

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA GEOLÓGICA

"EVALUACIÓN GEOMECÁNICA PARA LA ESTABILIDAD DE TALUDES EN EL TRAMO KM 1360+800 A KM 1362+200 DE LA CARRETERA HUALGAYOC – BAMBAMARCA – CAJAMARCA, 2023"

Tesis para optar al título profesional de:

INGENIERA GEÓLOGA

Autores:

Julissa Isamar Acuña Bueno Luz Marina Galvez Lopez

Asesor:

Ing. Daniel Alejandro Alva Huamán

https://orcid.org/0000-0002-1053-9347

Cajamarca - Perú

JURADO EVALUADOR

Jurado 1	Miguel Ricardo Portilla Castañeda	45209190
Presidente(a)	Nombre y Apellidos	Nº DNI

Jurado 2	Wilder Chuquiruna Chavez	41245114
	Nombre y Apellidos	Nº DNI

Jurado 3	Rafael Napoleón Ocas Boñón	42811302
	Nombre y Apellidos	Nº DNI

REPORTE DE SIMILITUD

EVALUACIÓN GEOMECÁNICA PARA LA ESTABILIDAD DE TALUDES EN EL TRAMO KM 1360+800 A KM 1362+200 DE LA CARRETERA HUALGAYOC – BAMBAMARCA – CAJAMARCA, 2023

INFORME DE ORIGINALIDAD					
	5% DE SIMILITUD	16% FUENTES DE INTERNET	4% PUBLICACIONES	5% TRABAJOS DEL ESTUDIANTE	
FUENTES	5 PRIMARIAS				
1	docplaye	r.es net			3%
2	repositor Fuente de Interr	io.unap.edu.pe			2%
3	doaj.org Fuente de Interr	net			2%
4	es.weath	erspark.com			1 %
5	tesis.una	p.edu.pe			1 %
6	alicia.con	cytec.gob.pe			1 %
7	es.slidesh Fuente de Interr	nare.net			1 %
8	repositor Fuente de Interr	io.upeu.edu.pe		•	1 %

Tabla de contenido

JURADO EVALUADOR	2
REPORTE DE SIMILITUD	3
DEDICATORIA	4
AGRADECIMIENTO	5
TABLA DE CONTENIDO	6
ÍNDICE DE TABLAS	7
ÍNDICE DE FIGURAS	8
RESUMEN	12
CAPÍTULO I: INTRODUCCIÓN	13
CAPÍTULO II: METODOLOGÍA	20
CAPÍTULO III: RESULTADOS	42
CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES	82
REFERENCIAS	88
ANEXOS	90

Índice de tablas

Tabla 1 Grado de fracturación en función al RQD 24
Tabla 2 Grado de resistencia en función a los golpes de picota24
Tabla 3 Resistencia de la roca
Tabla 4 Cálculo del RQD
Tabla 5 Separación de las discontinuidades
Tabla 6 Aberturas de las discontinuidades
Tabla 7 Continuidad o persistencia de las discontinuidades
Tabla 8 Rugosidad de las discontinuidades
Tabla 9 Relleno de las discontinuidades
Tabla 10 Alteración de las discontinuidades
Tabla 11 Determinación de los buzamientos con respecto al efecto relativo con relación al eje de la obra. 28
Tabla 12 Valoración para Taludes
Tabla 13 Cálculo de RMR
Tabla 14 Coordenadas UTM-WGS8428
Tabla 15 Ruta a la zona de estudio.
Tabla 16 Cartografiado Geomecànico41
Tabla 17 Calidad del macizo rocoso con relación al Índice RMR
Tabla 18 Ensayo de corte directo estándar en suelos A.S.T.M D 3080 50
Tabla 19 Tabla de la etapa de aplicación de carga. 51
Tabla 20 Parámetros de resistencia de corte. 53
Tabla 21 Mapeo Geomecànico de las discontinuidades
Tabla 22 Condiciones de Análisis de la rotura planar del Set J1 (Estático y Pseudo-estático)63
Tabla 23 Condiciones de Análisis de la rotura planar del Set J1 (Estático y Pseudo-estático) 67
Tabla 24 Condiciones de Análisis de la rotura en cuña de los Sets J1 Y J4 (Estático y Pseudo-estático)70
Tabla 25 Condiciones de Análisis de la rotura En Vuelco del Set J3 (Estático y Pseudo-estático) 73
Tabla 26 Condiciones de Análisis para el Talud en suelo (Estático y Pseudo-estático)
Tabla 27 Condiciones de Análisis para el Talud (Estático y Pseudo-estático)

