambiente del Aire – Perú (CONAM)-D.S.N°003-2017-MINAM.

En Agosto del 2017 se aprobó, por D.S.Nº 003-2017- MINAM, el Reglamento de Estándares Nacionales de Calidad Ambiental (ECA), que entra en vigencia el año 2018.

Tabla 3Estándares nacionales de la calidad ambiental del aire D.S.N°003-2017-MINAM.

Contaminante	Período	Valor	Forma estándar	Método de análisis
PM-10	Anual	50	Media aritmética anual	Separación - inercial/ filtración (Gravimetría)
	24 horas	100	NE más de 7 veces/año	
PM-2.5	Anual	25	Media aritmética anual	Separación inercial/ filtración
	24 horas	50	NE más de 7 veces al año	(gravimetría)

Fuente: Consejo Nacional del Ambiente del Aire – Perú (CONAM)-D.S.N°003-2017-MINAM.

Se tomaron en cuenta los Estándares Nacionales de Calidad Ambiental del Aire, durante los períodos de estudio del año 2012 al 2018.

1.4. Formulación del problema

¿Cuál es la evolución de la concentración de PM₁₀ y PM_{2.5} y su comparación con los Estándares de Calidad Ambiental en la ciudad de Cajamarca en el periodo 2012 – 2018?

1.5. Objetivos

1.5.4. Objetivo general

Evaluar la evolución de la concentración de las PM_{10} y $PM_{2.5}$ y su comparación con los Estándares de Calidad Ambiental en la ciudad de Cajamarca en el período 2012-2018

1.5.5. Objetivos específicos

Determinar y Evaluar el Comportamiento de la concentración de las PM_{10} y $PM_{2.5}$ en la ciudad de Cajamarca en el período 2012 - 2018.

Comparar la Concentración de las PM₁₀ y PM_{2.5} con el Estándar de Calidad Ambiental (ECA) en la ciudad de Cajamarca en el período 2012 – 2018.

1.6. Hipótesis

1.6.4. Hipótesis general

La concentración de las PM₁₀ y PM_{2.5} tiene un comportamiento creciente y superan los Estándares de Calidad Ambiental (ECA) en la ciudad de Cajamarca en el período 2012 – 2018.

1.6.5. Hipótesis específicas

La concentración de PM_{10} y $PM_{2.5}$ muestra un comportamiento creciente en la ciudad de Cajamarca en el período 2012 - 2018.

Las concentraciones de las PM₁₀ y PM_{2.5} superan los Estándares de Calidad Ambiental (ECA) en la ciudad de Cajamarca en el período 2012 – 2018.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

La presente investigación es del tipo aplicativa, descriptiva, transversal, no experimental. Basándose en las condiciones expuestas por Hernández et al (2010), y exponen que "el propósito de las investigaciones no experimentales, es realizarlas sin manipular deliberadamente las variables, solo se observa el fenómeno tal como se da en su contexto natural, para después analizarlos".

2.2. Materiales, instrumentos y métodos

2.2.1. Materiales:

A continuación, se detallan los materiales utilizados en la investigación:

- Libreta de notas y lapicero, para llevar un mejor control de los datos históricos, limitaciones y problemas en la toma de datos de la concentración de PM₁₀ y PM_{2.5} por la MPC (Diagnóstico situacional).
- -USB, para cargar información recibida de la MPC (concentración PM_{10} y $PM_{2.5}$ 2012-2018 Cajamarca).
- Tabla de Estándares de Calidad Ambiental (ECA), para realizar la comparación respectiva por año.
- Computadora personal (Laptop), para facilitar el cálculo respectivo.
- Formularios, para la introducción automatizada de datos.

2.2.2. Instrumentos de recopilación y recolección de información

Se utilizó el Análisis documental como técnica de recopilación de datos, los mismos que se obtuvieron de una fuente secundaria, utilizando una ficha de registro de datos.

2.3. Técnicas e instrumentos de recolección y análisis de datos

Se empleó los datos recolectados, los mismos que se ordenaron en una tabla excel para luego procesarlos en el paquete estadístico SPSS. - Versión 22. El análisis se realizó mediante la estadística descriptiva año por año y la técnica de análisis estadístico utilizado fue la media aritmética con la suma de una lista de números dividida por el número de elementos en esa lista, usándose para determinar la tendencia general del conjunto de datos y obtener de manera rápida de la información.

2.4. Procedimiento

2.4.1. Obtención y revisión de los antecedentes del proyecto e información sobre la situación actual del proceso:

Se requirió a la Municipalidad Provincial de Cajamarca con solicitud dirigida a la Gerencia de Desarrollo Ambiental, Sub Gerencia de Protección y Control Ambiental de fecha 20.02.2019, información sobre la operación y situación actual de la toma de datos de la concentración de PM₁₀ y PM₂₅.

Se conversó con el encargado del área de Protección y Control Ambiental Ing. José Bardales Escalante, quién nos brindó la información solicitada, indicándonos que la data no era tomada de manera constante y sistemática, esto causado por falta de presupuesto y personal, por lo que podemos observar que la toma de datos varía en cuanto a los intervalos tomados.

2.4.2. Acopio de datos para su respectivo análisis:

Los datos fueron solicitados a la Municipalidad Provincial de Cajamarca, Gerencia de Desarrollo Ambiente y Subgerencia de Protección y Control Ambiental con solicitud de fecha 25.02.2019, en el cual se solicitó la data de las concentraciones de PM₁₀ y PM_{2.5} de los años 2012 al 2018.

2.4.3. Análisis de los Datos:

Datos recolectados y analizados a nivel de evolución en el tiempo de las concentraciones de PM₁₀ y PM_{2.5} de los años 2012 al 2018, comparación con los parámetros del ECA.

Se consideró en la investigación tres etapas: la etapa de revisión inicial, la etapa de acopio y sistematización de la información y la tercera etapa de análisis, siendo el detalle el que se indica en la tabla 4.

Tabla 4

Etapas de la Investigación

Primera Etapa: Revisión inicial

Obtención y revisión de los antecedentes del proyecto

Obtención de información sobre la operación y situación actual de la recopilación de datos de la concentración de PM_{10} y $PM_{2.5}$

Segunda Etapa: Sistematización de información

Acopio de la información base de las concentraciones de PM₁₀ y PM_{2.5} de los años 2012 -2018

Tercera Etapa: Análisis

Sistematización de la información obtenida

Análisis de la evolución por mes y por año de las concentraciones de PM_{10} y $PM_{2.5}$ de los años 2012 -2018

Comparación de las concentraciones con las ECAS


Fuente: Propia

CAPÍTULO III. RESULTADOS

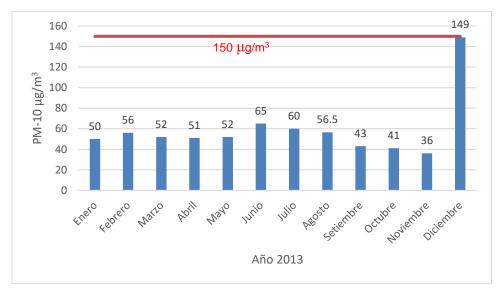
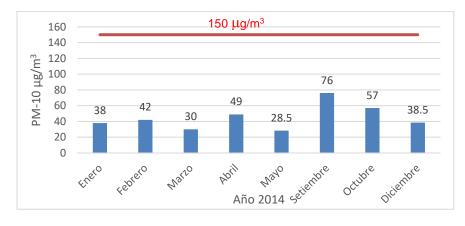
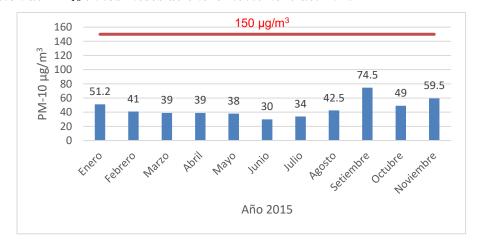

Comportamiento de la concentración de PM₁₀ en Cajamarca en el periodo 2012-2018.

Figura 2Concentración de PM₁₀ en los meses de junio-diciembre del 2012

En la figura 2, se observa los resultados de la concentración de PM_{10} para cada mes evaluado. Estos resultados muestran los valores promedios, los mismos que no sobrepasan el ECA (150 $\mu g/m^3$). La concentración más alta fue 109 $\mu g/m^3$, la cual se registró en el mes de octubre, y la concentración más baja fue 55.5 $\mu g/m^3$, que se registró en el mes de noviembre.

