

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

"CAPACIDAD PORTANTE DE SUELO COHESIVO ESTABILIZADO CON CAL Y SULFATO DE CALCIO EN 10%, 15% Y 25%"

Tesis para optar el título profesional de:

Ingeniero Civil

Autor:

Renzo José Guerrero Malpica

Asesor:

Ing. Iván Hedilbrando Mejía Díaz

Cajamarca - Perú

2019

DEDICATORIA

A mi madre, por estar conmigo, por enseñarme a crecer y a seguir adelante y cumplir todo lo que me propongo, por todo el apoyo que me brindó desde el inicio hasta el final de esta etapa de mi vida, por ser la base primordial que me ayudó a llegar hasta aquí.

A mi familia, a mis hermanos quienes han sido parte fundamental lograr este objetivo, ellos son los que me ayudaron a no renunciar siendo protagonistas de este "sueño alcanzado".

AGRADECIMIENTO

A mi madre, quien me apoyó en todo momento, a mis hermanos y a mi familia, quienes me dieron apoyo moral y afectivo cuando me sentía caer, que me apoyaron con su tiempo y comprensión en mis estudios.

Agradezco a la Universidad Privada del Norte, que, con sus docentes, lograron pulir mis facultades y lograr mi titulación en la carrera de Ingeniería Civil.

TABLA DE CONTENIDOS

DEDIC	CATORIA	2
AGRA	DECIMIENTO	3
ÍNDIC	E DE TABLAS	6
ÍNDIC	E DE FIGURAS	7
ÍNDIC	E DE GRÁFICOS	3
ÍNDIC	E DE FOTOGRAFÍAS	
CAPÍT	TULO I. INTRODUCCIÓN	11
1.1.	Realidad problemática	
1.2.	Formulación del problema	
1.3.	Objetivos	
1.3.1.	Objetivo general	23
1.3.2.	Objetivos específicos	23
1.4.	Hipótesis	24
CAPÍT	TULO II. METODOLOGÍA	25
2.1.	Tipo de investigación	25
2.2.	Diseño de investigación	25
2.3.	Variables de Estudio	25
2.4.	Población y muestra (Materiales, instrumentos y métodos)	25
2.4.1.	Unidad de estudio	25
2.4.2.	Población	25
2.4.3.	Muestra	25
2.5.	Técnicas e instrumentos de recolección y análisis de dato	
2.6.	Procedimiento	27
2.6.1.	Procedimiento de recolección de datos	27
2.6.2.	Procedimiento de análisis de datos	28
2.6.3.	Ubicación de las Canteras	28
2.6.4.	Extracción de las Muestras	
2.6.5.	Contenido de Humedad	
2.6.6.	Análisis Granulométrico por Lavado	
2.6.7.	Límites de Plasticidad	
2.6.8.	Clasificación SUCS	
2.6.9.	Proctor Modificado	
2.6.10.	Capacidad Portante CBR	32
CAPÍT	TULO III. RESULTADOS	
3.1.	Contenido de humedad	
3.2.	Límites de Plasticidad	
3.3.	Granulometría por lavado	
3.4.	Clasificación SUCS	
3.5.	Proctor Modificado	
3.6.	California Bearing Radio (CBR)	44

CAPÍ	TULO IV. DISCUSIÓN Y CONCLUSIONES	45
4.1.	Discusión	45
	Clasificación SUCS	
4.1.2.	Proctor Modificado	45
4.1.3.	California Bearing Radio (CBR)	48
4.1.4.	Recomendaciones	50
4.2.	Conclusiones	51
REFE	ERENCIAS	52
ANEX	XOS	54
ANEX	KO N°1 - PANEL FOTOGRÁFICO	55
ANEX	KO N°2 – PROTOCOLOS DE ENSAYOS	63

ÍNDICE DE TABLAS

Tabla 1: Efectividad de los agentes estabilizadores	
Tabla 2: Valores de los límites de Atterberg para los minerales de arcilla	. 20
Tabla 3: Población	. 25
Tabla 4: Muestra	. 26
Tabla 5: Contenido de humedad cantera shultín	. 33
Tabla 6: Contenido de humedad cantera guitarrero	. 33
Tabla 7: Contenido de humedad cantera shudal	
Tabla 8: Límite líquido shultín	
Tabla 9: Límite plástico shultín	. 34
Tabla 10: Límites de consistencia shultín	
Tabla 11: Límite líquido guitarrero	. 35
Tabla 12: Límite plástico guitarrero	. 35
Tabla 13: Límites de consistencia guitarrero	
Tabla 14: Límite líquido shudal	
Tabla 15: Límite plástico shudal	
Tabla 16: Límites de consistencia shudal	
Tabla 17: Granulometría "shultín"	
Tabla 18: Granulometría "guitarrero"	
Tabla 19: Granulometría "shudal"	
Tabla 20: Clasificación SUCS shultín	
Tabla 21: Clasificación SUCS guitarrero	
Tabla 22: Clasificación SUCS shudal	
Tabla 23: Clasificación AASHTO shultín	
Tabla 24: Clasificación AASHTO guitarrero	
Tabla 25: Clasificación AASHTO shudal	
Tabla 26: Resultados proctor modificado	
Tabla 27: Resultados california bearing ratio (CBR)	. 44
Tabla 28: Resumen clasificación SUCS	. 45

ÍNDICE DE FIGURAS

Figura 1: Esquema de una muestra de suelo, para indicación de símbolos usados	. 16
Figura 2: Ubicación cantera shultín	
Figura 3: Ubicación cantera guitarrero	. 30
Figura 4: Ubicación cantera shudal	. 31

ÍNDICE DE GRÁFICOS

Gráfico 1: Curva de fluidez shultín	34
Gráfico 2: Curva de fluidez guitarrero	36
Gráfico 3: Curva de fluidez shudal	37
Gráfico 4: Granulometría "shultín"	38
Gráfico 5: Granulometría "guitarrero"	39
Gráfico 6: Granulometría "shudal"	
Gráfico 7: Esfuerzo vs penetración "muestra patrón"	44
Gráfico 8 CBR - densidad seca "muestra patrón"	44
Gráfico 9: Densidad máxima seca sulfato de calcio	
Gráfico 10: Humedad óptima sulfato de calcio	46
Gráfico 11: Densidad máxima seca cal	
Gráfico 12: Humedad óptima cal	47
Gráfico 13: CBR con sulfato de calcio	48
Gráfico 14: Variación en porcentaje de la muestra patrón con muestras con sulfato de calcio	48
Gráfico 15: CBR con cal	
Gráfico 16: Variación en porcentaje de la muestra patrón con muestras con cal	49

ÍNDICE DE FOTOGRAFÍAS

Fotografía 1: Extracción de la muestra de la cantera	55
Fotografía 2: Secado de Material	55
Fotografía 3: Elaboración del ensayo "Contenido de Humedad"	
Fotografía 4: Tesista en el horno de secado para la elaboración del ensayo "Contenido de Humedad"	56
Fotografía 5: Realización del ensayo "Limites de Atterberg"	57
Fotografía 6: Muestras del ensayo "límites de atterberg"	57
Fotografía 7: Realización del ensayo "análisis granulométrico mediante lavado"	58
Fotografía 8: Chancado de material para realizar los ensayos de proctor y CBR	58
Fotografía 9: Realización del ensayo "proctor modificado"	59
Fotografía 10: Tesista junto al asesor en la realización del ensayo "CBR"	
Fotografía 11: Moldes con las muestras del ensayo "CBR"	60
Fotografía 12: Preparación de los moldes para ensayo "Hinchamiento"	60
Fotografía 13: Realización del ensayo "hinchamiento"	61
Fotografía 14: Drenado de los moldes luego del ensayo "hinchamiento"	61
Fotografía 15; Realización del ensavo "carga – penetración"	

RESUMEN

El objetivo principal de esta tesis fue determinar la capacidad portante de suelo cohesivo estabilizado en 10%, 15% y 25% de Cal y Sulfato de Calcio por reemplazo. Analizando los suelos de 3 canteras: Shultín, El Guitarrero y Shudal, se obtuvo mediante ensayos de laboratorio la clasificación por el Sistema Unificado de Clasificación de Suelos "SUCS": CL (Arcillas inorgánicas de plasticidad baja a media), ML (Limos inorgánicos) y MH (Limos inorgánicos o arcillas de plasticidad alta) respectivamente; se determinó que el suelo más cohesivo fue el último. Se procedió a realizar los ensayos sin agente estabilizador; y luego con la adición de Sulfato de Calcio y Cal en proporciones de 10%, 15% y 25%.

Para el ensayo Proctor Modificado, se obtuvo una densidad máxima seca de 1.654gr/cm3 en la muestra patrón, 1.577gr/cm3, 1.545gr/cm3 y 1.527gr/cm3 para 10%, 15% y 25% de Sulfato de Calcio; y 1.559gr/cm3, 1.560gr/cm3 y 1.561gr/cm3 para 10%, 15% y 25% de Cal respectivamente.

Para el ensayo CBR, se obtuvo un valor de 2.70 en la muestra patrón, 7.00, 4.10 y 4.00; con 10%, 15% y 25% de sulfato de calcio, aumentando en 159%, 52% y 58% respectivamente; y 11.20, 10.80 y 10.60 para 10%, 15% y 25% de cal, aumentando en 315%, 300% y 293% respectivamente; se confirma la hipótesis planteada al incrementar el valor CBR en más de 5% con la adición de ambos estabilizadores.

Palabras clave: Suelo, Estabilización, Cal, Sulfato de Calcio, Cohesivo.

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

En nuestra carrera de Ingeniería Civil uno de los problemas frecuentes que podemos encontrar como profesionales son respecto a los suelos que no cumplen con las características deseadas o mínimas permitidas. Muchas veces es necesario realizar grandes movimientos de tierra para reemplazar el suelo destinado para la obra, lo que genera una mayor inversión para el propietario o para el estado.

La estabilización de un suelo es un proceso que tiene por objeto aumentar su resistencia a la deformación, disminuir su sensibilidad al agua, controlar la erosión y los cambios de volumen. Con ello se puede aprovechar suelos de baja calidad e incluso inadecuados en el cimiento del pavimento (Kraemer et al. 2004).

Según Das (2012), los fines principales de la estabilización de un suelo son:

- -Modificar sus características físicas,
- -Agilizar la construcción y
- -Mejorar la resistencia y durabilidad del mismo.

Álvarez Pabón (2010), indica que es el conjunto de procesos físicos y químicos que tienden a modificar las propiedades de los suelos que interesan para un determinado uso en la ingeniería, logrando como objetivo que la mezcla (material + estabilizante) sea el adecuado para cierto fin, reemplazando este a otros materiales no disponibles o más costosos.

La estabilización de suelos con aditivos es una técnica muy utilizada en Ingeniería Civil que sirve para mejorar las propiedades físicas y mecánicas, sus parámetros son la alta plasticidad, baja permeabilidad y capacidad de soporte

del terreno, lo que los hacen inadecuados para su uso como materiales de construcción. La adición de materiales tales como cal, yeso, cemento y otros aditivos, se utiliza con frecuencia en los suelos críticos, estabilizándolos para mejorar su resistencia (Sánchez, Castro, Ureña, & Azañon, 2014).

Para aplicar métodos químicos, el Profesional Responsable deberá sustentar mediante un estudio técnico, que el suelo alcanzará estabilidad volumétrica, adecuada resistencia, permeabilidad, compresibilidad y durabilidad. Por ningún motivo se debe emplear más del 8% de Cal en el suelo, ya que se aumenta la resistencia, pero también la plasticidad. (RNE C.E. 020, 2012).

En los terrenos arcillosos, particularmente en climas áridos o semiáridos, es altamente probable encontrar problemas relacionados con inestabilidades volumétricas ante la ganancia o pérdida de agua. Existen en la práctica diversos métodos para estabilizar tales suelos; cada método, utiliza diferentes agentes estabilizadores, entre los que se pueden encontrar: la cal, el cemento Portland, productos asfálticos, ácidos orgánicos, resinas y polímeros, sales entre otros. (Diaz & Mejía, 2004).

En la naturaleza, por las condiciones climáticas las arcillas expansivas sufren cambios importantes de contenido de agua: en época de lluvias el estrato superior se satura y en época de estiaje se produce el fenómeno de desecación y esta capa superficial se comporta como un suelo parcialmente saturado (Camarena, Ordoñez, & Guichard, 2014).

Para Fratelli (1993), la compresibilidad de los suelos es una característica propia que los distingue de la roca dura y de otros cuerpos sólidos, y consiste en poder variar substancialmente su estructura interna, volviéndose más compactos, con una reducción de su volumen. Si se comprime una masa

húmeda de arcilla, la humedad y el aire pueden ser expelidos, lo que genera una reducción de volumen que no se recupera inmediatamente cuando se elimina la carga.

Juárez y Rico (2005), señalan que las arcillas están constituidas básicamente por silicatos de aluminio hidratados, presentando, además, en algunas ocasiones, silicatos de magnesio, hierro u otros metales, también hidratados. Estos minerales tienen, casi siempre, una estructura cristalina definida, cuyos átomos se disponen en láminas: la sílica y la alumínica.

Das (2012) considera que, en general, las arcillas expansivas tienen un límite líquido e índice de plasticidad mayores que 40 y 15, respectivamente. Además, señala que la profundidad en un suelo hasta la cual pueden ocurrir cambios periódicos de humedad suele referírsele como zona activa.

En Cajamarca, la gran cantidad de construcciones de viviendas sin asistencia profesional, es decir por un Ingeniero Civil, puede causar problemas ante desastres naturales y/o otros problemas, la construcción en suelos inestables puede causar el colapso de las edificaciones, así como pérdidas humanas y materiales.

Se han realizado estudios a nivel internacional, nacional y local, buscando solucionar problemas de inestabilidad de los suelos, con los cuales se han obtenido resultados favorables en su mayoría.

Altamirano G. & Diaz A. (2015) en su investigación "Estabilización de suelos cohesivos por medio de cal en las vías de la comunidad de San Isidro del Pegón, Municipio Potosí – Rivas concluyó que al analizar un suelo cohesivo con cal aumento favorablemente en su mayoría las propiedades de este suelo que se tomaron, asimismo el CBR, aumento en más del 10%.

Di Rado, Héctor R. – Fabre, Viviana E. – Miño y Federico D. (2000), en su artículo científico sobre estabilización de suelos con tanino, consistió en agregar a un suelo natural un compuesto estabilizante cuyo componente principal es tanino ya antes mezclado con agua y un aldehído, las que se agregaron en diferentes proporciones las cuales fueron 5%, 10 %, 15%, 20%, para cada uno se prepararon 6 probetas aplicando 5 capas de compactación, interesados en saber la influencia de los días de curado en la resistencia, dando un total de 250 probetas, la primera etapa fue preparar mezcla de Tanino + Formol + Agua y se incorporó al suelo, luego se ensayaron las probetas a la prueba de compresión. Los resultados obtenidos dieron como exitoso el proyecto, ya que se pudo alcanzar el mejoramiento buscado en el suelo natural mediante el agregado de diferentes resinas conformadas por tanino y formol, el suelo logró una notable ganancia en la impermeabilidad, manteniendo firme su estabilidad cuando es sometido a la acción del agua, debiendo considerarse adecuados ensayos de laboratorio realizados sobre cada tipo de suelo cuyo comportamiento mecánico e hidráulico se desee mejorar.

Espinoza, 2012, en su Tesis de Investigación "Uso de Estabilizantes Químicos en la Mejora de las Propiedades Físicas y Mecánicas de los Suelos de Fundación Limosa o Arcillosa", concluye que el aumento de la capacidad de soporte de terreno varía entre 75% a un 125% a 14 semanas después de la compactación.

Jara, R (2014), en su Tesis de Investigación "Efecto de la cal como estabilizante de una subrasante de suelo arcilloso", concluye que los resultados obtenidos de ésta evaluación de estabilización son variaciones muy grandes, en el índice de plasticidad bajó a un valor de 9.23 con la adición de cal a 6% siendo el Índice

de plasticidad inicial de 36.87 con la adición de cal al 0%, y una variación considerable en el CBR (capacidad de soporte), logrando alcanzar un valor de 11.48% al adicionarle cal al 4% siendo el CBR con cal al 0% de 2.55%.

Villacreces (2012) Estudió la evaluación de oxidación para tratamiento de suelos contaminados, aplicando un reactivo llamado Fenton a nivel de laboratorio como opción para disminuir tiempo de tratamiento en suelos contaminados, el proceso se llevó a cabo con la recolección de 3 muestras de suelo limpio de diferente textura y 2 muestras de sitios contaminados, las muestras limpias fueron contaminadas con hidrocarburos y sometidas a diversos experimentos con 2 concentraciones 5 y 15 % respectivamente; la conclusión a la que se llego fue que la efectividad de la oxidación química depende de factores como textura del suelo, materia orgánica y concentración de altos de materia orgánica.

Sánchez, Castro Ureña & Azañon, (2014). En su artículo "Estabilización de suelos arcillosos y margas, utilizando residuos industriales: PH e indicadores granulométricos", concluye que la cal dolomítica era tan eficaz como la cal comercial 12 para modificar las propiedades de ambos tipos de suelos.

"Suelo" es un término del que hacen uso diferentes profesantes. La interpretación varía de acuerdo con sus respectivos intereses. Para los fines de esta obra, la palabra suelo representa todo tipo de material terroso, desde un relleno de desperdicio, hasta areniscas parcialmente cementadas o lutitas suaves. (Juárez, 2005)

En 2004, Crespo dice que la mecánica es la parte de la ciencia física que trata de la acción de las fuerzas sobre los cuerpos. De igual forma, la mecánica de suelos es la rama de la mecánica que trata de la acción de las fuerzas sobre la

masa de los suelos. El Dr. Karl Terzaghi definió a la mecánica de suelos como la aplicación de las leyes de la mecánica y la hidráulica a los problemas de la ingeniería que tratan con sedimentos y otras acumulaciones no consolidadas de partículas sólidas, producto de la desintegración química y mecánica de rocas. En un suelo se distinguen 3 fases constituyentes: la sólida, la liquida y la gaseosa. La fase solida está formada por las partículas minerales del suelo (incluyendo la capa solida absorbida); la líquida por el agua (libre, específicamente), aunque en los suelos pueden existir otros líquidos de menor significación; la fase gaseosa comprende sobre todo el aire, si bien pueden estar presente otros gases (vapores sulfurosos), anhídrido carbónico, etc.). La capa viscosa del agua es adsorbida que presenta propiedades intermedias entre la fase sólida y la liquida, suele incluirse en esta última, pues es susceptible de desaparecer cuando el suelo es sometido a una fuerte evaporación (secado). La fase líquida y gaseosa del suelo suele comprenderse en el Volumen de Vacíos, mientras que la fase sólida constituye el Volumen de los sólidos. (Juárez, 2005)

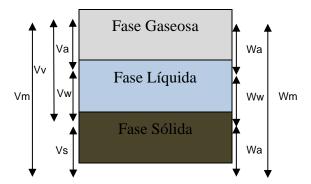


Figura 1: *Esquema de una muestra de suelo, para indicación de símbolos usados* Fuente: Mecánica de Suelos, Juárez B. 2005

Se aplican métodos químicos en la estabilización de suelos, en caso que:

 No cumpla con los requisitos mínimos de resistencia o deformación para sustentar obras de ingeniería civil.

- No pueda ser empleado en condiciones naturales.
- No pueda ser reemplazado o eliminado.

El producto terminado de suelo con aditivo, deberá presentar mejores características de resistencia, con control volumétrico y de polvo superficial, tanto en la etapa de construcción como de servicio. De requerirse mejoras en el comportamiento estructural, debe emplearse aditivos en suelos que contengan más de 25% de finos cohesivos. Estos aditivos también deben ser controladores de polvo. En caso que el estabilizador sea líquido soluble en agua se debe tener en cuenta la evaporación, observando la pérdida de humedad en el suelo, su solidificación y el aumento de la cohesión y resistencia. (RNE C.E. 020, 2012).

La efectividad de los agentes estabilizadores debe cumplir con lo indicado en la siguiente tabla:

Tabla 1: *Efectividad de los agentes estabilizadores*

TIPO DE SUELO	Arcillas Finas	Arcillas Gruesas	Limos Finos	Limos Gruesos	Arenas Finas	Arenas gruesas
Tamaño de	<	0.0006 -	0.002 -	0.01 -	0.06 -	0.4 -
partícula (mm)	0.0006	0.002	0.01	0.06	0.4	2.0
Estabilidad volumétrica	Muy pobre	Regular	Regular	Bueno	Muy bueno	Muy bueno
CAL	SI	SI	SI			
CEMENTO	NO	NO	NO	NO	SI	SI
ASFALTO					SI	SI

Fuente: (RNE CE.020, 2012)

Para la estabilización de los suelos, mezcla de arena y arcilla, cualquiera que sea la proporción de sus elementos, cuando tienen una cantidad adecuada de humedad, son estables y pueden resistir perfectamente un tráfico relativamente intenso sobre la arena, material incoherente. Sin embargo, el terreno natural

tiene graves inconvenientes; solamente en momentos determinados es un firme estable; se convierte en polvo o barro en cuanto la proporción de humedad varía de la que exige, en cada caso, su naturaleza. La observación de los hechos indicados y el estudio científico de las propiedades de los suelos, ha creado una técnica de gran interés, para su estabilización, con un doble fin: construir caminos de costo reducido, perfectamente aceptables para ciertos límites de tráfico, y cimientos capaces de soportar con la debida permanencia de sus características, las cargas que transmiten las capas de rodadura de alta calidad. (Marquina, 2008).

