CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA, 2020

Tesis para optar el título profesional de:
Ingeniero Geólogo

Autores:
Enma Chavez Chavez
Erika Lorena Chugden Carranza

Asesor:
Ing. Mg. Miguel Ricardo Portilla Castañeda

Cajamarca - Perú
2020
DEDICATORIA

Esta tesis lo dedicamos a nuestros padres por habernos forjado como las personas que somos en la actualidad, muchos de nuestros logros se lo debemos a ellos entre los que incluye este. Nos formaron con reglas y con algunas libertades, pero al final de cuentas, nos motivaron constantemente para alcanzar nuestros anhelos.

Gracias mamá y papá.
AGRADECIMIENTO

El presente trabajo de investigación lo dedicamos principalmente a Dios, por ser el inspirador y darnos fuerzas para continuar en este proceso de obtener uno de los anhelos más deseados. A nuestros padres, por su amor, trabajo y sacrificio en todos estos años, gracias a ustedes hemos llegado hasta aquí y convertirnos en lo que somos. Ha sido el orgullo y el privilegio de ser sus hijas, son los mejores padres. A nuestros docentes de la escuela de Geología de la Universidad Privada del Norte, por haber compartido sus conocimientos a lo largo de la preparación de nuestra profesión, de manera especial, al ingeniero Miguel Ricardo Portilla Castañeda asesor de nuestro proyecto de investigación quien ha guiado con su paciencia y su rectitud como docente. A nuestros hermanos (as) por estar siempre presentes, acompañándonos y por el apoyo moral, que nos brindaron a lo largo de esta etapa de nuestras vidas. A todas las personas que nos hayan apoyado y han hecho que el trabajo se realice con éxito en especial aquellos que nos abrieron las puertas y compartieron sus conocimientos.
INDICE DE CONTENIDOS

DEDICATORIA .. 1
AGRADECIMIENTO ... 2
ÍNDICE DE TABLAS ... 5
ÍNDICE DE FIGURAS ... 6
RESUMEN .. 7
ABSTRACT ... 9

CAPÍTULO I. INTRODUCCIÓN ... 9
1.1. Realidad problemática .. 9
1.2. Formulación del problema ... 11
1.3. Objetivos ... 11
 1.3.1. Objetivo general .. 11
 1.3.2. Objetivos específicos .. 11
1.4. Hipótesis ... 12
 1.4.1. Hipótesis general ... 12

CAPÍTULO II. METODOLOGÍA ... 13
2.1. Tipo de investigación ... 13
2.2. Población y muestra (Materiales, instrumentos y métodos) 13
 2.2.1. Población: .. 13
 2.2.2. Muestra: .. 13
 2.2.3. Materiales: ... 13
2.3. Técnicas e instrumentos de recolección y análisis de datos 13
 2.3.1. Procedimiento ... 14
 2.3.2. Trabajo de gabinete pre-experimentación ... 14
 2.3.3. Trabajo de campo ... 15
 2.3.4. Trabajo de gabinete post- experimentación 15

CAPÍTULO III. RESULTADOS .. 17
3.1. Ubicación .. 17
3.2. Geología local ... 18
 3.2.1. Grupo Pulluicana (Ks-pu) .. 19
 3.2.2. Formación Pariatambo (Ki-pa) .. 20
 3.2.3. Formación Chulec (ki-chu) .. 21
3.3. Geología estructural ... 24
 3.3.1. Fallas .. 24
 3.3.2. Diaclasas ... 25
3.4. Ubicación de muestras .. 28
3.5. Análisis químico de muestras...29
 3.5.1. Porcentaje del (CaCO₃) ...30
3.6. Análisis Estadístico ..30
3.7. Anomalías geoquímicas. ..35
3.8. Modelo geológico por simulación..37
3.9. Estimación de recursos...38
 3.9.1. Calculo de la estimación de recursos ..39

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES43
 4.1 Discusión ...43
 4.2 Conclusiones ..45
REFERENCIAS ...47
ANEXOS ..49
ÍNDICE DE TABLAS

Table 1 Revisión sistemática. .. 14
Table 2. Sistema de coordenadas WGS84 de los vértices de la zona de estudio. 17
Table 3. Acceso al área de estudio. .. 18
Table 4 GINGCONSULT & LAB S.R.L. Resultados de pruebas. .. 29
Table 5 Base de datos para el análisis estadístico (COLLAR) (Anexo 6). .. 30
Table 6 Estudio estadístico univariable. .. 32
Table 7 Estudio estadístico bivariable. .. 34
Table 8 Resultados del análisis de muestreo de la concesión Paulita25. .. 40
Table 9 Códigos de muestreo y profundidad de la obtención de muestras. .. 40
Tabla 10 Estimación de la reserva de CaCO₃.. 41
ÍNDICE DE FIGURAS

Table 1 Revisión sistemática. ... 14
Table 2. Sistema de coordenadas WGS84 de los vértices de la zona de estudio. 17
Table 3. Acceso al área de estudio. .. 18
Table 4 GINGCONSULT & LAB S.R.L. Resultados de pruebas. 29
Table 5 Base de datos para el análisis estadístico (COLLAR) (Anexo 6). 30
Table 6 Estudio estadístico univariable. .. 32
Table 7 Estudio estadístico bivariable. ... 34
Table 8 Resultados del análisis de muestreo de la concesión Paulita25. 40
Table 9 Códigos de muestreo y profundidad de la obtención de muestras. 40
Tabla 10 Estimación de la reserva de CaCO₃ .. 41
RESUMEN

En el distrito de Sorochuco, Caserío Agua blanca, cuenta con una gran cantidad de roca caliza. Por lo que generalmente la cal es una de las principales fuentes de ingreso aparte de la minería metálica en nuestra región. Este estudio se llevó acabo con el objetivo de determinar la influencia de la caracterización geológica superficial para la estimación de recursos usando el método clásico de Polígonos; el diseño de la investigación es no experimental, aplicada, nivel correlacional y enfoque cuantitativo. Se realizó la caracterización geológica mediante el mapeo geológico por el método de perfiles, levantamiento topográfico y el muestreo sistemático. Se obtuvo 24 muestras en el área de estudio, las muestras fueron llevadas al laboratorio GINGECONSULT & LAB S.R.L. para el análisis químico, donde se obtuvo un resultado de 93.6 a 98.9% CaCO₃. Los resultados del estudio muestran una estimación de 2 735 217.698t de CaCO₃ mediante el método clásico de Polígonos, considerándose como un recurso aprovechable.

Palabras clave: Roca caliza, caracterización geológica, estimación, recursos
ABSTRACT

In the district of Sorochuco, hamlet of Agua Blanca has a lot of limestone. So lime is generally one of the main sources of income apart from metal mining in our region. This study was carried out with the objective of determining the influence of surface geological characterization for the estimation of resources using the classic Polygon method; the design of the research is non-experimental, applied, correlated level and quantitative approach. Geological characterization was performed by geological mapping by the profiling method, surveying and systematic sampling. 24 samples were obtained in the study area; samples were taken to the laboratory GINGECONSULT & LAB S.R.L. for chemical analysis, where a result of 93.6 a 98.9% CaCO₃ was obtained. The results of the study show an estimate of 2 735 217,698t of CaCO₃ using the classic method of Polygons, considered a usable resource.
1.1. **Realidad problemática**

La presente investigación menciona que nuestra región Cajamarca es una de las más pobres a nivel nacional, con menos fuentes de trabajo y oportunidades, a pesar de ello cuenta con una gran cantidad de recursos minerales tanto metálicos como industriales. Debido a ello se tiene un gran interés a que se valoren estos depósitos de caliza con la finalidad de crear una posibilidad de desarrollo mediante el aprovechamiento del recurso natural, que contribuya como alternativa de impulso económico y sirva para contribuir con la investigación geológica minera, para nuestra región (Quesada, 2011).

La cal es un producto industrial que en el Perú es usado en diversas industrias como en la de fabricación de azúcar, pinturas, acero; como desinfectante, en la fabricación de plásticos. En la minería se usa como neutralizador de residuos ácidos, para mantener ambientes alcalinos en celdas de flotación y en los pad de lixiviación. En nuestro país el mayor consumo de cal se da en la minería (Bonilla & Rosas, 2007).

Mediante la investigación geológica del estudio proyecto Peña Blanca es fundamental para la estimación preliminar de recursos de roca caliza pertenecientes a la formación Cajamarca, para ello se utilizó el “método de bloques geológicos” a fin de realizar el cálculo de tonelaje total resultante del cálculo de potencia, área, volumen, ancho promedio y densidad de la roca. Dando como resultado que el proyecto da una aproximación de 92 523,430 TM de roca caliza como recurso aprovechable (Silva, 2015).
Según Carriño y Rosas (2007), en la década de los 90 y principios del 2000, el crecimiento fue importante en el norte del país, por el inicio de operaciones de minería Yanacocha en Cajamarca y de Antamina en Ancash. Después de la depresión de precios de los minerales en el mercado mundial, en el segundo lustro de la década de los 90, su cotización en los principales países del mundo empezó a repuntar entre el 2001 y 2002, en tal forma que, en el 2006, llegaron a tener precios nunca antes vistos en los minerales como el cobre, oro, entre otros. De esta forma se impulsaron proyectos de ampliación en las principales minas del sur peruano como Southern Perú Copper Corporation (SPCC) en el 2006, Mina Tintaya (2006), Cerro Verde (2007) y Aruntani (2007) y se estableció un cronograma para el ingreso de nuevos proyectos mineros como Quellaveco (2009), Las Bambas (2010), Los Chancas (2015), Tía María (2016) y Limamayo (2017). Esto ha traído como consecuencia que la demanda accesible de cal que hasta el 2006 fue de 34 mil toneladas por año, se eleve a 80 mil toneladas en el 2007 y se prevé un importante crecimiento con el ingreso de nuevos proyectos mineros, estimándose llegar a un consumo de 240 mil toneladas de cal en el 2015.

La concesión Paulita 25 se encuentra ubicado en la parte alta del distrito de Sorochuco-provincia Celendín, al este de Yanacocha. En vista que en el departamento de Cajamarca se encuentra en explotación diferentes proyectos mineros y se entiende que la minería utiliza óxido de calcio para la lixiviación de sus depósitos de minerales entre otros, ante esto se ha visto una gran necesidad de búsqueda y explotación de nuevos yacimientos de carbonato de calcio los cuales se conviertan en principales proveedores de los diferentes proyectos mineros en nuestra región.

El estudio realizado se encuentra en uno de los distritos con más extrema pobreza a nivel nacional, una población vulnerable sin fuentes de trabajo y oportunidades
laborales, es por esta razón que se busca generar cientos de puestos de trabajo haciendo uso de la explotación de depósitos de caliza con la finalidad de crear un desarrollo sostenible a corto, mediano y largo plazo. En el distrito de Sorochuco existen cientos de hectáreas de terreno con PH acido, que dificulta el crecimiento de pastizales, sembríos y plantaciones. Con el uso de cal agrícola o hidratada se puede neutralizar el PH y mejorar la producción agrícola y ganadera.

Las diferentes vías de acceso se encuentran en mal estado que dificulta y disminuye la vida útil vehicular. Con la explotación de la caliza, quedará roca entre 3 a 4 pulgadas de tamaño las cuales se utilizará para el lastrado y mejoramiento de las diferentes trochas Carrozables que unen a nuestro distrito.

1.2. **Formulación del problema**

¿Cómo la caracterización geológica superficial permite la estimación de recursos de caliza en la concesión paulita 25, Sorochuco-Cajamarca 2020?

1.3. **Objetivos**

1.3.1. **Objetivo general**

1.3.2. **Objetivos específicos**

Determinar las características litológicas, estratigráficas y estructurales de la concesión Paulita 25.

Realizar toma de muestras representativas para determinar el porcentaje de carbonato de calcio.
Realizar un modelo geológico y estimación de recursos de caliza en la concesión Paulita 25.

1.4. Hipótesis

1.4.1. Hipótesis general

La caracterización geológica superficial permite la estimación de recursos de caliza en la concesión Paulita 25 mediante el mapeo geológico, análisis litológico, estructural y muestreo de la zona de estudio para una futura explotación.
2.1. Tipo de investigación

El presente estudio es de propósito aplicada ya que se centra en desarrollar el objetivo planteado durante la investigación, donde se realizará toma de muestras, mediciones de longitudes (Hernández, Fernández, & Pilar, 2010).

El tipo de investigación es descriptiva porque busca especificar propiedades y características de cualquier fenómeno que se somete a un análisis. El enfoque es cuantitativo, correlacional con diseño no experimental de corte transversal porque tiene como finalidad conocer la relación o grado de asociación que exista entre dos o más conceptos, categorías o variables en un contexto en particular, se centrará en desarrollar variables correspondientes, durante la caracterización geológica y estimación de recursos, se realizará toma de muestra, análisis químico, observación directa y análisis estadístico (Hernández, 2014, pág. 89).

2.2. Población y muestra (Materiales, instrumentos y métodos)

2.2.1. Población:

Roca caliza de la Concesión Paulita 25.

