FACULTAD DE INGENIERÍA

Carrera de Ingeniería de Minas

“PROPUESTA DE TRATAMIENTO DEL DRENAJE ÁCIDO DE MINA (DAM) DE LA BOCAMINA PROSPERIDAD CON EL MÉTODO ÓXICO CALIZO PARA CUMPLIR CON LOS LÍMITES MÁXIMOS PERMISIBLES DE DESCARGA DE EFLUENTES, CAJAMARCA 2019”

Tesis para optar el título profesional de:

Ingeniero de Minas

Autores:
Raul Ampuero Chavez
Alexis Jhosep Barboza Navarro

Asesor:
Ing. Víctor Eduardo Alvarez León

Cajamarca - Perú

2019
DEDICATORIA

Dedico mi tesis a mi familia, por darme su apoyo incondicional en cada logro que voy alcanzando a lo largo de toda mi carrera universitaria y también en mi formación como persona.

Raúl Ampuero.

Dedico esta tesis a mis padres Manuel Antonio Barboza Leiva y Carmen Yolanda Navarro Vega, por haberme dedicado el tiempo necesario e inculcarme valores y guiarme por el buen camino para forjarme como una buena persona, por haberme apoyado en cada etapa de mi vida y ayudarme constantemente por alcanzar mis anhelos, dedico a ellos este logro.

Alexis Barboza.
AGRADECIMIENTO

Gracias a mis padres por la dedicación y compromiso que me brindaron en esta etapa de mi desarrollo profesional, también agradecer a todas las personas que me apoyaron a cumplir con mis metas trazadas, como a nuestros docentes por habernos brindado sus conocimientos y lograr que seamos profesionales de calidad.

Raúl Ampuero

Agradezco ante todo a nuestro creador por guiarnos en todo lo que hacemos, por ser la luz que nos marca el camino en la vida, por ser nuestra fortaleza en momentos de dificultad y debilidad.
Agradezco a mis padres Manuel y Carmen por inculcarme valores que me hacen ser una buena persona, así como también agradecerles por cada consejo y enseñanza de vida que ellos me dieron buscando siempre mi felicidad sin buscar nada a cambio.
Agradezco a mis hermanos Yehján y Zulay por ser mi apoyo emocional en cada momento, por habermos dado sus consejos de vida y aportar en mi crecimiento emocional y personal.
Agradezco a mi hija Guadalupe por ser mi fundamento de felicidad mi motivación para seguir adelante y esforzarme día tras día, agradezco a su madre Soledad, por ser el apoyo que necesita y siempre estar presente en su pequeña edad.
Agradezco a las personas que hicieron posible la culminación de esta investigación como es el Ing. Víctor Alvares y la señorita Dalila Julca por habermos guiado en la finalización de esta investigación.
Muchas gracias a todos.

Alexis Barboza
Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxico calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019

Tabla de contenidos

DEDICATORIA ... 2
AGRADECIMIENTO ... 3
ÍNDICE DE TABLAS ... 6
ÍNDICE DE FIGURAS .. 7
ÍNDICE DE ECUACIONES .. 8
RESUMEN .. 9
CAPÍTULO I. INTRODUCCIÓN ... 10
 1.1. Realidad problemática .. 10
 1.2. Formulación del problema .. 17
 1.3. Objetivos ... 17
 1.3.1. Objetivo general .. 17
 1.3.2. Objetivos específicos ... 17
 1.4. Hipótesis ... 18
 1.4.1. Hipótesis general .. 18
 1.4.2. Hipótesis específicas .. 18
CAPÍTULO II. METODOLOGÍA ... 19
 2.1. Tipo de investigación .. 19
 2.2. Población y muestra ... 19
 2.3. Materiales y equipos ... 20
 2.4. Técnicas e instrumentos de recolección ... 22
 2.5. Procedimiento .. 23
CAPÍTULO III. RESULTADOS ... 27
 3.1. Resultados del análisis físico – químico del DAM de la Bocamina Prosperidad.27
 3.2. Resultados del Análisis para determinar el caudal óptimo para tratamiento del DAM por el método Óxico Calizo..28
3.3. Análisis comparativo de dos tipos de roca caliza pertenecientes a la Formación Quilquiñán (ks-q) y Formación Cajamarca (ks-c) ... 31

3.4. Resultados de la evaluación de la neutralización del DAM con el método Óxico Calizo. ... 32

3.5. Análisis comparativo de la neutralización con el método Óxido Calizo y Límites Máximos Permisibles (LMPs) ... 33

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES ... 36

4.1. Discusión ... 36

4.2. Conclusiones .. 39

REFERENCIAS .. 40

ANEXOS ... 42

"Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxico calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019"

ÍNDICE DE TABLAS

Tabla 1: Características de las diversas formaciones Geológicas. ...20
Tabla 2: Resultados de laboratorio - barrido de metales de la muestra base27
Tabla 3: Medición de Caudal (ks-q) mediante el formato de comparación de variación de pH y Caudal ...28
Tabla 4: Medición de Caudal (ks-c) mediante el formato de comparación de variación de pH y Caudal ...28
Tabla 5: Determinación del Caudal respecto al aumento pH de la Formación Quilquiñan.29
Tabla 6: Determinación del Caudal respecto al pH de la Formación Cajamarca30
Tabla 7: Comparación entre (ks-q y ks-c) para determinar la roca más óptima para el tratamiento Óxico Calizo. ...31
Tabla 8: Análisis de muestras ..32
Tabla 9: Límites Máximo Permisibles para la descarga de efluentes Líquidos de Actividades Minero-Metalúrgicas ..34
Tabla 10: Comparación de concentración de metales de muestras tomadas Vs LMPs34
Tabla 11: Límites Máximos Permisibles (LMPs) ...42
ÍNDICE DE FIGURAS

Ilustración 1: Ubicación de la Bocamina Prosperidad. ... 19
Ilustración 2: Descripción de las Formaciones Geológicas ... 20
Ilustración 3: Recolección de Muestra Base. .. 24
Ilustración 4: pH inicial de la muestra base comparado con las cintas Merck. 24
Ilustración 5: Coordenadas UTM de la ubicación de la Bocamina Prosperidad. 25
Ilustración 6: Porcentaje de Oxido de Calcio (CaO) en las formaciones Cajamarca y Quilquiñan .. 25
Ilustración 7: Límites Máximos Permisibles .. 26
Ilustración 8: Determinación de caudal (pH Vs Distancia) ... 29
Ilustración 9: Determinación de Caudal (pH Vs Distancia) ... 30
Ilustración 10: Comparación de resultados (pH y distancia) Formación Quilquiñan Vs Formación Cajamarca. ... 31
Ilustración 11: Evaluación de Concentración de Metales de acuerdo a pH 33
Ilustración 12: Resultados de Concentración de Metales Vs LMPs .. 35
Ilustración 13: Escala de Potencial de Hidrogeno ... 42
ÍNDICE DE ECUACIONES

Ecuación 1: Generación de DAM N° 01 ... 11
Ecuación 2: Generación de DAM N° 02 ... 11
RESUMEN

Asociada a la actividad minera se encuentra con frecuencia la generación de las llamadas "aguas ácidas de mina", que de no ser tratadas pueden dar lugar a un importante impacto ambiental. En este trabajo se presentan los procesos mediante los que se producen este tipo de aguas y las alternativas para su tratamiento, centrándose en los sistemas pasivos como procedimientos adecuados para su remediación. Los sistemas de tratamiento pasivo combinan procesos naturales de tipo físico, químico y biológico, que pueden ser satisfactoriamente aplicados al agua de mina con reducidos costes de ejecución y mantenimiento.

En una primera fase de la parte experimental, se han realizado una serie de experiencias a escala de laboratorio. Se pretenden reproducir las condiciones presentes en distintos tipos de sistemas pasivos (por separado y de forma combinada), para comprender mejor los procesos que en ellos tienen lugar, y poder determinar aquellas variables de funcionamiento que sean más idóneas para el tratamiento de cada tipo de agua de mina.