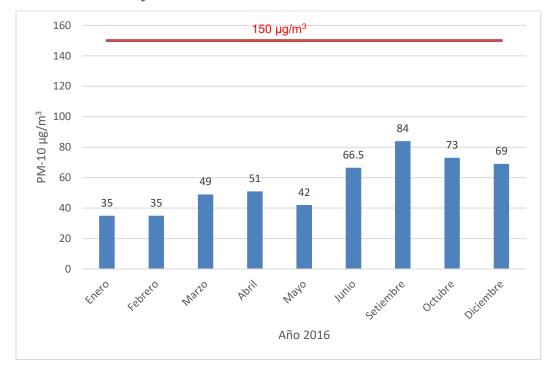

Figura 3Concentración de PM_{10} en los meses de enero-diciembre del 2013.

En la figura 3, se observa los resultados de la concentración de PM₁₀ para cada mes evaluado del año 2013. Estos resultados muestran los valores promedios, los mismos que no sobrepasan el ECA (150 μg/m³). La concentración más alta fue 149 μg/m³, la cual se registró en el mes de diciembre, y la concentración más baja fue 36 μg/m³, que se registró en el mes de noviembre.


Figura 4Concentración de PM₁₀ en los meses de enero-diciembre del 2014

En la figura 4, se observa los resultados de la concentración de PM_{10} para cada mes evaluado del año 2015. Estos resultados muestran los valores promedios, los mismos que no sobrepasan el ECA (150 µg/m³). La concentración más alta fue 76 µg/m³, la cual se registró en el mes de setiembre, y la concentración más baja fue 28.5 µg/m³, que se registró en el mes de mayo.

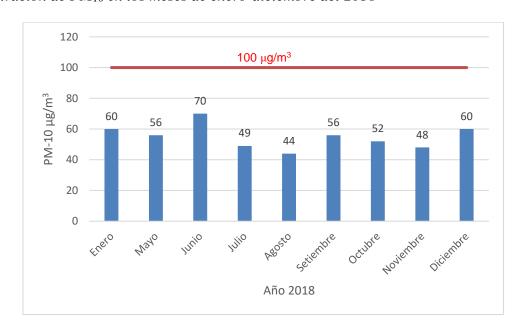
Figura 5


Concentración de PM₁₀ en los meses de enero-noviembre del 2015

En la figura 5, se observa los resultados de la concentración de PM₁₀, para cada mes evaluado del año 2015. Estos resultados muestran los valores promedios, los mismos que no sobrepasan el ECA (150 μg/m³). La concentración más alta fue 74.5 μg/m³, la cual se registró en el mes de setiembre, y la concentración más baja fue 30 μg/m³, que se registró en el mes de junio.


Figura 6Concentración de PM₁₀ Cajamarca en los meses de enero-diciembre del 2016

En la figura 6, se observa los resultados de la concentración de PM_{10} , para cada mes evaluado del año 2016. Estos resultados muestran los valores promedios, los mismos que no sobrepasan el ECA (150 $\mu g/m^3$). La concentración más alta fue 84 $\mu g/m^3$, la cual se registró en el mes de setiembre, y la concentración más baja fue 35 $\mu g/m^3$, que se registraron en los meses de enero y febrero, respectivamente.


Figura 7Concentración de PM₁₀ en los meses de enero-octubre del 201

En la figura 7, se observa los resultados de la concentración de PM_{10} para cada mes evaluado. Estos resultados muestran los valores promedios, los mismos que no sobrepasan el ECA (150 $\mu g/m^3$). La concentración más alta fue 67 $\mu g/m^3$, la cual se registró en el mes de junio, y la concentración más baja fue 35 $\mu g/m^3$, que se registró en el mes de enero.

Figura 8

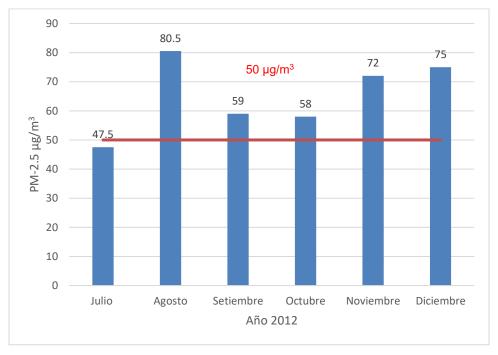
Concentración de PM_{10} en los meses de enero-diciembre del 2018

En la figura 8, se observa los resultados de la concentración de PM_{10} , para cada mes evaluado. Estos resultados muestran los valores promedios, los mismos que no sobrepasan el ECA (100 $\mu g/m^3$). La concentración más alta fue 70 $\mu g/m^3$, la cual se registró en el mes de junio, y la concentración más baja fue 44 $\mu g/m^3$, que se registró en el mes de agosto.

Tabla 5Evolución de la concentración de PM_{10} en Cajamarca en el periodo 2012-2018

Año	PM ₁₀ (μg/m3)	ECA	
2012	75.58	150	
2013	64.63	150	
2014	43.91	150	
2015	47.81	150	
2016	57.10	150	
2017	50.11	150	
2018	55.00	100	

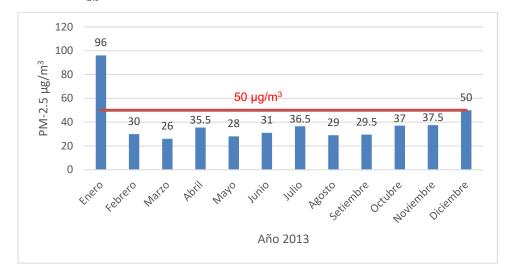
Figura 9Concentración de PM₁₀ en el periodo 2012-2018



En la Tabla 1, y Figura 9, se observa los resultados de la concentración de PM₁₀ para cada año evaluado. Estos resultados muestran los valores promedios, los mismos que no sobrepasan el ECA (150 y 100 μg/m³). Las concentraciones más altas fueron 75.58 y 64.63 ug/m³, los cuales se registraron en el 2012 y 2013, correspondientemente, y las concentraciones más bajas fueron 43.91 y 47.81 μg/m³, y se registraron en el 2014 y 2015, respectivamente. En general, las concentraciones de PM₁₀, respecto a los años evaluados presentan una tendencia decreciente.

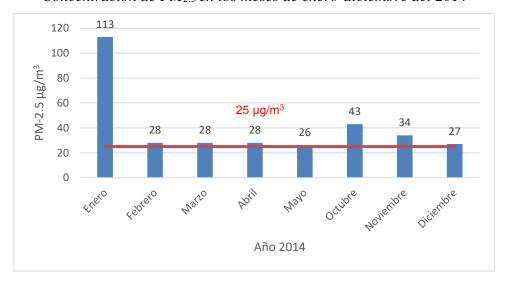
Comportamiento de la concentración del PM_{2.5} en Cajamarca en el periodo 2012-2018.

Figura 10Concentración de PM_{2.5 en} los meses de julio-diciembre del 2012



En la figura 10, se observa los resultados de la concentración de PM_{2.5} para cada mes evaluado. Las concentraciones más altas se registraron en los meses de agosto, noviembre y diciembre, cuyos resultados del material particulado fueron 80.5, 72 y 75 μg/m³, respectivamente, y sobrepasan el ECA (50 μg/m³). El resultado más bajo fue 47.5 μg/m³, y se registró en el mes de julio, en este mes las concentraciones de material particulado (PM_{2.5}) no sobrepaso el ECA.

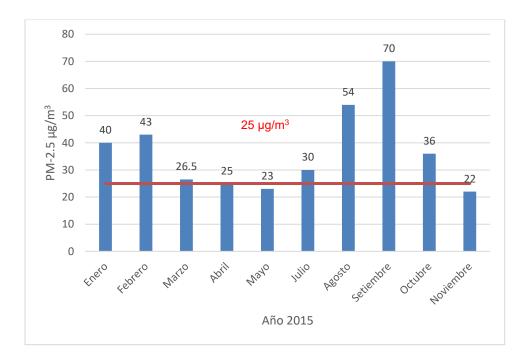
Figura 11


Concentración de PM_{2.5} en los meses de enero-diciembre del 2013

En la figura 11, se observa los resultados de la concentración de PM_{2.5} para cada mes evaluado en el año 2013. La concentración más alta se registró en el mes de enero, cuyo resultado fue 96 μg/m³, siendo este resultado el único que sobrepaso el ECA (50 μg/m³), luego se encuentra las concentraciones obtenidas en el mes de diciembre, cuyo valor fue 50 μg/m³. En los meses de febrero a noviembre las concentraciones de material particulado (PM_{2.5}) alcanzaron valores por debajo del ECA, los cuales oscilaron entre 26 y 37.5 μg/m³.