2.2.2. Muestra:

24 estaciones de muestreo de caliza de la concesión Paulita 25.

2.2.3. Materiales:

GPS, brújula tipo Brunton, picota, lupa, bolsas de polietileno para muestras, lápiz y lapiceros, Wincha o flexómetro, cámara fotográfica, mapa geológico y mapa topográfico.

2.3. Técnicas e instrumentos de recolección y análisis de datos
En las técnicas tenemos la observación, en este caso se utilizará una guía de campo donde se observará estructuras, litología y características de la roca. Los instrumentos a utilizar son, ficha de observación, cuaderno de campo, Mapa topográfico. Las recolecciones de datos serán tomadas mediante mapeo geológico, toma de muestras, análisis químico.

2.3.1. Procedimiento

La elaboración de la presente investigación consta de tres partes que son: trabajo de gabinete, trabajo de campo y trabajo de gabinete post-experimentación.

2.3.2. Trabajo de gabinete pre-experimentación.

Durante la investigación se realizó la recopilación, revisión y síntesis de la información bibliográfico necesario para el área de estudio. Se determinó la accesibilidad y la ubicación de la zona de estudio mediante imágenes satelitales y GEOCATMIN. Así mismo se obtuvo el mapa geológico y topográfico.

<table>
<thead>
<tr>
<th>Objetivos de estudio</th>
<th>Año de publicación</th>
<th>Referencias</th>
</tr>
</thead>
</table>
El objetivo es la estimación de leyes, cálculo de errores, clasificación de reservas; se aplican las técnicas de kriging que producen una estimación con errores mínimos y sin sesgo. La cal es un producto industrial que en el Perú es usado en diversas industrias como en la de fabricación de azúcar, pinturas, acero; como desinfectante, en la fabricación de plásticos. En la minería se usa como neutralizador de residuos ácidos, para mantener ambientes alcalinos en celdas de flotación y en el Pad de lixiviación.

2.3.3. **Trabajo de campo.**

Así mismo se llevó a cabo el reconocimiento previo al área de estudio, para luego realizar el mapeo geológico por el método de los perfiles mediante la observación, información geológica (litología, fallas, pliegues, diaclasas) (Ayala, 2016).

Se realizó el levantamiento topográfico con GPS, luego se procedió a la toma de muestras más representativas, donde se obtuvo 24 muestras de caliza mediante muestreo sistemático en donde las muestras se tomó en una malla regular, en intervalos regulares de tiempo o de espacio para ello se utilizó el método de muestreo lineal (canaleta o ranurado), con un sistema mecánico de extracción de muestras de tamaño pequeño-médio en la zona de estudio a nivel superficial, para luego ser enviadas al laboratorio y ser analizadas para obtener la cantidad (%) de óxido de calcio presente en las calizas de la Concesión Paulita 25. (Sucasaca & Fernandez, 2012)

2.3.4. **Trabajo de gabinete post- experimentación**

En esta etapa de gabinete después de la recopilación de la información se realizó el procesamiento de datos obtenidos en campo como; redacción del informe,
digitalización de planos, elaboración del modelo geológico y la estimación de recurso de caliza.

Con los datos topográficos se procedió a la elaboración de planos, geológico, topográfico, de ubicación y accesibilidad de la zona de estudio con uso del SOFTWARE Arcgis. Las muestras obtenidas en campo fueron enviadas al laboratorio INGECIONNSULT & LAB S.R.L. Para su análisis químico y obtener el porcentaje de carbonato de calcio %\(\text{CaCO}_3\) y demás minerales que contenga, %\(\text{CaO}\), %\(\text{Fe}_2\text{O}_3\), %\(\text{MgO}\), %\(\text{SiO}_2\), %\(\text{Al}_2\text{O}_3\), para luego ser procesado en el software leapfrog, ArcGIS y obtener el mapa de anomalías. Con ayuda de los datos topográficos, análisis químico del mineral y datos estadísticos, se obtuvo la estimación de recursos mediante el método de los polígonos.
CAPÍTULO III. RESULTADOS

3.1. Ubicación

La concesión Paulita 25 está ubicado a 73 km al Norte de la ciudad de Cajamarca y al este de minera Yanacocha y en la parte alta del distrito de Sorochuco, se encuentra en la región Jalca a una altitud que varía desde los 3700 a 4200 metros.

Table 2. Sistema de coordenadas WGS84 de los vértices de la zona de estudio.

<table>
<thead>
<tr>
<th>VERTICE</th>
<th>NORTE</th>
<th>ESTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>9232700</td>
<td>791800</td>
</tr>
<tr>
<td>V2</td>
<td>9232700</td>
<td>793750</td>
</tr>
<tr>
<td>V3</td>
<td>9231700</td>
<td>793750</td>
</tr>
<tr>
<td>V4</td>
<td>9231700</td>
<td>791800</td>
</tr>
</tbody>
</table>

Figure 1. Plano de ubicación de la zona de estudio.
Accesibilidad.

Table 3. Acceso al área de estudio.

<table>
<thead>
<tr>
<th>RUTA</th>
<th>DISTANCIA</th>
<th>TIPO DE VÍA</th>
<th>TIEMPO(min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cajamarca – Celendín</td>
<td>103 km</td>
<td>Asfaltada</td>
<td>2h 19min</td>
</tr>
<tr>
<td>Celendín – Sorochuco</td>
<td>11 km</td>
<td>trocha</td>
<td>1h 10min</td>
</tr>
</tbody>
</table>

3.2. Geología local

Los materiales geológicos presentes en el área de estudio (Figura 1). Están integradas por las rocas sedimentarias pertenecientes al cretáceo superior-inferior, en el área de estudio se encuentra la formación Chùlec, Pariatambo y grupo Pulluicana.
3.2.1. Grupo Pulluicana (Ks-pu)

La litología predominante es caliza arcillosa, grisácea, que intemperiza a crema o marrón claro y que se presenta en capaz mediana, nodulares e irregularmente estratificadas. Intercaladas con las calizas, hay capaz de margas marrones y lutitas grisáceas o verdosos, así como algunas capas de limonitas y areniscas, alcanza un promedio de 600 m de grosor. El grupo Pulluicana generalmente tiene una fauna relativamente abundante de especies de: Exogyra, Inoceramus, pero los amonites son escasos. Los cuales están comprendidos entre la parte tardía del Albiano medio y el Cenomaniano temprano.
Figure 4. Caliza arcillosas gris pardusca, arenosas con presencia de *Inoceramus*, observándose una intemperización a color crema en capas delgadas. Formación Pulluicana.

El grupo Pulluicana está constituido principalmente por calizas marinas y en menor proporción por margas y lutitas. Este tipo de roca caliza tiene una ley superior al 93% de CaCO₃, lo que eleva la demanda y por consiguiente el precio del mineral, considerándose medianamente pura, apta para la elaboración de óxido de calcio, así mismo, está formada por procesos bioquímicos que ocurre cuando los microorganismos de los ambientes marinos someros como los foraminíferos forman sus caparazones extrayendo los iones del calcio del agua de mar y generando la calcita.

3.2.2. **Formación Pariatambo (Ki-pa)**

La formación Pariatambo consiste de una alternancia de lutitas con lechos delgados de calizas bituminosas negruzcas, estratos calcáreos con nódulos silíceos (chert) y dolomíticos, con un característico olor fétido al fracturarlas.
Generalmente, su espesor oscila entre los 150 a 200 m. La formación Pariatambo yace concordantemente sobre la formación Chúlec. (Figura 5)

![Imagen de la formación Pariatambo](image)

Figure 5. Calizas bituminosas nodulares, pertenecientes a la formación Pariatambo.

Formación Pariatambo. Estas rocas fueron originadas por la acumulación y litificación del material sólido que han generado algunos tipos de organismos vivos (microorganismo principalmente) en diferentes ambientes geológicos, mediante proceso de diagénesis y litificación. Mediante el análisis químico realizado se tiene una caliza apta para la fabricación de cal con una ley superior a 94.8 CaCO3.

3.2.3. Formación Chulec (ki-chu)

Litológicamente, consta de una secuencia bastante fosilífera de calizas arenosas, lutitas calcáreas y margas, las que por intemperismo adquieren un color crema-amarillento. Su aspecto terroso amarillento es una característica para distinguirla en el campo. Sus grosor es varían de 200 a 250 m. con tendencia a aumentar hacia el suroeste. Generalmente, los bancos de margas
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020

se presentan muy nodulosos y las calizas frescas muestran colores gris-parduzcos algo azulados.

Figure 6. Calizas arenosas, lutitas calcáreas y margas, formación Chûlec.

Esta formación es de origen marino, es apta para la explotación de CaCO3 presentando una ley de 95.8 %, la cual fue constituida mediante cambios físicos, químicos y bilógicos, antes de la compactación y cementación de sedimentos. Por lo tanto, este mineral va a conformar los caparazones y conchas de algunos organismos marinos.

3.2.4. Génesis de la caliza.

La solución, transporte y deposición de carbonato cálcico y magnésico da origen a depósitos comerciales de calizas y dolomías. Las calizas son rocas originadas por proceso de sedimentación directa, de diversos orígenes.

El estudio realizado se encuentra dentro de tres formaciones (Chûlec, Pariatambo y Pulluicaca), a continuación, se menciona los procesos que dieron origen al carbonato de calcio (CaCO₃).
Precipitación bioquímica, cuando el carbonato cálcico se fija (en forma de aragonito) en conchas o esqueletos de determinados organismos macroscópicos (lamelibránquios, braquiápodos, gasterópodos) microscópicos (foraminíferos), o nanoscópicos (cocolitos) y a su muerte, estas conchas o esqueletos se acumulan, originando un sedimento carbonatado.

Deposición orgánica, se produce por algas, bacterias, corales, foraminíferos y conchas mayores. El carbonato es depositado por fotosíntesis de plantas, formando yacimientos de calizas del tipo foraminíferos o conchas nummulíticas, corales o conchas de mayor tamaño denominadas coquinas.

Origen marino o de agua dulce, y el magnesio puede sustituir en parte al calcio, y da como resultado calizas dolomíticas; comúnmente se hallan con impurezas de sílice, arcilla, así como fosfato, hierro, manganeso y materia orgánica; el calcio se libera por meteorización y es transportado a las cuencas sedimentarias como bicarbonatos, en parte como carbonato (Ronquillo, Antay, & Palomino, 2019).

Diagénesis de la caliza.

Las calizas se forman en los mares cálidos y poco profundos de las regiones tropicales, en aquellas zonas en las que aportes detríticos son poco importantes. Dos procesos, que generalmente actúan conjuntamente, contribuyen a la formación de las calizas: es una roca que está formada principalmente por carbonato de calcio, normalmente tiene origen sedimentario, al depositarse por largo tiempo los esqueletos carbonatados de seres vivos en los fondos del océano.
Los factores condicionantes, de la diagénesis de las rocas carbonatadas son: geoquímica del agua, pH, disponibilidad (actividad) del CO2, temperatura (T°C), presión hidrostática y litostática, composición de sedimentos carbonatados (aragonito, calcita magnesiana, calcita, dolomita).

Los procesos diagenéticos esenciales de carbonatos son:
Disolución, cementación, neomorfismo (inversión: polimorfismo y recristalización), (James & Choquette, 1983).

3.3. Geología estructural

3.3.1. Fallas

En nuestra zona de estudio se logró apreciar una falla normal donde se observa los escalones que indican que el techo ha abajado respecto al piso, esto ha sido originado por fuerzas de distensión. se observa que los estratos de rocas sedimentarias de la misma secuencia en el bloque piso, se han movido hacia abajo en el bloque techo, con un buzamiento de 32NW.

Figure 7. Relleno con roca fracturada y ligeramente altrada, lutitas grises.
3.3.2. Diaclasas

En la zona de estudio se ha logrado apreciar una familia de diaclasa, donde se observa fracturamiento sin desplazamiento en los bloques, con fracturas pequeñas –grandes, cubiertas de vegetación.

Figure 8. Estratos de caliza con rellenos de lutitas grises.

Figure 9. Diaclasas a pequeña escala con topografía kártica pertenecientes a la formación Pariatambo.
Mineralización de la calcita

En las muestras extraídas de la zona de estudio se logró obtener una cantidad superior al 93% de CaCO₃ donde se considera que se está hablando de una roca caliza, constituida en mínima cantidad de impurezas como MgO, Al₂O₃, Fe₂O₃, SiO₂. La caliza que contiene como mínimo un 80% de carbonato de calcio o magnesio, es considerada como mineral explotable. Desde el punto de vista geológico, la denominación de caliza se aplica solamente en aquellas rocas cuya fracción carbonática es proporcionalmente mayor a los componentes no carbonáticos.

Figure 10. Mineralización de la caliza

Carbonato de calcio

La calcita encontrada en la formación Pariatambo, Chùlec y Pulluicana, consta de calizas negras, bituminosas nodulares, estratificaciones de calizas intercalados con lutitas y margas, teniendo en cuenta la variedad de los procesos de formación esta constituidas por carbonato de calcio.
Desde el punto de vista de la aplicación industrial uno de los parámetros que se tienen en cuenta se refieren a la composición química, más que en la composición mineralógica, razón por la cual se especifica el contenido de CaCO3 (ó CaO) y MgCO3 (ó MgO) o ambos.