Como aplicación de los resultados obtenidos en las experiencias de laboratorio, se diseña y construye un sistema mixto de tratamiento pasivo de agua de mina a escala piloto. Durante las fases de construcción y monitorización, se modifican de forma interactiva los parámetros necesarios para la consecución de un mejor funcionamiento del sistema.

Este estudio pretende desarrollar una propuesta para el tratamiento fisicoquímico por mediante un sistema pasivo de neutralización de aguas ácidas en la bocamina Prosperidad, Hualgayoc. Después de la caracterización química

Palabras clave: Aguas ácidas, tratamientos pasivos, drenajes ácidos de mina, bocamina, método Óxico Calizo.
CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

Existe actualmente un panorama de amplia preocupación en el ámbito internacional sobre la gravedad que ha alcanzado los diversos tipos de problemas ambientales que aquejan al planeta, como es el caso de la contaminación por residuos sólidos, líquidos y gaseosos que se descargan al suelo, la atmósfera y cuerpos de agua; entre los que se pueden mencionar los relaves mineros (Toledo & Argueta, 1993).

La minería cumple un rol fundamental en la economía de los países del mundo, dentro de los que se encuentran el Perú y en donde constituye un gran factor de desarrollo. Siendo el primer proveedor de divisas aporta hoy más del 60% del total de nuestros ingresos por exportaciones; no obstante, es también un generador de residuos, los cuales, si no son adecuadamente manejados, tienen el potencial de generar impactos ambientales que podrían permanecer mucho tiempo después del cierre de las operaciones; en particular, los relaves y desmontes de mina pueden contener sulfuros metálicos que, al quedar expuestos al oxígeno de la atmósfera, son oxidados y generan drenaje ácido, también es el caso de los metales en solución como el plomo, iniciando una fuente de contaminación que luego es muy difícil y costoso controlar (Andia & Lagos, 2000).

La minería es una de las actividades con una gran fuente de generación de DAM, este resulta ser un gran contaminante de los recursos hídricos. Los drenajes ácidos (DAR, DAM) de antiguos minados de carbón y minería metálica son una de las principales fuentes de contaminación de las aguas superficiales y subterráneas en el mundo.
Estos drenajes son tóxicos en diverso grado para el hombre, la fauna y la vegetación, contienen metales disueltos y constituyentes orgánicos solubles e insolubles.

La minería es una actividad transitoria, y una vez que finalizan las operaciones mineras, se llevan a cabo actividades de cierre para minimizar el impacto ambiental de un sitio minero. Estas actividades pueden incluir limpiar cualquier mineral en pilas de lixiviación para eliminar los restos químicos, drenar y tapar los estanques de relaves con arcilla densa para evitar la infiltración de agua y la contaminación del agua subterránea, y eliminar o estabilizar cualquier material contaminado en el sitio. El monitoreo y tratamiento del agua es a menudo un componente del plan de cierre de minas, especialmente donde se forman drenajes ácidos de mina (DAM).

Según Aduvire en el 2006, El drenaje ácido de mina (DAM) es la consecuencia de la oxidación de algunos sulfuros minerales (pirita, pirrotita, marcasita, etc.) en contacto con el oxígeno del aire y agua.

Ecuación 1: \textit{Generación de DAM N° 01}

\[\text{Sulfuro mineral} + \text{Oxígeno} + \text{Agua} = \text{Sulfato} + \text{Acidez} + \text{Metal} \]

También otros oxidantes como hierro férrico pueden reemplazar al oxígeno del aire en la reacción y en algunos casos al oxígeno del agua.

Ecuación 2: \textit{Generación de DAM N° 02}

\[\text{Sulfuro mineral} + \text{Hierro Férrico} + \text{Agua} = \text{Sulfato} + \text{Acidez} + \text{Metal} \]

Los métodos de tratamiento convencionales o activos de aguas ácidas tienen un costo elevado, por lo que no pueden ser mantenidos por un largo período de tiempo. Por
Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxido calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019

Ello se buscan sistemas de tratamiento pasivo (por ejemplo, drenaje anóxico calizo “ALD” o el sistema reductor y productor de alcalinidad “RAPS”) Se basan en la disolución de caliza o en la combinación de esta disolución y la actividad de bacterias sulfato reductoras. (Jage et al., 2001).

Los tratamientos más destacados son los tratamientos pasivos los cuales tienen como objetivo controlar el pH del agua así como reducción de metales para el saneamiento del Drenaje Acido de Mina (DAM) con el fin del aprovechamiento en labores agrícolas y ganaderas, por el uso de estos métodos de saneamiento se utiliza el Oxido Calizo (CaO3) como elemento para su elaboración, por lo cual se buscará zonas próximas a donde se presenta la generación de esta aguas ácidas, para ello se buscan formaciones con presencia de calizas, puesto que este mineral tiene propiedades que neutraliza el agua ácida.

Una alternativa al tratamiento convencional de los drenajes ácidos tanto si las instalaciones se encuentran en operación o en abandono, lo constituyen los métodos de tratamiento pasivo, debido a su bajo costo, fácil operación, mantenimiento, y gran eficiencia en el tratamiento de aguas ácidas. Los métodos de tratamiento pasivo van desde drenajes anóxicos de caliza, canales abiertos de caliza, humedales construidos, hasta barreras reactivas permeables, en donde el objetivo principal es la supresión de la acidez, la precipitación de los metales pesados y la eliminación de sustancias contaminantes como los sólidos en suspensión, antimoniatos, arseniatos y otros. (Aduvire, 2006).
Existen distintos tipos de tratamiento disponibles para limpiar el agua contaminada proveniente de las minas. Estas tecnologías pueden describirse como activas o pasivas.

El tratamiento pasivo generalmente se combina con programas de monitoreo del agua. Este tipo de tratamiento aprovecha los procesos naturales físicos, químicos y biológicos que eliminan los contaminantes del agua sin insumos físicos o químicos adicionales. Algunos ejemplos de estos procesos incluyen: la precipitación de metales controlada por bacterias, la absorción de contaminantes por las plantas y la filtración a través del suelo y sedimentos. (Marqueting Perú, 2018)

La filosofía general de los tratamientos pasivos consiste en cambiar las condiciones de Eh y pH del influente de forma que se favorezca la formación de especies insolubles que precipiten como oxihidróxidos metálicos. Por lo general se recurre al empleo de bacterias para catalizar las reacciones y acelerar los procesos que forman precipitados, así como al uso de material alcalino para neutralizar la acidez (subir el pH).

El sistema Anóxico Calizo consiste en una zanja rellena con gravas de caliza u otro material calcáreo sellada a techo por una capa de tierra arcillosa y una geo membrana impermeable para mantener unas condiciones anóxicas. Con lo que se consigue incrementar la presión parcial del CO₂ para maximizar la disolución de la caliza y eliminar el oxígeno disuelto. El agua ácida de mina se hace circular por el interior de la zanja provocando la disolución de la caliza, lo que genera alcalinidad y eleva el pH del agua. La alcalinidad adquirida en el ALD debe ser suficiente para
contrarrestar la acidificación asociada a la hidrólisis en esta etapa del tratamiento.

Los sistemas ALD son apropiados para tratar drenajes ácidos de mina con escaso oxígeno disuelto (DO < 2 mg/l) y contenidos de Fe\(^{3+}\) y Al\(^{3+}\) inferiores a 1 mg/l (Hedin, 1997; Skousen et al., 1994).

El canal abierto de caliza o sistema óxico calizo es un canal cuyo lecho está rellenado de caliza por el que fluye el agua a tratar, cuyo objetivo es incrementar el pH y la alcalinidad para disminuir la acidez. El elevado contenido de oxígeno, produce la oxidación e hidrólisis del Fe y a los disueltos, que precipitan como oxihidróxidos. Su diseño está en función del tiempo de retención y caudal a tratar. En su mayoría encontramos canales con contenido de agregados de caliza gruesa (a través de los cuales percola el agua), pasando así el DAM haciendo contacto con la caliza aumentando el pH. (Aduvire, 2006).

