

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

"COMPORTAMIENTO SÍSMICO DE UNA EDIFICACIÓN INCORPORANDO PÉNDULO DE FRICCIÓN"

Tesis para optar el título profesional de:

Ingeniero Civil

Autor: Bach. Díaz Torres, Alexis Amett Bach. Araya Ramos, Katerlin Elizabeth

Asesor: Dr. Ing. Mosqueira Moreno, Miguel Angel

Cajamarca - Perú

2019

DEDICATORIA

A mi madre.

Por ser el pilar de apoyo para poder realizar mis objetivos, sueños y metas trazadas en mi vida, por la confianza depositada en mí en cada momento de su vida, por la motivación constante que me ha permitido ser una persona de bien, pero, sobre todo, por su amor.

A mi familia.

por su apoyo incondicional, por que creyeron en mí pese a algunos resultados indeseados; porque me enseñaron a no rendirme ante las dificultades que se me presentasen con una actitud firme y por enseñarme a tomar riesgos asumiendo las consecuencias de mis actos con una actitud impecable.

AGRADECIMIENTO

A Dios.

Por ser guía incondicional en nuestras vidas ayudándonos a tomar las mejores decisiones para poder terminar satisfactoriamente una etapa académica.

A mis amigos.

Por acompañarnos en nuestra trayectoria universitaria y demostrar que lo más importante, es estar juntos.

A mi asesor.

Dr. Ing. Miguel Mosqueira, por la amistad y los conocimientos brindados en el transcurso de la elaboración de este proyecto de investigación.

A mi alma mater.

Universidad Privada de Norte, por formarnos como profesionales capaces para enfrentar el mundo laboral.

ÍNDICE

DEDIC	CATORIA	2	
AGRAI	DECIMIENTO	3	
ÍNDICI	ÍNDICE DE TABLAS6		
ÍNDICI	E DE FIGURAS	8	
ÍNDICI	E DE ECUACIONES	11	
CAPÍT	ULO I. INTRODUCCIÓN	13	
1.1.	Realidad problemática	13	
1.2.	Formulación del problema		
1.3.	Objetivos		
1.4.	Hipótesis		
CADÍT		40	
CAPIT	ULO II. METODOLOGIA		
2.1.	Pablasián e musatra		
2.2.	Población y muestra		
2.3.	l'echicas e instrumentos de recolección y analisis de datos		
2.4.			
A. D			
В.	MODELAMIENTO DE LOS MODULOS SIN FPS		
CAPÍT	ULO III. RESULTADOS		
CAPÍT 3.1	ULO III. RESULTADOS Estructura Sin aislamiento		
CAPÍT 3.1 3.1.1	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS):		
CAPÍT 3.1 3.1.1 3.1.1	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural:		
CAPÍT 3.1 3.1.1 3.1.1.1 3.1.1.1	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral:		
CAPÍT 3.1 3.1.1 3.1.1.1 3.1.1.2 3.1.1.3	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso:	95 95 95 95 95 96 96	
CAPÍT 3.1 3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso:	95 95 95 95 95 96 96 97	
CAPÍT 3.1 3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Fuerzas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS):	95 95 95 95 95 96 96 97 98	
CAPÍT 3.1 3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural:	95 95 95 95 96 96 96 97 98 98	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral:	95 95 95 95 95 96 96 96 97 98 98 98	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral:	95 95 95 95 96 96 97 98 98 98 98 98 99	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Derivas de entrepiso: Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso:	95 95 95 95 96 96 97 98 98 98 98 98 98 99 99	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.3	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Periodo Natural: Deformación lateral: Resultados del módulo 3 – sin péndulos de fricción (FPS): Resultados del módulo 3 – sin péndulos de fricción (FPS):	95 95 95 95 96 96 97 97 98 98 98 98 98 99 100	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2 3.1.2.2 3.1.2.3 3.1.2.4 3.1.3 3.1.3.1	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Derivas de entrepiso: Periodo Natural: Deformación lateral: Deformación lateral: Deformación lateral: Periodo Natural: Periodo Natural: Periodo Natural: Periodo Natural: Periodo Natural: Periodo Natural:	95 95 95 95 96 96 97 98 98 98 98 98 98 98 100 100 100	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.3 3.1.1.4 3.1.2.1 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.3.1 3.1.3.1	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 3 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral:	95 95 95 95 96 96 96 97 98 98 98 98 98 99 100 100 100 100 101	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.3 3.1.3.1 3.1.3.1 3.1.3.2 3.1.3.3	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 3 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Derivas de entrepiso: Periodo Natural: Deformación lateral: Deformación lateral:	95 95 95 95 96 96 96 97 98 98 98 98 98 98 98 98 100 100 100 101	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.3.3 3.1.3.1 3.1.3.2 3.1.3.2 3.1.3.3 3.2	ULO III. RESULTADOS Estructura Sin aislamiento. Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Fuerzas por piso: Resultados del módulo 3 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral: Deformación lateral:	95 95 95 95 96 96 96 97 98 98 98 98 98 99 100 100 100 100 101 101 102	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.3.3 3.1.3.1 3.1.3.2 3.1.3.2 3.1.3.3 3.2 3.2.1	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 3 – sin péndulos de fricción (FPS): Periodo Natural: Derivas de entrepiso: Estructura con aislamiento Resultados del módulo 1 – Con FPS:	95 95 95 95 96 96 96 97 98 98 98 98 98 98 98 98 100 100 100 100 101 101 101 102 102	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.3.1 3.1.3.1 3.1.3.2 3.1.3.3 3.2 3.2.1 3.2.1.1	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 3 – sin péndulos de fricción (FPS): Periodo Natural: Derivas de entrepiso: Estructura con aislamiento Resultados del módulo 1 – Con FPS: Periodo Natural:	95 95 95 95 96 96 97 98 98 98 98 98 98 98 98 100 100 100 100 101 101 101 101 103 103	
CAPÍT 3.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.2 3.1.2.1 3.1.2.2 3.1.2.1 3.1.2.3 3.1.2.4 3.1.3.1 3.1.3.1 3.1.3.2 3.1.3.3 3.2 3.2.1 3.2.1.1 3.2.1.2	ULO III. RESULTADOS Estructura Sin aislamiento Resultados del módulo 1 – sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 2 – Sin péndulos de fricción (FPS): Periodo Natural: Deformación lateral: Derivas de entrepiso: Fuerzas por piso: Resultados del módulo 3 – sin péndulos de fricción (FPS): Periodo Natural: Derivas de entrepiso: Estructura con aislamiento Resultados del módulo 1 – Con FPS: Periodo Natural:	95 95 95 95 96 96 96 97 98 98 98 98 98 98 98 99 100 100 100 100 101 101 101 101 102 103 103 103	

	· · · · ·	
3.2.1.4	Fuerzas por piso:	105
3.2.2	Resultados del módulo 2-Con FPS:	105
3.2.2.1	Periodo Natural:	105
3.2.2.2	Deformación lateral:	106
3.2.2.3	Derivas de entrepiso:	106
3.2.2.4	Fuerzas por piso:	107
3.2.3	Resultados del módulo 3 - con FPS:	108
3.2.3.1	Periodo Natural:	108
3.2.3.2	Deformación lateral:	108
3.2.3.3	Derivas de entrepiso:	109
3.2.3.4	Fuerzas por piso:	110
3.2.4	RESUMEN DEL COMPORTAMIENTO ESTRUCTURAL DEL EDIFICIO SIN I FPS.	FPS Y CON
3.2.4.1	Periodos naturales	110
3.2.4.2	Deformación lateral	113
3.2.4.3	Fuerzas en las bases	115
CAPÍT	ULO IV. DISCUSIÓN Y CONCLUSIONES	118
REFER	RENCIAS	122
ANEXO	DS	123

ÍNDICE DE TABLAS

Tabla 1 Comparativa de las normas, FEMA, UBC y Norma Chilena	17
Tabla 2. Fases de movimiento del aislador FPS de tercera generación	36
Tabla 3. Dimensiones estándar para placas cóncavas en aisladores FPS	37
Tabla 4: Ambientes del edificio a analizar	46
Tabla 5: Propiedades utilizadas en Etabs	63
Tabla 6. Periodos de la estructura sin aislamiento – módulo 1	95
Tabla 7. Deformación lateral en dirección X – módulo 1	96
Tabla 8. Deformación lateral en dirección Y – módulo 1	96
Tabla 9.Derivas máximas de todos los pisos en dirección X – módulo 1	96
Tabla 10. Derivas máximas de todos los pisos en dirección Y – módulo 1	97
Tabla 11. Periodos de la estructura sin aislamiento – módulo 2	98
Tabla 12. Deformación lateral en dirección X – módulo 2	98
Tabla 13 Deformación lateral en dirección Y – módulo 2	99
Tabla 14. Derivas máximas de todos los pisos en dirección X – módulo 2	99
Tabla 15. Derivas máximas de todos los pisos en dirección Y – módulo 2	99
Tabla 16. Periodos de la estructura sin aislamiento – módulo 2	. 100
Tabla 17. Deformación lateral en dirección X – módulo 3	. 101
Tabla 18. Deformación lateral en dirección Y – módulo 3	. 101
Tabla 19. Derivas máximas de todos los pisos en dirección X – módulo 3	. 101
Tabla 20. Derivas máximas de todos los pisos en dirección Y – módulo 3	. 102
Tabla 21 Periodos de la estructura con aislamiento – módulo 1	. 103
Tabla 22 Deformación lateral en dirección X – módulo 1	. 103
Tabla 23 Deformación lateral en dirección Y – módulo 1	. 104
Tabla 24. Derivas máximas de todos los pisos en dirección X – módulo 1	. 104
Tabla 25. Derivas máximas de todos los pisos en dirección Y – módulo 1	. 104
Tabla 26 Periodos de la estructura con aislamiento – módulo 2	. 105
Tabla 27. Deformación lateral en dirección X – módulo 1	. 106
Tabla 28 Deformación lateral en dirección Y– módulo 2	. 106
Tabla 29. Derivas máximas de todos los pisos en dirección X – módulo2	. 106
Tabla 30. Derivas máximas de todos los pisos en dirección Y – módulo 2	. 107
Tabla 31. Periodos de la estructura con aislamiento – módulo 3	. 108
Tabla 32. Deformación lateral en dirección X – módulo 3	. 108
Tabla 33. Deformación lateral en dirección Y – módulo 3	. 109
Tabla 34. Derivas máximas de todos los pisos en dirección X – módulo3	. 109
Tabla 35. Derivas máximas de todos los pisos en dirección Y – módulo3	. 109
Tabla 36. Comparación de los periodos naturales para la estructura con FPS y sin FPS-modulo1	. 110
Tabla 37. Comparación de los periodos naturales para la estructura con FPS y sin FPS-modulo 2	. 111
Tabla 38. Comparación de los periodos naturales para la estructura con FPS y sin FPS-modulo 3	. 112
Tabla 39. Comparación de las deformaciones laterales con FPS y sin FPS-modulo 1	. 113
Tabla 40. Comparación de las deformaciones laterales con FPS y sin FPS-modulo 2	. 114
Tabla 41. Comparación de las deformaciones laterales con FPS y sin FPS-modulo 3	. 114
Tabla 42 Fuerzas en las bases con FPS y sin FPS-Modulo 1.	. 115
Tabla 43. Fuerzas en las bases con FPS y sin FPS-Modulo 2	. 116
Tabla 44. Fuerzas en las bases con FPs y sin FPS-Modulo 3	. 116
Tabla 45. Zonificación	. 124
Tabla 46. Tipo de suelo	. 125
Tabla 47 Factor de suelo	. 125
Tabla 48. Periodos Tp y T	. 125
Tabla 49 Factor de uso	. 125
Tabla 50. Coeficiente Básico de Reducción R0	. 126
Tabla 51 Cálculo de ZUCS/R para módulo 1 y 3.	. 126
Tabla 52. Espectro de sismo módulo 1 y 3	. 127

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

Tabla 53. Coeficiente Básico de Reducción R0	128
Tabla 54. Cálculo de ZUCS/R para módulo 2	129
Tabla 55. Espectro de sismo módulo 2	129
Tabla 56 Eiemplo de desplazamiento máximo para cada sismo	-
	134

ÍNDICE DE FIGURAS

Figura 1. Aislador elastoméricos	. 19
Figura 2. Partes del aislador elastoméricos con núcleo de plomo	. 19
Figura 3. Partes del apoyo deslizador tipo EDF	. 20
Figura 4:Partes del apoyo deslizador tipo R-FBI.	. 20
Figura 5. Principio de funcionamiento de aisladores FPS a) péndulo convencional y b) péndulo de fricció	n.
	. 22
Figura 6. Tipos de aisladores FPS, a) simple, b) doble y c) triple péndulo de fricción	. 22
Figura 7. Función de la articulación en aisladores FPS.	. 23
Figura 8. Importancia del anillo de retención en aisladores FPS. a) sin anillo b) con anillo	. 23
Figura 9. Esquema de aislador FPS.	. 24
Figura 10. Respuesta sísmica de una estructura convencional y una con aislación sísmica	. 25
Figura 11. Desplazamientos máximos	. 25
Figura 12. Aisladores FPS de primera generación	. 26
Figura 13. Aisladores FPS de segunda generación.	. 27
Figura 14: Partes del FPS de tercera generación.	. 27
Figura 15. Ubicación de la interfaz de aislación en estructuras con aisladores FPS	. 28
Figura 16: Instalación de FPT en la parte superior de la columna. No hay necesidad de piso técnico para	los
aisladores	. 28
Figura 17: interfaz de aislación ubicado entre la cimentación y la losa del primer piso	. 29
Figura 18: Partes del aislador de triple péndulo	. 29
Figura 19. Partes principales y nomenclatura del FPS de 3° generación.	. 30
Figura 20: Fase I del aislador FPS 3° generación a) posición deformada b) diagrama de cuerpo libre	. 30
Figura 21: Fases de desplazamientos.	. 37
Figura 22: Nomenclatura del aislador FPT para calcular el tamaño del aislador	. 39
Figura 23: ejemplo de aislador con nomenclatura.	. 41
Figura 24: Plano de ubicación de la edificación modelada (ANEXO 3)	. 44
Figura 25: Planta típica del módulo $1 = 10x12.55m^2$. 47
Figura 26: Planta típica del módulo $2 = 10x7.2m^2$. 48
Figura 27: Planta típica del módulo $3 = 10x6.9m^2$. 48
Figura 28: Elevación típica del módulo 1	. 49
Figura 29: Elevación típica del módulo 2	. 49
Figura 30: Elevación típica del módulo 3	. 50
Figura 31. Columna C1 de 40 x 25 cm	. 51
Figura 32: Columna C2 en L	. 52
Figura 33: Columna C4 en 25x25 cm	. 52
Figura 34. Columna C3 en 15x45 cm	. 52
Figura 35. Sección de viga 101 40x25 cm	. 53
Figura 36: Módulo 1 con FPS en Etabs	. 54
Figura 37: Módulo 2 con FPS en Etabs	. 54
Figura 38: Módulo 3 con FPS en Etabs	. 55
Figura 39: Diámetro de deslizador rígido.	. 55
Figura 40: Espesores de las placas 1,2,3 y 4	. 56
Figura 41: Alturas del sistema.	. 57
Figura 42. Geometría del aislador FPT8833	. 59
Figura 43. Geometría de FPS - modelado en AutoCAD (anexo 7)	. 59
Figura 44. Modelado 3D del péndulo (anexo 8)	. 60
Figura 45. Placas 2 y 3 del FPT (anexo 8)	. 60
Figura 46. Ingreso de valores en eje X y Y	. 63
Figura 47. Ingreso de valores en eje Z.	. 64
Figura 48. Definición de material Concreto f'c = $210 \text{ kg/cm}2$. 64
Figura 49: Definición de material acero grado 60.	. 65
Figura 50. Sección de viga 101 40x25cm	. 65
Figura 51. Propiedades de reforzamiento de viga 101.	. 66

	66
Figura 53 .Propiedades de reforzamiento de viga 102	67
Figura 54. Sección columna 25x40cm	67
Figura 55. Propiedades de reforzamiento de la columna 20x40cm.	68
Figura 56. Sección columna L 15x40x15cm	68
Figura 57. Propiedades de reforzamiento de la columna L 15x40x15cm	69
Figura 58. Sección columna 15x45cm	69
Figura 59. Propiedades de reforzamiento de la columna 15x45cm	70
Figura 60. Sección columna 15x25cm.	70
Figura 61. Propiedades de reforzamiento de la columna 15x25cm.	71
Figura 62. Sección columna 25x25cm	71
Figura 63. Propiedades de reforzamiento de la columna 15x25cm	72
Figura 64.Definición de elemento losa	72
Figura 65. Asignación columnas, vigas y losas – módulo 1	73
Figura 66 .Vista isométrica del módulo 1	73
Figura 67. Ingreso de cargas muertas – módulo 1	74
Figura 68. Ingreso de carga viva – módulo 1	74
Figura 69. Asignación de diafragmas por cada nivel – módulo 1	75
Figura 70. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módul	o 1 75
Figura 71. Asignación de empotramiento en la base – módulo 1	
Figura 72. Definición de análisis estático en X – módulo 1.	
Figura 73 .Definición de análisis estático en Y – módulo	77
Figura 74 Análisis espectral - Espectro sísmico E-030 – módulo 1	
Figura 75 .Espectro en dirección X con 5% de excentricidad accidenta – módulo 1	78
Figura 76. Espectro en dirección Y con 5% de excentricidad accidental – módulo 1	
Figura 77. Asignación columnas, vigas y losas – módulo 2	
Figura 78. Vista isométrica del módulo 2.	80
Figura 79. Ingreso de cargas muertas – módulo 2	80
Figura 80. Ingreso de carga viva - módulo 2.	81
Figura 81. Asignación de diafragmas por cada nivel - módulo2	81
Figura 82. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módul	o 2.
Eigung 82 Azienzeién de empetazmiente en la base médule 2	82
Figura 85. Asignacion de empotramiento en la base – modulo 2.	82
$F19\mu ra \wedge 4$ Democran ae analisis estanco en λ	02
Figure 05 D. Subject and manufactor strategy of the strateg	83
Figura 85. Definición de análisis estático en Y.	83 83
Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2	83 83 84
Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2 Figura 87. Espectro en dirección X con 5% de excentricidad accidental	83 83 84 84
Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2 Figura 87. Espectro en dirección X con 5% de excentricidad accidental Figura 88. Espectro en dirección Y con 5% de excentricidad accidental	83 83 84 84 85
Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2 Figura 87. Espectro en dirección X con 5% de excentricidad accidental Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3	83 83 84 84 85 86
Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2 Figura 87. Espectro en dirección X con 5% de excentricidad accidental Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3.	83 83 84 84 85 86 86
Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2 Figura 87. Espectro en dirección X con 5% de excentricidad accidental Figura 88. Espectro en dirección Y con 5% de excentricidad accidental Figura 89. Asignación columnas, vigas y losas – módulo 3 Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3.	83 83 84 84 85 86 86 87
Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2 Figura 87. Espectro en dirección X con 5% de excentricidad accidental Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3 Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3.	83 83 84 84 85 86 86 87 87
Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3.	83 83 84 84 85 86 86 87 87 88
Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo	83 83 84 84 85 86 86 87 87 88 9 3.
Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 05. Asignación de masas considerando 25% de carga viva para edificaciones esenciales – módulo	83 83 84 84 85 86 87 87 88 9 3. 88
 Figura 61. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 95. Asignación de empotramiento en la base – módulo 3. 	83 83 84 84 85 86 86 87 88 9 3. 88 88
 Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 95. Asignación de empotramiento en la base – módulo 3. Figura 96. Definición de análisis estático en X – módulo 3. 	83 83 84 84 85 86 86 87 88 o 3. 88 88 88 89
 Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 95. Asignación de empotramiento en la base – módulo 3. Figura 96. Definición de análisis estático en X – módulo 3. Figura 97. Definición de análisis estático en Y – módulo 3. 	83 83 84 84 85 86 86 87 88 88 88 88 89 89 89
 Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 95. Asignación de empotramiento en la base – módulo 3. Figura 97. Definición de análisis estático en X – módulo 3. Figura 97. Definición de análisis estático en Y – módulo 3. Figura 98. Análisis espectral - Espectro sísmico E-030 – módulo 3. Figura 98. Análisis espectral - Espectro sísmico E-030 – módulo 3. 	83 83 84 84 85 86 86 87 88 o 3. 88 88 89 89 90
 Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 95. Asignación de empotramiento en la base – módulo 3. Figura 97. Definición de análisis estático en X – módulo 3. Figura 97. Definición de análisis estático en Y – módulo 3. Figura 98. Análisis espectral - Espectro sísmico E-030 – módulo 3. Figura 99. Espectro en dirección X con 5% de excentricidad accidental – módulo 3. 	83 83 84 84 85 86 86 87 88 o 3. 88 88 89 90 90
 Figura 85. Definición de análisis estático en Y. Figura 85. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 95. Asignación de análisis estático en X – módulo 3. Figura 96. Definición de análisis estático en Y – módulo 3. Figura 97. Definición de análisis estático en Y – módulo 3. Figura 98. Análisis espectral - Espectro sísmico E-030 – módulo 3. Figura 99. Espectro en dirección X con 5% de excentricidad accidental – módulo 3. Figura 90. Definición de análisis estático en Y – módulo 3. Figura 90. Definición de análisis estático en Y – módulo 3. Figura 90. Definición de análisis estático en Y – módulo 3. Figura 90. Definición de análisis estático en Y – módulo 3. Figura 90. Espectro en dirección X con 5% de excentricidad accidental – módulo 3. Figura 100. Espectro en dirección Y con 5% de excentricidad accidental – módulo 3. 	83 83 84 84 85 86 86 87 88 o 3. 88 o 3. 88 89 90 91
 Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módul Figura 95. Asignación de empotramiento en la base – módulo 3. Figura 97. Definición de análisis estático en X – módulo 3. Figura 98. Análisis espectral - Espectro sísmico E-030 – módulo 3. Figura 99. Espectro en dirección X con 5% de excentricidad accidental – módulo 3. Figura 99. Espectro en dirección Y con 5% de excentricidad accidental – módulo 3. Figura 99. Espectro en dirección Y con 5% de excentricidad accidental – módulo 3. Figura 100. Espectro en dirección Y con 5% de excentricidad accidental – módulo 3. Figura 101. Ingreso de propiedades generales del FPS. 	83 83 84 84 85 86 86 87 88 o 3. 88 o 3. 88 o 3. 88 o 3. 88 o 3. 89 90 90 91 91
Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental Figura 88. Espectro en dirección Y con 5% de excentricidad accidental Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 95. Asignación de empotramiento en la base – módulo 3. Figura 96. Definición de análisis estático en X – módulo 3. Figura 97. Definición de análisis estático en Y – módulo 3. Figura 98. Análisis espectral - Espectro sísmico E-030 – módulo 3. Figura 99. Espectro en dirección X con 5% de excentricidad accidental – módulo 3. Figura 100. Espectro en dirección X con 5% de excentricidad accidental – módulo 3. Figura 102. Ingreso de propiedades generales del FPS. Figura 103. Ingreso de propiedades en la dirección U1. Figura 104. Ingreso de propiedades en la dirección U1. Figura 105. Ingreso de propiedades en la dirección U1. Figura 104. Ingreso de propiedades en la dirección U1. Figura 105. Ingreso de propiedades en la dirección U1. Figura 104. Ingreso de propiedades en la dirección U1. Figura 105. Ingreso de propiedades en la dirección U1. Figura 104. Ingreso de propiedades en la dirección U1. Figura 105. Ingreso de propiedades en la dirección U1. Figura 104. Ingreso de propiedades en la dirección U1. Figura 105. Ingreso de propiedades en la dirección U1. Figura 104. Ingreso de propiedades en la dirección U1. Figura 105. Ingreso de propiedades en la dirección U1. Figura 106. Espectro en dirección Y con 5% de excentricidad accidental – módulo 3. Figura 105. Ingreso de propiedades en la dirección U1. Figura 106. Lespectro en dirección Y con 5% de excentricidad accidental	83 83 84 84 85 86 86 87 87 88 o 3. 88 o 3. 88 o 3. 88 o 3. 89 90 90 91 91 92
 Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 95. Asignación de empotramiento en la base – módulo 3. Figura 96. Definición de análisis estático en X – módulo 3. Figura 97. Definición de análisis estático en Y – módulo 3. Figura 98. Análisis espectral - Espectro sísmico E-030 – módulo 3. Figura 99. Espectro en dirección X con 5% de excentricidad accidental – módulo 3. Figura 90. Definición de análisis estático en Y – módulo 3. Figura 90. Definición de análisis estático en Y – módulo 3. Figura 91. Ingreso de corga viva con 5% de excentricidad accidental – módulo 3. Figura 90. Definición de análisis estático en Y – módulo 3. Figura 91. Ingreso de propiedades generales del FPS. Figura 101. Ingreso de propiedades en la dirección U1. Figura 102. Ingreso de propiedades en dirección U2 y U3. 	83 83 84 84 85 86 87 88 o 3. 88 o 3. 88 89 90 90 91 92 92
 Figura 85. Definición de análisis estático en Y. Figura 85. Definición de análisis estático en Y. Figura 86. Análisis espectral - Espectro sísmico E-030 – modulo 2. Figura 87. Espectro en dirección X con 5% de excentricidad accidental. Figura 88. Espectro en dirección Y con 5% de excentricidad accidental. Figura 89. Asignación columnas, vigas y losas – módulo 3. Figura 90. Vista isométrica del módulo 3. Figura 91. Ingreso de cargas muertas - módulo 3. Figura 92. Ingreso de carga viva módulo 3. Figura 93. Asignación de diafragmas por cada nivel – módulo 3. Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo Figura 95. Asignación de empotramiento en la base – módulo 3. Figura 96. Definición de análisis estático en X – módulo 3. Figura 97. Definición de análisis estático en Y – módulo 3. Figura 98. Análisis espectral - Espectro sísmico E-030 – módulo 3. Figura 99. Espectro en dirección Y con 5% de excentricidad accidental – módulo 3. Figura 100. Espectro en dirección Y con 5% de excentricidad accidental – módulo 3. Figura 101. Ingreso de propiedades generales del FPS. Figura 103. Ingreso de propiedades en dirección U2 y U3. Figura 104: Estructura modelada con FPS. 	83 83 84 84 85 86 87 88 o 3. 88 o 3. 88 o 3. 88 o 3. 88 o 3. 89 90 90 91 92 92 93