Las calizas de grado químico son clasificadas según el contenido de carbonato presente. Esta clasificación apunta exclusivamente al contenido de carbonato de calcio y dependiendo de alguna aplicación específica aparte de determinar los componentes mayoritarios (CaO, MgO, SiO2, Al2O3, Fe2O3, relacionado con la pureza se menciona el color, ya que un mínimo contenido de algún material no carbonático produce un marcado cambio del mismo.

Tabla 3.1. Clasificación química de la caliza.

<table>
<thead>
<tr>
<th>CATEGORIA</th>
<th>COMPOSICION % CaCO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alta pureza</td>
<td>> 98,5</td>
</tr>
<tr>
<td>Alta pureza</td>
<td>> 97,0 - 98,5</td>
</tr>
<tr>
<td>Medianamente pura</td>
<td>> 93,5 – 97,0</td>
</tr>
<tr>
<td>Baja pureza</td>
<td>85,0 - 93,5</td>
</tr>
<tr>
<td>Muy baja pureza</td>
<td>< 85,0</td>
</tr>
</tbody>
</table>

Fuente: Mineralogy and Petrology Group, British Geological Survey
Figure 11. Caliza con relleno de lutitas, presenta coloración blanquecina indicando pureza en carbonato de calcio.

3.4. Ubicación de muestras
Para cualquier tipo de análisis se debe tener en cuenta como base fundamental y determinante la geología de la zona o lugar de investigación.

La muestra 01, 02,03, y 09, Está ubicada a 3900 m con un buzamiento de 81NW, donde se puede apreciar estratos de caliza arcillosa, grisácea, que intemperiza a crema o marrón claro y que se presenta en capaz mediana, nodulares e irregularmente estratificadas. Intercaladas con las calizas, hay capaz de margas marrones y lutitas grisáceas o verdosos, así como algunas capas de limonitas y areniscas, pertenecientes a la formación Pulluicana.

Las muestras 10-22 y 23. Ubicadas a 3920 m, calizas bituminosas negruzcas, estratos calcáreos con nódulos silíceos (chert) y dolomíticos, con un característico olor fétido al fracturarlas. Generalmente, su espesor oscila entre los 150 a 200 m, perteneciente a la formación Pariatambo.

Muestra 24. Ubicada a 4000 m, calizas arenosas, nodulares las que por interperismo adquieren una coloración amarillento características de la formación Chùlec. Con presencia de vegetación como icho y diferente malaria de la zona de estudio.

3.5. Análisis químico de muestras.

Tabla 4 GINGCONSULT & LAB S.R.L. Resultados de pruebas.

<table>
<thead>
<tr>
<th>MUESTRA</th>
<th>% CaCO₃</th>
<th>% CaO</th>
<th>% Fe₂O₃</th>
<th>% MgO</th>
<th>% SiO₂</th>
<th>% Al₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>94.8</td>
<td>82.9</td>
<td>0.091</td>
<td>0.4</td>
<td>1.67</td>
<td>0.74</td>
</tr>
<tr>
<td>M-2</td>
<td>96.6</td>
<td>85.4</td>
<td>0.092</td>
<td>0.42</td>
<td>1.65</td>
<td>0.73</td>
</tr>
<tr>
<td>M-3</td>
<td>98.9</td>
<td>87.1</td>
<td>0.095</td>
<td>0.51</td>
<td>1.72</td>
<td>0.79</td>
</tr>
<tr>
<td>M-4</td>
<td>98.1</td>
<td>86.3</td>
<td>0.089</td>
<td>0.41</td>
<td>1.68</td>
<td>0.71</td>
</tr>
<tr>
<td>M-5</td>
<td>98.3</td>
<td>86.2</td>
<td>0.092</td>
<td>0.39</td>
<td>1.66</td>
<td>0.72</td>
</tr>
<tr>
<td>M-6</td>
<td>93.8</td>
<td>82.9</td>
<td>0.09</td>
<td>0.4</td>
<td>1.66</td>
<td>0.8</td>
</tr>
<tr>
<td>M-7</td>
<td>94.8</td>
<td>82.9</td>
<td>0.095</td>
<td>0.4</td>
<td>1.67</td>
<td>0.74</td>
</tr>
<tr>
<td>M-8</td>
<td>93.6</td>
<td>85.7</td>
<td>0.088</td>
<td>0.5</td>
<td>1.63</td>
<td>0.73</td>
</tr>
<tr>
<td>M-9</td>
<td>93.6</td>
<td>86.5</td>
<td>0.091</td>
<td>0.53</td>
<td>1.68</td>
<td>0.81</td>
</tr>
<tr>
<td>M-10</td>
<td>93.8</td>
<td>82.9</td>
<td>0.089</td>
<td>0.4</td>
<td>1.66</td>
<td>0.8</td>
</tr>
<tr>
<td>M-11</td>
<td>93.8</td>
<td>82.9</td>
<td>0.09</td>
<td>0.4</td>
<td>1.66</td>
<td>0.8</td>
</tr>
<tr>
<td>M-12</td>
<td>93.6</td>
<td>85.7</td>
<td>0.092</td>
<td>0.5</td>
<td>1.63</td>
<td>0.73</td>
</tr>
</tbody>
</table>
3.5.1. Porcentaje del (CaCO3).

El mineral es de alta pureza, con una ley promedio de 95.43888% de CaCO3, y las impurezas presentes en la roca caliza entre 0.1 a 1.6 %, lo cual hace de esto una buena materia prima para la obtención de cal viva.

3.6. Análisis Estadístico

Tabla 5 Base de datos para el análisis estadístico (COLLAR) (Anexo 6).

<table>
<thead>
<tr>
<th>HOLE</th>
<th>EASTING</th>
<th>NORTING</th>
<th>ELEVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH001</td>
<td>792200</td>
<td>9232400</td>
<td>3966</td>
</tr>
<tr>
<td>DH002</td>
<td>792400</td>
<td>9232400</td>
<td>3922</td>
</tr>
<tr>
<td>DH003</td>
<td>792600</td>
<td>9232400</td>
<td>3877</td>
</tr>
<tr>
<td>DH004</td>
<td>792800</td>
<td>9232400</td>
<td>3824</td>
</tr>
<tr>
<td>DH005</td>
<td>793000</td>
<td>9232400</td>
<td>3858</td>
</tr>
<tr>
<td>DH006</td>
<td>793200</td>
<td>9232400</td>
<td>3833</td>
</tr>
<tr>
<td>DH007</td>
<td>792200</td>
<td>9232200</td>
<td>4018</td>
</tr>
<tr>
<td>DH008</td>
<td>792400</td>
<td>9232200</td>
<td>3983</td>
</tr>
<tr>
<td>DH009</td>
<td>792600</td>
<td>9232200</td>
<td>3924</td>
</tr>
<tr>
<td>DH010</td>
<td>792800</td>
<td>9232200</td>
<td>3894</td>
</tr>
<tr>
<td>DH011</td>
<td>793000</td>
<td>9232200</td>
<td>3908</td>
</tr>
<tr>
<td>DH012</td>
<td>793200</td>
<td>9232200</td>
<td>3878</td>
</tr>
<tr>
<td>DH013</td>
<td>792200</td>
<td>9232000</td>
<td>4075</td>
</tr>
<tr>
<td>DH014</td>
<td>792400</td>
<td>9232000</td>
<td>4050</td>
</tr>
<tr>
<td>DH015</td>
<td>792600</td>
<td>9232000</td>
<td>4004</td>
</tr>
<tr>
<td>DH016</td>
<td>792800</td>
<td>9232000</td>
<td>3961</td>
</tr>
<tr>
<td>DH017</td>
<td>793000</td>
<td>9232000</td>
<td>3965</td>
</tr>
<tr>
<td>DH018</td>
<td>793200</td>
<td>9232000</td>
<td>3934</td>
</tr>
<tr>
<td>DH019</td>
<td>792200</td>
<td>9231800</td>
<td>4113</td>
</tr>
<tr>
<td>DH020</td>
<td>792400</td>
<td>9231800</td>
<td>4148</td>
</tr>
</tbody>
</table>
En el siguiente histograma se aprecia la ley del CaCO$_3$ que se divide en tres poblaciones, donde se observa que 42% de la muestra contiene una ley entre 93.7 y 94.5 de CaCO$_3$. El 24% contiene una ley entre 95.6-97.6 de CaCO$_3$. Donde el 32% contiene una ley de 97.7-98.6 CaCO$_3$. Esta representación gráfica presenta intervalos de clase para la ley de los elementos que están asociados al CaCO$_3$, donde el área de cada rectángulo es proporcional a la frecuencia de clase, de tal modo se visualiza la heterogeneidad de los datos, la tendencia de la distribución y la presencia de muestras anómalas.

![Histograma de CaCO$_3$](image.png)

*Figure 12. Histogramas de CaCO$_3$.***
Figure 13. Histogramas de Fe₂O₃, MgO, SiO₂, Al₂O₃.

Table 6 Estudio estadístico univariable.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Muestra</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Media</th>
<th>D.Std</th>
<th>Varianza</th>
<th>Sesgo</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCO₃(pct)</td>
<td>24</td>
<td>93.6</td>
<td>98.9</td>
<td>95.738</td>
<td>2.09</td>
<td>4.368</td>
<td>0.332</td>
<td>-1.735</td>
</tr>
<tr>
<td>CaO(pct)</td>
<td>24</td>
<td>82.9</td>
<td>88.2</td>
<td>84.975</td>
<td>1.926</td>
<td>3.708</td>
<td>0.141</td>
<td>-1.546</td>
</tr>
<tr>
<td>Fe₂O₃(pct)</td>
<td>24</td>
<td>0.088</td>
<td>0.88</td>
<td>0.12375</td>
<td>0.16109</td>
<td>0.02595</td>
<td>4.8983</td>
<td>23.99537</td>
</tr>
<tr>
<td>MgO(pct)</td>
<td>24</td>
<td>0.39</td>
<td>0.55</td>
<td>0.4375</td>
<td>0.05661</td>
<td>0.0032</td>
<td>0.9507</td>
<td>-0.8892</td>
</tr>
<tr>
<td>SiO₂(pct)</td>
<td>24</td>
<td>1.63</td>
<td>1.73</td>
<td>1.6692</td>
<td>0.0281</td>
<td>0.0008</td>
<td>0.6561</td>
<td>0.1325</td>
</tr>
<tr>
<td>Al₂O₃(pct)</td>
<td>24</td>
<td>0.69</td>
<td>0.83</td>
<td>0.7608</td>
<td>0.0404</td>
<td>0.0016</td>
<td>0.0589</td>
<td>-1.3878</td>
</tr>
</tbody>
</table>

El análisis estadístico univariable y bivariable, correlaciona las variables geoquímicas para conocer el grado de vinculación. El coeficiente de
correlación lineal r que marca el comportamiento de una variable con respecto a la otra, mediante su valor y signo.

En la tabla 5 se observa una correlación lineal directa entre CaCO$_3$ y CaO es fuerte porque está más cercano a uno, mientras que CaCO$_3$ y MgO es muy débil ya que se encuentra más cercano a cero, al igual que el Al$_2$O$_3$, Fe$_2$O$_3$, SiO$_2$. Y una marcada correlación lineal negativa entre CaCO$_3$ y MgO, CaCO$_3$ y Al$_2$O$_3$. Es decir que esta impureza se encuentra dispersas.

![Scatter Plot](image)

*Figure 14. Correlación lineal directa de Pearson entre CaCO$_3$ Y Al$_2$O$_3$.***
Figure 15. Correlación lineal negativa de Pearson, entre CaO₃ Y MgO.