El propósito de los humedales construidos para tratamiento es permitir que ocurra la reacción química y biológica natural en el sistema de tratamiento, y no en el cuerpo de recepción de agua. Las plantas y los microorganismos desempeñan un papel importante. Las plantas proporcionan un área superficial para microbios y para transportar el oxígeno produciendo una zona de oxidación donde adicionalmente existen poblaciones microbianas.

Este complejo de vegetación y microbios tiene una alta eficiencia en modificar nutrientes, metales y otros compuestos.
Esta tecnología se está volviendo atractiva para tratamiento de drenaje de mina puesto que él ofrece mayores ventajas sobre el sistema de tratamiento convencional (como método de tratamiento químico). El uso de químicos y energía están virtualmente eliminados. Sin embargo, después del tratamiento, el agua puede requerir un tratamiento químico adicional, de tal modo que se ahorra dinero. Debido a sus características cómodas, los humedales construidos están siendo utilizados en muchos países alrededor del mundo mejorando la calidad del agua del drenaje ácido de mina. (Gamonal, 2014).

Las barreas reactivas permeables consta de una pared o pantalla enterrada que contiene material reactivo para tratar la pluma de agua subterránea como: Medio orgánico con SRB, Hierro cero valente (FeO) (o Cementación).

Su objetivo es reducir la cantidad de sólidos disueltos (sulfatos y metales principalmente) e incrementar el pH. Su construcción consiste en hacer una zanja transversal al flujo, la cual se rellena con diversos tipos de materiales reactivos. Así, los procesos depuradores en el interior de la barrera son la reducción bacteriana de los sulfatos, la retención de los metales precipitando como sulfuros, y el incremento del pH principalmente por disolución de la caliza. (Aduviere, 2006).

Los límites máximos permisibles (LMP) (Anexo 3), representan la medida de la concentración o del grado de elementos, sustancias o parámetros físicos, químicos y biológicos, que caracterizan al efluente líquido de actividades minero – metalúrgicas, y que al ser excedida causa o puede causar daños a la salud, al bienestar humano y al ambiente. Se crearon con la finalidad de controlar excesos en los niveles de
concentración de sustancias físicas, químicas y biológicas presentes en efluentes o emisiones, para evitar daños a la salud y al ambiente. (MINAM, 2010)

El potencial de hidrógeno, pH, es el término que nos indica la concentración de iones hidrógeno en una disolución. El término se define como el logaritmo de la concentración de iones hidrógeno, H^+, cambiado de signo: $pH = -\log [H^+]$; donde $[H^+]$ es la concentración de iones hidrógeno en moles por litro. Debido a que los iones H^+ se asocian con las moléculas de agua para formar iones hidronio, H_3O^+, el pH también se expresa a menudo en términos de concentración de iones hidronio.

El pH es representado en una escala que va del 0 al 14, siendo 0 extremadamente ácido, 7 neutro, y 14 extremadamente básico.

Los drenajes ácidos de la bocamina Prosperidad de la mina San Nicolas, presentan una elevada acidez y altas concentraciones metálicas (Chingay, 2018), por lo que en la presente investigación se propone el tratamiento del DAM mediante el drenaje Óxico calizo, para así neutralizar el pH de las aguas ácidas y no alterar el ecosistema del área en estudio.

Esta agua debe ser tratada para disminuir las concentraciones de metales y sedimentos y luego, una vez que cumple con los límites máximos permisibles establecidos en la legislación vigente, sea devuelta a las cuencas de origen en las mismas cantidades y condiciones en las que fue recolectada (Yanacocha, 2010).

Según Bermejo y Rimarachín (2019) en su trabajo de investigación “Evaluación del drenaje anóxico calizo, como técnica complementaria al cierre de la bocamina BQH5
de Colquirrumi” cuyo objetivo principal era evaluar si con la aplicación de los drenajes anóxicos calizos como técnica complementaria, es posible neutralizar el pH y precipitar los metales presentes en las aguas ácidas de las filtraciones de la bocamina 05 de Quebrada Honda de Compañía Minera Colquirrumi de manera que cumplan con los LMP, Al realizar las pruebas experimentales a nivel de laboratorio se determinó el tratamiento Z (Drenaje grande con barreras) es el más adecuado para tratar las aguas de la BQH5 ya que logra cumplir con LMP establecidos para descargas de efluentes mineros, con éste tratamiento se reduce el Al en un 97%, As en un 98%, Cd en 99%, Cu en 99%, Fe 99.5 % y Zn en 98%.

1.2. **Formulación del problema**

¿Se logrará ejecutar la propuesta de tratamiento del Drenaje Ácido de Mina (DAM) de la Bocamina Prosperidad con el método óxico calizo para cumplir con los Límites Máximos Permisibles de descarga de efluentes en Cajamarca?

1.3. **Objetivos**

1.3.1. **Objetivo general**

Neutralizar el Drenaje Ácido de Mina (DAM) de la bocamina Prosperidad, mediante el método Óxico calizo para el cumplimiento de los Límites Máximos Permisibles (LMP), y así el agua tratada poder ser aprovechada por las comunidades cercanas

1.3.2. **Objetivos específicos**

- Realizar un análisis físico químico del DAM de la bocamina Prosperidad.
- Determinar el Caudal necesario que necesita el agua para ser tratada mediante el método Óxico calizo.
- Evaluar la neutralización del DAM con el método Óxico calizo.
- Realizar un análisis comparativo entre los 2 tipos de roca caliza pertenecientes a la Formación Quilquiñan y Formación Cajamarca.
- Comparar los resultados obtenidos de neutralización con el método Óxico calizo y los LMP.
1.4. Hipótesis

1.4.1. Hipótesis general

Utilizando el método de óxico calizo se neutraliza el Drenaje Ácido de Mina (DAM) de la bocamina Prosperidad para que la descarga cumpla con los Límites Máximos Permisibles (LMPs).

1.4.2. Hipótesis específicas

- La evaluación físico-química obtenida luego de realizar la remediación mediante el método óxico calizo generó una gran variación en el pH inicial y final.
- Se logrará determinar el caudal óptimo mediante pruebas de laboratorio realizadas a las muestras obtenidas en campo.
- El tratamiento del Drenaje Ácido de Mina (DAM) da como resultado un agua tratada dentro de los Límites Máximos Permisibles (LMP), la cual es aprovechable para la agricultura en las zonas cercanas.
- Se logrará identificar el tipo de roca caliza más óptima para el tratamiento Óxico calizo mediante la comparación entre la Formación Quilquiña y Cajamarca.
- Al comparar las muestras tomadas al inicio y al final de realizar las pruebas en el canal óxico calizo hubo una variación eficiente del Potencial de Hidrogeno (pH) generando un Drenaje Ácido de Mina tratada.
CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

El tipo de investigación es Aplicada, Experimental a nivel de laboratorio. La investigación es Aplicada porque según Murillo (2008), busca la aplicación o utilización de los conocimientos adquiridos, a la vez que se adquieren otros, después de implementar y sistematizar la práctica basada en investigación. Según Hernández, Fernández y Baptista (2010), la investigación es No Experimental, porque se realiza sin manipular deliberadamente variables. Y longitudinal ya que se trabajará en diferentes periodos de tiempo.

2.2. Población y muestra

- Población

La población del presente trabajo de investigación es el drenaje ácido de la Bocamina Prosperidad durante el año 2018 de la empresa San Nicolás, ubicado en Hualgayoc en la unidad minera Colquirrumi.

Ilustración 1: Ubicación de la Bocamina Prosperidad.

Fuente: Google Earth
Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxido calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019

- Muestra

Para la realización experimental de las pruebas piloto, se tomó 40 litros de drenaje acido de mina (DAM) como muestras del agua de la Bocamina Prosperidad.