Figura 106. Pórtico A diafragma de momentos con FPS	94
Figura 107. Fuerzas del análisis dinámico en XX y YY	97
Figura 108. Fuerzas del análisis dinámico en XX y YY	100
Figura 109. Fuerzas del análisis dinámico en XX y YY	102
Figura 110. Fuerzas del análisis dinámico en XX y YY	105
Figura 111. Fuerzas del análisis dinámico en XX y YY	107
Figura 112. Fuerzas del análisis dinámico en XX y YY	110
Figura 113. Comparación de los periodos del módulo 1 con FPS y sin FPS	111
Figura 114. Comparación de los periodos del módulo 2 con FPS y sin FPS	112
Figura 115. Comparación de los periodos del módulo 3 con FPS y sin FPS	113
Figura 116. Comparación de las deformaciones laterales del módulo 1 con FPS y sin FPS	113
Figura 117. Comparación de las deformaciones laterales del módulo 2 con FPS y sin FPS	114
Figura 118. Comparación de las deformaciones laterales del módulo 3 con FPS y sin FPS	115
Figura 119. Comparación de las fuerzas en la base del módulo 1 con FPS y sin FPS	115
Figura 120. Comparación de las fuerzas en la base del módulo 2 con FPS y sin FPS	116
Figura 121. Comparación de las fuerzas en la base del módulo 3 con FPS y sin FPS	117
Figura 122: Espectro de aceleraciones módulo 1 y 3	128
Figura 123: Ejemplo OpenSees - desplazamiento tiempo - historia - sismo RSN175	134
Figura 124: Desplazamiento máximo vs. fricción superficies externas	134
Figura 125: Cortante basal normalizado vs. fricción superficies externas	135

ÍNDICE DE ECUACIONES

Ecuación 1: Diagrama de cuerpo libre, placa 3	31
Ecuación 2: Desplazamiento del péndulo	32
Ecuación 3: Diagrama de cuerpo libre, placa 4	32
Ecuación 4: Diagrama de cuerpo libre, placa 2	32
Ecuación 5:Diagrama de cuerpo libre, placa 3	32
Ecuación 6: Desplazamientos de las placas 2 y 3	32
Ecuación 7: Fuerzas en sistema aislador	32
Ecuación 8: Ecuación general de fuerza en fase 1	32
Ecuación 9: Rigidez lateral	33
Ecuación 10: Periodo natural	33
Ecuación 14: Relación de aspecto	33
Ecuación 15: Diámetro del deslizador rígido	34
Ecuación 16: Área del deslizador rígido	34
Ecuación 17: Carga promedio	34
Ecuación 18: Equivalencia de alturas	35
Ecuación 11: Radio efectivo 3ra generación	35
Ecuación 12: Equivalencias de radios	35
Ecuación 13: Equivalencia de coeficientes de fricción	37
Ecuación 21: Diámetro de placas internas	39
Ecuación 22: Diámetro de placas internas	40
Ecuación 23: Fuerza cortante en la base	76
Ecuación 24: Periodo fundamental de vibración	124
Ecuación 25: Coeficiente de reducción de las fuerzas sísmicas	126
Ecuación 26: Factor de reducción	126
Ecuación 27: Factor de reducción	129

RESUMEN

La investigación tiene como objetivo principal determinar el comportamiento sísmico de una edificación incorporando aisladores de péndulos de fricción (FPS) con respecto a una construcción existente de un edificio convencional, de cinco niveles que con sistema aporticado denominada los Pilancones, el cual se seleccionó realizando un muestreo no probabilístico, que pertenece la categoría C (edificaciones comunes) de la norma E.030 (diseño sismorresistente). El modelamiento se hizo con el software ETABS versión 2017 educacional, teniendo en cuenta los requisitos de resistencia que la norma E.060 (concreto armado) presenta. El aislamiento sísmico es una tecnología que consiste en colocar dispositivos lateralmente flexibles en la base de la edificación de manera que el periodo aumenta y se aleje de las aceleraciones máximas con respecto al diseño del espectro sísmico, consiguiendo así una disipación de energía favorable para la estructura. La edificación con FPS redujo las deformaciones laterales de la estructura analizada en "X" un 13.16% y en "Y" un 23.08%, las fuerzas en las bases se redujeron en 17.03% para "X" y en 23.02% para

Palabras clave: comportamiento sísmico, péndulos de fricción.

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

A nivel mundial los sismos son estudiados y contrarrestados con nuevas tecnologías y dispositivos que avanzan a grandes pasos, tales como los aisladores y disipadores sísmicos; el primer sistema de aislación se hizo en base a aisladores mecánicos actualmente se usan los aisladores de caucho y péndulos de fricción. Países como China y Japón desarrollan a gran escala las edificaciones aisladas, sin embargo, en Sudamérica los países que tiene mayor cantidad de edificios aislados son Chile, Ecuador y Colombia. En Perú, el uso de estos dispositivos está incrementando. (Ruiz, 2017)

"Perú se encuentra en una zona altamente sísmica pues se encuentra dentro del círculo de fuego, zona en la que se producen el 80% de sismos del mundo. En el Perú la mayoría de sismos ocurren por la convergencia tectónica de la placa Oceánica (Nazca) y la placa Continental (Sudamericana), esta interacción de placas se da en una zona de subducción, pues estas placas se acercan y se mete una debajo de otra a razón de aproximadamente 9 cm/año, esto provoca la liberación de energía en forma de ondas sísmicas." (Kuroiwa, 2010) citado por (Mosqueira, 2012)

Perú ha pasado por una serie de sismos, provocando muertes, y en su mayoría por la vulnerabilidad de las edificaciones ya sea por, baja resistencia de las estructuras, malas técnicas constructivas, malos materiales, entre otros. Citando los sismos más relevantes de los últimos 19 años, tenemos: 1) Arequipa (2001) con magnitud en la escala de momento de 8.4grados; 2) Lamas (2005) con magnitud en la escala de

Richter de 7grados; 3) Pisco (2007) con una magnitud 7 grados en la escala de Richter, este último tuvo las características de sismo moderado. (Santana, 2012)

El Instituto Geofísico del Perú, de aquí en adelante IGP, (2019) en su Reporte de los últimos sismos, ha señalado que el mes de mayo (2019) hubo 71 sismos reportados, entre ellos el de mayor magnitud en la escala de Richter de 8 grados siendo el epicentro en Yurimaguas; generando daños en algunas zonas del departamento de Cajamarca, el cual está situado en la zona nor-oeste del Perú, con zona sísmica 02 y 03, considerada una zona de alta sismicidad. (Vivienda, 2019)

En nuestro país, cada estructura está clasificada de acuerdo a categorías de importancia, tanto las viviendas, oficinas y hoteles se encuentran en la clasificación C (edificaciones comunes), mostrando un factor U=1,0. (Vivienda, 2019)

En el censo del 2017 se mostró, que más del 50% de estructuras en Cajamarca, sobrepasan los 4 pisos construidos. (INEI, 2017) Mostrando de esta manera, la importancia que tienen este tipo de edificaciones y el por qué debemos de enfocarnos en el sistema de aislamiento más adecuado para la zona; exponiendo como referencia las investigaciones ya realizadas sobre este tema.

Allauca (2006) y Ramírez (2014), en sus respectivas tesis, señalan que The Structural Engineers Association of California (SEAOC) en su propuesta de 1995, representa una condición tolerable establecida en función de los posibles daños físicos de la edificación, siendo estos: 1) niveles de amenaza sísmica, 2) niveles de comportamiento estructural y no estructural de las edificaciones, 3) sismos y comportamiento esperado,

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

4) objetivos de desempeño de edificaciones comunes. Los niveles de desempeño suelen expresarse en términos cualitativos de significación social (impacto en usuarios) y en términos técnicos (magnitud del deterioro, degradación de elementos estructurales, etc.).

Monge (2014), Sangolqui – En su tesis "Análisis sísmico de una estructura con aisladores FPS de la primera y segunda generación", analiza una estructura de 3 pisos con aislador FPS (Frictional Pendulum System), de primera y segunda generación. Teniendo como resultado que el FPS de segunda generación posee una capacidad mayor de desplazamiento. Explicando que, si el aislador FPS de la segunda generación posee el mismo coeficiente de fricción en sus superficies, el comportamiento de la curva de histéresis es lineal-rígido igual que otros sistemas de aislación tradicionales como el FPS de la primera generación. Además, indica que al diseñar el deslizador de los aisladores FPS de la primera y de segunda generación tiene suficiente capacidad

Vergara (2015), Quito – Ecuador, en su tesis "Estudio comparativo de aisladores sísmicos FPS de primera y segunda generación" concluye que el uso de aislador sísmico disminuye la rigidez del sistema estructural, además describe la relación que, a mayor coeficiente de fricción en el aislador, menor será el desplazamiento de la estructura, así como su periodo de vibración.

Luque (2016), en su investigación "Evaluación del desempeño estructural con sistemas de aislamiento de base para el edificio 15 niveles de la ciudad universitaria de Puno" el sistema estructural con aislación de la base, concluye que: el aislador FPS, aporta

mejores condiciones a la estructura por reducción considerable de los desplazamientos laterales en 1.95 veces en el sentido "X" y 1.61 veces en el sentido "Y". Al igual que reduce las aceleraciones en los pisos en 1.93 veces en el sentido "X" y 4.10 veces en el sentido "Y".

Chunque (2013), de su tesis "Nivel de desempeño sísmico del edificio A de la Universidad Privada del Norte – sede Cajamarca", recalca que la edificación presenta una gran resistencia y buena ductilidad frente a cargas laterales. La estructura tiene la capacidad de desarrollar un 178% y 97% más de corte basal en las direcciones "X" y "Y" respectivamente.

Finalmente, Cango (2018), en su investigación "Diseño y análisis de edificaciones con aisladores de base tipo FPT", concluye que el diseño del FPS de tercera generación permite controlar los parámetros de respuesta de desplazamiento y cortante basal.

En base a estos antecedentes, se analizó el comportamiento sísmico de un edificio con sistema de péndulo friccional (FPS), ya que nos permitirá proteger la estructura de los movimientos sísmicos sin ocasionar daños estructurales. Por tal motivo describiremos, en adelante, los conceptos necesarios para el desarrollo de la tesis.

El concepto de aislamiento sísmico ha sido desarrollado desde hace más de 100 años; sin embargo, desde hace 40 años se ha ido difundiendo para ser aplicado de forma práctica y sólo en los últimos 15 años su aplicación se ha ido incrementando de forma exponencial por el buen desempeño que presentaron los edificios aislados ante los

sismos; mostrando un cuadro comparativo de 3 normas utilizadas para la aislación

sísmica (Korswagen, Arias, & Huaringa, 2012)

Tabla 1.

Comparativa de las normas, FEMA, UBC y Norma Chilena.

Criterio	FEMA	UBC	NCH
Uso del método	Requisito, fija	Requisito, fija	Requisito, fija límites,
estático	límites, no es para	límites, no es para el	no es para el diseño
	el diseño final.	diseño final.	final.
Por combinación	Solo estructuras	No sugiere, pero se	Se puede utilizar para el
espectral	regulares, no	realizaría con 100% y	diseño final.
-	esenciales, y de	30%.	
	altura menor.		
Tiempo - Historia	Mínimo de 3 pares	Mínimo de 3 pares	Mínimo de 3 pares con
	con 100% y 30%.	con 100% y 30%.	100% y 30%.
Mínima fuerza	1.5 de la	Sólo en comparación	1.5 de la activación del
cortante basal	activación del SA,	con el método	SA, viento, espectro con
	viento, espectro	estático.	TA.
	$\operatorname{con} T_A$.		
Factor de	3/8 de R _{est} ,	Entre 1 y 2.	Entre 1 y 2.
reducción	máximo 2.		
superestructura			
Tracción admisible	eNo se admite.	(No especifica)	(No especifica)
Control de deriva	0.01 FST	0.01/R FST 0.015/R	0.002
Control de deriva	0.01 LST	CF	0.002
	0.015 CL 0.02 TH	0.02/R TH	
Evonto Mávimo	Dara comprohar	Dara comprohar	Para comprobar al SA v
Croiblo	desplazamientos v	desplazamientos y el	realizar el ensavo de los
CICIDIC	el SA	SA	aisladores
		571.	distadores.
Rango sugerido	(No especifica)	Entre 2 y 3 s.	Entre 2 y 3 s.
para el TA	· •	·	-
Consideraciones	Modelar cambio	(No especifica)	Ρ-Δ
enfatizadas	de propiedades, P -		
	Δ		
Legalidad	(No especifica)	(No especifica)	Todos los aisladores
			deben estar certificados
			y haber sido ensayados
			en el país.

Fuente: Korswagen et al., (2012).

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

Los sistemas de control de vibraciones en edificaciones, se clasifican en sistemas híbridos, que es la combinación de sistemas activos y pasivos con la finalidad de incrementar la eficiencia y aumentar la fiabilidad de los sistemas. Sistemas activos, funcionan gracias a sensores que cuantifica las excitaciones externas y la respuesta dinámica de la estructura, mientras que los procesadores calculan las fuerzas de control necesarias para estabilizarla, la cual será generada por los transmisores de fuerza con el fin de contrarrestar los movimientos sísmicos. Y en cuanto a los sistemas pasivos, son aquellos que no reciben retroalimentación y no necesitan suministro de energía externa, y se clasifican en aisladores, disipadores de energía y osciladores de masas sintonizadas. (Martínez y Melgar, 2015)

Salazar (2010), en su investigación de "aisladores de base", clasifica los sistemas de aislación dentro de dos tipos básicos, uno representado por los apoyos elastoméricos y el otro representado por los apoyos deslizantes. De aquí en adelante Salazar los describe de la siguiente manera:

Los apoyos elastoméricos, son de goma laminada compuesto por capas horizontales alternas de caucho sintético o natural unidas entre sí por un proceso de vulcanización. De tal manera la rigidez del apoyo es controlada por el espesor de las capas de goma, permitiéndole soportar mayores cargas verticales aplicando pequeñas deformaciones.

Figura 1. Aislador elastoméricos

Al tener como material de amortiguamiento la goma, tiene la ventaja de absorber eficazmente la energía, resistir a grandes deformaciones. También se presentan con núcleo de plomo; esta combina en una unidad física el elemento flexible y el disipador de energía, ocasionando que el núcleo de plomo se deforme plásticamente en corte por las placas de acero, haciéndolo trabajar como un amortiguador de histéresis interno.

Figura 2. Partes del aislador elastoméricos con núcleo de plomo.

Fuente: Salazar, 2010

Por otro lado, los apoyos deslizadores EDF (Electricité de France), constan de dos placas una superior de acero inoxidable anclada a la estructura y otra placa inferior de teflón vulcanizada a un apoyo de goma. Diseñado para tener un coeficiente de fricción de 0.2 durante la vida útil del sistema de aislación basal.

Figura 3. Partes del apoyo deslizador tipo EDF

Entre otros apoyos deslizadores tenemos a Elasto – Friccionante (R-FBI), que consta de varias placas de teflón en contacto entre sí, con la opción de deslizar, y un núcleo de goma o elastómero. La velocidad se reduce utilizando un apropiado número de placas deslizantes. La goma proporciona la elasticidad necesaria al sistema para recobrar la posición inicial después del sismo mientras la energía es disipada por rozamiento entre las placas.

Figura 4: Partes del apoyo deslizador tipo R-FBI.

Fuente: Salazar, 2010.

El aislamiento sísmico es una tecnología que consiste en colocar dispositivos lateralmente flexibles en la base de la edificación, de manera que el periodo de esta aumente y se aleje de las zonas de máximas aceleraciones del espectro sísmico de

Fuente: Salazar, 2010

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

diseño, consiguiendo así una reducción de la demanda sísmica en la estructura. En nuestro país, se han proyectado y construido varios edificios con esta tecnología, especialmente de uso educativo y de salud. Sin embargo, se han utilizado principalmente aisladores elastoméricos, dejándose de lado los del tipo deslizante, a pesar de que son bastante usados a nivel mundial. (Martínez y Melgar, 2015) Por este motivo se decide centrar esta investigación en el aislador de péndulo de fricción.

Aguiar, Morales, Guayguac & Rodríguez (2016), recalcan que "Existen 3 tipos de aisladores de péndulo de fricción: primera generación, en la cual una superficie es cóncava y la otra es recta; la segunda generación tanto la placa inferior como la superior son cóncavas; y la tercera generación, corresponde al aislador, dentro de otro aislador".

"En el caso de los aisladores FPS, existen tres tipos: simple péndulo, doble péndulo y triple péndulo de fricción (FPT). Todos bajo el mismo principio de funcionamiento, basados en el movimiento de un péndulo convencional. De los tres tipos de aisladores, el triple péndulo de fricción es el más reciente y el más utilizado debido a que posee múltiples ventajas respecto al simple y doble péndulo de fricción. Entre las ventajas están: la reducción de las dimensiones en planta (diseño más compacto) y la posibilidad de ser diseñado para diferentes objetivos de desempeño sísmico." (Fenz y Constantinou, 2008) citado por (Cango, 2018)

Cango (2018), dice que los aisladores FPS obtienen la aislación sísmica debido a su configuración geométrica; la cual permite liberar y concentrar las deformaciones producidas por el sismo, esto se da cuando el deslizador se activa y se mueve sobre

una superficie cóncava, dicho movimiento se asemeja al movimiento de una masa suspendida.

Figura 5. Principio de funcionamiento de aisladores

Fuente: Cango, 2018.

Figura 6. Tipos de aisladores FPS, a) simple, b) doble y c) triple péndulo de fricción.

Fuente: Fenz y Constantinou, 2008. Citado por Cango, 2018

"Las articulaciones de los deslizadores (evidentes en el simple y doble péndulo de fricción), tienen la función de mantener la edificación en posición vertical y de distribuir uniformemente la presión provocada por las cargas". (Constantinou, 2004)

"En el caso del aislador de triple péndulo, el ensamble de las tres partes internas (dos placas internas y el deslizador rígido), hace las veces de articulación, esto debido a las rotaciones relativas entre ellos. En la figura 7 se muestra un aislador de simple péndulo (similar para el doble y triple) con y sin articulación, el cual demuestra claramente la importancia de la articulación". (Cango, 2018)

Figura 7. Función de la articulación en aisladores FPS.

Fuente: Amaral y Guerreiro, 2014. Citado por Cango, 2018.

Figura 8. Importancia del anillo de retención en aisladores FPS. a) sin anillo b) con anillo.

Fuente: Zayas et al., 2016. Citado por Cango, 2018.

Salazar (2010), continúa explicando que los apoyos FPS (Sistema de Péndulo Friccional), se encuentran dentro de los sistemas deslizantes. Básicamente es un cursor articulado sobre una superficie de acero inoxidable esférica, revestido como un material compuesto de alta capacidad de soporte basado en politetrafluoroetileno (teflón) que tiene un bajo coeficiente de fricción (de 5 a 7% aprox.).

Figura 9. Esquema de aislador FPS.

Fuente: Salazar, 2010.

"El apoyo FPS es activado sólo cuando la fuerza de corte, debida a las fuerzas sísmicas, supera la fuerza de fricción estática. Una vez en movimiento, el cursor articulado se mueve a lo largo de la superficie esférica cóncava, causando la elevación de la masa soportada, con movimientos equivalentes a la de un péndulo simple. Los resultados de aislación basal deseados se alcanzan por la geometría del apoyo y la gravedad." (Salazar, 2010)

En la figura 10 se muestra que en el primer caso las deformaciones producidas por el sismo se distribuyen en los elementos estructurales del edificio que son los que disipan la energía, mientras que, en el segundo caso las deformaciones se concentran en el sistema de aislación el cual a su vez se encargan de disipar energía. Es decir que aumenta su periodo de vibración de la estructura y del amortiguamiento. (Cango, 2018)

Figura 10. Respuesta sísmica de una estructura convencional y una con aislación sísmica.