Índice de figuras

Figura 1 La Figura muestra una imagen satelital de accesibilidad desde la ciudad de Cajamarca hasta
Hualgayocy de Hualgayoc hasta el área de estudio
Figura 2 Temperatura Promedio según los meses 32
Figura 3 Promedio mensual de lluvia en Hualgayoc
Figura 4 Velocidad promedio del viento en Hualgayoc
Figura 5 Vegetación del área de estudio
Figura 6 Valles juveniles generados por el río Tingo y la quebrada La Eme respectivamente
Figura 7 Depósito antrópico ubicado en la parte inicial e inferior del yacimiento y a los márgenes del río Tingo, conformado por desmonte
Figura 8 Vertiente Montañoso de pendiente elevada y abrupta ubicado en el cerro Las Venadas
Figura 9 Ladera de suave pendiente conformada por depósitos coluviales y también presencia de depósitos antrópicos en la parte inferior. 36
Figura 10 Ploteo de la valoración en MPa de la resistencia a la compresión Uniaxial42
Figura 11 Ploteo de la valoración en porcentaje del RQD42
Figura 12 Ploteo de valoración del espaciamiento entre discontinuidades en mm
Figura 13 Parámetros de estabilidad según el SMR Romana, por lo que el talud se comporta inestable ante una rotura planar
Figura 14 Recomendaciones de soporte, en la cual se puede apreciar de que se recomienda la construcción de Cunetas, muro de pie, drenaje y anclaje en el talud
Figura 15 Ploteo del Valor de GSI, en función de las estructuras y condiciones de las discontinuidades; en el cual se aprecia que el valor de GSI es 55 47
Figura 16 Estimación de JRC mediante la superficie amplitud de la rugosidad
Figura 17 Estimación de la resistencia a la compresión
Figura 18 Esfuerzo de corte, Kg/cm2, en donde se muestra la aplicación del esfuerzo cortante y envolvente de resistencia, en desplazamiento horizontal y en esfuerzo norma 52
Figura 19 Análisis cinemático de roturas utilizando como criterio para establecer el área crítica el cono de fricción, la envolvente del talud y límites laterales de +-20. Se aprecia que el sistema de discontinuidades J1 y J2 reúne las condiciones geométricas y de fricción para producir una rotura planar

Figura 20 Valores de ángulo de fricción, orientación del talud, dirección y buzamiento de los planos promedios
de las familias de discontinuidades. Con el 100% de los datos de la familia J1 y el 37.50% de los datos de la
familia J2 para producir una rotura planar
Figura 21 Análisis cinemático de rotura teniendo en cuenta como criterio para definir el área crítica el cono
de fricción y la envolvente del talud. Se aprecia que las intersecciones de los planos de la familia I1 y I4 reúnen
las condiciones geométricas y de fricción para producir una rotura en quês
las condiciones geometricas y de meción para producir una rotura en cuna
Figura 22 Valores de ángulo de fricción, orientación del talud, dirección y buzamiento de los planos promedios
de las familias de discontinuidades. Con probabilidad de condiciones geométricas y de fricción del 24.14% de
las intersecciones para producir una rotura en cuña
Figura 23 Análisis cinemático utilizando como criterio para definir el área crítica límites laterales de +-20°, y
un plano auxiliar relacionado al buzamiento del v al ángulo de fricción. Se puede apreciar que la familia J3
cumple las condiciones geométricas y de fricción para producir una rotura en vuelco. 57
Figura 24 Valores de ángulo de fricción, orientación del talud, dirección y buzamiento de los planos promedios
de las familias de discontinuidades. Con el 14.29% de los datos de todas las familia para producir una rotura
por vuelco
Figura 25 Ubicación de las coordenadas para la obtención del coeficiente de sismicidad
Figura 26 Gráfico de espectro de peligro uniforme con un periodo de retorno de 475 años60
Figura 27 Vista en Perspectiva del posible deslizamiento del Bloque de roca formado por la discontinuidad
crítica de la Familia J1
Figura 28 Análisis del Factor de Seguridad por el modelo de Barton Bandis, en la que se puede apreciar que
el talud no cumple las condiciones de completa estabilidad según la Norma, en condiciones secas y estáticas
con un Factor de seguridad de 0.94, por lo cual nos indica que el talud no es completamente estable ante una
falla planar en estas condiciones
Figura 29 Análisis del Factor de Seguridad por el modelo de Barton Bandis, en la que se aprecia que el talud
no es estable en condiciones saturadas y estáticas con un Factor de seguridad de 0.79 por lo que se puede
producir una falla planar en estas condiciones

Figura 45 Análisis del Factor de Seguridad por el modelo de Mohr Coulomb, en la que se aprecia que el talud no es estable en condiciones secas y Pseudo estáticas, con un coeficiente de sismicidad de 0.1858, se obtiene un Factor de seguridad de 0.62 por lo cual se podría producir una falla en Vuelco en estas condiciones.72

Figura 46 Análisis del Factor de Seguridad por el modelo de Mohr Coulomb, en la que se aprecia que el talud es inestable en condiciones saturadas y Pseudo estáticas, con un coeficiente de sismicidad de 0.1858, se obtiene un Factor de seguridad de 0.65 por lo cual se podría producir una falla en Vuelco en estas condiciones.73