2.3. Materiales y equipos

2.3.1. Materiales

- Roca Caliza.

Se utilizó roca caliza de las formaciones Cajamarca y Quilquiñan en un aproximado de 80 Kg y 100 kg respectivamente con las siguientes características.

<p>| Tabla 1: Características de las diversas formaciones Geológicas. |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |</p>
<table>
<thead>
<tr>
<th>Sigla</th>
<th>Nombre</th>
<th>Formación</th>
<th>Cao</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>MgO</th>
<th>SO3</th>
<th>Perdida</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>Tembladera</td>
<td>Cajamarca</td>
<td>54.72%</td>
<td>18.50%</td>
<td>0.70%</td>
<td>0.30%</td>
<td>0.13%</td>
<td>0.04%</td>
<td>41.84%</td>
</tr>
<tr>
<td>C24</td>
<td>Q. Naranjo</td>
<td>"</td>
<td>54.22%</td>
<td>11.30%</td>
<td>0.39%</td>
<td>0.19%</td>
<td>1.40%</td>
<td>0.18%</td>
<td>43.18%</td>
</tr>
<tr>
<td>T01</td>
<td>Chungal</td>
<td>Quilquiñan</td>
<td>53.47%</td>
<td>31.20%</td>
<td>0.45%</td>
<td>0.22%</td>
<td>0.00%</td>
<td>0.17%</td>
<td>42.38%</td>
</tr>
<tr>
<td>C25</td>
<td>Chicche</td>
<td>Yumagua</td>
<td>42.65%</td>
<td>17.28%</td>
<td>1.96%</td>
<td>1.25%</td>
<td>0.89%</td>
<td>0.50%</td>
<td>33.69%</td>
</tr>
<tr>
<td>C07</td>
<td>Las Tinas</td>
<td>Santa</td>
<td>51.93%</td>
<td>37.90%</td>
<td>1.03%</td>
<td>1.34%</td>
<td>0.00%</td>
<td>0.16%</td>
<td>40.93%</td>
</tr>
</tbody>
</table>

Fuente: Catálogo de Minerales y Rocas Industriales del Perú.

<p>| Ilustración 2: Descripción de las Formaciones Geológicas |
| --- | --- | --- |</p>
<table>
<thead>
<tr>
<th>Eratema</th>
<th>Sistema</th>
<th>Serie</th>
<th>Unidad</th>
<th>Litoestratigráfica</th>
<th>Grosor (m)</th>
<th>Litología</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEZOSÓICO</td>
<td>CRETAEO</td>
<td>SUPERIOR</td>
<td>Formación Cajamarca</td>
<td>(Ks -Ca)</td>
<td>600 - 700</td>
<td>Calizas gris azuladas, macizas, con delgadas intercalaciones de lutitas y margas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Formación Quilquiñan</td>
<td>(Ks - qm)</td>
<td>500</td>
<td>Calizas nodulares macizas, margas y lutitas pardos amarillentas fosilíferas.</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia.
2.3.2. Instrumentos.

- Formato de comparación de variación de pH y Caudal (Anexo 1).
- Formato de determinación del Caudal respecto al aumento de pH (Anexo 2).
- Formato de comparación entre formaciones para determinar la roca más óptima para el tratamiento Óxico Calizo (Anexo 3).
- Formato de análisis de muestras con los metales a tratar de acuerdo a los Límites Máximos Permisibles (Anexo 4).
- Formato de Comparación de concentración de metales de muestras tomadas Vs LMP (Anexo 5).
- Baldes de plástico con capacidad de 20 litros.
- EPP (botas, chaleco, casco, guantes quirúrgicos)
- GPS Garmín.
- Equipo Multiparámetro.
- Libreta de notas.
- Fotocopias.
- USB.
- Laptops.
- Papel A4.
- Lapiceros y plumón indeleble fino.
- Cámara fotográfica.
- Wincha.
- Materiales de laboratorio
2.4. Técnicas e instrumentos de recolección

2.4.1. Técnicas de Recolección de Datos

✔ Observación Directa

➢ Con la Observación nos permitió visualizar y cerciorarse de la existencia de pasivos ambientales, y nos dimos cuenta que en la descarga de la bocamina Prosperidad la descarga de DAM era constante, para esto se utilizaron como instrumento una ficha de observación.

✔ Experimentación.

➢ Con la experimentación permitió tomar datos in situ con GPS de las coordenadas de los puntos de muestreo. Utilizando el equipo multiparámetro se realizó la medición del pH, a lo cual nos dio como resultados un agua con una acides alta, conductividad y temperatura de las muestras líquidas en los puntos de muestreo, desde el mes de mayo hasta septiembre del 2019.

✔ Análisis de Resultados

➢ Mediante el análisis de las muestras en laboratorio se pudo identificar los resultados de las mediciones utilizando distintos parámetros (pH, Caudal y Concentración de Metales) para luego realizar un análisis comparativo con los Límites Máximos Permisibles (LMP) con la finalidad de obtener un agua de Tipo III (Agua de Riego)

2.4.2. Instrumentos de Análisis de Datos.

Los resultados de los ensayos de metales antes y después de aplicado el tratamiento Óxico Calizo (As, Cu, Fe, Pb, Zn entre otros) y el potencial de Hidrógeno (pH); han sido tabulados e interpretados con gráficos, utilizando el software Microsoft Excel. Para el análisis y resumen de datos cuantitativos, se utilizaron medidas de Tendencia Lineal, que fue calculado con el Excel.
2.5. Procedimiento

✓ Gabinete

Se realizaron los estudios previos de investigaciones sobre la aplicación del método Óxico Calizo en tratamiento de Drenaje Acido de Mina (DAM), para lo cual se recurrió a bibliotecas y repositorios virtuales de las distintas universidades Nacionales e Internacionales. Se selecciono información relevante acerca de los diferentes tratamientos de DAM utilizando el método Óxico Calizo.

Se analizo la información del análisis de laboratorio correspondiente a la muestra base.

✓ Campo

o Paso 1: Toma de muestras

Las muestras de aguas ácidas se tomaron en el sector de Hualgayoc, en la empresa San Nicolas, de la bocamina Prosperidad, el 10 de octubre del 2019, por los tesistas Ampuero Chavez Raul; Barboza Navarro Alexis, lugar donde se realizaron la toma preliminar de medición del potencial de Hidrógeno (pH), con cintas MERCK.

Durante el recojo de muestras se observó el caudal de agua que emergía de la bocamina Prosperidad, así como también el recorrido de este, para así tener una idea de cómo elaborar la maqueta a escala, para posteriormente realizar las pruebas piloto, teniendo en cuenta el caudal y la distancia del recorrido.
"Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxico calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019"

Ilustración 3: Recolección de Muestra Base.

Fuente: Elaboración Propia.

Ilustración 4: pH inicial de la muestra base comparado con las cintas Merck.

Fuente: Elaboración Propia
Ilustración 5: Coordenadas UTM de la ubicación de la Bocamina Prosperidad.

Fuente: Elaboración Propia

- **Paso 2: Obtención de la caliza**

 El día viernes 24 de mayo 2019, los tesistas recurrieron a la Ciudad de Tembladera, Capital de Yonan, perteneciente al distrito de Contumazá, departamento de Cajamarca, para obtener la caliza apropiada para la elaboración de la maqueta la cual tiene la característica de la Formación Cajamarca, así como también se logró encontrar roca Caliza perteneciente a la Formación Quilquiñan.