Existen diversos tipos de estabilización y mejoramientos de suelos para carreteras, en donde es importante tener conocimiento de conceptos teóricos, prácticos y experimentales sobre características y propiedades de los suelos en especial el comportamiento de los suelos finos, con la finalidad de obtener el método apropiado de estabilización que puede ser mecánica o química, para un tipo de suelo en especial teniendo en cuenta consideraciones climatológicas, regionales, criterios técnicos de resistencia-durabilidad y aspectos económicos. (Marquina, 2008).

La estabilización con sulfato de calcio, también llamado yeso, ayuda a que exista poca contracción, así como a lograr una resistencia alta, al realizar la mezcla con el suelo no necesita periodos largos de curado, porque el yeso se endurece rápidamente con el agua. También sirve como apoyo de aditivo para acelerar el fraguado en las mezclas de suelo-cemento, es un estabilizador químico económico en el área de la construcción.

Se realizarán diversos ensayos de laboratorio como:

Contenido de humedad

Juárez Badillo, Rico Rodríguez, 2005, indica que es la medición que se lleva a cabo de los granos de una formación sedimentaria, con el fin de ser analizados, tanto de su origen como de sus propiedades mecánicas, y el cálculo de la abundancia de los correspondientes a cada uno de los tamaños previstos por una escala granulométrica.

Granulometría

Juárez Badillo, Rico Rodríguez, 2005, indica que es la medición que se lleva a cabo de los granos de una formación sedimentaria, con el fin de ser analizados, tanto de su origen como de sus propiedades mecánicas, y el cálculo de la abundancia de los correspondientes a cada uno de los tamaños previstos por una escala granulométrica.

Plasticidad

Juárez Badillo, Rico Rodríguez, 2005, en Mecánica de suelos estos ensayos de identificación, es conocer cualitativamente desde el punto de vista de la consistencia, el comportamiento de un suelo dado en función de su humedad. Además de ello nos permite obtener una información cuantitativa del cambio de volumen que puede experimentar un suelo ante variaciones de temperatura. De ello surge el término plasticidad, el cual es definido como la propiedad de algunos suelos capaz de deformarse sin obtener agrietamiento alguno. La plasticidad de los suelos cohesivos no es una propiedad permanente, sino eventual y dependiente de su contenido de agua. Por ejemplo, una arcilla

bastante seca puede tener la consistencia de un ladrillo, con plasticidad nula, pero a la vez con gran contenido de agua.

Límites de Atterberg

Los límites de Atterberg se usan ampliamente para la identificación, descripción y clasificación de suelos cohesivos y como una base para la evaluación preliminar de sus propiedades mecánicas. La utilidad potencial de los límites de Atterberg en mecánica de suelos fue indicada por primera vez por Terzaghi (1925a) cuando observó que "los resultados de las pruebas de suelo simplificadas (límites de Atterberg) dependen precisamente de los mismos factores físicos que determinan la resistencia y la permeabilidad de los suelos (forma de partículas, tamaño efectivo, uniformidad) solo de una manera mucho más compleja. (Mitchell, J. K. y Soga 2005).

Tabla 2: Valores de los límites de Atterberg para los minerales de arcilla

Mineral	Límite líquido	Límite plástico
	(%)	(%)
Montmorillonita (1)	100-90	50-100
Nontronita (1)(2)	37-72	19-27
Illita (3)	60-120	35-60
Caolinita (3)	30-110	25-40
Halosyta hidratada (1)	50-70	47-60
Halosyta deshidratada (2)	35-55	30-45
Atapulgita (4)	160-230	100-120
Clorita (5)	44-47	36-40

Fuente: (Mitchell, J. K. y Soga 2005)

⁽¹⁾ Varias formas iónicas. Valores más altos para monovalentes; más bajos para di y trivalentes.

⁽²⁾ Todas las muestras contienen un 10% de arcilla y un 90% de arena y limo. (3) Varias formas iónicas. Valores más altos para formas di y trivalentes; más bajos para monovalentes. (4) Varias formas iónicas. (5) Algunas cloritas no son plásticas.

Límite líquido

Juárez Badillo, Rico Rodríguez 2005, el objetivo es determinar el contenido de agua de un suelo, por lo cual se emplea la copa de Casagrande, el cual es una copa de bronce, en la cual se coloca una pasta de suelo hasta una cierta altura y se hace que la copa caiga periódicamente hasta golpear la base. El suelo contenido en la copa será ranurado mediante un acanalador. La altura de caída es de 1 cm.

Límite plástico

Juárez Badillo, Rico Rodríguez 2005, indica que es el contenido de agua, expresado en porcentaje respecto al peso del suelo seco, donde el suelo cambia de estado plástico a semisólido. El contenido de agua de la muestra está definido como aquel donde el suelo, después de dejarse moldear hasta alcanzar rollitos de 3.2 mm de diámetro, se empieza a romper en pequeñas piezas. Para ello se utiliza un aproximado de 100 gr de suelo que pasa la malla N° 40, previamente secada al aire.

Clasificación

Con el objeto de dividir los suelos en grupos de comportamiento semejante, con propiedades geotécnicas similares, surgen las denominadas clasificaciones de suelos. La clasificación de suelos consiste, pues, en incluir un suelo en un grupo que presenta un comportamiento semejante. La correlación de unas ciertas propiedades con un grupo de un sistema de clasificación suele ser un proceso empírico puesto a punto a través de muchos años de experiencia. (Das, 2001).

Compactación

Braja, 2010, indica que para realizar la compactación se realizan pruebas estándar de laboratorio usadas para evaluar los pesos específicos secos máximos y los contenidos óptimos de agua para varios suelos, estos son la prueba proctor estándar y prueba proctor modificado.

California Bearing Ratio (CBR)

Hernández, 2008, indica que el objetivo de este ensayo es determinar la capacidad de soporte de suelos y agregados compactados en laboratorio, con una humedad óptima y niveles de compactación variables, con el cual se ha tratado de medir la resistencia al corte de un suelo bajo condiciones de humedad y densidades controladas, permitiendo así obtener un porcentaje de la relación de soporte. Este ensayo se desarrolló por parte de la división de carreteras de California en 1929 como una forma de clasificación y evaluación de la capacidad de un suelo para ser utilizado como sub-base o material de base en construcciones de carreteras y aeropuertos.

Suelo. - Es la capa superficial de la corteza terrestre en la que viven numerosos organismos y crece la vegetación. Es una estructura de vital importancia para el desarrollo de la vida. El suelo sirve de soporte a las plantas y le proporciona los elementos nutritivos necesarios para subdesarrollo.

Estabilización de suelos. - La estabilización de suelos es una técnica cuyo fin es modificar sus características mediante la incorporación de un conglomerante (normalmente cal y/o cemento) para permitir su aprovechamiento.

Cal. - La cal es un elemento cáustico, muy blanco en estado puro, que proviene de la calcinación de la piedra caliza.

Sulfato de calcio. - Es un químico común industrial y de laboratorio. En la forma de γ -anhidrita, (la forma cercana de anhidro), es utilizada como desecador. También es utilizada como coagulante en productos como tofu. En estado natural, sulfato de calcio es translúcido, roca blanca cristalina.

Análisis. - Examen detallado de una cosa para conocer sus características o cualidades, o su estado, y extraer conclusiones, que se realiza separando o considerando por separado las partes que la constituyen.

Cohesivo. - Que mantiene una unión estrecha entre personas o cosas. En esta sección, el autor especifica las definiciones de las variables de estudio, asumidas como parte del trabajo de investigación. Ello indica cómo conceptuará el investigador las mismas durante todo el desarrollo del estudio.

1.2. Formulación del problema

¿Cómo varia la Capacidad Portante de un Suelo Cohesivo Estabilizado con Cal y Sulfato de Calcio al 10%, 15% y 25%?

1.3. Objetivos

1.3.1. Objetivo general

 Determinar la capacidad portante de un suelo cohesivo estabilizado con 10%, 15% y 25% de Cal y Sulfato de Calcio.

1.3.2. Objetivos específicos

 Determinar la capacidad portante de un suelo cohesivo estabilizado con 10%, 15% y 25% de cal por reemplazo en su capacidad portante.

- Determinar la capacidad portante de un suelo cohesivo estabilizado con 10%, 15% y 25% de sulfato de calcio por reemplazo en su capacidad portante
- Comparar cuál de los agentes químicos estabilizantes influye de manera más favorable en la capacidad portante de un suelo cohesivo.

1.4. Hipótesis

La Capacidad Portante de un Suelo Cohesivo Estabilizado con Cal y Sulfato de Calcio al 10%, 15% y 25% aumenta en más de 5%.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

Aplicada

2.2. Diseño de investigación

Experimental

2.3. Variables de Estudio

Independiente: Cloruro de Sodio al 10, 15 y 25%

Cal al 10, 15 y 35%

Dependiente: Capacidad Portante del suelo

2.4. Población y muestra (Materiales, instrumentos y métodos)

2.4.1. Unidad de estudio

Suelo cohesivo estabilizado con 10%, 20% y 25% de Cal y Sulfato de Calcio.

2.4.2. Población

Tabla 3: *Población*

Ensayos	Especímenes
Muestra patrón c1	3
Con 10% de cal	3
Con 15% de cal	3
Con 25% de cal	3
Con 10% de sulfato de calcio	3
Con 15% de sulfato de calcio	3
Con 25% de sulfato de calcio	3
Total	21

2.4.3. Muestra

La NTP. 339.175 establece tres especímenes de suelo para el ensayo de Capacidad portante del suelo. Los porcentajes que se han elegido son basados en la norma CE.020 Suelos y Taludes, la cual dice que no se debería agregar más del 8% de un

agente estabilizante, por lo cual realizaremos esta investigación para ver lo que sucede al utilizar mayores porcentajes.

La Cal y el Sulfato de Calcio son compuestos que ayudan a mejorar propiedades, pero pueden causar problemas en la parte de absorción.

Tabla 4: *Muestra*

Ensayos	Especímenes
Muestra patrón c1	3
Con 10% de cal	3
Con 15% de cal	3
Con 25% de cal	3
Con 10% de sulfato de calcio	3
Con 15% de sulfato de calcio	3
Con 25% de sulfato de calcio	3
Total	21

2.5. Técnicas e instrumentos de recolección y análisis de dato

A) Técnicas para la recolección de datos

Se utilizó el análisis documental consultando bibliotecas virtuales, normas técnicas, artículos científicos, manuales y estudios anteriores, los cuales nos dieron información más detallada acerca de la estabilización y mejoramiento de suelos con sulfato de calcio y cal.

B) Técnicas de análisis de datos

Una vez culminada la fase de recolección y procesamiento de datos, continuamos con el análisis, para esto utilizamos la técnica de visualización de resultados a través de gráficas y tablas dinámicas que podemos generar con la ayuda del programa Microsoft Excel.

C) Instrumentos de recolección de datos

Para esto se utilizaron las guías y protocolos, dados por la universidad, que describen el proceso para realizar los ensayos de mecánica de suelos, basados en las normas técnicas detalladas a continuación:

- Contenido de humedad: NTP 339.127 (ASTM D 2216)
- Análisis granulométrico: NTP 339.128 (ASTM D 422)
- Límites de Atterberg: NTP 339.129 (ASTM D 4318)
- Clasificación SUCS (Sistema unificado de clasificación de suelos): NTP 339.134 (ASTM D 2487)
- Ensayo de compactación Proctor Modificado: NTP 339.141 (ASTM D 1557)
- Ensayo de CBR (California Bearing Ratio): NTP 339.145 (ASTM D 1883)

D) Instrumentos para el análisis de datos

Se utilizaron los programas de Microsoft Excel y Word los cuales nos permitieron elaborar gráficas y tablas dinámicas que fueron de gran ayuda para visualizar nuestros resultados y poder finalmente discutir y compararlos llegando a una conclusión.

2.6. Procedimiento

2.6.1. Procedimiento de recolección de datos

A) Extracción de la muestra

En el mes de agosto del 2018 se identificaron 3 canteras con posibles suelos cohesivos, el primero está ubicado en la zona de Shultín, el segundo en la zona de El Guitarrero y el tercero en la zona de Shudal.Luego se procedió a trasladar el material a las instalaciones de la Universidad Privada del Norte donde en el laboratorio de mecánica de suelos se obtendrían las características y propiedades de estos suelos

para luego de su clasificación SUCS, escoger la cantera de la cual se realizaría la estabilización.

B) Ensayos de mecánica de suelos

Se procedió a realizar los ensayos en el laboratorio de mecánica de suelos, con el cual cuenta la Universidad Privada del Norte, se obtuvieron los datos necesarios mediante las guías de laboratorio proporcionadas por la carrera, donde está indicado el procedimiento y el llenado de protocolos, los cuales se mencionan a continuación:

- Contenido de humedad: NTP 339.127 (ASTM D 2216)
- Análisis granulométrico: NTP 339.128 (ASTM D 422)
- Límites de Atterberg: NTP 339.129 (ASTM D 4318)
- Clasificación SUCS (Sistema unificado de clasificación de suelos): NTP 339.134 (ASTM D 2487)
- Ensayo de compactación Proctor Modificado: NTP 339.141 (ASTM D 1557)
- Ensayo de CBR (California Bearing Ratio): NTP 339.145 (ASTM D 1883)

2.6.2. Procedimiento de análisis de datos

Luego de realizados los ensayos, el procesamiento de datos se llevó a cabo mediante Hojas de Cálculo con el programa Microsoft Excel, se pudo obtener cálculos exactos y también los gráficos correspondientes en cada ensayo de laboratorio. Con los datos ya procesados se procedió a realizar su análisis para poder llegar a una conclusión.

2.6.3. Ubicación de las Canteras

Ubicación política. Cantera Shultín

País: Perú Coordenadas: E: 776347.317

Departamento: Cajamarca N: 9211343.579

Provincia: Cajamarca

Distrito: Los Baños del Inca

Acceso a la cantera.

- Partiendo de la Plaza de Armas, tomamos Dos de Mayo hasta llegar a la Av.
 Hoyos Rubio.
- Siguiendo por Av. Hoyos Rubio llegamos hasta la altura del Aeropuerto Armando Revoredo Iglesias.
- Luego, giramos a la derecha avanzando hasta el final del tramo, paralelo a la pista del aeropuerto, donde doblamos 50 m a la izquierda con dirección a la carretera a Shultín, donde encontraremos nuestra cantera.

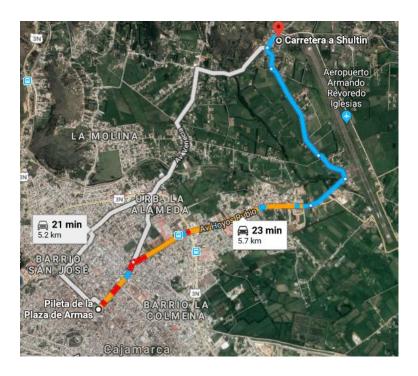


Figura 2: Ubicación cantera shultín

Fuente: Google Earth

Ubicación política. Cantera Guitarrero

País: Perú Coordenadas: E: 775167.629

Departamento: Cajamarca N: 9202987.613

Provincia: Cajamarca

Distrito: Cajamarca

Acceso a la cantera.

- Partiendo de La Recoleta, tomamos la Av. Héroes de San Ramón hasta llegar a Av. Independencia.
- Seguimos por Av. Independencia hacia la Carretera N°8 Camino a la costa, aproximadamente 6 km.
- En esta zona, al borde de la carretera encontramos la cantera.

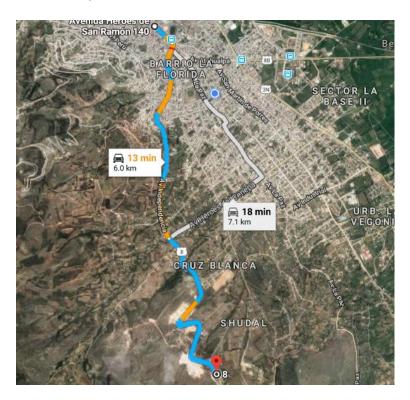


Figura 3: Ubicación cantera guitarrero

Fuente: Google Earth

Ubicación política. Cantera Shudal

País: Perú Coordenadas: E: 775944.641

Departamento: Cajamarca N: 9202932.687

Provincia: Cajamarca

Distrito: Cajamarca

Acceso a la cantera.

- Partiendo desde La Recoleta, avanzamos por la Av. Héroes de San Ramón hasta llegar a Av. Independencia.
- Luego de la primera cuadra giramos hacia la Av. La Paz y continuamos hasta la Av. Héroes del Cenepa.
- Doblamos hacia la derecha hasta Av. Alfonso Ugarte, a través de esta avenida seguiremos hacia Shudal lugar donde se ubica la cantera.

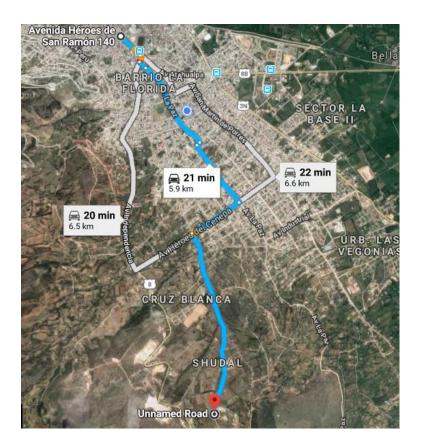


Figura 4: Ubicación cantera shudal

Fuente: Google Earth

2.6.4. Extracción de las Muestras

La extracción de muestras se realizó de forma manual de las canteras seleccionadas.

2.6.5. Contenido de Humedad

Se realizó según la guía de ensayo de contenido de humedad del laboratorio de suelos de la Universidad Privada del Norte.

2.6.6. Análisis Granulométrico por Lavado

Se realizó según la guía de ensayo de análisis granulométrico mediante lavado del laboratorio de suelos de la Universidad Privada del Norte.

2.6.7. Límites de Plasticidad

Se realizó según la guía de ensayo de límites de plasticidad del laboratorio de suelos de la Universidad Privada del Norte.

2.6.8. Clasificación SUCS

Se realizó según la guía de ensayo de clasificación de suelos unificados del laboratorio de suelos de la Universidad Privada del Norte.

2.6.9. Proctor Modificado

Se realizó según la guía de ensayo de compactación Proctor modificado del laboratorio de suelos de la Universidad Privada del Norte.

2.6.10. Capacidad Portante CBR

Se realizó según la guía de ensayo de california bearing ratio - cbr del laboratorio de suelos de la Universidad Privada del Norte.