Fuente: Skinner, 1993. Citado por Cango, 2018.

Figura 11. Desplazamientos máximos.

Fuente: adaptado de ASCE, 2016.

"Unidad de aislador: es un elemento que es horizontalmente flexible y verticalmente rígido y conforma el sistema de aislación el cual permite grandes deformaciones

UNIVERSIDAD PRIVADA DEL NORTE

laterales, por ende, menores cargas sísmicas en el diseño. Un aislador se permite usar como parte de o en conjunto para soportar el peso de la estructura. " (Cango, 2019)

Por seguridad y económicamente, se recomienda usar aisladores con una configuración estándar, que ya hayan sido usados y ensayados previamente. (Constantinou et al., 2011)

"Los aisladores FPS de la primera y segunda generación son sistemas autocentrantes que funcionan bajo esfuerzos friccionantes, los cuales se utilizan en diferentes estructuras para controlar los desplazamientos que se generan por la acción de una fuerza dinámica externa, con una reducción significativa de los daños en la estructura, se consideran algunos parámetros geométricos como el desplazamiento nominal d, la diferencia de altura h entre el punto pivote del cojinete, y, la superficie deslizante, así como el radio de curvatura R de las placas exteriores y por último los coeficientes de fricción μ ." (Monge, 2014)

Figura 12. Aisladores FPS de primera generación.

Fuente: adaptado de Monge, 2014

A diferencia del FPS de primera generación, este sistema de segunda generación presenta dos superficies cóncavas en las que el deslizador superior e inferior podrá moverse, lo cual, permite que el desplazamiento máximo del aislador sea mayor al del sistema FPS. (Korswagen et al., 2012)

Figura 13. Aisladores FPS de segunda generación.

Fuente: adaptado de Monge, 2014.

Cango (2018), explica que, para los FPS de tercera generación, triple péndulo de fricción (FPT), las propiedades principales que se deben tener en este aislador son, los radios de curvatura y coeficientes de fricción, adicionando que el tamaño del aislador tiene mucho que ver en la capacidad del desplazamiento. Consta de un deslizador rígido y de cuatro placas con superficies cóncavas. Se tiene que considerar que el FPS de tercera generación diseñado, tenga simetria con respecto a un plano horizontal que pasa por el centro del deslizador rigido.

Fuente: adaptado de Monge, 2014.

Teóricamente ubicamos el punto pivote en el centro del ensamble articulado (placa 2, placa 3 y el deslizador rígido). Este triple péndulo de aislación genera 12 propiedades geométricas y 4 propiedades mecánicas, sin embargo, en diseños ingenieriles aplican solamente la "configuración estándar". (Cango, 2018)

Cango (2018), citando a Zayas y Mahin (2010) propone seguir el siguiente procedimento para llegar al diseño final de aisladores FPS de tercera generación:

- Establecer los objetivos de diseño: criterios para el diseño del FPS; basados en el uso, el desempeño y las caracteriticas del edificio.
- Establecer la ubicación de aisladores: disposicion en planta y elevacion de los -FPS, según la interfaz de asilacion como muestra la figura, siendo el primer caso, la interfaz se ubica entre la cimentación y la losa del primer piso; en el segundo caso, la interfaz se ubica debajo de las columnas; y en el tercer caso, la interfaz de aislación se ubica en la parte superior de las columnas.

Figura 15. Ubicación de la interfaz de aislación en estructuras con aisladores FPS

Fuente: modificado de Cango, 2018.

At Bottom of Column

At Top of Column

Figura 16: Instalación de FPT en la parte superior de la columna. No hay necesidad de piso técnico para los aisladores.

Fuente: Zayas, 2016.

Figura 17: interfaz de aislación ubicado entre la cimentación y la losa del primer piso.

Fuente: Cango, 2018.

Figura 18: Partes del aislador de triple péndulo.

Fuente: Zayas, 2016.

- Realizar un diseño preliminar: Pre – dimensionamiento de las propiedades del aislador. Teniendo en consideracion que la estructura aislada se representa usando como modo simplificado un grado de libertad , ignorando la flexibilidad de la superestructura y concentra la deformacion en el sistema de aislacion; es decir que equivale a que la superestructura se mueve como un cuerpo rigido. Y en este caso por tener 1 grado de libertad el peso de la estructura equivale a 1 kip, dato necesario para hacer el diseño preliminar, ya que el periodo es independiente a la masa soportada.

Figura 19. Partes principales y nomenclatura del FPS de 3° generación.

Fuente: Cango, 2018.

Figura 20: Fase I del aislador FPS 3° generación a) posición deformada b) diagrama de cuerpo libre.

Fuente: Fenz y Constantinou, 2008.

Figure 21: diagrama de cuerpos libre de FPS.

Donde:

R	: Radio de curvatura de superficie cóncava. (figura 21)
h	: Altura de la base del deslizador al punto de pivote. (figura 21)

- R_{ef} : Radio de curvatura efectivo de la superficie cóncava, $R_{ef} = R$ -h (figura 21)
- θ : Angulo de rotación del deslizador. (figura 20)
- *W* : Carga sobre el aislador.
- *F* : Fuerza horizontal (fuerza sísmica).
- N : Fuerza normal. (figura 20)
- Δ -u : Desplazamiento horizontal
- μ : Coeficiente de fricción

Se cumple que R>u (Radio de curvatura mayor que desplazamiento)

Del diagrama de cuerpo libre (placa 3) figura 20,

$$\begin{split} \Sigma Fx &= 0 & \rightarrow \\ \Sigma Fx &= 0 & \rightarrow \\ F_{f2} * \cos\theta_2 + S_2 * \sin\theta_2 - F_{f1} &= 0 \\ S_2 + F_{f2} * \sin\theta_2 - S_2 * \cos\theta_2 &= 0 \\ Ecuación 1: Diagrama de cuerpo libre, placa 3. \end{split}$$

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

Por geometría,

$$u_2 = R_{ef2} * sen\theta_2$$

Ecuación 2: Desplazamiento del péndulo.

Del diagrama de cuerpo libre (placa 4)

 $F = F_{f1}$ $W = S_1$

Ecuación 3: Diagrama de cuerpo libre, placa 4.

Del diagrama de cuerpo libre (placa 2)

$$F = \frac{W}{R_{ef}}u + F_f$$

Ecuación 4: Diagrama de cuerpo libre, placa 2.

Del diagrama de cuerpo libre (placa 3)

$$F = \frac{W}{R_{ef}}u + F_f$$

Ecuación 5: Diagrama de cuerpo libre, placa 3.

Ya que en esta fase las placas 2 y 3 se dan en simutaneo:

 $\mathbf{u} = \mathbf{u}_2 + \mathbf{u}_3$

Ecuación 6: Desplazamientos de las placas 2 y 3.

El primer término de la ecuación 7, representa la fuerza de restauración por efecto de la gravedad y el segundo es la componente de disipación de energía, del péndulo en estado estático.

$$F = \frac{W}{R_{ef}}\mu + F_f$$

Ecuación 7: Fuerzas en sistema aislador.

Representamos la fuerza en una de las fases de movimiento del péndulo (tabla 2).

$$\mathbf{F} = \frac{W}{R_{ef2} + R_{ef3}}u + \frac{F_{f2}R_{ef2} + F_{f3}R_{ef3}}{R_{ef2} + R_{ef3}}$$

Ecuación 8: Ecuación general de fuerza en fase 1.

En el sistema FPS la rigidez lateral de la ecuación 5 se puede igualar a:

$$k = \frac{F}{\Delta} = \frac{W}{R_{ef}}$$

Ecuación 9: Rigidez lateral

El periodo natural de una estructura aislada con el sistema FPS depende sólo del radio de curvatura R y no de la masa de la superestructura.

$$T=2\pi\sqrt{(W/gk)}=2\pi\sqrt{(R_{ef}/g)}$$

Ecuación 10: Periodo natural

T : Periodo natural

 $R_{\rm ef}$: Radio de curvatura efectivo de la superficie cóncava, $R_{\rm ef}$ = R-h (figura 14; figura 12)

W : Carga sobre el aislador.

k : Rigidez lateral.

La ecuación 10 demuestra que el periodo de vibración lo podemos determinar solo eligiendo el R_{ef} (radio de curvatura efectiva); es decir no depende del W (peso)

PASO 1: DEFINIR LOS AISLADORES A ANALIZAR

Propiedades del FPS de tercera generación basadas en el manual de diseño sísmico

2012 IBC obtenido de SEAOC (2014), Cada aislador queda definido por las siguientes

propiedades:

- Altura de los radios efectivos externos $(h_1 = h_4)$
- Altura de los radios efectivos internos $(h_2 = h_3)$

Alturas (h_i):

$$7in \leq h_2 + h_3 \leq D_R \ cm$$

Ecuación 11: Relación de aspecto

Donde:

D_R: diámetro del deslizador rígido, no puede ser menor a 8". (Constantinou et al, 2011)

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

 h_2 : altura de la superficie cóncava interna al centro del deslizador rígido (figura 17)

$$D_R \ge \sqrt{\frac{4A_R}{\pi}} cm$$

Ecuación 12: Diámetro del deslizador rígido.

Para calcular el diámetro del deslizador rígido, primero se calcula A_R (área del deslizador rígido)

$$A_R \ge \frac{P}{\sigma_{max}} \ cm^2$$

Ecuación 13: Área del deslizador rígido.

$$P = \frac{1.7 * CV + 1.4 * CM}{\# de aisladores} \frac{kg}{cm^2}$$

No puede ser menor que a 100.87in

Ecuación 14: Carga promedio

Donde:

P : Carga promedio de la estructura kg/cm²

 $\sigma_{máx}$: Esfuerzo máximo del sistema de aislamiento según el tipo de edificación (SEAOC,2014)

- El espesor de las placas 2 y 3 (se toma desde la base de la concavidad), debe ser al menos 1 in.
- El espesor de la placa 1 y 4 (se toma desde la base de la concavidad) de ser 2 in.
- El espesor de anillo de retención $t_{r2,3}$ debe ser al menos 0.5 in.
- El espesor de anillo de retención $t_{r1,4}$ debe ser al menos 1 in.
- La altura de anillo de retención $ht_{r_{1,4}}$ debe ser al menos 2.03 in.
- Altura de anillo de retención $ht_{r_{2,3}}$ debe ser 0.35 in.
- Separación mínima para placas 1 y 4 debe ser 2in.

• Separación mínima para placas 2 y 3 debe ser 1in.

$$h_1 + h_4 \ge h_2 + h_3 + 5.08cm$$

Ecuación 15: Equivalencia de alturas

• Radios de curvatura (R_i)

Radio efectivo para cada superficie cóncava, se define como:

$$R_{efi} = R_i - h_i$$
 (para i = 1,2,3 y 4)

Ecuación 16: Radio efectivo 3ra generación.

 $R_1 = R_4$: iguales a los radios estándar (tabla 2). Al igual que las superficies cóncavas externas (Dc), los cuales representan la capacidad de desplazamiento del aislador, se asumen 2 radios para determinar los límites máximos y mínimos de desplazamientos.

 $R_2 = R_3$: recomendados de los radios efectivos presentados en el Manual (SEAOC, 2014). Los cuales son: 5.5, 12, 23 y 33 pulgadas. En cuanto a las superficies cóncavas internas Ds (figura 19), fabricadas en el rango de 6 a 65 pulgadas.

En donde:

$$R_{ef2} = R_{ef3} \ll R_{ef1} = R_{ef4}$$

Ecuación 17: Equivalencias de radios

Tabla 2.

Dimensiones estándar para placas cóncavas en aisladores FPS.

Id.	Radio de curvatura (R1=R4) (in)	Diámetro de las superficies cóncavas (Dc) (in)
1		14
23	2 3 4	18
		22
4		31
5		36
6		27
7		31
8		33
9		36
10	88	39
11	1	41
12		44
13	13	46
14		51
15	15	56
16	16 17 120	27
17		56
18		63
19	156	70
20	150	106
21		124
22		78
23		94
24	238	106
25		131
26		143

Fuente: Constantinou et al., 2011.

Siguiendo las condiciones iniciales ($R_{ef2}=R_{ef3}$ y $R_{ef1}=R_{ef4}$), el triple péndulo de fricciona tiene V fases de desplazamiento (tabla 3). Basándose en la ecuación 9 de la rigidez lateral.

Tabla 3.

Fases de movimiento del aislador FPS de tercera generación.

GRÁFICO	FASE	SUPERFICIES ACTIVADAS	RIGIDEZ
	Ι	Deslizamiento en las superficies 2 y 3	$\frac{W}{R_{ef2} + R_{ef3}}$
	II	Deslizamiento en las superficies 1 y 3	$\frac{W}{R_{ef1} + R_{ef3}}$
	III	Deslizamiento en las superficies 1 y 4	$\frac{W}{R_{ef1} + R_{ef4}}$
	IV	Deslizamiento en las superficies 2 y 4	$\frac{W}{R_{ef2} + R_{ef4}}$
	V	Deslizamiento en las superficies 2 y 3	$\frac{W}{R_{ef2} + R_{ef3}}$

Fuente: Cango, 2018.

Figura 21: Fases de desplazamientos.

Fuente: Zayas, 2016.

• Coeficientes de fricción µi

Los coeficientes de fricción se pueden desarrollar en el rango de 0.02 a 0.12, sin embargo, se debe tener en consideración con que rango los fabrican. Para las superficies cóncavas externas $\mu_1 < \mu_4$: se pueden usar rangos desde 3% a 10%. Para las superficies cóncavas internas $\mu_2 = \mu_3$: se pueden usar rangos desde 1% a 2%.

Coeficientes de fricción que actúan en las superficies externas: $\mu_1 < \mu_4$

En donde:

$$\mu_2 = \mu_3 < \mu_1 < \mu_4$$

Ecuación 18: Equivalencia de coeficientes de fricción

En los coeficientes de fricción de las superficies internas ($\mu 2 = \mu 3$), se establece un valor constante e igual a 2%, esto debido a la poca influencia en los parámetros de respuesta que se quieren controlar (desplazamientos y cortantes basales)

PASO 2: ANÁLISIS SÍSMICO MÉTODO DE RESPUESTA ESPECTRAL

(RSA)

- Carga sobre el aislador (W): se asume W=1 kip (453.59 kg/m²) (solo para esta etapa), debido a que el comportamiento de los aisladores FPT no dependen del peso soportado.
- Radios de curvatura efectivos (R_{efi}): establecidos en el paso 1.
- Coeficientes de fricción (µ_i): establecidos en el paso 1.
- Capacidades de desplazamiento (d₂=d₃, d₁=d₄), se determinan asumiendo valores, siendo relativamente grandes de tal manera garantizar que el aislador pueda deslizarse libremente entre las fases I, II y III, sin necesidad de llegar a las IV y V.

Nota: se recomienda trabajar con múltiples NLRHA (método de análisis no lineal tiempo historia) de la zona, en el software OpenSees, para obtener los limites mas cercanos. En el anexo 2 se muestra un ejemplo de los datos obtenidos.

PASO 3: SELECCIÓN DEL AISLADOR

En este punto es necesario comprobar que el aislador elegido tiene la suficiente capacidad de restitución, ya que es controlada por el radio de curvatura y el coeficiente de fricción. La fuerza de restitución de un sistema de aislación sea al menos 0.025W. La fuerza de restitución se define como la diferencia entre la fuerza horizontal correspondiente al 100% del desplazamiento máximo (D_M) la fuerza horizontal correspondiente al 50% del desplazamiento máximo ($0.5D_M$), para el ejemplo se usarán los datos del anexo 2. Al cumplir con este requisito, se está evitando que se produzcan

desplazamientos permanentes en el sistema de aislación ante la ocurrencia de eventos sísmicos.

Entonces, a mayor radio de curvatura, menor será la fuerza de restitución. Y a mayor coeficiente de fricción menor es el desplazamiento.

PASO 4: CAPACIDAD DE DESPLAZAMIENTO

Para el desplazamiento de las placas internas ($d_2 = d_3$), tenemos:

 $d_2 > (\mu_1 - \mu_2) R_{ef2}$ $d_3 > (\mu_4 - \mu_3) R_{ef3}$ $d_2 = d_3 = 10 in$ $d_1 = d_4 = 50 in$

Fuente: Cango, 2018.

El diámetro de las placas internas (D_s)

$$D_s = D_R + 2t_{r2} + d_2 + d_3$$

Ecuación 19: Diámetro de placas internas.

 $2t_{r_2}$: el espesor del anillo de retención de la placa dos es igual al de la placa 3.

El diámetro de las placas externas (D_c)

$$D_c = D_s + d_1 + d_4$$

Ecuación 20: Diámetro de placas internas.

 Contactar con el fabricante: Para que el fabricante provea de información de un aislador con similares o menores características que el determinado en el diseño preliminar. A nivel mundial, la única empresa certificada para la creacion de estos sistemas de aislamientos es Earthquake Protection System - Californina. Dicha empresa utiliza la siguiente nomenclatura para identificar los aisladores.

"FPT RoDc/DS - Ri/DR - hR"

donde:

Ro: Radio de curvatura de las superficies externas (R1 = R4) Dc: Diámetro de las superficies cóncavas externas (figura 23) DS: Diámetro del aislador interno (figura 23) Ri: Radio de curvatura de las superficies internas (R2 = R3) DR: Diámetro del deslizador rígido (figura 23) hR: Altura del deslizador rígido (2h2 = 2h3)

Figura 23: ejemplo de aislador con nomenclatura.

Fuente: Zayas et al., 2016.

- Realizar el análisis sísmico de la estructura con el aislador elegido: Determinando los desplazamientos y cortantes basales en el sistema de aislación.
- Verificación del aislador elegido: Verificar que todos los aisladores tengan: capacidad de desplazamiento, resistencia axial y resistencia cortante, caso contrario, se debe elegir otro aislador que cumpla con estos requerimientos.

1.2. Formulación del problema

¿En cuánto varía el comportamiento sísmico de una edificación incorporando péndulo de fricción?

1.3. Objetivos

1.3.1. Objetivo general

Determinar el comportamiento sísmico de una edificación incorporando aisladores de péndulos de fricción.

1.3.2. Objetivos específicos

- Determinar la deformación lateral y fuerza en las bases sin aisladores de péndulo de fricción.
- Determinar la deformación lateral y fuerza en las bases con aisladores de péndulo de fricción.
- Comparar el comportamiento sísmico de una edificación con aisladores de péndulo de fricción y sin péndulo de fricción.

1.4. Hipótesis

El comportamiento sísmico de una edificación varía hasta en un 30% en cuanto a la deformación lateral y la fuerza en las bases, con aisladores de péndulos de fricción.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

La investigación es de tipo no experimental, transversal y descriptiva ya que determina el comportamiento del edificio con aislador sísmico (triple péndulo de fricción) con respecto al edificio convencional.

2.2. Población y muestra

2.2.1. Población

Una edificación de 5 pisos aporticado, construida en la provincia de Cajamarca.

2.2.2. Muestra

La muestra se seleccionó realizando un muestreo no probabilístico de tipo intencional o por conveniencia, será un edificio de cinco niveles, Hotel "Los Pilancones" del cual se analizará el comportamiento sísmico considerando aisladores de péndulos de fricción. Con coordenadas UTM (773571.56 E, 9208854.073 N).

Figura 24: Plano de ubicación de la edificación modelada (ANEXO 3)

2.3. Técnicas e instrumentos de recolección y análisis de datos

2.3.1. Técnicas de recolección de datos

Para la recolección de datos, se hizo una observación directa, ya que visitamos la construcción, revisar anexo 10.

2.3.2. Instrumentos de análisis de datos

En la investigación denominada "Comportamiento sísmico de una edificación incorporando péndulo de fricción", para el análisis de datos se utiliza hojas Excel y el software Etabs, revisar anexo 11.

2.4. Procedimiento

El procedimiento y desarrollo se realizan en base a los planos de un edificio de cinco niveles, "Los Pilancones", ubicado en la provincia de Cajamarca, del cual se analizará el comportamiento sísmico considerando aisladores de péndulos de fricción de tercera generación. El tipo de suelo de la edificación es de clasificación intermedia, con una capacidad portante de 0.85 kg/cm² en base a los planos de cimentación **obtenidos**; mencionamos que no se realizó estudio de suelos porque al ser una edificación ya construida se requieren 3 análisis, tales como SPT, refracción sísmica y corte directo; los cuales no se realizan en Cajamarca y tienen un elevado costo, convirtiéndola en nuestra única limitación. Sin embargo, en el ANEXO 9, presentamos el estudio de suelos de una edificación ubicada a 30m de la estructura en mención, donde especifica que el tipo de suelo de la zona tiene aproximadamente 0.81 kg/cm² de presión admisible.

2.4.1. Una vez obtenidos los planos, se determina las características del edificio. Siendo de 5 niveles, cuenta con dos ingresos, tanto por la recepción como por la cochera, tiene un ascensor y la altura de piso a techo es de 3.06 m para todos los niveles más una altura de 1.66 m de parapeto de la azotea. Área del edificio: 300m².

Tabla 4:

Ambientes del edificio a analizar.

NIVEL	AMBIENTE	CANT.	AREA (m ²)
1° NIVEL	Recepción	1	16.00
	Baño	1	2.68
	Sala de star	1	26.71
	Pasadizos	1	10.20
	Hall	1	22.48
	Cochera	1	186.13
2°, 3°, 4° Y 5°	⁹ Habitación 01	1	17.08
NIVEL	Baño 01	1	4.57
	Habitación 02	1	19.37
	Baño 02	1	4.57
	Habitación 03	1	19.12
	Baño 03	1	4.57
	Habitación 04	1	17.08
	Baño 04	1	4.57
	Habitación 05	1	19.37
	Baño 05	1	5.27
	Habitación 06	1	19.37
	Baño 06	1	4.57
	Pasadizos	1	16.35
	Hall	1	22.48
AZOTEA	Azotea	1	110.38
	Lavandería	1	12.60
	Tendedero	1	34.36
	Hall	1	22.48

2.4.2. Establecer los objetivos de diseño: la edificación por ser un hotel, se encuentra en la clasificación C, cuenta con un sistema aporticado de 5 pisos y azotea. La edificación se encuentra subdivida en tres módulos con el fin de analizarlos independientemente con respecto a su comportamiento sísmico, sin embargo, para el diseño del péndulo, se considera el peso total de la estructura. Cabe resaltar que el módulo 2 sufre una irregularidad por altura, ya que, para la azotea, el único ambiente techado es la escalera.