<table>
<thead>
<tr>
<th>Sigla</th>
<th>Nombre</th>
<th>Formación</th>
<th>Cao</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>Tembladera</td>
<td>Cajamarca</td>
<td>54.72%</td>
</tr>
<tr>
<td>T01</td>
<td>Chungal</td>
<td>Quilquiñan</td>
<td>53.47%</td>
</tr>
</tbody>
</table>

Ilustración 6: Porcentaje de Oxido de Calcio (CaO) en las formaciones Cajamarca y Quilquiñan

Fuente: El análisis de Damisela proporcionado por el dueño.
Paso 3: Análisis de datos

Para el análisis de datos de muestras se evaluaron con los Límites Máximos Permisibles obtenidos del DECRETO SUPREMO Nº 10-2010-MINEM

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Límite en cualquier momento</th>
<th>Límite para el promedio anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>mg/L</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Solidos Totales en suspensión</td>
<td>mg/L</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Aceites y Grasas</td>
<td>mg/L</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Cianuro Total</td>
<td>mg/L</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Arsenico Total</td>
<td>mg/L</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Cadmio Total</td>
<td>mg/L</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Cromo Hexavalen</td>
<td>mg/L</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Cobre Total</td>
<td>mg/L</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Hierro (Disuelto)</td>
<td>mg/L</td>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>Plomo Total</td>
<td>mg/L</td>
<td>0.2</td>
<td>0.16</td>
</tr>
<tr>
<td>Mercurio Total</td>
<td>mg/L</td>
<td>0.002</td>
<td>0.0016</td>
</tr>
<tr>
<td>Zinc Total</td>
<td>mg/L</td>
<td>1.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Ilustración 7: Límites Máximos Permisibles

Fuente: Decreto Supremo Nº 10-2010-MINAM
CAPÍTULO III. RESULTADOS

3.1. Resultados del análisis físico – químico del DAM de la Bocamina Prosperidad.

Se analizaron las muestras obtenidas en campo y los resultados obtenidos del laboratorio Regional del Agua del Gobierno Regional de Agua son los siguientes.

Tabla 2:

Resultados de laboratorio - barrido de metales de la muestra base

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Unidad</th>
<th>LCM</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plata</td>
<td>mg/L</td>
<td>0.021</td>
<td><LCM</td>
</tr>
<tr>
<td>Aluminio</td>
<td>mg/L</td>
<td>0.025</td>
<td>10.48</td>
</tr>
<tr>
<td>Arsénico</td>
<td>mg/L</td>
<td>0.005</td>
<td>4.242</td>
</tr>
<tr>
<td>Boro</td>
<td>mg/L</td>
<td>0.022</td>
<td>0.404</td>
</tr>
<tr>
<td>Bario</td>
<td>mg/L</td>
<td>0.003</td>
<td>0.044</td>
</tr>
<tr>
<td>Berilio</td>
<td>mg/L</td>
<td>0.002</td>
<td><LCM</td>
</tr>
<tr>
<td>Calcio</td>
<td>mg/L</td>
<td>0.124</td>
<td>323.4</td>
</tr>
<tr>
<td>Cadmio</td>
<td>mg/L</td>
<td>0.002</td>
<td>0.86</td>
</tr>
<tr>
<td>Cobalto</td>
<td>mg/L</td>
<td>0.002</td>
<td>0.007</td>
</tr>
<tr>
<td>Cromo</td>
<td>mg/L</td>
<td>0.006</td>
<td>0.021</td>
</tr>
<tr>
<td>Cobre</td>
<td>mg/L</td>
<td>0.006</td>
<td>0.99</td>
</tr>
<tr>
<td>Hierro</td>
<td>mg/L</td>
<td>0.02</td>
<td>830.4</td>
</tr>
<tr>
<td>Mercurio</td>
<td>mg/L</td>
<td>0.003</td>
<td><LCM</td>
</tr>
<tr>
<td>Potasio</td>
<td>mg/L</td>
<td>0.005</td>
<td>1.469</td>
</tr>
<tr>
<td>Litio</td>
<td>mg/L</td>
<td>0.003</td>
<td>0.022</td>
</tr>
<tr>
<td>Magnesio</td>
<td>mg/L</td>
<td>0.018</td>
<td>45.44</td>
</tr>
<tr>
<td>Manganoso</td>
<td>mg/L</td>
<td>0.005</td>
<td>148.7</td>
</tr>
<tr>
<td>Molibdeno</td>
<td>mg/L</td>
<td>0.003</td>
<td>0.012</td>
</tr>
<tr>
<td>Sodio</td>
<td>mg/L</td>
<td>0.021</td>
<td>1.879</td>
</tr>
<tr>
<td>Níquel</td>
<td>mg/L</td>
<td>0.006</td>
<td>0.085</td>
</tr>
<tr>
<td>Fosforo</td>
<td>mg/L</td>
<td>0.024</td>
<td>2.355</td>
</tr>
<tr>
<td>Plomo</td>
<td>mg/L</td>
<td>0.004</td>
<td>0.386</td>
</tr>
<tr>
<td>Antimonio</td>
<td>mg/L</td>
<td>0.007</td>
<td>0.1</td>
</tr>
<tr>
<td>Selenio</td>
<td>mg/L</td>
<td>0.021</td>
<td><LCM</td>
</tr>
<tr>
<td>Silicio</td>
<td>mg/L</td>
<td>0.104</td>
<td>10.88</td>
</tr>
<tr>
<td>Estano</td>
<td>mg/L</td>
<td>0.041</td>
<td><LCM</td>
</tr>
<tr>
<td>Estroncio</td>
<td>mg/L</td>
<td>0.002</td>
<td>0.671</td>
</tr>
<tr>
<td>Titanio</td>
<td>mg/L</td>
<td>0.005</td>
<td>0.037</td>
</tr>
<tr>
<td>Talio</td>
<td>mg/L</td>
<td>0.004</td>
<td>0.007</td>
</tr>
<tr>
<td>Vanadio</td>
<td>mg/L</td>
<td>0.004</td>
<td>0.072</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/L</td>
<td>0.023</td>
<td>173</td>
</tr>
</tbody>
</table>

Fuente: Laboratorio Regional del Agua Gobierno Regional Cajamarca
3.2. Resultados del Análisis para determinar el caudal óptimo para tratamiento del DAM por el método Óxico Calizo.

Mediante pruebas de laboratorio realizadas a las muestras de roca de ambas formaciones obtenidas en campo se logró determinar el caudal óptimo que permite tener un Potencial de Hidrogeno (pH) dentro de los LMPs.

Tabla 3:

<table>
<thead>
<tr>
<th>Formación Quilquiñan (Ks-q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal (ml/min)</td>
</tr>
<tr>
<td>Variación pH</td>
</tr>
<tr>
<td>Distancia (m)</td>
</tr>
<tr>
<td>Tiempo (s)</td>
</tr>
</tbody>
</table>

Fuente: Datos de laboratorio.

Tabla 4:

<table>
<thead>
<tr>
<th>Formación Cajamarca (ks-c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal (ml/min)</td>
</tr>
<tr>
<td>Variación pH</td>
</tr>
<tr>
<td>Distancia (m)</td>
</tr>
<tr>
<td>Tiempo (s)</td>
</tr>
</tbody>
</table>

Fuente: Datos de laboratorio.