Table 7 Estudio estadístico bivariable.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Media</th>
<th>D.Std</th>
<th>Varianza</th>
<th>Pearson correlación</th>
<th>Regresión</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCO₃(pct)</td>
<td>93.6</td>
<td>98.9</td>
<td>95.738</td>
<td>2.09</td>
<td>4.368</td>
<td>0.617124</td>
<td>$y = 0.57111 x + 30.5494$</td>
</tr>
<tr>
<td>CaO(ptc)</td>
<td>82.9</td>
<td>88.2</td>
<td>84.975</td>
<td>1.926</td>
<td>3.708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaCO₃(pct)</td>
<td>93.6</td>
<td>98.9</td>
<td>95.738</td>
<td>2.09</td>
<td>4.368</td>
<td>0.384404</td>
<td>$y = 0.0374658 x - 3.43039$</td>
</tr>
<tr>
<td>Fe₂O₃(pct)</td>
<td>0.088</td>
<td>0.88</td>
<td>0.12375</td>
<td>0.16109</td>
<td>0.02595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaCO₃(pct)</td>
<td>93.6</td>
<td>98.9</td>
<td>95.738</td>
<td>2.09</td>
<td>4.368</td>
<td>-0.0203976</td>
<td>$y = -0.000528665 x + 0.492955$</td>
</tr>
<tr>
<td>MgO(pct)</td>
<td>0.39</td>
<td>0.55</td>
<td>0.4375</td>
<td>0.05661</td>
<td>0.0032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaCO₃(pct)</td>
<td>93.6</td>
<td>98.9</td>
<td>95.738</td>
<td>2.09</td>
<td>4.368</td>
<td>-0.400881</td>
<td>$y = -0.00750629 x + 1.47667$</td>
</tr>
<tr>
<td>Al₂O₃(pct)</td>
<td>0.69</td>
<td>0.83</td>
<td>0.7608</td>
<td>0.0404</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaCO₃(pct)</td>
<td>93.6</td>
<td>98.9</td>
<td>95.738</td>
<td>2.09</td>
<td>4.368</td>
<td>0.68534</td>
<td>$y = 0.0108058 x + 0.638289$</td>
</tr>
<tr>
<td>SiO₂(pct)</td>
<td>1.63</td>
<td>1.73</td>
<td>1.6692</td>
<td>0.0281</td>
<td>0.0008</td>
<td>-0.363766</td>
<td>$y = -17.9787 x + 98.7244$</td>
</tr>
<tr>
<td>Al₂O₃(pct)</td>
<td>0.69</td>
<td>0.83</td>
<td>0.7608</td>
<td>0.0404</td>
<td>0.0016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO(ptc)</td>
<td>82.9</td>
<td>88.2</td>
<td>84.975</td>
<td>1.926</td>
<td>3.708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃(pct)</td>
<td>0.69</td>
<td>0.83</td>
<td>0.7608</td>
<td>0.0404</td>
<td>0.0016</td>
<td>-0.400881</td>
<td>$y = -21.4095 x + 111.716$</td>
</tr>
<tr>
<td>CaCO₃(pct)</td>
<td>93.6</td>
<td>98.9</td>
<td>95.738</td>
<td>2.09</td>
<td>4.368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃(pct)</td>
<td>0.69</td>
<td>0.83</td>
<td>0.7608</td>
<td>0.0404</td>
<td>0.0016</td>
<td>-0.0734308</td>
<td>$y = -0.390061 x + 0.44186$</td>
</tr>
<tr>
<td>Fe₂O₃(pct)</td>
<td>0.088</td>
<td>0.88</td>
<td>0.12375</td>
<td>0.16109</td>
<td>0.02595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃(pct)</td>
<td>0.69</td>
<td>0.83</td>
<td>0.7608</td>
<td>0.0404</td>
<td>0.0016</td>
<td>0.217519</td>
<td>$y = 0.301086 x + 0.213591$</td>
</tr>
<tr>
<td>MgO(pct)</td>
<td>0.39</td>
<td>0.55</td>
<td>0.4375</td>
<td>0.05661</td>
<td>0.0032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃(pct)</td>
<td>0.69</td>
<td>0.83</td>
<td>0.7608</td>
<td>0.0404</td>
<td>0.0016</td>
<td>0.0832767</td>
<td>$y = 0.0701238 x + 1.61627$</td>
</tr>
</tbody>
</table>
3.7. Anomalías geoquímicas.

Para la determinación de la anomalía geoquímica se utilizó el análisis químico de 24 muestras de roca caliza, obtenidas de la concesión Paulita 25.

Para los valores geoquímicos de las rocas se generó 5 representaciones de anomalías correspondientes a los elementos MgO, Fe₂O₃, SiO₂, Al₂O₃, CaCO₃.

Estas representaciones, sirve para determinar las anomalías geoquímicas en la roca caliza, las cuales indican áreas potenciales donde se aprecia mayor...
concentración de CaCO₃, considerándose como posible yacimiento aprovechable.

3.7.1. Kriging

Es un procedimiento geo estadístico que genera una superficie estimada a partir de un conjunto de puntos dispersados con valores z, la herramienta Kriging ajusta una función matemática a todos los puntos dentro de un radio específico para determinar el valor de salida para cada ubicación, presupone que las distancias entre los puntos de muestras reflejan una correlación espacial que puede utilizarse para explicar la variación en la superficie.

Figura 16. Distribución de valores anómalas de CaCO₃ de la concesión Paulita 25. Las anomalías geoquímicas indican valores de concentración, los colores rojo, naranja y amarillo indica la concentración y alta acumulación de elementos químicos, siendo de mayor interés e indicando un posible yacimiento aprovechable de CaCO₃, las anomalías más resaltadas se muestran con una ley de 97.4% a 99%.
En la presente investigación se vio conveniente la elaboración de un mapa de anomalías, mediante el cual nosotros podemos apreciar la distribución de la ley del carbonato de calcio (CaCO$_3$), además este mapa nos ayuda a distinguir pequeños e irregulares cuerpos con una ley de 93.4 % a 94.6% de CaCO$_3$, considerándose una ley baja durante el análisis químico.

Con esta representación de valores anómalas aportaremos una mejor información de las zonas de estudio que presenta mayor concentración de carbonato de calcio en la concesión Paulita25, considerándose de interés económico y aprovechable.

3.8. **Modelo geológico por simulación.**

El modelo geológico nos ayuda con la interpretación y el conocimiento que posee sobre las estructuras y la continuidad de la ley del CaCO$_3$ y la geología que se presenta en forma de dominios o zonas geológicamente homogéneas, creándose un modelo tridimensional donde representa su posición y su forma.

La creación de este modelo geológico está relacionada con la cantidad limitada de datos disponibles en el momento de realizar la estimación de recursos y con la variabilidad propia de la mineralización estudiada, este modelo geológico se ha desarrollado mediante la construcción de planos y secciones en los cuales representa su morfología, dimensiones y las propiedades del yacimiento. Nos ayuda a definir el volumen de la roca en donde la variable a estimar tenga un comportamiento homogéneo.
3.9. Estimación de recursos.

El cálculo de las reservas totales se elaboró utilizando el método de los polígonos para el cual fue necesario la elaboración de 24 puntos de muestreo figura 16, describiéndose el cálculo de las reservas a continuación.

La elaboración de los polígonos mediante el software ArcGIS, nos ayuda con el cálculo del área de cada uno de los 24 puntos de muestreo, el volumen del prisma se determina como el producto del área del polígono por su altura.
Otros parámetros del cálculo se obtienen para cada prisma directamente del punto central. El volumen total del yacimiento es la suma de los volúmenes de cada prisma. Esta técnica de estimación es muy fácil e importante ya que aparece implementado en la mayoría de los softwares modernos de modelación geólogo minera.

Figure 19. Métodos de los polígonos. Se calculó el área de 24 polígonos, mediante el software ArcGIS, con una data exportada desde el Excel.

3.9.1. Calculo de la estimación de recursos.

| Densidad del CaCO3 | 2.71 g/cm³ |
Resultados del análisis de muestreo de la concesión Paulita 25

<table>
<thead>
<tr>
<th>N° de Muestra</th>
<th>Ley Media (%)</th>
<th>HOLE</th>
<th>MAX DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94.8</td>
<td>DH001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>96.6</td>
<td>DH002</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>98.9</td>
<td>DH003</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>98.1</td>
<td>DH004</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>98.9</td>
<td>DH005</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>94.8</td>
<td>DH006</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>93.8</td>
<td>DH007</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>93.6</td>
<td>DH008</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>94.8</td>
<td>DH009</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>95.8</td>
<td>DH010</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>93.8</td>
<td>DH011</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>93.6</td>
<td>DH012</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>95.8</td>
<td>DH013</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>94.8</td>
<td>DH014</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>93.6</td>
<td>DH015</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>97.3</td>
<td>DH016</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>98.2</td>
<td>DH017</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>95.8</td>
<td>DH018</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>93.8</td>
<td>DH019</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>93.8</td>
<td>DH020</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>93.8</td>
<td>DH021</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>98.2</td>
<td>DH022</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>92.5</td>
<td>DH023</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>96.6</td>
<td>DH024</td>
<td>1</td>
</tr>
</tbody>
</table>
Tabla 10 Estimación de la reserva de CaCO₃.

<table>
<thead>
<tr>
<th>Polígono</th>
<th>Área (m²)</th>
<th>Volumen (m³)</th>
<th>Mineralización (t)</th>
<th>CaCO₃ (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55366.02288</td>
<td>55366.02288</td>
<td>150041.922</td>
<td>142239.7421</td>
</tr>
<tr>
<td>2</td>
<td>42242.21087</td>
<td>42242.21087</td>
<td>114476.3914</td>
<td>110584.1941</td>
</tr>
<tr>
<td>3</td>
<td>37312.33664</td>
<td>37312.33664</td>
<td>101116.4242</td>
<td>100004.1435</td>
</tr>
<tr>
<td>4</td>
<td>45670.6785</td>
<td>45670.6785</td>
<td>123767.5387</td>
<td>121415.9555</td>
</tr>
<tr>
<td>5</td>
<td>40270.23955</td>
<td>40270.23955</td>
<td>109132.3492</td>
<td>107931.8933</td>
</tr>
<tr>
<td>6</td>
<td>39303.26546</td>
<td>39303.26546</td>
<td>106511.8494</td>
<td>100973.2332</td>
</tr>
<tr>
<td>7</td>
<td>40069.52458</td>
<td>40069.52458</td>
<td>108588.4116</td>
<td>101855.9301</td>
</tr>
<tr>
<td>8</td>
<td>43118.36581</td>
<td>43118.36581</td>
<td>116850.7713</td>
<td>109372.322</td>
</tr>
<tr>
<td>9</td>
<td>33806.86184</td>
<td>33806.86184</td>
<td>91616.59558</td>
<td>86852.53261</td>
</tr>
<tr>
<td>10</td>
<td>42885.39043</td>
<td>42885.39043</td>
<td>116219.4081</td>
<td>111338.1929</td>
</tr>
<tr>
<td>11</td>
<td>44186.91633</td>
<td>44186.91633</td>
<td>119746.5433</td>
<td>112082.7645</td>
</tr>
<tr>
<td>12</td>
<td>37274.10213</td>
<td>37274.10213</td>
<td>101012.8168</td>
<td>94547.99649</td>
</tr>
<tr>
<td>13</td>
<td>42229.02711</td>
<td>42229.02711</td>
<td>114440.6635</td>
<td>109634.1556</td>
</tr>
<tr>
<td>14</td>
<td>41841.48153</td>
<td>41841.48153</td>
<td>113390.415</td>
<td>107494.1134</td>
</tr>
<tr>
<td>15</td>
<td>39190.59599</td>
<td>39190.59599</td>
<td>106206.5151</td>
<td>99409.29815</td>
</tr>
<tr>
<td>16</td>
<td>38020.1221</td>
<td>38020.1221</td>
<td>103034.5309</td>
<td>100252.5986</td>
</tr>
<tr>
<td>17</td>
<td>42392.08125</td>
<td>42392.08125</td>
<td>114882.5402</td>
<td>112814.6545</td>
</tr>
<tr>
<td>18</td>
<td>26596.52439</td>
<td>26596.52439</td>
<td>72076.58108</td>
<td>69049.36468</td>
</tr>
<tr>
<td>19</td>
<td>66941.43071</td>
<td>66941.43071</td>
<td>181411.2772</td>
<td>170163.7778</td>
</tr>
<tr>
<td>20</td>
<td>59482.59468</td>
<td>59482.59468</td>
<td>161197.8316</td>
<td>151203.566</td>
</tr>
<tr>
<td>21</td>
<td>48911.05642</td>
<td>48911.05642</td>
<td>132548.9629</td>
<td>124330.9272</td>
</tr>
<tr>
<td>22</td>
<td>55244.1402</td>
<td>55244.1402</td>
<td>149711.6199</td>
<td>147016.8108</td>
</tr>
<tr>
<td>23</td>
<td>48594.88211</td>
<td>48594.88211</td>
<td>131692.1305</td>
<td>121815.2207</td>
</tr>
<tr>
<td>24</td>
<td>46921.64982</td>
<td>46921.64982</td>
<td>127157.671</td>
<td>122834.3102</td>
</tr>
<tr>
<td>Sumatoria</td>
<td>1057871.498</td>
<td>1057871.498</td>
<td>2866831.76</td>
<td>2735217.698</td>
</tr>
</tbody>
</table>

Se tiene un área de 1 057 871.498 m² obtenido mediante el método de los polígonos, el volumen es determinado por el siguiente cálculo A(m²) * profundidad de extracción de muestra, la mineralización es igual al volumen(m³) * densidad de la caliza. Para obtener la cantidad de carbonato de calcio en tonelada se ha multiplicado la mineralización * la ley media de cada muestra entre 100.

Mediante la estimación de recursos se cuenta con un tonelaje total de mineralización de 2 866 831.6 t y una cantidad de 2 735 217.698 t de CaCO₃.
3.9.2. Categorización de recursos.

La categorización de recursos según Diehl y David (1982).

Tabla 11. Caracterización de recursos.

