

FACULTAD DE INGENIERÍA

Carrera de Ingeniería de Minas

"EVALUACIÓN GEOMECÁNICA DEL MACIZO ROCOSO PARA PROPONER EL TIPO DE SOSTENIMIENTO EN EL NIVEL 01 DEL TÚNEL SULLUSCOCHA, NAMORA - CAJAMARCA"

Tesis para optar el título profesional de:

INGENIERO DE MINAS

Autores:

Bach. Jorge Luis Carlos Carmona Bach. Jose Eduar Marrufo Gallardo

Asesor:

Ing. Roberto Severino Gonzales Yana

Cajamarca - Perú

2020

DEDICATORIA

Esta tesis está dedicado a los miembros de mi Familia, que siempre estuvieron apoyándome a no decaer, en una de mis metas, que es la de llegar hacer un Ingeniero De Minas. En especial dedicatoria a mis hijos Renzo Yahir Carlos Rosario, mi hijo(a) que está viniendo en camino, a mi esposa Yessica Nohely Rosario Portal.

JORGE LUIS

Esta tesis se la dedico a Eduar Youfre Marrufo Guadalupe y Aisa Gaela Marrufo Guadalupe son motor y motivo de todo lo que estamos logrando.

JOSE EDUAR

AGRADECIMIENTO

Agradecer en mi primer lugar a Dios que nos da un día más de vida, a todos los docentes que nos inculcaron su conocimiento en aula y en campo, agradecer a los compañeros por brindar el apoyo cuando era necesario, agradecer a todo nuestro círculo familiar que siempre estuvieron apoyándonos y a no decaer, un agradecimiento especial a nuestros padres, Esposas, e Hijos

Tabla de contenidos

DED]	ICATORIA	2
AGR	RADECIMIENTO	3
ÍNDI	ICE DE TABLAS	5
ÍNDI	ICE DE FIGURAS	6
RES	UMEN	8
CAPÍ	ÍTULO I: INTRODUCCIÓN	9
1.1.	Realidad problemática	9
1.2.	Formulación del problema	14
1.3.	Objetivos	14
1.4.	Hipótesis	15
CAPÍ	ÍTULO II: METODOLOGÍA	16
2.1.	Tipo de investigación	16
2.2.	Población y muestra	16
2.3.	Técnicas e instrumentos de recolección y análisis de datos	18
2.4.	Procedimiento	30
CAPÍ	ÍTULO III: RESULTADOS	31
CAPÍ	ÍTULO IV: DISCUSIÓN Y CONCLUSIONES	
4.1.	Discusión	84
4.2.	Conclusiones	86
REFI	ERENCIAS	88
ANE	XOS	90

ÍNDICE DE TABLAS

Tabla 1. Cordenadas UTM – GWS de las estaciones estudiadas	
Tabla 2. Indice manual de resistencia de la roca (ISRM, 1978)	20
Tabla 3. Resistencia de la matriz rocosa	
Tabla 4. Numero de fisuras de la estación 1	
Tabla 5. Rango de% RQD	. 33
Tabla 6. Promedio de separación entre diaclasas	. 33
Tabla 7. Separación entre diaclasas	. 33
Tabla 8. Estado de las discontinuidades de la estación 1	. 34
Tabla 9. Agua subterránea o freática	. 35
Tabla 10. Šuma de los estados de los parámetros del RMR de la estación 1	. 36
Tabla 11. Clasificacion de roca (suma de los parámetros)	
Tabla 12. Resultado de indice Q en la estacion 1	
Tabla 13. Resistencia de la matriz rocosa	
Tabla 14. Numero de fisuras de la estacion 2	
Tabla 15. Rango de% RQD	. 44
Tabla 16. Proedio de separación entre diaclasas	
Tabla 17. Separación entre diaclasas	. 45
Tabla 18. Estado de las discontinuidades de la estacion 2	. 46
Tabla 19. Agua subterránea o freática	
Tabla 20. Suma de los estados de los parámetros del RMR de la estación 2	. 48
Tabla 21. Clasificación de roca (suma de los parámetros)	. 48
Tabla 22. Resultado de indice Q en la estación 2	
Tabla 23. Resistencia de la matriz rocosa	
Tabla 24. Numero de fisuras de la estación 3	
Tabla 25. Rango de% RQD	. 57
Tabla 26. Promedio de separación entre diaclasas	. 57
Tabla 27. Separación entre diaclasas	
Tabla 28. Estado de las discontinuidades de la estacion 3	
Tabla 29. Agua supterránea o freática	. 59
Tabla 30. Suma de las estaciones de los parámetros del RMR de la estacion 3	
Tabla 31. Clasificacion de roca (suma de los parámetros)	. 60
Tabla 32. Resultado de indice Q en la estación 3	
Tabla 33. Resistencia de la matriz rocosa	
Tabla 34. Numero de fisuras en la estación 4	
Tabla 35. Rango de% RQD	. 69
Tabla 36. Promedio de separación entre diaclasas	. 69
Tabla 37. Separación entre diaclasas	
Tabla 38. Estado de las discontinuidades de la estación 4	
Tabla 39. Agua subterránea o freática	. 71
Tabla 40. Suma de las estaciones de los parámetros del RMR de la estación 4	. 72
Tabla 41. Clasificación de la roca (suma de los parámetros)	
Tabla 42. Resultado de indice Q en la estacion 4	
Tabla 43. Resultado RQD, RMR, INDICE de cada Estación	. 79

ÍNDICE DE FIGURAS

Figura 1 Estaciones del proyecto desde Google Earth	17
Figura 2: Estación 1	31
Figura 3: Índice RQD.	37
Figura 4: Índice de Diaclasado	37
Figura 5: Índice de rugosidad	38
Figura 6: Alteración de las discontinuidades.	38
Figura 7: Factor de presencia de Agua.	39
Figura 8: Condiciones Tensionales (a)	40
Figura 9: Condiciones Tensionales (b)	40
Figura 10: Formula Q de Barton	41
Figura 11: Valoración de Q de Barton	41
Figura 12: Calculo de Diámetro Equivalente	42
Figura 13: Calculo de ESR	
Figura 14: Estación 2	43
Figura 15: Índice RQD.	49
Figura 16: Índice de Diaclasado	49
Figura 17: Índice de rugosidad.	50
Figura 18: Alteración de las discontinuidades	50
Figura 19: Factor de presencia de Agua.	
Figura 20: Condiciones Tensionales (a)	
Figura 21: Condiciones Tensionales (b)	
Figura 22: Formula Q de Barton	53
Figura 23: Valoración de Q de Barton	53
Figura 24: Calculo de Diámetro Equivalente	
Figura 25: Calculo de ESR	54
Figura 26: Estación 3	55
Figura 27: Índice RQD.	61
Figura 28: Índice de Diaclasado	61
Figura 29: Índice de rugosidad	62
Figura 30: Alteración de las discontinuidades.	
Figura 31: Factor de presencia de Agua.	63
Figura 32: Condiciones Tensionales (a)	64
Figura 33: Condiciones Tensionales (b)	64
Figura 34: Formula de Q de Barton	
Figura 35: Valoración de Q de Barton	65
Figura 36: Calculo de Diámetro Equivalente	66
Figura 37: Calculo de ESR	66
Figura 38: Estación 4	67
Figura 39: Índice RQD.	73
Figura 40: Índice de Diaclasado	74
Figura 41: Índice de rugosidad	74
Figura 42: Alteración de las discontinuidades	75
Figura 43: Factor de presencia de Agua	75
Figura 44: Condiciones Tensionales (a)	76
Figura 45: Condiciones Tensionales (b)	
Figura 46: Formula Q de Barton	
Figura 47: Valoración de Q de Barton	
Figura 48: Calculo de Diámetro Equivalente	
Figura 49: Calculo de ESR	
Figura 50: Estabilidad según RMR	

"Evaluación Geomecánica Del Macizo Rocoso Para Proponer El tipo De Sostenimiento En El Nivel 01 Del Túnel Sulluscocha, Namora - Cajamarca"

Figura 51: Recomendaciones para excavación y sostenimiento según Bieniawski	81
Figura 52: Categorías de sostenimiento a partir del índice Q	82
Figura 53: Tipo de sostenimiento en las 4 estaciones.	83

RESUMEN

En este presente trabajo de investigación se realizó una evaluación geomecánica de la zona Sulluscocha- Namora, Cajamarca; en 4 estaciones, mediante RMR y Q de Barton para luego proponer el tipo de sostenimiento más adecuado para la construcción del nivel 01 túnel. ¿Con la evaluación geomecánica se propondrá el tipo de sostenimiento en el nivel 01 del túnel sulluscocha, Namora - Cajamarca? Según (Lozada, 2014) "El tipo de investigación que se utilizo es aplicada porque tiene por objetivo la generación de conocimiento con aplicación directa y a mediano plazo en la sociedad o en el sector productivo". La metodología de la presente investigación es descriptiva, orientándose principalmente a la proposición de tipo de sostenimiento, con fines académicos y de investigación, donde se toma los datos y características de las estaciones, para así proponer el tipo de sostenimiento más adecuado según el RMR y Q de Barton. Los resultados, según Bieniawski para las 4 estaciones una calidad de roca Buena, por otro lado, el índice Q nos dice en las estaciones 1, 2 dio como resultado una roca buena; en la estación 3 nos dio una roca muy buena, y en la estación 4 una roca media. El sostenimiento que proponemos guiándonos por Bieniawski, sostenimiento terminado a 20m del avance, los bulones localmente enclaven en una longitud de 3m, espaciados a 2.5m con mallado opcional, hormigón proyectado a 50mm en clave donde sea necesario. El sostenimiento que proponemos guiándonos de Barton para las 4 estaciones estudiadas, es un sostenimiento de separación entre bulones en zonas sin hormigón proyectado.

Palabras clave: Geomecánica de rocas, RMR de Bieniawski, Índice Q de Barton, Estabilidad de túneles

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

En la presente investigación se está proponiendo el tipo de sostenimiento para la construcción de un túnel en la localidad de sulluscocha, para ello vamos realizar evaluación geomecánica del macizo rocoso; y ver la viabilidad del proyecto.

(Arana, 2019). Presentó su Tesis para la obtención del Título de Ingeniero de Minas, titulada: "Análisis Geomecánico para Seleccionar El Tipo de Sostenimiento en La Mina Apminac Pulpera Caylloma - Arequipa". El sostenimiento que se ha elegido es el de cuadros de madera, porque según las diferentes clasificaciones geomecánicas que se han estudiado se ha obtenido valores de RMR entre 38 y 63 en rocas sin mineralización, en cambio en zonas mineralizadas el RMR es menor a 23 por lo cual el sostenimiento es inmediato, así como se ha determinado en la evaluación de labores auto soportadas.