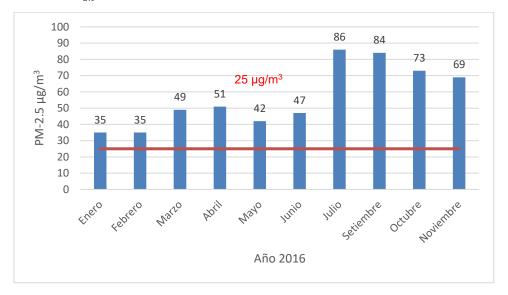
Figura 12

Concentración de PM_{2.5} en los meses de enero-diciembre del 2014



En la figura 12, se observa los resultados de la concentración de PM_{2.5} para cada mes evaluado durante el año 2014. En el mes de enero se alcanzó la concentración más alta (113 μg/m³), el cual sobrepaso exageradamente el ECA (25 μg/m³). Durante los meses de febrero a diciembre, las concentraciones del material particulado (PM_{2.5}) oscilaron entre 28 y 43 μg/m³, estos valores sobrepasaron al ECA.

Figura 13


Concentración de PM_{2.5} en los meses de enero-noviembre del 2015.

En la figura 13, se observa los resultados de la concentración de PM_{2.5} para cada mes evaluado en el año 2015. Las concentraciones más altas se registraron en los meses de enero, febrero, agosto y setiembre, cuyos resultados del material particulado fueron 40, 43, 54 y 70 μg/m³, respectivamente, estas concentraciones sobrepasan el ECA (25 μg/m³). Los resultados más bajos fueron 25, 23 y 22 μg/m³, y se registró en los meses de abril, mayo y noviembre, correspondientemente, estas concentraciones no sobrepasan el ECA.

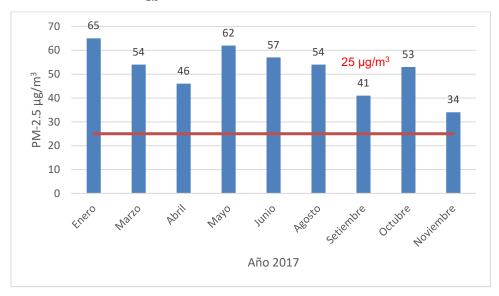
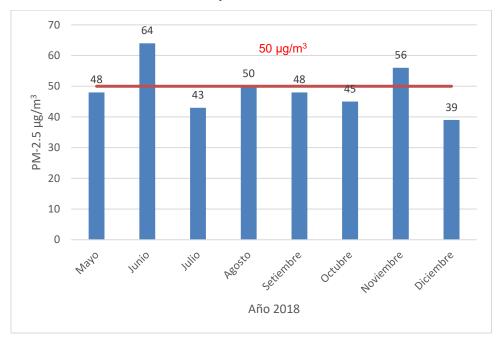


Figura 14Concentración de PM_{2.5} en los meses de enero-noviembre del 2016.

En la figura 14, se observa los resultados de la concentración de $PM_{2.5}$ para cada mes evaluado, los mismos que sobrepasan el ECA (25 $\mu g/m^3$). Las concentraciones más altas se registraron en los meses de julio, setiembre, octubre y noviembre, cuyos resultados del material particulado fueron 86, 84, 73 y 69 $\mu g/m^3$, respectivamente. Las concentraciones más bajas se encontraron entre los meses de enero a junio, cuyos valores oscilaron entre 35 y 51 $\mu g/m^3$.


Figura 15Concentración de PM_{2.5} en los meses de enero-noviembre 2017

En la figura 15, se observa los resultados de la concentración de $PM_{2.5}$ para cada mes evaluado, los mismos que sobrepasan el ECA (25 $\mu g/m^3$). Las concentraciones más altas se registraron en los meses de enero, mayo y junio, cuyos valores fueron 65, 62 y 57 $\mu g/m^3$. La concentración concentraciones más se registraron en los meses de marzo, abril, agosto, setiembre, octubre y noviembre, cuyos valores oscilaron entre 34 y 54 $\mu g/m^3$.

Figura 16Concentración de PM_{2.5} en los meses de mayo-diciembre del 2018

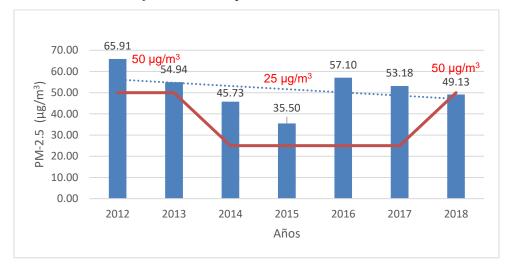

En la figura 16, se observa los resultados de la concentración de PM_{2.5} para cada mes evaluado en año 2018. Las concentraciones más altas se registraron en los meses de junio y noviembre, cuyos valores del material particulado fueron 64 y 56 μg/m³, respectivamente, estas concentraciones sobrepasan el ECA (50 μg/m³). Las concentraciones más bajas fueron 48, 43, 50, 48, 45 y 39 μg/m³, y se registraron en los meses de mayo, julio, agosto, setiembre, octubre y diciembre, correspondientemente, estas concentraciones no sobrepasan el ECA.

Tabla 6Evolución de la concentración del PM_{2.5} en Cajamarca en el periodo 2012-2018.

Años	PM-2.5 ($\mu g/m^3$)	ECA
2012	65.91	50
2013	54.94	50
2014	45.73	25
2015	35.50	25
2016	57.10	25
2017	53.18	25
2018	49.13	50

Figura 17Concentración del PM_{2.5} en Cajamarca en el periodo 2012-2018.

En la Tabla 6, y Figura 17, se observa los resultados de la concentración de PM_{2.5} para cada año evaluado. Las concentraciones más altas se registraron en los años 2012, 2013, 2016 y 2017, cuyos resultados del material particulado fueron 65.91, 54.94, 57.10 y 53.18 μg/m³, respectivamente, estas concentraciones sobrepasan el ECA de 50 y 25 μg/m³. Los resultados más bajos fueron 35.50 y 45.73 μg/m³, y se registraron en el 2014 y 2015, respectivamente, estas concentraciones sobrepasaron el ECA (25 μg/m³). En general, las concentraciones de PM_{2.5} respecto a los años evaluados presentan una tendencia decreciente.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión

Las concentraciones de PM₁₀ en los años 2012 – 2018 en la ciudad de Cajamarca no sobrepasan el ECA (150 μg/m³ - 100 μg/m³ -) y su tendencia temporal es descendente, los mismos que coinciden con el trabajo de investigación realizado en Lima Metropolitana cuyos resultados muestran que los promedios diarios de PM₁₀ no sobrepasan los Estándares de Calidad del aire (ECA) del Perú durante el periodo 2001 y 2014. La variación multianual muestra una tendencia descendente moderada para el PM₁₀, sin embargo, es necesario tomar medidas de control para evitar su incremento (Pacsi, 2016).

Las concentraciones más altas fueron en los meses octubre 2012, con 109 μg/m³, en el mes de diciembre 2013, con 149 μg/m³, en el mes de septiembre 2014, con 76 μg/m³, en el mes de septiembre 2015, con 74.5 μg/m³, en el mes de septiembre 2016, con 84 μg/m³, en el mes de junio 2017, con 67 μg/m³ y en el mes de junio 2018, con 70 μg/m³, con lo cual podemos deducir que la mayor concentración de PM₁0 se encuentra en la estación de primavera – verano. Mientras que las concentraciones más bajas fueron en los meses noviembre 2012, con 55.5 μg/m³, en el mes de noviembre 2013, con 36 μg/m³, en el mes de mayo 2014, con 28.5 μg/m³, en el mes de junio 2015, con 30 μg/m³, en los meses de enero y febrero 2016, con 35 μg/m³, en el mes de enero 2017, con 35 μg/m³ y en el mes de agosto 2018, con 44 μg/m³, con lo cual podemos deducir que la mayor concentración de PM₁0 se encuentra en la estación de otoño - invierno.