RESUMEN

El objetivo del presente estudio es Realizar la evaluación geomecánica para la estabilidad de taludes en el tramo km 1360+800 a km 1362+200 de la carretera Hualgayoc – Bambamarca - Cajamarca, 2023"; de tal manera que se pueda valorar si la zona es susceptible a deslizamientos por cualquier tipo de agente de movilidad estático o dinámico, dependiendo de los factores de las propiedades del macizo rocoso y la vulnerabilidad de cada espacio de relleno presente en el medio que conforma la formación de estos taludes. La población lo constituye todos los macizos rocosos de los taludes en la carretera Hualgayoc-Bambamarca y la muestra vienen a ser cinco estaciones de macizos rocosos de los taludes, el enfoque es cuantitativo, alcance descriptivo, diseño no experimental de corte transversal, las técnicas empleadas fueron la observación directa y el análisis documental teniendo como instrumentos de recolección de datos a la ficha de observación geomecánica. Se concluye que la evaluación geomecánica mediante el mapeo geomecánico de discontinuidades, empleando los métodos de Bardon Bandis y Mohr Columb, obteniedo valores de los parámetros de un JRC de 6 y un valor de JRC de 183 Mpa, además de un ángulo de fi básico de 32°, teniendo valores cohesión en el material de suelo de 0.308Kg/cm2, en tanto la toma de datos de la topografía de los taludes permitio obtener los perfiles y realizar de forma correcta dicha evaluación en las progesisvas 1361 + 800 y la progresiva del KM1362+100.

PALABRAS CLAVES: Geomecánica, Macizo Rocoso, Estabilidad de Taludes, Sismicidad y Resistencia.

NOTA

El contenido de la investigación no se encuentra disponible en **acceso abierto**, por determinación de los propios autores amparados en el Texto Integrado del Reglamento RENATI, artículo 12.

Referencias

- Arteaga. (2017). Señaló que "las evaluaciones y análisis de estabilidad se destinan al diseño de taludes cuando éstos presentan inconvenientes de inestabilidad. 18.
- Breña, C. (2019). Estabilidad de taludes de la carretera longitudinal de la sierra; tramo Cochabamba-Cutervo-Chiple. Cajamarca-Perù: Universidad Nacional Mayor de San Marcos.
- Carrasco, A. G., & Urbina, V. R. (2019). Cálculo del factor de seguridad aplicando tensiones totales en los taludes de la carretera baños del inca - llacanorA. Cajamarca - Perú.
- Carrillo, M., Lepoltm, L., Rodríguez, A., & Zúñiga, H. (2012). Clasificación geomecánica y análisis estabilidad de taludes del macizo rocoso Coris. Costa Rica: Universidad de Costa Rica.
- Escobar, T. L., & Valencia, G. Y. (2012). Análisis de estabilidad y probabilidad de falla de dos taludes de suelo tropical en la autopista medellín bogotá en el tramo de vía entre marinilla y santuario.
- Guillén, M. C. (2004). Estabilidad de Taludes en los departamentos de Guatemala y Alta Verapaz, Casos Reales. Guatemala: Universidad De San Carlos.
- Marquez, L., & Villanueva, H. (2019). Evaluación geomecánica y geotécnica para el diseño
 de estabilidad de taludes de la cantera agocucho, cajamarca 2018.
 Cajamarca Perú.
- Poveda, & Guillermo. (2006). *Estabilización del talud en el PR 55 + 950 de la vía Manizales* – *Mariquita*. Bogotá: Universidad de la Salle.

- Revelo, B. V. (2008). Modelo para la estabilización de taludes en las carreteras del subtrópico del nor occidente del ecuador a fin de evitar accidentes de tránsito y disminuir los costos de operación vehicular. ecuador: universidad técnica de ambato.
- Romero, M. (2011). Propuesta Metodológica para la Evaluación de Estabilización de Taludes y Terraplenes en Proyectos de Carreteras. Guatemala: Universidad de San Carlos.

Tamayo, & Tamayo. (2006). Investigación e Innovación Metodológica. Mexico.

- Pastor Contreras, W. (2022). Evaluación geomecánica para el diseño de reforzamiento en el talud del cerro Tambillo - Sina.
- Montoya Yupanqui, M. G. (2020). Influencia de la evaluación geomecánica en la estabilidad de taludes de la cantera Aylambo, 2019.
- Arrascue Silva, R. C. (2021). Evaluación de estabilidad de taludes mediante la aplicación geomecánica SMR, tramos Km 45 + 940 – Km 46 + 40 - Carretera Chongoyape.
- Alvarado Marquez, M. I., & Villanueva Huatay, L. (2019). Evaluación geomecánica y geotécnica para el diseño de estabilidad de taludes de la cantera Agocucho, .Cajamarca.
- Marín Rojas, S. T. (2019). Determinación geomecánica de taludes en zonas críticas en la carretera San Juan Huacraruco entre los kilómetros 3+000 6+200.