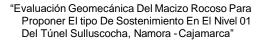
(Mamani, 2019). Presentó su Tesis para la obtención del Título de Ingeniero de Minas, titulada: "Diseño de la Construcción Subterránea de la Mina Escuela Carolina Con Fines Académicos Y De Investigación". A través de la caracterización geomecánica se logra cumplir con los objetivos teniendo como resultado las zonas de estabilidad en las progresivas 3, 6, 12 y 16 con un valor de RMR de Bieniawski de 63 (buena), 55 (regular), 51 (regular) y 50 (regular), y teniendo como tipo de sostenimiento, empernado sistemático con espaciamiento de 2.8m, empernado puntual, empernado sistemático con espaciamiento de 1.5m y, empernado sistemático con espaciamiento de 1.5m, respectivamente.

(Calderon, 2018). Presentó su Tesis para la obtención del Título de Ingeniero de Minas, titulada: "Caracterización geomecánica para la determinación del tipo de sostenimiento en la galería gavilán de oro de la UEA Ana María". No existe ningún estudio geomecánico preliminar para determinar el tipo de sostenimiento, se desconoce la calidad del macizo rocoso, es por ello que surgió la necesidad del presente estudio que cual tiene como objetivo realizar una caracterización geomecánica y determinar el tipo de sostenimiento; la metodología usada fue descriptiva - cuantitativa, la misma que nos permitió examinar los datos de manera científica (forma numérica); a través de la caracterización geomecánica se logra cumplir los objetivos teniendo como resultado para la estaciones geomecánicas 1, 2, 3, 4, 5 y 6 un valor RMR de Bieniawski de 53 (regular), 61 (buena), 58 (regular), 69 (buena), 57 (regular) y 63 (buena) respectivamente, de igual forma un valor de índice Q de Barton de 5.4 (regular), 21.1 (buena), 12.7 (buena), 82.0 (muy buena), 10.7 (buena) y 29.7 (buena) para cada estación geomecánica respectivamente; se determina un sostenimiento con pernos Hydrabolt con capacidad de 16 toneladas y el colocado es de manera sistemática, se consideró un factor de seguridad de 2.0, se realizaron dos diseños de sostenimiento.

(Quispe, 2018). Presentó su Tesis para la obtención del Título de Ingeniero de Minas, titulada: "Evaluación geomecánica para la elección del tipo de sostenimiento en el túnel Yauricocha del NV. 720, Sociedad Minera Corona S.A." Tiene su fundamento en la constante inestabilidad de la masa rocosa, que genera el incremento de costos por falta de control, frente a la caída permanente de las rocas, presenta condiciones desfavorables de

trabajo. Esta investigación pretende determinar los lineamientos para obtener un sistema de información geomecánica útil y que permita su procesamiento y consiguiente análisis, con el objetivo de establecer parámetros geomecánicos que permitan tener condiciones de trabajo seguro, garantizando la estabilidad del macizo rocoso mediante la elección del tipo de sostenimiento adecuado, todo esto de acuerdo a la calidad del mismo, disminuyendo los riesgos de accidentes e incidentes por caída de rocas.

(Hergenrether, 2017). Presentó su Tesis para la obtención del Título de Máster en Recursos Geológicos e Ingeniería Geológica, titulada: "Consideraciones geomecánicas en el diseño de secciones tipo para un túnel Minero". Se ha realizado un análisis de los principales factores geológicos que intervienen en el comportamiento del macizo y una caracterización estructural e hidrológica del macizo que ha permitido definir las unidades geotécnicas. Posteriormente se ha simulado el estado tensional del túnel proyectado y se han valorado los parámetros geomecánicos característicos de los materiales a atravesar. Una vez definido los umbrales de deformación admisible asociada a la interacción terreno – sostenimiento, se han clasificado las secciones tipo de sostenimiento y se han valorado la resistencia y rigidez de los elementos de sostenimiento, comprobando su sostenimiento. (Cruzado, 2017). Presentó su Tesis para la obtención del Título de Ingeniero Geólogo, titulada: "Evaluación Geomecánica del Túnel de la Central Hidroeléctrica Potrero - San Marcos - Cajamarca". El túnel mencionado está construido sobre rocas areniscosas, la cuales presentan bastantes discontinuidades y flujos debido a las infiltraciones, lo cual define su comportamiento geomecánico y geotécnico para la construcción del túnel. Dichas variables al interactuar en conjunto producen inestabilidad en el túnel.



(Fabian, E & Guerrero, J, 2017). Presentaron su Tesis para la obtención del Título de Ingeniero de Minas, titulada: "Aplicación de la Geomecánica en los Frentes de Avances de Carbón Para Prevenir Accidentes por Desprendimientos de Rocas en la Cia. Minera Reyna Cristina – Ancash". Esta tesis determina la influencia de la aplicación de la geomecánica en los frentes de avances de carbón para prevenir accidentes por desprendimientos de rocas en la CIA. Minera Reyna Cristina.

(Lazaro, 2017). Presentó su Tesis para la obtención del Título de Ingeniero de Minas, titulada: "Geomecánica Aplicada al Diseño del Sostenimiento para Mejorar La

Estabilidad de las Labores Mineras En La Mina Caridad de La Compañía Minera Lincuna S.A. – 2017". Los trabajos se dieron inició con el acopio de información geomecánica básica en base a mapeos de caracterización geomecánica y estructural; así como también, el seguimiento de los diferentes elementos de sostenimiento utilizados en la mina, evaluando su performance y propiedades mecánicas. Una vez obtenida la información suficiente, se procedió a agrupar y clasificar los datos para obtener valores representativos para los diferentes tipos litológicos de la zona. Para la descripción de la calidad del macizo rocoso se usó el sistema de clasificación geomecánica RMR.

(Tigre, 2016). Presentó su Tesis para la obtención del Título de Ingeniero en Geología y Minas, titulada: "Estudio de las Características Geomecánicas del Macizo Rocoso en la Construcción del Túnel Papallacta del Proyecto Hidroeléctrico Quijos". En este trabajo se describen los parámetros geomecánicos de la zona en la que se encuentra el proyecto, la litología y las principales características geológicas-geotécnicas del macizo rocoso que se encuentren durante la excavación en el trazado del túnel Papallacta, utilizando los diferentes métodos de evaluación. La clasificación geomecánica nos permite determinar la

calidad de la roca y colocar el soporte adecuado para garantizar la estabilidad y su vida útil del túnel de conducción durante la etapa de operación, siendo de gran importancia para el proyecto.

(Villanueva, J. & Rodriguez, J., 2016). Presentaron su Tesis para la obtención del Título de Ingeniero de Minas, titulada: "Caracterización Geomecánica del Macizo Rocoso en la Ampliación del Túnel Exploratorio Karen Milagros, Región Amazonas, 2016". Se realizó la evaluación geomecánica de los macizos rocosos presentes en la zona de ampliación del túnel exploratorio Karen Milagros, mediante el logueo y ensayos de carga puntual y peso específico en testigos de rocas de sondajes diamantinos, cuyos datos analizados estadísticamente, ayudaron a identificar los dominios geomecánicos, así como elaborar cuatro secciones geomecánicas claves NW y un plano geomecánicos del nivel 2370, en base al sistema de clasificación RMR (1989) (Rock Mass Rating).

1.2. Formulación del problema

¿Con la evaluación geomecánica se propondrá el tipo de sostenimiento en el nivel 01 del túnel sulluscocha, Namora - Cajamarca?

1.3. Objetivos

1.3.1. Objetivo general

 Realizar la evaluación geomecánica de los macizos rocosos de las investigaciones existentes en el nivel 01 de la zona Sulluscocha, Namora – Cajamarca, teniendo en cuenta los parámetros RMR y el Índice Q de Barton.

1.3.2. Objetivos específicos

- Calcular el RMR
- Determinar el índice Q de Barton.
- Determinar el Diámetro equivalente.
- Analizar la estabilidad del túnel según RMR de Bieniawski
- Analizar la estabilidad del túnel según Q de Barton.
- Conocer el tipo de sostenimiento recomendado por Bieniawski y Barton para la construcción del nivel 01.

1.4. Hipótesis

Se realiza la evaluación geomecánica del macizo rocoso entonces se posibilita la diferenciación de los mismos de acuerdo a su comportamiento, lo que permitirá proponer el tipo de sostenimiento para la construcción del nivel 01 en Sulluscocha.

1.4.1. Hipótesis general

Las evaluaciones geomecánicas logran proponer el tipo de sostenimiento para ser viable la construcción del túnel sulluscocha, ya que contamos con una roca de carácter favorable para este proyecto.

1.4.2. Hipótesis específicas

- Clasificar macizo rocoso según el RMR de Bieniawski.
- Dar a conocer la calidad del macizo rocoso según Bieniawski y Barton.
- Cuantificar el índice Q de Barton.
- Entender el tipo de sostenimiento recomendado por Bieniawski y Barton.
- Proponer el tipo de sostenimiento del nivel 01.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación.

Según el tipo de investigación es aplicada porque tiene por objetivo la generación de conocimiento con aplicación directa y a mediano plazo en la sociedad o en el sector productivo. Este tipo de estudios presenta un gran valor agregado por la utilización del conocimiento que proviene de la investigación básica. (Lozada, 2014).

La metodología de la presente investigación es descriptiva, orientándose principalmente a la proposición de tipo de sostenimiento, con fines académicos y de investigación, donde se toma los datos y características de las estaciones, para así proponer el tipo de sostenimiento más adecuado según el RMR y Q de Barton.

2.2. Población y muestra.

2.2.1. Población

Macizo rocoso del cerro sulluscocha, el área de estudio se encuentra en la proyección UTM –WGS-84 entre las coordenadas:

- Vertice1: Este 1789357, Norte 9204960.
- Vertice2: Este 2791573, Norte 9204963
- Vertice3: Este 3791575, Norte 9203415
- Vértice 4: Este 4789359, Norte 9203412

2.2.2. Muestra

Cada una de las estaciones para la realización de la caracterización geomecánica de rocas. entre estas tenemos las siguientes:

Tabla 1

Coordenadas UTM – GWS 84 de las estaciones estudiadas.

ESTACION	COORDENADAS ESTE	COORDENADAS NORTE		
1	790645	-9204450		
2	790666	-9204462		
3	790699	-9204477		
4	790725	-9204496		

Fuente: Elaboración Propia

Figura 1. Estaciones del proyecto desde Google Earth.

2.3. Técnicas e instrumentos de recolección y análisis de datos

2.3.1. Técnicas e instrumentos de recolección de datos.

La técnica utilizada fue la observación y experimentación donde se estudió las discontinuidades, espaciado, rugosidad, persistencia, apertura, presencia de agua, resistencia a la compresión Uniaxial.

Para recoger esta información se utilizó los siguientes instrumentos:

Instrumento 1: Ficha de recolección de datos.

Instrumento 2: Tableros de madera A4.

Instrumento 3: Libretas de campo.

Instrumento 4: Picota de geólogo.

Instrumento 5: Tizas de color.

Instrumento 6: Flexómetro.

Instrumento 7: GPS.

2.3.2. Técnicas e instrumentos de análisis de datos.

Los datos recogidos en este estudio engloban el RMR y Q de Barton.