<table>
<thead>
<tr>
<th>RECURSOS TOTALES</th>
<th>SIN DESCUBRIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFICADOS</td>
<td>SIN DESCUBRIR</td>
</tr>
<tr>
<td>DEMOSTRADOS</td>
<td>INFERIDOS</td>
</tr>
<tr>
<td>MEDIDOS</td>
<td>HIPOTETICOS</td>
</tr>
<tr>
<td>INDICADOS</td>
<td>(EN ÁREAS</td>
</tr>
<tr>
<td></td>
<td>CONOCIDAS)</td>
</tr>
<tr>
<td></td>
<td>ESPECULATIVOS</td>
</tr>
<tr>
<td></td>
<td>(EN ÁREAS SIN</td>
</tr>
<tr>
<td></td>
<td>DESCUBRIR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECONÓMICO</th>
<th>RESERVAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona de incertidumbre económica</td>
<td></td>
</tr>
</tbody>
</table>

| SUBECONÓMICO | NO PARA |
|--------------| SUBMARGEN |

La categorización de recursos se realizó mediante el grado de confianza y el número de muestras trabajadas. Se considera que estamos frente a un recurso medido porque se trabajó con un nivel de confianza al 95% y un total de muestras de 24.

Según Diehl & David, los recursos se clasifican de acuerdo al número de muestras trabajadas en la investigación, donde se tiene:

- > 10 muestras → R. Medidos
- 10 – 4 muestras → R. indicados
- < a 4 muestras → R. inferidos
CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión

En el distrito de Sorochuco, Caserío Agua Blanca se encuentra ubicada la concesión Paulita 25. Gran parte de esta zona está conformada por roca sedimentaria (roca caliza), perteneciente a las formaciones Chùlec, Pariatambo y Pulluicana, presentando grandes estratificaciones de roca caliza. El resultado del análisis químico ha mostrado una ley favorable de un 93.7 y 94.5 % de CaCO₃.

En esta investigación se realizó la estimación de recursos mediante el método clásico de los polígonos, obteniendo una estimación de recursos de 2 735 217.698t de CaCO₃, mientras que el estudio de Silva (2015), menciona que la investigación geológica del estudio, proyecto peña blanca es fundamental para la estimación preliminar de recursos de roca caliza, para ello se utilizó el método de bloques geológicos a fin de realizar el cálculo de tonelaje total, donde se determinó área, volumen, ancho promedio y densidad de la roca. Dando como resultado que el proyecto da una aproximación de 92 523, 430 TM de roca caliza como recurso aprovechable. Se afirma lo que dice Silva, que la investigación geológica es la parte más importante para realizar una estimación de recursos y así poder obtener mejores resultados.

Carriño y Rosas (2007), concluye que debido a los proyectos mineros en el Perú ha traído como consecuencia que la demanda accesible de cal que hasta el 2006 fue de 34 mil toneladas por año, se eleva a 80 mil toneladas en el 2007 y se
provee un importante crecimiento con el ingreso de nuevos proyectos mineros, estimándose llegar a 240 mil toneladas de cal en el 2015. Lo que se contrasta en este estudio que existe una cantidad de roca caliza explotable.

Según los resultados adquiridos en la presente investigación se comprobó que realizando una buena caracterización geológica se pudo obtener buenos resultados, por lo que se acepta la hipótesis. Existe una influencia significativa entre la caracterización geológica superficial y la estimación de recursos de caliza para su futura explotación.

Las limitaciones de la presente investigación fueron: el clima es muy adverso, accesibilidad a los puntos de muestreo ya que teníamos que generar nuestros propios caminos. Existe pocos estudios realizados relacionados al tema.

Mediante la presente investigación se recomienda: realizar otros métodos de estimación de recursos utilizando taladros, para obtener resultados con mayor precisión. Para realizar un estudio geofísico, utilizar esta investigación como referencia. Para estudios geológicos o cualquier otra investigación en esta zona se recomienda llevar un guía por lo que el clima es muy adverso, siendo la neblina uno de los más grandes inconvenientes que te puede extraviar.
4.2 Conclusiones

Se determinó que las características geológicas superficial para la estimación de recursos de caliza en la concesión Paulita 25, son fundamental para poder desarrollar la estimación de recursos, ya que mediante el mapeo geológico se obtuvo geología estructural, litología, estratigrafía y por último realizar el muestreo sistemático.

Se determinó que la característica litológica nos ha servido de mucho apoyo para la observación directa en campo, lográndose apreciar la estratificación de los afloramientos de caliza de las formaciones Chûlec, Pariatambo y Pulluicana, además la característica estratigráfica nos ayuda a determinar las propiedades físicas y geoquímicas, relaciones de edad, distribución y contenido de fósiles, mientras que las estructurales nos sirve para determinar pliegues, fallas y diaclasas.

Se logró obtener las muestras representativas a pesar de la inaccesibilidad en algunos puntos de la zona de estudio, para luego ser enviadas al laboratorio y realizarse el análisis químico, dando como resultado una ley entre 93.6 a 98.9% CaCO3.

Se determinó el modelo geológico en la cual se puede apreciar que la variable a estimar tiene un comportamiento homogéneo, apreciándose que la zona de estudio está compuesta en su totalidad por roca caliza con buzamiento NW.

Donde representa la mineralización de CaCO3 y el volumen total de roca caliza, para luego desarrollar la estimación de recursos mediante el método clásico. Por
último, se logró estimar un tonelaje total de mineralización de 2 866 831.6t y una cantidad de 2 735 217.698t de CaCO$_3$, mediante método de los polígonos o regiones próximas.
REFERENCIAS

Quintin, J. (20015). *Estudios de estimación y simulación geoestadística para la caracterización de parámetros geológico - industriales en el yacimiento laterítico punta gorda.* Redalyc, 21, pg. 18-23.

ANEXOS

ANEXO n.° 1. Zona de estudio.
ANEXO n.° 2. Toma de datos topográficos con GPS.
ANEXO n.° 3. Recolección de muestras.
ANEXO n.° 4. Análisis químico de laboratorio GINGECONSULT & LAB S.R.L.

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020”

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELEDÓN, REGIÓN CAJAMARCA

MUÉSTRA: M - 1
FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>94.80</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>82.90</td>
</tr>
<tr>
<td>Óxido férrico FeO₂</td>
<td>0.09</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.40</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.57</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.74</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
CARACTERIZACIÓN GEOLOGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDIN, REGIÓN CAJAMARCA
MUESTRA: M – 2
FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>96.60 %</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>85.40 %</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.092 %</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.42 %</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.65 %</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.73 %</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granul</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA – 25, SOROCHUCO – CAJAMARCA.”

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA

MUESTRA: M – 3
FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>98.90</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>87.10</td>
</tr>
<tr>
<td>Óxido férrico FeO₂</td>
<td>0.095</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.51</td>
</tr>
<tr>
<td>Óxido de silicio SiO₂</td>
<td>1.72</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.79</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75µm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA : ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS : “CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO – CAJAMARCA,”

PROCEDENCIA : SOROCHUCO, PROVINCIA DE CELENDIN, REGIÓN CAJAMARCA
MUESTRA : M - 4
FECHA : 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>96.10</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>86.30</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.089</td>
</tr>
<tr>
<td>Óxido de manganeso MgO</td>
<td>0.41</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.68</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.71</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75µm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO – CAJAMARCA”

PROCEDENCIA: SOROCHUCO, PROVINcia CELENDIN, REGión CAJAMARCA

MUESTRA: M – 5

FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio (CaCO₃)</td>
<td>98.30</td>
</tr>
<tr>
<td>Óxido de calcio (CaO)</td>
<td>86.20</td>
</tr>
<tr>
<td>Óxido férrico (Fe₂O₃)</td>
<td>0.092</td>
</tr>
<tr>
<td>Óxido de magnesio (MgO)</td>
<td>0.39</td>
</tr>
<tr>
<td>Óxido de sílice (SiO₂)</td>
<td>1.66</td>
</tr>
<tr>
<td>Óxido de aluminio (Al₂O₃)</td>
<td>0.72</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 μm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA
MUESTRA: M – 6
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio</td>
<td>93.80</td>
</tr>
<tr>
<td>Óxido de calcio</td>
<td>2.90</td>
</tr>
<tr>
<td>Óxido férrico</td>
<td>0.09</td>
</tr>
<tr>
<td>Óxido de magnesio</td>
<td>0.40</td>
</tr>
<tr>
<td>Óxido de silicio</td>
<td>1.66</td>
</tr>
<tr>
<td>Óxido de aluminio</td>
<td>0.80</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granul</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: "CARACTERIZACIÓN GEOLOGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO – CAJAMARCA."

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELEDNÍN, REGIÓN CAJAMARCA

MUESTRA: M – 7

FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de Calcio (CaCO₃)</td>
<td>54.80</td>
</tr>
<tr>
<td>Óxido de Calcio (CaO)</td>
<td>42.90</td>
</tr>
<tr>
<td>Óxido férrico (Fe₂O₃)</td>
<td>0.09</td>
</tr>
<tr>
<td>Óxido de magnesio (MgO)</td>
<td>0.40</td>
</tr>
<tr>
<td>Óxido de silicio (SiO₂)</td>
<td>1.67</td>
</tr>
<tr>
<td>Óxido de aluminio (Al₂O₃)</td>
<td>0.74</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75µm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL. VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO – CAJAMARCA, 2020

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA
MUESTRA: M – 8
FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio</td>
<td>93.60</td>
</tr>
<tr>
<td>Óxido de calcio</td>
<td>85.70</td>
</tr>
<tr>
<td>Óxido férrico</td>
<td>0.088</td>
</tr>
<tr>
<td>Óxido de magnesio</td>
<td>0.50</td>
</tr>
<tr>
<td>Óxido de sílice</td>
<td>1.63</td>
</tr>
<tr>
<td>Óxido de aluminio</td>
<td>0.73</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75µm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCUCHO-CAJAMARCA 2020

Chavez Chavez, Enma
Chugden Carranza, Erika Lorena

Pág. 60
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: "CARACTERIZACIÓN GEOLOGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO – CAJAMARCA."

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CEBELDÍN, REGIÓN CAJAMARCA
MUESTRA: M – 10
FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>93.80</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>82.90</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.089</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.40</td>
</tr>
<tr>
<td>Óxido de silicio SiO₂</td>
<td>1.66</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.80</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75 μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Graneado</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: "CARACTERIZACIÓN GEOLOGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020."

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA
MUESTRA: M-11
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>93.80</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>82.90</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.09</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.40</td>
</tr>
<tr>
<td>Óxido de silicio SiO₂</td>
<td>1.66</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.80</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 70μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCUCHO-CAJAMARCA 2020

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

PROCEDECENCIA: SOROCUCHO, PROVINCIA DE CELEDÍN, REGIÓN CAJAMARCA

MUESTRA: M-12
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>93.60</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>85.70</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.092</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.50</td>
</tr>
<tr>
<td>Óxido de silicono SiO₂</td>
<td>1.63</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.73</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA – 25. SOROCHUCO – CAJAMARCA."

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELEDÍN, REGIÓN CAJAMARCA
MUESTRA: M – 13
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio</td>
<td>93.60</td>
</tr>
<tr>
<td>Óxido de calcio</td>
<td>8.50</td>
</tr>
<tr>
<td>Óxido férrico</td>
<td>0.09</td>
</tr>
<tr>
<td>Óxido de magnesio</td>
<td>0.53</td>
</tr>
<tr>
<td>Óxido de silicio</td>
<td>1.88</td>
</tr>
<tr>
<td>Óxido de alúminio</td>
<td>0.81</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75µm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granal</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO–CAJAMARCA.”

PROCEDECENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA
MUESTRA: M – 14
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>93.80 %</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>82.90 %</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.09 %</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.40 %</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.66 %</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.80 %</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75µm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Gravel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLOGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO – CAJAMARCA.”

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA
MUESTRA: M – 15
FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio</td>
<td>93.80</td>
</tr>
<tr>
<td>Óxido de calcio</td>
<td>82.90</td>
</tr>
<tr>
<td>Óxido férrico</td>
<td>0.88</td>
</tr>
<tr>
<td>Óxido de magnesio</td>
<td>0.40</td>
</tr>
<tr>
<td>Óxido de silicio</td>
<td>1.66</td>
</tr>
<tr>
<td>Óxido de aluminio</td>
<td>0.80</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: "CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO - CAJAMARCA 2020."

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA

MUESTRA: M-16
FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>94.80</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>82.90</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.091</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.40</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.67</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.74</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 µm a 75µm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada al laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA
MUESTRA: M – 17
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>93.80</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>82.90</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.091</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.40</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.66</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.80</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granul</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA
MUESTRA: M – 18
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>98.10</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>86.30</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.092</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.41</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.68</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.71</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Canel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLOGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO – CAJAMARCA.”

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CLENDIN, REGIÓN CAJAMARCA
MUESTRA: M – 19
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>97.60</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>88.20</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.088</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.52</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.63</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.76</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granele</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.

Chavez Chavez, Enma
Chugden Carranza, Erika Lorena
ANÁLISIS FÍSICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA : ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

PROCEDENCIA : SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA
MUESTRA : M – 20
FECHA : 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>97.30</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>84.20</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.091</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.55</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.72</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.83</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granal</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLOGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO – CAJAMARCA.”

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA

MUESTRA: M – 21

FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>98.30</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>86.20</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.091</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.39</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.66</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.72</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020

ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: "CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA – 25, SOROCHUCO – CAJAMARCA."