Altura entre piso = 3.06m

Altura total = 18.36m

Dimensiones en planta,

Figura 25: Planta típica del módulo $1 = 10x12.55m^2$

Figura 26: Planta típica del módulo $2 = 10x7.2m^2$

Figura 27: Planta típica del módulo $3 = 10x6.9m^2$

Figura 30: Elevación típica del módulo 3.

Se determinan las cargas a colocar dentro de la edificación según la norma técnica E.020.

• Metrado de cargas para hoteles.

Cuartos	$: 200 \text{ kg/m}^2$
Almacenaje y servicio	: 500 kg/m ²
Salas públicas	: según lugares de asambleas (400 kg/m ²)
Corredores y escaleras	: 400 kg/m ²
Baños	: igual a la carga principal del resto del área, sin
	que sea necesario que exceda de 300 kg/m ²
Garajes	: para parqueo exclusivo de vehículos de
	pasajeros, con altura de entrada menor que
	$2.40m \text{ es de } 250 \text{ kg/m}^2$

CARGA VIVA = 2050 kg/m^2

DEL NORTE"Comportamiento sísmico de una edificación
incorporando péndulo de fricción"Peso Propio de Losa: 300.00 kg/m²Piso Terminado: 100.00 kg/m²Tabiquería fija: 100.00 kg/m²

CARGA MUERTA = 500 kg/m^2

Se determinan las características de materiales y el predimensionamiento obtenidas de la norma técnica E.060.

• Características de los materiales

Concreto:

	esistencia a la compresión	: f'c: 210 kg/cm^2 .	
--	----------------------------	--------------------------------	--

Peso por unidad de volumen : $\gamma = 2400 \text{ kg/m}^3$.

Módulo de elasticidad	: Ec=217370.65 kg/cm ² .
-----------------------	-------------------------------------

Módulo de poisson	: v=0.2
-------------------	---------

Acero de refuerzo:

Esfuerzo de fluencia	: f'y=4200.00 kg/cm ² .

Módulo de elasticidad	: $Es=2.0x10^7 Tn/m^2$.
Wiodulo de clasticidad	$. L_{3} - 2.0 \times 10^{-111/111}$

Peso por unidad de volumen : $\gamma = 7800 \text{ kg/m}^3$.

• Elementos estructurales del edificio

Columnas C1

Figura 31. Columna C1 de 40 x 25 cm.

Columnas C2

Figura 32: Columna C2 en L.

Columnas C4

Figura 33: Columna C4 en 25x25 cm

Columnas C3

Figura 34. Columna C3 en 15x45 cm

Figura 35. Sección de viga 101 40x25 cm

- Peligro sísmico (ANEXO 1)
- 2.4.3. Diseño del aislador triple péndulo e idealización de la estructura con el Software Etabs, teniendo en consideración la Norma Técnica E.030 para el modelado de la estructura sin aislamiento, y el Manual de diseño sísmico 2012 IBC obtenido de SEAOC (2014) para el modelado del péndulo de fricción.

A. DISEÑO DEL AISLADOR FPT

• Ubicación de los aisladores

Dichos aisladores se ubicaron entre la cimentación y la losa del primer piso. Se consideraron aisladores en las columnas de toda la edificación, para el módulo 1 la cantidad de 13 aisladores, para el módulo 2 la cantidad de 8 aisladores y para el módulo 3 la cantidad de 6 aisladores, haciendo un total de 27 aisladores en toda la edificación.

Figura 36: Módulo 1 con FPS en Etabs.

Figura 37: Módulo 2 con FPS en Etabs.

"Comportamiento sísmico de una edificación incorporando péndulo de fricción" *Figura 38*: Módulo 3 con FPS en Etabs.

• Diseño preliminar

PASO 1, definir aisladores a analizar.

Alturas (h₁)

Según la ecuación 14 (carga promedio) tenemos,

Carga promedio (P $_{med}$) = 360 252.853kg/cm²

Para el área del deslizador rígido según la ecuación 13, necesitamos:

 $\sigma_{máx.} = 1406.14 \text{ kg/cm}^2$

Entonces:

 $A_R = 256.20 \text{ cm}$

Sin embargo, Constantinou et al. (2011) sugiere que el área de dicho deslizador rígido no debe ser menor a 100.87 in, por lo cual que asumiremos un A_R = 264.49 cm.

El diámetro del deslizador rígido (ecuación 12) es:

 $D_R \geq 18.35$

Por la condición presentada en dicha ecuación $D_R = 20.84$ cm.

Figura 39: Diámetro de deslizador rígido.

Resumiendo, las condiciones presentadas en la teoría, tenemos:

Espesor de placas 2 y	3	= 1	in ≈ 2.54 cm
Espesor de placas 1 y	4	= 2	in ≈ 5.08 cm
	t _{r2,3}	= 0.5	$in \approx 1.27 \text{ cm}$
	t _{r1,4}	= 1	$in \approx 2.54 \text{ cm}$
	ht _{r2,3}	= 0.3	5 in ≈ 0.89 cm
	ht _{r1,4}	= 2.0	$3 \text{ in} \approx 5.15 \text{ cm}$
Separación mínima er	ntre placas 1 y 4	=2	in ≈ 5.08 cm
Separación mínima en	tre placas 2 y 3	S = 1	in ≈ 2.54 cm

Figura 40: Espesores de las placas 1,2,3 y 4

En base a los datos anteriores, se calculan las alturas de las placas $h_2 = h_3$, (ecuación 11).

$$h_3 = h_2 \le 10.16 \text{ cm}$$

La ecuación 11 nos muestra una condición donde $h_3 = h_2 \ge 8.89$ cm; entonces tomamos $h_3 = h_2 = 8.89$ cm

Para $h_1 = h_4$ aplicamos la ecuación 15, donde:

$$2*h_1 \ge h_2 + h_3 + 2 (2.54 \text{ cm})$$

 $h_1 \ge (2*h_2 + 2*(2.54 \text{ cm}))/2$
 $h_1 = h_4 = 11.43 \text{ cm}$

Figura 41: Alturas del sistema.

Resumen de radios de curvatura (obtenidos en marco teórico - radios de curvatura)

$R_1 = R_4 = 223.52 \text{ cm}$	$R_{f1} = R_{f4} = 212.09 \text{ cm}$
$R_1 = R_4 = 396.24 \text{ cm}$	$R_{f1} = R_{f4} = 384.81 \text{ cm}$

$R_2 = R_3 = 13.97 \text{ cm}$	$R_{f2} = R_{f3} = 5.08 \text{ cm}$
$R_2 = R_3 = 30.48 \text{ cm}$	$R_{f2} = R_{f3} = 21.59 \text{ cm}$
$R_2 = R_3 = 58.42 \text{ cm}$	$R_{f2} = R_{f3} = 49.53 \text{ cm}$
$R_2 = R_3 = 83.82 \text{ cm}$	$R_{f2} = R_{f3} = 74.93 \text{ cm}$

Asumimos los coeficientes de fricción respetando los limites ya mencionados.

$$\mu 1 < \mu 4$$

6% < 8%
 $\mu 2 = \mu 3 = 2\%$

PASO 2, datos necesarios para el modelado, revisar marco teórico.

W = 453.59 kg/m2 $R_{f1} = R_{f4} = 384.81 \text{ cm} \text{ (analizar según tabla de anexo 2)}$ $R_{f2} = R_{f3} = 5.08 \text{ cm} \text{ (analizar según tabla de anexo 2)}$ $R_{f2} = R_{f3} = 21.59 \text{ cm} \text{ (analizar según tabla de anexo 2)}$ $R_{f2} = R_{f3} = 49.53 \text{ cm} \text{ (analizar según tabla de anexo 2)}$ $R_{f2} = R_{f3} = 74.93 \text{ cm} \text{ (analizar según tabla de anexo 2)}$ $\mu 1 = 6\%$ $\mu 4 = 8\%$ $\mu 2 = \mu 3 = 2\%$ $d_2 = d_3 = 26.42 \text{ cm} \text{ (asumido según radios elegidos)}$ $d_1 = d_4 = 1.52 \text{ cm} \text{ (asumido según radios elegidos)}$

PASO 3, capacidad de desplazamiento.

Dimensión en planta:

Diámetro de las placas internas 2 y 3 (Ds), según ecuación 21.

 $D_S = 27.94 \text{ cm}$

Diámetro de las superficies de las placas externas 1 y 4 (*Dc*), según ecuación 22:

$$Dc = 81.28$$
 in

se asume DC = 33.0 in del catálogo (83.82 cm).

Si usamos la nomenclatura de EPS, el aislador obtenido del diseño preliminar correspondería al FPT8833/11-9R/8-7. El cual es descrito por Cango (2018) de acá en adelante.

Peso = 816.462 kg/m2

Figura 42. Geometría del aislador FPT8833

Figura 43. Geometría de FPS - modelado en AutoCAD (anexo 7)

Figura 44. Modelado 3D del péndulo (anexo 8)

Figura 45. Placas 2 y 3 del FPT (anexo 8)

• Parámetros geométricos del aislador FPT8833

$$R_{ef2} = R_{ef3} = 5.5 \text{ in} = 13.97 \text{ cm}$$

$$R_{ef1} = R_{ef4} = 83.5 \text{ in} = 212.09 \text{ cm}$$

$$d_2 = d_3 = 10.4 \text{ in} = 26.42 \text{ cm}$$

$$d_1 = d_4 = 0.6 \text{ in} = 1.52 \text{ cm}$$

• Parámetros geométricos del aislador FPT8833

Slow $\mu_2 = \mu_3 = 1.2\%$ $\mu_1 = 3.6\%$ $\mu_4 = 4.8\%$ Fast $\mu_2 = \mu_3 = 1.8\%$ $\mu_1 = 5.6\%$ $\mu_4 = 7.2\%$

• Propiedades del elemento en Etabs.

Peso del aislador (W_I) = 0.816476 tn = 1.8 kips Masa del aislador (m) = W_I /g = 0.08929 tn.seg²/cm

Inercia rotacional ejes horizontales (dirección 2 y dirección 3).

$$Ix = Iy = mr_2/4$$
$$Ix = Iy = 0.317 \ kip. \ in. \ seg^2$$
$$Ix = Iy = 0.0037 \ ton. \ m. \ seg^2$$
$$r \approx 16.5 \ in \ (radio \ del \ aislador)$$
$$r \approx 41.91 \ cm \ (radio \ del \ aislador)$$

Inercia rotacional eje vertical (dirección 1)

$$Iz = mr^{2/2}$$

$$Iz = 0.634 \ kip. \ in. \ seg^2$$

$$Iz = 0.0073 \ tn.cm. \ seg^2$$

Para determinar la inercia rotacional se ha considerado que el aislador es un disco

rígido de diámetro Dc.

• Propiedades en la dirección U1 (Z)

Rigidez vertical (Kv): Se calcula asumiendo que el aislador es un cilindro con diámetro igual a D_R y con altura igual a h_T .

 $D_R = 20.32 \text{ cm y} h_T = 33.02 \text{ cm}, \text{ por lo tanto:}$ $K_V = EA_R/h_T = (14500 \times 50.27) / 13 = 56070 \text{ kip/in}$ $K_V = 1001296.3 \text{ tn/m}$

dónde:

E: Es el módulo de elasticidad del acero E=29000 kip/in = 517881.089 tn/m.

Pero se usa E/2 para considerar mayor deformabilidad en el aislador.

 A_R : Es el área de la sección transversal del cilindro de diámetro D_R .

Optamos por usar una rigidez KV = 125005.78 tn/m debido a problemas de convergencia. Dicha rigidez es la misma para las propiedades lineales y no-lineales. La rigidez lineal se ingresa para realizar el análisis de cargas gravitacionales.

• Propiedades en la dirección U2 Y U3 (X,Y)

Las propiedades que se deben ingresar se muestran en la tabla 8 para los términos "Outer_top", "Outer_botton" e "Inner_top = Inner_botton" pertenecen a las propiedades de la placa 4, placa 1 y placa 2 = 3, respectivamente. Debe notarse que no se ha colocado la capacidad de desplazamiento real en las dos placas externas, sino que ha establecido una capacidad mayor e igual a 50.8 m. Esto se realiza para asegurar que el deslizamiento permanezca en la tercera fase, de esta manera se evita la reducción del desplazamiento en alguno de los sismos como consecuencia de la

rigidización del sistema de aislación al ingresar en la cuarta o quinta fase de

movimiento.

Tabla 5:

Propiedades utilizadas en Etabs

Parameter	Outer_top	Outer_top	Inner_top = Inner_botton	Units
Stiffness	7697.142	5131.487	2565.654	tn/m
μ _Slow	0.048	0.036	0.012	%
µ_Fast	0.072	0.056	0.018	%
Rate Parameter	46.063	50	50	<i>seg</i> /m
Radius of Sliding Surface	2.2352	2.2352	0.2286	m
Stop Distance	1.27	1.27	0.127	m

B. MODELAMIENTO DE LOS MÓDULOS SIN FPS

			Default All Stee			Click to mouly				
HOSTAL DE 51	NIVELES		Derault - All Stor	les		- F	Reference Points			
System Origin		0	User Specified			F	leference Planes		996	0000 PG
Global X	0 m		PISO 6			Options				
Global Y	0 m		Bottom Story			Bubble Size	1.25	m	8	
Rotation	0 de	eg	Base			Grid Color			Ŭ	
Rectangular Grids										
Display Grid	d Data as Ordinates	0	Display Grid Dat	a as Sp	pacing			Quick	Start New Rectangular	r Grids
X Grid Data					-	Y Grid Data				
Grid ID	X Ordinate (m)	Visible	Bubble Loc	^		Grid ID	Y Ordinate (m)	Visible	Bubble Loc ^]
н	-0.7	Yes	End		Add	1	0	Yes	Start	Add
A	0	Yes	End		Delete	2	3.77	Yes	Start	Delete
В	4.2	Yes	End		Delete	3	4.25	Yes	Start	Delete
С	7.25	Yes	End			4	5.5	Yes	Start	
D	11.8	Yes	End		Sort	5	5.92	Yes	Start	Sort
V	12.18	Yes	End	~		6	6.4	Yes	Start 🗸	
General Grids										
Grid ID	×1 (m)		Y1 (m)		X2 (m)	1	(2 (m)	Visible	Bubble Loc	
										Add
										Delete

• Modelamiento de la malla para el eje X y eje Y:

Figura 46. Ingreso de valores en eje X y Y.

	Story	Height m	Elevation m	Master Story	Similar To	Splice Story	Splice Height m	Story Color
	PISO 6	1.4	18.36	Yes	None	No	0	
	PISO 5'	1.66	16.96	Yes	None	No	0	
	PISO 5	3.06	15.3	No	PISO 5'	No	0	
	PISO 4	3.06	12.24	No	PISO 5'	No	0	
	PISO 3	3.06	9.18	No	PISO 5'	No	0	
	PISO 2	3.06	6.12	No	PISO 5'	No	0	
	PISO 1	3.06	3.06	No	PISO 5'	No	0	
	Base		0					
		ns						
ote: Ria	nt Click on Gnd for Oblio							

Figura 47. Ingreso de valores en eje Z.

• Definición de materiales:

General Data			
Material Name	F'c=210 Kg	/cm2	
Material Type	Concrete		\sim
Directional Symmetry Type	Isotropic		~
Material Display Color		Change	
Material Notes	Mod	fy/Show Notes	
Material Weight and Mass			
Specify Weight Density	O Sp	ecify Mass Density	
Weight per Unit Volume		2.4028	tonf/m ³
Mass per Unit Volume		0.245014	tonf-s²/m4
Mechanical Property Data			
Modulus of Elasticity, E		2173706.51	tonf/m ²
Poisson's Ratio, U		0.2	
Coefficient of Thermal Expansion, A		0.000099	1/C
Shear Modulus, G		905711.05	tonf/m ²
Design Property Data			
Modify/Show Ma	aterial Propert	y Design Data]
Advanced Material Property Data			
Nonlinear Material Data		Material Damping Pr	roperties
Time De	ependent Prop	perties	
OK	1	Cancel	

Figura 48. Definición de material Concreto f'c = 210 kg/cm2.

"Comportamiento	sísmico	de	una	edificación
incorporando péno	dulo de fri	ccióı	า"	

Material Name	ACERO GRA	DO 60	
	HOLNO GRA	0000	_
Material Type	Rebar		~
Directional Symmetry Type	Uniaxial		
Material Display Color		Change	
Material Notes	Modif	y/Show Notes	
Material Weight and Mass			
Specify Weight Density	O Spe	cify Mass Density	
Weight per Unit Volume		7.8	tonf/m ³
Mass per Unit Volume		0.795379	tonf-s²/m4
Mechanical Property Data			
Modulus of Elasticity, E		2000000	tonf/m ²
Coefficient of Thermal Expansion,	A	0.0000117	1/C
Design Property Data			
Modify/Show	v Material Property	Design Data]
Advanced Material Property Data			
Nonlinear Material Data		Material Damping Pr	roperties
Time	Dependent Prop	erties	

Figura 49: Definición de material acero grado 60.

General Data			
Property Name	VIGA 101		
Material	F'C 210	~	2
Notional Size Data	Modify/Show Notional	Size	
Display Color	Change	e	
Notes	Modify/Show Notes	s	
Shape			
Section Shape	Concrete Rectangular	\sim	
Section Dimensions			Currently Default
Section Dimensions			Modify/Show Modifiers
Depth	0.4	m	Reinforcement
Width	0.25	m	Modify/Show Rebar
			ОК
	Charu Castian Proportion		Cancel

• Definición de secciones:

Figura 50. Sección de viga 101 40x25cm.

esign Type		Rebar Ma	tenal			
 P-M2-M3 Design (Column) M3 Design Only (Beam) 		Longit	udinal Bars	A615Gr6	60	×
		Confin	Confinement Bars (Ties)		A615Gr60	
overto Longitudinal	l Rebar Group Cen	troid	Reinforcement A	vrea Overwrit	tes for Ductile E	leams
Top Bars	0.06	m	Top Bars at I	-End	0	m²
Bottom Bars	0.06	m	Top Bars at J	-End	0	m²
			Bottom Bars a	at I-End	0	m²
			Bottom Bars a	at J-End	0	m²

Figura 51. Propiedades de reforzamiento de viga 101.

Jeneral Data		
Property Name	VIGA 102	
Material	F'C 210 🗸	2
Notional Size Data	Modify/Show Notional Size	3
Display Color	Change	+
Notes	Modify/Show Notes	
Shape		
Section Shape	Concrete Rectangular V	
Section Dimensions		Modify/Show Modifiers Currently Default
Depth	0.4 m	Reinforcement
Width	0.15 m	Modify/Show Rebar
		ОК

Figura 52. Sección viga 102 40 X15 cm.

Х

👍 Frame Section Property Reinforcement Data

Design Type	Rebar Ma	aterial			
O P-M2-M3 Design (Colum	P-M2-M3 Design (Column) Longitu		tudinal Bars A615Gr6		~
M3 Design Only (Beam)	Confir	nement Bars (Ties)	A615Gr60	.615Gr60 ~	
Cover to Longitudinal Rebar Gr	oup Centroid	Reinforcement A	vrea Overwrite	es for Ductile B	eams
Top Bars 0.06	m	Top Bars at I	-End	0	m²
Bottom Bars 0.06	m	Top Bars at J	l-End	0	m²
		Bottom Bars a	at I-End	0	m²
		Bottom Bars	at J-End	0	m²

Figura 53 .Propiedades de reforzamiento de viga 102.

acherar bata			
Property Name	COL 1		
Material	4000Psi	×	2
Notional Size Data	Modify/SI	how Notional Size	3
Display Color		Change	_ ĕ →
Notes	Modif	y/Show Notes	• • •
Shape			
Section Shape	Concrete Rec	tangular 🗸	
Section Property Source			
Source: User Defined			Property Modifiers
Section Dimensions			Modify/Show Modifiers
Denth		0.25 m	Currently Default
Width		0.4	Reinforcement
Width		0.4	Modify/Show Rebar
			ОК

Figura 54. Sección columna 25x40cm.

"Comportamiento	sísmico	de	una	edificación
incorporando péno	dulo de fri	ccióı	า"	

_						
lesign Type P-M2-M3 Design (Column) M3 Design Only (Beam)	Rebar Material Longitudina Confinemen	l Bars tt Bars (Ties)	A615Gr	50 50		×
Reinforcement Configuration	Confinement B	ars	Check/	Desig	n	
 Rectangular 	Ties			leinfo	rcement to be C	hecked
O Circular	O Spirals		• F	leinfo	rcement to be D	esigned)
ongitudinal Bars						
Clear Cover for Confinement Bars					0.04	m
Number of Longitudinal Bars Along 3-	dir Face				3	
Number of Longitudinal Bars Along 2-	dir Face				5	
Longitudinal Bar Size and Area		20	~		0.000314	m²
Corner Bar Size and Area		20	~		0.000314	m²
Confinement Bars						
Confinement Bar Size and Area		10	~		0.000079	m²
Longitudinal Spacing of Confinement	Bars (Along 1-Axis)				0.15	m
					3	
Number of Confinement Bars in 3-dir						

Figura 55. Propiedades de reforzamiento de la columna 20x40cm.

Design Type	Rebar Material					
P-M2-M3 Design (Column)	Longitudina	Bars	A615Gr6	0		~
M3 Design Only (Beam)	Confinemen	t Bars (Ties)	A615Gr6	0		~
Reinforcement Configuration	Confinement B	ars	Check/[Desig	In	
Rectangular	Ties			einfo	rcement to be Ch	ecked
O Circular	 Spirals 		• R	einfo	rcement to be De	signed
Longitudinal Bars						
Clear Cover for Confinement Bars					0.04	m
Number of Longitudinal Bars Along 3-dir Fa	ace				3	
Number of Longitudinal Bars Along 2-dir Fa	асе				5	
Longitudinal Bar Size and Area		20	~		0.000314	m²
Comer Bar Size and Area		20	~		0.000314	m²
Confinement Bars						
Confinement Bar Size and Area		10	\sim		0.000079	m²
Longitudinal Spacing of Confinement Bars	(Along 1-Axis)				0.15	m
Number of Confinement Bars in 3-dir					3	
Number of Confinement Bars in 2-dir					3	

Figura 56. Sección columna L 15x40x15cm.