CAPÍTULO III. RESULTADOS

3.1. Contenido de humedad

Tabla 5:

Contenido de humedad cantera shultín

Con	ieniao ae numeaaa caniera snuiiin						
	CONTENIDO DE HUMEDAD						
ID	DESCRIPCIÓN	UND	<u>1</u>	2	3		
Α	IDENTIFICACIÓN DE LA TARA		T1.1	T1.2	T1.3		
В	PESO DEL RECIPIENTE	gr	47.80	47.80	48.00		
С	RECIPIENTE + SUELO HÚMEDO	gr	201.50	206.40	201.60		
D	RECIPIENTE + SUELO SECO	gr	175.70	180.30	176.30		
E	PESO DEL SUELO HÚMEDO (WMh) C-B	gr	153.70	158.60	153.60		
D	PESO DEL SUELO SECO (Ws) D-B	gr	127.90	132.50	128.30		
W%	% DE HUMEDAD (E-F/F) *100	%	20.17	19.70	19.72		
G	PROMEDIO % DE HUMEDAD	%		19.86			

Se determinó que el contenido de humedad promedio es 19.86%

Tabla 6: Contenido de humedad cantera guitarrero

	CONTENIDO DE HUMEDAD					
ID	DESCRIPCIÓN	UND	<u>1</u>	2	3	
Α	IDENTIFICACIÓN DE LA TARA		T2.1	T2.2	T2.3	
В	PESO DEL RECIPIENTE	gr	36.70	36.50	36.50	
С	RECIPIENTE + SUELO HÚMEDO	gr	202.30	201.80	205.60	
D	RECIPIENTE + SUELO SECO	gr	157.00	156.50	159.60	
Е	PESO DEL SUELO HÚMEDO (WMh) C-B	gr	165.60	165.30	169.10	
D	PESO DEL SUELO SECO (Ws) D-B	gr	120.30	120.00	123.10	
W%	% DE HUMEDAD (E-F/F) *100	%	37.66	37.75	37.37	
G	PROMEDIO % DE HUMEDAD	%		37.59		

Se determinó que el contenido de humedad promedio es 37.59%

Tabla 7: Contenido de humedad cantera shudal

Contentao de númeada cantera shuda							
CONTENIDO DE HUMEDAD							
ID	DESCRIPCIÓN	UND	<u>1</u>	2	3		
Α	IDENTIFICACIÓN DE LA TARA		T3.1	T3.2	T3.3		
В	PESO DEL RECIPIENTE	gr	27.70	27.60	26.70		
С	RECIPIENTE + SUELO HÚMEDO	gr	124.40	121.50	123.50		
D	RECIPIENTE + SUELO SECO	gr	102.70	99.50	100.50		
E	PESO DEL SUELO HÚMEDO (WMh) C-B	gr	96.80	94.00	96.80		
D	PESO DEL SUELO SECO (Ws) D-B	gr	75.00	71.90	73.80		
W %	% DE HUMEDAD (E-F/F) *100	%	29.07	30.74	31.17		
G	PROMEDIO % DE HUMEDAD	%		30.32			

Se determinó que el contenido de humedad promedio es 30.32%

3.2. Límites de Plasticidad

Tabla 8: *Límite líquido shultín*

DETERMINACIÓN LÍMITE LÍQUIDO (LL)									
ID	ID DESCRIPCIÓN UND 1 2 3								
Α	Identificación de Recipiente	N°	T3.1	T3.4	T3.5				
В	Suelo Húmedo + Recipiente	gr	54.40	66.80	62.30				
С	Suelo Seco + Recipiente	gr	45.90	54.70	51.20				
D	Peso de Recipiente	gr	27.60	27.60	27.10				
Е	Peso del Agua	gr	8.50	12.10	11.10				
F	Peso Suelo Seco	gr	18.30	27.10	24.10				
G	Número de Golpes	N	13.00	23.00	34.00				
Н	Contenido de Humedad	%	46.45	44.65	46.06				

Tabla 9: *Límite plástico shultín*

DETERMINACIÓN LÍMITE PLÁSTICO (LP)							
ID	DESCRIPCIÓN	UND	1	2	3		
Α	Identificación de Recipiente	N°	T1.1	T1.5	T1.3		
В	Suelo Húmedo + Tara	gr	49.20	51.20	49.40		
С	Suelo Seco + Tara	gr	49.00	50.70	49.20		
D	Peso de Tara	gr	47.80	47.90	48.00		
Е	Peso del Agua	gr	0.20	0.50	0.20		
F	Peso Suelo Seco	gr	1.20	2.80	1.20		
G	Contenido de Humedad	%	16.67	17.86	16.67		
Н	Promedio Límite Plástico	%		17.06			

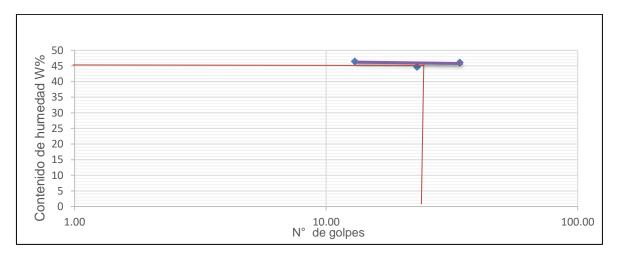


Gráfico 1: Curva de fluidez shultín

Tabla 10: Límites de consistencia shultín

Límites de consistencia							
Límite Líquido:	LL =	45.63%	Número de	Contenido de			
Límite Plástico:	LP =	17.06%	Golpes	Humedad (%)			
Índice de Plasticidad:	IP =	28.57%	13	46.45			
Contenido de Humedad:	Wn =	19.86%	23	44.65			
Grado de Consistencia:	Kw =	0.90	34	46.06			
Grado de Consistencia:	Plástica		25	45.63			

Tabla 11: *Límite líquido guitarrero*

DETERMINACIÓN LÍMITE LÍQUIDO (LL)							
ID	DESCRIPCIÓN	UND	1	2	3		
Α	Identificación de Recipiente	N°	L1	L4	L5		
В	Suelo Húmedo + Recipiente	gr	45.10	45.40	40.80		
С	Suelo Seco + Recipiente	gr	39.60	39.80	36.40		
D	Peso de Recipiente	gr	27.70	27.60	27.10		
Е	Peso del Agua	gr	5.50	5.60	4.40		
F	Peso Suelo Seco	gr	11.90	12.20	9.30		
G	Número de Golpes	N	33.00	23.00	16.00		
Н	Contenido de Humedad	%	46.22	45.90	47.31		

Tabla 12: *Límite plástico guitarrero*

DETERMINACIÓN LÍMITE PLÁSTICO (LP)							
ID	DESCRIPCIÓN	UND	1	2	3		
Α	Identificación de Recipiente	N°	LP1	LP2	LP4		
В	Suelo Húmedo + Tara	gr	29.40	29.60	31.20		
С	Suelo Seco + Tara	gr	28.70	28.90	30.10		
D	Peso de Tara	gr	26.80	27.00	27.00		
Е	Peso del Agua	gr	0.70	0.70	1.10		
F	Peso Suelo Seco	gr	1.90	1.90	3.10		
G	Contenido de Humedad	%	36.84	36.84	35.48		
Н	Promedio Límite Plástico	%		36.39			

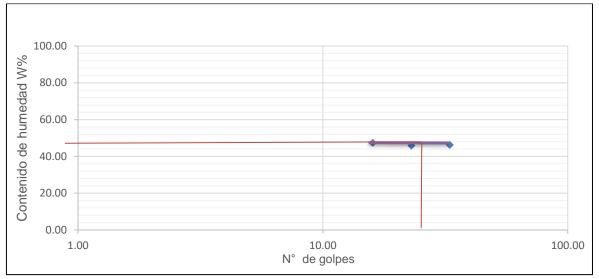


Gráfico 2: Curva de fluidez guitarrero

Tabla 13: Límites de consistencia guitarrero

Límites de consistencia							
Límite Líquido:	LL =	46.35%	Número de	Contenido de			
Límite Plástico:	LP =	36.39%	Golpes	Humedad (%)			
Índice de Plasticidad:	IP =	9.96%	33	46.22			
Contenido de Humedad:	Wn =	37.59%	23	45.90			
Grado de Consistencia:	Kw =	0.88	16	47.31			
Grado de Consistencia:	Plástica		25	46.35			

Tabla 14: *Límite líquido shudal*

DETERMINACIÓN LÍMITE LÍQUIDO (LL)								
ID	DESCRIPCIÓN	UND	1	2	3			
Α	Identificación de Recipiente	N°	3.1	3.4	3.5			
В	Suelo Húmedo + Recipiente	gr	46.70	45.40	40.80			
С	Suelo Seco + Recipiente	gr	39.50	38.70	35.60			
D	Peso de Recipiente	gr	27.70	27.60	27.10			
Е	Peso del Agua	gr	7.20	6.70	5.20			
F	Peso Suelo Seco	gr	11.80	11.10	8.50			
G	Número de Golpes	Ν	29.00	18.00	14.00			
Н	Contenido de Humedad	%	61.02	60.36	61.18			

Tabla 15: Límite plástico shudal

<u> Limite picisii</u>	DETERMINACIÓN LÍMITE PLÁSTICO (LP)					
ID	DESCRIPCIÓN	UND	1	2	3	
Α	Identificación de Recipiente	N°	2.1	2.2	2.4	
В	Suelo Húmedo + Tara	gr	39.50	39.00	41.20	
С	Suelo Seco + Tara	gr	38.80	38.40	39.80	
D	Peso de Tara	gr	36.70	36.50	35.40	
Е	Peso del Agua	gr	0.70	0.60	1.40	
F	Peso Suelo Seco	gr	2.10	1.90	4.40	
G	Contenido de Humedad	%	33.33	31.58	31.82	
Н	Promedio Límite Plástico	%		32.24		

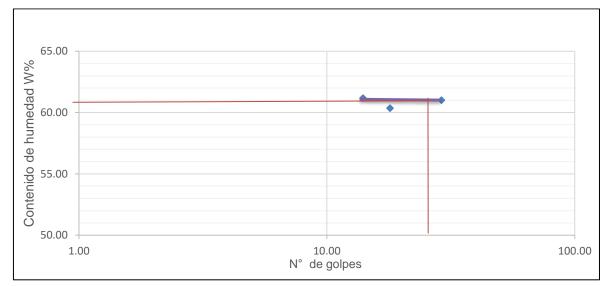


Gráfico 3: Curva de fluidez shudal

Tabla 16: *Límites de consistencia shudal*

Límites de consistencia				
Límite Líquido:	LL =	60.85%	Número de	Contenido de
Límite Plástico:	LP =	32.24%	Golpes	Humedad (%)
Índice de Plasticidad:	IP =	28.61%	29	61.02
Contenido de Humedad:	Wn =	30.32%	18	60.36
Grado de Consistencia:	Kw =	1.07	14	61.18
Grado de Consistencia:	Media Dura, Sólida		25	60.85

3.3. Granulometría por lavado

Tabla 17: Granulometría "shultín"

ANÁL	ISIS GRANUL	OMÉTRICO MEDIAN	ITE TAMIZ	ADO POR L	AVADO
Tamiz N.º 4	Abertura	Peso Retenido	% RP	%RA 0.00	% que pasa 100.00
Nº10	2	11.20	5.60	5.60	94.40
Nº20	0.84	7.80	3.90	9.50	90.50
Nº30	0.59	1.80	0.90	10.40	89.60
Nº40	0.42	5.20	2.60	13.00	87.00
Nº60	0.25	25.40	12.70	25.70	74.30
Nº100	0.15	6.50	3.25	28.95	71.05
Nº200	0.074	4.60	2.30	31.25	68.75
Perdida	Lavado	137.50	68.75	100.00	
Total		200.00			

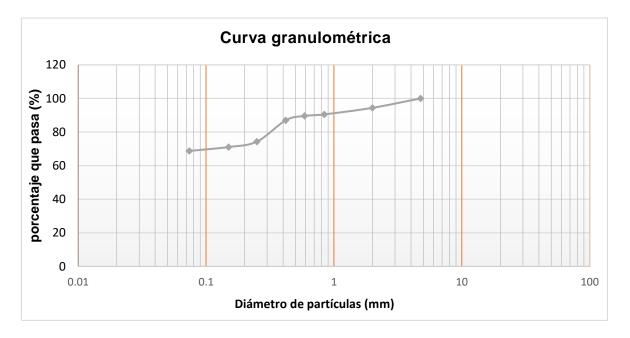


Gráfico 4: Granulometría "shultín"

Tabla 18: Granulometría "guitarrero"

ANÁL	ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO POR LAVADO					
Tamiz	Abertura	Peso Retenido	% RP	%RA	% que pasa	
N.º 4	4.76	0.00	0.00	0.00	100.00	
Nº10	2	3.00	1.50	1.50	98.50	
Nº20	0.84	0.40	0.20	1.70	98.30	
Nº30	0.59	0.20	0.10	1.80	98.20	
Nº40	0.42	1.30	0.65	2.45	97.55	
Nº60	0.25	0.60	0.30	2.75	97.25	
Nº100	0.15	1.40	0.70	3.45	96.55	
Nº200	0.074	7.10	3.55	7.00	93.00	
Perdida	Lavado	186.00	93.00	100.00		
Total		200.00				

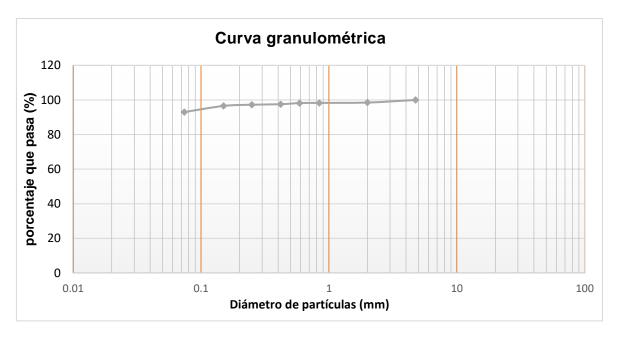


Gráfico 5: Granulometría "guitarrero"

Tabla 19: Granulometría "shudal"

ANÁL	ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO POR LAVADO					
Tamiz	Abertura	Peso Retenido	% RP	%RA	% que pasa	
N.º 4	4.76	0.00	0.00	0.00	100.00	
Nº10	2	1.20	0.60	0.60	99.40	
Nº20	0.84	1.00	0.50	1.10	98.90	
Nº30	0.59	0.30	0.15	1.25	98.75	
Nº40	0.42	0.90	0.45	1.70	98.30	
Nº60	0.25	9.70	4.85	6.55	93.45	
Nº100	0.15	6.30	3.15	9.70	90.30	
Nº200	0.074	3.50	1.75	11.45	88.55	
Perdida	Lavado	177.10	88.55	100.00		
Total		200.00				

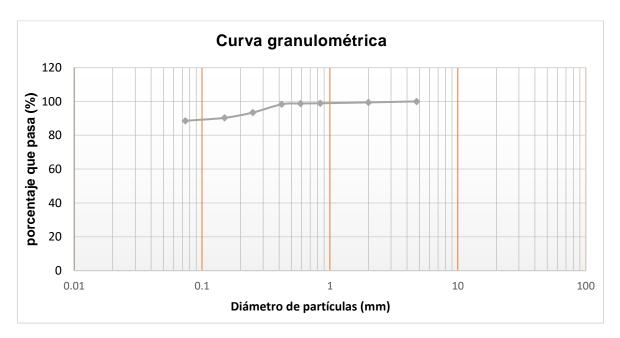


Gráfico 6: Granulometría "shudal"

3.4. Clasificación SUCS

Tabla 20: Clasificación SUCS shultín

Clasificación SOCS shuilin		
CLASIFICACIÓN DE	SUELOS SEGÚI	N S.U.C.S.
Ubicación:	SHULTÍN	
% Que Pasa la Malla N° 200		68.75
Límite Líquido	LL =	41.32 %
Límite Plástico	LP =	19.05 %
Índice de Plasticidad	IP =	22.27 %
Tipo de Suelo Según su Granulometría:		Suelo Fino
		Baja Plasticidad
Tipo de Simbología:		Simbología Normal
Tipo de Suelo:		CL, ML, OL
Suelo:		CL
Características del Suelo:		CL
Descripción del Suelo:		Arcillas inorgánicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas limosas

Tabla 21: Clasificación SUCS guitarrero

CLASIFICACIÓN DE SUELOS SEGÚN S.U.C.S.					
Ubicación:	GUITARRERO				
% Que Pasa la Malla N° 200		93.00			
Límite Líquido	LL =	64.86 %			
Límite Plástico	LP =	39.38 %			
Índice de Plasticidad	IP =	25.48 %			
Tipo de Suelo Según su Granulometría:		Suelo Fino			
		Alta Plasticidad			
Tipo de Simbología:		Simbología Normal			
Tipo de Suelo:		CL, ML, OL			
Suelo:		ML, OL			
Características del Suelo:		ML			
Descripción del Suelo:		Limos inorgánicos y arenas			
•		muy finas, limosas o arcillosas,			
		o limo arcilloso con baja			
		plasticidad			

Tabla 22:

Clasificación SUCS shudal

Ubicación:	SHUDAL	
Estrato:		
% Que Pasa la Malla N° 200		88.55
Límite Líquido	LL =	62.81 %
Límite Plástico	LP =	31.16 %
Índice de Plasticidad	IP =	31.65 %
Tipo de Suelo Según su Granulometría:		Suelo Fino

CLASIFICACIÓN DE SUELOS SEGÚN S.U.C.S.

Alta Plasticidad

Tipo de Simbología:Simbología Normal

Tipo de Suelo: CH, MH, OH
Suelo: MH, OH

Características del Suelo: MH

Descripción del Suelo:

Limos inorgánicos, suelos arenosos finos o limosos con mica, limos elásticos

3.5. Clasificación AASHTO

Tabla 23: Clasificación AASHTO shultín

CLASIFICACIÓN AASHTO					
Parámetros Usados			Ubicación:		SHULTIN
% Que Pasa la Malla N° 200		68.75			
% Que Pasa la Malla N° 40		87.00	Determinacio	ón del Índ	lice de Grupo IG
% Que Pasa la Malla N° 10		94.40		a =	33.75
Límite Líquido	LL =	45.63 %		b =	40.00
Límite Plástico	LP =	17.06 %		c =	5.63
Índice de Plasticidad:	IP =	28.57 %		d =	18.57
Tipo de Suelo:	Material Limo Arcilloso				
Clasificación de Suelos:	A - 7		IG =		16.00
Suelo:	A - 7 - 6	(16)			
Tipo de Material:	Suelo Arcilloso				
Terreno de Fundación:	Regular a Malo				

Clasificación AASHTO guitarrero

CLASIFICACIÓN AASHTO					
Parámetros Usados			Ubicación:	GUITARRERO	
% Que Pasa la Malla N° 200		93.00			
% Que Pasa la Malla N° 40		97.55	Determinación o	del Índice de Grupo IG	
% Que Pasa la Malla N° 10		98.50	a =	40.00	
Límite Líquido	LL =	46.35 %	b =	40.00	
Límite Plástico	LP =	36.39 %	C =	6.35	
Índice de Plasticidad:	IP =	9.96 %	d =	0.00	
Tipo de Suelo:	Material Limo Arcilloso				
Clasificación de Suelos:	A - 5		IG =	10.00	
Suelo:		(10)			
Tipo de Material:	Suelo Limoso				
Terreno de Fundación:	Regular a Malo				

Tabla 25: Clasificación AASHTO shuda

Clasificación AASHTO shudal		,		
	CLASIFICAC	CION AASHT	ΤΟ	
Parámetros Usados			Ubicación:	SHUDAL
% Que Pasa la Malla N° 200		88.55		
% Que Pasa la Malla N° 40		98.30	Determinación del	Índice de Grupo IG
% Que Pasa la Malla N° 10		99.40	a =	40.00
Límite Líquido	LL =	60.85 %	b =	40.00
Límite Plástico	LP =	32.24 %	c =	20.00
Índice de Plasticidad:	IP =	28.61 %	d =	18.61
Tipo de Suelo:	Material Limo Arcilloso			
Clasificación de Suelos:	A - 7		IG =	20.00
Suelo:	A - 7 - 5	(20)		
Tipo de Material:	Suelo Arcilloso			
Terreno de Fundación:	Regular a Malo			

3.6. Proctor Modificado

Tabla 26: Resultados proctor modificado

DESCRIPCIÓN	Densidad máxima seca (gr/cm3)	Humedad óptima (%)
Muestra patrón	1.654	24.2
Muestra + 10% CaSO4 (Sulfato de Calcio)	1.577	25.1
Muestra + 15% CaSO4 (Sulfato de Calcio)	1.545	27.3
Muestra + 25% CaSO4 (Sulfato de Calcio)	1.527	30.2
Muestra + 10% CaO (Cal)	1.559	25.9
Muestra + 15% CaO (Cal)	1.560	26.9
Muestra + 25% CaO (Cal)	1.561	28.3

3.7. California Bearing Radio (CBR)

Tabla 27:
Resultados california bearing ratio (CBR)

DESCRIPCIÓN	CBR 0.1"	CBR 0.2"	CBR DISEÑO
Muestra patrón	3.40	2.70	2.70
Muestra + 10% CaSO4 (Sulfato de Calcio)	6.70	6.20	6.20
Muestra + 15% CaSO4 (Sulfato de Calcio)	4.10	4.65	4.10
Muestra + 25% CaSO4 (Sulfato de Calcio)	4.00	4.50	4.00
Muestra + 10% CaO (Cal)	14.00	11.20	11.20
Muestra + 15% CaO (Cal)	16.20	10.80	10.80
Muestra + 25% CaO (Cal)	15.50	10.40	10.40

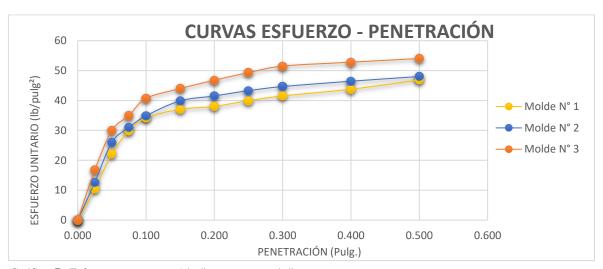


Gráfico 7: Esfuerzo vs penetración "muestra patrón"

Gráfico 8 CBR - densidad seca "muestra patrón"

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1. Discusión

4.1.1. Clasificación SUCS

Se realizó la Clasificación por el sistema SUCS de tres canteras de la ciudad de Cajamarca, para así poder buscar el suelo menos favorable, también se buscó con este ensayo identificar que el suelo cumpla con la característica de ser un suelo cohesivo.

Tabla 28:

Resumen clasificación	iSUCS
CANTERA	CLASIFICACIÓN SUCS
SHULTÍN	CL
GUITARRERO	ML
SHUDAL	MH

De acuerdo a la clasificación de las 3 canteras, se definió que el suelo a estabilizar sería el de la cantera de "Shudal", la cual tuvo como resultado un suelo MH, que representan a limos inorgánicos, suelos arenosos finos o limosos con mica, limos elásticos.