Mediante las pruebas de laboratorio realizadas se obtuvieron los resultados que se muestran en las tablas 7 y 8 lo cual nos permitió identificar el caudal óptimo para el tratamiento de DAM., siendo la Caliza de la Formación Cajamarca (ks-c) la que obtuvo mejores resultados con respecto al tiempo, distancia y variación de pH.
Tabla 5:

Determinación del Caudal respecto al aumento pH de la Formación Quilquiñan

<table>
<thead>
<tr>
<th>Q = 200</th>
<th>Q = 150</th>
<th>Q = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>metros</td>
<td>pH final</td>
<td>metros</td>
</tr>
<tr>
<td>8.46</td>
<td>4.61</td>
<td>6.58</td>
</tr>
<tr>
<td>10.34</td>
<td>5.07</td>
<td>8.46</td>
</tr>
<tr>
<td>12.22</td>
<td>5.53</td>
<td>9.4</td>
</tr>
<tr>
<td>15.04</td>
<td>6.22</td>
<td>11.28</td>
</tr>
<tr>
<td>16.92</td>
<td>6.68</td>
<td>13.16</td>
</tr>
<tr>
<td>18.8</td>
<td>7.14</td>
<td>14.1</td>
</tr>
</tbody>
</table>

Fuente: Datos de laboratorio

Ilustración 8: Determinación de caudal (pH Vs Distancia)

Fuente: Datos de laboratorio
Tabla 6:

<table>
<thead>
<tr>
<th></th>
<th>200</th>
<th></th>
<th>150</th>
<th></th>
<th>100</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>metros</td>
<td>pH final</td>
<td>metros</td>
<td>pH final</td>
<td>metros</td>
<td>pH final</td>
<td></td>
</tr>
<tr>
<td>8.32</td>
<td>4.58</td>
<td>7.28</td>
<td>4.79</td>
<td>6.24</td>
<td>4.73</td>
<td></td>
</tr>
<tr>
<td>10.4</td>
<td>5.08</td>
<td>8.32</td>
<td>5.11</td>
<td>7.28</td>
<td>5.10</td>
<td></td>
</tr>
<tr>
<td>12.48</td>
<td>5.59</td>
<td>10.4</td>
<td>5.75</td>
<td>8.32</td>
<td>5.46</td>
<td></td>
</tr>
<tr>
<td>14.56</td>
<td>6.10</td>
<td>11.44</td>
<td>6.07</td>
<td>10.4</td>
<td>6.19</td>
<td></td>
</tr>
<tr>
<td>16.64</td>
<td>6.61</td>
<td>13.52</td>
<td>6.71</td>
<td>11.44</td>
<td>6.56</td>
<td></td>
</tr>
<tr>
<td>18.72</td>
<td>7.12</td>
<td>14.56</td>
<td>7.03</td>
<td>12.48</td>
<td>6.92</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Datos de Laboratorio

Ilustración 9: Determinación de Caudal (pH Vs Distancia)

Fuente: Datos de laboratorio

El Caudal más optimo según las pruebas realizadas a las muestras de ambas formaciones fue un caudal de 200 ml/s.
3.3. Análisis comparativo de dos tipos de roca caliza pertenecientes a la Formación Quilquiñan (ks-q) y Formación Cajamarca (ks-c)

Se realizaron pruebas de laboratorio utilizando las dos muestras de roca caliza pertenecientes a las formaciones Quilquiñan y Cajamarca para identificar cuál de ellas nos permite obtener mejores resultados en la aplicación del tratamiento pasivo Óxico Calizo.

Tabla 7:

Comparación entre (ks-q y ks-c) para determinar la roca más óptima para el tratamiento Óxico Calizo.

<table>
<thead>
<tr>
<th></th>
<th>Ks-q</th>
<th>Ks-c</th>
</tr>
</thead>
<tbody>
<tr>
<td>metros</td>
<td>pH final</td>
<td>metros</td>
</tr>
<tr>
<td>8.46</td>
<td>4.0</td>
<td>8.32</td>
</tr>
<tr>
<td>10.34</td>
<td>4.5</td>
<td>10.4</td>
</tr>
<tr>
<td>12.22</td>
<td>4.9</td>
<td>12.48</td>
</tr>
<tr>
<td>15.04</td>
<td>5.6</td>
<td>14.56</td>
</tr>
<tr>
<td>16.92</td>
<td>6.1</td>
<td>16.64</td>
</tr>
<tr>
<td>18.8</td>
<td>6.5</td>
<td>18.72</td>
</tr>
</tbody>
</table>

Fuente: Datos de laboratorio.

![Ilustración 10: Comparación de resultados (pH y distancia) Formación Quilquiñan Vs Formación Cajamarca.](image)

Fuente: Datos de laboratorio.
La formación apta luego de analizar los datos y gráficos obtenidos de las pruebas de laboratorio se determinó que la Formación con la Caliza más óptima para el tratamiento es la Formación Cajamarca (ks-c) dándonos un \(R^2 = 1 \).

3.4. Resultados de la evaluación de la neutralización del DAM con el método Óxico Calizo.

Se realizaron pruebas de laboratorio con las muestras de caliza optima perteneciente a la Formación Cajamarca (ks-c) utilizando el caudal óptimo de 200 ml/s calculado anteriormente para realizar la evaluación de neutralización a la muestra de DAM empleando el método de tratamiento pasivo Óxico Calizo.

Tabla 8:

<table>
<thead>
<tr>
<th>Análisis de muestras.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>As</td>
</tr>
<tr>
<td>Cd</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Cu</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>Hg</td>
</tr>
<tr>
<td>Zn</td>
</tr>
</tbody>
</table>

Fuente: Laboratorio Regional del Agua Gobierno Regional del Agua
Ilustración 11: Evaluación de Concentración de Metales de acuerdo a pH.

Fuente: Laboratorio Regional del Agua Gobierno Regional del Agua

Se puede observar que al neutralizar el Drenaje Acido de Mina (DAM) la concentración de metales se ha reducido en porcentajes de As = 93%, Cd = 46%, Cu = 83%, Fe = 93%, Pb = 38% y Zn = 84%.

3.5. Análisis comparativo de la neutralización con el método Óxido Calizo y Límites Máximos Permisibles (LMPs)

Se realizó un análisis comparativo entre los datos obtenidos de laboratorio y los Límites Máximos Permisibles (LMPs) para identificar la efectividad del tratamiento Óxido Calizo en relación a la disminución de concentración de los metales presentes en la muestra Base.
Tabla 9:

Límites Máximo Permisibles para la descarga de efluentes Líquidos de Actividades Minero-Metalúrgicas

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Límite en cualquier momento</th>
<th>Límites para el Promedio Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>mg/L</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Solidos Totales en suspensión</td>
<td>mg/L</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Aceites y Grasas</td>
<td>mg/L</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Cianuro Total</td>
<td>mg/L</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Arsénico Total</td>
<td>mg/L</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Cadmio Total</td>
<td>mg/L</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Cromo Hexavalente (*)</td>
<td>mg/L</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Cobre Total</td>
<td>mg/L</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Hierro (Disuelto)</td>
<td>mg/L</td>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>Plomo Total</td>
<td>mg/L</td>
<td>0.2</td>
<td>0.16</td>
</tr>
<tr>
<td>Mercurio Total</td>
<td>mg/L</td>
<td>0.002</td>
<td>0.0016</td>
</tr>
<tr>
<td>Zinc Total</td>
<td>mg/L</td>
<td>1.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fuente: Decreto Supremo N°10 – 2010 – MINAM

Tabla 10:

Comparación de concentración de metales de muestras tomadas Vs LMPs

<table>
<thead>
<tr>
<th>Datos Base</th>
<th>P1</th>
<th>P2</th>
<th>pH FINAL</th>
<th>LMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>2.54</td>
<td>4.79</td>
<td>5.75</td>
<td>6.71</td>
</tr>
<tr>
<td>As</td>
<td>4.242</td>
<td>2.104</td>
<td>1.192</td>
<td>0.28</td>
</tr>
<tr>
<td>Cd</td>
<td>0.087</td>
<td>0.065</td>
<td>0.056</td>
<td>0.047</td>
</tr>
<tr>
<td>Cr</td>
<td>0.021</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cu</td>
<td>0.99</td>
<td>0.549</td>
<td>0.361</td>
<td>0.173</td>
</tr>
<tr>
<td>Fe</td>
<td>830.4</td>
<td>412.220</td>
<td>233.796</td>
<td>55.373</td>
</tr>
<tr>
<td>Pb</td>
<td>0.386</td>
<td>0.308</td>
<td>0.274</td>
<td>0.241</td>
</tr>
<tr>
<td>Hg</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Zn</td>
<td>173</td>
<td>94.137</td>
<td>60.488</td>
<td>26.84</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia.
Ilustración 12: Resultados de Concentración de Metales Vs LMPs

Fuente: Elaboración Propia
4.1. Discusión

El tratamiento Óxico Calizo aplicado al DAM en esta investigación nos permitió obtener resultados favorables debido a que disminuyó la concentración de Metales y neutralizo el pH de las muestras obtenidas en campo. Estos resultados nos permiten abalar lo indicado por Osvaldo Aduvire en su investigación del año 2006 en la cual describe lo siguiente, “Una alternativa al tratamiento convencional de los drenajes ácidos tanto si las instalaciones se encuentran en operación o en abandono, lo constituyen los métodos de tratamiento pasivo, debido a su bajo costo, fácil operación, mantenimiento, y gran eficiencia en el tratamiento de aguas ácidas. Los métodos de tratamiento pasivo van desde drenajes anóxicos de caliza, canales abiertos de caliza, humedales construidos, hasta barreras reactivas permeables, en donde el objetivo principal es la supresión de la acidez, la precipitación de los metales pesados y la eliminación de sustancias contaminantes como los sólidos en suspensión, antimoniatos, arseniatos y otros”.