Design Type	Rebar Material				
P-M2-M3 Design (Column)	Longitudina	l Bars	A615Gr60		~
M3 Design Only (Beam)	Confinemer	nt Bars (Ties)	A615Gr60		~
Reinforcement Configuration	Confinement B	ars	Check/De	esign	
 Rectangular 	Ties		O Rei	nforcement to be C	hecked
⊖ Circular	O Spirals		Rei	nforcement to be D	esigned
ongitudinal Bars					
Clear Cover for Confinement Bars				0.04	m
Number of Longitudinal Bars Along 3-dir F	ace			3	
Number of Longitudinal Bars Along 2-dir F	ace			5	
Longitudinal Bar Size and Area		20	~ .	0.000314	m²
Comer Bar Size and Area		20	~ .	0.000314	m²
Confinement Bars					
Confinement Bar Size and Area		10	~ .	0.000079	m²
Longitudinal Spacing of Confinement Bars	s (Along 1-Axis)			0.15	m
Number of Confinement Bars in 3-dir				3	
Number of Confinement Bars in 2-dir				3	

Figura 57. Propiedades de reforzamiento de la columna L 15x40x15cm

deneral Data			
Property Name	COL 3		
Material	F'C 210	~	2
Notional Size Data	Modify/Show Notional	Size	3 • •
Display Color	Change	e	ě++
Notes	Modify/Show Notes	l	• •
Shape			
Section Shape	Concrete Rectangular	~	
Section Dimensions	0.45	m	Modify/Show Modifiers Currently Default
Width	0.15	m	Modify/Show Rebar
	Show Section Pronerties		OK

Figura 58. Sección columna 15x45cm.

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

Jesign Type	Rebar Material				
P-M2-M3 Design (Column)	Longitudina	l Bars	A615Gr60	~	
O M3 Design Only (Beam)	Confinemen	nt Bars (Ties)	A615Gr60	×	
Reinforcement Configuration	Confinement B	ars	Check/De	sign	
Rectangular	Ties		O Reinforcement to be Check		
O Circular	 Spirals 		Reinforcement to be Designed		
Longitudinal Bars					
Clear Cover for Confinement Bars				0.02 m	
Number of Longitudinal Bars Along 3	dir Face			2	
Number of Longitudinal Bars Along 3 Number of Longitudinal Bars Along 2	dir Face dir Face			4	
Number of Longitudinal Bars Along 3 Number of Longitudinal Bars Along 2 Longitudinal Bar Size and Area	dir Face dir Face	20	~	4 . 0.000314 m ²	
Number of Longitudinal Bars Along 3 Number of Longitudinal Bars Along 2 Longitudinal Bar Size and Area Comer Bar Size and Area	dir Face dir Face	20	×	2 4 . 0.000314 m ² . 0.000314 m ²	
Number of Longitudinal Bars Along 3 Number of Longitudinal Bars Along 2 Longitudinal Bar Size and Area Comer Bar Size and Area Confinement Bars	dir Face	20	× ×	2 4 . 0.000314 m ² . 0.000314 m ²	
Number of Longitudinal Bars Along 3 Number of Longitudinal Bars Along 2 Longitudinal Bar Size and Area Comer Bar Size and Area Confinement Bars Confinement Bar Size and Area	dir Face	20 20 10	· · · · · · · · · · · · · · · · · · ·	2 4 0.000314 m ² 0.000314 m ² 0.000079 m ²	
Number of Longitudinal Bars Along 3 Number of Longitudinal Bars Along 2 Longitudinal Bar Size and Area Comer Bar Size and Area Confinement Bars Confinement Bar Size and Area Longitudinal Spacing of Confinement	dir Face dir Face Bars (Along 1-Axis)	20 20 10	× ×	2 4 0.000314 m ² 0.000314 m ² 0.000079 m ² 0.15 m	
Number of Longitudinal Bars Along 3 Number of Longitudinal Bars Along 2 Longitudinal Bar Size and Area Comer Bar Size and Area Confinement Bars Confinement Bar Size and Area Longitudinal Spacing of Confinement Number of Confinement Bars in 3-dir	dir Face dir Face Bars (Along 1-Axis)	20 20 10	· · · · · · · · · · · · · · · · · · ·	2 4 0.000314 m ² 0.000314 m ² 0.000079 m ² 0.15 m 2	

Figura 59. Propiedades de reforzamiento de la columna 15x45cm

General Data		
Property Name	COL 4	
Material	F'C 210 🗸	2
Notional Size Data	Modify/Show Notional Size	9 •
Display Color	Change	← +
Notes	Modify/Show Notes	• •
Shape		
Section Shape	Concrete Rectangular $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$	
Section Property Source		
Source: User Defined		Property Modifiers
Section Dimensions		Modify/Show Modifiers
Depth	0.15	Currently Default
Witth	0.25	Reinforcement
WIGHT	0.25	Modify/Show Rebar
		ОК
	Show Section Properties	Cancel

Figura 60. Sección columna 15x25cm.

Ī

"Comportamiento	sísmico	de	una	edificación
incorporando péno	dulo de fri	ccióı	า"	

Frame Section Property Reinforcement D	ata				×	
Design Type	Rebar Material					
P-M2-M3 Design (Column)	Longitudina	Bars	A615Gr60	```	·	
M3 Design Only (Beam)	Confinemen	t Bars (Ties)	A615Gr60	``	·	
Reinforcement Configuration	Confinement Ba	ars	Check/Des	ign		
 Rectangular 	Ties		O Reinf	forcement to be Cheo	cked	
⊖ Circular	O Spirals		Reinf	forcement to be Desi	gned	
Longitudinal Bars						
Clear Cover for Confinement Bars				0.04	m	
Number of Longitudinal Bars Along 3-dir I	Face			3		
Number of Longitudinal Bars Along 2-dir I	Face			5		
Longitudinal Bar Size and Area		20	~	0.000314	m²	
Comer Bar Size and Area		20	×	0.000314	m²	
Confinement Bars						
Confinement Bar Size and Area		10	×	0.000079	m²	
Longitudinal Spacing of Confinement Bar	rs (Along 1-Axis)			0.15	m	
Number of Confinement Bars in 3-dir				3		
Number of Confinement Bars in 2-dir				3		
	ОК	Cancel				

Figura 61. Propiedades de reforzamiento de la columna 15x25cm.

General Data				
Property Name	COL 25X25			
Material	F'C 210		~	2
Notional Size Data	Modify/Show No	otional Size		
Display Color		Change		
Notes	Modify/Shov	v Notes		
Shape				
Section Shape	Concrete Rectangula	ar	\sim	
Section Property Source				
Source: User Defined				Property Modifiers
Section Dimensions				Modify/Show Modifiers
Depth	0.	.25	m	Currently Default
Width	0	25	m	Reinforcement
				Modify/Show Rebar
				ОК
				Canaal

Figura 62. Sección columna 25x25cm.

"Comportamiento	sísmico	de	una	edificación
incorporando péno	dulo de fri	ccióı	า"	

esign Type	Rebar Materia				
P-M2-M3 Design (Column)	Longitudina	l Bars	A615Gr6	0	~
O M3 Design Only (Beam)	Confinemer	nt Bars (Ties)	A615Gr6	D	~
einforcement Configuration	Confinement B	ars	Check/D	esign	
Rectangular	Ties		O Re	einforcement to be C	hecked
🔿 Circular	 Spirals 		● Re	einforcement to be D	esigned
ongitudinal Bars					
Clear Cover for Confinement Bars				0.04	m
Number of Longitudinal Bars Along 3	l-dir Face			3	
Number of Longitudinal Bars Along 2	-dir Face			5	
Longitudinal Bar Size and Area		20	~	0.000314	m²
Corner Bar Size and Area		20	~	0.000314	m²
onfinement Bars					
Confinement Bar Size and Area		10	~	0.000079	m²
Longitudinal Spacing of Confinement	t Bars (Along 1-Axis)			0.15	m
Number of Confinement Bars in 3-dir				3	
Number of Confinement Bars in 2-dir				3	
	OK	Cance	el 🛛		

Figura 63. Propiedades de reforzamiento de la columna 15x25cm

Property Name	LOSA 0.20	
Slab Material	F'C 210	~
Notional Size Data	Modify/Show Notion	al Size
Modeling Type	Membrane	~
Modifiers (Currently Default)	Modify/Show	
Display Color	Cha	ange
Property Notes	Modify/Show.	
Use Special One-Way Load D	istribution	
roperty Data		
Туре	Ribbed	~
Overall Depth	0.25	
Slab Thickness	0.05	
Stem Width at Top	0.1	
Stem Width at Bottom	0.1	
Rib Spacing (Perpendicular to Rib	Direction) 0.4	
Rib Direction is Parallel to	Local 1 Axis	~

Figura 64.Definición de elemento losa.

A.1. Asignación de elementos estructurales para el módulo 1 se dibujan en el

siguiente orden: columnas, vigas y losas, obteniendo:

Figura 65. Asignación columnas, vigas y losas – módulo 1.

Figura 66 .Vista isométrica del módulo 1

Figura 67. Ingreso de cargas muertas – módulo 1

Load Pattern Name	Live 🗸	
nform Load Load <u>122</u> Direction Gravity ~	Options tonf/m2 Add to Existing Loads Replace Existing Loads Delete Existing Loads 	
	Uose Appy	

Figura 68. Ingreso de carga viva - módulo 1.

Figura 69. Asignación de diafragmas por cada nivel – módulo 1.

	mass manpiers for Eode Fatterns	
ss Source Name masa	Load Pattern	Multiplier
0	Dead v 1	Add
source	Dead 1	Modify
Element Self Mass	0.25	Modily
Additional Mass		Delete
Specified Load Patterns		
Adjust Diaphragm Lateral Mass to Move Mass Centroid by:	Mass Options	
This Ratio of Diaphragm Width in X Direction	Include Lateral Mass	
This Ratio of Diaphragm Width in Y Direction	Include Vertical Mass	
	Luma Lateral Mana at Steau Laura	lo

Figura 70. Definición de masas considerando 25% de carga viva para edificaciones esenciales - módulo 1

Figura 71. Asignación de empotramiento en la base – módulo 1.

Análisis estático módulo 1

Se determina la fuerza cortante en la base:

$$V = \frac{\text{ZUCS}}{\text{R}} * P$$

Ecuación 21: Fuerza cortante en la base.

Donde el peso (P) será igual a 25% de la carga viva: 25% CV = 512.5 kg/m².

$$V = \frac{0.35 * 1 * 2.5 * 1.15}{7.2} * 512.5$$

$$V = 71.63 \frac{kg}{m^2}$$

 \times

35	Seismic	Load Pattern -	User Defined
	Seistine	coud r accent	oper benned

lirection and Eccentricity		Factors	
🖂 X Dir	Y Dir	Base Shear Coefficient, C	0.131
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity	Charles Danage	
		Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	PISO 6 V
Overwrite Eccentricities	Overwrite	Bottom Story	BASE ~
	OK	Cancel	

Figura 72 . Definición de análisis estático en X – módulo 1

Análisis estático en dirección Y con factor de escala 0.131

Direction and Eccentricity		Factors	
🖂 X Dir	Y Dir	Base Shear Coefficient, C	0.131
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
✓ X Dir - Eccentricity	Y Dir - Eccentricity	Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	PISO 6 V
Overwrite Eccentricities	Overwrite	Bottom Story	BASE ~
	OK		

Figura 73 .Definición de análisis estático en Y – módulo

Análisis dinámico módulo 1:

Load Case Name		SISMO		Design.
Load Case Type		Response Spectru	m ~	Notes
Exclude Objects in this G	iroup	Not Applicable		
Mass Source		Previous (MsSrc)		-
oads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration ~	U1	ESPECTRO 1	9.81	Add
ther Parameters	_			Advanc
ther Parameters				Advan
ther Parameters Modal Load Case	-	Modal	~	Advan
ther Parameters Modal Load Case Modal Combination Meth	od	Modal CQC	~	Delete
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	iod Response	Modal CQC Rigid Frequency, f1	~	Advan
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	iod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	~	Delete
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	iod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~	Delete
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	iod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Delete
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	iod Response ion, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		Delete
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	iod Response ion, td Type ial Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS e Factor		Delete
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination Absolute Direction Modal Damping	iod Response ion, td Type Iconstant at 0.05	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS e Factor	Modify/Show	Delete

Figura 75 .Espectro en dirección X con 5% de excentricidad accidenta – módulo 1.

Load Case Name		SISMO		Design
Load Case Type		Response Spectru	m v	Notes
Exclude Objects in this G	roup	Not Applicable		
Mass Source		Previous (MsSrc)		
oads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration ~	U1	ESPECTRO 1	9.81	Add
				Delete
				Advance
ther Parameters				Advance
ther Parameters Modal Load Case	_	Modal	~	Advance
ther Parameters Modal Load Case Modal Combination Meth	od	Modal	~	Advance
ther Parameters Modal Load Case Modal Combination Meth	od	Modal CQC Rigid Frequency, f1	~	Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	~	Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~	Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination 1	od Response on, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	od Response on, td Гуре al Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS E Factor	· · · · · · · · · · · · · · · · · · ·	Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination T Absolute Direction Modal Damping	od Nesponse on, td Type al Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS E Factor		Advance

Figura 76. Espectro en dirección Y con 5% de excentricidad accidental – módulo 1.

A.2. Asignación de elementos estructurales para el módulo 2 se dibujan en el

siguiente orden: columnas, vigas y losas, obteniendo:

Figura 77. Asignación columnas, vigas y losas – módulo 2.

Figura 78. Vista isométrica del módulo 2.

Figura 79. Ingreso de cargas muertas – módulo 2.

oad Pattern Name	Live ~	
orm Load Dad 0.22 rection Gravity	Options tonf/m²	
ОК	Close Apply V (W) (X) Z -45 (m) (m) (m)	
8		
	0.1/2 (2-0 (1)) // (2-0 (1)) // (2-0 (1)) // (2-0 (1)) // (2-0 (1)) // (2-0 (1)) // (2-0 (1)) // (2-0) // (2-0	

Figura 80. Ingreso de carga viva - módulo 2.

Figura 81. Asignación de diafragmas por cada nivel - módulo2.

"Comportamiento	sísmico	de	una	edificación
incorporando péno	dulo de fri	ccióı	า"	

181	Mass Source Data	
111	Mass Source Data	

lass Source Name masa		Load Patter	rn Multiplier	
		Dead	~ 1	Add
ss source		Dead	1 0.25	Modify
_ Element Self Mass				nicenty
Additional Mass				Delete
Specified Load Patterns			N	
Adjust Diaphragm Lateral Mass to Move Mass Centroid I	by:	Mass Options		
This Ratio of Diaphragm Width in X Direction		Include Lateral I	Mass	
This Ratio of Diaphragm Width in Y Direction		Include Vertical	Mass	
	,	Lump Lateral Ma	ass at Story Levels	

Figura 82. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo 2.

Figura 83. Asignación de empotramiento en la base – módulo 2.

Análisis estático módulo 2

Análisis estático en dirección X con factor de escala 0.1398.

Direction and Eccentricity		Factors	
🗹 X Dir	Y Dir	Base Shear Coefficient, C	0.1398
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	PISO 6
Overwrite Eccentricities	Overwrite	Bottom Story	BASE

Figura 84. Definición de análisis estático en X.

Análisis estático en dirección X con factor de escala 0.131.

Direction and Eccentricity		Factors	
🗹 X Dir	Y Dir	Base Shear Coefficient, C	0.1398
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	PISO 6
Overwrite Eccentricities	Overwrite	Bottom Story	BASE

Figura 85. Definición de análisis estático en Y.

Análisis dinámico módulo 2

1	Function Na	me	ESPECT	'RO 1	
unction	Damping Ra	tio 0.05			
lefined F F	unction Period	Va	alue		
0 0.02 0.04 0.08 0.1 0.12 0.14	^	0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	Ŷ		Add Modify Delete
E-3 169 - 142 - 115 - 88 - 61 - 34 - 7 - -19 - 0.	Graph	4.4 5.8	7.1 8.5	9.8 11.2	12.5 13.9

Figura 86. Análisis espectral -Espectro sísmico E-030 – modulo 2

		SISMO		Design
Load Case Type		Response Spectrum	m v	Notes
Exclude Objects in this G	roup	Not Applicable		
Mass Source		Previous (MsSrc)		
oads Applied				
Load Type	Load Name	Function	Scale Factor] 0
Acceleration ~	U1	ESPECTRO 1	9.81	Add
ther Parameters				1
ther Parameters Modal Load Case		Modal	~]
ther Parameters Modal Load Case Modal Combination Meth	od	Modal CQC	~]
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Modal CQC Rigid Frequency, f1	~]]
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	~]]
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od desponse	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~	
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	od Response on, td	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		
ther Parameters Modal Load Case Modal Combination Meth Include Rigid R Earthquake Durati Directional Combination 1	od Response on, td Гуре	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		
ther Parameters Modal Load Case Modal Combination Meth Include Rigid R Earthquake Durati Directional Combination 1 Absolute Direction	od Response on, td Type al Combination Scal	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS ie Factor		
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination 1 Absolute Direction. Modal Damping	od Response on, td Type al Combination Scal Constant at 0.05	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS le Factor		

Figura 87. Espectro en dirección X con 5% de excentricidad accidental

Load Case Name		SISMO		Design
Load Case Type		Response Spectru	m ~	Notes
Exclude Objects in this G	àroup	Not Applicable		Ī
Mass Source		Previous (MsSrc)]
ads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration \sim	U1	ESPECTRO 1	9.81	Add
her Parameters				Advanced
her Parameters				Advanced
her Parameters Modal Load Case	_	Modal	~	Advanced
her Parameters Modal Load Case Modal Combination Meth	od	Modal CQC	~	Advanced
her Parameters Modal Load Case Modal Combination Meth	iod Response	Modal CQC Rigid Frequency, f1	~	Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	~ ~ ~	Advanced
her Parameters Modal Load Case Modal Combination Meth	iod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~	Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	iod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	iod Response ion, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	iod Response ion, td Type ial Combination Sca	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS le Factor		Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination Absolute Direction Modal Damping	iod Response ion, td Type ial Combination Sca Constant at 0.05	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS le Factor	- Modify/Show	Advanced

Figura 88. Espectro en dirección Y con 5% de excentricidad accidental.

A.3. Asignación de elementos estructurales para el módulo 3 se dibujan en el

siguiente orden: columnas, vigas y losas, obteniendo:

Figura 89. Asignación columnas, vigas y losas – módulo 3.

Figura 90. Vista isométrica del módulo 3.

Shell Load Assignment - Uniform		×
Load Pattern Name	Dead v	
Uniform Load Load 0.5 Direction Gravity ~	Options torf/m² Add to Existing Loads 	a by ag
OK	Close Apply	
↓ ×		

Figura 91. Ingreso de cargas muertas - módulo 3.

Shell Load Assignment - Uniform Load Pattern Name Uniform Load Load Load 0.22 Direction Gravity	Live Options Add to Existing Loads Replace Existing Loads Delete Existing Loads	a for
OK V	Close Apply	

Figura 92. Ingreso de carga viva módulo 3.

Figura 93. Asignación de diafragmas por cada nivel – módulo 3.

	Mass Multipliers for Load Patterns
Mass Source name	Load Pattern Multiplier
ass Source	Dead V 1 Add
Element Self Mass	Live 0.25 Modify
Additional Mass	Delete
Specified Load Patterns	
Adjust Diaphragm Lateral Mass to Move Mass Centroid by:	Mass Options
This Ratio of Diaphragm Width in X Direction	Include Lateral Mass
This Ratio of Diaphragm Width in Y Direction	Include Vertical Mass
	Lump Lateral Mass at Story Levels

Figura 94. Definición de masas considerando 25% de carga viva para edificaciones esenciales – módulo 3.

Figura 95. Asignación de empotramiento en la base – módulo 3.

 \times

Análisis estático módulo 3

🌇 Seismic Load Pattern - User Defined

Direction and Eccentricity		Factors	
🖂 X Dir	Y Dir	Base Shear Coefficient, C	0.131
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity	Story Papas	
		Story hange	DISO C
Ecc. Ratio (All Diaph.)	0.05	Top Story	F150 6 V
Overwrite Eccentricities	Overwrite	Bottom Story	BASE ~
	OK	Cancel	
	OK	Carloci	

Figura 96. Definición de análisis estático en X – módulo 3.

Análisis estático en dirección Y con factor de escala 0.131.

Seismic Load Pattern - User Direction and Eccentricity X Dir X Dir X Dir + Eccentricity X Dir - Eccentricity	Defined Y Dir Y Dir + Eccentricity Y Dir - Eccentricity	Factors Base Shear Coefficient, C Building Height Exp., K Story Range	0.131
X Dir - Eccentricity Ecc. Ratio (All Diaph.) Overwrite Eccentricities	Y Dir - Eccentricity 0.05 Overwrite OK	Story Range Top Story Bottom Story Cancel	PISO 6 V BASE V

Figura 97. Definición de análisis estático en Y – módulo 3.

Análisis dinámico módulo 3

Response Spectrum Function Definition - User Defined	×
Function Name ESPECTRO 1	
Function Damping Ratio	
0.05	
Defined Function	
Period Value	
0 0.131	
0.02 0.131 0.131 Add	
0.04 0.131 Modify 0.08 0.131 Modify	
0.1 0.131 Delete	
Function Graph	
E-3	
120 -	
80 -	
60	
40 - 20 -	
	-
OK Cancel	

Load Case Name		SISMO		Design
Load Case Type		Response Spectr	um N	V Notes
Exclude Objects in this G	iroup	Not Applicable		
Mass Source		Previous (MsSrc)		_
ads Applied				
Load Type	Load Name	Function	Scale Factor	ך
Acceleration ~	U1	ESPECTRO 1	9.81	Add
her Parameters	-	Madal		Advance
ther Parameters				Advanc
ther Parameters Modal Load Case		Modal		Advanc
ther Parameters Modal Load Case Modal Combination Meth	od	Modal CQC		Advanc
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od	Modal CQC Rigid Frequency, f1	· · · · · · · · · · · · · · · · · · ·	Advanc
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2		Advanc
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Advanc
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Advanc
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	od Response ion, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		Advanc
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination T Absolute Direction	od Response ion, td Type ial Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor		Advanc
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination 1 Absolute Direction Modal Damping	od Response ion, td Type al Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor		Advanc

Figura 99. Espectro en dirección X con 5% de excentricidad accidental – módulo 3.

Figura 98. Análisis espectral - Espectro sísmico E-030 – módulo 3.

Louis Gase Maine		SISMO		Design
Load Case Type		Response Spectre	um	∨ Notes
Exclude Objects in this G	iroup	Not Applicable		
Mass Source		Previous (MsSrc)		
oads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration \sim	U1	ESPECTRO 1	9.81	Add
)ther Parameters	-			Advance
			_	Advance
ther Parameters	_			Advance
ther Parameters Modal Load Case		Modal		Advance
ther Parameters Modal Load Case Modal Combination Meth —	od	Modal CQC		Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od	Modal CQC Rigid Frequency, f1		Advance
ther Parameters Modal Load Case Modal Combination Meth	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2		Advance
ther Parameters Modal Load Case Modal Combination Meth	od Response	Modal COC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	od Response on, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination T Absolute Direction	od Response ion, td Type al Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor		Advance
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination T Absolute Direction Modal Damping	od Response ion, td Type al Combination Scale [Constant at 0.05	Modal COC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor	Modfy/Show	Advance

Figura 100. Espectro en dirección Y con 5% de excentricidad accidental – módulo 3.