2.3.2.1. Procedimiento para cálculo de RMR.

Después de recopilar los datos de las estaciones estudiadas con los parámetros suficientes para valorar la calidad del macizo rocoso, seguidamente se calculó el índice RMR (Rock Mass Rating).

La clasificación se ha realizado en función a los siguientes parámetros:

- * Resistencia de la roca intacta.
- * Rock Quality Designation (RQD).
- **Espaciado entre juntas o discontinuidades (Js).**
- **!** Estado de las juntas (Jc).
- Agua subterránea.

Seguidamente se realizó la sumatoria de todos estos valores para obtener el índice RMR.

Se manejaron cinco clases para la valoración de la calidad del macizo rocoso:

- Clase I: Roca muy buena (81-100).
- Clase II: Roca buena (61-80).
- Clase III: Roca regular (41-60).
- Clase IV: Roca Mala (21-40).
- Clase V: Roca Muy Mala (<21).

A continuación, se va describir el procedimiento que se siguió para el cálculo del RMR, de las estaciones estudiadas.

a) Se realizó una estimación del índice manual de resistencia de la roca (ISRM, 1978), a la roca intacta con el martillo de geólogo. Se puede observar en la tabla grado de dureza de la roca tiene 7 valores para comparar los golpes de martillo con los MPa. Por ejemplo, si se quebrara la roca de dos o tres martillazos se estima entre 50 -100MPa, lo que nos da una valoración de (7) en la tabla RMR.

Tabla 2 Índice manual de resistencia de la roca (ISRM, 1978)

GRADO	CLASIFICACIÓN	IDENTIFICACIÓN	RANGO APROX. DE RESISTENCIA A LA COMPRECIÓN SIMPLE (MPa)
D-0	Roca extremadamente débil	El espécimen es identado por la uña del lado pulgar. Se desmorona con golpes	0.25 – 1.00
D – 1	Roca muy débil	firmes, con la punta del martillo de geólogo puede ser descascarillado	1.0 - 5.0
D-2	Roca débil	con un cuchillo de bolsillo. Se descascarilla con dificultad, con un cuchillo de bolsillo; identado poco profundo con golpes firmes con la punta del martillo de geólogo.	5.0 – 25.0
D-3	Roca moderadamente resistente	No se puede raspar o descascarillar con un cuchillo de bolsillo. El espécimen puede ser fracturado con un solo	25.0 – 50.0
D-4	Roca resistente	golpe firme de martillo. El espécimen requiere más de un golpe de martillo para que sea fracturado.	50.0 – 100.0
D – 5	Roca muy resistente	El espécimen es fracturado con muchos golpes de martillo.	100.0 – 250.0
D – 6	Roca extremadamente resistente	El martillo produce solamente el descascarillado de la muestra sonido metálico de la muestra.	>250.0

Fuente: Elaboración Propia.

- b) Se calculó el valor del RQD, a través de la siguiente formula:
 RQD=115-3.3*Jv. Palmstrom, 1975.
 - Donde Jv es el número total de discontinuidades por metro cubico.

 Por ejemplo, a un valor obtenido De Jv de 13 nos da como resultado un

 RQD de 72.1 (roca regular) se le establece un valor (13) en la tabla RMR.
- c) Se calculó la separación de diaclasas, Se cuenta cuantas diaclasas hay. Se saca un promedio entre las separaciones. Por ejemplo, si se tienen 5 diaclasas y sus separaciones son 0.2m, 0.5m, 0.4m, 0.6m, 0.3m; su promedio de separación de diaclasas seria calificación 0.4m se le da una calificación de (10).
- d) Se determinó el estado de las discontinuidades, se puede observar en la tabla estado de las discontinuidades se valora mediante cinco parámetros, evaluados individualmente.

Dichos parámetros son:

- Longitud de la discontinuidad: se mide lo largo de las discontinuidades y se saca un promedio. Por ejemplo, si nos diera el valor menor a 1m la tabla nos da un valor (1).
- Abertura: evalúa la separación entre las paredes de una discontinuidad y se saca un promedio. Por ejemplo, si la discontinuidad tiene una abertura mayor a 5mm, se le asignara el valor (0).

- Rugosidad: se puede dar la evaluación de la superficie mediante la observación y tacto. Por ejemplo, si la superficie es muy rugosa se le dará un valor de (6).
- Relleno: material que se encuentra dentro de la discontinuidad. Por ejemplo, si el material es un relleno duro, puntuará un valor de (2).
- Alteración: la roca en estudio se podría presentarse desde inalterada hasta descompuesta. Por ejemplo, si la roca esta moderadamente alterada nos arrojaría un valor (3).
- Una vez que se evaluó los cinco parámetros: longitud de la discontinuidad, abertura, rugosidad, relleno y alteración; se suman los valores obtenidos para el cálculo de la valoración global del estado de las discontinuidades para el RMR. Para los valores que hemos tomado como ejemplo será; 1+0+6+2+3= 12.
- e) Se evaluó la condición del agua freática: se realizará la valoración asociada de la presencia de agua o no. Por ejemplo, si fuera totalmente seco se da un valor (15) en la tabla RMR.
- f) Para el ejemplo se tiene se hizo la sumatoria de los valores 7+13+10+12+15= 57 dando una roca de calidad media.

2.3.2.2. Procedimiento para cálculo del índice Q de Barton.

Esta clasificación geomecánica permite estimar parámetros geotécnicos del macizo rocoso y lo que es más importante diseñar sostenimientos para túneles y otras excavaciones subterráneas. El índice Q varía entre 0,001 y 1000 clasificándose el macizo rocoso como:

- 0,00 y 0,01: Roca excepcionalmente mala.
- 0,01 y 0,1: Roca extremadamente mala.
- 0,1 y 1: Roca muy mala.
- 1 y 4: Roca mala.
- 4 y 10: Roca media.
- 10 y 40: Roca buena.
- 40 y 100: Roca muy buena.
- 100 y 400: Roca extremadamente buena.
- 400 y 1.000: Roca excepcionalmente buena.

Se calcula mediante 6 parámetros geotécnicos según la siguiente expresión:

$$Q = (RQD/Jn) \cdot (Jr/Ja) \cdot (Jw/SRF).$$

Los tres términos de la expresión de la Q de Barton representan lo siguiente:

(RQD/Jn): Tamaño de los bloques.

(Jr/Ja): la resistencia al corte entre los bloques.

(Jw/SRF): influencia del estado tensional.

A partir de la puntuación obtenida en cada bloque podremos conocer que término tiene mayor o menor peso en la evaluación del índice Q y por tanto su influencia en la calidad del macizo rocoso.

- RQD: Se trata de un índice para medir el grado de un macizo rocoso a
 partir de testigos de sondeo y puede determinarse de forma online según la
 fórmula RQD del enlace.
 - Se mide en porcentaje y los valores inferiores al 25% nos indican un macizo muy fracturado y de una calidad muy mala mientras que, en el otro extremo, los valores de RQD superiores al 90% nos indican un macizo rocoso nada o muy poco fracturado y por tanto de calidad excelente.
- Jn: Es el índice de diaclasado. De forma similar el RQD, nos indica el grado de fracturación del macizo rocoso. Presenta unos valores comprendidos entre 0,5 para rocas masivas sin diaclasar y un valor de 20 para rocas trituradas pasando por una, dos, tres, cuatro o más familias de discontinuidades.
- Jr: Es el índice de rugosidad de las discontinuidades o juntas. Contiene 9 clasificaciones desde A hasta J diferenciándose dos grupos: por un lado, las diaclasas que están en contacto o cuyas caras están en contacto ante un desplazamiento inferior a 10 cm y aquellas juntas que no estarán en contacto ante desplazamientos cortantes.

Los valores de Jr están comprendidos entre 4 y 0,5 y pueden distinguirse:

Diaclasas discontinuas – diaclasas onduladas, rugosas o irregulares –

diaclasas onduladas, lisas – diaclasas onduladas, perfectamente lisas-

diaclasas planas, rugosas o irregulares – diaclasas planas, lisas – diaclasas planas, perfectamente lisas –

diaclasas con relleno de minerales arcillosos de espesor suficiente que no permiten el contacto de las caras de la discontinuidad – diaclasas con relleno arenoso, gravoso o roca triturada de espesor suficiente para no permitir en contacto entre las caras de la discontinuidad.

Ja: Es el índice de alteración de las discontinuidades. Como su nombre indica mide las alteraciones de las juntas. Se distinguen tres grupos dependiendo de si están o no en contacto los planos de discontinuidad: a) contacto entre los planos de discontinuidad, b) contacto entre los planos de discontinuidad ante un desplazamiento cortante inferior a 10 cm y c) no existe contacto entre los planos de las juntas ante un desplazamiento.

Dentro de cada grupo hay varios campos en función del grado de alteración y presencia de minerales arcillosos cuyos valores extremos oscilan entre 0,75 para las discontinuidades cerradas, duras, sin reblandecimiento, impermeable, cuarzo y 20 para las discontinuidades abiertas con rellenos de arcilla gruesos.

 Jw: Factor de reducción por la presencia de agua. Se trata de un coeficiente que minora el índice Q en función de la entrada de agua a la excavación.
 Alcanza un valor máximo de 1,0 para excavaciones secas o pequeñas

surgencias y un valor mínimo de 0,05 para fluencias excepcionalmente altas o de presión elevada de carácter persistente (>10 kg/cm2).

- SRF: SRF significa Stress Reduction Factor en inglés y es un factor que evalúa el estado tensional del macizo rocoso. El valor fluctúa entre 0,5 y 400.

Se distinguen 4 grupos para evaluar el coeficiente SRF:

- zonas débiles que interceptan a la excavación pudiendo producirse desprendimientos de roca a medida que la excavación del túnel va avanzando.
- rocas competentes, problemas tensionales en las rocas.
- rocas deformables: flujo plástico de roca incompetente sometida a altas presiones litostáticas.
- rocas expansivas: actividad expansiva química dependiendo de la presencia de agua. (http://geotecniafacil.com).

A continuación, se va describir el procedimiento que se siguió para el cálculo del índice Q de Barton, de las presentes estaciones.

a) Se calculó el valor del RQD, a través de la siguiente formula:

RQD=115-3.3*Jv. Palmstrom, 1975.

Donde:

Jv es el número total de discontinuidades por metro cubico.

Por ejemplo, a un valor obtenido De Jv de 10 nos da como resultado un RQD de 82 (calidad media) según la tabla de parámetros de clasificación del sistema Q, Barton (2000).

- b) Se calculó el índice de diaclasado (Jn): verificando cuantas familias y diaclasas tiene. Por ejemplo, si tuviera tres familias el Jn daría un valor (9).
- c) Se verificó el índice de rugosidad (Jr): se verifico si las diaclasas son lisas, planas, rugosas. Por ejemplo, si la diaclasa fuera plana, lisa; el Jr nos da un valor (1).
- d) Se procedió a hallar el índice de alteración de las discontinuidades (Ja):
 son 3 parámetros en los que se puede presentar las alteraciones:
 - Contacto entre los planos de la discontinuidad.
 - Contacto entre los planos de la discontinuidad ante un desplazamiento cortante inferior a 10cm.
 - No se produce contacto entre los planos de la discontinuidad ante un desplazamiento cortante.