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA

MUESTRA: M – 22

FECHA: 24/02/2020

ANÁLISIS

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>98.90</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>88.10</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.092</td>
</tr>
<tr>
<td>Óxido de magnesio MgO</td>
<td>0.45</td>
</tr>
<tr>
<td>Óxido de silicio SiO₂</td>
<td>1.71</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.69</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANO/OLUMETRÍA</td>
<td>200 mm a 75µm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL. VIVA</td>
<td>Granel</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue obtenida de este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: “CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO - CAJAMARCA, 2020

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENDÍN, REGIÓN CAJAMARCA
MUESTRA: M-23
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio CaCO₃</td>
<td>98.20</td>
</tr>
<tr>
<td>Óxido de calcio CaO</td>
<td>87.50</td>
</tr>
<tr>
<td>Óxido férrico Fe₂O₃</td>
<td>0.088</td>
</tr>
<tr>
<td>Óxido de manganeso MgO</td>
<td>0.39</td>
</tr>
<tr>
<td>Óxido de sílice SiO₂</td>
<td>1.73</td>
</tr>
<tr>
<td>Óxido de aluminio Al₂O₃</td>
<td>0.75</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granal</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANÁLISIS FISICOQUÍMICO DE UNA MUESTRA DE PIEDRA CALIZA

SOLICITA: ENMA CHAVEZ CHAVEZ
ERIKA LORENA CHUGDEN CARRANZA

TESIS: "CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO – CAJAMARCA,"

PROCEDENCIA: SOROCHUCO, PROVINCIA DE CELENÌN, REGIÓN CAJAMARCA
MUESTRA: M-24
FECHA: 24/02/2020

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN QUÍMICA</th>
<th>RESULTADOS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonato de calcio</td>
<td>95.80</td>
</tr>
<tr>
<td>Óxido de calcio</td>
<td>83.40</td>
</tr>
<tr>
<td>Óxido férrico</td>
<td>0.091</td>
</tr>
<tr>
<td>Óxido de magnesio</td>
<td>0.40</td>
</tr>
<tr>
<td>Óxido de silicio</td>
<td>1.63</td>
</tr>
<tr>
<td>Óxido de aluminio</td>
<td>0.75</td>
</tr>
</tbody>
</table>

ANÁLISIS FÍSICO

<table>
<thead>
<tr>
<th>DETERMINACIÓN FÍSICA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLOR</td>
<td>Blanco</td>
</tr>
<tr>
<td>GRANULOMETRÍA</td>
<td>200 mm a 75μm</td>
</tr>
<tr>
<td>ASPECTO FÍSICO</td>
<td>Bueno</td>
</tr>
<tr>
<td>CAL VIVA</td>
<td>Granulo</td>
</tr>
</tbody>
</table>

NOTA: La muestra fue alcanzada a este laboratorio la cual se procedió a hacer el análisis respectivo.
ANEXO n.° 5. Datos topográficos de la concesión Paulita 25.

<table>
<thead>
<tr>
<th>ESTE</th>
<th>NORTE</th>
<th>ELEVACIÓN</th>
<th>794020</th>
<th>9233096</th>
<th>3665</th>
</tr>
</thead>
<tbody>
<tr>
<td>791425</td>
<td>9230974</td>
<td>3776</td>
<td>794024</td>
<td>9233182</td>
<td>3688</td>
</tr>
<tr>
<td>794051</td>
<td>9230988</td>
<td>3831</td>
<td>791512</td>
<td>9233153</td>
<td>3909</td>
</tr>
<tr>
<td>794053</td>
<td>9231067</td>
<td>3799</td>
<td>791509</td>
<td>9233227</td>
<td>3902</td>
</tr>
<tr>
<td>791420</td>
<td>9231062</td>
<td>3759</td>
<td>794014</td>
<td>9233257</td>
<td>3716</td>
</tr>
<tr>
<td>791420</td>
<td>9231155</td>
<td>3749</td>
<td>793935</td>
<td>9233256</td>
<td>3722</td>
</tr>
<tr>
<td>794055</td>
<td>9231162</td>
<td>3775</td>
<td>793864</td>
<td>9233250</td>
<td>3731</td>
</tr>
<tr>
<td>794056</td>
<td>9231255</td>
<td>3768</td>
<td>793785</td>
<td>9233247</td>
<td>3742</td>
</tr>
<tr>
<td>791419</td>
<td>9231246</td>
<td>3748</td>
<td>793720</td>
<td>9233246</td>
<td>3747</td>
</tr>
<tr>
<td>791417</td>
<td>9231339</td>
<td>3758</td>
<td>793636</td>
<td>9233247</td>
<td>3745</td>
</tr>
<tr>
<td>794057</td>
<td>9231356</td>
<td>3776</td>
<td>793561</td>
<td>9233250</td>
<td>3736</td>
</tr>
<tr>
<td>794047</td>
<td>9231459</td>
<td>3809</td>
<td>793486</td>
<td>9233252</td>
<td>3731</td>
</tr>
<tr>
<td>791424</td>
<td>9231437</td>
<td>3777</td>
<td>793412</td>
<td>9233253</td>
<td>3730</td>
</tr>
<tr>
<td>791450</td>
<td>9231538</td>
<td>3806</td>
<td>793345</td>
<td>9233251</td>
<td>3721</td>
</tr>
<tr>
<td>794049</td>
<td>9231560</td>
<td>3843</td>
<td>793260</td>
<td>9233254</td>
<td>3712</td>
</tr>
<tr>
<td>794045</td>
<td>9231646</td>
<td>3859</td>
<td>793181</td>
<td>9233250</td>
<td>3712</td>
</tr>
<tr>
<td>791482</td>
<td>9231649</td>
<td>3854</td>
<td>793102</td>
<td>9233244</td>
<td>3720</td>
</tr>
<tr>
<td>791526</td>
<td>9231791</td>
<td>3935</td>
<td>793019</td>
<td>9233244</td>
<td>3722</td>
</tr>
<tr>
<td>794040</td>
<td>9231757</td>
<td>3884</td>
<td>792940</td>
<td>9233241</td>
<td>3720</td>
</tr>
<tr>
<td>794038</td>
<td>9231854</td>
<td>3923</td>
<td>792856</td>
<td>9233245</td>
<td>3721</td>
</tr>
<tr>
<td>791562</td>
<td>9231878</td>
<td>3979</td>
<td>792778</td>
<td>9233236</td>
<td>3724</td>
</tr>
<tr>
<td>791582</td>
<td>9231972</td>
<td>4033</td>
<td>792695</td>
<td>9233239</td>
<td>3727</td>
</tr>
<tr>
<td>794023</td>
<td>9231942</td>
<td>3988</td>
<td>792617</td>
<td>9233239</td>
<td>3731</td>
</tr>
<tr>
<td>794010</td>
<td>9232036</td>
<td>4001</td>
<td>792544</td>
<td>9233238</td>
<td>3737</td>
</tr>
<tr>
<td>791603</td>
<td>9232060</td>
<td>4067</td>
<td>792468</td>
<td>9233236</td>
<td>3747</td>
</tr>
<tr>
<td>791592</td>
<td>9232166</td>
<td>4049</td>
<td>792381</td>
<td>9233235</td>
<td>3750</td>
</tr>
<tr>
<td>794012</td>
<td>9232135</td>
<td>3967</td>
<td>792298</td>
<td>9233231</td>
<td>3749</td>
</tr>
<tr>
<td>794011</td>
<td>9232225</td>
<td>3927</td>
<td>792207</td>
<td>9233231</td>
<td>3750</td>
</tr>
<tr>
<td>791576</td>
<td>9232266</td>
<td>4012</td>
<td>792137</td>
<td>9233237</td>
<td>3761</td>
</tr>
<tr>
<td>791552</td>
<td>9232356</td>
<td>3979</td>
<td>792068</td>
<td>9233229</td>
<td>3775</td>
</tr>
<tr>
<td>794009</td>
<td>9232321</td>
<td>3877</td>
<td>792001</td>
<td>9233233</td>
<td>3791</td>
</tr>
<tr>
<td>793998</td>
<td>9232413</td>
<td>3855</td>
<td>791935</td>
<td>9233224</td>
<td>3807</td>
</tr>
<tr>
<td>791542</td>
<td>9232450</td>
<td>3954</td>
<td>791854</td>
<td>9233231</td>
<td>3828</td>
</tr>
<tr>
<td>791527</td>
<td>9232540</td>
<td>3929</td>
<td>791789</td>
<td>9233222</td>
<td>3844</td>
</tr>
<tr>
<td>794009</td>
<td>9232511</td>
<td>3819</td>
<td>791728</td>
<td>9233222</td>
<td>3859</td>
</tr>
<tr>
<td>794008</td>
<td>9232615</td>
<td>3757</td>
<td>791660</td>
<td>9233226</td>
<td>3876</td>
</tr>
<tr>
<td>791517</td>
<td>9232638</td>
<td>3890</td>
<td>791583</td>
<td>9233230</td>
<td>3891</td>
</tr>
<tr>
<td>791502</td>
<td>9232725</td>
<td>3869</td>
<td>791574</td>
<td>9233159</td>
<td>3892</td>
</tr>
<tr>
<td>794016</td>
<td>9232726</td>
<td>3703</td>
<td>791655</td>
<td>9233156</td>
<td>3867</td>
</tr>
<tr>
<td>794010</td>
<td>9232828</td>
<td>3657</td>
<td>791726</td>
<td>9233153</td>
<td>3849</td>
</tr>
<tr>
<td>791502</td>
<td>9232820</td>
<td>3860</td>
<td>791797</td>
<td>9233161</td>
<td>3835</td>
</tr>
<tr>
<td>791496</td>
<td>9232898</td>
<td>3874</td>
<td>791859</td>
<td>9233160</td>
<td>3823</td>
</tr>
<tr>
<td>794007</td>
<td>9232920</td>
<td>3642</td>
<td>791926</td>
<td>9233160</td>
<td>3810</td>
</tr>
<tr>
<td>794016</td>
<td>9233007</td>
<td>3650</td>
<td>792002</td>
<td>9233159</td>
<td>3794</td>
</tr>
<tr>
<td>791507</td>
<td>9232967</td>
<td>3886</td>
<td>792081</td>
<td>9233164</td>
<td>3774</td>
</tr>
<tr>
<td>791513</td>
<td>9233067</td>
<td>3904</td>
<td>792158</td>
<td>9233168</td>
<td>3759</td>
</tr>
</tbody>
</table>
"CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020"