Link Drano				-		1		
unik Prope	rty Name	a FF	'S-1	Link Type	e	Triple	Pendulum Isolat	or ~
Link Prope	rty Note:	s	Modify/Show Notes	P-Delta P	P-Delta Parameters		Modify/Show	I
al Mass an	nd Weigh	nt						
Mass		0.0	8929 tonf-s²/m	Rota	ational Inert	ia 1	0.0073	tonf-m-s
Weight		0.8	1647 tonf	Rota	ational Inert	ia 2	0.0037	tonf-m-s
				Rota	ational Inert	ia 3	0.0037	tonf-m-s
actional Pre	operties							
lirection	Fixed	NonLinear	Properties	Direction	Fixed	NonLinear	Prope	erties
✓ U1		\square	Modify/Show for U1	🗌 R1			Modify/Sho	
🗹 U2			Modify/Show for U2	🗌 R2			Modify/Sho	
☑ U3			Modify/Show for U3	🗌 R3			Modify/Sho	
			D. All	Chara All				
			FIX AII	Clear All				
U1 U1 U2 U2 U3			Modify/Show for U1 Modify/Show for U2 Modify/Show for U3	Lirection R1 R2 R3 Clear All			Modify/Sho Modify/Sho Modify/Sho	erties ow for 1 ow for 1

Figura 101. Ingreso de propiedades generales del FPS.

"Comportamiento	sísmico	de	una	edificación
incorporando péno	dulo de fri	cció	า"	

P	EDC 1	
Property Name	FF 3-1	
Direction	U1	
Туре	Triple Pendulun	n Isolator
NonLinear	Yes	
Linear Properties		
Effective Stiffness	125005.78	tonf/m
Effective Damping	0	tonf-s/m
Nonlinear Properties		
Stiffness	125005.78	tonf/m
Damping Coefficient	0	tonf-s/m

Figura 102. Ingreso de propiedades en la dirección U1.

Genuication						
Property Name	FPS-1		Туре		Triple Pendulum Isolator	
Direction	J2: U3		NonLinear		Yes	
Linear Properties						
Effective Stiffness - U2	0	tonf/m	Effective Stiffn	ess -U3	0	tonf/m
Effective Damping - U2	0	tonf-s/m	Effective Damp	oing -U3	0	tonf-s/m
Shear Deformation Locatio	n					
Distance from End-J - U	2 0.1524	m	Distance from	End-J - U3	0.1524	m
Height and Symmetry of Sli	ding Surfaces					
Height and Symmetry of Sli Height for Outer Surface	ding Surfaces	mc	Outer Bottom Surfa	a <mark>ce is S</mark> ymi	metric to Outer Top :	Suiface
Height and Symmetry of Si Height for Outer Surface Height for Inner Surface	ding Surfaces s 0.2286 ; 0.1778	m C m ir	Outer Bottom Surfa	a <mark>ce is Sym</mark> i ce is Symr	metric to Outer Top S	Surface urface
Height and Symmetry of Sli Height for Outer Surface Height for Inner Surface: Nonlinear Properties for Dir	ding Surfaces s 0.2286 s 0.1778 ections U2 and U3	m C m ir	Duter Bottom Surfa	ace is Symi ce is Symi	metric to Outer Top S	Surface urface
Height and Symmetry of Sli Height for Outer Surface Height for Inner Surfacer Nonlinear Properties for Dir	ding Surfaces s 0.2286 0.1778 ections U2 and U3 Outer Top	m C m r	Duter Bottom Surfa nner Bottom Surfa Dottom Ir	ace is Symm ce is Symm uner Top	netric to Outer Top : netric to Inner Top S Inner Bottor	Surface urface n
Height and Symmetry of Sli Height for Outer Surface Height for Inner Surface Nonlinear Properties for Dir Stiffness	ding Surfaces 5 0.2286 6 0.1778 ections U2 and U3 Outer Top 7697.142	m C m I r Outer Ba 5131.487	Outer Bottom Surfa aner Bottom Surfa attom Ir 2565.1	ace is Symr ce is Symr iner Top 554	netric to Outer Top : netric to Inner Top S Inner Bottor 2565.654	Surface urface n tonf/m
Height and Symmetry of Sli Height for Outer Surface Height for Inner Surface Nonlinear Properties for Dir Stiffness Friction Coefficient, Slov	ding Surfaces 5 0.2286 6 0.1778 ections U2 and U3 Outer Top 7697.142 V 0.048	m Cuter Br Outer Br 5131.487 0.036	Duter Bottom Surfa aner Bottom Surfa attom ir 2565. 0.012	ace is Symm ce is Symm ner Top 554	Inner Botton 12565.654 0.012	Surface urface ntonf/m
Height and Symmetry of Sli Height for Outer Surface Height for Inner Surface Nonlinear Properties for Dir Stiffness Friction Coefficient, Slov Friction Coefficient, Fas	ding Surfaces s 0.2286 i 0.1778 ections U2 and U3 Outer Top 7697.142 v 0.048 i 0.072	m ⊂ C m ⊂ Ir 5131.487 0.036 0.056	Auter Bottom Surfa aner Bottom Ir 2565. 0.012 0.018	ace is Symm ce is Symm ner Top 554	Inner Botton 1565.654 0.012 0.018	Surface urface ntonf/m
Height and Symmetry of Sl Height for Outer Surface Height for Inner Surface Vonlinear Properties for Dir Stiffness Friction Coefficient, Slov Friction Coefficient, Fas Rate Parameter	ding Surfaces s 0.2286 0.1778 ections U2 and U3 Outer Top 7697.142 v 0.048 0.072 46.063	m C m Viter Br 5131.487 0.036 0.056 50	Auter Bottom Surfa aner Bottom Surfa 2565.1 0.012 0.018 50	ace is Symm ce is Symm iner Top 554	Inner Bottor Inner Bottor Inner Bottor I0.012 I0.018 50	Surface ntonf/msec/m
Height and Symmetry of Sli Height for Outer Surface Height for Inner Surface Nonlinear Properties for Dir Stiffness Friction Coefficient, Slor Friction Coefficient, Fas Rate Parameter Radius of Sliding Surfac	ding Surfaces s 0.2286 0.1778 ections U2 and U3 Outer Top 7697.142 v 0.048 i 0.072 46.063 ve 2.2352	m C m ✓ r Outer Ba 5131.487 0.036 0.056 50 2.2352	Auter Bottom Surfa aner Bottom Surfa 2565.1 0.012 0.018 50 0.228	ace is Symm ce is Symm ner Top 554 5	Inner Bottor Inner Bottor I565.654 I0.012 I0.018 I50 I0.2286	Surface n tonf/m sec/m m

Figura 103. Ingreso de propiedades en dirección U2 y U3.

Figura 104: Estructura modelada con FPS.

Figura 105. Pórtico A diafragma de momentos sin FPS.

Figura 106. Pórtico A diafragma de momentos con FPS.

CAPÍTULO III. RESULTADOS

3.1 Estructura Sin aislamiento

El edificio dedicado a habitaciones de uso ocasional de base fija según el proyecto de Norma E.030, 2019. Primero se realizó un análisis estático y dinámico luego, usando los valores obtenidos se establecieron valores mínimos sobre los cuales se escalaron los resultados del análisis espectral. Finalmente, se evaluaron las variables principales que definen el comportamiento de una estructura y su contenido: cortantes, deformaciones laterales y aceleraciones.

3.1.1 Resultados del módulo 1 – sin péndulos de fricción (FPS):

3.1.1.1 Periodo Natural:

Tabla 6. Periodos de la estructura sin aislamiento – módulo 1.

Case	Mode	Periodo (s)	UX	UY	UZ	RZ
Modal	1	1.195	-	0.994	-	0.006
Modal	2	0.901	0.275	0.004	-	0.72
Modal	3	0.873	0.725	0.001	-	0.274
Modal	4	0.393	-	0.995	-	0.005
Modal	5	0.293	0.173	0.004	-	0.823
Modal	6	0.282	0.827	0.001	-	0.172
Modal	7	0.232	-	0.996	-	0.004
Modal	8	0.17	0.091	0.013	-	0.896
Modal	9	0.168	0.001	0.988	-	0.01
Modal	10	0.161	0.907	-	-	0.092
Modal	11	0.138	-	0.998	-	0.002
Modal	12	0.12	0.066	0.003	-	0.932

3.1.1.2 Deformación lateral:

• Deformación lateral en X: la deformación lateral máximo en dirección

X es de 0.032358 m.

Tabla 7. Deformación lateral en dirección X – módulo 1.

Piso	Diafragma	UX (m)
Piso 5	D5	0.032358
Piso 4	D4	0.029182
Piso 3	D3	0.023446
Piso 2	D2	0.015601
Piso 1	D1	0.006607

• Deformación lateral en Y: la deformación lateral máximo en dirección

Y será de 0.052268 m.

Tabla 8. Deformación lateral en dirección Y – módulo 1.

Piso	Diafragma	UY (m)
Piso 5	D5	0.052268
Piso 4	D4	0.047475
Piso 3	D3	0.038618
Piso 2	D2	0.026336
Piso 1	D1	0.011835

3.1.1.3 Derivas de entrepiso:

Tabla 9.

Derivas máximas de todos los pisos en dirección X – módulo 1.

Piso	Load Case/Combo	Item	Max Drift X
Piso 5	SISMO EN X	Max Drift X	0.003280
Piso 4	SISMO EN X	Max Drift X	0.005829
Piso 3	SISMO EN X	Max Drift X	0.006891
Piso 2	SISMO EN X	Max Drift X	0.006004
Piso 1	SISMO EN X	Max Drift X	0.006607

Tabla 10.

Piso	Load Case/Combo	Item	Max Drift Y
Piso 5	SISMO EN Y	Max Drift Y	0.005103
Piso 4	SISMO EN Y	Max Drift Y	0.005195
Piso 3	SISMO EN Y	Max Drift Y	0.006546
Piso 2	SISMO EN Y	Max Drift Y	0.004696
Piso 1	SISMO EN Y	Max Drift Y	0.001835
011AD	•		

Derivas máximas de todos los pisos en dirección Y - módulo 1

3.1.1.4 Fuerzas por piso:

Análisis Dinámico - Dirección XX y YY:

Figura 107. Fuerzas del análisis dinámico en XX y YY.

3.1.2 Resultados del módulo 2 – Sin péndulos de fricción (FPS):

3.1.2.1 Periodo Natural:

Tabla 11. Periodos de la estructura sin aislamiento – módulo 2.

Case	Mode	Periodo (s)	UX	UY	UZ	RZ
Modal	1	0.736	0.316	0.645	-	0.039
Modal	2	0.725	0.613	0.354	-	0.033
Modal	3	0.490	0.208	0.029	-	0.763
Modal	4	0.237	0.794	0.074	-	0.132
Modal	5	0.224	0.047	0.910	-	0.043
Modal	6	0.176	0.243	0.018	-	0.739
Modal	7	0.154	0.481	0.050	-	0.468
Modal	8	0.121	0.067	0.877	-	0.056
Modal	9	0.106	0.542	0.059	-	0.399
Modal	10	0.085	0.396	0.203	-	0.401
Modal	11	0.080	0.195	0.732	-	0.073
Modal	12	0.065	0.520	0.048	-	0.432

3.1.2.2 Deformación lateral:

• Deformación lateral en X: la deformación lateral máximo en dirección

X es de 0.045928 m.

Tabla 12. Deformación lateral en dirección X – módulo 2.

Piso	Diafragma	UX (m)
Piso 6	D6	0.045928
Piso 5	D5	0.042472
Piso 4	D4	0.037798
Piso 3	D3	0.031727
Piso 2	D2	0.024281
Piso 1	D1	0.014851

• Deformación lateral en Y: la deformación lateral máximo en dirección

Y será de 0.07361 m.

<i>Tabla 13.</i> Deformación lateral en dirección Y – módulo			
Piso	Diafragma	UX (m)	
Piso 6	D6	0.037361	
Piso 5	D5	0.038766	
Piso 4	D4	0.035390	
Piso 3	D3	0.030347	
Piso 2	D2	0.023451	
Piso 1	D1	0.014152	

3.1.2.3 Derivas de entrepiso:

Tabla 14. Derivas máximas de todos los pisos en dirección X – módulo 2.

Piso	Load Case/Combo	Item	Max Drift X
Piso 6	SISMO EN X	Max Drift X	0.001698
Piso 5	SISMO EN X	Max Drift X	0.004434
Piso 4	SISMO EN X	Max Drift X	0.005593
Piso 3	SISMO EN X	Max Drift X	0.006299
Piso 2	SISMO EN X	Max Drift X	0.006098
Piso 1	SISMO EN X	Max Drift X	0.003480

Tabla 15.

Derivas máximas de todos los pisos en dirección Y – módulo 2.

Piso	Load Case/Combo	Item	Max Drift Y
Piso 6	SISMO EN Y	Max Drift Y	0.000725
Piso 5	SISMO EN Y	Max Drift Y	0.003310
Piso 4	SISMO EN Y	Max Drift Y	0.004666
Piso 3	SISMO EN Y	Max Drift Y	0.005657
Piso 2	SISMO EN Y	Max Drift Y	0.005651
Piso 1	SISMO EN Y	Max Drift Y	0.003164

3.1.2.4 Fuerzas por piso:

Análisis Dinámico - Dirección XX y YY:

Figura 108. Fuerzas del análisis dinámico en XX y YY.

3.1.3 Resultados del módulo 3 – sin péndulos de fricción (FPS):

3.1.3.1 Periodo Natural:

Tabla 16. Periodos de la estructura sin aislamiento – módulo 2

Case	Mode	Periodo (s)	UX	UY	UZ	RZ
Modal	1	1.313	0.997	-	-	0.003
Modal	2	1.236	-	1.000	-	-
Modal	3	1.098	0.003	-	-	0.997
Modal	4	0.405	-	1.000	-	-
Modal	5	0.393	0.991	-	-	0.009
Modal	6	0.344	0.009	-	-	0.991
Modal	7	0.238	-	1.000	-	-
Modal	8	0.200	0.946	-	-	0.054
Modal	9	0.187	0.054	-	-	0.946
Modal	10	0.171	-	1.000	-	-
Modal	11	0.141	-	1.000	-	-
Modal	12	0.126	0.646	-	-	0.354

3.1.3.2 Deformación lateral:

• Deformación lateral en X: la deformación lateral máxima en dirección

X es de 0.058163cm.

Tabla 17.
Deformación lateral en dirección X – módulo 3

Piso	Diafragma	UX (m)
Piso 5	D5	0.058163
Piso 4	D4	0.050838
Piso 3	D3	0.039326
Piso 2	D2	0.024488
Piso 1	D1	0.009001

• Deformación lateral en Y: la deformación lateral máxima en dirección

Y será de 0.0498390 m.

Tabla 18.
Deformación lateral en dirección Y - módulo 3

Piso	Diafragma	UX (m)
Piso 5	D5	0.049839
Piso 4	D4	0.045315
Piso 3	D3	0.036907
Piso 2	D2	0.025173

3.1.3.3 Derivas de entrepiso:

Tabla 19.

Derivas máximas de todos los pisos en dirección X – módulo 3.

Piso	Load Case/Combo	Item	Max Drift X
Piso 5	SISMO EN X	Max Drift X	0.006614
Piso 4	SISMO EN X	Max Drift X	0.001742
Piso 3	SISMO EN X	Max Drift X	0.004941
Piso 2	SISMO EN X	Max Drift X	0.005507
Piso 1	SISMO EN X	Max Drift X	0.006001

Piso	Load Case/Combo	Item	Max Drift X
Piso 5	SISMO EN Y	Max Drift Y	0.004785
Piso 4	SISMO EN Y	Max Drift Y	0.006649
Piso 3	SISMO EN Y	Max Drift Y	0.001859
Piso 2	SISMO EN Y	Max Drift Y	0.003924
Piso 1	SISMO EN Y	Max Drift Y	0.001280

Tabla 20. Derivas máximas de todos los pisos en dirección Y – módulo 3.

3.1.3.4 Fuerzas por piso:

Análisis Dinámico - Dirección XX y YY:

Figura 109. Fuerzas del análisis dinámico en XX y YY.

3.2 Estructura con aislamiento

Se analizó el edificio con una base aislada utilizando péndulos de fricción (FPS) según el proyecto de Norma E.030, 2019. Primero se realizó un análisis estático y dinámico para luego, usando los valores obtenidos se establecieron valores mínimos sobre los cuales se escalaron los resultados del análisis espectral. Finalmente, se

evaluaron las variables principales que definen el comportamiento de una estructura

y su contenido: derivas, cortantes y deformación lateral.

3.2.1 Resultados del módulo 1 – Con FPS:

3.2.1.1 Periodo Natural:

Tabla 21.

Periodos de la estructura con aislamiento - módulo 1

Case	Mode	Periodo (s)	UX	UY	UZ	RZ
Modal	1	1.6510	-	0.9950	-	0.0050
Modal	2	1.2360	0.1350	0.0050	-	0.8600
Modal	3	1.1850	0.8630	0.0010	-	0.1370
Modal	4	0.4810	-	0.9950	-	0.0050
Modal	5	0.3580	0.1770	0.0040	-	0.8180
Modal	6	0.3450	0.8140	0.0010	-	0.1850
Modal	7	0.2600	-	0.9950	-	0.0050
Modal	8	0.1910	0.1000	0.0040	-	0.8950
Modal	9	0.1820	0.8940	0.0010	-	0.1060
Modal	10	0.1770	-	0.9960	-	0.0040
Modal	11	0.1410	-	0.9980	-	0.0020
Modal	12	0.1270	0.0700	0.0030	-	0.9270

3.2.1.2 Deformación lateral:

• Deformación lateral en X: la deformación lateral máxima en dirección

X es de 0.047131 m.

-	Piso	Diafragma	UX (m
D	eformación late	eral en dirección X –	- módulo 1
-			

Piso	Diafragma	UX (m)
Piso 5	D5	0.047131
Piso 4	D4	0.044564
Piso 3	D3	0.039802
Piso 2	D2	0.032888
Piso 1	D1	0.022921

• Deformación lateral en Y: la deformación lateral máxima en dirección

Y será de 0.065849 m.

Tabla 23.
Deformación lateral en dirección Y - módulo 1

Piso	Diafragma	UX (m)
Piso 5	D5	0.065849
Piso 4	D4	0.062707
Piso 3	D3	0.056710
Piso 2	D2	0.047954
Piso 1	D1	0.035312

3.2.1.3 Derivas de entrepiso:

Tabla 24.

Derivas máximas de todos los pisos en dirección X – módulo 1.

Piso	Load Case/Combo	Item	Max Drift X
Piso 5	SISMO EN X	Max Drift X	0.002627
Piso 4	SISMO EN X	Max Drift X	0.004830
Piso 3	SISMO EN X	Max Drift X	0.006955
Piso 2	SISMO EN X	Max Drift X	0.009977
Piso 1	SISMO EN X	Max Drift X	0.022744

Tabla 25.

Derivas máximas de todos los pisos en dirección Y – módulo 1.

Piso	Load Case/Combo	Item	Max Drift Y
Piso 5	SISMO EN Y	Max Drift X	0.003323
Piso 4	SISMO EN Y	Max Drift X	0.006238
Piso 3	SISMO EN Y	Max Drift X	0.008972
Piso 2	SISMO EN Y	Max Drift X	0.012829
Piso 1	SISMO EN Y	Max Drift X	0.035012

3.2.1.4 Fuerzas por piso:

Análisis Dinámico - Dirección XX y YY:

Figura 110. Fuerzas del análisis dinámico en XX y YY.

3.2.2 Resultados del módulo 2-Con FPS:

3.2.2.1 Periodo Natural:

El periodo natural de la estructura es de 0.972 seg.

Casa	Mada	Deviado (a)	UV	TIX	117	D7
Case	Mode	Periodo (s)	UA	UY	UZ	KZ
Modal	1	0.972	0.05	0.935	-	0.015
Modal	2	0.938	0.888	0.062	-	0.051
Modal	3	0.655	0.17	0.025	-	0.805
Modal	4	0.283	0.72	0.197	-	0.083
Modal	5	0.274	0.168	0.789	-	0.043
Modal	6	0.193	0.016	0.051	-	0.933
Modal	7	0.182	0.684	0.005	-	0.311
Modal	8	0.141	0.036	0.913	-	0.052
Modal	9	0.122	0.54	0.029	-	0.431
Modal	10	0.115	0.002	0.157	-	0.841
Modal	11	0.107	0.005	0.96	-	0.035
Modal	12	0.103	0.05	0.796	-	0.154

Tabla 26. Periodos de la estructura con aislamiento – módulo 2.

3.2.2.2 Deformación lateral:

• Deformación lateral en X: la deformación lateral máxima en dirección

X es de 0.045928 m.

Tabla 27.

Deformación lateral en dirección X – módulo 1				
Piso	Diafragma	UX (m)		
Piso 6	D6	0.045928		
Piso 5	D5	0.042472		
Piso 4	D4	0.037798		
Piso 3	D3	0.031727		
Piso 2	D2	0.024281		
Piso 1	D1	0.014851		

• Deformación lateral en Y: El Deformación lateral máximo en dirección

Y será de 0.038570 m.

Tabla 28. Deformación lateral en dirección Y– módulo 2.

Piso	Diafragma	UY (m)
Piso 6	D6	0.045928
Piso 5	D5	0.042472
Piso 4	D4	0.037798
Piso 3	D3	0.031727
Piso 2	D2	0.024281
Piso 1	D1	0.014851

3.2.2.3 Derivas de entrepiso:

Tabla 29.

Derivas máximas de todos los pisos en dirección X – módulo2.

Piso	Load Case/Combo	Item	Max Drift X
Piso 6	SISMO EN X	Max Drift X	0.001860
Piso 5	SISMO EN X	Max Drift X	0.004722
Piso 4	SISMO EN X	Max Drift X	0.006108
Piso 3	SISMO EN X	Max Drift X	0.007463
Piso 2	SISMO EN X	Max Drift X	0.009433
Piso 1	SISMO EN X	Max Drift X	0.014733

Piso	Load Case/Combo	Item	Max Drift X
Piso 6	SISMO EN Y	Max Drift Y	0.000746
Piso 5	SISMO EN Y	Max Drift Y	0.003437
Piso 4	SISMO EN Y	Max Drift Y	0.005088
Piso 3	SISMO EN Y	Max Drift Y	0.006917
Piso 2	SISMO EN Y	Max Drift Y	0.009304
Piso 1	SISMO EN Y	Max Drift Y	0.014015

Tabla 30.
Derivas máximas de todos los pisos en dirección Y – módulo 2.

3.2.2.4 Fuerzas por piso:

Análisis Dinámico - Dirección XX y YY:

Figura 111. Fuerzas del análisis dinámico en XX y YY.

3.2.3 Resultados del módulo 3 - con FPS:

3.2.3.1 Periodo Natural:

El periodo natural de la estructura es de 1.765 seg.

Tabla 31.

Periodos de la estructura con aislamiento - módulo 3.