Por ejemplo, hemos considerado contacto entre los planos de la discontinuidad y a su vez dentro de este parámetro se escogió, planos inalterados, superficies ligeramente manchadas, arrojándonos un valor (1).

- e) Se halló el factor de reducción por presencia de agua (Jw): si hay presencia de agua o no. Por ejemplo, si las excavaciones son secas o pequeñas
 - afluencias de agua inferiores a 51/m, de forma localizada, nos arroja un valor (1).
- Se verifico las condiciones tensionales de la roca (SRF): si la roca está en zona débil, aislada, fracturada, etc. Para nuestro ejemplo se considera que la tiene múltiples zonas de fractura en roca competente (libre de arcillas), roca de contorno suelta (a cualquier profundidad). Nos dio como valor (7.5).
- g) Luego se procedió a remplazar todos los valores en la fórmula:

$$Q = (RQD/Jn) \cdot (Jr/Ja) \cdot (Jw/SRF).$$

Dándonos como resultado:

$$Q = (82/9) \cdot (1/1) \cdot (1/7.5).$$
$$= 1.2148.$$

El resultado nos dice que el valor de 1.2148 es índice de una roca es mala según Q de Barton.

h) Después de obtener el índice Q, se halló el diámetro equivalente y relación de sostenimiento de excavación con la fórmula:

$$De = \frac{Vano, diametro o altura de excavcion}{ESR}$$

Donde:

- Diámetro o altura de excavación: se va considerar 5 metros para una galería.
- ESR: Categoría de excavación.

El ESR para todas las estaciones se va escoger el de excavaciones mineras permanentes, túneles de conducción de agua para proyectos hidroeléctricos, galerías, túneles piloto y galería de avance; dándonos un valor (1.6) en la tabla de categoría de excavación.

Luego de obtener los resultados se continuo con el análisis de estabilidad según el RMR Y Q DE BARTON, y finalmente se propuso el sostenimiento según BIENAWSKY Y BARTON.

2.4. Procedimiento

a) Coordinaciones para la zona de estudio

Preparación de los instrumentos para la toma de datos mencionados.

Coordinaciones y permisos con el dueño de casa de dicha zona.

b) Toma de datos

Se realizó el levantamiento de la información de cada estación (observación, tacto, aplicación de tablas, golpes de martillo)

- c) Cálculo de RMR e Índice Q de Barton.
- d) Análisis de la estabilidad según el RMR e Índice Q de Barton.
- e) Propuesta de sostenimiento según RMR de Bieniawski y Q de Barton.

CAPÍTULO III. RESULTADOS

Los resultados encontrados se muestran a continuación para cada estación.

Estación 1

En esta estación, nos encontramos con rocas areniscas, se encuentra en una loma de pendiente moderada, pero sin complicaciones para llegar ahí.

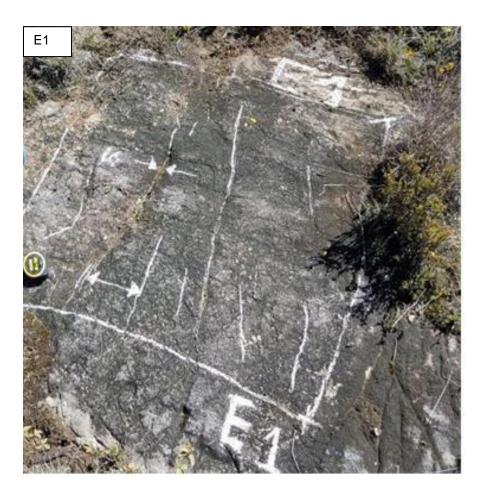


Figura 2: Estación 1.

Cálculo de los parámetros del RMR de Bieniawski en la estación 1.

Tabla 1

Resistencia de la matriz rocosa

Parámetro: Resistencia de la matriz rocosa (MPa)

Ensayos de carga puntual	>10	10-4	4-2	2-1	Compres	ión simple	(MPa)
Compresión simple	>250	250-100	100-50	50-25	25-5	5-1	1<
Puntuación	15	12	7	4	2	1	0

Fuente: (geologiaweb.com, 2018)

Cálculo de RQD

Formula RQD = 115 - (3.3) Jv

Dónde: Jv = número de fisuras por metro cúbico.

Jv = Jvx + Jvy + Jvz

N° Discontinuidades por eje en 1 metro.

Tabla 2

Numero de fisuras de la estación 1.

Jvx	Jvy	Jvz	Resultad	
7	5	1	13	

Fuente: Elaboración Propia.

RQD = 115 - (3.3)(13) = 72.1

Tabla 3

Rango de %RQD

Parámetro: RQD)				
RQD	90%-100%	75%-90%	50%-75%	25%-50%	<25%
Puntuación	20	17	13	6	3

Fuente: (geologiaweb.com, 2018)

Tabla 4

Promedio de separación entre diaclasas.

	E 1	E2	E3	E4	E5	E6	Promédio
ESPACIA	10	25	17	27	20	25	20.67
DO	cm	cm	cm	cm	cm	cm	cm

Fuente: Elaboración Propia

Tabla 5
Separación entre diaclasas

Parámetro: Separación entre diaclasas									
Separación entre diaclasas	>2m	0.6-2m	0.2-0.6m	0.06-0.2m	<0.06m				
Puntuación	20	15	10	8	5				

Fuente: (geologiaweb.com, 2018)

Tabla 6

Estado de las discontinuidades de la estación 1.

Parámetro: estado de las discontinuidades								
Longitud de la discontinuidad	<1m	1-3m	3-10m	10-20m	>20m			
Puntuación	6	4	2	1	0			
Abertura	Nada	<0.1mm	0.1-1mm	1-5mm	>5mm			
Puntuación	6	5	3	1	0			
Rugosidad	Muy rugosa	Rugosa	Ligeramente rugosa	Ondulada	Suave			
Puntuación	6	5	3	1	0			
Relleno	Ninguno	Relleno duro <5mm	Relleno duro >5mm	Relleno blando <5mm	Relleno blando >5mm			
Puntuación	6	4	2	2	0			
Alteración	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Descompuesta			
Puntuación	6	5	3	1	0			

Fuente: (geologiaweb.com, 2018).

Tabla 7

Agua subterránea o freática

Parámetro: agua subterránea o freática

Caudal por 10m del túnel	Nulo	10 litros/minuto	10-25 litros/minuto	25-125 litros/minuto	>125 litros/minuto
Relación: Presión de agua/tensión principal mayor	0	0-0.1	0.1-0.2	0.2-0.5	>0.5
Estado general	Seco	Ligeramente seco	Húmedo	Goteando	Agua fluyendo
Puntuación	15	10	7	4	0

Fuente: (geologiaweb.com, 2018)

Tabla 8
Suma de los estados de los parámetros del RMR de la estación 1.

Parámetros de clasificación	Valor de descripción	Puntuación		
Resistencia de la matriz	4-2 Mpa	7		
rocosa				
Calculo RQD	50%-75%	13		
Separación entre diaclasas	0.2-0.6 m	10		
Estado de las	Long. de la	23		
discontinuidades	discontinuidades, abertura,			
	rugosidad, relleno,			
	alteración.			
Agua freática	Seco	15		
Resultado		68		

Fuente: Elaboración propia.

Tabla 9

Clasificación de roca (suma de los parámetros)

Clasificación					
Clase	I	II	III	IV	V
Calidad	Muy Buena	Buena	Media	Mala	Muy Mala
Puntuación	100-81	80-61	60-41	40-21	<20

Fuente: (geologiaweb.com, 2018)

Cálculo de parámetros de Q de Barton en la estación 1.

Cálculo del índice Q para la Estación 1

$$RQD = 115 - (3.3)(13) = 72.1$$

Parámetros para el cálculo del índice Q.

1.	Calidad del testigo RQD (Rock Quality Designation)	RQD%
Α	Calidad muy mala	0-25
В	Calidad mala	25-50
С	Calidad media	50-75
D	Calidad buena	75-90
Е	Calidad excelente	90-100

Figura 3: Índice RQD. Fuente: (Pérez, 2012)

2	Índice de diaclasado	Jn
Α	Roca masiva sin diaclasar o con fisuración escasa	0,5-1
В	Una familia de diaclasamiento	2
С	Una familia y algunas disclasas aleatorias	3
D	Dos familias de diaclasas	4
Е	Dos familias de diaclasas y algunas aleatorias	6
F	Tres familias de diaclasas	9
G	Tres familias y algunas diaclasas aleatorias	12
н	Cuatro o más familias, diaclasas aleatorias, roca muy fracturada, roca en terrones	15
Ι	Roca triturada terrosa	20

Figura 4: Índice de Diaclasado. Fuente: (Pérez, 2012)

3	Índice de rugosidad de las discontinuidades	Jr
а	Contacto entre las caras de la discontinuidad	
b	Contacto entre las dos caras de la disco ante desplazamiento cortante inferior a 10	
Α	Diaclasas discontinuas	4
В	Diaclasas onduladas rugosas o irregulares	3
С	Diaclasas onduladas lisas	2
D	Diaclasas onduladas perfectamente lisas	1,5
E	Diaclasas planas, rugosas o irregulares	1,5
F	Diaclasas planas, lisas	1
G	Diaclasas planas, perfectamente lisas	0,5

Figura 5: Índice de rugosidad. Fuente: (Pérez, 2012).

	Índice de alteración de las discontinuidades	Φr aprox	Ja
а	Contacto entre los planos de la disco minerales de relleno intermedio)	ontinuidad	(sin
Α	Discontinuidad cerrada, dura, sin reblandecimiento, impermeable, cuarzo		0,8
В	Planos de discontinuidad inalterados, superficies ligeramente manchadas	25-35	1
С	Planos de discontinuidad ligeramente. Presentan minerales no reblandecidos, partículas arenosas, roca desintegrada libre de arcilla	25-30	2
D	Recubrimiento de arcillas limosas o arenosas. Fracción pequeña de arcilla no blanda	20-25	3
Е	Recubrimiento de arcillas blandas o de baja fricción, es decir, caolinita o mica. También clorita, talco, yeso, grafito, etc., y pequeñas cantidades de arcillas expansivas	`8-16	4

Figura 6: Alteración de las discontinuidades. Fuente: (Pérez, 2012)

5	Factor de reducción por la presencia de agua	Presión Kg/cm²	Jw
Α	Excavaciones secas o pequeñas afluencias de agua inferiores a 5l/m, de forma localizada	<1	1
В	Afluencia o presiones medias con lavado ocasional de los rellenos de las discontinuidades	1-1,5	0,7
С	Afluencia importante o presión alta en rocas competentes con discontinuidades sin rellenos	2,5-10	0,5
D	Afluencia importante o presión alta, produciéndose un lavado considerable de los rellenos de las diaclasas	2,5-10	0,33
E	Afluencia excepcionalmente alta o presión elevada en el momento de realizar voladuras, decreciendo con el tiempo	>10	0,2-0,1
F	Afluencia excepcionalmente alta o presión elevada de carácter persistente, sin disminución apreciable	>10	0,1- 0,05

Figura 7: Factor de presencia de Agua. Fuente: (Pérez, 2012).