Según los análisis de laboratorio realizados a las muestras se pudo evaluar la neutralización de pH y disminución de contenido de metales en las muestras trabajando con un diseño en función del tiempo, distancia y caudal. Estos resultados nos permiten estar de acuerdo con lo señalado por Osvaldo Aduvire en el 2006 el cual describe lo siguiente: “El canal abierto de caliza o sistema óxico calizo es un canal cuyo lecho está rellenado de caliza por el que fluye el agua a tratar, cuyo objetivo es incrementar el pH y la alcalinidad para disminuir la acidez. El elevado contenido de oxígeno, produce la oxidación e hidrólisis del Fe y a los disueltos, que
precipitan como oxihidróxidos. Su diseño está en función del tiempo de retención y caudal a tratar. En su mayoría encontramos canales con contenido de agregados de caliza gruesa (a través de los cuales percola el agua), pasando así el DAM haciendo contacto con la caliza aumentando el pH”.

Según las pruebas realizadas para la neutralización de Drenaje Ácido de Mina (DAM) de la Bocamina Prosperidad con el método Óxico Calizo se puede observar que la concentración de metales se ha reducido en porcentajes de As = 93%, Cd = 46%, Cu = 83%, Fe = 93%, Pb = 38% y Zn = 84%, pero se llegó a un pH de 6.71 estando dentro de los límites máximos permisibles los metales de (Cd, Cu, Pb), por otro lado los metales de As, Fe y Zn se estima que a una mayor tiempo de tratamiento con el método Óxico Calizo se lograría generar un agua tratada que cumpliría los LMP, en comparación con el método Anóxico Calizo Según Bermejo y Rimarachín (2019) en su trabajo de investigación “Evaluación del drenaje anóxico calizo, como técnica complementaria al cierre de la bocamina BQH5 de Colquirrumi” cuyo objetivo principal era evaluar si con la aplicación de los drenajes anóxicos calizos como técnica complementaria, es posible neutralizar el pH y precipitar los metales presentes en las aguas ácidas de las filtraciones de la bocamina 05 de Quebrada Honda de Compañía Minera Colquirrumi de manera que cumplan con los LMP, Al realizar las pruebas experimentales a nivel de laboratorio se determinó el tratamiento Z (Drenaje grande con barreras) es el más adecuado para tratar las aguas de la BQH5 ya que logra cumplir con LMP establecidos para descargas de efluentes mineros, con éste tratamiento se reduce el Al en un 97%, As en un 98%, Cd en 99%, Cu en 99%, Fe 99.5 % y Zn en 98%.
Según lo descrito anteriormente se observa que el método Anóxico Calizo es más efectivo que el Óxico Calizo ya que disminuye la concentración de metales en el DAM en un mayor porcentaje generando un agua tratada que cumple con los LMP.
4.2. Conclusiones

- Se realizó el análisis Físico-Químico del DAM de la Bocamina Prosperidad dándonos como resultado agua con presencia de concentraciones altas en los metales (As, Al, Pb, Cd, Cu, Fe, Zn) y con un pH de 2.54 clasificándola como Agua Acida.
- Se determinó que el caudal más óptimo para el tratamiento de DAM de la Bocamina Prosperidad es de 200 ml/min ya que se evaluó el tiempo de recorrido Vs el aumento de pH.
- Se analizó que el tipo de roca más conveniente para el tratamiento de Drenaje Acido de Mina con el método Óxico Calizo entre roca Caliza de la Formación Quilquiñan y Formación Cajamarca, es la perteneciente a la Formación Cajamarca obteniendo con esta un mejor resultado en el tratamiento de DAM.
- Se evaluó el agua tratada por el método Óxico Calizo lo cual nos dio como resultado un agua con pH de 6.71 casi neutralizada, pero con concentraciones de metales que aún no cumplían con la normatividad del Decreto Supremo 10–2010-MINAM como son del As, Fe y Zn, llegando a la conclusión que a un mayor tiempo de tratamiento se llegaría a obtener un agua tratada.
- Finalmente se determinó que las pruebas realizadas para la neutralización de Drenaje Acido de Mina (DAM) de la Bocamina Prosperidad con el método Óxico Calizo tiene una concentración de metales que se han reducido en porcentajes de As = 93%, Cd = 46%, Cu = 83%, Fe = 93%, Pb = 38% y Zn = 84%, pero se llegó a un pH de 6.71 estando dentro de los límites máximos permisibles los metales de (Cd, Cu, Pb), por otro lado los metales de As, Fe y Zn se estima que a una mayor tiempo de tratamiento con el método Óxico Calizo se lograría generar un agua tratada que cumpliría los LMP.
REFERENCIAS

“Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxido calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019”

ANEXOS

Anexo N° 01: Límites Máximos Permisibles (LMPs) para la descarga de efluentes líquidos de actividades minero – metalúrgicas.

Tabla 11: Límites Máximos Permisibles (LMPs)

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Límite en cualquier momento</th>
<th>Límite para el Promedio Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>mg/L</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Solidos Totales en suspensión</td>
<td>mg/L</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Aceites y Grasas</td>
<td>mg/L</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Cianuro Total</td>
<td>mg/L</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Arsénico Total</td>
<td>mg/L</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Cadmio Total</td>
<td>mg/L</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Cromo Hexavalente (*)</td>
<td>mg/L</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Cobre Total</td>
<td>mg/L</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Hierro (Disuelto)</td>
<td>mg/L</td>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>Plomo Total</td>
<td>mg/L</td>
<td>0.2</td>
<td>0.16</td>
</tr>
<tr>
<td>Mercurio Total</td>
<td>mg/L</td>
<td>0.002</td>
<td>0.0016</td>
</tr>
<tr>
<td>Zinc Total</td>
<td>mg/L</td>
<td>1.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Fuente: Decreto supremo N° 010-2010-MINAM

Anexo N° 02: Escala Potencial de Hidrógeno

Ilustración 13: Escala de Potencial de Hidrogeno

Fuente: Agencia de Protección Ambiental de los Estados Unidos (EPA)
Anexo N° 03: Decreto Supremo N° 002 - 2008 – MINAM

Nos habla sobre los estándares nacionales de calidad ambiental del agua.

Que, en el inciso 22 del artículo 2° de la Constitución Política del Perú establece que toda persona tiene derecho a gozar de un ambiente equilibrado y adecuado al desarrollo de su vida; señalando en su artículo 67° que el Estado determina la Política Nacional del Ambiente.

El 16 de junio de 1999 se instaló el GESTA AGUA, cuya finalidad fue elaborar los Estándares de Calidad Ambiental para Agua - ECA para Agua, estando conformado dicho grupo de trabajo por 21 instituciones del sector público, privado y académico, actuando la Dirección General de Salud Ambiental- DIGESA como Secretaria Técnica.