Case	Mode	Periodo (s)	UX	UY	UZ	RZ
Modal	1	1.765	0.996	-	-	0.004
Modal	2	1.703	-	1	-	-
Modal	3	1.496	0.004	-	-	0.996
Modal	4	0.496	-	1	-	-
Modal	5	0.486	0.992	-	-	0.008
Modal	6	0.423	0.007	-	-	0.993
Modal	7	0.267	-	1	-	-
Modal	8	0.233	0.964	-	-	0.036
Modal	9	0.215	0.034	-	-	0.966
Modal	10	0.181	-	1	-	-
Modal	11	0.143	-	1	-	-
Modal	12	0.138	0.768	-	-	0.232

3.2.3.2 Deformación lateral:

• Deformación lateral en X: la deformación lateral máxima en dirección

X es de 0.067728 m.

Tabla 32. Deformación lateral en dirección X – módulo 3

Piso	Diafragma	UX (m)
Piso 5	D5	0.067728
Piso 4	D4	0.062698
Piso 3	D3	0.054462
Piso 2	D2	0.042670
Piso 1	D1	0.026272

• Deformación lateral en Y: la deformación lateral máxima en dirección

Y será de 0.060688 m.

Tabla 33.

Deformación	lateral	en	dirección	Y	– módulo 3.

Piso	Diafragma	UY (m)
Piso 5	D5	0.060688
Piso 4	D4	0.057849
Piso 3	D3	0.052377
Piso 2	D2	0.044298
Piso 1	D1	0.032540

3.2.3.3 Derivas de entrepiso:

Tabla 34.

Derivas máximas de todos los pisos en dirección X – módulo3.

Piso	Load Case/Combo	Item	Max Drift X
Piso 5	SISMO EN X	Max Drift X	0.005313
Piso 4	SISMO EN X	Max Drift X	0.008503
Piso 3	SISMO EN X	Max Drift X	0.011930
Piso 2	SISMO EN X	Max Drift X	0.016426
Piso 1	SISMO EN X	Max Drift X	0.026137

Tabla 35.

Derivas máximas de todos los pisos en dirección Y – módulo3.

Piso	Load Case/Combo	Item	Max Drift Y
Piso 5	SISMO EN Y	Max Drift Y	0.002993
Piso 4	SISMO EN Y	Max Drift Y	0.005653
Piso 3	SISMO EN Y	Max Drift Y	0.008195
Piso 2	SISMO EN Y	Max Drift Y	0.011787
Piso 1	SISMO EN Y	Max Drift Y	0.032267

3.2.3.4 Fuerzas por piso:

Análisis Dinámico - Dirección XX y YY:

Figura 112. Fuerzas del análisis dinámico en XX y YY.

3.2.4 RESUMEN DEL COMPORTAMIENTO ESTRUCTURAL DEL

EDIFICIO SIN FPS Y CON FPS.

3.2.4.1 Periodos naturales

Tabla 36.

Comparación de los periodos naturales para la estructura con FPS y sin FPS-modulo1.

	Módulo 1 sin FPS	Módulo 1 con FPS	
Mode	Period	Period	Δ tiempo (seg)
1	1.195	1.651	0.456
2	0.901	1.236	0.335
3	0.873	1.185	0.312
4	0.393	0.481	0.088
5	0.293	0.358	0.065
6	0.282	0.345	0.063
7	0.232	0.260	0.028
8	0.170	0.191	0.021
9	0.168	0.182	0.014
10	0.161	0.177	0.016
11	0.138	0.141	0.003
12	0.120	0.127	0.007

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

Figura 113. Comparación de los periodos del módulo 1 con FPS y sin FPS.

Tabla 37.

	Módulo 2 sin FPS	Módulo 2 con FPS	
Mode	Period	Period	Δ tiempo (seg)
1	0.736	0.972	0.236
2	0.725	0.938	0.213
3	0.490	0.655	0.165
4	0.237	0.283	0.046
5	0.224	0.274	0.050
6	0.176	0.193	0.017
7	0.154	0.182	0.028
8	0.121	0.141	0.020
9	0.106	0.122	0.016
10	0.085	0.115	0.030
11	0.080	0.107	0.027
12	0.065	0.103	0.038

Comparación de los periodos naturales para la estructura con FPS y sin FPS-modulo 2.

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

Figura 114. Comparación de los periodos del módulo 2 con FPS y sin FPS.

Tabla 38.

	Módulo 3 sin FPS	Módulo 3 con FPS	
Mode	Period	Period	Δ tiempo (seg)
1	1.313	1.765	0.452
2	1.236	1.703	0.467
3	1.098	1.496	0.398
4	0.405	0.496	0.091
5	0.393	0.486	0.093
6	0.344	0.423	0.079
7	0.238	0.267	0.029
8	0.200	0.233	0.033
9	0.187	0.215	0.028
10	0.171	0.181	0.010
11	0.141	0.143	0.002
12	0.126	0.138	0.012

Comparación de los periodos naturales para la estructura con FPS y sin FPS-modulo 3.

"Comportamiento sísmico de una edificación incorporando péndulo de fricción"

Figura 115. Comparación de los periodos del módulo 3 con FPS y sin FPS.

3.2.4.2 Deformación lateral

Tabla 39.

Comparación de las deformaciones laterales con FPS y sin FPS-modulo 1.

	Deformación lateral	
	UX (m)	UY (m)
Módulo 1 – sin FPS	0.0258	0.0404
Módulo 1 – con FPS	0.0242	0.0305
Δ Desplazado	0.0015	0.0099
% Reducción	5.98%	24.48%

Figura 116. Comparación de las deformaciones laterales del módulo 1 con FPS y sin FPS.

Tabla 40.

Comparación de las deformaciones laterales con FPS y sin FPS-modulo 2.

	Deformación lateral	
	UX (m)	UY (m)
Módulo 2 – sin FPS	0.0311	0.0232
Módulo 2 – con FPS	0.0255	0.0191
Δ Desplazado	0.0055	0.0041
% Reducción	17.83%	17.77%

Figura 117. Comparación de las deformaciones laterales del módulo 2 con FPS y sin FPS.

Tabla 41.

Comparación de las deformaciones laterales con FPS y sin FPS-modulo 3.

	Deformación lateral	
	UX (m)	UY (m)
Módulo 3 – sin FPS	0.0492	0.0386
Módulo 3 – con FPS	0.0415	0.0281
Δ Desplazado	0.0077	0.0104
% Reducción	15.67%	27.00%

Figura 118. Comparación de las deformaciones laterales del módulo 3 con FPS y sin FPS.

3.2.4.3. Fuerzas en las bases

Tabla 42.

Fuerzas en las bases con FPS y sin FPS-Modulo 1.

	Fuerzas en las bases		
	Max Drift X Max Drift Y		
Módulo 1- sin FPS	52.8498	45.5497	
Módulo 1 - con FPS	49.8305	35.9901	
Δ Deriva	3.0193	9.5596	
% ∆	6.06%	26.56%	

Figura 119. Comparación de las fuerzas en la base del módulo 1 con FPS y sin FPS.

Tabla 43.

Fuerzas en las bases con FPS y sin FPS-Modulo 2.

	Fuerzas en las bases	
	Max Drift X	Max Drift Y
Módulo 2- sin FPS	9.2755	10.3144
Módulo 2 - con FPS	10.8369	11.7047
Δ Deriva	1.5614	1.3903
% Δ	14.41%	11.88%

Figura 120. Comparación de las fuerzas en la base del módulo 2 con FPS y sin FPS.

Tabla 44.

Fuerzas en las bases con FPs y sin FPS-Modulo 3.

	Fuerzas en las bases		
	Max Drift X	Max Drift Y	
Módulo 2- sin FPS	19.5823	21.7938	
Módulo 2 - con FPS	14.9808	16.6856	
Δ Deriva	4.6015	5.1082	
% Δ	30.72%	30.61%	

Figura 121. Comparación de las fuerzas en la base del módulo 3 con FPS y sin FPS.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión de resultados

- En la tabla 36, 37 y 38, de los módulos 1, 2 y 3 respectivamente; los periodos aumentan por modo, debido a la excitación que causan los péndulos en las bases de la estructura.
- En la tabla 39, la deformación lateral de la estructura sin péndulos en X es de 0.0258m y en Y es de 0.0404m, a diferencia de que la estructura modelada con FPS de 0.0242 y 0.0305 en X y Y respectivamente; obteniendo un porcentaje de reducción en la estructura de 5.98% en X y de 24.48% en Y.
- En la tabla 40, la deformación lateral de la estructura sin péndulos en X es de 0.0311m y en Y es de 0.0232m, a diferencia de que la estructura modelada con FPS de 0.0255 y 0.0191 en X y Y respectivamente; obteniendo un porcentaje de reducción en la estructura de 17.83% en X y de 17.77% en Y.
- En la tabla 41, la deformación lateral de la estructura sin péndulos en X es de 0.0492m y en Y es de 0.0386m, a diferencia de que la estructura modelada con FPS de 0.0415 y 0.0281 en X y Y respectivamente; obteniendo un porcentaje de reducción en la estructura de 15.67% en X y de 27.00% en Y.
- En la tabla 42, las fuerzas en las bases del módulo 1, disminuyen 6.06% en X y 26.56% en Y incluyendo el sistema de aislamiento, ya que el FPS recibe esas fuerzas por acción del sismo y las disipa de tal manera que la superestructura reciba solamente el 93.94% en X y 73.44% en Y de dicha fuerza.

- En la tabla 43, las fuerzas en las bases del módulo 2, aumentan considerablemente en 14.41% en X y 11.88% en Y incluyendo el sistema de aislamiento, ya que el FPS recibe esas fuerzas por acción del sismo y las disipa de tal manera que la superestructura reciba solamente el 93.94% en X y 73.44% en Y de dicha fuerza.
- En la tabla 44, las fuerzas en las bases del módulo 3, disminuyen considerablemente 30.72% en X y 30.61% en Y incluyendo el sistema de aislamiento, ya que el FPS recibe esas fuerzas por acción del sismo y las disipa de tal manera que la superestructura reciba solamente el 69.28% en X y 69.39% en Y de dicha fuerza.
- Al igual que Vergara (2015), concluimos que el uso de aislador sísmico disminuye la rigidez del sistema estructural.
- Luque (2016), considera la reducción de las deformaciones laterales en 1.95 veces en el sentido "X" y 1.61 veces en el sentido "Y". Al igual que en la presente investigación donde las deformaciones, en el módulo 3 el más representativo, la deformación lateral de la estructura se reduce en 15.67% de X y de 27.00% en Y.
- Esta investigación discrepa con Chunque (2013), ya que en su investigación demuestra que la estructura tiene la capacidad de desarrollar un 178% y 97% más de corte basal en las direcciones "X" y "Y" respectivamente, sin embargo, demostramos que las fuerzas en las bases, en el módulo 3, disminuyen considerablemente 30.72% en X y 30.61% en Y incluyendo el sistema de aislamiento. Por otro lado, recalcamos que la edificación, presenta una gran resistencia y buena ductilidad frente a cargas laterales.
- Al igual que Cango (2018), concluimos que los FPS controlan los parámetros de respuesta al desplazamiento y a la cortante basal.

4.2 Conclusiones

- 1. Existe una mejoría en la variación de la deformación lateral y la fuerza en las bases con aisladores de péndulos de fricción (FPS), cumpliéndose la hipótesis.
- El comportamiento sísmico de la estructura analizada, "Los Pilancones", disminuye en 23% en cuanto a la deformación lateral y fuerza en las bases con aisladores de péndulos de fricción, mejorando las condiciones de la estructura.
- 3. Los resultados de la edificación sin aisladores de péndulo de fricción, en cuanto a la deformación lateral son: para el módulo 1 de 0.02575m en X y 0.04043m en Y, para el módulo 2 de 0.03108m en X y 0.02321m en Y y finalmente para el módulo 3 de 0.04916m en X y 0.03856m en Y. por otro lado en cuanto a las fuerzas en las bases los resultados fueron: para el módulo 1 de 52.85tn.f en X y 45.54tn.f en Y, para el módulo 2 de 9.28tn.f en X y 10.31tn.f en Y, finalmente para el módulo 3 de 19.58tn.f en X y 21.79tn.f en Y.
- 4. En cuanto a la estructura modelada con péndulos de fricción, las deformaciones laterales fueron: para el módulo 1 de 0.02421m en X y 0.03054m en Y, para el módulo 2 de 0.02554m en X y 0.01909m en Y y finalmente para el módulo 3 de 0.04146m en X y 0.02815m en Y. Por otro lado, en cuanto a las fuerzas en las bases los resultados fueron: para el módulo 1 de 49. 83tn.f en X y 35. 99tn.f en Y, para el módulo 2 de 10.84 tn.f en X y 11.70tn.f en Y, finalmente para el módulo 3 de 14.98tn.f en X y 16.69tn.f en Y.

5. El comportamiento sísmico de la estructura analizada, "Los Pilancones" disminuye la deformación lateral en "Y" un 23.08% y en "X" un 13.16% con los aisladores de péndulo de fricción, y la fuerza en las bases con un porcentaje de reducción en la estructura de 17.03% en X y de 23.02% en Y respectivamente.

REFERENCIAS

- Aguiar, R., Almazan, L., Dechent, P., & Suárez, V. (2016). Aisladores de base elastomericos y FPS. Quito, Ecuador.
- Allauca, L. (2006). Desmpeño sísmico de un edificio de cinco pisos diseñado con las normas peruanas de edificaciones. Lima, Perú.
- Bertero, V. (2005). Vulnerabilidad y daño sismicos: concepto y evaluación. Valparaiso, Chile: Universidad Técnica Federico Santa MArá y Achisina.
- Cango, A. (Abril de 2018). Diseño y análisis de edificaciones con aisladores de base tipo FPT. Cuenca, Ecuador.
- Chunque, J. (2013). Nivel de desempeño sismico del edificio "a" de la Universidad Privada del Norte - sede Cajamarca. Cajamarca, Perú.
- Constantinou, M. (2004). Friction pendulum doble concave bearing. NEES report.
- E.030, N. T. (2019). Lima, Perú.
- Korswagen, P., Arias, J., & Huaringa, P. (Septiembre de 2012). Análisis y diseño de estructuras con aisladores sísmicos en el Perú. Lima, Perú.
- Kuroiwa, J. (2002). Reducción de desastres. *Programa de las Naciones Unidas para el Desarrollo (PNUD)*. Lima, Perú.
- Luque, M. (2016). Evaluación del desempeño estructural con sistemas de aislamiento de base para el edificio 15 niveles de la ciudad universitaria de Puno. Puno, Perú.
- M. Constantinou, I. K. (2011). LRFD- based analysis and design procedures for bridge bearings and seismic isolators. MCEER.
- Martínez, I., & Melgar, C. (Septiembre de 2015). Análisis, comportamiento y diseño de edificaciones con aisladores de péndulo friccional. Lima, Perú: Pontificia Universidad Católica del Perú.
- Monge, J. (Agosto de 2014). Análisis sísmico de una estructura con aisladores FPS de la primera y segunda generación. Sangolqui, Ecuador: Universidad de las fuerzas armadas.
- Mosqueira, M. (2012). Riesgo sísmico en las edificaciones de la facult de ingeniería, Universidad Nacional de Cajamarca, Perú. 16. Perú.
- Ramirez, J. (2014). Desempeño sismoresistente del módulo c, del mercado de abastos de los Baños del Inca. Cajamarca. Cajamarca, Perú.
- Salazar, A. (2010). Aisladores de base. Escuela Politécnica del Ejercito.
- Santana, R. (2012). Diseño sísmico por desempeño de estructuras de albañileria confinada. Lima, Perú.
- SEAOC. (1995). Structural Engineers Association of California. Framework for Permance Bsed Design.

ANEXOS

Anexo N° 1: Espectro de sismo.

Anexo N° 2: Datos referenciales de tesis "Diseño y análisis de edificaciones con aisladores

de base tipo FPT".

Anexo N° 3: Plano de Ubicación.

- Anexo N° 4: Planos de Arquitectura.
- Anexo N° 5: Planos de cimentaciones.
- Anexo N° 6: Planos de estructuras
- Anexo N° 7: Plano de diseño del triple péndulo de fricción.
- Anexo N° 8: Plano en 3D del péndulo.
- Anexo N° 9: Estudios de suelos de una edificación cercana.
- Anexo N° 10: Formatos utilizados para las técnicas de recolección de datos.
- Anexo N° 11: Formatos utilizados para los instrumentos de análisis de datos.

Anexo N° 1: Espectro de sismo

• Para el espectro de los tres módulos a analizar 1 y 3, se consideran los datos

de obtenidos de la norma técnica E.030.

$$T = \frac{h_n}{C_T}$$

Ecuación 22: Periodo fundamental de vibración.

Donde:

T: periodo de diseño. h_n : altura total de edifico. C_T : 45, para edificios cuyos elementos, resistentes en la direccion considerada sean unicamente porticos de concreto. Datos del edifico: h_1 : 10.26 m

h_n : 18.36 *m*

$$T = \frac{18.36}{45}$$
$$T = 0.408$$
$$0.408 < 1$$

Altura de edificio por piso h=3.06m

Pórticos de concreto armado con muros en las cajas de ascensores y escaleras.

Factor de amplificación T<Tp, C=2.5

Tabla 45.	
Zonificación.	
ZONA	Z
4	0.45
3	0.35
2	0.25
1	0.1

Fuente. Modificado de NT. E.030,2019

Tabla 46. Tipo de suelo

Tipo de suelo.	
S 1	Roca o suelo muy rígido
S 2	Suelo intermedio
S 3	Suelo blando
S 4	Condiciones excepcionales
3.5 41.00	

Fuente: Modificado de NT. E.030,2019

Tabla 47.

Factor de suel	0.			
	S 0	S 1	S2	S 3
Z4	0.8	1	1.05	1.1
Z3	0.8	1	1.15	1.2
Z2	0.8	1	1.2	1.4
Z1	0.8	1	1.6	2

Fuente: Modificado de NT. E.030,2019

Tabla 48.

Periodos Tp y Tl.					
	S0	S1	S2	S3	
Tp(s)	0.3	0.4	0.6	1	
Tl(s)	3	2.5	2	1.6	

Fuente: Modificado de NT. E.030,2019

Tabla 49. Factor de uso.

Para	Viviendas, oficinas, hoteles restaurantes, depósitos,	
edificaciones	cuya falla no acarree peligros adicionales de	
comunes (C)	incendios y fugas de contaminantes	

Fuente: Modificado de NT. E.030,2019

Debido a que el edificio presenta irregularidades que se clasifican según los materiales usados y el sistema de estructuración sismorresistente, donde la edificación de concreto armado – pórtico, tiene como coeficiente básico de reducción Ro=8.

1

Para el coeficiente de reducción de las fuerzas sísmicas, R

$$R = R_0 * I_a * I_p$$

Ecuación 23: Coeficiente de reducción de las fuerzas sísmicas.

Tabla 50. Coeficiente Básico de Reducción R0.

Concreto Armado	
Pórticos	8
Dual	7
De muros estructurales	6
Muros de ductilidad limitada	4

Fuente: Modificado de NT. E.030,2019

Donde:

 I_a (Irregularidad estructural en altura) = 0.90

 I_p (Irregularidad estructural en planta) = 1.00

$$R = 8 * 0.9 * 1$$

$$R = 7.2$$

Tabla 51.

Tabla 51.		
Cálculo de ZUCS/R para módulo 1 y 3		
Factor de zona	Z =	0.35
Categoría	U =	1.00
Factor de amplificación sísmica	C =	2.500
Factor de suelo	S =	1.15
Factor de reducción	Ro =	8
		0.131

Fuente: Modificado de NT. E.030,2019

$$f_e = \frac{ZUCS}{R}$$

Ecuación 24: Factor de reducción

$$f_e = \frac{0.35 * 1 * 2.5 * 1.15}{8}$$
$$f_e = 0.131$$

<u>C</u>	T (s)	Sa/g	Sa (m/s2)	Sv (m/s)	Sd (m)
2.50	0.00	0.131	1.29	0.000	0.000
2.50	0.02	0.131	1.29	0.004	0.000
2.50	0.04	0.131	1.29	0.008	0.000
2.50	0.06	0.131	1.29	0.012	0.000
2.50	0.08	0.131	1.29	0.016	0.000
2.50	0.10	0.131	1.29	0.020	0.000
2.50	0.12	0.131	1.29	0.025	0.000
2.50	0.14	0.131	1.29	0.029	0.001
2.50	0.16	0.131	1.29	0.033	0.001
2.50	0.18	0.131	1.29	0.037	0.001
2.50	0.20	0.131	1.29	0.041	0.001
2.50	0.25	0.131	1.29	0.051	0.002
2.50	0.30	0.131	1.29	0.061	0.003
2.50	0.35	0.131	1.29	0.072	0.004
2.50	0.40	0.131	1.29	0.082	0.005
2.50	0.45	0.131	1.29	0.092	0.007
2.50	0.50	0.131	1.29	0.102	0.008
2.50	0.55	0.131	1.29	0.113	0.010
2.50	0.60	0.131	1.29	0.123	0.012
2.50	0.65	0.131	1.29	0.133	0.014
2.50	0.70	0.131	1.29	0.143	0.016
2.50	0.75	0.131	1.29	0.154	0.018
2.50	0.80	0.131	1.29	0.164	0.021
2.50	0.85	0.131	1.29	0.174	0.024
2.50	0.90	0.131	1.29	0.184	0.026
2.50	0.95	0.131	1.29	0.195	0.029
2.50	1.00	0.131	1.29	0.205	0.033
2.27	1.10	0.119	1.17	0.205	0.036
2.08	1.20	0.109	1.07	0.205	0.039
1.92	1.30	0.101	0.99	0.205	0.042
1.79	1.40	0.094	0.92	0.205	0.046
1.67	1.50	0.088	0.86	0.205	0.049
1.56	1.60	0.082	0.80	0.205	0.052
1.38	1.70	0.073	0.71	0.193	0.052
1.23	1.80	0.065	0.64	0.182	0.052
1.11	1.90	0.058	0.57	0.173	0.052
1.00	2.00	0.053	0.52	0.164	0.052

Tabla 52. Espectro de sismo módulo 1 y 3.

Bach. Díaz Torres, Alexis Amett Bach. Araya Ramos, Katerlin Elizabeth

UNIVERSIDAD PRIVADA DEL N	ORTE		"Comportamien incorporando pé	to sísmico (éndulo de fric	de una edifi ción"	cación
0.83	2.20	0.043	0.43	0.149	0.052	
0.69	2.40	0.036	0.36	0.137	0.052	
0.59	2.60	0.031	0.30	0.126	0.052	
0.51	2.80	0.027	0.26	0.117	0.052	
0.44	3.00	0.023	0.23	0.109	0.052	
0.25	4.00	0.013	0.13	0.082	0.052	
0.16	5.00	0.008	0.08	0.066	0.052	
0.11	6.00	0.006	0.06	0.055	0.052	
0.08	7.00	0.004	0.04	0.047	0.052	
0.06	8.00	0.003	0.03	0.041	0.052	
0.05	9.00	0.003	0.03	0.036	0.052	
0.04	10.00	0.002	0.02	0.033	0.052	

Figura 122: Espectro de aceleraciones módulo 1 y 3.