Las concentraciones de PM_{2.5} de los años 2012 – 2018 en la ciudad de Cajamarca sobrepasan el ECA (25 μg/m³ - 50 μg/m³ -) pero su tendencia temporal es descendente, los mismos que coinciden con el trabajo de investigación realizado en Lima Metropolitana cuyos resultados muestran que todas las estaciones de monitoreo de calidad del aire de Lima Metropolitana superan las guías y estándares internacionales ECA. La tendencia de la serie histórica de PM_{2.5} muestra que existe en general una disminución leve de sus concentraciones en casi todas las estaciones de monitoreo. (Pacsi, 2016).

Las concentraciones más altas fueron en los meses agosto 2012, con $80 \mu g/m^3$, en el mes de diciembre 2013, con $50 \mu g/m^3$, en el mes de enero 2014, con $114 \mu g/m^3$, en el mes de septiembre 2015, con $70 \mu g/m^3$, en el mes de julio 2016, con $86 \mu g/m^3$, en el mes de enero 2017, con $65 \mu g/m^3$ y en el mes de junio 2018, con $64 \mu g/m^3$, con lo cual podemos deducir que la mayor concentración de PM_{10} se encuentra en la estación de primavera – verano. Mientras que las concentraciones más bajas fueron en los meses julio 2012, con $47.5 \mu g/m^3$, en el mes de marzo 2013, con $26 \mu g/m^3$, en el mes de mayo 2014, con $26 \mu g/m^3$, en el mes de noviembre 2015, con $22 \mu g/m^3$, en los meses de enero y febrero 2016, con $35 \mu g/m^3$, en el mes de noviembre 2017, con $34 \mu g/m^3$ y en el mes de diciembre 2018, con $39 \mu g/m^3$, con lo cual podemos deducir que la mayor concentración de PM_{10} se encuentra en la estación de otoño - invierno. Determinando que los resultados encontrados muestran que el comportamiento de las PM_{10} está influenciado, por el uso de suelo y las actividades antropogénicas, pero es la estación del año la que exacerba los problemas de la contaminación.

4.2 Conclusiones

Las concentraciones PM_{10} y $PM_{2.5}$, respecto a los años 2012- 2018, presentan una tendencia decreciente.

La concentración de PM₁₀, respecto a los años evaluados no sobrepasa el ECA.

La concentración de PM_{2.5} sobrepasa el ECA en los años 2012 a 2017, a excepción del año 2018.

REFERENCIAS

- COMISIÓN NACIONAL DEL MEDIO AMBIENTE. (2009). Guía metodológica para la estimación de emisiones atmosféricas de fuentes fijas y móviles en el Registro de Emisiones y Transferencia de Contaminantes.
- Censo, I. N. E. I. (2017). INEI difunde Base de Datos de los Censos Nacionales 2017.
- Díaz Suárez, V., & Páez Pérez, C. (2006). Contaminación por material particulado en Quito y caracterización química de las muestras. *Acta Nova*, *3*(2), 308-322.
- Europeo, P. (2008). DIRECTIVA 2008/50/CE del Parlamento Europeo y del Consejo, de 21 de mayo de 2008, relativa a la calidad del aire ambiente ya una atmósfera más limpia en Europa.
- Flores, J. (1997). *Contaminantes atmosféricos primarios y secundarios*. (Segunda Edición). México: Trillas. (9) 123- 148.
- Galle, E. Rubén (2002). Los Residuos Industriales y el Medio Ambiente Trabajo presentado al XXV Congreso Argentino de profesores Universitarios de Costos Buenos Aires 2003 Costos internos y externos de la contaminación.
- García Puelles, R. I. (2003). Evaluación del impacto ambiental: un instrumento preventivo para la gestión ambiental. Universidad Nacional de Cajamarca, Cajamarca, Perú. Recuperado de http://repositorio.uc.edu.pe/handle/UNC/1299.
- Gómez Orea, Domingo. (2003). Evaluación del impacto ambiental: un instrumento preventivo para la gestión ambiental. (Segunda edición). Madrid-España: MundiPrensa,
- Inche J. L. (2008). Gestión de la calidad del aire, causas efectos y soluciones 2002-2008.
- Inche, J. (2001). Estimación de Emisiones en Vehículos en Circulación.
- Informe Defensorial, N. (2008). El Transporte Urbano en Lima Metropolitana: Un desafío en defensa de la vida.

- Lacasaña-Navarro, M., Aguilar-Garduño, C., & Romieu, I. (1999). Evolución de la contaminación del aire e impacto de los programas de control en tres megaciudades de América Latina. *Salud pública de México*, *41*, 203-215.
- Maltoni y Scarnato. (1977). "En la unidad experimental Bentivoglio del instituto de oncología de Bolonia, Italia.
- Mcgraw, H. (2009). Contaminación Atmosférica. (10) 234-262.
- Ministerio de Transportes, Comunicaciones, Dirección General de Medio Ambiente (DGMA).(2001) "Propuesta de límites máximos permisibles para vehículos automotores. Lima.
- Pacsi, S. (2016). Análisis temporal y espacial de la calidad del aire determinado por material particulado PM10 y PM2,5 en Lima Metropolitana. Universidad Nacional Agraria La Molina, Lima Perú (9) 123- 148.
- Perrone, M.R., Turnone, A., Buccolierib, A., y Buccolierib, G. (2005). *Particulate matter characterization at a coastal site in south-eastern Italy. Journal of Environmental Monitoring*. First published as an advance article on the web 6th December. DOI: 10.1039/b513306h.
- Quispe Salazar, S. N. (2017). Vulnerabilidad de la infraestructura vial ante el incremento del parque automotor en la ciudad de Cajamarca.
- Rojano, R., Arregoces, H., & Restrepo, G. (2014). Composición elemental y fuentes de origen de partículas respirables (PM10) y Partículas Suspendidas Totales (PST) en el Área Urbana de la Ciudad de Riohacha, Colombia. *Información tecnológica*, 25(6), 3-12.
- Senati (2006). Situación revista panorama cajamarquino.

- Sternbeck, J., Sjödin, A., y Andréasson, K. (2002). Metal emissions from road traffic and the influence of resuspension-results from two tunnel studies. Atmospheric Environment, 36, 4735-4744.
- UNMSM- Oficina General del Sistema de Biblioteca Central Lima- Perú.
- Viana, M., Querol, X., y Alastuey, A. (2006). Chemical characterisation of PM episodes in NE Spain. Chemosphere, 62, 947-956.
- Wilhelm, M., Qianc, L., y Ritz, B. (2009). Outdoor air pollution, family and neighborhood environment, and asthma in LAFANS children. Health & Place, 15, 25-36.
- Wu, Z., Hu M., Lin P., Liu S., Wehner B., Alfred Wiedensohler A., (2008). *Particle number size distribution in the urban atmosphere of Beijing, China*. Atmospheric 42, 7967–7980.
- Zhang, W., Sun, Y., Zhuang, G., D., (2006). *Characteristics and Seasonal Variations of PM2.5*, *PM10*, and TSP Aerosol in Beijing. Biomedical and Environmental Sciences 19, 461-468.

ANEXOS

ANEXO N° 1

DECRETO SUPREMOS DE LAS ECAS UTILIZADAS EN LOS AÑOS 2012-2018

DECRETO SUPREMO N° 074-2001-PCM

REGLAMENTO DE ESTANDARES NACIONALES DE CALIDAD AMBIENTAL DEL AIRE

EL PRESIDENTE DE LA REPÚBLICA

Anexo 1- Estándares Nacionales de Calidad Ambiental del Aire

(Todos los valores son concentraciones en microgramos por metro cúbico. NE significa no exceder)

CONTAMINANTES	PERIODO	FORMA	DEL ESTANDAR	METODO DE
CONTAMINANTES	PERIODO	VALOR	FORMATO	ANALISIS ^{1[1]}
	Anual	80	Media aritmética	
Dióxido de Azufre			anual	Fluorescencia UV
Dioxido de Azulie	24 horas	365	NE más de 1 vez al	(método automático)
	24 110103	303	año	
	Anual	50	Media aritmética	
PM-10		30	anual	Separación inercial/
TIVIETO	24 horas	150	NE más de 3	filtración (Gravimetría)
			veces/año	
	8 horas	10000	Promedio móvil	Infrarrojo no
Monóxido de Carbono	1 hora	30000	NE más de 1	dispersivo (NDIR)
	Tilota	00000	vez/año	(Método automático)
	Anual	100	Promedio aritmético	
Dióxido de Nitrógeno	Alluai	100	anual	Quimiluminiscencia
Dioxido de Miliogeno	1 hora	200	NE más de 24	(Método automático)
	Tilota	200	veces/año	
Ozono	8 horas	120	NE más de 24	Fotometría UV
020110	0 110103	120	veces/año	(Método automático)
	Anual ^{2[2]}			Método para PM10
Plomo	Mensual	1.5	NE más de 4	(Espectrofotometría
	MEHSUAL		veces/año	de absorción atómica)
Sulfuro de Hidrógeno	24 horas ²			Fluorescencia UV
Sundio de Filalogello	24 110103			(método automático)√