6	Condiciones tensiónales de la roca (Stres Reduction Factor)	ss SR F
а	Las zonas débiles intersecan a la excavación, producirse desprendimientos de roca a medio excavación del túnel va avanzando	
Α	Múltiples zonas débiles, conteniendo arcilla o roca desintegrada químicamente, roca muy suelta (cualquier profundidad)	10
В	Zonas débiles aisladas, conteniendo arcilla o roca desintegrada químicamente (profundidad de la excavación ≤ 50m)	5
С	Zonas débiles aisladas, conteniendo arcilla o roca desintegrada químicamente (profundidad de la excavación > 50m)	2,5
D	Múltiples zonas de fracturas en roca competente (libres de arcillas) roca de contorno suelta (a cualquier profundidad)	7,5
Е	Zonas de fracturas aisladas en roca competente (libre de arcillas), (profundidad de la excavación ≤ 50m)	5
F	Zonas de fracturas aisladas en roca competente (libre de arcillas), (profundidad de la excavación > 50m)	2,5
G	Terreno suelto, diaclasas abiertas, fuertemente fracturado en terrones, etc. (a cualquier profundidad)	5

Figura 8: Condiciones Tensionales (a). Fuente: (Pérez, 2012).

b	Rocas competentes, problemas tensionales en las rocas	se/s ₁	se/sc	SRF
Н	Tensiones pequeñas cerca de la superficie, diaclasas abiertas	> 200	> 0,01	2,5
J	Tensiones medias, condiciones tensiónales favorables	200 - 10	0,01 - 0,3	1
K	Tensiones elevadas, estructura muy compacta. Normalmente favorable para la estabilidad, puede ser desfavorable para la estabilidad de los hastíales	10 - 5	0,3 - 0,4	0,5 - 2
L	Lajamiento moderado de la roca después de 1 hora en rocas masivas.	5-3	0,5 - 0,65	5-50
М	Lajamiento y estallido de la roca después de algunos minutos en rocas masivas.	3-2	0,6 -	50- 200
N	Estallidos violentos de la roca (deformación explosiva) y deformaciones dinámicas inmediatas en rocas masivas.	<2	<1	200- 400

Figura 9: Condiciones Tensionales (b). Fuente: (Pérez, 2012).

Índice Q en la estación 1

Tabla 10

Resultado de índice Q en la estación 1.

RQD	Jn	Jr	Ja	Jw	SRF	Q
72	9	3	0.8	1	0.5 - 2 = 1.5	20

Fuente: Elaboración propia.

$$Q = \frac{RQD}{J_n} \times \frac{J_r}{J_o} \times \frac{J_w}{SRF}$$

Figura 10: Formula Q de Barton.

Valoración de Q de Barton

Entre 0,001 y 0,01: roca excepcionalmente mala

0,01 y 0,1: roca extremadamente mala

0,1 y 1: roca muy mala

1 y 4: roca mala

4 y 10: roca media

10 y 40: roca buena

40 y 100: roca muy buena

100 y 400: roca extremadamente buena

400 y 1.000: roca excepcionalmente buena

Figura 11: Valoración de Q de Barton. Fuente: (CCente, 2015)

Diámetro Equivalente y Relación de Sostenimiento de Excavación.

De = vano, diámetro o altura de la excavación (m) ESR

Figura 12: Calculo de Diámetro Equivalente. Fuente: (CCente, 2015)

CATEGORÍA DE EXCAVACIÓN	ESR
Excavación mineras temporales	3-5
Excavaciones mineras permanentes, túneles de conducción de agua para proyectos hidroeléctricos (excluyendo tuberías forzadas de alta presión), galerías, túneles piloto y galerías de avance.	1.6
Cámaras de almacenamiento, plantas de tratamiento de agua, tún eles menores para carreteras o vías férreas, cámaras de equilibrio, tún eles de acceso.	1.3
Estaciones de energía, túneles grandes para carreteras y vías férreas, refugios de defensa civiles, intersecciones de portales.	1.0
Estaciones de energía nuclear subterráneas, estaciones ferroviarias, instalaciones deportivas y públicas, fábricas.	8.0

Figura 13: Calculo de ESR. Fuente: (CCente, 2015)

Características del túnel son:

- Altura 5 metros
- Tipo de túnel Galería Principal permanente

Aplicamos la fórmula:

$$De = \frac{5}{1.6} = 3.1$$

Estación 2

Figura 14: Estación 2

Cálculo de los parámetros de RMR de Bieniawski en la estación 2.

Tabla 11

Resistencia de la matriz rocosa

Parámetro: Resistencia de la matriz rocosa (MPa)							
Ensayos de carga puntual	>10	10-4	4-2	2-1	Compres	ión simple	(MPa)
Compresión simple	>250	250-100	100-50	50-25	25-5	5-1	1<
Puntuación	15	12	7	4	2	1	0

Cálculo de RQD

Formula RQD = 115 - (3.3) Jv

Dónde: Jv = número de fisuras por metro cúbico.

Jv = Jvx + Jvy + Jvz

N° Discontinuidades por eje en 1 metro.

Tabla 12

Numero de fisuras en la estación 2

Jvx	Jvy	Jvz	Resultado
6	6	2	14

Fuente: Elaboración Propia.

RQD = 115 - (3.3)(14) = 68.8

Tabla 13

Rango de %RQD

Parámetro: RQD								
RQD	90%-100%	75%-90%	50%-75%	25%-50%	<25%			
Puntuación	20	17	13	6	3			

Fuente: (geologiaweb.com, 2018)

Tabla 14

Promedio de separación entre diaclasas.

	E1	E2	E3	E4	E5	E6	Promédio
ESPACIA	10	13	14	18	12	14	13.5
DO	cm	cm	cm	cm	cm	cm	cm

Fuente: Elaboración Propia.

Tabla 15
Separación entre diaclasas

Parámetro: Separación entre diaclasasSeparación entre diaclasas>2m0.6-2m0.2-0.6m0.06-0.2m<0.06m</td>Puntuación20151085

Tabla 16

Estado de las discontinuidades de la estación 2.

Parámetro: estado de las discontinuidades						
Longitud de la discontinuidad	<1m	1-3m	3-10m	10-20m	>20m	
Puntuación	6	4	2	1	0	
Abertura	Nada	<0.1mm	0.1-1mm	1-5mm	>5mm	
Puntuación	6	5	3	1	0	
Rugosidad	Muy rugosa	Rugosa	Ligeramente rugosa	Ondulada	Suave	
Puntuación	6	5	3	1	0	
Relleno	Ninguno	Relleno duro <5mm	Relleno duro >5mm	Relleno blando <5mm	Relleno blando >5mm	
Puntuación	6	4	2	2	0	
Alteración	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Descompuesta	
Puntuación	6	5	3	1	0	

Tabla 17

Agua subterránea o freática

Parámetro: agua subterránea o freática

Caudal por 10m del túnel	Nulo	10 litros/minuto	10-25 litros/minuto	25-125 litros/minuto	>125 litros/minuto
Relación: Presión de agua/tensión principal mayor	0	0-0.1	0.1-0.2	0.2-0.5	>0.5
Estado general	Seco	Ligeramente seco	Húmedo	Goteando	Agua fluyendo
Puntuación	15	10	7	4	0

Tabla 18
Suma de los estados de los parámetros del RMR de la estación 2.

Valor de descripción	Puntuación
4-2 MPa	7
72.1%	13
0.2-0.6 m	8
Long. de la	23
discontinuidades, abertura,	
rugosidad, relleno,	
alteración.	
Seco	15
	66
	4-2 MPa 72.1% 0.2-0.6 m Long. de la discontinuidades, abertura, rugosidad, relleno, alteración.

Fuente: Elaboración propia.

Tabla 19

Clasificación de roca (suma de los parámetros)

Clasificación					
Clase	I	II	III	IV	V
Calidad	Muy Buena	Buena	Media	Mala	Muy Mala
Puntuación	100-81	80-61	60-41	40-21	<20

Cálculo de parámetros de Q de Barton en la estación 2.

Cálculo del índice Q para la Estación 2

$$RQD = 115 - (3.3)(14) = 68.8$$

Parámetros para el cálculo del índice Q.

1.	Calidad del testigo RQD (Rock Quality Designation)	RQD%
Α	Calidad muy mala	0-25
В	Calidad mala	25-50
С	Calidad media	50-75
D	Calidad buena	75-90
Е	Calidad excelente	90-100

Figura 15: Índice RQD. Fuente: (Pérez, 2012)

2	Índice de diaclasado	Jn
Α	Roca masiva sin diaclasar o con fisuración escasa	0,5-1
В	Una familia de diaclasamiento	2
С	Una familia y algunas disclasas aleatorias	3
D	Dos familias de diaclasas	4
Е	Dos familias de diaclasas y algunas aleatorias	6
F	Tres familias de diaclasas	9
G	Tres familias y algunas diaclasas aleatorias	12
Н	Cuatro o más familias, diaclasas aleatorias, roca muy fracturada, roca en terrones	15
Т	Roca triturada terrosa	20

Figura 16: Índice de Diaclasado. Fuente: (Pérez, 2012)

3	Índice de rugosidad de las discontinuidades	Jr
а	Contacto entre las caras de la discontinuidad	
b	Contacto entre las dos caras de la disce ante desplazamiento cortante inferior a 10	
Α	Diaclasas discontinuas	4
В	Diaclasas onduladas rugosas o irregulares	3
С	Diaclasas onduladas lisas	2
D	Diaclasas onduladas perfectamente lisas	1,5
Е	Diaclasas planas, rugosas o irregulares	1,5
F	Diaclasas planas, lisas	1
G	Diaclasas planas, perfectamente lisas	0,5

Figura 17: Índice de rugosidad. Fuente: (Pérez, 2012).

	Índice de alteración de las discontinuidades	Фr aprox	Ja
а	Contacto entre los planos de la disco minerales de relleno intermedio)	ontinuidad	(sin
Α	Discontinuidad cerrada, dura, sin reblandecimiento, impermeable, cuarzo		0,8
В	Planos de discontinuidad inalterados, superficies ligeramente manchadas	25-35	1
С	Planos de discontinuidad ligeramente. Presentan minerales no reblandecidos, partículas arenosas, roca desintegrada libre de arcilla	25-30	2
D	Recubrimiento de arcillas limosas o arenosas. Fracción pequeña de arcilla no blanda	20-25	3
E	Recubrimiento de arcillas blandas o de baja fricción, es decir, caolinita o mica. También clorita, talco, yeso, grafito, etc., y pequeñas cantidades de arcillas expansivas	`8-16	4

Figura 18: Alteración de las discontinuidades. Fuente: (Pérez, 2012)

5	Factor de reducción por la presencia de agua	Presión Kg/cm²	Jw
Α	Excavaciones secas o pequeñas afluencias de agua inferiores a 5l/m, de forma localizada	<1	1
В	Afluencia o presiones medias con lavado ocasional de los rellenos de las discontinuidades	1-1,5	0,7
С	Afluencia importante o presión alta en rocas competentes con discontinuidades sin rellenos	2,5-10	0,5
D	Afluencia importante o presión alta, produciéndose un lavado considerable de los rellenos de las diaclasas	2,5-10	0,33
Е	Afluencia excepcionalmente alta o presión elevada en el momento de realizar voladuras, decreciendo con el tiempo	>10	0,2-0,1
F	Afluencia excepcionalmente alta o presión elevada de carácter persistente, sin disminución apreciable	>10	0,1- 0,05

Figura 19: Factor de presencia de Agua. Fuente: (Pérez, 2012).