<table>
<thead>
<tr>
<th>Código</th>
<th>Código</th>
<th>Valor</th>
<th>Código</th>
<th>Código</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>792248</td>
<td>9233160</td>
<td>3753</td>
<td>791964</td>
<td>9233070</td>
<td>3807</td>
</tr>
<tr>
<td>792339</td>
<td>9233164</td>
<td>3752</td>
<td>791902</td>
<td>9233073</td>
<td>3814</td>
</tr>
<tr>
<td>792421</td>
<td>9233164</td>
<td>3751</td>
<td>791820</td>
<td>9233071</td>
<td>3823</td>
</tr>
<tr>
<td>792498</td>
<td>9233161</td>
<td>3746</td>
<td>791731</td>
<td>9233059</td>
<td>3835</td>
</tr>
<tr>
<td>792575</td>
<td>9233163</td>
<td>3738</td>
<td>791647</td>
<td>9233063</td>
<td>3853</td>
</tr>
<tr>
<td>792661</td>
<td>9233164</td>
<td>3733</td>
<td>791571</td>
<td>9233069</td>
<td>3878</td>
</tr>
<tr>
<td>792748</td>
<td>9233174</td>
<td>3727</td>
<td>791569</td>
<td>9232973</td>
<td>3857</td>
</tr>
<tr>
<td>792835</td>
<td>9233165</td>
<td>3722</td>
<td>791645</td>
<td>9232973</td>
<td>3844</td>
</tr>
<tr>
<td>792904</td>
<td>9233166</td>
<td>3720</td>
<td>791749</td>
<td>9232978</td>
<td>3836</td>
</tr>
<tr>
<td>792983</td>
<td>9233162</td>
<td>3718</td>
<td>791833</td>
<td>9232979</td>
<td>3831</td>
</tr>
<tr>
<td>793066</td>
<td>9233171</td>
<td>3716</td>
<td>791916</td>
<td>9232979</td>
<td>3827</td>
</tr>
<tr>
<td>793145</td>
<td>9233168</td>
<td>3711</td>
<td>791988</td>
<td>9232975</td>
<td>3827</td>
</tr>
<tr>
<td>793236</td>
<td>9233165</td>
<td>3702</td>
<td>792082</td>
<td>9232971</td>
<td>3823</td>
</tr>
<tr>
<td>793311</td>
<td>9233178</td>
<td>3697</td>
<td>792176</td>
<td>9232971</td>
<td>3821</td>
</tr>
<tr>
<td>793396</td>
<td>9233177</td>
<td>3700</td>
<td>792261</td>
<td>9232971</td>
<td>3822</td>
</tr>
<tr>
<td>793475</td>
<td>9233167</td>
<td>3705</td>
<td>792349</td>
<td>9232972</td>
<td>3812</td>
</tr>
<tr>
<td>793551</td>
<td>9233174</td>
<td>3713</td>
<td>792425</td>
<td>9232984</td>
<td>3794</td>
</tr>
<tr>
<td>793648</td>
<td>9233172</td>
<td>3720</td>
<td>792513</td>
<td>9232978</td>
<td>3785</td>
</tr>
<tr>
<td>793727</td>
<td>9233179</td>
<td>3724</td>
<td>792594</td>
<td>9232987</td>
<td>3781</td>
</tr>
<tr>
<td>793802</td>
<td>9233168</td>
<td>3715</td>
<td>792675</td>
<td>9232992</td>
<td>3776</td>
</tr>
<tr>
<td>793900</td>
<td>9233175</td>
<td>3702</td>
<td>792759</td>
<td>9232986</td>
<td>3763</td>
</tr>
<tr>
<td>793962</td>
<td>9233185</td>
<td>3696</td>
<td>792843</td>
<td>9232998</td>
<td>3746</td>
</tr>
<tr>
<td>793962</td>
<td>9233103</td>
<td>3672</td>
<td>792945</td>
<td>9232992</td>
<td>3734</td>
</tr>
<tr>
<td>793900</td>
<td>9233090</td>
<td>3675</td>
<td>793014</td>
<td>9232998</td>
<td>3729</td>
</tr>
<tr>
<td>793806</td>
<td>9233092</td>
<td>3684</td>
<td>793115</td>
<td>9232990</td>
<td>3724</td>
</tr>
<tr>
<td>793740</td>
<td>9233095</td>
<td>3689</td>
<td>793197</td>
<td>9232991</td>
<td>3713</td>
</tr>
<tr>
<td>793664</td>
<td>9233088</td>
<td>3686</td>
<td>793301</td>
<td>9233003</td>
<td>3702</td>
</tr>
<tr>
<td>793593</td>
<td>9233088</td>
<td>3683</td>
<td>793380</td>
<td>9233001</td>
<td>3689</td>
</tr>
<tr>
<td>793513</td>
<td>9233089</td>
<td>3683</td>
<td>793481</td>
<td>9233003</td>
<td>3679</td>
</tr>
<tr>
<td>793433</td>
<td>9233089</td>
<td>3684</td>
<td>793556</td>
<td>9233000</td>
<td>3672</td>
</tr>
<tr>
<td>793337</td>
<td>9233088</td>
<td>3695</td>
<td>793649</td>
<td>9232996</td>
<td>3667</td>
</tr>
<tr>
<td>793271</td>
<td>9233087</td>
<td>3701</td>
<td>793752</td>
<td>9233009</td>
<td>3665</td>
</tr>
<tr>
<td>793192</td>
<td>9233081</td>
<td>3704</td>
<td>793846</td>
<td>9232997</td>
<td>3658</td>
</tr>
<tr>
<td>793105</td>
<td>9233084</td>
<td>3711</td>
<td>793944</td>
<td>9233007</td>
<td>3654</td>
</tr>
<tr>
<td>793031</td>
<td>9233083</td>
<td>3719</td>
<td>793935</td>
<td>9232915</td>
<td>3644</td>
</tr>
<tr>
<td>792953</td>
<td>9233077</td>
<td>3728</td>
<td>793859</td>
<td>9232910</td>
<td>3649</td>
</tr>
<tr>
<td>792880</td>
<td>9233084</td>
<td>3733</td>
<td>793778</td>
<td>9232909</td>
<td>3654</td>
</tr>
<tr>
<td>792802</td>
<td>9233083</td>
<td>3738</td>
<td>793698</td>
<td>9232908</td>
<td>3662</td>
</tr>
<tr>
<td>792733</td>
<td>9233078</td>
<td>3743</td>
<td>793622</td>
<td>9232912</td>
<td>3668</td>
</tr>
<tr>
<td>792652</td>
<td>9233077</td>
<td>3749</td>
<td>793534</td>
<td>9232911</td>
<td>3675</td>
</tr>
<tr>
<td>792574</td>
<td>9233080</td>
<td>3752</td>
<td>793454</td>
<td>9232913</td>
<td>3684</td>
</tr>
<tr>
<td>792489</td>
<td>9233079</td>
<td>3759</td>
<td>793371</td>
<td>9232916</td>
<td>3696</td>
</tr>
<tr>
<td>792417</td>
<td>9233077</td>
<td>3768</td>
<td>793297</td>
<td>9232909</td>
<td>3706</td>
</tr>
<tr>
<td>792342</td>
<td>9233071</td>
<td>3777</td>
<td>793215</td>
<td>9232906</td>
<td>3722</td>
</tr>
<tr>
<td>792255</td>
<td>9233072</td>
<td>3778</td>
<td>793125</td>
<td>9232908</td>
<td>3735</td>
</tr>
<tr>
<td>792174</td>
<td>9233067</td>
<td>3782</td>
<td>793050</td>
<td>9232904</td>
<td>3735</td>
</tr>
<tr>
<td>792094</td>
<td>9233074</td>
<td>3786</td>
<td>792967</td>
<td>9232913</td>
<td>3735</td>
</tr>
<tr>
<td>792021</td>
<td>9233063</td>
<td>3801</td>
<td>792893</td>
<td>9232909</td>
<td>3739</td>
</tr>
</tbody>
</table>
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020

Chavez Chavez, Enma
Chugden Carranza, Erika Lorena
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCUCHO-CAJAMARCA 2020

Chavez Chavez, Enma
Chugden Carranza, Erika Lorena
RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCUCHO-CAJAMARCA 2020

<table>
<thead>
<tr>
<th>Código</th>
<th>Código</th>
<th>Código</th>
<th>Código</th>
<th>Código</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>792982</td>
<td>9231977</td>
<td>3967</td>
<td>793459</td>
<td>9231748</td>
<td>3975</td>
</tr>
<tr>
<td>792905</td>
<td>9231969</td>
<td>3953</td>
<td>793335</td>
<td>9231748</td>
<td>3978</td>
</tr>
<tr>
<td>792811</td>
<td>9231966</td>
<td>3942</td>
<td>793252</td>
<td>9231765</td>
<td>3975</td>
</tr>
<tr>
<td>792730</td>
<td>9231966</td>
<td>3954</td>
<td>793169</td>
<td>9231770</td>
<td>3977</td>
</tr>
<tr>
<td>792646</td>
<td>9231987</td>
<td>3965</td>
<td>793089</td>
<td>9231771</td>
<td>3990</td>
</tr>
<tr>
<td>792587</td>
<td>9231971</td>
<td>3990</td>
<td>793010</td>
<td>9231772</td>
<td>4011</td>
</tr>
<tr>
<td>792503</td>
<td>9231971</td>
<td>4011</td>
<td>792928</td>
<td>9231773</td>
<td>4010</td>
</tr>
<tr>
<td>792431</td>
<td>9231967</td>
<td>4028</td>
<td>792849</td>
<td>9231773</td>
<td>4004</td>
</tr>
<tr>
<td>792354</td>
<td>9231971</td>
<td>4043</td>
<td>792762</td>
<td>9231774</td>
<td>4018</td>
</tr>
<tr>
<td>792266</td>
<td>9231972</td>
<td>4057</td>
<td>792708</td>
<td>9231775</td>
<td>4030</td>
</tr>
<tr>
<td>792192</td>
<td>9231972</td>
<td>4064</td>
<td>792632</td>
<td>9231772</td>
<td>4049</td>
</tr>
<tr>
<td>792107</td>
<td>9231973</td>
<td>4063</td>
<td>792556</td>
<td>9231769</td>
<td>4065</td>
</tr>
<tr>
<td>792026</td>
<td>9231969</td>
<td>4062</td>
<td>792495</td>
<td>9231770</td>
<td>4078</td>
</tr>
<tr>
<td>791954</td>
<td>9231970</td>
<td>4064</td>
<td>792437</td>
<td>9231782</td>
<td>4086</td>
</tr>
<tr>
<td>791895</td>
<td>9231970</td>
<td>4067</td>
<td>792366</td>
<td>9231783</td>
<td>4100</td>
</tr>
<tr>
<td>791829</td>
<td>9231974</td>
<td>4074</td>
<td>792301</td>
<td>9231784</td>
<td>4108</td>
</tr>
<tr>
<td>791737</td>
<td>9231959</td>
<td>4082</td>
<td>792236</td>
<td>9231785</td>
<td>4114</td>
</tr>
<tr>
<td>791650</td>
<td>9231939</td>
<td>4046</td>
<td>792168</td>
<td>9231773</td>
<td>4124</td>
</tr>
<tr>
<td>791636</td>
<td>9231854</td>
<td>3993</td>
<td>792097</td>
<td>9231778</td>
<td>4126</td>
</tr>
<tr>
<td>791735</td>
<td>9231862</td>
<td>4054</td>
<td>792015</td>
<td>9231786</td>
<td>4127</td>
</tr>
<tr>
<td>791873</td>
<td>9231866</td>
<td>4103</td>
<td>791944</td>
<td>9231782</td>
<td>4119</td>
</tr>
<tr>
<td>791936</td>
<td>9231870</td>
<td>4099</td>
<td>791894</td>
<td>9231786</td>
<td>4112</td>
</tr>
<tr>
<td>792055</td>
<td>9231869</td>
<td>4095</td>
<td>791811</td>
<td>9231790</td>
<td>4086</td>
</tr>
<tr>
<td>792155</td>
<td>9231868</td>
<td>4093</td>
<td>791676</td>
<td>9231796</td>
<td>3985</td>
</tr>
<tr>
<td>792277</td>
<td>9231859</td>
<td>4088</td>
<td>791559</td>
<td>9231877</td>
<td>3942</td>
</tr>
<tr>
<td>792365</td>
<td>9231859</td>
<td>4075</td>
<td>791587</td>
<td>9231641</td>
<td>3877</td>
</tr>
<tr>
<td>792456</td>
<td>9231866</td>
<td>4055</td>
<td>791711</td>
<td>9231644</td>
<td>3936</td>
</tr>
<tr>
<td>792547</td>
<td>9231869</td>
<td>4036</td>
<td>791825</td>
<td>9231639</td>
<td>3986</td>
</tr>
<tr>
<td>792612</td>
<td>9231864</td>
<td>4023</td>
<td>791973</td>
<td>9231640</td>
<td>4069</td>
</tr>
<tr>
<td>792712</td>
<td>9231868</td>
<td>3998</td>
<td>792085</td>
<td>9231639</td>
<td>4133</td>
</tr>
<tr>
<td>792815</td>
<td>9231867</td>
<td>3979</td>
<td>792197</td>
<td>9231641</td>
<td>4159</td>
</tr>
<tr>
<td>792920</td>
<td>9231854</td>
<td>3991</td>
<td>792290</td>
<td>9231632</td>
<td>4155</td>
</tr>
<tr>
<td>793025</td>
<td>9231857</td>
<td>3997</td>
<td>792353</td>
<td>9231643</td>
<td>4143</td>
</tr>
<tr>
<td>793124</td>
<td>9231861</td>
<td>3975</td>
<td>792460</td>
<td>9231645</td>
<td>4119</td>
</tr>
<tr>
<td>793200</td>
<td>9231864</td>
<td>3956</td>
<td>792556</td>
<td>9231646</td>
<td>4094</td>
</tr>
<tr>
<td>793303</td>
<td>9231855</td>
<td>3951</td>
<td>792653</td>
<td>9231644</td>
<td>4071</td>
</tr>
<tr>
<td>793391</td>
<td>9231855</td>
<td>3950</td>
<td>792743</td>
<td>9231645</td>
<td>4038</td>
</tr>
<tr>
<td>793475</td>
<td>9231858</td>
<td>3960</td>
<td>792833</td>
<td>9231652</td>
<td>4022</td>
</tr>
<tr>
<td>793550</td>
<td>9231858</td>
<td>3966</td>
<td>792906</td>
<td>9231643</td>
<td>4024</td>
</tr>
<tr>
<td>793658</td>
<td>9231853</td>
<td>3970</td>
<td>792999</td>
<td>9231646</td>
<td>4019</td>
</tr>
<tr>
<td>793749</td>
<td>9231849</td>
<td>3980</td>
<td>793083</td>
<td>9231641</td>
<td>4008</td>
</tr>
<tr>
<td>793832</td>
<td>9231856</td>
<td>3983</td>
<td>793169</td>
<td>9231640</td>
<td>4007</td>
</tr>
<tr>
<td>793928</td>
<td>9231851</td>
<td>3957</td>
<td>793255</td>
<td>9231648</td>
<td>4003</td>
</tr>
<tr>
<td>793933</td>
<td>9231763</td>
<td>3904</td>
<td>793336</td>
<td>9231647</td>
<td>3993</td>
</tr>
<tr>
<td>793840</td>
<td>9231760</td>
<td>3926</td>
<td>793417</td>
<td>9231649</td>
<td>3975</td>
</tr>
<tr>
<td>793736</td>
<td>9231761</td>
<td>3947</td>
<td>793523</td>
<td>9231647</td>
<td>3949</td>
</tr>
<tr>
<td>793678</td>
<td>9231762</td>
<td>3957</td>
<td>793593</td>
<td>9231637</td>
<td>3932</td>
</tr>
<tr>
<td>793570</td>
<td>9231759</td>
<td>3967</td>
<td>793664</td>
<td>9231657</td>
<td>3926</td>
</tr>
</tbody>
</table>
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-CAJAMARCA 2020