DECRETO SUPREMO Nº 003 - 2008 - MINAM

APRUEBAN ESTÁNDARES DE CALIDAD AMBIENTAL PARA AIRE

EL PRESIDENTE DE LA REPUBLICA

ESTANDAR DE CALIDAD AMBIENTAL PARA, COMPUESTOS ORGÁNICOS VOLÁTILES (COV); HIDROCARBUROS TOTALES (HT); MATERIAL PARTICULADO CON DIÁMETRO MENOR A 2,5 MICRAS (PM_{2.5})

Parámetro	Periodo	Valor	Vigencia	Formato	Método de análisis
Benceno ¹	Anual	4 µg/m³	1 de enero de 2010	Media	Cromatografia
Benceno	Anual	2 μg/m³	1 de enero de 2014	aritmética	de gases
Hidrocarburos Totales (HT) Expresado como Hexano	24 horas	100 mg/m ³	1 de enero de 2010	Media aritmética	lonización de la llama de hidrógeno
Material Particulado con	24 horas	50 μg/m ³	1 de enero de 2010	Media aritmética	Separación inercial filtración (gravimetría)
diámetro menor a 2,5 micras (PM _{2,5})	24 horas	25 μg/m³	1 de enero de 2014	Media aritmética	Separación inercial filtración (gravimetría)
Hidrógeno Sulfurado (H₂S)	24 horas	150 µg/m³	1 de enero de 2009	Media aritmética	Fluorescencia UV (método automático)

Decreto Supremo N^003 -2017-MINAM

APRUEBAN ESTÁNDARES NACIONALES DE CALIDAD AMBIENTAL (ECA) PARA AIRE Y ESTABLECEN DISPOSICIONES COMPLEMENTARIAS

Estándares Nacionales de Calidad Ambiental para Aire

Parámetros	Periodo	Valor [µg/m³]	Criterios de evaluación	Método de análisis ⁽¹⁾	
Benceno (C ₆ H ₆)	Anual	2	Media aritmética anual	Cromatografia de gases	
Dióxido de Azufre (SO ₂)	24 horas	250	NE más de 7 veces al año	Fluorescencia ultravioleta (Método automático)	
Diduido do Nibrinoso (NO)	1 hora	200	NE más de 24 veces al año	Quimioluminiscencia	
Dióxido de Nitrógeno (NO ₂)	Anual	100	Media aritmética anual	(Método automático)	
Material Particulado con	24 horas	24 horas 50 NE más de 7 veces al año		Separación	
diámetro menor a 2,5 micras (PM _{2,5})	Anual 25 Media aritmética anual		inercíal/filtración (Gravimetría)		
Material Particulado con	24 horas 100 NE más de 7 veces al año		Separación		
diámetro menor a 10 micras (PM ₁₀)	Anual	50	Media aritmética anual	inercial/filtración (Gravimetria)	
Mercurio Gaseoso Total (Hg) ^[2]	24 horas	2	No exceder	Espectrometria de absorción atómica de vapor frio (CVAAS) o Espectrometria de fluorescencia atómica de vapor frio (CVAFS) (Métodos automáticos)	
Monóxido de Carbono (CO)	1 hora	30000	NE más de 1 vez al año	Infrarrojo no dispersivo	
Morioxido de Carbono (CO)	8 horas	10000	Media aritmética móvil	(NDIR) (Método automático)	
Ozono (O ₃)	8 horas	100	Máxima media diaria NE más de 24 veces al año	Fotometría de absorción ultravioleta (Método automático)	
	Mensual	1,5	NE más de 4 veces al año	Método para PM ₁₀	
Plomo (Pb) en PM ₁₀	Anual	0,5	Media aritmética de los valores mensuales	(Espectrofotometria de absorción atómica)	
Sulfuro de Hidrógeno (H₂S)	24 horas	150	Media aritmética	Fluorescencia ultravioleta (Método automático)/	

ANEXO N° 2

COMPORTAMIENTO DEL PM₁₀ 2012 – 2010

c	UADRO	RESULTAI	DOS DE ANA	ALISIS DE N	MUESTI	REO DE PI	M 10		
	PM 10								
			RESU	TADOS DE ANÁ	LISIS DE C	ALIDAD DE AIR	NE NE		
	L) Analisis:	PM-10				Método: NTP:	900.030-2003		
Estación de monitoreo	Fecha de Monitoreo	Tlempo de Muestreo	Código de Laboratorio	Concentrac (ug/m ³		ECA	Limite de Cuantificación	Fecha Análisis	Descripcio de Muest
					2012				
28/06/201	2 24 hora	s 1301	065-33	81	1	50	2	1/01/2013	E-LC
5/07/2012	24 hora	s 1301	065-34	87	1	50	2	1/01/2013	E-LC
21/07/201	2 24 hora	s 1301	065-36	67	1	50	2	1/01/2013	E-LC
6/08/2012	2 24 hora	s 1301	065-37	61	1	50	2	1/01/2013	E-LC
22/08/201	.2 24 hora	s 1301	065-39	77	1	50	2	1/01/2013	E-LC
7/09/2012	24 hora	s 1301	065-41	63	1	50	2	1/01/2013	E-LC
9/10/2012	24 hora	s 1301	065-44	90	1	50	2	1/01/2013	E-LC
25/10/201	2 24 hora	s 1301	065-46	128	1	50	2	1/01/2013	E-LC
10/11/201	2 24 hora	s 1301	057-01	50	1	50	2	10/01/2013	E-CL
19/11/201	2 24 hora	s 1301	057-02	61	1	50	2	10/01/2013	E-CL
12/12/201	2 24 hora	s 1301	057-05	54	1	50	2	10/01/2013	E-CL
28/12/201	2 24 hora	s 1301	057-07	88	1	50	2	10/01/2013	E-CL

C	UADRO	RESULTAI	OOS DE	ANALISI	S DE MU	IESTREO DE F	M 10			
	PM 10									
				RESLTADOS	DE ANÁLISI	S DE CALIDAD DE A	IRE			
[HI-VOI) Analisis:	PM-10				Método: NT	P 900.030-20	003		
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Cód igo Laborat		ncentración (ug/m³)	ECA		Límite de antificación	Fecha Análisis	Descripcion de Muestra
					20:	13				
21/01/2013	3 24 hora	1305	213-01	50		150		2	20/05/2013	1
12/02/2013	3 24 hora	1305	213-02	56		150		2	20/05/2013	2
6/03/2013	24 horas	s 1305	213-04	53		150		2	20/05/2013	4
28/03/2013	3 24 horas	1305	213-06	51		150		2	20/05/2013	6
19/04/2013	3 24 horas	1305	213-08	51		150		2	20/05/2013	8
11/05/2013	3 24 hora	1309	323-14	52		150		2	14/09/2013	Muestra 14
2/06/2013	24 horas	1309	323-16	54		150		2	14/09/2013	Muestra 16
24/06/2013	3 24 hora	1309	323-18	76		150		2	14/09/2013	Muestra 18
16/07/2013	3 24 horas	s 1309	323-20	60		150		2	14/09/2013	Muestra 20
7/08/2013	24 horas	1309	323-22	64		150		2	14/09/2013	Muestra 22
29/08/2013	3 24 horas	1309	323-24	49		150		2	14/09/2013	Muestra 24
20/09/2013	3 24 horas	1310	718-02	43		150		2	4/11/2013	E-LC-2
12/10/2013	3 24 hora	1310	718-04	41		150		2	4/11/2013	E-LC-4
3/11/2013	24 horas	1312	188-01	36		150		2	14/12/2014	E-LC
			Inform	e Ensayo	N° 1401148	- ENVIROLAB P	ERU S.A.C.			
11/12/2013	3 24 hora	1401	148-01	143		150		2	14/01/2014	E-LC
29/12/2013	3 24 horas	1401	148-04	155		150		2	14/01/2014	E-LC