6	Condiciones tensiónales de la roca (Stres Reduction Factor)	ss SR F
а	Las zonas débiles intersecan a la excavación, producirse desprendimientos de roca a medio excavación del túnel va avanzando	
Α	Múltiples zonas débiles, conteniendo arcilla o roca desintegrada químicamente, roca muy suelta (cualquier profundidad)	10
В	Zonas débiles aisladas, conteniendo arcilla o roca desintegrada químicamente (profundidad de la excavación ≤ 50m)	5
С	Zonas débiles aisladas, conteniendo arcilla o roca desintegrada químicamente (profundidad de la excavación > 50m)	2,5
D	Múltiples zonas de fracturas en roca competente (libres de arcillas) roca de contorno suelta (a cualquier profundidad)	7,5
Е	Zonas de fracturas aisladas en roca competente (libre de arcillas), (profundidad de la excavación ≤ 50m)	5
F	Zonas de fracturas aisladas en roca competente (libre de arcillas), (profundidad de la excavación > 50m)	2,5
G	Terreno suelto, diaclasas abiertas, fuertemente fracturado en terrones, etc. (a cualquier profundidad)	5

Figura 20: Condiciones Tensionales (a). Fuente: (Pérez, 2012).

b	Rocas competentes, problemas tensionales en las rocas	se/s ₁	se/sc	SRF
Н	Tensiones pequeñas cerca de la superficie, diaclasas abiertas	> 200	> 0,01	2,5
J	Tensiones medias, condiciones tensiónales favorables	200 - 10	0,01 - 0,3	1
K	Tensiones elevadas, estructura muy compacta. Normalmente favorable para la estabilidad, puede ser desfavorable para la estabilidad de los hastíales	10 - 5	0,3 - 0,4	0,5 - 2
L	Lajamiento moderado de la roca después de 1 hora en rocas masivas.	5-3	0,5 - 0,65	5-50
М	Lajamiento y estallido de la roca después de algunos minutos en rocas masivas.	3 - 2	0,6 - 1	50- 200
N	Estallidos violentos de la roca (deformación explosiva) y deformaciones dinámicas inmediatas en rocas masivas.	<2	<1	200- 400

Figura 21: Condiciones Tensionales (b). Fuente: (Pérez, 2012).

Índice Q en la estación 2

Tabla 20

Resultado de índice Q en la estación 2

RQD	Jn	Jr	Ja	Jw	SRF	Q
69	9	3	0.8	1	0.5 - 2 = 1.5	19.17

Fuente: Elaboración propia.

$$Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_w}{SRF}$$

Figura 22: Formula Q de Barton.

Valoración de Q de Barton

Entre 0,001 y 0,01: roca excepcionalmente mala

0,01 y 0,1: roca extremadamente mala

0,1 y 1: roca muy mala

1 y 4: roca mala

4 y 10: roca media

10 y 40: roca buena

40 y 100: roca muy buena

100 y 400: roca extremadamente buena 400 y 1.000: roca excepcionalmente buena

Figura 23: Valoración de Q de Barton. Fuente: (CCente, 2015)

Diámetro Equivalente y Relación de Sostenimiento de Excavación.

De = <u>vano, diámetro o altura de la excavación (m)</u> ESR

Figura 24: Calculo de Diámetro Equivalente. Fuente: (CCente, 2015)

CATEGORÍA DE EXCAVACIÓN	ESR
Excavación mineras temporales	3-5
Excavaciones mineras permanentes, túneles de conducción de agua para proyectos hidro eléctricos (excluyendo tuberías forzadas de alta presión), galerías, túneles piloto y galer as de avance.	1.6
Cámaras de almacenamiento, plantas de tratamiento de agua, túneles menores para carreteras o vías férreas, cámaras de equilibrio, túneles de acceso.	1.3
Estaciones de energía, túneles grandes para carreteras y vías férreas, refugios de defensa civiles, intersecciones de portales.	1.0
Estaciones de energía nuclear subterráneas, estaciones ferroviarias, instalaciones deportivas y públicas, fábricas.	0.8

Figura 25: Calculo de ESR. Fuente: (CCente, 2015)

Características del túnel son:

- Altura 5 metros
- Tipo de túnel Galería Principal permanente

Aplicamos la fórmula:

$$De = \frac{5}{1.6} = 3.13$$

Estación 3

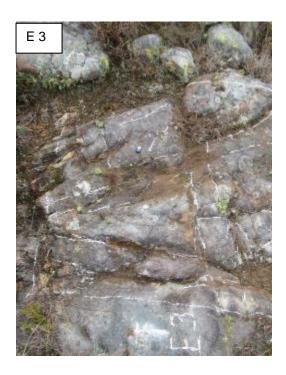


Figura 26: Estación 3

Cálculo de los parámetros del RMR de Bieniawski en la estación 3.

Tabla 21

Resistencia de la matriz rocosa

Parámetro: Resistencia de la matriz rocosa (MPa) Ensayos de carga puntual >10 10-4 4-2 2-1 Compresión simple (MPa) Compresión simple >250 250-100 100-50 50-25 25-5 5-1 1< Puntuación 15 12 4 2 1 0

Fuente: (geologiaweb.com, 2018)

Cálculo de RQD

Formula RQD = 115 - (3.3) Jv

Dónde: Jv = número de fisuras por metro cúbico.

Jv = Jvx + Jvy + Jvz

N° Discontinuidades por eje en 1 metro.

Tabla 22

Numero de fisuras de la estación 3

Jvx	Jvy	Jvz	Resultado
4	4	0	8

Fuente: Elaboración Propia.

$$RQD = 115 - (3.3)(8) = 88.6$$

Tabla 23

Rango de %RQD

Parámetro: RQD)				
RQD	90%-100%	75%-90%	50%-75%	25%-50%	<25%
Puntuación	20	17	13	6	3

Fuente: (geologiaweb.com, 2018)

Tabla 24

Promedio de separación entre diaclasas

	E 1	E2	E3	E4	E5	E6	Promédio
ESPACIA	14	23	19	24	26	16	20.3
DO	cm	cm	cm	cm	cm	cm	cm

Fuente: Elaboración Propia

Tabla 25
Separación entre diaclasas

Parámetro: Separación entre diaclasas					
Separación entre diaclasas	>2m	0.6-2m	0.2-0.6m	0.06-0.2m	<0.06m
Puntuación	20	15	10	8	5

Tabla 26

Estado de las discontinuidades de la estación 3

Parámetro: esta	ndo de las di	scontinuidades	5		
Longitud de la discontinuidad	<1m	1-3m	3-10m	10-20m	>20m
Puntuación	6	4	2	1	0
Abertura	Nada	<0.1mm	0.1-1mm	1-5mm	>5mm
Puntuación	6	5	3	1	0
Rugosidad	Muy rugosa	Rugosa	Ligeramente rugosa	Ondulada	Suave
Puntuación	6	5	3	1	0
Relleno	Ninguno	Relleno duro <5mm	Relleno duro >5mm	Relleno blando <5mm	Relleno blando >5mm
Puntuación	6	4	2	2	0
Alteración	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Descompuesta
Puntuación	6	5	3	1	0

Tabla 27

Agua subterránea o freática.

Parámetro: agua subterránea o freática Caudal por 10m del 10 10-25 25-125 >125 Nulo litros/minuto túnel litros/minuto litros/minuto litros/minuto Relación: Presión de 0 0 - 0.10.1 - 0.20.2 - 0.5>0.5 agua/tensión principal mayor Estado general Agua Seco Ligeramente Húmedo Goteando fluyendo seco Puntuación 15 10 7 4 0

Tabla 28
Suma de los estados de los parámetros RMR de la estación 3

Parámetros de clasificación	Valor de descripción	Puntuación
Resistencia de la matriz	4-2 MPa	7
rocosa		
Calculo RQD	75%-90%	17
Separación entre diaclasas	0.2-0.6 m	8
Estado de las	Long. de la	14
discontinuidades	discontinuidades, abertura,	
	rugosidad, relleno,	
	alteración.	
Agua freática	Seco	15
Resultado		61

Fuente: Elaboración propia.

Tabla 29

Clasificación de roca (suma de los parámetros).

Clasificación					
Clase	I	II	III	IV	V
Calidad	Muy Buena	Buena	Media	Mala	Muy Mala
Puntuación	100-81	80-61	60-41	40-21	<20

Cálculo de parámetros de Q de Barton en la estación 3.

Cálculo del índice Q para la Estación 3

RQD = 115 - (3.3)(8) = 88.6

Parámetros para el cálculo del Índice Q

1.	Calidad del testigo RQD (Rock Quality Designation)	RQD%
Α	Calidad muy mala	0-25
В	Calidad mala	25-50
С	Calidad media	50-75
D	Calidad buena	75-90
E	Calidad excelente	90-100

Figura 27: Índice RQD. Fuente: (Pérez, 2012)

2	Índice de diaclasado	Jn
Α	Roca masiva sin diaclasar o con fisuración escasa	0,5-1
В	Una familia de diaclasamiento	2
С	Una familia y algunas disclasas aleatorias	3
D	Dos familias de diaclasas	4
Е	Dos familias de diaclasas y algunas aleatorias	6
F	Tres familias de diaclasas	9
G	Tres familias y algunas diaclasas aleatorias	12
Н	Cuatro o más familias, diaclasas aleatorias, roca muy fracturada, roca en terrones	15
1	Roca triturada terrosa	20

Figura 28: Índice de Diaclasado. Fuente: (Pérez, 2012)

3	Índice de rugosidad de las discontinuidades	Jr
а	Contacto entre las caras de la discontinuidad	
b	Contacto entre las dos caras de la disci ante desplazamiento cortante inferior a 10	
Α	Diaclasas discontinuas	4
В	Diaclasas onduladas rugosas o irregulares	3
С	Diaclasas onduladas lisas	2
D	Diaclasas onduladas perfectamente lisas	1,5
Е	Diaclasas planas, rugosas o irregulares	1,5
F	Diaclasas planas, lisas	1
G	Diaclasas planas, perfectamente lisas	0,5

Figura 29: Índice de rugosidad. Fuente: (Pérez, 2012).