Chavez Chavez, Enma
Chugden Carranza, Erika Lorena
CARACTERIZACIÓN GEOLÓGICA SUPERFICIAL PARA LA ESTIMACIÓN DE
RECURSOS DE CALIZA EN LA CONCESIÓN PAULITA 25, SOROCHUCO-
CAJAMARCA 2020

Chavez Chavez, Enma
Chugden Carranza, Erika Lorena
<table>
<thead>
<tr>
<th>Código</th>
<th>Latitud</th>
<th>LONGITUD</th>
<th>ALTITUD</th>
<th>Código</th>
<th>Latitud</th>
<th>LONGITUD</th>
<th>ALTITUD</th>
<th>Código</th>
<th>Latitud</th>
<th>LONGITUD</th>
<th>ALTITUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>791599</td>
<td>9230834</td>
<td>3834</td>
<td>793729</td>
<td>9230762</td>
<td>3927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791738</td>
<td>9230858</td>
<td>3873</td>
<td>793830</td>
<td>9230764</td>
<td>3910</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791865</td>
<td>9230876</td>
<td>3905</td>
<td>793927</td>
<td>9230771</td>
<td>3905</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>794056</td>
<td>9230878</td>
<td>3871</td>
<td>794007</td>
<td>9230760</td>
<td>3912</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>794053</td>
<td>9230771</td>
<td>3908</td>
<td>793975</td>
<td>9230863</td>
<td>3873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791488</td>
<td>9230737</td>
<td>3854</td>
<td>793861</td>
<td>9230863</td>
<td>3868</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791630</td>
<td>9230729</td>
<td>3870</td>
<td>793730</td>
<td>9230867</td>
<td>3897</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791731</td>
<td>9230741</td>
<td>3888</td>
<td>793617</td>
<td>9230862</td>
<td>3924</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791750</td>
<td>9230742</td>
<td>3892</td>
<td>793466</td>
<td>9230868</td>
<td>3930</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791846</td>
<td>9230740</td>
<td>3914</td>
<td>793370</td>
<td>9230880</td>
<td>3926</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791979</td>
<td>9230733</td>
<td>3950</td>
<td>793303</td>
<td>9230877</td>
<td>3926</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792112</td>
<td>9230755</td>
<td>3954</td>
<td>793125</td>
<td>9230874</td>
<td>3931</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792234</td>
<td>9230754</td>
<td>3971</td>
<td>793134</td>
<td>9230869</td>
<td>3944</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792348</td>
<td>9230747</td>
<td>3989</td>
<td>793057</td>
<td>9230886</td>
<td>3957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792463</td>
<td>9230748</td>
<td>4013</td>
<td>792976</td>
<td>9230885</td>
<td>3967</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792566</td>
<td>9230748</td>
<td>4040</td>
<td>792896</td>
<td>9230884</td>
<td>3978</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792672</td>
<td>9230752</td>
<td>4055</td>
<td>792833</td>
<td>9230880</td>
<td>3991</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792773</td>
<td>9230758</td>
<td>4039</td>
<td>792748</td>
<td>9230878</td>
<td>4018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792867</td>
<td>9230752</td>
<td>4020</td>
<td>792678</td>
<td>9230866</td>
<td>4032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792973</td>
<td>9230753</td>
<td>3994</td>
<td>792578</td>
<td>9230877</td>
<td>4023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793074</td>
<td>9230755</td>
<td>3962</td>
<td>792517</td>
<td>9230871</td>
<td>4012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793158</td>
<td>9230762</td>
<td>3945</td>
<td>792453</td>
<td>9230873</td>
<td>4003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793249</td>
<td>9230755</td>
<td>3939</td>
<td>792369</td>
<td>9230872</td>
<td>3997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793261</td>
<td>9230767</td>
<td>3937</td>
<td>792293</td>
<td>9230883</td>
<td>3995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793282</td>
<td>9230767</td>
<td>3936</td>
<td>792185</td>
<td>9230877</td>
<td>3984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793374</td>
<td>9230766</td>
<td>3935</td>
<td>792104</td>
<td>9230868</td>
<td>3976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793462</td>
<td>9230758</td>
<td>3936</td>
<td>792020</td>
<td>9230873</td>
<td>3966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793558</td>
<td>9230766</td>
<td>3939</td>
<td>791942</td>
<td>9230879</td>
<td>3936</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793634</td>
<td>9230762</td>
<td>3940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO n.° 6. Data del análisis estadístico (SURVEY).

<table>
<thead>
<tr>
<th>HOLE</th>
<th>MAX DEPTH</th>
<th>DIRECTION</th>
<th>DIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH001</td>
<td>1</td>
<td>263.6</td>
<td>-60</td>
</tr>
<tr>
<td>DH002</td>
<td>1</td>
<td>263.6</td>
<td>-60</td>
</tr>
<tr>
<td>DH003</td>
<td>1</td>
<td>263.5</td>
<td>-56.6</td>
</tr>
<tr>
<td>DH004</td>
<td>1</td>
<td>265.5</td>
<td>-56.5</td>
</tr>
<tr>
<td>DH005</td>
<td>1</td>
<td>266.5</td>
<td>-56</td>
</tr>
<tr>
<td>DH006</td>
<td>1</td>
<td>267.5</td>
<td>-56</td>
</tr>
<tr>
<td>DH007</td>
<td>1</td>
<td>267.5</td>
<td>-56</td>
</tr>
<tr>
<td>DH008</td>
<td>1</td>
<td>269.5</td>
<td>-55</td>
</tr>
<tr>
<td>DH009</td>
<td>1</td>
<td>269.5</td>
<td>-55</td>
</tr>
<tr>
<td>DH010</td>
<td>1</td>
<td>270.5</td>
<td>-55</td>
</tr>
<tr>
<td>DH011</td>
<td>1</td>
<td>270</td>
<td>-60</td>
</tr>
<tr>
<td>DH012</td>
<td>1</td>
<td>270</td>
<td>-60</td>
</tr>
<tr>
<td>DH013</td>
<td>1</td>
<td>270</td>
<td>-57.6</td>
</tr>
<tr>
<td>DH014</td>
<td>1</td>
<td>270.5</td>
<td>-57.5</td>
</tr>
<tr>
<td>DH015</td>
<td>1</td>
<td>268</td>
<td>-57.5</td>
</tr>
<tr>
<td>DH016</td>
<td>1</td>
<td>270</td>
<td>-57.5</td>
</tr>
<tr>
<td>DH017</td>
<td>1</td>
<td>266.5</td>
<td>-55</td>
</tr>
<tr>
<td>DH018</td>
<td>1</td>
<td>267.5</td>
<td>-55</td>
</tr>
<tr>
<td>DH019</td>
<td>1</td>
<td>267.5</td>
<td>-60</td>
</tr>
<tr>
<td>DH020</td>
<td>1</td>
<td>269.5</td>
<td>-60</td>
</tr>
<tr>
<td>DH021</td>
<td>1</td>
<td>269.5</td>
<td>-57.6</td>
</tr>
<tr>
<td>DH022</td>
<td>1</td>
<td>270.5</td>
<td>-57.5</td>
</tr>
<tr>
<td>DH023</td>
<td>1</td>
<td>270</td>
<td>-57.5</td>
</tr>
<tr>
<td>DH024</td>
<td>1</td>
<td>270</td>
<td>-57.5</td>
</tr>
</tbody>
</table>

(ASSAYS)

<table>
<thead>
<tr>
<th>HOLE</th>
<th>FROM</th>
<th>TO</th>
<th>CaCO3 (pct)</th>
<th>CaCO (pct)</th>
<th>Fe2O3 (pct)</th>
<th>MgO (pct)</th>
<th>SiO2 (pct)</th>
<th>Al2O3 (pct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH001</td>
<td>0</td>
<td>1</td>
<td>94.8</td>
<td>82.9</td>
<td>0.091</td>
<td>0.4</td>
<td>1.67</td>
<td>0.74</td>
</tr>
<tr>
<td>DH002</td>
<td>0</td>
<td>1</td>
<td>96.6</td>
<td>85.4</td>
<td>0.092</td>
<td>0.42</td>
<td>1.65</td>
<td>0.73</td>
</tr>
<tr>
<td>DH003</td>
<td>0</td>
<td>1</td>
<td>98.9</td>
<td>87.1</td>
<td>0.095</td>
<td>0.51</td>
<td>1.72</td>
<td>0.79</td>
</tr>
<tr>
<td>DH004</td>
<td>0</td>
<td>1</td>
<td>98.1</td>
<td>86.3</td>
<td>0.089</td>
<td>0.41</td>
<td>1.68</td>
<td>0.71</td>
</tr>
<tr>
<td>DH005</td>
<td>0</td>
<td>1</td>
<td>98.3</td>
<td>86.2</td>
<td>0.092</td>
<td>0.39</td>
<td>1.66</td>
<td>0.72</td>
</tr>
<tr>
<td>DH006</td>
<td>0</td>
<td>1</td>
<td>93.8</td>
<td>82.9</td>
<td>0.091</td>
<td>0.4</td>
<td>1.66</td>
<td>0.8</td>
</tr>
<tr>
<td>DH007</td>
<td>0</td>
<td>1</td>
<td>94.8</td>
<td>82.9</td>
<td>0.091</td>
<td>0.4</td>
<td>1.67</td>
<td>0.74</td>
</tr>
<tr>
<td>DH008</td>
<td>0</td>
<td>1</td>
<td>93.6</td>
<td>85.7</td>
<td>0.092</td>
<td>0.5</td>
<td>1.63</td>
<td>0.73</td>
</tr>
<tr>
<td>DH009</td>
<td>0</td>
<td>1</td>
<td>93.6</td>
<td>86.5</td>
<td>0.088</td>
<td>0.53</td>
<td>1.68</td>
<td>0.81</td>
</tr>
<tr>
<td>DH010</td>
<td>0</td>
<td>1</td>
<td>93.8</td>
<td>82.9</td>
<td>0.091</td>
<td>0.4</td>
<td>1.66</td>
<td>0.8</td>
</tr>
<tr>
<td>DH011</td>
<td>0</td>
<td>1</td>
<td>93.8</td>
<td>82.9</td>
<td>0.091</td>
<td>0.4</td>
<td>1.66</td>
<td>0.8</td>
</tr>
<tr>
<td>DH012</td>
<td>0</td>
<td>1</td>
<td>93.6</td>
<td>85.7</td>
<td>0.092</td>
<td>0.5</td>
<td>1.63</td>
<td>0.73</td>
</tr>
<tr>
<td>DH013</td>
<td>0</td>
<td>1</td>
<td>93.6</td>
<td>86.5</td>
<td>0.088</td>
<td>0.53</td>
<td>1.68</td>
<td>0.81</td>
</tr>
<tr>
<td>DH014</td>
<td>0</td>
<td>1</td>
<td>93.8</td>
<td>82.9</td>
<td>0.091</td>
<td>0.4</td>
<td>1.66</td>
<td>0.8</td>
</tr>
<tr>
<td>DH015</td>
<td>0</td>
<td>1</td>
<td>93.8</td>
<td>82.9</td>
<td>0.091</td>
<td>0.4</td>
<td>1.66</td>
<td>0.8</td>
</tr>
<tr>
<td>DH016</td>
<td>0</td>
<td>1</td>
<td>94.8</td>
<td>82.9</td>
<td>0.091</td>
<td>0.4</td>
<td>1.67</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Cuadro de Distribución de Frecuencias CaCO3

<table>
<thead>
<tr>
<th>CaCO3 (pct)</th>
<th>Xi</th>
<th>fi</th>
<th>hi%</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>upper</td>
<td>midpoint</td>
<td>width</td>
<td>frequency</td>
</tr>
<tr>
<td>93.600</td>
<td>< 94.600</td>
<td>94.100</td>
<td>1.000</td>
<td>10</td>
</tr>
<tr>
<td>94.600</td>
<td>< 95.600</td>
<td>95.100</td>
<td>1.000</td>
<td>3</td>
</tr>
<tr>
<td>95.600</td>
<td>< 96.600</td>
<td>96.100</td>
<td>1.000</td>
<td>1</td>
</tr>
<tr>
<td>96.600</td>
<td>< 97.600</td>
<td>97.100</td>
<td>1.000</td>
<td>2</td>
</tr>
<tr>
<td>97.600</td>
<td>< 98.600</td>
<td>98.100</td>
<td>1.000</td>
<td>6</td>
</tr>
<tr>
<td>98.600</td>
<td>≤ 99.600</td>
<td>99.100</td>
<td>1.000</td>
<td>2</td>
</tr>
</tbody>
</table>

24 100.0
ANEXO n.º 7. Plano Geológico de la concesión Paulita 25.
Anexo n° 9. Plano de Ubicación