C	UAD)RO	RESU	JLTAD	009	DE ANAL	ISI:	S DE MUES	TREO DE PM	10	1		
	PIV	1 10											
						RESLTAD	os	DE ANÁUSIS DE	CALIDAD DE AIRE				
(HI-VO	L) An	alisis:	PM-1	10					Método: NTP 90	0.03	0-2003		
Estación de monitoreo		ha de itoreo		npo de estreo		Código de aboratorio	Cor	ncentración (ug/m³)	ECA	L	Límite de Cuantificación	Fecha Análisis	Descripcion de Muestra
									2014				
	[20/01/	2014	24 hor	85	1403484-01		38	150		2	24/03/2014	1
	[11/02/	2014	24 hor	as	1403484-03		42	150		2	24/03/2014	3
		5/03/2	014	24 hor	35	1403484-05		30	150		2	24/03/2014	5
	[3/04/2	014	24 hor	35	5-000105244	3	49	150		NTP 900.030 - 2003	1/07/2014	1 - E-LC
		2/05/2	014	24 hor	as	S- 000105244	15	25	150		NTP 900.030 - 2003	1/07/2014	3 - E-LC
		31/05/	2014	24 hor	as	S- 000105244	17	32	150		NTP 900.030 - 2003	1/07/2014	5 - E-LC
	[INFORME DE E	NSAYO N*. J-0016	356	1		
		11/09/	2014	24 hor	35	S-000110777	7	76	150		NTP 900.030 - 2003	8/12/2014	E-LC
		3/10/2	014	24 hor	85	S-000110777	9	70	150		NTP 900.030 - 2003	8/12/2014	E-LC
		25/10/	2014	24 hor	35	5-000110778	1	44	150		NTP 900.030 - 2003	8/12/2014	E-LC
	[10/12/2	2014	24 hor	35	S-000111830	4	39	150		NTP 900.030 - 2003	17/01/2015	E-LC
	[25/12/2	2014	24 hor	as	5-000111830	6	38	150		NTP 900.030 - 2003	17/01/2015	E-LC

C	UADRO	RESULTAI	OOS DE ANAL	ISIS DE MUE	ESTREO DE PM :	10		
	PM 10							
			RESLTAI	DOS DE ANÁLISIS	DE CALIDAD DE AIRE			,
(HI-VO	L) Analisis:	PM-10			Método: NTP 900	.030-2003		
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Límite de Cuantificación	Fecha Análisis	Descripcior de Muestra
E-LC					2015			
(Estación	10/01/2015	24 horas	5-0001118302	44	150	NTP 900.030 - 2003	17/01/2015	E-LC
de	30/01/2015	24 horas	5-0001133749	59	150	NTP 900.030 - 2003	14/03/2015	E-LC
Monitoreo	19/02/2015	24 horas	5-0001133751	41	150	NTP 900.030 - 2003	14/03/2015	E-LC
La	11/03/2015	24 horas	5-0001166449	43	150	NTP 900.030 - 2003	20/06/2015	E-LC
colmena)	31/03/2015	24 horas	5-0001166451	35	150	NTP 900.030 - 2003	20/06/2015	E-LC
	20/04/2015	24 horas	5-0001166454	39	150	NTP 900.030 - 2003	20/06/2015	E-LC
	10/05/2015	24 horas	S-0001166456	38	150	NTP 900.030 - 2003	20/06/2015	E-LC
	19/06/2015	24 horas	5-0001184961	30	150	NTP 900.030 - 2003	28/08/2015	E-LC
	29/07/2015	24 horas	5-0001184963	34	150	NTP 900.030 - 2003	28/08/2015	E-LC
	8/08/2015	24 horas	5-0001184964	36	150	NTP 900.030 - 2003	28/08/2015	E-LC
	18/08/2015	24 horas	5-0001184965	49	150	NTP 900.030 - 2003	28/08/2015	E-LC
	7/09/2015	24 horas	5-0001202972	79	150	NTP 900.030 - 2003	28/08/2015	E-LC
	27/09/2015	24 horas	5-0001202974	70	150	NTP 900.030 - 2003	28/08/2015	E-LC
	17/10/2015	24 horas	5-0001202977	49	150	NTP 900.030 - 2003	28/08/2015	E-LC
	6/11/2015	24 horas	5-0001114008	81	150	NTP 900.030 - 2003	7/12/2015	E-LC
	26/11/2015	24 horas	5-0001114010	38	150	NTP 900.030 - 2003	7/12/2015	E-LC

С	UADRO	RESULTA	OOS DE ANAL	ISIS DE MUE	STREO DE PM	10		
	PM 10							
			RESLTAI	OOS DE ANÁLISIS	DE CALIDAD DE AIRE			
(HI-VO	L) Analisis:	PM-10			Método: NTP 900	030-2003		
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Límite de Cuantificación	Fecha Análisis	Descripcion de Muestra
					2016			
	14/01/2016	24 horas	S-0001223552	35	150	NTP 900.030 - 2003	25/01/2016	E-LC
	7/02/2016	24 horas	S-0001245299	35	150	NTP 900.030 - 2003	4/04/2016	E-LC
	26/03/2016	24 horas	5-0001245300	49	150	NTP 900.030 - 2003	4/04/2016	E-LC
	19/04/2016	24 horas	5-0001262549	51	150	NTP 900.030 - 2003	23/05/2016	E-LC
	13/05/2016	24 horas	5-0001262551	42	150	NTP 900.030 - 2003	23/05/2016	E-LC
	6/06/2016	24 horas	S0001273020	47	150	NTP 900.030 - 2003	27/06/2016	E-LC
	30/06/2016	24 horas	S-0001295584	86	150	NTP 900.030 - 2003	17/09/2016	E-LC
	10/09/2016	24 horas	S-0001295588	84	150	NTP 900.030 - 2003	17/09/2016	E-LC
	28/10/2016	24 horas	S-0001316711	73	150	NTP 900.030 - 2003	29/11/2016	E-LC
	6/12/2016	24 horas	S-0001329323	69	150	NTP 900.030 - 2003	10/01/2017	E-LC

С	UADRO	RESULTAI	OOS DE ANAL	ISIS DE MUE	STREO DE PM :	10						
	PM 10											
			RESLTAD	OS DE ANÁLISIS	DE CALIDAD DE AIRE							
(HI-VO	I-VOL) Analisis: PM-10 Método: NTP 900.030-2003											
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Límite de Cuantificación	Fecha Análisis	Descripcion de Muestra				
					2017							
	14/01/2017	24 horas	S-0001370279	35	150	NTP 900.030 - 2003	6/05/2017	E-LC				
	7/03/2017	24 horas	S-0001370281	48	150	NTP 900.030 - 2003	6/05/2017	E-LC				
	2/04/2017	24 horas	S-0001370283	45	150	NTP 900.030 - 2003	6/05/2017	E-LC				
[24/05/2017	24 horas	S-0001392184	60	150	NTP 900.030 - 2003	28/06/2017	E-LC				
	19/06/2017	24 horas	S-0001392186	67	150	NTP 900.030 - 2003	28/06/2017	E-LC				
	10/08/2017	24 horas	S-0001416132	52	150	NTP 900.030 - 2003	11/09/2017	E-LC				
	5/09/2017	24 horas	S-0001416134	53	150	NTP 900.030 - 2003	11/09/2017	E-LC				
	1/10/2017	24 horas	S-0001432534	37	150	NTP 900.030 - 2003	4/11/2017	E-LC				
	27/10/2017	24 horas	5-0001432536	54	150	NTP 900.030 - 2003	4/11/2017	E-LC				