	Índice de alteración de las discontinuidades	Φr aprox	Ja
а	Contacto entre los planos de la disco minerales de relleno intermedio)	ontinuidad	(sin
Α	Discontinuidad cerrada, dura, sin reblandecimiento, impermeable, cuarzo		0,8
В	Planos de discontinuidad inalterados, superficies ligeramente manchadas	25-35	1
С	Planos de discontinuidad ligeramente. Presentan minerales no reblandecidos, partículas arenosas, roca desintegrada libre de arcilla	25-30	2
D	Recubrimiento de arcillas limosas o arenosas. Fracción pequeña de arcilla no blanda	20-25	3
Е	Recubrimiento de arcillas blandas o de baja fricción, es decir, caolinita o mica. También clorita, talco, yeso, grafito, etc., y pequeñas cantidades de arcillas expansivas	`8-16	4

Figura 30: Alteración de las discontinuidades. Fuente: (Pérez, 2012)

5	Factor de reducción por la presencia de agua	Presión Kg/cm²	Jw
Α	Excavaciones secas o pequeñas afluencias de agua inferiores a 5l/m, de forma localizada	<1	1
В	Afluencia o presiones medias con lavado ocasional de los rellenos de las discontinuidades	1-1,5	0,7
С	Afluencia importante o presión alta en rocas competentes con discontinuidades sin rellenos	2,5-10	0,5
D	Afluencia importante o presión alta, produciéndose un lavado considerable de los rellenos de las diaclasas	2,5-10	0,33
Е	Afluencia excepcionalmente alta o presión elevada en el momento de realizar voladuras, decreciendo con el tiempo	>10	0,2-0,1
F	Afluencia excepcionalmente alta o presión elevada de carácter persistente, sin disminución apreciable	>10	0,1- 0,05

Figura 31: Factor de presencia de Agua. Fuente: (Pérez, 2012).

6	Condiciones tensiónales de la roca (Stre Reduction Factor)	ss SR F
а	Las zonas débiles intersecan a la excavación, producirse desprendimientos de roca a medio excavación del túnel va avanzando	
Α	Múltiples zonas débiles, conteniendo arcilla o roca desintegrada químicamente, roca muy suelta (cualquier profundidad)	10
В	Zonas débiles aisladas, conteniendo arcilla o roca desintegrada químicamente (profundidad de la excavación ≤ 50m)	5
С	Zonas débiles aisladas, conteniendo arcilla o roca desintegrada químicamente (profundidad de la excavación > 50m)	2,5
D	Múltiples zonas de fracturas en roca competente (libres de arcillas) roca de contorno suelta (a cualquier profundidad)	7,5
Е	Zonas de fracturas aisladas en roca competente (libre de arcillas), (profundidad de la excavación ≤ 50m)	5
F	Zonas de fracturas aisladas en roca competente (libre de arcillas), (profundidad de la excavación > 50m)	2,5
G	Terreno suelto, diaclasas abiertas, fuertemente fracturado en terrones, etc. (a cualquier profundidad)	5

Figura 32: Condiciones Tensionales (a). Fuente: (Pérez, 2012).

b	Rocas competentes, problemas tensionales en las rocas	se/s ₁	se/sc	SRF
Н	Tensiones pequeñas cerca de la superficie, diaclasas abiertas	> 200	> 0,01	2,5
J	Tensiones medias, condiciones tensiónales favorables	200 - 10	0,01 - 0,3	1
K	Tensiones elevadas, estructura muy compacta. Normalmente favorable para la estabilidad, puede ser desfavorable para la estabilidad de los hastíales	10 - 5	0,3 - 0,4	0,5 - 2
L	Lajamiento moderado de la roca después de 1 hora en rocas masivas.	5-3	0,5 - 0,65	5-50
М	Lajamiento y estallido de la roca después de algunos minutos en rocas masivas.	3 - 2	0,6 - 1	50- 200
N	Estallidos violentos de la roca (deformación explosiva) y deformaciones dinámicas inmediatas en rocas masivas.	<2	<1	200- 400

Figura 33: Condiciones Tensionales (b). Fuente: (Pérez, 2012).

Índice Q en la estación 3

Tabla 30

Resultado de índice Q en la estación 3

RQD	Jn	Jr	Ja	Jw	SRF	Q
89	4	3	0.8	1	0.01-0.3=1	83.4

Fuente: Elaboración propia.

$$Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_W}{SRF}$$

Figura 34: Formula de Q de Barton

Valoración de Q de Barton

Entre 0,001 y 0,01: roca excepcionalmente mala

0,01 y 0,1: roca extremadamente mala

0,1 y 1: roca muy mala

1 y 4: roca mala

4 y 10: roca media

10 y 40: roca buena

40 y 100: roca muy buena

Figura 35: Valoración de Q de Barton. Fuente: (CCente, 2015)

100 y 400: roca extremadamente buena 400 y 1.000: roca excepcionalmente buena

1

Diámetro Equivalente y Relación de Sostenimiento de Excavación.

De = vano, diámetro o altura de la excavación (m) ESR

Figura 36: Calculo de Diámetro Equivalente. Fuente: (CCente, 2015)

CATEGORÍA DE EXCAVACIÓN	ESR
Excavación mineras temporales	3-5
Excavaciones mineras permanentes, túneles de conducción de agua para proyectos hidroeléctricos (excluyendo tuberías forzadas de alta presión), galerías, túneles piloto y galerías de avance.	
Cámaras de almacenamiento, plantas de tratamiento de agua, túneles menores para carreteras o vías férreas, cámaras de equilibrio, túneles de acceso.	1.3
Estaciones de energía, túneles grandes para carreteras y vías férreas, refugios de defensa civiles, intersecciones de portales.	1.0
Estaciones de energía nuclear subterráneas, estaciones ferroviarias, instalaciones deportivas y públicas, fábricas.	8.0

Figura 37: Calculo de ESR. Fuente: (CCente, 2015)

Características del túnel son:

- Altura 5 metros
- Tipo de túnel Galería Principal permanente

Aplicamos la fórmula:

$$De = \frac{5}{1.6} = 3.13$$

Estación 4

E 4

Figura 38: Estación 4.

Cálculo de los parámetros del RMR de Bieniawski de la estación 4.

Tabla 31

Resistencia de la matriz rocosa.

Parámetro: Resistencia de la matriz rocosa (MPa)								
Ensayos de carga puntual	>10	10-4	4-2	2-1	Compresi	ión simple	(MPa)	
Compresión simple	>250	250-100	100-50	50-25	25-5	5-1	1<	
Puntuación	15	12	7	4	2	1	0	

Fuente: (geologiaweb.com, 2018)

Cálculo de RQD

Formula RQD = 115 - (3.3) Jv

Dónde: Jv = número de fisuras por metro cúbico.

Jv = Jvx + Jvy + Jvz

N° Discontinuidades por eje en 1 metro.

Tabla 32

Numero de fisuras de la estación 4

Jvx	Jvy	Jvz	Resultado
6	4	2	12

Fuente: Elaboración Propia.

$$RQD = 115 - (3.3)(15) = 75.4$$

Tabla 33

Rango de %RQD

Parámetro: RQD RQD 90%-100% 75%-90% 50%-75% 25%-50% <25%</td> Puntuación 20 17 13 6 3

Fuente: (geologiaweb.com, 2018)

Tabla 34

Promedio de separación entre diaclasas.

	E 1	E2	E3	E4	E5	E6	promédio
ESPACIA	05	08	10	05	08	12	08
DO	cm	cm	cm	cm	cm	cm	cm

Fuente: Elaboración Propia

Tabla 35
Separación entre diaclasas

Parámetro: Separación entre diaclasas							
Separación entre diaclasas	>2m	0.6-2m	0.2-0.6m	0.06-0.2m	<0.06m		
Puntuación	20	15	10	8	5		

Tabla 36

Estado de las discontinuidades de la estación 4.

Parámetro: estado de las discontinuidades								
Longitud de la discontinuidad	<1m	1-3m	3-10m	10-20m	>20m			
Puntuación	6	4	2	1	0			
Abertura	Nada	<0.1mm	0.1-1mm	1-5mm	>5mm			
Puntuación	6	5	3	1	0			
Rugosidad	Muy rugosa	Rugosa	Ligeramente rugosa	Ondulada	Suave			
Puntuación	6	5	3	1	0			
Relleno	Ninguno	Relleno duro <5mm	Relleno duro >5mm	Relleno blando <5mm	Relleno blando >5mm			
Puntuación	6	4	2	2	0			
Alteración	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Descompuesta			
Puntuación	6	5	3	1	0			

Tabla 37 *Agua subterránea o freática*

Parámetro: agua subterránea o freática								
Caudal por 10m del túnel	Nulo	10 litros/minuto	10-25 litros/minuto	25-125 litros/minuto	>125 litros/minuto			
Relación: Presión de agua/tensión principal mayor	0	0-0.1	0.1-0.2	0.2-0.5	>0.5			
Estado general	Seco	Ligeramente seco	Húmedo	Goteando	Agua fluyendo			
Puntuación	15	10	7	4	0			

Tabla 38
Suma de los estados de los parámetros del RMR de la estación 4

Parámetros de	Valor de descripción	Puntuación
clasificación		
Resistencia de la matriz	2-1Mpa	4
rocosa		
Calculo RQD	75%-90%	17
Separación entre diaclasas	0.06-0.2 m	8
Estado de las	Long. de la	18
discontinuidades	discontinuidades, abertura,	
	rugosidad, relleno,	
	alteración.	
Agua freática	Seco	15
Resultado		62

Fuente: Elaboración propia.

Tabla 39

Clasificación de roca (suma de los parámetros).

Clasificación					
Clase	I	II	III	IV	V
Calidad	Muy Buena	Buena	Media	Mala	Muy Mala
Puntuación	100-81	80-61	60-41	40-21	<20

Fuente: (geologiaweb.com, 2018)

Cálculo de parámetros de Q de Barton en la estación 4.

Cálculo del índice Q para la Estación 4

RQD = 115 - (3.3)(12) = 75.4

Parámetros para el cálculo del índice Q.

1.	Calidad del testigo RQD (Rock Quality Designation)	RQD%
Α	Calidad muy mala	0-25
В	Calidad mala	25-50
С	Calidad media	50-75
D	Calidad buena	75-90
Е	Calidad excelente	90-100

Figura 39: Índice RQD. Fuente: (Pérez, 2012)

2	Índice de diaclasado	Jn
Α	Roca masiva sin diaclasar o con fisuración escasa	0,5-1
В	Una familia de diaclasamiento	2
С	Una familia y algunas disclasas aleatorias	3
D	Dos familias de diaclasas	4
E	Dos familias de diaclasas y algunas aleatorias	6
F	Tres familias de diaclasas	9
G	Tres familias y algunas diaclasas aleatorias	12
Н	Cuatro o más familias, diaclasas aleatorias, roca muy fracturada, roca en terrones	15
Ι	Roca triturada terrosa	20

Figura 40: Índice de Diaclasado. Fuente: (Pérez, 2012)

3	Índice de rugosidad de las discontinuidades	Jr
а	Contacto entre las caras de la discontinuidad	
b	Contacto entre las dos caras de la disci ante desplazamiento cortante inferior a 10	
Α	Diaclasas discontinuas	4
В	Diaclasas onduladas rugosas o irregulares	3
С	Diaclasas onduladas lisas	2
D	Diaclasas onduladas perfectamente lisas	1,5
E	Diaclasas planas, rugosas o irregulares	1,5
F	Diaclasas planas, lisas	1
G	Diaclasas planas, perfectamente lisas	0,5

Figura 41: Índice de rugosidad. Fuente: (Pérez, 2012).