4.1.2. Proctor Modificado

Con la realización de este ensayo de laboratorio se obtuvo los valores de la densidad máxima seca y el óptimo contenido de humedad, asimismo se pudo observar que la densidad máxima seca adicionando sulfato de calcio presenta una disminución al ir aumentando el porcentaje, en el caso de la densidad máxima seca adicionando cal presenta también una disminución, pero manteniéndose en un rango mientras se aumenta el porcentaje, por otro lado para el óptimo contenido de humedad adicionando sulfato de calcio presenta un aumento en relación al porcentaje añadido, en el caso del óptimo contenido de humedad adicionando cal presenta un aumento en relación al porcentaje añadido.

A continuación, se mostrarán los resultados de los datos que se obtuvieron y se discutieron anteriormente.

Sulfato de Calcio.

Densidad Máxima Seca. - Los resultados obtenidos presentan una disminución a medida que la dosificación de sulfato de calcio aumenta.

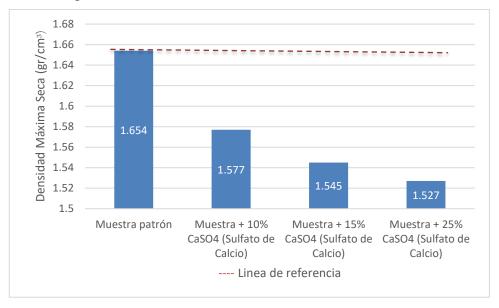


Gráfico 9: Densidad máxima seca sulfato de calcio

Óptimo contenido de humedad. - Los resultados obtenidos presentan un aumento a medida que la dosificación-de sulfato-de calcio aumenta. - - -

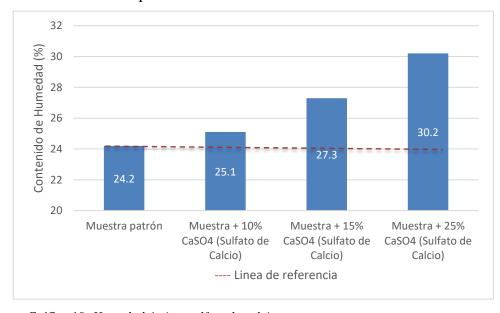


Gráfico 10: Humedad óptima sulfato de calcio

Cal

Densidad Máxima Seca. - Los resultados obtenidos presentan una disminución a medida que la dosificación de sulfato de calcio aumenta.

Gráfico 11: Densidad máxima seca cal

Óptimo contenido de humedad. - Los resultados obtenidos presentan un aumento a medida que la dosificación de sulfato de calcio aumenta.

Gráfico 12: Humedad óptima cal

4.1.3. California Bearing Radio (CBR)

Con adición de sulfato de calcio

Con la realización de este ensayo de laboratorio se obtuvo los valores de CBR aumentan a un 95% de la densidad máxima a un 0.1" y 0.2", esto corrobora la hipótesis planteada que la adición de sulfato de calcio de 10%, 15% y 25% en suelos cohesivos aumenta la Capacidad Portante (CBR), más de 5%.

A continuación, se mostrarán los resultados de los datos que se obtuvieron y se discutieron anteriormente.

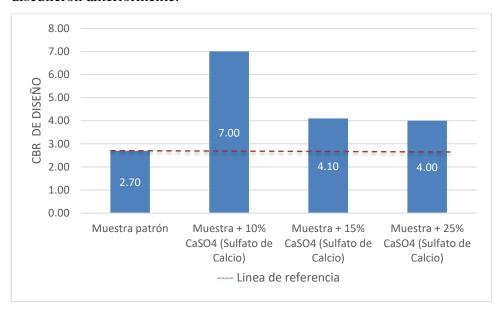


Gráfico 13: CBR con sulfato de calcio

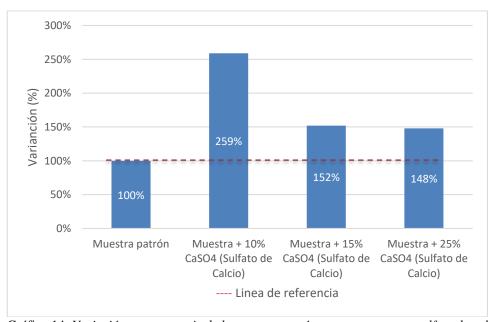


Gráfico 14: Variación en porcentaje de la muestra patrón con muestras con sulfato de calcio

Como se puede observar, la Capacidad Portante aumenta más de 5% en los tres porcentajes añadidos, siendo el mayor aumento al adicionar 10 de Cal con una diferencia de 159% o 1.59 veces su valor inicial.

Con adición de Cal

Con la realización de este ensayo de laboratorio se obtuvo los valores de CBR aumentan a un 95% de la densidad máxima a un 0.1" y 0.2", esto corrobora la hipótesis planteada que la adición de sulfato de calcio de 10%, 15% y 25% en suelos cohesivos aumenta la Capacidad Portante (CBR), más de 5%.

A continuación, se mostrarán los resultados de los datos que se obtuvieron y se discutieron anteriormente.

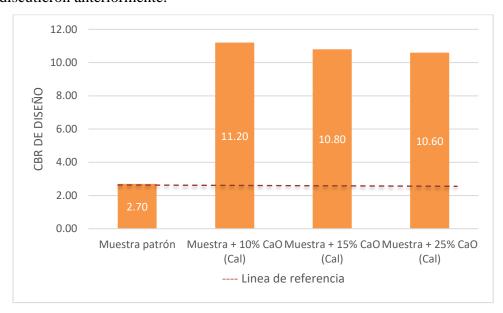


Gráfico 15: CBR con cal

Gráfico 16: Variación en porcentaje de la muestra patrón con muestras con cal

Como se puede observar, la Capacidad Portante aumenta más de 5% en los tres porcentajes añadidos, siendo el mayor aumento al adicionar 10 de Cal con una diferencia de 315% o 3.15 veces su valor inicial.

Comparado con uno de los antecedentes Altamirano G. & Diaz A. (2015) en su tesis titulada "Estabilización de suelos cohesivos por medio de Cal en la Vías de la comunidad San Isidro del Pegón, Municipio Potosí – Rivas, menciona que al estabilizar un suelo cohesivo con Cal la Capacidad Portante (CBR) aumenta en más de un 10%. En relación a los resultados obtenidos por el autor en su investigación, se pudo apreciar que el comportamiento de un suelo cohesivo tiene a aumentar la capacidad portante en relación al aumento del porcentaje de cal, en nuestro caso el aumento es de más de 10% adicionando 10% de Cal, mientras que con 15% y 25% disminuye en relación al porcentaje anterior, pero se mantiene dentro del rango para cumplir la hipótesis.

Otra investigación como la de Beltrán y Copado, ya en su tema de investigación denominada "Estabilización de un suelo arcilloso con cal hidratada, para ser utilizada como capa de subrasante de pavimentos en la colonia San Juan Capistrano de ciudad de Obregón" se concluyó que, al estabilizar un suelo arcilloso con cal, se puedo demostrar el incremento de la capacidad de soporte CBR, los cuales tenían que cumplir con los requerimientos mínimos de la capa subrasante. Los porcentajes de adición fueron 2.5 % de cal en peso al suelo en su estado natural, y se logró que su valor CBR de 2.20% aumentara hasta en un 22%.

Basado en estas investigaciones podemos afirmar que el aumento del CBR de un suelo arcilloso de la zona de Shudal es positivo, con la incorporación de Cal y Sulfato de Calcio.

4.1.4. Recomendaciones

- Investigar el comportamiento de suelos de la zona de Shultín y El Guitarrero con los mismos porcentajes de esta tesis o inclusive menores.
- Investigar el comportamiento de este suelo de la zona de Shudal con porcentajes menores a 10%.
- Investigar el comportamiento que tendría este suelo en el ensayo triaxial de probetas con adición de cal y sulfato de calcio.

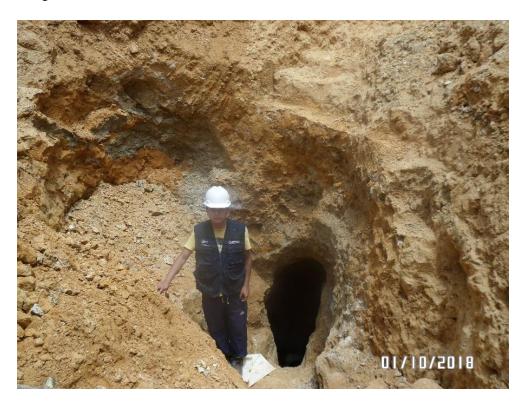
4.2. Conclusiones

- 1. Se comprobó que la hipótesis planteada fue demostrada, ya que con la adición de sulfato de calcio aumenta más del 5% en su capacidad portante (CBR), y con la adición de cal también supera el 5% de aumento en su capacidad portante CBR.
- 2. Se logró definir que la influencia de la adición de sulfato de calcio en 10%, 15% y 25% en el índice California Bearing ratio (CBR) para un suelo cohesivo aumenta su capacidad portante, habiendo obtenido los siguientes resultados para un CBR al 0.1": con la muestra patrón un CBR de 3.40; adicionando 10% de sulfato de calcio un CBR de 7.90; adicionando 15% de sulfato de calcio un CBR de 4.10; adicionando 25% de sulfato de calcio un CBR de 4.00; para un CBR al 0.2", con la muestra patrón un CBR de 2.70; adicionando 10% de sulfato de calcio un CBR de 7.00; adicionando 15% de sulfato de calcio un CBR de 4.65; adicionando 25% de sulfato de calcio un CBR de 4.50.
- 3. Se logró evaluar que la influencia de la adición de cal en 10%, 15% y 25% en el índice California Bearing ratio (CBR) para un suelo cohesivo aumenta su capacidad portante, habiendo obtenido los siguientes resultados para un CBR al 0.1": con la muestra patrón un CBR de 3.40; adicionando 10% de cal un CBR de 14.00; adicionando 15% del cal un CBR de 16.20; adicionando 25% de cal un CBR de 15.80; para un CBR al 0.2", con la muestra patrón un CBR de 2.70; adicionando 10% de cal un CBR de 11.20; adicionando 15% de cal un CBR de 10.80; adicionando 25% de cal un CBR de 10.60.
- 4. Se identificó que el agente estabilizador con el que se obtuvo mejores resultados fue la cal con un aumento para un CBR 0.1" de 12.80 y para un CBR 0.2" de 8.50, mientras que para el sulfato de calcio se obtuvo un CBR 0.1" de 4.50 y para un CBR 0.2" de 4.30.
- 5. Se determinó que, siendo el costo similar de los agentes, hay mayor rentabilidad adicionando cal, puesto que se incrementó en un 315% su valor inicial a diferencia del sulfato de calcio que solo incrementó en un 159%.

REFERENCIAS

- Altamirano G. & Diaz A. (2015) Estabilización de suelos cohesivos por medio de Cal en las Vías de la comunidad de San Isidro del Pegón, Municipio Potosí – Rivas.
 (Tesis de titulación). Universidad Autónoma de Nicaragua.
- Beltrán, M. y Copado, J. (2011). Estabilización de un suelo arcilloso con cal hidratada, para ser utilizada como capa subrasante de pavimentos en la colonia San Juan Capistrano de Ciudad Obregón. (Tesis de titulación). Universidad César Vallejo.
- Camarena, J., Ordoñez, J., & Guichard, A. (2014). Caracterización del subsuelo y análisis de riesgo geotécnico asociado a las arcillas expansivas de la ciudad Tuxtla Gutiérrez. Ingeniería investigación y tecnología, 453-470.
- Sencico. CE.020 (2012). Suelos y Taludes DS N° 017-2012
- Das, BM. 2012. Fundamentos de Ingeniería de Cimentaciones. 7 ed. León Cárdenas,
 J (trad.). Ciudad de México, México, Cengage Learning. 794 p.
- Díaz & Mejía, (2004). "Estabilización de suelos mediante el uso de un aditivo químico a base de compuestos inorgánicos". Bucaramanga, Colombia.
- Di Rado, Héctor R. Fabre, Viviana E. Miño, Federico D. (2000) *Estabilización de suelos con tanino*. 4p
- Fratelli, María G. (1993). *Suelos, Fundaciones y Muros*. Caracas, Venezuela, Bonalde Editores. 570 p.
- IECA. (2008). Estabilización de suelos con cemento o cal. Madrid. 1 p.
- Jara, R (2014) Efecto de la cal como estabilizante de una Subrasante de suelo arcilloso. (Tesis de titulación). Universidad Nacional de Cajamarca
- Juárez Badillo, Rico Rodríguez (2005). *Mecánica de Suelos*. México. Limusa.
- Kraemer, C; Pardillo, JM; Rocci, S; Romana, MG; Sánchez Blanco, V; del Val, MA.
 (2004) *Ingeniería de Carreteras*. Madrid, España. v. 2, 555 p.
- Luis Villacreces (2012). Evaluación de oxidación química asistida con detergente para tratamiento de suelos contaminados 8p
- Manuel Mateos de Vicente (2014). Efectos del cloruro cálcico en la estabilidad de las tierras. 2p.

- Marquina, M. (2008) Uso de las escorias obtenidas como sub producto de la elaboración de acero n°2 de Aceros Arequipa Pisco para fines de cimentación y pavimentación. (Tesis de titulación). Universidad Ricardo Palma.
- Mitchell, J. K. y Soga, K. (2005) Fundamentals of Soil Behavior, John Wiley & Sons, New York.
- MTC E 1109 (2004). Norma técnica de estabilizadores químicos.
- MTC (2008). Ministerio de Transporte y Comunicaciones.
- NTP 339.128 (1999). Análisis granulométrico.
- NTP 339.134 (1999). Clasificación SUCS.
- NTP 339.127 (1999). Contenido de humedad.
- NTP 339.129 (1999). Método de ensayo para determinar el límite líquido, límite plástico e índice de plasticidad de suelos.
- NTP 339.141 (1999). Método de ensayo Proctor modificado.
- NTP 339.145 (1999). Método de ensayo de CBR (Relación de soporte de california) de suelos compactados en laboratorio.
- Pérez. (2012). Estabilización de suelos arcillosos con cenizas de carbón para su uso como subrasante mejorada y/o sub base de pavimentos. Maestro en Ciencias. Lima, PE. 54 y 55p
- Rodríguez, E., Rondón, H., Vélez, D. & Aguirre, L. (2006). Influencia de la inclusión de desechos de PVC sobre el CBR de un material granular tipo subbase. Revista Ingenierías Universidad de Medellin.5(9) pp.21-30.
- Rojas Foinquinos, j., & Alva Hurtado, J. (2005). *Arcillas y lutitas expansivas en el norte y nororiente peruano*. Lima: Universidad nacional de ingeniería.
- Sánchez, C., Castro, J., Ureña, C., & Azañon, J. (2014). Stabilization of Clay and Marly soils using industrial waste, PH and Laser granulometry indicadors. título engineering Geology, 10-17.
- Silva Arce, M. (2016). Mejoramiento de la subrasante con geomallas multiaxiales tipo TX140 y TX160, aplicado a un tramo de la calle Alemania-la Molina Cajamarca. (Tesis de Título). Universidad Privada del Norte.

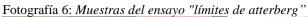


ANEXOS

ANEXO N°1 - PANEL FOTOGRÁFICO

Fotografía 1: Extracción de la muestra de la cantera

Fotografía 3: Elaboración del ensayo "Contenido de Humedad"


Fotografía 4: Tesista en el horno de secado para la elaboración del ensayo "Contenido de Humedad"

Fotografía 5: Realización del ensayo "Limites de Atterberg"

Fotografía 7: Realización del ensayo "análisis granulométrico mediante lavado"

Fotografía 8: Chancado de material para realizar los ensayos de proctor y CBR

10/2018

10/34

Fotografía 9: Realización del ensayo "proctor modificado"

Fotografía 10: Tesista junto al asesor en la realización del ensayo "CBR"

Fotografía 11: Moldes con las muestras del ensayo "CBR"

Fotografía 12: Preparación de los moldes para ensayo "Hinchamiento"

Fotografía 13: Realización del ensayo "hinchamiento"

Fotografía 14: Drenado de los moldes luego del ensayo "hinchamiento"

ANEXO N°2 – PROTOCOLOS DE ENSAYOS

\$	LABOR	RATORIO DE SUE	LOS - UNIVERSIDAD PRIVAD PROTOCOLO	A DEL NORTE CAJAMARCA		
N	ENSAYO:	CONT	ENIDO DE HUMEDAD	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	MTC E 108 /	ASTM D2216 / NTP 339.127	CH-LS-UPNC:		
PRIVADA DEL NORTE	TESIS:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CAL SULFATO DE CALCIO AL 10, 15 Y 25%.			
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA		
UBICACIÓN:	UBICACIÓN:		COLOR DE MATERIAL:	ARENA		
FECHA DE M	FECHA DE MUESTREO:		8 RESPONSABLE:	RENZO GUERRERO MALPICA		
FECHA DE EN	A DE ENSAYO: C-17-09-2018 REVISADO POR:		8 REVISADO POR:			

Temperatura de Secado

60 °C / 110 °C /Ambiente

Método

Horno 110 ± 5 °C

	CONTENIDO DE HU	IMEDAD			
ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación del recipiente o Tara		T1.1	T1.2	T1.3
В	Peso del Recipiente	gr	47.80	47.80	48.00
С	C Recipiente + Suelo Húmedo		201.50	206.40	201.60
D	Recipiente + Suelo Seco	gr	175.70	180.30	176.30
E	Peso del suelo humedo (Wmh) C - B	gr	153.70	158.60	153.60
F	Peso Suelo Seco (Ws) D - B	gr	127.90	132.50	128.30
W%	Porcentaje de humedad (E-F / F) * 100	%	20.17	19.70	19.72
G	Promedio Porcentaje Humedad	%		19.86	

$$(W\%) = \frac{Wmh - Ws}{Ws} * 100$$

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquemenoly	ms	July:
NOMBRE: Renzo Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 17 - 09 - 2018	FECHA: C - 17 - 09 - 2018	FECHA: C - 17 - 09 - 2018

, LA		RATORIO DE SUELO	OS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA		
ENSAYO:		CONTEN	IDO DE HUMEDAD	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	MTC E 108 / AS	TM D2216 / NTP 339.127	CH-LS-UPNC:		
PRIVADA DEL NORTE	TESIS:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON SULFATO DE CALCIO AL 10, 15 Y 25%.			
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA		
UBICACIÓN:		GUITARRERO	COLOR DE MATERIAL:	BLANCO		
FECHA DE N	MUESTREO:	C-16-09-2018	RESPONSABLE:	RENZO GUERRERO MALPICA		
FECHA DE E	NSAYO:	C-17-09-2018	REVISADO POR:			

Temperatura de Secado

Método

60 °C / 110 °C /Ambiente

Horno 110 ± 5 °C

	CONTENIDO DE	HUMEDAD			
ID	D DESCRIPCIÓN		1	2	3
Α	Identificación del recipiente o Tara		T2.1	T2.2	T2.3
В	B Peso del Recipiente		36.70	36.50	36.50
С	C Recipiente + Suelo Húmedo		202.30	201.80	205.60
D	Recipiente + Suelo Seco	gr	157.00	156.50	159.60
E	Peso del suelo humedo (Wmh) C - B	gr	165.60	165.30	169.10
F	Peso Suelo Seco (Ws) D - B	gr	120.30	120.00	123.10
W%	Porcentaje de humedad (E-F / F) * 100	%	37.66	37.75	37.37
G	Promedio Porcentaje Humedad	%		37.59	

$$(W\%) = \frac{Wmh - Ws}{Ws} * 100$$

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGuerron	MB	[July)
NOMBRE: Renzo Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 17 - 09 - 2018	FECHA: C - 17 - 09 - 2018	FECHA: C - 17 - 09 - 2018

_ A	LABOR	ATORIO DE SU	ELOS	- UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA
N	ENSAYO:	CONT	CONTENIDO DE HUMEDAD MTC E 108 / ASTM D2216 / NTP 339.127		CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	MTC E 108			CH-LS-UPNC:
PRIVADA DEL NORTE	PROYECTO:			NTE DE UN SUELO COH IO AL 10, 15 Y 25%.	ESIVO ESTABILIZADO CON CAL Y
CALICATA:		ESTRATO:		TIPO DE MATERIAL:	ARCILLA
UBICACIÓN:		SHUDAL		COLOR DE MATERIAL:	VERDE
FECHA DE M	UESTREO:	C-16-09-201	18	RESPONSABLE:	RENZO GUERRERO MALPICA
FECHA DE EI	NSAYO:	C-17-09-201	18	REVISADO POR:	

Temperatura de Secado

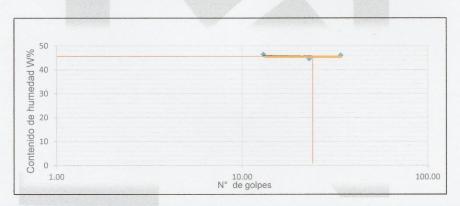
60 °C / 110 °C /Ambiente

Método

Horno 110 ± 5 °C

	CONTENIDO DE I	HUMEDAD			
ID	DESCRIPCIÓN		1	2	3
Α	Identificación del recipiente o Tara		T3.1	T3.2	T3.3
В	Peso del Recipiente	gr	27.70	27.60	26.70
С	C Recipiente + Suelo Húmedo		124.40	121.50	123.50
D	Recipiente + Suelo Seco	gr	102.70	99.50	100.50
E	Peso del suelo humedo (Wmh) C - B	gr	96.80	94.00	96.80
F	Peso Suelo Seco (Ws) D - B	gr	75.00	71.90	73.80
W%	Porcentaje de humedad (E-F / F) * 100	%	29.07	30.74	31.17
G	Promedio Porcentaje Humedad	%		30.32	