С	UADRO I	RESULTAD	OS DE ANAL	ISIS DE MUE	STREO DE PM :	10		
	PM 10							
			RESLTAD	OS DE ANÁLISIS	DE CALIDAD DE AIRE			
(HI-VO	L) Analisis:	PM-10			Método: NTP 900	.030-2003		
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Limite de Cuantificación	Fecha Análisis	Descripcion de Muestra
					2018			
	1/01/2018	24 horas	S-0001451630	60		NTP 900.030 - 2003	15/01/2018	E-LC
				INFORME DE E	NSAYO N° J- 0030170	1		
	19/05/2018	24 horas	S-0001504400	56	100	NTP 900.030 - 2003	30/06/2018	E-LC
	21/06/2018	24 horas	S-0001504402	70	100	NTP 900.030 - 2003	30/06/2018	E-LC
				INFORME DE E	ENSAYO N° J-003069	03		
	18/07/2018	24 horas	S-0001526689	49	100	NTP 900.030 - 2003	11/09/2018	E-LC
	16/08/2018	24 horas	S-0001526695	44	100	NTP 900.030 - 2003	11/09/2018	E-LC
			INFOR	ME DE ENSAYO 1	N" J- 00309651			
	13/09/2018	24 horas		56	100	NTP 900.030 - 2003	22/10/2018	E-LC
	2/10/2018	24 horas		52	100	NTP 900.030 - 2003	22/10/2018	E-LC
			INFOR	MEDEENSAYO N	N" J- 00325878			
	17/11/2018	24 horas		48	100	NTP 900.030 - 2003	10/01/2019	E-LC
	6/12/2018	24 horas		60	100	NTP 900.030 - 2003	10/01/2019	E-LC

ANEXO N° 3

Comportamiento del PM2.5 2012 – 2010

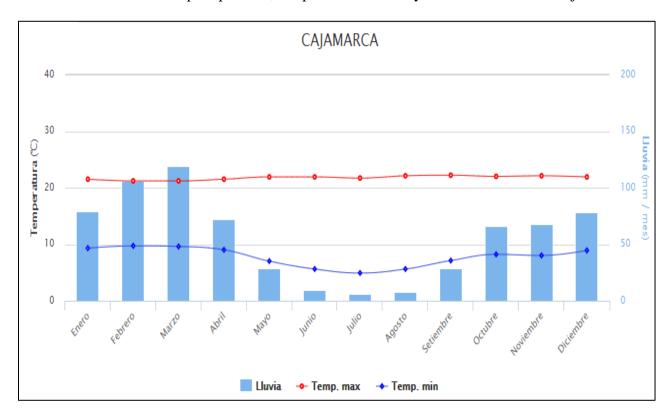
	CU	JADRO F	RESULTADO	S DE ANÁLI	SIS DE M	UESTREO PM	2.5	
	PM 2.5							
			RESULTADO	DE ANÁLISIS DE	CALIDAD DE A	AIRE		
(HI-VOL)	Análisis:	PM-2.5		1	Иetodo: N	TP 900.030-2003		
Estación de monitore o	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Límite de Cuantificación	Fecha Análisis	Descripción de Muestra
				2012				
	13/07/2012	24 horas	1301057-08	55	50	2	1/01/2013	E-LC
	13/07/2012	24 horas	1301065-35	40	50	2	10/01/2013	E-LC
	14/08/2012	24 horas	1301065-38	65	50	2	10/01/2013	E-LC
5.10	30/08/2012	24 horas	1301065-40	96	50	2	10/01/2013	E-LC
E-LC (Estación de	15/09/2012	24 horas	1301065-42	59	50	2	10/01/2013	E-LC
Monitoreo	1/10/2012	24 horas	1301065-43	56	50	2	10/01/2013	E-LC
La colmena)	17/10/2012	24 horas	1301065-45	60	50	2	10/01/2013	E-LC
La Colliferia)	2/11/2012	24 horas	1301065-47	63	50	2	10/01/2013	E-LC
	25/11/2012	24 horas	1301057-03	81	50	2	1/01/2013	E-LC
	4/12/2012	24 horas	1301057-04	107	50	2	1/01/2013	E-LC
	20/12/2012	24 horas	1301057-06	43	50	2	1/01/2013	E-LC

	CUADRO RESULTADOS DE ANÁLISIS DE MUESTREO PM 2.5								
	PM 2.5								
RESULTADO DE ANÁLISIS DE CALIDAD DE AIRE									
(HI-VOL)	Análisis:	PM-2.5		,	/letodo: N	TP 900.030-2003			
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Límite de Cuantificación	Fecha Análisis	Descripción de Muestra	
2013									
	1/01/2013	24 horas	1301057-08	96	50	2	10/01/2013	E-LC	
[19/02/2013	24 horas	1305213-03	30	50	2	20/05/2013	3	
	13/03/2013	24 horas	1305213-05	26	50	2	20/05/2013	5	
[4/04/2013	24 horas	1305213-07	31	50	2	20/05/2013	7	
	26/04/2013	24 horas	1305213-09	42	50	2	20/05/2013	9	
E-LC	25/05/2013	24 horas	1309323-15	28	50	2	14/09/2013	Muestra 15	
(Estación de	9/06/2013	24 horas	1309323-17	31	50	2	14/09/2013	Muestra 16	
Monitoreo	1/07/2013	24 horas	1309323-19	37	50	2	14/09/2013	Muestra 17	
La colmena)	23/07/2013	24 horas	1309323-21	36	50	2	14/09/2013	Muestra 18	
La Comiena)	14/08/2013	24 horas	1309323-23	29	50	2	14/09/2013	Muestra 19	
[5/09/2013	24 horas	1310718-01	28	50	2	4/11/2013	E-LC-1	
	27/09/2013	24 horas	1310718-03	31	50	2	4/11/2013	E-LC-3	
	19/10/2013	24 horas	1310718-05	37	50	2	4/11/2013	E-LC-5	
[17/11/2013	24 horas	1312188-02	33	50	2	14/12/2013	2	
	25/11/2013	24 horas	1312188-03	42	50	2	14/12/2013	3	
		Ir	forme Ensayo	N° 1401148 - EN	IVIROLAB PE	RU s.a.c.			
E-LC	19/12/2013	24 horas	1401148-02	127	50	2	14/01/2014		
(Estación de Monitoreo La	24/12/2013	24 horas	1401148-03	138	50	2	14/01/2014		
colmena)	28/12/2013	24 horas	1401148-05	167	50	2	14/01/2014		

	CUADRO RESULTADOS DE ANÁLISIS DE MUESTREO PM 2.5									
	PM 2.5									
	RESULTADO DE ANÁLISIS DE CALIDAD DE AIRE									
(HI-VOL)	Análisis:	PM-2.5			Metodo: N	TP 900.030-2003				
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	. FCA		Fecha Análisis	Descripción de Muestra			
				2014						
	1/01/2014	24 horas	1401148-06	195	50	2	14/01/2014			
	27/01/2014	24 horas	143484-02	31	50	2	24/03/2014	2		
	12/02/2014	24 horas	143484-04	28	50	2	24/03/2014	4		
	18/02/2014	24 horas	143484-06	29	50	2	24/03/2014	6		
E-LC	12/03/2014	24 horas	1403484-06	28	50	3	24/03/2014	6		
(Estación de Monitoreo La	10/04/2014	24 horas	5-0001052444	28	50	NTP 900.030 - 2003	1/07/2014	2- E- LC		
colmena)	9/05/2014	24 horas	5-0001052446	26	50	NTP 900.030 - 2003	1/07/2014	4 - E - LC		
	16/10/2014	24 horas	S-0001107780	43	50	NTP 900.030 -2003	8/12/2014	E-LC		
	1/11/2014	24 horas	S-0001107782	42	50	NTP 900.030 -2003	8/12/2014	E-LC		
	30/11/2014	24 horas	5-0001107784	26	50	NTP 900.030 -2003	8/12/2014	E-LC		
	15/12/2014	24 horas	S-0001118305	27	50	NTP 900.030 - 2003	17/01/2015	E-LC		

	CUADRO RESULTADOS DE ANÁLISIS DE MUESTREO PM 2.5									
	PM 2.5									
	RESULTADO DE ANÁLISIS DE CALIDAD DE AIRE									
(HI-VOL)	Análisis:	PM-2.5		1	Metodo: N	TP 900.030-2003				
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Límite de Cuantificación	Fecha Análisis	Descripción de Muestra		
				2015						
	1/01/2015	24 horas	S-0001118307	26	25	NTP 900.030 - 2003	17/01/2015	1		
	20/01/2015	24 horas	S-0001133748	54	25	NTP 900.030 - 2004	14/01/2015	2		
	9/02/2015	24 horas	S-0001133750	43	25	NTP 900.030 - 2005	14/01/2015	3		
	1/03/2015	24 horas	S-0001133752	23	25	NTP 900.030 - 2006	14/01/2015	4		
	21/03/2015	24 horas	S-0001166450	30	25	NTP 900.030 - 2007	20/06/2015	5		
E-LC	10/04/2015	24 horas	S-0001166453	25	25	NTP 900.030 - 2008	20/06/2015	6		
(Estación de	30/04/2015	24 horas	S-0001166455	25	25	NTP 900.030 - 2003	20/06/2015	7		
Monitoreo	20/05/2015	24 horas	S-0001166457	23	25	NTP 900.030 - 2003	20/06/2015	8		
La colmena)	19/07/2015	24 horas	S-0001184962	30	25	NTP 900.030 - 2003	28/08/2015	9		
	28/08/2015	24 horas	S-0001202971	54	25	NTP 900.030 - 2003	28/08/2015	10		
	17/09/2015	24 horas	S-0001202973	70	25	NTP 900.030 - 2003	28/08/2015	11		
	7/10/2015	24 horas	S-0001202976	41	25	NTP 900.030 - 2003	28/08/2015	12		
	27/10/2015	24 horas	S-0001214007	31	25	NTP 900.030 - 2004	7/12/2015	13		
	16/11/2015	24 horas	S-0001214009	22	25	NTP 900.030 - 2005	7/12/2015	14		