Se establecieron la elaboración tanto de los Límites Máximos Permisibles (LMP) como los Estándares de Calidad Ambiental (ECA).

Anexo N° 04: Resolución Ministerial N° 011-96-EM-VMM

Nos dice que, los Programas de Adecuación y Manejo Ambiental tienen como objetivo que los titulares de la actividad minero-metalúrgica logren reducir sus niveles de contaminación ambiental hasta alcanzar los Niveles Máximos Permisibles; que es necesario establecer los Niveles Máximos Permisibles de los elementos contenidos en los efluentes líquidos de la industria minero-metalúrgica con la finalidad de controlar los vertimientos producto de sus actividades y contribuir efectivamente a la protección ambiental.
NIVELES MAXIMOS PERMISIBLES DE EMISION PARA LAS UNIDADES MINERO-METALURGICAS

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>VALOR EN CUALQUIER MOMENTO</th>
<th>VALOR PROMEDIO ANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Mayor que 6 y Menor que 9</td>
<td>Mayor que 6 y Menor que 9</td>
</tr>
<tr>
<td>Sólidos suspendidos (mg/l)</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Plomo (mg/l)</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Cobre (mg/l)</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>Zinc (mg/l)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Fierro (mg/l)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Arsénico (mg/l)</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Cianuro total (mg/l) *</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*CIANURO TOTAL, equivalente a 0.1 mg/l de Cianuro Libre y 0.2 mg/l de Cianuro fácilmente disociable en ácido.

Ley General de Minería (N° 014-92-EM).

El Texto Único Ordenado de la Ley General de Minería, aprobado por Decreto Supremo No. 014-92-EM (4 de junio de 1992) constituye la norma principal que rige las actividades mineras, incluyendo la prospección, exploración, explotación (tanto subterránea como superficial, incluyendo canteras y operaciones de dragado), procesamiento de minerales, metalurgia extractiva, transporte de minerales por medios continuos y comercialización de minerales, disponiéndose esta como el marco de definición de las actividades del cierre.

De conformidad con el Artículo 1 del Decreto de Urgencia N° 125-2000, publicado el 30.DIC.2000, se precisa Ley N° 27341 que modifica los Artículos 38, 39, 40, 57 y 84 del Texto Único Ordenado de la Ley General de Minería, aprobado por Decreto Supremo N° 014-92-EM.
Anexo N° 5. Localización de Calizas (Zona 15e) Tembladera.

Formación Quilquiñan

Formación Cajamarca

Secuencia Santa Clara

Fuente: INGEMET
Anexo N° 6. Coordenadas de la Bocamina Prosperidad

<table>
<thead>
<tr>
<th>COORDENADAS UTM (WGS84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTE</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>761076</td>
</tr>
</tbody>
</table>

Fuente: Datos de campo.

Anexo N° 07: Fotos en el Área de Estudio
"Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxico calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019"

Anexo Nº 08: Modelo de Maqueta en AutoCAD
Anexo Nº 09: Fotos en Construcción de la Maqueta
"Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxico calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019"
Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxido calizo para cumplir con los limites máximos permisibles de descarga de efluentes, Cajamarca 2019

Anexo Nº 10: Fotos en el Laboratorio, con Pruebas Piloto
"Propuesta de tratamiento del drenaje ácido de mina (DAM) de la bocamina prosperidad con el método óxido calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019"
Anexo Nº 11: Fotos de Instrumentos Utilizados
"Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxico calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019"
“Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxido calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019”

Anexo Nº 12: Fotos de Muestras Después del Tratamiento
“Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxico calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019”
Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperity con el método óxido calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019
"Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxido calizo para cumplir con los limites máximos permisibles de descarga de efluentes, Cajamarca 2019"
"Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxico calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019"

Anexo Nº 13: Formación Quilquiñan Después del Tratamiento
Anexo Nº 14: Formación Cajamarca Después del Tratamiento
Anexo Nº 15: Cuadro de recuperación de datos de cada maqueta.

<table>
<thead>
<tr>
<th>Tipo de Formación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal (ml/min)</td>
</tr>
<tr>
<td>Variación pH</td>
</tr>
<tr>
<td>Distancia (m)</td>
</tr>
<tr>
<td>Tiempo (s)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Anexo Nº 16: Cuadro de metros Vs pH obtenido por recorrido para reconocimiento del caudal óptimo.

<table>
<thead>
<tr>
<th>Tipo de Formación</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q = 200$</td>
</tr>
<tr>
<td>$Q = 150$</td>
</tr>
<tr>
<td>$Q = 100$</td>
</tr>
<tr>
<td>$m/#pasadas$</td>
</tr>
<tr>
<td>pH final</td>
</tr>
<tr>
<td>$m/#pasadas$</td>
</tr>
<tr>
<td>pH final</td>
</tr>
<tr>
<td>$m/#pasadas$</td>
</tr>
<tr>
<td>pH final</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Anexo Nº 17. Cuadro de comparación de resultados entre las formaciones Quilquiñán y formación Cajamarca con caudal óptimo.

<table>
<thead>
<tr>
<th>$Ks-q$</th>
<th>$Ks-c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m/#pasadas$ ($ks-q$)</td>
<td>pH final ($ks-q$)</td>
</tr>
<tr>
<td>$m/#pasadas$ ($ks-c$)</td>
<td>pH final ($ks-c$)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Anexo N° 18: Cuadro de resultados de los análisis de laboratorio.

<table>
<thead>
<tr>
<th>Datos Base</th>
<th>P1</th>
<th>P2</th>
<th>pH FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Anexo N° 19: Cuadro de comparación de resultados de los análisis de laboratorio Vs LMPs.

<table>
<thead>
<tr>
<th>Datos Base</th>
<th>P1</th>
<th>P2</th>
<th>pH FINAL</th>
<th>LMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Cd</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Hg</td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Anexo N° 20: Resultados del Laboratorio Gobierno Regional de Cajamarca.

<table>
<thead>
<tr>
<th>Código Cliente</th>
<th>JTH</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código Laboratorio</td>
<td>1118651-01</td>
<td>1118651-02</td>
<td>1118651-03</td>
<td>1118651-04</td>
</tr>
<tr>
<td>Color de Agua</td>
<td>RESIDUAL</td>
<td>RESIDUAL</td>
<td>RESIDUAL</td>
<td>RESIDUAL</td>
</tr>
<tr>
<td>Descripción</td>
<td>Industrial</td>
<td>Industrial</td>
<td>Industrial</td>
<td>Industrial</td>
</tr>
<tr>
<td>Localización de la Muestra</td>
<td>Cerro Corona-Hualgayoc</td>
<td>Cerro Corona-Hualgayoc</td>
<td>Cerro Corona-Hualgayoc</td>
<td>Cerro Corona-Hualgayoc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Resulados</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH a 25°C</td>
<td>pH</td>
<td>2.54</td>
</tr>
</tbody>
</table>

Observaciones

El método utilizado para determinar los parámetros fue el no. 4030-H-I-B, 22 Ed. Ed. 2017. Los resultados se expresan en mg/l y se determinaron mediante una espectrofotometría de absorción atómica.

NOTAS FINALES

Los resultados indicados en este informe son únicos e intransferibles a otros empleadores.

La reproducción parcial de este informe está permitida siempre que se haga suficiente para su uso en un sitio web. Remítase a la norma ISO/IEC 17025:

El sistema de gestión de calidad del Laboratorio Regional del Agua, está acreditado en base a la norma EN 45001.

La reproducción parcial de este informe no debe ser utilizada como una certificación de confidencialidad con normes de productos o certificado del sistema de control de la entidad que el producto.

Laboratorio Regional del Agua - Gobierno Regional Cajamarca.
Propuesta de tratamiento del drenaje acido de mina (DAM) de la bocamina prosperidad con el método óxico calizo para cumplir con los límites máximos permisibles de descarga de efluentes, Cajamarca 2019

Ampuero Chavez R.; Barboza Navarro A.