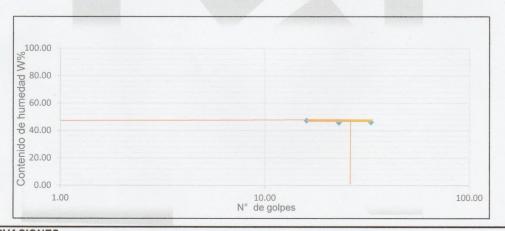
$$(W\%) = \frac{Wmh - Ws}{Ws} * 100$$


OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerreroll	ms	(Jy)
NOMBRE: Renzo Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 17 - 09 - 2018	FECHA: C - 17 - 09 - 2018	FECHA: C - 17 - 09 - 2018

	LABOR	ATORIO DE SUEL	OS - UNIVERSIDAD PRIVADA PROTOCOLO	DEL NORTE CAJAMARCA	
N	ENSAYO:	LÍMITE	S DE PLASTICIDAD	CÓDIGO DEL DOCUMENTO:	
UNIVERSIDAD	NORMA:	ASTM D4318 /	NTP E339.130 - NTP E111	LP-LS-UPNC:	
PRIVADA DEL NORTE PROYECT	PROYECTO:		RTANTE DE UN SUELO COH LLCIO AL 10, 15 Y 25%.	ESIVO ESTABILIZADO CON CAL	
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA	
UBICACIÓN:		SHULTIN	COLOR DE MATERIAL:	ARENA	
FECHA DE M	UESTREO:	C-16-09-2018	RESPONSABLE:	RENZO GUERRERO MALPICA	
FECHA DE E	NSAYO:	C-17-09-2018	REVISADO POR:		

DETERMINACIÓN LÍMITE LÍQUIDO (LL)								
ID	DESCRIPCIÓN	UND	1	2	3	4	5	
A	Identificación de Recipiente	N°	T3.1	T3.4	T3.5			
В	Suelo Húmedo + Recipiente	gr	54.40	66.80	62.30			
C	Suelo Seco + Recipiente	gr	45.90	54.70	51.20			
D	Peso de Recipiente	gr	27.60	27.60	27.10			
E	Peso del Agua	gr	8.50	12.10	11.10			
F	Peso Suelo Seco	gr	18.30	27.10	24.10			
G	Número de Golpes	N	13.00	23.00	34.00			
H	Contenido de Humedad	%	46.45	44.65	46.06			

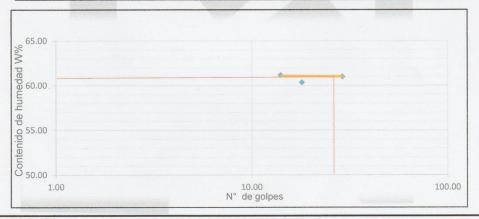
ID	DESCRIPCIÓN	UND	1	2	3	4	5
A	Identificación de Recipiente	N°	T1.1	T1.5	T1.3		
В	Suelo Húmedo + Tara	gr	49.20	51.20	49.40		
С	Suelo Seco + Tara	gr	49.00	50.70	49.20		
D	Peso de Tara	gr	47.80	47.90	48.00		
E	Peso del Agua	gr	0.20	0.50	0.20		
F	Peso Suelo Seco	gr	1.20	2.80	1.20		
G	Contenido de Humedad	%	16.67	17.86	16.67		
Н	Promedio Límite Plástico	%	17.06				


NOMBRE: Renzo Guerrero Malpica FECHA: C - 17 - 09 - 2018 RESPONSABLE DEL ENSAYO COORDINADOR DE LABORATORIO ASESOR JULIUS ASESOR NOMBRE: Ing. Erick Muñoz Barboza NOMBRE: Ing. Iván Mejia Díaz FECHA: C - 17 - 09 - 2018 FECHA: C - 17 - 09 - 2018

4	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO									
N	ENSAYO:	LÍMITES	DE PLASTICIDAD	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD	NORMA:	ASTM D4318 / I	NTP E339.130 - NTP E111	LP-LS-UPNC:						
PRIVADA DEL NORTE	PROYECTO:	CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON O SULFATO DE CALCIO AL 10, 15 Y 25%.								
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA						
UBICACIÓN:		GUITARRERO	COLOR DE MATERIAL:	BLANCO						
FECHA DE N	IUESTREO:	C-16-09-2018	RESPONSABLE:	RENZO GUERRERO MALPICA						
FECHA DE E	NSAYO:	C-18-09-2018	REVISADO POR:							

DETERMINACIÓN LÍMITE LÍQUIDO (LL)							
ID	DESCRIPCIÓN	UND	1	2	3	4	5
Α	Identificación de Recipiente	N°	L1	L4	L5		
В	Suelo Húmedo + Recipiente	gr	45.10	45.40	40.80		
С	Suelo Seco + Recipiente	gr	39.60	39.80	36.40		
D	Peso de Recipiente	gr	27.70	27.60	27.10		
E	Peso del Agua	gr	5.50	5.60	4.40		
F	Peso Suelo Seco	gr	11.90	12.20	9.30		
G	Número de Golpes	N	13.00	23.00	34.00		
Н	Contenido de Humedad	%	46.22	45.90	47.31		

ID	DESCRIPCIÓN	UND	1	2	3	4	5
Α	Identificación de Recipiente	N°	LP1	LP2	LP4		
В	Suelo Húmedo + Tara	gr	29.40	29.60	31.20		
C	Suelo Seco + Tara	gr	28.70	28.90	30.10		
D	Peso de Tara	gr	26.80	27.00	27.00		
E	Peso del Agua	gr	0.70	0.70	1.10		
F	Peso Suelo Seco	gr	1.90	1.90	3.10		
G	Contenido de Humedad	%	36.84	36.84	35.48		
Н	Promedio Límite Plástico	%		36.39			


OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGUETTERON	ms	(They)
NOMBRE: Renzo Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 18 - 09 - 2018	FECHA: C - 18 - 09 - 2018	FECHA: C - 18 - 09 - 2018

A	LABOR	ATORIO DE SUE	LOS - UNIVERSIDAD PRIVADA PROTOCOLO	DEL NORTE CAJAMARCA					
N	ENSAYO:	LÍMIT	ES DE PLASTICIDAD	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	ASTM D4318	/ NTP E339.130 - NTP E111	LP-LS-UPNC:					
PRIVADA DEL NORTE	PROYECTO:	CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CAI SULFATO DE CALCIO AL 10, 15 Y 25%.							
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA					
UBICACIÓN:	UBICACIÓN:		COLOR DE MATERIAL:	VERDE					
FECHA DE M	UESTREO:	C-16-09-2018	RESPONSABLE:	RENZO GUERRERO MALPICA					
FECHA DE E	FECHA DE ENSAYO:		REVISADO POR:						

DETERMINACIÓN LÍMITE LÍQUIDO (LL)							
ID	DESCRIPCIÓN	UND	1	2	3	4	5
A	Identificación de Recipiente	N°	3.1	3.4	3.5		-
В	Suelo Húmedo + Recipiente	gr	46.70	45.40	40.80		
С	Suelo Seco + Recipiente	gr	39.50	38.70	35.60		
D	Peso de Recipiente	gr	27.70	27.60	27.10		
E	Peso del Agua	gr	7.20	6.70	5.20		
F	Peso Suelo Seco	gr	11.80	11.10	8.50		
G	Número de Golpes	N	13.00	23.00	34.00		
Н	Contenido de Humedad	%	61.02	60.36	61.18		

DETERMINACIÓN LÍMITE PLÁSTICO (LP)								
ID	DESCRIPCIÓN	UND	1	2	3	4	5	
Α	Identificación de Recipiente	N°	2.1	2.2	2.4			
В	Suelo Húmedo + Tara	gr	39.50	39.00	41.20			
С	Suelo Seco + Tara	gr	38.80	38.40	39.80			
D	Peso de Tara	gr	36.70	36.50	35.40			
E	Peso del Agua	gr	0.70	0.60	1.40			
F	Peso Suelo Seco	gr	2.10	1.90	4.40			
G	Contenido de Humedad	%	33.33	31.58	31.82			
Н	Promedio Límite Plástico	%		32.24				

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGuerreroll	ms	(14)
NOMBRE: Renzo Guerrero Malpica	NOMBRE. Ing. Erick Muñoz Barboza	NOMBRE. Ing. Iván Mejía Díaz
FECHA: C - 20 - 09 - 2018	FECHA: C - 20 - 09 - 2018	FECHA: C - 20 - 09 - 2018

	LABO	RATORIO DE S	UELOS	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA				
A 27	PROTOCOLO								
N	ENSAYO:	ANÁLISIS TA	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD	NORMA:		AS						
PRIVADA DEL NORTE	TESIS:	CAPACIDAD SULFATO D		IESIVO ESTABILIZADO CON CAL Y					
CALICATA:		ESTRATO:		TIPO DE MATERIAL:	ARCILLA				
UBICACIÓN:		SHULTI	N	COLOR DE MATERIAL:	ARENA				
FECHA DE N	FECHA DE MUESTREO:		018	RESPONSABLE:	RENZO GUERRERO MALPICA				
FECHA DE E	FECHA DE ENSAYO:		018	REVISADO POR:					

Peso de muestra seca; Ws	200 gr
--------------------------	--------

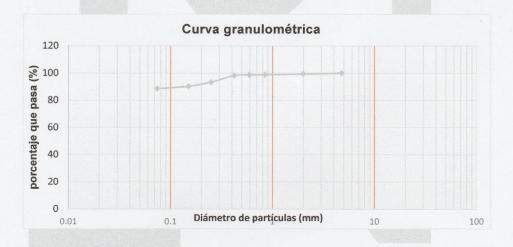
A	NALISIS GRAN	ULOMÉTRICO MEDIAI	VIE TAMIZ	ADO POR L	AVADO
Tamiz	Abertura	Peso Retenido	% RP	%RA	% que pasa
Nº 4	4.76	0.00	0.00	0.00	100.00
N°10	2	11.20	5.60	5.60	94.40
N°20	0.84	7.80	3.90	9.50	90.50
N°30	0.59	1.80	0.90	10.40	89.60
N°40	0.42	5.20	2.60	13.00	87.00
Nº60	0.25	25.40	12.70	25.70	74.30
Nº100	0.15	6.50	3.25	28.95	71.05
N°200	0.074	4.60	2.30	31.25	68.75
Perdida	Lavado	137.50	68.75	100.00	
Total		200.00			

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGuerrerol	m12	
NOMBRE: Renzo Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 20 - 09 - 2018	FECHA: C - 20 - 09 - 2018	FECHA: C - 20 - 09 - 2018

	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA					
2	PROTOCOLO					
N	ENSAYO:	ANÁLISIS GRANULOMETRIA MEDIANTE TAMIZADO POR LAVADO		CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	A	STM D421	AGTL-LS-UPNC:		
DEL NORTE	TESIS:	CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CAL SULFATO DE CALCIO AL 10, 15 Y 25%.				
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA		
UBICACIÓN:		GUITARRERO	COLOR DE MATERIAL:	BLANCO		
FECHA DE M	FECHA DE MUESTREO:		RESPONSABLE:	RENZO GUERRERO MALPICA		
FECHA DE ENSAYO:		C-21-09-2018	REVISADO POR:			

Peso de muestra seca; Ws	200	gr

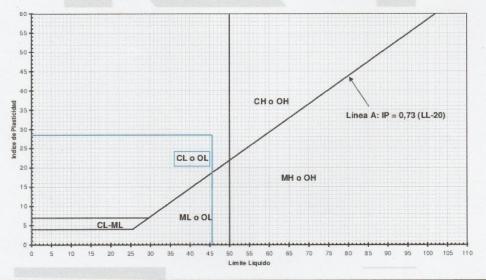
ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO POR LAVADO					
Tamiz	Abertura	Peso Retenido	% RP	%RA	% que pasa
Nº 4	4.76	0.00	0.00	0.00	100.00
N°10	2	3.00	1.50	1.50	98.50
Nº20	0.84	0.40	0.20	1.70	98.30
N°30	0.59	0.20	0.10	1.80	98.20
N°40	0.42	1.30	0.65	2.45	97.55
Nº60	0.25	0.60	0.30	2.75	97.25
Nº100	0.15	1.40	0.70	3.45	96.55
N°200	0.074	7.10	3.55	7.00	93.00
Perdida	Lavado	186.00	93.00	100.00	
Total		200.00			


OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerierol	mas	(14)
NOMBRE: Renzo Guerrero Malpica	NOMBŘE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 21 - 09 - 2018	FECHA: C - 21 - 09 - 2018	FECHA: C - 21 - 09 - 2018

	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA						
W 17		PROTOCOLO					
N	ENSAYO:	ANÁLISIS GRANULOMETRIA MEDIANTE TAMIZADO POR LAVADO		CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD PRIVADA DEL NORTE	NORMA:		ASTM D421	AGTL-LS-UPNC:			
	TESIS:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CAI SULFATO DE CALCIO AL 10, 15 Y 25%.				
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA			
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE			
FECHA DE M	(UESTREO:	C-16-09-2018	RESPONSABLE:	RENZO GUERRERO MALPICA			
FECHA DE ENSAYO:		C-24-09-2018	REVISADO POR:				

Peso de muestra seca; Ws	200	gr

ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO POR LAVADO					
Tamiz	Abertura	tura Peso Retenido	% RP	%RA	% que pasa
N° 4	4.76	0.00	0.00	0.00	100.00
Nº10	2	1.20	0.60	0.60	99.40
N°20	0.84	1.00	0.50	1.10	98.90
N°30	0.59	0.30	0.15	1.25	98.75
N°40	0.42	0.90	0.45	1.70	98.30
Nº60	0.25	9.70	4.85	6.55	93.45
Nº100	0.15	6.30	3.15	9.70	90.30
N°200	0.074	3.50	1.75	11.45	88.55
Perdida	Lavado	177.10	88.55	100.00	
Total		200.00			



OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerrorol	mis	
NOMBRE: Renzo Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 24 - 09 - 2018	FECHA: C - 24 - 09 - 2018	FECHA: C - 24 - 09 - 2018

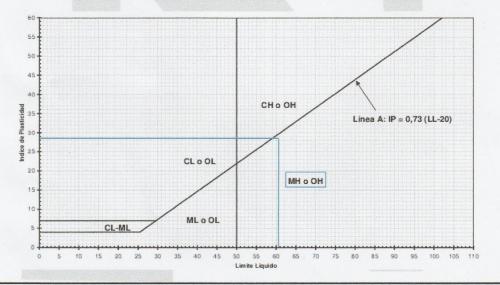
	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA							
A 37		PROTOCOLO						
N	ENSAYO:	CLASIFICACI		E SUELOS UNIFICADOS SUCS	CÓDIGO DEL DOCUMENTO: SUCS-LS-UPNC:			
UNIVERSIDAD	NORMA:	ASTM D2487 / NTP 339.134			30C3-L3-0FNC			
PRIVADA DEL NORTE	PROYECTO:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CAI SULFATO DE CALCIO AL 10, 15 Y 25%.					
CALICATA:		ESTRATO:		TIPO DE MATERIAL:	ARCILLA			
UBICACIÓN:		SHULTIN		COLOR DE MATERIAL:	ARENA			
FECHA DE M	FECHA DE MUESTREO:		18	RESPONSABLE:	RENZO GUERRERO MALPICA			
FECHA DE E	NSAYO:	C-24-09-20	18	REVISADO POR:				

SUELOS DE	LIMOS Y ARCILLAS	ML	Limos inorgánicos y arenas muy finas, limos limpios, arenas finas,	
GRANO FINO			limosas o arcillosa, o limos arcillosos con ligera plasticidad	
		CL	Arcillas inorgánicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas limosas	
	LÍMITE LÍQUIDO <50	OL	Limos orgánicos y arcillas orgánicas limosas de baja plasticidad	
	LIMOS Y ARCILLAS	МН	Limos inorgánicos, suelos arenosos finos o limosos con mica, limos elásticos.	
		СН	Arcillas inorgánicas de plasticidad alta	
	LÍMITE LÍQUIDO > 50	ОН	Arcillas orgánicas de plasticidad media elevada, limos orgánicos.	
	Suelos muy Orgánicos	PT	Turba y otros suelos de alto contenido orgánico.	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	DOCENTE
RGuerrerold	m3	
NOMBRE: Renzo Guerrero Malpica	NOMBRE. Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 24 - 09 - 2018	FECHA: C - 24 - 09 - 2018	FECHA: C - 24 - 09 - 2018

	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA						
- 1		PROTOCOLO						
N	ENSAYO:	CLASIFICA		E SUELOS UNIFICADOS SUCS	CÓDIGO DEL DOCUMENTO: SUCS-LS-UPNC:			
UNIVERSIDAD	NORMA:	AST	M D248	37 / NTP 339.134	3003-L3-0FNC:			
PRIVADA DEL NORTE	PROYECTO:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CA SULFATO DE CALCIO AL 10, 15 Y 25%.					
CALICATA:		ESTRATO:		TIPO DE MATERIAL:	ARCILLA			
UBICACIÓN:		GUITARRERO		COLOR DE MATERIAL:	BLANCO			
FECHA DE MUESTREO:		C-16-09-2018		RESPONSABLE:	RENZO GUERRERO MALPICA			
FECHA DE E	NSAYO:	C-24-09-2	018	REVISADO POR:				

SUELOS DE	LIMOS Y ARCILLAS	ML	Limos inorgánicos y arenas muy finas, limos limpios, arenas finas,	
GRANO FINO			limosas o arcillosa, o limos arcillosos con ligera plasticidad	
		CL	Arcillas inorgánicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas limosas	
Más de la mitad del material pasa por el tamiz N° 200	LÍMITE LÍQUIDO <50	OL	Limos orgánicos y arcillas orgánicas limosas de baja plasticidad	
	LIMOS Y ARCILLAS	МН	Limos inorgánicos, suelos arenosos finos o limosos con mica, limos elásticos.	
14 200		СН	Arcillas inorgánicas de plasticidad alta	
	LÍMITE LÍQUIDO > 50	ОН	Arcillas orgánicas de plasticidad media elevada, limos orgánicos.	
	Suelos muy Orgánicos	PT	Turba y otros suelos de alto contenido orgánico.	



OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	DOCENTE
Rquerreroll	MB	J. J. J.
NOMBRE: Renzo Guerrero Malpica	NOMBRE/Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 24 - 09 - 2018	FECHA: C - 24 - 09 - 2018	FECHA: C - 24 - 09 - 2018

	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA							
2			PROTOCOLO					
N	ENSAYO:	CLASIFICACIÓN	DE SUELOS UNIFICADOS SUCS	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	ASTM D	2487 / NTP 339.134	SUCS-LS-UPNC:				
PRIVADA DEL NORTE	PROYECTO:		RTANTE DE UN SUELO COH LCIO AL 10, 15 Y 25%.	HESIVO ESTABILIZADO CON CAL Y				
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA				
UBICACIÓN:	UBICACIÓN:		COLOR DE MATERIAL:	VERDE				
FECHA DE M	FECHA DE MUESTREO:		RESPONSABLE:	RENZO GUERRERO MALPICA				
FECHA DE EI	NSAYO:	C-24-09-2018	REVISADO POR:					

SUELOS DE	LIMOS Y ARCILLAS	ML	Limos inorgánicos y arenas muy finas, limos limpios, arenas finas,	
GRANO FINO			limosas o arcillosos, o limos arcillosos con ligera plasticidad	
		CL	Arcillas inorgánicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas limosas	
Más de la mitad del material pasa por el tamiz N° 200	LÍMITE LÍQUIDO (50	OL	Limos orgánicos y arcillas orgánicas limosas de baja plasticidad	
	LIMOS Y ARCILLAS	МН	Limos inorgánicos, suelos arenosos finos o limosos con mica, limos elásticos.	
200		СН	Arcillas inorgánicas de plasticidad alta	
	LÍMITE LÍQUIDO > 50	ОН	Arcillas orgánicas de plasticidad media elevada, limos orgánicos.	
	Suelos muy Orgánicos	PT	Turba y otros suelos de alto contenido orgánico.	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	DOCENTE
Rquerreroll	mB	(July:)
NOMBRE: Renzo Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C - 24 - 09 - 2018	FECHA: C - 24 - 09 - 2018	FECHA: C - 24 - 09 - 2018

A	LABO	RATORIO DE SUE	LOS - UNIVERSIDAD PRIVAD. PROTOCOLO	A DEL NORTE CAJAMARCA		
N	ENSAYO:	COMPATACIÓ	ON PROCTOR MODIFICADO	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:		ASTM D1557 / NTP 339.141	CPM-LS-UPNC:		
PRIVADA DEL NORTE	TESIS:	ORTANTE DE UN SUELO COP CALCIO AL 10%, 15% Y 25%	IESIVO ESTABILIZADO CON CAL Y			
CALICATA:	CALICATA:		TIPO DE MATERIAL:	ARCILLA		
UBICACIÓN:	UBICACIÓN:		COLOR DE MATERIAL:	VERDE		
FECHA DE M	FECHA DE MUESTREO:		RESPONSABLE:	RENZO GUERRERO MALPICA		
FECHA DE ENSAYO: C-03-10-18		REVISADO POR:				

	COMPAC	TACIÓN	PROCT	OR MOD	IFICADO	PATR	ÓN			
ID	DESCRIPCIÓN	UND 1		2			3		4	
Α	Peso Molde	gr	417	5.00	417	5.00	417	5.00	417	5.00
В	Peso Muestra Húmeda + Molde	gr	584	9.00	596	0.00	605	8.00	603	6.00
С	Peso Muestra Húmeda	gr	167	4.00	178	5.00	188	3.00	186	1.00
D	Volumen Muestra húmeda	cm ³	940	0.50	940).50	940	0.50	940	.50
F	F Densidad húmeda; Dh		1.	78	1.	90	2.	00	1.	98
G	Recipiente	N°	a	b	a	b	a	b	а	b
Н	Peso Recipiente	gr	49.40	50.40	37.30	38.10	37.50	37.30	36.50	36.50
1	Peso Muestra húmeda + Recipiente	gr	201.50	204.50	200.30	205.30	207.00	204.30	203.70	201.40
J	Peso Muestra Seca + Recipiente	gr	179.90	182.10	174.10	176.46	177.20	172.60	171.20	161.89
K	Peso del Agua	gr	21.60	22.40	26.20	28.84	29.80	31.70	32.50	39.51
L	Peso Muestra seca	gr	130.50	131.70	136.80	138.36	139.70	135.30	134.70	125.39
M	Contenido de Humedad W%	%	16.55	17.01	19.15	20.85	21.33	23.43	24.13	31.51
N	Promedio Contenido de humedad Óptimo	%	16	.78	20	.00	22	.38	27	.82
0	Densidad Seca Máxima; Ds	gr/cm ³	1.5	524	1.5	582	1.6	636	1.5	548

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGuerrom	ING. FRICK RAPAET MUNOX BARBOZA	(July)
NOMBRE: Renzo José Guerrero Malpica	NOMBRER INDADERICK MONOROZOBET boza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/10/2018	FECHA: C/11/10/2018	FECHA: C/11/10/2018

1	LABO	RATORIO DE SU	PROTOCOLO	A DEL NORTE CAJAMARCA		
ENSAYO:		СОМРАТАС	IÓN PROCTOR MODIFICADO	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD			/ ASTM D1557 / NTP 339.141	CPM-LS-UPNC:		
PRIVADA DEL NORTE	TESIS:		PORTANTE DE UN SUELO COP CALCIO AL 10%, 15% Y 25%	ESIVO ESTABILIZADO CON CAL		
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA		
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE		
FECHA DE M	UESTREO:	C-01-10-1	8 RESPONSABLE:	RENZO GUERRERO MALPICA		
FECHA DE E	NSAYO:	C-11-10-1	8 REVISADO POR:			

	COMPACTACIÓN	PROCTO	OR MOD	IFICADO	10% SI	JLFATO	DE CAL	.CIO		
ID	DESCRIPCIÓN	UND	ND 1		2		3		4	
Α	Peso Molde	gr 4175.00		417	5.00	417	5.00	4175.00		
В	Peso Muestra Húmeda + Molde	gr	577	4.00	588	7.00	603	7.00	595	3.00
С	Peso Muestra Húmeda	gr	159	9.00	171	2.00	186	2.00	177	8.00
D	Volumen Muestra húmeda	cm ³	940	0.50	940.50		940	0.50	940.50	
F	Densidad húmeda; Dh	gr/cm³	1.	70	1.82		1.98		1.	89
G	Recipiente	N°	a	b	a	b	a	b	a	b
Н	Peso Recipiente	gr	28.00	27.80	28.00	28.20	26.80	27.00	26.70	27.00
1	Peso Muestra húmeda + Recipiente	gr	129.50	128.90	115.80	100.80	124.00	110.60	128.10	123.10
J	Peso Muestra Seca + Recipiente	gr	114.90	114.30	100.90	88.20	104.30	92.90	105.40	101.30
K	Peso del Agua	gr	14.60	14.60	14.90	12.60	19.70	17.70	22.70	21.80
L	Peso Muestra seca	gr	86.90	86.50	72.90	60.00	77.50	65.90	78.70	74.30
М	Contenido de Humedad W%	%	16.80	16.88	20.44	21.00	25.42	26.86	28.84	29.34
N	Promedio Contenido de humedad Óptimo	%	16	.84	20	.72	26	.14	29	.09
0	Densidad Seca Máxima; Ds	gr/cm ³	1.4	155	1.5	808	1.570		1.464	

OBSERVACIONES:		*
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerrorol	ING PRICK PAPATI MUNICIPE PARROTT	July.)
NOMBRE: Renzo José Guerrero Malpica	NOMBRE ON PROPERTY BARDAZA	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/20/10/2018	FECHA: C/20110/20 P8/ADA DEL NORTE	FECHA: C/26/10/2018

À.	LABOI	RATORIO DE SUEL	OS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA					
ENSAYO:		COMPATACIÓN	PROCTOR MODIFICADO	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E115 / AS	STM D1557 / NTP 339.141	CPM-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CA SULFATO DE CALCIO AL 10%, 15% Y 25%						
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA					
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE					
FECHA DE M	UESTREO:	C-01-10-18	RESPONSABLE:	RENZO GUERRERO MALPICA					
FECHA DE ENSAYO:		C-20-10-18	REVISADO POR:						

	COMPACTACIO	N PROCT	OR MODI	FICADO	15% SU	ILFATO	DE CAL	CIO		
ID	DESCRIPCIÓN	UND		1		2		3	4	
Α	Peso Molde	gr	417	5.00	417	5.00	417	5.00	417	5.00
В	Peso Muestra Húmeda + Molde	gr	573	6.00	585	0.00	602	8.00	590	8.00
С	Peso Muestra Húmeda	gr	156	1.00	167	5.00	185	3.00	173	3.00
D	Volumen Muestra húmeda	cm ³	940	940.50 940.50		940.50		940.50		
F	Densidad húmeda; Dh	gr/cm³	gr/cm³ 1.66 1.78		1.66 1.78		1.	97	1.	84
G	Recipiente	N°	a	b	a	b	a	b	a	b
Н	Peso Recipiente	gr	28.00	27.80	28.00	28.20	26.80	27.00	26.70	27.00
1	Peso Muestra húmeda + Recipiente	gr	130.20	132.30	102.40	114.20	101.30	105.20	94.80	117.40
J	Peso Muestra Seca + Recipiente	gr	112.90	116.60	88.80	98.30	84.30	88.20	76.80	98.20
K	Peso del Agua	gr	17.30	15.70	13.60	15.90	17.00	17.00	18.00	19.20
L	Peso Muestra seca	gr	84.90	88.80	60.80	70.10	57.50	61.20	50.10	71.20
M	Contenido de Humedad W%	%	20.38	17.68	22.37	22.68	29.57	27.78	35.93	26.97
N	Promedio Contenido de humedad Óptimo	%	19	.03	22	.53	28	.67	31	.45
0	Densidad Seca Máxima; Ds	gr/cm³	1.3	394	1.4	154	1.5	31	1.4	102

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerreroll	ING. ERICK RAPACE. MUNOZ BARBOZA Jahorakhrios especializados de Ing. Chill UPN. C	Juny.)
NOMBRE: Renzo José Guerrero Malpica	NOMBRERINGA ERICK MUEOROBALDOZA	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/26/10/2018	FECHA: C/2610/2018	FECHA: C/26/10/2018

A 37	LABOI	RATORIO DE SUEL	OS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA				
ENSAYO:		COMPATACIÓN	PROCTOR MODIFICADO	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:		MTC E115 / ASTM D1557 / NTP 339.141 CPM-LS-UI					
PRIVADA DEL NORTE	TESIS:		RTANTE DE UN SUELO COH ALCIO AL 10%, 15% Y 25%	IESIVO EST <mark>ABILIZA</mark> DO CON CAL Y				
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA				
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE				
FECHA DE M	FECHA DE MUESTREO:		RESPONSABLE:	RENZO GUERRERO MALPICA				
FECHA DE ENSAYO: C-20-10-		C-20-10-18	REVISADO POR:					

	COMPACTACIÓ	N PROCT	OR MODI	FICADO	25% SU	LFATO	DE CAL	CIO			
ID	DESCRIPCIÓN	UND	1	1		2		3		4	
Α	Peso Molde	gr	417	5.00	417	5.00	417	5.00	417	5.00	
В	Peso Muestra Húmeda + Molde	gr	566	1.00	581	1.00	600	9.00	585	9.00	
С	Peso Muestra Húmeda	gr	1486	6.00	163	6.00	183	4.00	1684.00		
D	Volumen Muestra húmeda	cm ³	940	940.50 940.50		940.50		940.50			
F	Densidad húmeda; Dh	gr/cm ³	1.:	1.58 1.74		1.	95	1.	79		
G	Recipiente	N°	a	b	a	b	a	b	a	b	
Н	Peso Recipiente	gr	28.00	27.80	28.00	28.20	26.80	27.00	26.70	27.00	
1	Peso Muestra húmeda + Recipiente	gr	156.40	144.20	132.80	135.30	145.80	127.40	123.40	121.8	
J	Peso Muestra Seca + Recipiente	gr	133.80	123.70	111.90	113.60	116.50	102.70	98.30	97.80	
K	Peso del Agua	gr	22.60	20.50	20.90	21.70	29.30	24.70	25.10	24.00	
L	Peso Muestra seca	gr	105.80	95.90	83.90	85.40	89.70	75.70	71.60	70.80	
M	Contenido de Humedad W%	%	21.36	21.38	24.91	25.41	32.66	32.63	35.06	33.90	
N	Promedio Contenido de humedad Óptimo	%	21	.37	25	.16	32	.65	34	.48	
0	Densidad Seca Máxima; Ds	gr/cm³	1.3	302	1.3	390	1.470		1.331		

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RquerreroM	ING FEKK RAFAEL MUNOZ BARBOZA	July.
NOMBRE: Renzo José Guerrero Malpica	NOMBRES HOUSE PER WILLTON Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/26/10/2018	FECHANI GP28/10/2018	FECHA: C/26/10/2018

A 77	LABO	RATORIO DE SUEI	PROTOCOLO	A DEL NORTE CAJAMARCA
N	ENSAYO:	COMPATACIÓ	N PROCTOR MODIFICADO	CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	MTC E115 / A	STM D1557 / NTP 339.141	CPM-LS-UPNC:
PRIVADA DEL NORTE	TESIS:		ORTANTE DE UN SUELO COP ALCIO AL 10%, 15% Y 25%	IESIVO ESTABILIZADO CON CAL Y
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE
FECHA DE M	IUESTREO:	C-01-10-18	RESPONSABLE:	RENZO GUERRERO MALPICA
FECHA DE ENSAYO:		C-03-10-18	REVISADO POR:	

	COMPA	CTACI	ON PRO	CTOR N	IODIFICA	ADO +10	% CAL			
ID	DESCRIPCIÓN	UND		1	2		3		4	
Α	Peso Molde	gr	417	4175.00		4175.00		5.00	4175.00	
В	Peso Muestra Húmeda + Molde	gr	569	9.00	577	5.00	593	7.70	590	3.30
С	Peso Muestra Húmeda	gr	152	4.00	160	0.00	176	2.70	1728.30	
D	Volumen Muestra húmeda	cm ³	940.50		940.50		940.50		940.50	
F	Densidad húmeda; Dh	gr/cm³	1.0	62	1.70		1.87		1.84	
G	Recipiente	N°	a	b	a	b	a	b	a	b
Н	Peso Recipiente	gr	49.40	50.40	37.30	38.10	37.50	37.30	36.50	36.50
1	Peso Muestra húmeda + Recipiente	gr	152.30	148.30	153.20	170.50	153.20	161.00	142.20	106.40
J	Peso Muestra Seca + Recipiente	gr	138.20	134.10	134.20	149.20	132.20	137.10	118.30	90.10
K	Peso del Agua	gr	14.10	14.20	19.00	21.30	21.00	23.90	23.90	16.30
L	Peso Muestra seca	gr	88.80	83.70	96.90	111.10	94.70	99.80	81.80	53.60
M	Contenido de Humedad W%	%	15.88	16.97	19.61	19.17	22.18	23.95	29.22	30.41
N	Promedio Contenido de humedad Óptimo	%	16	42	19	.39	23	.06	29	9.81
0	Densidad Seca Máxima; Ds	gr/cm ³	1.3	392	1.425		1.523		1.416	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGuerreroll	ING. ERICK RAFAEL MONOZ ARBOZA Laboratorigs especializados de Ing. Civil UPN-E	Thing.
NOMBRE: Renzo José Guerrero Malpica	NOMBŘE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/10/2018	FECHA: C/11/10/2018	FECHA: C/11/10/2018

1	LABO	RATORIO DE SUI	ELOS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA							
N	ENSAYO:	COMPATACI	ÓN PROCTOR MODIFICADO	CÓDIGO DEL DOCUMENTO:							
UNIVERSIDAD	NORMA:	MTC E115 /	ASTM D1557 / NTP 339.141	CPM-LS-UPNC:							
PRIVADA DEL NORTE	TESIS:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CAL Y SULFATO DE CALCIO AL 10%, 15% Y 25%								
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA							
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE							
FECHA DE M	FECHA DE MUESTREO:		RESPONSABLE:	RENZO GUERRERO MALPICA							
FECHA DE E	FECHA DE ENSAYO:		REVISADO POR:								

	COMPA	CTACIO	ON PRO	CTOR M	ODIFICA	ADO +15	% CAL			
ID	DESCRIPCIÓN	UND		1	1	2	3		4	
Α	Peso Molde	gr	417	5.00	417	4175.00		5.00	4175.00	
В	Peso Muestra Húmeda + Molde	gr	5791.10		592	3.70	6043.50		6004.00	
C	Peso Muestra Húmeda	gr	161	6.10	1748.70		1868.50		1829.00	
D	Volumen Muestra húmeda	cm ³	940).50	940.50 940.50		940.50			
F	F Densidad húmeda; Dh		1.	72	1.86		1.99		1.94	
G	Recipiente	N°	а	b	а	b	а	b	a	b
Н	Peso Recipiente	gr	49.40	50.40	37.30	38.10	37.50	37.30	36.50	36.50
1	Peso Muestra húmeda + Recipiente	gr	155.40	148.30	145.20	155.70	163.70	151.30	151.20	149.70
J	Peso Muestra Seca + Recipiente	gr	137.80	131.70	125.10	133.80	136.80	126.40	123.10	121.90
K	Peso del Agua	gr	17.60	16.60	20.10	21.90	26.90	24.90	28.10	27.80
L	Peso Muestra seca	gr	88.40	81.30	87.80	95.70	99.30	89.10	86.60	85.40
M	Contenido de Humedad W%	%	19.91	20.42	22.89	22.88	27.09	27.95	32.45	32.55
N	Promedio Contenido de humedad Óptimo	%	20	.16	22	.89	27.52		32.50	
0	Densidad Seca Máxima; Ds	gr/cm ³	1.4	30	1.5	513	1.558		1.468	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerrenol	ING. ERIOK RAFIJE MUNOZ BARBOZA Laboratorios especializados de Ing. Civil UPN-C	Juny-)
NOMBRE: Renzo José Guerrero Malpica	NOMBRE: ing. Erick Muñoz Barboza	NOMBRE: tng. Iván Mejía Díaz
FECHA: C/11/10/2018	FECHA: C/11/10/2018	FECHA: C/11/10/2018

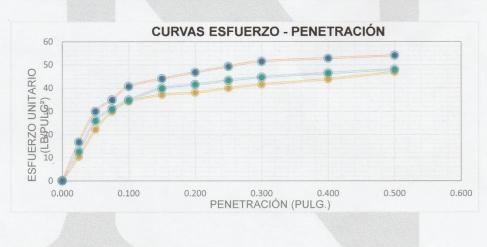
, A	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO									
N	ENSAYO:	СОМРАТА	CIÓN P	ROCTOR MODIFICADO	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD	NORMA:	MTC E115	/ ASTI	M D1557 / NTP 339.141	CPM-LS-UPNC:						
PRIVADA DEL NORTE	TESIS:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CAL SULFATO DE CALCIO AL 10%, 15% Y 25%								
CALICATA:		ESTRATO:		TIPO DE MATERIAL:	ARCILLA						
UBICACIÓN:		SHUDA	L	COLOR DE MATERIAL:	VERDE						
FECHA DE M	FECHA DE MUESTREO:		18	RESPONSABLE:	RENZO GUERRERO MALPICA						
FECHA DE E	FECHA DE ENSAYO:		18	REVISADO POR:							

	COMPA	CTACIO	ON PRO	CTOR N	ODIFICA	ADO +25	% CAL			
ID	DESCRIPCIÓN	UND		1	1	2		3	4	
Α	Peso Molde	gr	417	4175.00		4175.00		5.00	4175.00	
В	Peso Muestra Húmeda + Molde	gr	5944.80		600	2.50	606	8.00	60	52.00
С	C Peso Muestra Húmeda		176	9.80	1827.50		189	3.00	18	77.00
D	Volumen Muestra húmeda	cm ³	940	0.50	940.50		940	0.50	94	10.50
F	F Densidad húmeda; Dh		1.	88	1.94		2.01		2.00	
G	Recipiente	N°	а	b	a	b	a	b	a	b
Н	Peso Recipiente	gr	49.40	50.40	37.30	38.10	37.50	37.30	36.50	36.50
1	Peso Muestra húmeda + Recipiente	gr	154.30	146.70	143.80	143.30	152.30	134.70	162.60	144.50
J	Peso Muestra Seca + Recipiente	gr	133.20	127.10	121.90	121.00	125.10	112.20	129.80	114.80
K	Peso del Agua	gr	21.10	19.60	21.90	22.30	27.20	22.50	32.80	29.70
L	Peso Muestra seca	gr	83.80	76.70	84.60	82.90	87.60	74.90	93.30	78.30
M	Contenido de Humedad W%	%	25.18	25.55	25.89	26.90	31.05	30.04	35.16	37.93
N	Promedio Contenido de humedad Óptimo	%	25	.37	26.39		30.55		36.54	
0	Densidad Seca Máxima; Ds	gr/cm ³	1.5	01	1.537		1.542		1.462	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerreroy	ING. ERICK/RA/AEL MUNOZ BARBOZA Laboratorios/Aspecializados de Ing. Civil UPN-C	July.)
NOMBRE: Renzo José Guerrero Malpica	NOMBAEAND ERCK Muhoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/10/2018	FECHÁ: C/11/10/2018	FECHA: C/11/10/2018

. 4	LABOR	RATORIO DE SU	JELOS	- UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA					
N	ENSAYO:	CALIFORI	NIA BE	ARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MT	C E132	2 / ASTM D188	CBR-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZ SULFATO DE CALCIO AL 10%, 15% Y 25%							
CALICATA:		ESTRATO:		TIPO DE MATERIAL:	ARCILLA					
UBICACIÓN:		SHUDAL		COLOR DE MATERIAL:	VERDE					
FECHA DE M	FECHA DE MUESTREO:		8	RESPONSABLE:	RENZO GUERRERO MALPICA					
FECHA DE E	FECHA DE ENSAYO:		8	REVISADO POR:						

DESCRIPCIÓN	UND		4	RATIO -			***	T	3		
	UND		1			2					
N° Golpes			5		5			5			
N° Golpes por Capa			13		27				55		
Condición de Muestra		Ante	S	Despu.	Ante	s E	espu.	Ante	s D	espu.	
Peso Molde	gr	7243.0	00 7	243.00	7236.0	00 7	236.00	7279.0	00 72	279.00	
Peso Muestra húmeda + Molde	gr	11789.	.00 1:	2285.00	11857.	00 11	945.00	12007.	00 12	070.00	
Peso Muestra húmeda	gr	4546.0	00 5	042.00	4621.0	00 4	709.00	4728.0	00 4	791.00	
Volumen Muestra húmeda		2370.73		370.73	2370.7	73 2	370.73	2370.73		2370.73	
Densidad húmeda ; Dh	gr/	1.92		2.13	1.95	1.95		1.99		2.02	
CONTENIDO DE HUMEDAD										West Control of the C	
Ensayo	N°	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	
Peso Recipiente	gr	28.10	27.00	27.10	26.90	27.10	27.10	27.00	27.00	27.10	
Peso Muestra húmeda + Recipiente	gr	139.90	148.00	177.70	155.70	141.50	132.90	151.90	148.00	157.90	
Peso Muestra Seca + Recipiente	gr	118.10	124.50	146.90	130.60	119.20	111.90	127.50	124.50	132.10	
Peso del Agua	gr	21.80	23.50	30.80	25.10	22.30	21.00	24.40	23.50	25.80	
Peso Muestra Seca	gr	90.00	97.50	119.80	103.70	92.10	84.80	100.50	97.50	105.00	
Contenido de Humedad ; W%	%	24.22	24.10	25.71	24.20	24.21	24.76	24.28	24.10	24.57	
Promedio Contenido de Humedad	%	24.	.16	25.71	24	.21	24.76	24.19		24.57	
Densidad Máxima Seca; Ds	gr/	1.	54	1.69	1.	57	1.59	1.0	61	1.62	