	CL	JADRO F	RESULTADO	S DE ANALI	SIS DE M	UESTREO PM	2.5		
	PM 2.5								
			RESULTADO	DE ANÁLISIS DE	CAUDAD DE A	AIRE			
(HI-VOL)	HI-VOL) Análisis: PM-2.5 Metodo: NTP 900.030-2003								
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Límite de Cuantificación	Fecha Análisis	Descripción de Muestra	
				2016					
			11	FORME DE ENSA	VAO N. 1-00	206793			
	14/01/2016	24 horas	5-0001223552	35	25	NTP 900.030 - 2003	25/01/2016	1	
		INFORME DE ENSAYO N° J-00213135							
	7/02/2016	24 horas	S-0001245299	35	25	NTP 900.030 - 2003	4/04/2016	2	
	26/03/2016	24 horas	S-0001245300	49	25	NTP 900.030 - 2003	4/04/2016	3	
				NFORME DE ENSA	AYO N° J-00	217435			
	19/04/2016	24 horas	S-0001262549	51	25	NTP 900.030 - 2003	23/05/2016	4	
E-LC	13/05/2016	24 horas	5-0001262551	42	25	NTP 900.030 - 2003	23/05/2016	5	
Estación de			- 11	NFORME DE ENSA	AYO N° J-00	220900			
Monitoreo	6/06/2016	24 horas	50001273020	47	25	NTP 900.030 - 2003	27/06/2016	6	
La colmena)			11	IFORME DE ENSA	YO N" J-00	229239			
	30/05/2016	24 horas	50001273020	86	25	NTP 900.030 - 2003	17/09/2016	7	
	10/09/2016	24 horas	S0001273020	84	25	NTP 900.030 - 2003	17/09/2016	8	
			11	FORME DE ENSA	/AO N. 1-00/	244122			
	28/10/2016	24 horas	S-0001316711	73	25	NTP 900.030 - 2003	28/11/2016	9	
			IN	FORME DE ENSA	YO N° J-002	445653			
	6/12/2016	24 horas	S-0001329323	69	25	NTP 900.030 - 2003	9/01/2017	10	



CUADRO RESULTADOS DE ANÁLISIS DE MUESTREO PM 2.5										
	PM 2.5									
	RESULTADO DE ANÁLISIS DE CALIDAD DE AIRE									
(HI-VOL)	Análisis:	PM-2.5		1	Metodo: N	TP 900.030-2003				
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Límite de Cuantificación	Fecha Análisis	Descripción de Muestra		
	2017									
	1/01/2017	24 horas	S-0001118307	89	25	NTP 900.030 - 2003	10/01/2017	1		
	27/01/2017	24 horas	S-0001133748	41	25	NTP 900.030 - 2004	6/05/2017	2		
	20/03/2017	24 horas	5-0001133750	54	25	NTP 900.030 - 2005	6/05/2017	3		
	28/04/2017	24 horas	5-0001133752	46	25	NTP 900.030 - 2006	6/05/2017	4		
E-LC	11/05/2017	24 horas	S-0001166450	62	25	NTP 900.030 - 2007	28/06/2017	5		
(Estación de Monitoreo	6/06/2017	24 horas	S-0001166453	57	25	NTP 900.030 - 2008	28/06/2017	6		
La colmena)	2/08/2017	24 horas	S-0001166455	64	25	NTP 900.030 -2003	11/09/2017	7		
La colmena)	26/08/2017	24 horas	S-0001166457	44	25	NTP 900.030 -2003	11/09/2017	8		
	18/09/2017	24 horas	S-0001184962	41	25	NTP 900.030 -2003	4/11/2017	9		
	14/10/2017	24 horas	S-0001202971	53	25	NTP 900.030 -2003	4/11/2017	10		
	25/12/2017	24 horas	S-0001202973	34	25	NTP 900.030 -2003	15/02/2017	11		

	CUADRO RESULTADOS DE ANÁLISIS DE MUESTREO PM 2.5								
	PM 2.5								
			RESULTADO	DE ANÁLISIS DE	CALIDAD DE A	AIRE			
(HI-VOL)	Análisis:	PM-2.5		1	Metado: N	TP 900.030-2003			
Estación de monitoreo	Fecha de Monitoreo	Tiempo de Muestreo	Código de Laboratorio	Concentración (ug/m³)	ECA	Límite de Cuantificación	Fecha Análisis	Descripción de Muestra	
	2018								
	6/05/2018	00:00	S-0001504399	48	25	NTP 900.030 - 2003	30/06/2018	1	
	1/06/2018	00:00	5-0001504401	64	25	NTP 900.030 - 2003	30/06/2018	2	
	INFORME DE	ENSAYO N°	J- 00306904						
	3/07/2018	00:00	S-0001526685	43	25	NTP 900.030 - 2003	11/09/2018	3	
E-LC	31/08/2018	00:00	S-0001526697	50	25	NTP 900.030 - 2003	11/09/2018	4	
(Estación de Monitoreo	INFORME DE ENSAYO N° J-00309652								
	19/09/2018	00:00	S-0001538366	48	25	NTP 900.030 - 2003	22/10/2018	5	
La colmena)	15/10/2018	00:00	S-0001538368	45	25	NTP 900.030 - 2003	22/10/2018	6	
	INFORME DE ENSAYO N° J-00309652								
	30/11/2018	00:00	S-0001560928	56	25	NTP 900.030 - 2003	10/01/2019	7	
	19/12/2018	00:00	S-0001560930	39	25	NTP 900.030 - 2003	10/01/2019	8	

ANEXO Nº 4. Gráfico de precipitación, temperatura máxima y mínima SENAMI - Cajamarca.

ANEXO N° 5 $\label{eq:numbero} \mbox{NÚMERO MÍNIMO DE ESTACIONES DE MONITOREO DE CALIDAD DE AIRE, SEGÚN EL CRITERIO POBLACIONAL$

Población (miles de habitantes)	Número mínimo de estaciones de monitoreo
0 - 249	1
250 - 749	2
750 - 999	3
1000 - 1499	4
1500 - 1999	5
2000 - 2749	6
2750 - 3749	7
3750 - 4749	8
4750 - 5999	9
≥ 6000	10

Fuente: Directiva 2008/50/CE de la Comunidad Europea

Distrito de Cajamarca

2017

P: Área	Casos	%	Acumulado %
Urbano	182971	0.836	0.836
Rural	35770	0.164	1
Total	218741	1	1

Fuente: INEI – Censos Nacionales de Población y Vivienda 2017

Ubigeo	Provincia y distrito	2018	2019	2020
060000	CAJAMARCA	1,438,325	1,447,891	1,453,711
060100	CAJAMARCA	375,029	382,068	388,170
060101	CAJAMARCA	235,184	240,461	245,137
060102	ASUNCIÓN	8,366	8,137	7,896
060103	CHETILLA	3,885	3,880	3,863
060104	COSPAN	7,266	7,222	7,159
060105	ENCAÑADA	20,512	20,310	20,052
060106	JESÚS	16,255	16,483	16,666
060107	LLACANORA	6,342	6,508	6,657
060108	LOS BAÑOS DEL INCA	49,824	51,608	53,298
060109	MAGDALENA	8,868		8,809
060110	MATARA	3,786	•	3,793
060111	NAMORA	10,169	-	10,308
060112	SAN JUAN	4,572		4,532

Fuente: INEI – Censos Nacionales de Población y Vivienda 2017