Tabla 53. Coeficiente Básico de Reducción R0.	
Concreto Armado	
Pórticos	8
Dual	7
De muros estructurales	6
Muros de ductilidad limitada	4

Fuente: Modificado de NT. E.030,2019

Donde:

 I_a (Irregularidad estructural en altura) = 0.90

 I_p (Irregularidad estructural en planta) = 1.00

$$R = 8 * 0.9 * 1$$

$$R = 7.2$$

Tabla 54.

Cálculo de ZUCS/R para módulo 2		
Factor de zona	Z =	0.35
Categoría	U =	1.00
Factor de amplificación sísmica	C =	2.500
Factor de suelo	S =	1.15
Factor de reducción	Ro =	7.2
		0.140

Fuente: Modificado de NT. E.030,2019

$$f_e = \frac{ZUCS}{R}$$

Ecuación 25: Factor de reducción

$$f_e = \frac{0.35 * 1 * 2.5 * 1.15}{7.20}$$
$$f_e = 0.1398$$

Tabla 55.
Espectro de sismo módulo 2

С	T (s)	Sa/g	Sa (m/s2)	Sv (m/s)	Sd (m)
2.50	-	0.140	1.37101563	0	0
2.50	0.02	0.140	1.37101563	0.00436408	1.3891E-05
2.50	0.04	0.140	1.37101563	0.00872816	5.5565E-05
2.50	0.06	0.140	1.37101563	0.01309223	0.00012502
2.50	0.08	0.140	1.37101563	0.01745631	0.00022226
2.50	0.10	0.140	1.37101563	0.02182039	0.00034728
2.50	0.12	0.140	1.37101563	0.02618447	0.00050009

Bach. Díaz Torres, Alexis Amett Bach. Araya Ramos, Katerlin Elizabeth

2.50	0.14	0.140	1.37101563 0.03054855 0.00068067	
2.50	0.16	0.140	1.37101563 0.03491263 0.00088904	
2.50	0.18	0.140	1.37101563 0.0392767 0.00112519	
2.50	0.20	0.140	1.37101563 0.04364078 0.00138913	
2.50	0.25	0.140	1.37101563 0.05455098 0.00217051	
2.50	0.30	0.140	1.37101563 0.06546117 0.00312554	
2.50	0.35	0.140	1.37101563 0.07637137 0.00425421	
2.50	0.40	0.140	1.37101563 0.08728157 0.00555652	
2.50	0.45	0.140	1.37101563 0.09819176 0.00703247	
2.50	0.50	0.140	1.37101563 0.10910196 0.00868206	
2.50	0.55	0.140	1.37101563 0.12001215 0.01050529	
2.50	0.60	0.140	1.37101563 0.13092235 0.01250216	
2.31	0.65	0.129	1.26555288 0.13092235 0.01354401	
2.14	0.70	0.120	1.17515625 0.13092235 0.01458586	
2.00	0.75	0.112	1.0968125 0.13092235 0.0156277	
1.88	0.80	0.105	1.02826172 0.13092235 0.01666955	
1.76	0.85	0.099	0.96777574 0.13092235 0.0177114	
1.67	0.90	0.093	0.91401042 0.13092235 0.01875324	
1.58	0.95	0.088	0.86590461 0.13092235 0.01979509	
1.50	1.00	0.084	0.82260938 0.13092235 0.02083694	
1.36	1.10	0.076	0.7478267 0.13092235 0.02292063	
1.25	1.20	0.070	0.68550781 0.13092235 0.02500433	
1.15	1.30	0.065	0.63277644 0.13092235 0.02708802	
1.07	1.40	0.060	0.58757813 0.13092235 0.02917171	

1.00	1.50	0.056	0.54840625 0.13092235 0.03125541
0.94	1.60	0.052	0.51413086 0.13092235 0.0333391
0.88	1.70	0.049	0.48388787 0.13092235 0.0354228
0.83	1.80	0.047	0.45700521 0.13092235 0.03750649
0.79	1.90	0.044	0.4329523 0.13092235 0.03959018
0.75	2.00	0.042	0.41130469 0.13092235 0.04167388
0.62	2.20	0.035	0.33992123 0.11902032 0.04167388
0.52	2.40	0.029	0.28562826 0.10910196 0.04167388
0.44	2.60	0.025	0.24337555 0.1007095 0.04167388
0.38	2.80	0.021	0.20984933 0.09351596 0.04167388
0.33	3.00	0.019	0.18280208 0.08728157 0.04167388
0.19	4.00	0.010	0.10282617 0.06546117 0.04167388
0.12	5.00	0.007	0.06580875 0.05236894 0.04167388
0.08	6.00	0.005	0.04570052 0.04364078 0.04167388
0.06	7.00	0.003	0.03357589 0.03740639 0.04167388
0.05	8.00	0.003	0.02570654 0.03273059 0.04167388
0.04	9.00	0.002	0.02031134 0.02909386 0.04167388
0.03	10.00	0.002	0.01645219 0.02618447 0.04167388

Anexo N° 2: Datos referenciales de tesis "Diseño y análisis de edificaciones con

aisladores de base tipo FPT".

Universidad de Cuenca Facultad de Ingeniería Escuela de Ingeniería Civil

Diseño y análisis de edificaciones con aisladores de base tipo FPT

Trabajo de titulación, previo a la obtención del título de Ingeniero Civil

Director:

Ing. Francisco Xavier Flores Solano, PhD. C.I: 0301547410

Autor:

Angel David Cango Puchaicela C.I: 1105687311

Cuenca – Ecuador

Abril - 2018

Tabla	56
-------	----

Ejemplo de desplazamiento máximo para cada sismo

	D_{SRSS} in
SISMO - PEER #	51100
RSN175IMPVALL	21.44
RSN158_KOCAELI	39.9
RSN728_SUPER	13.62
RSN864_LANDERS	24.14
RSN187IMPVALL	20.76
RSN549_IMPVALL	19.51
RSN548_IMPVALL	15.54

Figura 123: Ejemplo OpenSees - desplazamiento tiempo - historia - sismo RSN175

Figura 124: Desplazamiento máximo vs. fricción superficies externas

Figura 125: Cortante basal normalizado vs. fricción superficies externas.

Anexo N° 3: Plano de Ubicación.

I		
-		
0		
~ L		
- E		
Ŭ		
-•		
۵		
٥		
0		
١		
<i>y</i>		
SIDAD PRIVADA DE	EL NORTE	
de ingeniería - Inger	niería civil	LÁMINA:
DE ARQUITECTURA-HOT	EL LOS PILACONES	Δ_1
SISMICE DE UNA EDIFICACIón INCIRE	PORANDO PENDULO DE FRICCIÓN	~- '
ESCALA: INDICADA	FECHA: 15/10/2019	
Angel, Mosqueira Montenegro		

Anexo N° 5: Planos de cimentaciones.

_	
": 100 .125,	
ADO EN CAPAS DE 0.20m.	
DE 0.20m.	
	LÁMINA:
IAD PRIVADA DEL NORTE démico Profesional de Ingeniería Civil	LÁMINA:
IAD PRIVADA DEL NORTE démico Profesional de Ingeniería Civil MENTACIÓN mon kadem Braneth	LÁMINA: C-1
IAD PRIVADA DEL NORTE dénico Profesional de Ingeniería Civil MENTACIÓN men Kalendi Basaden es Adess Annes	LÁMINA: C-1
DAD PRIVADA DEL NORTE dénico Profesional de Ingeniería Civil MENTACIÓN MENTACIÓN New Kalens Baneth es Aces Annes Alal: NEDICADA FECHA: 19102019	LÁMINA: C-1

Anexo N° 6: Planos de estructuras

Pág. 139

Anexo N° 8: Plano en 3D del péndulo.

AS 2 Y 3 CON 3IDO
C-1

Anexo N° 9: Estudios de suelos de una edificación cercana.

PEDRO E ALARCON FARFAN INGENIERO CONSULTOR REG. CIP. 41251 REG. CONSUCODE. CO 425

5 K	84	15
TELEF: 9990-73150 TELEFAX: 477-7771	4	38

INFORME TECNICO

ESTUDIO DE MECANICA DE SUELOS CON FINES DE CIMENTACIÓN

PROYECTO: I.E.T. "RAFAEL LOAYZA GUEVARA"

CAJAMARCA.

SOLICITADO POR: CONSORCIO MAXON SAC. - ARQ. GUILLERMO TURZA A. AREVALO.

REALIZADO POR:

ING. PEDRO E. ALARCON FARFAN CIP. Nº 41251

LIMA, JUNIO DE 2008

392

PEDRO E. ALARCON FARFAN INGENIERO CONSULTOR. REG. CIP. 41251 REG. CONSUCODE. CO 425

83

TELEF: 9990-73150 TELEFAX: 477-771

RESUMEN DE LAS CONDICIONES DE CIMENTACION

PROYECTO: I.E.T. "RAFAEL LOAYZA GUEVARA" CAJAMARCA.

Tipo de cimentación

La cimentación será a través de zapatas armadas conectadas, y/o platea de cimentación, desplantada sobre suelo natural encontrado, previamente compactado al 95% de su MDS. (mínimo) para asegurar su uniformidad en la superficie de apoyo de las zapatas.

Estrato de apoyo

Arcillosa inorgánica de baja plasticidad.

Parámetros de diseño:

Profundidad de Cimentación, Df = 1.50 m. Presión Admisible Qadm = 0.81 Kg/cm² F.S. = 3.00 Asentamiento Diferencial = 0.92 cm

Agresividad del suelo a la cimentación

Se puede utilizar CEMENTO TIPO I, de acuerdo a los Análisis Químicos adjuntos.

391

DE ALARCON FARFAN MGENIERO CIVIE NUU CONVILIZA EDROF

Lima, junio de 2008.

PEDRO E. ALARCON FARFAN INGENIERO CONSULTOR. REG. CIP. 41251 REG. CONSUCODE. CO 425

2.3 - GEODINAMICA EXTERNA

El terreno de la I.E.T. "Rafael Loayza Guevara", de Cajamarca, no presenta problemas de geodinámica externa, que puedan poner en peligro la obra a construirse.

ACTIVIDADES REALIZADAS. 3 -

Los trabajos de campo y laboratorio tienen por objeto, principalmente determinar las características físico mecánicas de los materiales que se encuentran subyacentes en el terreno en estudio con la finalidad de establecer las condiciones que garanticen una óptima cimentación.

3.1 - TRABAJOS DE CAMPO.

Para el presente estudio se realizaron tres calicatas a cielo abierto, que se identificaron como: C-I, C-II y C-III, a profundidades de hasta 3.00 m., en las que se encontró un perfil que se detalla mas adelante, se adjuntan fotografías que muestran el trabajo realizado.

No se encontró nivel freático en ninguna de las excavaciones realizadas.

3.2 - TRABAJOS DE LABORATORIO.

Con las muestras extraídas en el trabajo de campo se obtuvieron en laboratorio los parámetros que nos permitan deducir las condiciones de cimentación, y para esto se realizaron los siguientes ensayos.

385

Análisis granulométrico por tamises Clasificación de Suelos SUCS

Análisis químicos (Cloruros, Sulfatos.)

Limites de Atterberg.

Corte Directo.

Contenido de humedad.

CONSORCIO E & M

ti

9660

1050 Cab

PERSONAL A THEFT AREPALS 1 1 1 1 1 1 1 1 0.3.2 1198

ALARCON FARTAN Manuero one

Bach. Díaz Torres, Alexis Amett Bach. Araya Ramos, Katerlin Elizabeth

INGENIERO CONSULTOR. REG. CIP. 41251 REG. CONSUCODE. CO 425

PEDRO E. ALARCON FARFAN

3.3- DESCRIPCION DEL SUBSUELO DE CIMENTACION

De las calicatas realizadas se evalúa y sintetiza la secuencia estratigráfica del suelo.

En la calicata I, de 0.00 a 0.50 m. se encontró tierra de cultivo arcillosa con presencia de raíces y desechos, de 0.50 a 3.00 m. se encontró una arcilla inorgánica de baja plasticidad, húmeda, color marrón oscuro, cuya clasificación según análisis granulométrico fue CL.

En la calicata II, de 0.00 a 1.00 m. se encontró tierra de cultivo arcillosa con presencia de raíces y desmonte de construcción, de 1.00 a 3.00 m. se encontró una arcilla inorgánica de baja plasticidad, húmeda, color marrón oscuro, cuya clasificación según análisis granulométrico fue CL.

En la calicata III, de 0.00 a 1.00 m, se encontró tierra de cultivo arcillosa con presencia de raíces y desmonte de construcción, de 1.00 a 3.00 m, se encontró una arcilla inorgánica de baja plasticidad, húmeda, color marrón oscuro, cuya clasificación según análisis granulométrico fue CL.

4.- ANALISIS DE CIMENTACION

4.1.- CAPACIDAD ADMISIBLE DE CARGA

Existen varios procedimientos para determinar la capacidad portante de un suelo. En el presente caso calculamos la capacidad portante a partir de los resultados de los ensayos de laboratorio, de donde tenemos los siguientes datos, para la condición más desfavorable:

PEDRO E. ALARCON FARFAN INGENIERO CONSULTOR. REG. CIP. 41251 REG. CONSUCODE. CO 425

26 201

TELEF: 9990-73150 TELEFAX: 477-771

Aplicando el Factor de Seguridad, tenemos:

qa = 0.81 Kg/cm²

DETERMINACION DE ASENTAMIENTOS.

Los asentamientos se determinan en base a la teoría de la elasticidad (Lambe y Whitman), con la siguiente relación:

donde:

S = asentamiento (cm.)

∆qs = esfuerzo transmisible (Tn/m2)

- B = ancho de cimentación (m)
- Es = módulo de elasticidad (Tn/m2)
- μ = relación de Poisson (--)
- lo = factor de forma (cm/m)

Las propiedades elásticas del suelo de cimentación, se asumen de tablas publicadas con valores, para el tipo de suelo existente, de donde tenemos, para la condición más desfavorable tenemos:

 $\Delta qs = 8.10 (Tn/m2)$ B = 1.00 (m) Es = 900 (Tn/m2) $\mu = 0.30$ $l_{\odot} = 112$

Reemplazando valores obtenemos

S= 0.92 cm.

CONSORCIO E & M Cabrera Rd14

Por lo tanto, no habrá problemas por Asentamiento.

383

STALLSDREY & THEFT ADDRALD 10.00

PEDRO E ALARCON FARFAN INGENIERO CONSULTOR. REG CIP 41251 REG CONSUCODE. CO 425

TELEF: 9990-73150 TELEFAX: 477-7771

4.2.- PROFUNDIDAD Y TIPO DE CIMENTACION

De acuerdo a los perfiles estratigráficos descritos anteriormente así como de acuerdo a las observaciones hechas en campo, para el presente Proyecto, se recomienda cimentar a 1.50 m. de profundidad con respecto del nivel natural de terreno más desfavorable.

La cimentación será a través de zapatas armadas conectadas y/o platea de cimentación, desplantada sobre suelo natural encontrado, previamente compactado al 95% de su MDS. (mínimo) para asegurar su uniformidad en la superficie de apoyo de las zapatas.

Para el caso de obras exteriores como losas, pisos y veredas, se recomienda eliminar 0.20 m, de capa superficial de terreno, compactar la subrasante en un espesor de 0.20 m, al 95% de la Máxima Densidad Seca del Proctor Estándar, y colocar una capa de afirmado de 0.20 m de espesor, con material granular seleccionado tipo A-1-a(0) y compactado al 100% de la Máxima Densidad Seca del Proctor Estandar, sobre la cual se colocará la losa de concreto.

4.3.- PARAMETROS DE DISEÑO SISMO RESISTENTE

El departamento de Cajamarca, se encuentra ubicado en la zona 3, en el mapa de zonificación sísmica del Perú.

Las fuerzas sísmicas o cortantes se determinarán de acuerdo a la siguiente expresión del R.N.C.:

382

$$H = \underline{Z \times U \times S \cup C \times P}$$
Rd

de la editicación.

PEDRO E. ALARCON FARFAN INGENIERO CONSULTOR. REG. CIP. 41251 REG. CONSUCODE. CO 425

73 24

TELEF: 9990-73150 TELEFAX: 477-7771

Para el presente caso el tipo de suelo de cimentación es III, con periodo Ts = 0.90 y factor de suelo S = 1.4 De acuerdo al Reglamento Nacional de Construcciones, en la zona han ocurrido sismos de magnitud máxima de VI a VII en la Escala de Mercalli modificada (M.M.) desde 1550 a la fecha.

4.4 - AGRESION DEL SUELO A LA CIMENTACION

Con respecto al análisis químico tenemos que:

Concreto Expuesto a Soluciones de Sulfatos

Sulfatos Solubles		Tipo de Cemento		
en términos de SO4	%	Recomendable		
Despreciable	0.00 a 0.10	sin limitaciones		
Moderado	0.10 a 0.20	Tipo II		
Severo	0.20 a 2.00	Tipo V		
Muy Severo	Mayor = 2.00	Tipo V más puzolana		

Como puede verse en los Anexos del Resultado de Análisis Químico, se presentan Sulfatos en el rango "despreciable" por lo que se puede utilizar cemento tipo I.

381

ACARCON FARFAM

CONSOR Edb 40 GERE

APTRALS artist + C • 0 h .23

PEDRO E. ALARCON FARFAN INGENIERO CONSULTOR. REG. CIP. 41251 REG. CONSUCODE. CO 425

TELEF: 9990-73150 TELEFAX: 477-7771

5.- CONCLUSIONES Y RECOMENDACIONES

 Los suelos predominantes a nivel de cimentación, son arcillas inorgênicas de baja plasticidad, cuya capacidad portante es de 0.81 Kg/cm².

 Para el presente Proyecto, se recomienda cimentar a 1.50 m. de profundidad con respecto del nivel natural de terreno más desfavorable.

La cimentación será a través de zapatas armadas conectadas, y/o platea de cimentación, desplantada sobre suelo natural encontrado, prevíamente compactado al 95% de su MDS. (mínimo) para asegurar su uniformidad en la superficie de apoyo de las zapatas.

3 - Se puede utilizar cemento tipo I en la preparación del concreto para la cimentación, de acuerdo con los resultados de Análisis Químicos.

4.- Para el caso de obras exteriores como losas, pisos y veredas, se recomienda eliminar 0.20 m. de capa superficial de terreno, escarificar, eliminar impurezas y compactar la subrasante en un espesor de 0.20 m. al 95% de la Máxima Densidad Seca del Proctor Estándar, y colocar una capa de afirmado de 0.20 m, de espesor, con material granular seleccionado tipo A-1-a(0) y compactado al 100% de la Máxima Densidad Seca del Proctor Estandar, sobre la cual se colocará la losa de concreto.

5.- En caso de que se encontraran zonas puntuales divergentes, a las descritas en el presente estudio, se sobre-excavará hasta encontrar el tipo de suelo descrito en el presente estudio, apto para la cimentación.

6.- Se acompaña gráficos, resultados de análisis de laboratorio y fotografías que amplía lo expuesto en el presente informe, y que es válido solo para la azona estudiada. Ing Suluardo Galan Osberna Geneticina Ignato de 2,008 380

Anexo N° 10: Formatos utilizados para las técnicas de recolección de datos.

CHECK-LIST

"HOTEL LOS PILANCONES"

TESIS: "Comportamiento sísmico de una edificación incorporando péndulos de fricción"**UBICACIÓN:** Jr. Angamos 739- Cajamarca**FECHA: 20/05/19PLANOS:** Arquitectura

VERIFICACIONES PLANOS DE	AMBIENTE	CANT.	AREA (m ²)	CUMPLE	OBSERVACION
	Decemia	1	16.00	CI	
I° NIVEL	Recepcion		16.00	SI	
	Bano		2.68	SI	
	Sala de star		26./1	SI	
	Pasadizos	l	10.20	SI	
	Hall	1	22.48	SI	
	Cochera	1	186.13	SI	
	Jardín	1	4.26	SI	
	Escalera	1	8.61	SI	
	Ascensor	1	3.08	SI	
2°, 3°, 4° Y 5° NIVEL	Habitación 01	1	17.08	SI	
	Baño 01	1	4.57	SI	
	Habitación 02	1	19.37	SI	
	Baño 02	1	4.57	SI	
	Habitación 03	1	19.12	SI	
	Baño 03	1	4.57	SI	
	Habitación 04	1	17.08	SI	
	Baño 04	1	4.57	SI	
	Habitación 05	1	19.37	SI	
	Baño 05	1	5.27	SI	
	Habitación 06	1	19.37	SI	
	Baño 06	1	4.57	SI	
	Pasadizos	1	16.35	SI	
	Escalera	1	8.61	SI	
	Ascensor	1	3.08	SI	
	Hall	1	22.48	SI	
	Ductos	3	70.35	SI	
AZOTEA	Azotea	1	110.38	SI	
	Lavandería	1	12.60	SI	
	Tendedero	1	34.36	SI	
	Hall	1	22.48	SI	
	Escalera	1	8.61	SI	
	Ascensor	1	3.08	SI	
	Ductos	3	70.35	SI	

CHECK-LIST

"HOTEL LOS PILANCONES"

TESIS: "Comportamiento sísmico de una edificación incorporando péndulos de fricción"**UBICACIÓN:** Jr. Angamos 739- Cajamarca**FECHA: 20/05/19PLANOS:** Estructuras

VERIFICACIONES PLANOS DE ESTRUCTURAS	ELEMNTO	CANT.	AREA (m ²)	CUMPLE	OBSERVACION
COLUMNA C1	0.40 A N O	1	0.40	SI	
COLUMNA C2	0.45 6 0 0 0 0 0 0 0 0 0 0 0	1	0.56	SI	
COLUMNA C3	0,45	1	0.35	SI	
COLUMNA C4	0.25 0 7 0	1	0.15	SI	
VIGA 101	0.40	1	0.40	SI	
VIGA 102	0.40	1	0.40	SI	
VIGA VA VA-1	0.25 0.25	1	0.05	SI	
	ELEMNTO	CANT.	H (m)	CUMPLE	OBSERVACION
LOSA	0.05	5	0.20	SI	

Anexo N° 11: Formatos utilizados para los instrumentos de análisis de datos.

"Comporta	miento sísmico de una e	dificación incorp	orando péndu	llo de fricción"
Periodos na	turales			
		Módulo sin FPS	Módulo con FPS	
	Mode	Period	Period	Δ tiempo (seg)
	1			
	2			
	12			
Deformació	n lateral			
		Deformació	on lateral	-
		UX (m)	UY (m)	
	Módulo – sin FPS			-
	Módulo – con FPS			
	Δ Desplazado			
	% Reducción			-
Fuerzas en l	as bases			
		Fuerzas en	las bases	-
		Max Drift X	Max Drift Y	_
	Módulo - sin FPS			-
	Módulo - con FPS			
	A Dorivo			