			ENS	AYO DE	HINCHAMIE	NTO PATI	RON			
A CHINALII A DO		MO	LDE N° 0	1	МО	LDE N° 0	2	MOLDE N° 03		
		Lectura	Hinchamiento		Lectura	Hinchamiento		Lectura	Hinchamiento	
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
24	1	0.127	0.127	0.100	0.106	0.106	0.080	0.089	0.089	0.070
48	2	0.146	0.146	0.110	0.121	0.121	0.090	0.100	0.100	0.080
72	3	0.157	0.157	0.120	0.138	0.138	0.110	0.124	0.124	0.100
96	4	0.163	0.163	0.130	0.143	0.143	0.110	0.131	0.131	0.100

OBSERVACIONES:		N.
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerreroll	ING. EFICK RAFIEL MUNOZ 4, 90 A Laboratorios especializa de m. 3, 190 A Laboratorios especializa de m. 3, 190 A Laboratorios especializa	July.)
NOMBRE: Renzo José Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018

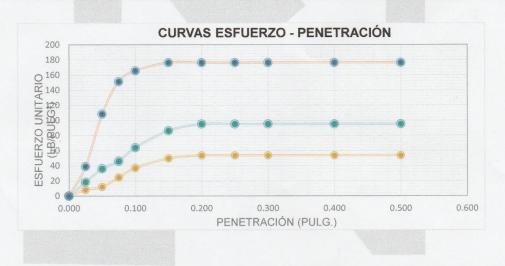
	LABO	RATORIO DE SUE	LOS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA
UNIVERSIDAD PRIVADA DEL NORTE	ENSAYO:	CALIFORNI	IA BEARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:
	NORMA:	MTC	E132 / ASTM D188	CBR-LS-UPNC:
	TESIS:		ORTANTE DE UN SUELO COP CALCIO AL 10%, 15% Y 25%	HESIVO EST <mark>ABILIZA</mark> DO CON CAL Y
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE
FECHA DE N	FECHA DE MUESTREO:		RESPONSABLE:	RENZO GUERRERO MALPICA
FECHA DE E	FECHA DE ENSAYO:		REVISADO POR:	

			CA	ARGA - F	PENETRA	CIÓN PAT	RON				
DENETO	ACIÓN	M	OLDE N°	01	M	OLDE N°	02	MOLDE N° 03			
PENETRACIÓN		Carga	Esfuerzo		Carga	Esfuerzo		Carga	Esfuerzo		
mm	Pulg	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl^2	
0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.64	0.025	15.20	0.76	10.40	18.50	0.93	12.65	24.50	1.23	16.76	
1.27	0.050	32.40	1.62	22.16	38.00	1.90	25.99	43.80	2.19	29.96	
1.91	0.075	43.60	2.18	29.82	45.30	2.27	30.99	51.10	2.56	34.95	
2.54	0.100	50.00	2.50	34.20	51.00	2.55	34.88	59.50	2.98	40.70	
3.81	0.150	54.20	2.71	37.07	58.30	2.92	39.88	64.30	3.22	43.98	
5.08	0.200	55.60	2.78	38.03	60.70	3.04	41.52	68.40	3.42	46.79	
6.35	0.250	58.40	2.92	39.95	63.30	3.17	43.30	72.10	3.61	49.32	
7.62	0.300	60.70	3.04	41.52	65.30	3.27	44.67	75.30	3.77	51.51	
10.16	0.400	64.00	3.20	43.78	67.90	3.40	46.44	77.20	3.86	52.80	
12.70	0.500	68.50	3.43	46.85	70.20	3.51	48.02	79.00	3.95	54.04	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerieroly	ING. ERICH RAFAEL JUNOZ BARBOZA Laboratorios/especializaros de Ing. Civil UPN-C	July.)
NOMBRE: Renzo José Guerrero Malpica	NOMBREF HIS PEROK MUROZ BETOZA	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018

. 4	LABO	RATORIO DE SI	UELOS	PROTOCOLO	A DEL NORTE CAJAMARCA
N	ENSAYO:	CALIFOR	RNIA BI	EARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	M	TC E13	32 / ASTM D188	CBR-LS-UPNC:
PRIVADA DEL NORTE	TESIS:			ANTE DE UN SUELO COH CIO AL 10%, 15% Y 25%	IESIVO EST <mark>ABILIZA</mark> DO CON CAL Y
CALICATA:		ESTRATO:		TIPO DE MATERIAL:	ARCILLA
UBICACIÓN:		SHUDA	L	COLOR DE MATERIAL:	VERDE
FECHA DE MUESTREO:		C-01-10-	18	RESPONSABLE:	RENZO GUERRERO MALPICA
FECHA DE ENSAYO:		C-03-11-	18	REVISADO POR:	

25021201611				00.1	70 00		DE CALCI			
DESCRIPCIÓN	UND		1		2			3		
N° Golpes			5			5		5		
N° Golpes por Capa			13			27			55	
Condición de Muestra		Ante	S	Despu.	Ante	S	Despu.	Ante	s [Despu.
Peso Molde	gr	7243.	00	7243.00	7228.0	00	7228.00	7228.0	00 7	228.00
Peso Muestra húmeda + Molde	gr	11608	.00 1	2087.00	11659.	.00	11748.00	11769.	.00 11	818.00
Peso Muestra húmeda	gr	4365.	00	4844.00	4431.0	00	4520.00	4541.0	00 4	590.00
Volumen Muestra húmeda		2370.	73	2370.73	2370.	73	2370.73	2370.73		370.73
Densidad húmeda ; Dh	gr/	1.84	1	2.04	1.87	1.87 1.91		1.92		1.94
CONTENIDO DE HUMEDAD										
Ensayo	N°	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Peso Recipiente	gr	26.90	27.10	26.90	27.10	27.00	26.90	27.10	27.00	27.00
Peso Muestra húmeda + Recipiente	gr	130.10	139.60	169.40	158.40	152.7	0 148.50	155.70	148.00	156.70
Peso Muestra Seca + Recipiente	gr	109.40	117.10	139.40	132.10	127.5	0 123.70	129.90	123.80	130.50
Peso del Agua	gr	20.70	22.50	30.00	26.30	25.20	24.80	25.80	24.20	26.20
Peso Muestra Seca	gr	82.50	90.00	112.50	105.00	100.5	0 96.80	102.80	96.80	103.50
Contenido de Humedad ; W%	%	25.09	25.00	26.67	25.05	25.0	7 25.62	25.10	25.00	25.31
Promedio Contenido de Humedad	%	25	.05	26.67	25.06		25.62	25	.05	25.31
Densidad Máxima Seca; Ds	gr/	1.	47	1.61	1.49		1.52 1.5		53	1.55


ENSAYO DE HINCHAMIENTO + 10% SULFATO DE CALCIO											
TIEN	IPO	MO	LDE N° 0	1	МО	LDE N° 0	2	MOLDE N° 03			
ACUMULADO		Lectura	Hincha	miento	Lectura	Lectura Hinchamiento		Lectura	Hincha	miento	
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%	
1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
24	1	0.575	0.575	0.450	0.448	0.448	0.350	0.219	0.219	0.170	
48	2	0.702	0.702	0.550	0.473	0.473	0.370	0.245	0.245	0.190	
72	3	0.778	0.778	0.610	0.524	0.524	0.410	0.295	0.295	0.230	
96	4	0.800	0.800	0.630	0.575	0.575	0.450	0.301	0.301	0.240	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGuerreroll	ING. ERICK RAFFEL ATONOZ BARBOZA Laboratorios aspecializados de Ing. Civil UPN-C	Jun 1
NOMBRE: Renzo José Guerrero Malpica	NOMBREE NO APRICK Munoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018

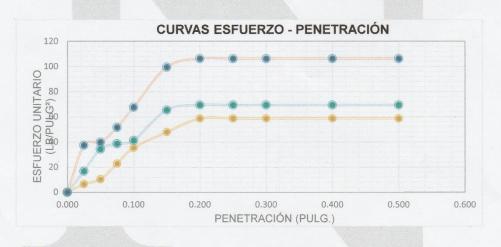
. 4	LABOI	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO									
N	ENSAYO:	CALIFOR	NIA BEARI	NG RATIO - CBR	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD	NORMA:		C E132 / A		CBR-LS-UPNC:						
PRIVADA DEL NORTE	TESIS:			E DE UN SUELO COH LL 10%, 15% Y 25%	ESIVO ESTABILIZADO CON CAL Y						
CALICATA:		ESTRATO:	TIF	O DE MATERIAL:	ARCILLA						
UBICACIÓN:		SHUDAL	. co	LOR DE MATERIAL:	VERDE						
FECHA DE M	FECHA DE MUESTREO:		8 RE	SPONSABLE:	RENZO GUERRERO MALPICA						
FECHA DE E	CHA DE ENSAYO: C-03-11-18		8 RE	VISADO POR:							

DENETO	ACIÓN	M	OLDE Nº	01	M	OLDE Nº	02	MOLDE N° 03			
PENETRACIÓN		Carga Esfuerzo		Carga Esfuerzo			Carga	Esfuerzo			
mm	Pulg	kg	kg/cm ²	Lb/pl2	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²	
0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.64	0.025	11.80	0.59	8.07	27.10	1.36	18.54	57.20	2.86	39.12	
1.27	0.050	17.40	0.87	11.90	52.80	2.64	36.12	158.70	7.94	108.55	
1.91	0.075	35.80	1.79	24.49	67.30	3.37	46.03	221.40	11.07	151.44	
2.54	0.100	54.10	2.71	37.00	93.50	4.68	63.95	242.20	12.11	165.66	
3.81	0.150	72.40	3.62	49.52	126.20	6.31	86.32	257.80	12.89	176.34	
5.08	0.200	78.20	3.91	53.49	139.20	6.96	95.21	257.80	12.89	176.34	
6.35	0.250	78.20	3.91	53.49	139.20	6.96	95.21	257.80	12.89	176.34	
7.62	0.300	78.20	3.91	53.49	139.20	6.96	95.21	257.80	12.89	176.34	
10.16	0.400	78.20	3.91	53.49	139.20	6.96	95.21	257.80	12.89	176.34	
12.70	0.500	78.20	3.91	53.49	139.20	6.96	95.21	257.80	12.89	176.34	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerreroll	ING. EPICK RAFAE MILINOZ DARBOZA Laboraturios es becia lizados de Ing. Civil UPN-C	Thy!
NOMBRE: Renzo José Guerrero Malpica	NOMBRESING Erick-MünderBarboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018

, A	LABO	BORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO									
N	ENSAYO:	CALIFORNIA	A BEARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:							
UNIVERSIDAD	NORMA:	MTC	E132 / ASTM D188	CBR-LS-UPNC:							
PRIVADA DEL NORTE	TESIS:		ORTANTE DE UN SUELO COH ALCIO AL 10%, 15% Y 25%	ESIVO ESTABILIZADO CON CAL Y							
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA							
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE							
FECHA DE M	FECHA DE MUESTREO:		RESPONSABLE:	RENZO GUERRERO MALPICA							
FECHA DE E	ECHA DE ENSAYO: C-03-11-18		REVISADO POR:								

CALIFORN		RINGRA	4110 -	CBR + 15	% SULF	AIOL	E CALCIO)			
DESCRIPCIÓN	UND		1		2			3			
N° Golpes			5			5			5		
N° Golpes por Capa			13			27			55		
Condición de Muestra		Ante	S	Despu.	Ante	S	Despu.	Ante	s [Despu.	
Peso Molde	gr	7265.	00 7	7265.00	7257.0	00	7257.00	7257.0	00 7	257.00	
Peso Muestra húmeda + Molde	gr	11633	.00 1	2105.00	11695.	00 1	1785.00	11772.	00 11	872.00	
Peso Muestra húmeda	gr	4368.	00 4	1840.00	4438.0	00	4528.00	4515.0	00 4	615.00	
Volumen Muestra húmeda		2370.	73 2	2370.73	2370.	73	2370.73	70.73 2370.7		3 2370.73	
Densidad húmeda ; Dh	gr/	1.84		2.04	1.87	1.87 1.91		1.90		1.95	
CONTENIDO DE HUMEDAD											
Ensayo	N°	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	
Peso Recipiente	gr	27.00	27.10	27.00	27.10	27.10	27.00	27.10	27.10	27.10	
Peso Muestra húmeda + Recipiente	gr	141.60	151.20	162.60	151.20	162.7	146.10	155.10	148.40	159.30	
Peso Muestra Seca + Recipiente	gr	117.00	124.60	132.00	124.60	133.6	120.00	127.60	122.40	130.60	
Peso del Agua	gr	24.60	26.60	30.60	26.60	29.10	26.10	27.50	26.00	28.70	
Peso Muestra Seca	gr	90.00	97.50	105.00	97.50	106.5	93.00	100.50	95.30	103.50	
Contenido de Humedad ; W%	%	27.33	27.28	29.14	27.28	27.32	28.06	27.36	27.28	27.73	
Promedio Contenido de Humedad	%	27	.31	29.14	27.30		28.06	27.32		27.73	
Densidad Máxima Seca; Ds	gr/	1.	45	1.58	1.	47	1.49	1.50		1.52	


		ENS	AYO DE H	IINCHAM	IENTO + 15%	6 SULFAT	O DE CA	LCIO			
TIEN	IPO	MO	LDE N° 0	1	МО	LDE N° 0	2	MOLDE N° 03			
ACUMULADO		Lectura	Hincha	miento	Lectura	Lectura Hinchamiento		Lectura	Hincha	miento	
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%	
1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
24	1	0.625	0.625	0.490	0.502	0.502	0.390	0.241	0.241	0.190	
48	2	0.726	0.726	0.570	0.523	0.523	0.410	0.289	0.289	0.230	
72	3	0.813	0.813	0.640	0.578	0.578	0.450	0.304	0.304	0.240	
96	4	0.845	0.845	0.660	0.601	0.601	0.470	0.325	0.325	0.250	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerrerof	ING. FRICK RAFAEL MUROZ BARBOZA Laboratorios especializados de Ing. Civil UPN-C	July)
NOMBRE: Renzo José Guerrero Malpica	NOMBRER MODERICK MURIOZOBarboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018

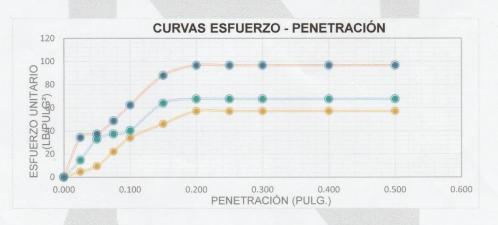
A	LABOI	RATORIO DE SUE	ELOS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA
N	ENSAYO:	CALIFORN	IA BEARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	MTC	E132 / ASTM D188	CBR-LS-UPNC:
PRIVADA DEL NORTE	TESIS:		ORTANTE DE UN SUELO COH CALCIO AL 10%, 15% Y 25%	IESIVO ESTABILIZADO CON CAL Y
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE
FECHA DE M	UESTREO:	C-01-10-18	RESPONSABLE:	RENZO GUERRERO MALPICA
FECHA DE E	FECHA DE ENSAYO:		REVISADO POR:	

PENETRACIÓN		M	OLDE Nº	01	M	OLDE Nº	02	MOLDE N° 03			
		Carga	Esfuerzo		Carga	Carga Esfu		Carga	Esfuerzo		
mm	Pulg	kg	kg/cm ²	Lb/pl2	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²	
0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.64	0.025	9.20	0.46	6.29	24.50	1.23	16.76	54.60	2.73	37.35	
1.27	0.050	14.80	0.74	10.12	50.20	2.51	34.34	58.20	2.91	39.81	
1.91	0.075	33.20	1.66	22.71	56.40	2.82	38.58	75.40	3.77	51.57	
2.54	0.100	51.50	2.58	35.23	60.20	3.01	41.18	98.80	4.94	67.58	
3.81	0.150	69.80	3.49	47.74	95.60	4.78	65.39	145.30	7.27	99.39	
5.08	0.200	85.60	4.28	58.55	101.40	5.07	69.36	155.20	7.76	106.16	
6.35	0.250	85.60	4.28	58.55	101.40	5.07	69.36	155.20	7.76	106.16	
7.62	0.300	85.60	4.28	58.55	101.40	5.07	69.36	155.20	7.76	106.16	
10.16	0.400	85.60	4.28	58.55	101.40	5.07	69.36	155.20	7.76	106.16	
12.70	0.500	85.60	4.28	58.55	101.40	5.07	69.36	155.20	7.76	106.16	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rayerreroll	ING. ERICK RAFABLMUVOZ BARBOZA Laboratofios especializados be ing. Civil UPN-C	Tunky.
NOMBRE: Renzo José Guerrero Malpica	NOMBREER PARK MUROZ Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA/. C/11/11/2018	FECHA: C/11/11/2018

A 77	LABOI	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO									
N	ENSAYO:	CALIFORI	NIA BEARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:							
UNIVERSIDAD	NORMA:		C E132 / ASTM D188	CBR-LS-UPNC:							
PRIVADA DEL NORTE	TESIS:		PORTANTE DE UN SUELO CON CALCIO AL 10%, 15% Y 25%	HESIVO ESTABILIZADO CON CAL Y							
CALICATA:	ALICATA:		TIPO DE MATERIAL:	ARCILLA							
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE							
FECHA DE M	UESTREO:	C-01-10-1	8 RESPONSABLE:	RENZO GUERRERO MALPICA							
FECHA DE EI	NSAYO:	C-03-11-1	8 REVISADO POR:								

CALIFORN	1	1010	1110	ODIT - ZO	70 0027		ONLONG			
DESCRIPCIÓN	UND		1		2				5	
N° Golpes		5			5					
N° Golpes por Capa		13				27				
Condición de Muestra		Ante	S	Despu.	Antes	s D	espu.	Antes	s D	espu.
Peso Molde	gr	7286.0	00	7286.00	7279.0	00 72	279.00	7272.0	00 72	272.00
Peso Muestra húmeda + Molde	gr	11718.	.00	2191.00	11781.	00 11	878.00	11818.	00 11	964.00
Peso Muestra húmeda	gr	4432.0	00	4905.00	4502.0	00 4	599.00	4546.0	00 46	392.00
Volumen Muestra húmeda		2370.	73	2370.73	2370.7	73 23	370.73	2370.73 2		370.73
Densidad húmeda ; Dh	gr/	1.87		2.07	1.90		1.94	1.92		1.98
CONTENIDO DE HUMEDAD										
Ensayo	N°	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Peso Recipiente	gr	27.10	27.00	26.90	27.00	27.10	27.10	27.10	27.10	27.10
Peso Muestra húmeda + Recipiente	gr	164.00	173.6	146.10	134.50	161.10	153.10	163.80	157.80	160.30
Peso Muestra Seca + Recipiente	gr	132.10	139.5	116.90	109.50	129.90	123.10	132.10	127.60	129.10
Peso del Agua	gr	31.90	34.10	29.20	25.00	31.20	30.00	31.70	30.20	31.20
Peso Muestra Seca	gr	105.00	112.5	90.00	82.50	102.80	96.00	105.00	100.50	102.00
Contenido de Humedad ; W%	%	30.38	30.31	32.44	30.30	30.35	31.25	30.19	30.05	30.59
Promedio Contenido de Humedad	%	30.	.35	32.44	30	30.33		30.12		30.59
Densidad Máxima Seca; Ds	gr/	1.4	43	1.56	1.	46	1.48	1.4	47	1.52


		ENS	AYO DE H	IINCHAM	IENTO + 25%	SULFAT	O DE CA	LCIO			
TIEMPO		MO	LDE N° 0	1	MO	LDE N° 0	2	MOLDE N° 03			
ACUMU	LADO Lectura Hinchamiento		Lectura	Lectura Hinchamiento		Lectura	Hinchamiento				
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%	
1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
24	1	0.600	0.600	0.470	0.492	0.492	0.380	0.201	0.201	0.160	
48	2	0.710	0.710	0.550	0.503	0.503	0.390	0.273	0.273	0.210	
72	3	0.790	0.790	0.620	0.548	0.548	0.430	0.301	0.301	0.240	
96	4	0.820	0.820	0.640	0.599	0.599	0.470	0.315	0.315	0.250	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGUErroroll	ING. ERICK PAFAEL MUNOZ BARBOZA	Tung.)
NOMBRE: Renzo José Guerrero Malpica	NOMBRE: ing Enck Munoz Barboza	NOMBRE Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHÁ: C/11/11/2018	FECHA: C/11/11/2018

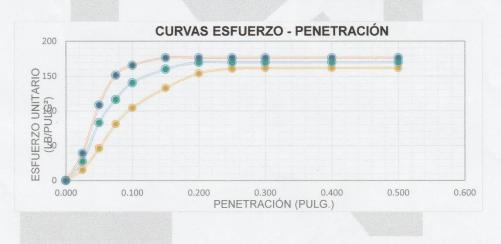
, A	LABOR	RATORIO DE SUE	LOS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA
N	ENSAYO:	CALIFORNI	A BEARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	MTC	E132 / ASTM D188	CBR-LS-UPNC:
PRIVADA DEL NORTE	TESIS:		ORTANTE DE UN SUELO COP CALCIO AL 10%, 15% Y 25%	IESIVO ESTABILIZADO CON CAL Y
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE
FECHA DE M	UESTREO:	C-01-10-18	RESPONSABLE:	RENZO GUERRERO MALPICA
FECHA DE E	FECHA DE ENSAYO:		REVISADO POR:	

PENETRACIÓN		IV	OLDE Nº	01	M	OLDE Nº	02	MOLDE N° 03			
		Carga	Esfuerzo		Carga	Esfuerzo		Carga	Esfuerzo		
mm	Pulg	kg	kg/cm ²	Lb/pl2	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²	
0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.64	0.025	8.20	0.41	4.61	21.50	1.08	14.71	50.30	2.52	34.41	
1.27	0.050	13.80	0.69	9.44	48.20	2.41	32.97	54.70	2.74	37.41	
1.91	0.075	32.20	1.61	22.02	54.70	2.74	37.41	71.20	3.56	48.70	
2.54	0.100	49.80	2.49	34.06	58.90	2.95	40.29	91.20	4.56	62.38	
3.81	0.150	67.30	3.37	46.03	93.41	4.67	63.89	128.40	6.42	87.83	
5.08	0.200	83.40	4.17	57.05	98.90	4.95	67.65	141.20	7.06	96.58	
6.35	0.250	83.40	4.17	57.05	98.90	4.95	67.65	141.20	7.06	96.58	
7.62	0.300	83.40	4.17	57.05	98.90	4.95	67.65	141.20	7.06	96.58	
10.16	0.400	83.40	4.17	57.05	98.90	4.95	67.65	141.20	7.06	96.58	
12.70	0.500	83.40	4.17	57.05	98.90	4.95	67.65	141.20	7.06	96.58	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGuerreroM	ING. ERICHARAFEL MANOZ BARBOZA aboratorio especificación de ing. Curl UPN-C	July)
NOMBRE: Renzo José Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018

, A	LABO	RATORIO DE SUE	ELOS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA
N	ENSAYO:	CALIFORN	IIA BEARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	MTC	E132 / ASTM D188	CBR-LS-UPNC;
PRIVADA DEL NORTE	TESIS:		ORTANTE DE UN SUELO COH CALCIO AL 10%, 15% Y 25%	IESIVO ESTABILIZADO CON CAL Y
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE
FECHA DE M	IUESTREO:	C-01-10-18	RESPONSABLE:	RENZO GUERRERO MALPICA
FECHA DE E	FECHA DE ENSAYO:		REVISADO POR:	

C	ALIFOR	RNIA BEA	ARING	RATIO -	CBR + 1	0% CA				
DESCRIPCIÓN	UND		1			2			3	
N° Golpes			5		5			5		
N° Golpes por Capa			13			27		55		
Condición de Muestra		Ante	Antes De		Antes	S	Despu.	Antes		espu.
Peso Molde	gr	7257.0	00 7	7257.00	7228.0	00 7	7228.00	7272.0	00 72	272.00
Peso Muestra húmeda + Molde	gr	11609.	11609.00 12081.00		11638.	638.00 11735.00		11781.	.00 11	854.00
Peso Muestra húmeda	gr	4352.0	00 4	1824.00	4410.0	00 4507.00		4509.0	00 4	582.00
Volumen Muestra húmeda		2370.	73 2	3 2370.73 2370.73 2370.73		2370.73 23		370.73		
Densidad húmeda ; Dh	gr/	1.84		2.03	1.86		1.90	1.90		1.93
CONTENIDO DE HUMEDAD							A			
Ensayo	N°	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Peso Recipiente	gr	27.80	27.00	26.90	27.10	26.90	27.10	27.00	27.00	27.10
Peso Muestra húmeda + Recipiente	gr	150.60	159.10	170.40	153.70	146.80	135.20	155.50	140.20	169.20
Peso Muestra Seca + Recipiente	gr	125.30	132.00	139.40	127.60	122.20	112.20	129.00	117.00	139.60
Peso del Agua	gr	25.30	27.10	31.00	26.10	24.60	23.00	26.50	23.20	29.60
Peso Muestra Seca	gr	97.50	105.00	112.50	100.50	95.30	85.10	102.00	90.00	112.50
Contenido de Humedad ; W%	%	25.95	25.81	27.56	25.97	25.81	27.03	25.98	25.78	26.31
Promedio Contenido de Humedad	%	25.	.88	27.56	25	.89	27.03	25	.88	26.31
Densidad Máxima Seca; Ds	gr/	1.4	46	1.60	1.	48	1.50	1.	51	1.53


			ENSA	YO DE H	IINCHAMIEN	TO + 10%	CAL				
TIEN	MOLDE N° 01			MO	MOLDE N° 02			MOLDE N° 03			
ACUMU	JLADO	Lectura	Hincha	miento	Lectura	ectura Hinchamiento		Lectura	Hincha	Hinchamiento	
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%	
1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
24	1	0.129	0.129	0.100	0.106	0.106	0.080	0.090	0.090	0.070	
48	2	0.148	0.148	0.120	0.123	0.123	0.100	0.102	0.102	0.080	
72	3	0.157	0.157	0.120	0.140	0.140	0.110	0.121	0.121	0.090	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
RGuerrorol	ING. ERIOK RAFAEL MUKOZ DARBODA Laboratorius especializan i sub itu Turi Civil UPN-C	July)
NOMBRE: Renzo José Guerrero Malpica	NOMBRERING DERICK Manage Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018

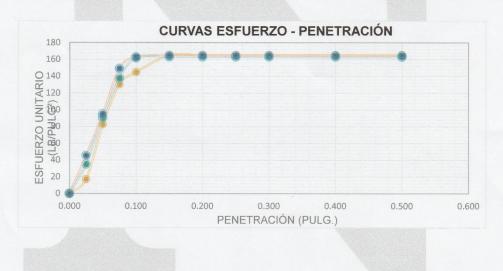
		LABOR	ATORIO DE	SUELOS	- UNIVERS		ADA	DEL	NORTE C	AJAMARC	Α		
1 9					PROT	OCOLO		A CONTRACTOR					
N	ENS	SAYO:	CALIF	CALIFORNIA BEARING RATIO - CBR						CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD	NOF	RMA:	MTC E132 / ASTM D188 CBR-LS-UPNC:										
PRIVADA DEL NORTE	TES	is:	CAPACIDAD PORTANTE DE UN SUELO COHESIVO EST SULFATO DE CALCIO AL 10%, 15% Y 25%						O ESTABIL	IZADO CO	N CAL Y		
CALICATA:			ESTRATO	:	TIPO DE N	ATERIAL:		ARCILLA					
UBICACIÓ	V:		SHUE	DAL	COLOR DI	MATERIA	AL:	VERDE					
FECHA DE	MUEST	REO:	C-01-1	0-18	RESPONS	ABLE:	1	RENZO GUERRERO MALPICA					
FECHA DE ENSAYO: C-03-11-18				1-18	REVISADO POR:								
96	4	0.162	0.162	0.130	0.143	0.143	0.1	10	0.131	0.131	0.100		

			CA	RGA - PE	ENETRAC	CIÓN + 109	% CAL				
PENETR	ACIÓN	M	OLDE N°	01	M	OLDE Nº	02	MOLDE N° 03			
PENEIR	ACION	Carga Esfuerzo		Carga Esfuerzo Carga Esfuerzo		erzo	Carga	Esfuerzo			
mm	Pulg	kg	kg/cm ²	Lb/pl2	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl^2	
0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.64	0.025	22.20	1.11	15.18	40.20	2.01	27.50	57.20	2.86	39.12	
1.27	0.050	67.20	3.36	45.96	121.40	6.07	83.04	158.70	7.94	108.55	
1.91	0.075	118.20	5.91	80.85	170.10	8.51	116.35	221.40	11.07	151.44	
2.54	0.100	152.40	7.62	104.24	205.40	10.27	140.49	242.20	12.11	165.66	
3.81	0.150	194.20	9.71	132.83	233.80	11.69	159.92	257.80	12.89	176.34	
5.08	0.200	224.80	11.24	153.76	248.20	12.41	169.77	257.80	12.89	176.34	
6.35	0.250	234.80	11.74	160.60	248.40	12.42	169.91	257.80	12.89	176.34	
7.62	0.300	236.20	11.81	161.56	248.40	12.42	169.91	257.80	12.89	176.34	
10.16	0.400	236.20	11.81	161.56	248.40	12.42	169.91	257.80	12.89	176.34	
12.70	0.500	236.20	11.81	161.56	248.40	12.42	169.91	257.80	12.89	176.34	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerrerol	ING. ERICK/RAFAEL VOROZ BARBOZA	July)
NOMBRE: Renzo José Guerrero Malpica	NOMBRENING ErickoMuñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018

À. Y.	LABO	RATORIO DE SUE	LOS - UNIVERSIDAD PRIVAD PROTOCOLO	A DEL NORTE CAJAMARCA				
N	ENSAYO:	CALIFORN	IA BEARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD NORMA:			E132 / ASTM D188	CBR-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:		CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON CAL \ SULFATO DE CALCIO AL 10%, 15% Y 25%					
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA				
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE				
FECHA DE M	FECHA DE MUESTREO:		RESPONSABLE:	RENZO GUERRERO MALPICA				
FECHA DE ENSAYO: C-03-11		C-03-11-18	REVISADO POR:					

C	ALIFOR	RNIA BEA	ARING	RATIO -	CBR + 1	5% CAL					
DESCRIPCIÓN	UND		1			2			3		
N° Golpes			5		5			5			
N° Golpes por Capa			13			27		55			
Condición de Muestra		Ante	S	Despu.	Ante	s [Despu.	Ante	s [espu.	
Peso Molde	gr	7243.0	00	7243.00	7214.0	00 7	214.00	7279.0	00 7	279.00	
Peso Muestra húmeda + Molde	gr	11622.	.00 1	2106.00	11653.	1653.00 11751.00		11835.	00 11	882.00	
Peso Muestra húmeda	gr	4379.0	00 4	4863.00	4439.0	9.00 4537.00		4556.0	00 4	603.00	
Volumen Muestra húmeda		2370.	73	2370.73	2370.7	.73 2370.73		2370.	73 2	3 2370.73	
Densidad húmeda ; Dh	gr/	1.85		2.05	1.87		1.91	1.92		1.94	
CONTENIDO DE HUMEDAD											
Ensayo	N°	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	
Peso Recipiente	gr	28.10	27.00	26.90	27.10	26.90	27.10	27.00	27.00	27.10	
Peso Muestra húmeda + Recipiente	gr	142.30	169.60	161.80	158.60	145.80	135.20	151.80	150.60	160.80	
Peso Muestra Seca + Recipiente	gr	118.10	139.50	131.90	130.60	120.70	111.90	125.30	124.50	132.10	
Peso del Agua	gr	24.20	30.10	29.90	28.00	25.10	23.30	26.50	26.10	28.70	
Peso Muestra Seca	gr	90.00	112.50	105.00	103.50	93.80	84.80	98.30	97.50	105.00	
Contenido de Humedad ; W%	%	26.89	26.76	28.48	27.05	26.76	27.48	26.96	26.77	27.33	
Promedio Contenido de Humedad	%	26.	.82	28.48	26	.91	27.48	26.86		27.33	
Densidad Máxima Seca; Ds	gr/	1.4	46	1.60	1.	48	1.50	1.	51	1.52	


			ENSA	YO DE H	HINCHAMIEN	TO + 15%	CAL			
TIEN	1PO	MOLDE N° 01			MO	LDE N° 0	2	MOLDE N° 03		
ACUMU	JLADO	Lectura	Hincha	Hinchamiento Lectura Hinchamiento		Lectura	Hincha	Hinchamiento		
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
24	1	0.124	0.124	0.100	0.102	0.102	0.080	0.086	0.086	0.070
48	2	0.143	0.143	0.110	0.119	0.119	0.090	0.098	0.098	0.080
72	3	0.153	0.153	0.120	0.136	0.136	0.110	0.117	0.117	0.090
96	4	0.159	0.159	0.120	0.139	0.139	0.110	0.128	0.128	0.100

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerrenoy	ING. ÈRICH RAFAK MUÑOZ BARBOZA Laboratoriog esplatalizados de mo, Civil UPN-C	Jung-)
NOMBRE: Renzo José Guerrero Malpica	NOMBRIE ANGAETICK MUTOZ Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA:/C/11/11/2018	FECHA: C/11/11/2018

*	LABOI	RATORIO DE SUE	LOS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA
N	ENSAYO:	CALIFORNI	A BEARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	MTC	E132 / ASTM D188	CBR-LS-UPNC:
PRIVADA DEL NORTE	TESIS:	The second secon	ORTANTE DE UN SUELO CON ALCIO AL 10%, 15% Y 25%	ESIVO ESTABILIZADO CON CAL Y
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE
FECHA DE M	FECHA DE MUESTREO:		RESPONSABLE:	RENZO GUERRERO MALPICA
FECHA DE ENSAYO:		C-03-11-18	REVISADO POR:	

						CIÓN + 159					
PENETRACIÓN MOL		OLDE Nº	01	M	MOLDE N° 02			MOLDE N° 03			
LIVETIN	ACION	Carga	Esfuerzo		Carga	Esfuerzo		Carga	Esfuerzo		
mm	Pulg	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²	
0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.64	0.025	24.90	1.25	17.03	51.10	2.56	34.95	66.20	3.31	45.28	
1.27	0.050	120.60	6.03	82.49	132.00	6.60	90.29	138.50	6.93	94.73	
1.91	0.075	190.20	9.51	130.10	200.80	10.04	137.35	218.00	10.90	149.11	
2.54	0.100	211.40	10.57	144.60	236.20	11.81	161.56	238.00	11.90	162.79	
3.81	0.150	240.60	12.03	164.57	238.00	11.90	162.79	240.80	12.04	164.71	
5.08	0.200	240.60	12.03	164.57	238.00	11.90	162.79	240.80	12.04	164.71	
6.35	0.250	240.60	12.03	164.57	238.00	11.90	162.79	240.80	12.04	164.71	
7.62	0.300	240.60	12.03	164.57	238.00	11.90	162.79	240.80	12.04	164.71	
10.16	0.400	240.60	12.03	164.57	238.00	11.90	162.79	240.80	12.04	164.71	
12.70	0.500	240.60	12.03	164.57	238.00	11.90	162.79	240.80	12.04	164.71	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
PAverreroll	ING. ERIOK RATASI JAHAOZ BARBOZA Laboratorios especializados de imp. Civil UPN-C	(July)
NOMBRE: Renzo José Guerrero Malpica	NOMBRE: ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHÁ: C/11/11/2018	FECHA: C/11/11/2018

4	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO								
N	ENSAYO:	CALIFORNIA	BEARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E	132 / ASTM D188	CBR-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:	CAPACIDAD PO SULFATO DE CA	IESIVO EST <mark>ABILIZA</mark> DO CON CAL Y						
CALICATA:		ESTRATO:	TIPO DE MATERIAL:	ARCILLA					
UBICACIÓN:		SHUDAL	COLOR DE MATERIAL:	VERDE					
FECHA DE N	IUESTREO:	C-01-10-18	RESPONSABLE:	RENZO GUERRERO MALPICA					
FECHA DE ENSAYO:		C-03-11-18	REVISADO POR:						

	UND	MIN DE	AINING	RATIO -	CDITIZ						
DESCRIPCIÓN		1			2			3			
N° Golpes			5		5			5			
N° Golpes por Capa			13		27		55				
Condición de Muestra		Ante	S	Despu.	Antes D		Despu. Antes		s Despu.		
Peso Molde	gr	7257.0	00 7	257.00	257.00 7243.0		00 7243.00		00 72	243.00	
Peso Muestra húmeda + Molde	gr	11613.	.00 1	2090.00	11666.	00 11	758.00	11757.	00 11	836.00	
Peso Muestra húmeda	gr	4356.0	00 4	1833.00	4423.0	00 4	515.00	4514.0	00 4	593.00	
Volumen Muestra húmeda		2370.	73 2	2370.73	0.73 2370.73 2370.73		370.73	2370.73 23		370.73	
Densidad húmeda ; Dh	gr/	1.84		2.04	1.87		1.90	.90 1.90		1.94	
CONTENIDO DE HUMEDAD											
Ensayo	N°	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	
Peso Recipiente	gr	27.00	27.10	27.00	27.10	27.10	27.00	27.10	27.10	27.10	
Peso Muestra húmeda + Recipiente	gr	142.50	132.90	163.70	152.20	154.20	146.10	158.10	150.20	159.30	
Peso Muestra Seca + Recipiente	gr	117.00	109.60	132.00	124.60	126.10	119.30	129.10	123.10	129.90	
Peso del Agua	gr	25.50	23.30	31.70	27.60	28.10	26.80	29.00	27.10	29.40	
Peso Muestra Seca	gr	90.00	82.50	105.00	97.50	99.00	92.30	102.00	96.00	102.80	
Contenido de Humedad ; W%	%	28.33	28.24	30.19	28.31	28.38	29.04	28.43	28.23	28.60	
Promedio Contenido de Humedad	%	28.	28.29		28.35 2		29.04	28	3.33 28.6		
Densidad Máxima Seca; Ds	gr/	1.4	43	1.57	1.45 1.48		1.48		1.51		

			ENSA	YO DE H	IINCHAMIEN	TO + 25%	CAL			
TIEMPO MOLDE I		LDE N° 0	DE N° 01		LDE N° 0	2	MOLDE N° 03			
ACUMU	ILADO	Lectura	Hincha	amiento Lectura Hinchamiento		Lectura Hinch		namiento		
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
1	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
24	1	0.121	0.121	0.090	0.100	0.100	0.080	0.082	0.082	0.060
48	2	0.140	0.140	0.110	0.117	0.117	0.090	0.096	0.096	0.080
72	3	0.149	0.149	0.120	0.132	0.132	0.100	0.115	0.115	0.090
96	4	0.160	0.160	0.120	0.137	0.137	0.110	0.126	0.126	0.100

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerreroll	ING. FRICY RAFA E. MUNO2 BARBOZA Labor florios esperiolizados de los Civil UBALA	Juny.
NOMBRE: Renzo José Guerrero Malpica	NOMBRESING DErick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018

,	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO									
N	ENSAYO:	CALIFOR	NIA BI	EARING RATIO - CBR	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MT	TC E13	32 / ASTM D188	CBR-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:	1	CAPACIDAD PORTANTE DE UN SUELO COHESIVO ESTABILIZADO CON C. SULFATO DE CALCIO AL 10%, 15% Y 25%							
CALICATA:		ESTRATO:		TIPO DE MATERIAL:	ARCILLA					
UBICACIÓN:	UBICACIÓN:			COLOR DE MATERIAL:	VERDE					
FECHA DE M	FECHA DE MUESTREO:		18	RESPONSABLE:	RENZO GUERRERO MALPICA					
FECHA DE E	FECHA DE ENSAYO:		18	REVISADO POR:						

			CA	RGA - PL	ENETRAC	CIÓN + 259	% CAL			
PENETRACIÓN		MOLDE N° 01			MOLDE N° 02			MOLDE N° 03		
		Carga	Esfuerzo		Carga	Esfuerzo		Carga	Esfuerzo	
mm	Pulg	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²
0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.64	0.025	17.30	0.87	11.83	43.50	2.18	29.75	58.60	2.93	40.08
1.27	0.050	113.00	5.65	77.29	124.40	6.22	85.09	130.90	6.55	89.54
1.91	0.075	182.60	9.13	124.90	193.20	9.66	132.15	210.40	10.52	143.91
2.54	0.100	203.80	10.19	139.40	228.60	11.43	156.36	230.40	11.52	157.59
3.81	0.150	233.00	11.65	159.37	230.40	11.52	157.59	233.20	11.66	159.51
5.08	0.200	233.00	11.65	159.37	230.40	11.52	157.59	233.20	11.66	159.51
6.35	0.250	233.00	11.65	159.37	230.40	11.52	157.59	233.20	11.66	159.51
7.62	0.300	233.00	11.65	159.37	230.40	11.52	157.59	233.20	11.66	159.51
10.16	0.400	233.00	11.65	159.37	230.40	11.52	157.59	233.20	11.66	159.51
12.70	0.500	233.00	11.65	159.37	230.40	11.52	157.59	233.20	11.66	159.51

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Rquerrerol	ms	
NOMBRE: Renzo José Guerrero Malpica	NOMBRE: Ing. Erick Muñoz Barboza	NOMBRE: Ing. Iván Mejía Díaz
FECHA: C/11/11/2018	FECHA: C/11/11/2018	FECHA: C/11/11/2018