	Índice de alteración de las discontinuidades	Φr aprox	Ja
а	Contacto entre los planos de la disco minerales de relleno intermedio)	ontinuidad	(sin
Α	Discontinuidad cerrada, dura, sin reblandecimiento, impermeable, cuarzo		0,8
В	Planos de discontinuidad inalterados, superficies ligeramente manchadas	25-35	1
С	Planos de discontinuidad ligeramente. Presentan minerales no reblandecidos, partículas arenosas, roca desintegrada libre de arcilla	25-30	2
D	Recubrimiento de arcillas limosas o arenosas. Fracción pequeña de arcilla no blanda	20-25	3
E	Recubrimiento de arcillas blandas o de baja fricción, es decir, caolinita o mica. También clorita, talco, yeso, grafito, etc., y pequeñas cantidades de arcillas expansivas	`8-16	4

Figura 42: Alteración de las discontinuidades. Fuente: (Pérez, 2012)

5	Factor de reducción por la presencia de agua	Presión Kg/cm²	Jw
Α	Excavaciones secas o pequeñas afluencias de agua inferiores a 5l/m, de forma localizada	<1	1
В	Afluencia o presiones medias con lavado ocasional de los rellenos de las discontinuidades	1-1,5	0,7
С	Afluencia importante o presión alta en rocas competentes con discontinuidades sin rellenos	2,5-10	0,5
D	Afluencia importante o presión alta, produciéndose un lavado considerable de los rellenos de las diaclasas	2,5-10	0,33
E	Afluencia excepcionalmente alta o presión elevada en el momento de realizar voladuras, decreciendo con el tiempo	>10	0,2-0,1
F	Afluencia excepcionalmente alta o presión elevada de carácter persistente, sin disminución apreciable	>10	0,1- 0,05

Figura 43: Factor de presencia de Agua. Fuente: (Pérez, 2012).

6	Condiciones tensiónales de la roca (Stres Reduction Factor)	ss SR F				
а	Las zonas débiles intersecan a la excavación, pudiendo producirse desprendimientos de roca a medida que la excavación del túnel va avanzando					
Α	Múltiples zonas débiles, conteniendo arcilla o roca desintegrada químicamente, roca muy suelta (cualquier profundidad)	10				
В	Zonas débiles aisladas, conteniendo arcilla o roca desintegrada químicamente (profundidad de la excavación ≤ 50m)	5				
С	Zonas débiles aisladas, conteniendo arcilla o roca desintegrada químicamente (profundidad de la excavación > 50m)	2,5				
D	Múltiples zonas de fracturas en roca competente (libres de arcillas) roca de contorno suelta (a cualquier profundidad)	7,5				
Е	Zonas de fracturas aisladas en roca competente (libre de arcillas), (profundidad de la excavación ≤ 50m)	5				
F	Zonas de fracturas aisladas en roca competente (libre de arcillas), (profundidad de la excavación > 50m)	2,5				
G	Terreno suelto, diaclasas abiertas, fuertemente fracturado en terrones, etc. (a cualquier profundidad)	5				

Figura 44: Condiciones Tensionales (a). Fuente: (Pérez, 2012).

b	Rocas competentes, problemas tensionales en las rocas	se/s ₁	se/sc	SRF
Н	Tensiones pequeñas cerca de la superficie, diaclasas abiertas	> 200	> 0,01	2,5
J	Tensiones medias, condiciones tensiónales favorables	200 - 10	0,01 - 0,3	1
K	Tensiones elevadas, estructura muy compacta. Normalmente favorable para la estabilidad, puede ser desfavorable para la estabilidad de los hastíales	10 - 5	0,3 - 0,4	0,5 - 2
L	Lajamiento moderado de la roca después de 1 hora en rocas masivas.	5-3	0,5 - 0,65	5-50
М	Lajamiento y estallido de la roca después de algunos minutos en rocas masivas.	3-2	0,6 -	50- 200
N	Estallidos violentos de la roca (deformación explosiva) y deformaciones dinámicas inmediatas en rocas masivas.	<2	<1	200- 400

Figura 45: Condiciones Tensionales (b). Fuente: (Pérez, 2012).

Índice Q en la estación 4

Tabla 40 Resultado de índice Q en la estación 4

RQD	Jn	Jr	Ja	Jw	SRF	Q
75	9	3	2	1	0.5 - 2 = 1.5	8.3

Fuente: Elaboración propia.

$$Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_w}{SRF}$$

Figura 46: Formula Q de Barton

Valoración de Q de Barton

Entre 0,001 y 0,01: roca excepcionalmente mala

0,01 y 0,1: roca extremadamente mala

0,1 y 1: roca muy mala

1 y 4: roca mala

4 y 10: roca media

10 y 40: roca buena

40 y 100: roca muy buena

100 y 400: roca extremadamente buena 400 y 1.000: roca excepcionalmente buena

Figura 47: Valoración de Q de Barton. Fuente: (CCente, 2015)

Diámetro Equivalente y Relación de Sostenimiento de Excavación.

De = vano, diámetro o altura de la excavación (m) ESR

Figura 48: Calculo de Diámetro Equivalente. Fuente: (CCente, 2015)

CATEGORÍA DE EXCAVACIÓN	ESR
Excavación mineras temporales	3-5
Excavaciones mineras permanentes, túneles de conducción de agua para proyectos hidro eléctricos (excluyendo tuberías forzadas de alta presión), galerías, túneles piloto y galerías de avance.	200000000000
Cámaras de almacenamiento, plantas de tratamiento de agua, túneles menores para carreteras o vías férreas, cámaras de equilibrio, túneles de acceso.	1.3
Estaciones de energía, túneles grandes para carreteras y vías férreas, refugios de defensa civiles, intersecciones de portales.	1.0
Estaciones de energía nuclear subterráneas, estaciones ferroviarias, instalaciones deportivas y públicas, fábricas.	8.0

Figura 49: Calculo de ESR. Fuente: (CCente, 2015)

Características del túnel son:

- Altura 5 metros
- Tipo de túnel Galería Principal permanente

Aplicamos la fórmula:

$$De = \frac{5}{1.6} = 3.13$$

Los resultados obtenidos se muestran a continuación en la tabla 43:

Tabla 41

Resultados RQD, RMR, INDICEQ de cada Estación.

Estaciones	RQD		RMR INDICE Q		De	
	Valor	Valor	Tipo de roca	VALOR	Tipo de roca	
1	72.1	68	Buena	20	Roca Buena	3.13
2	68.8	66	Buena	19.17	Roca Buena	3.13
3	88.6	61	Buena	83.4	Roca muy	3.13
					Buena	
4	75.4	62	Buena	8.3	Roca Media	3.13

Fuente: Elaboración Propia

Luego de obtener los resultados para cada estación vamos a continuar con el análisis de estabilidad según el RMR y RQD

Estabilidad de túnel según RMR.

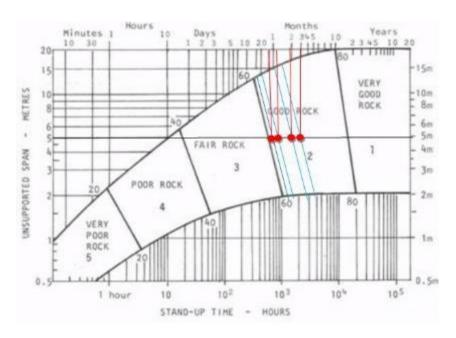
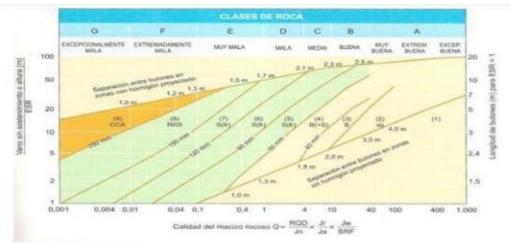


Figura 50: Estabilidad según RMR. Fuente: (Bagley, 2015)

En promedio de la calidad de la caracterización del macizo rocoso da un promedio de 64, lo que corresponde a una clase roca buena



				SOSTENIMIENTO			
CLASE	RMR	EXCAVACION	BULONES (Longitud	HORMIGON			
			en m)	PROYECTADO	CERCHAS METALICAS		
I Muy Buena	81-100	Sección completa (3m)	Ocacionalmente	No necesario	No necesarias		
II Buena	61-80	sección completa (1- 15m). Sostemiento terminado a 20m del avance.	Localamente en clave L=3m. Espaciados a 2.5 m con mallazo ocacional	50mm en clave donde sea necesario	No necesarias		
III Media	41-60	Avance y destroza (1.5- 3m en avance) sostenimiento empezado en el frente y terminado a 10 m del frente	Sistematicamente en clave y hastial. L=4m. Espaciados 1.5 a 2.0 m mallazo en clave	50-100mm en clave 30mm en hastiales	No necesarias		
IV Mala	21-40	Avance y destroza (1.0- 1.5m en avance) sostenimiento empezado simultaneamente con la excavacion y hasta 10 m del frente	Sistematicamente en clave y hastial. L=4 a 5 m espaciados a 10-15m. Con Mallazo.	100-150mm en clave 100mm en hastiales	Ligeras a medias espaciadas a 1.5m donde sea necesario		
V Muy Mala	1-20	Galerias multiples (0.5- 1.5 en avance)Sostenimiento simultaneo con la excavación. Hormigon proyectado inmediatamente después de la voladura	Sistematicamente en clave y hastial. L=5 a 6m espaciados a 1.0-1.5m. Con Mallazo bulonar la contraboveda.	150-200mm en clave 150mm en hastiales 50mm en el frente	Medias a pesadas espaciadas a 0.75m con forro y longarinas donde sea necesario contraboveda		

Figura 51: Recomendaciones para excavación y sostenimiento según Bieniawski. Fuente: (Arones, 2012)

Estabilidad de túnel según Q de Barton

- 1 Sin sostenimiento
- 2 Bulonado puntual, sb.
- 3 Bulonado sistemático, B
- 4 Bulonado sistemático con hormigón proyectado, 40-100 mm, B+S
- 5 Hormigón proyectado con fibras, 50-90 mm y bulonado S(fr) + B
- 6 Hormigón proyectado con fibras, 90-120 mm y bulonado S(fr) + B
- 7 Hormigón proyectado con fibras, 120-150 mm y bulonado S(fr) + B
- 8 Hormigón proyectado con fibras, >150 mm con bulonado y arcos armados reforzados con hormigón proyectado S(fr) + RRS +B
- 9 Revestimiento de hormigón CCA

Figura 52: Categorías de sostenimiento a partir del índice Q. Fuente: (Pérez, 2012)

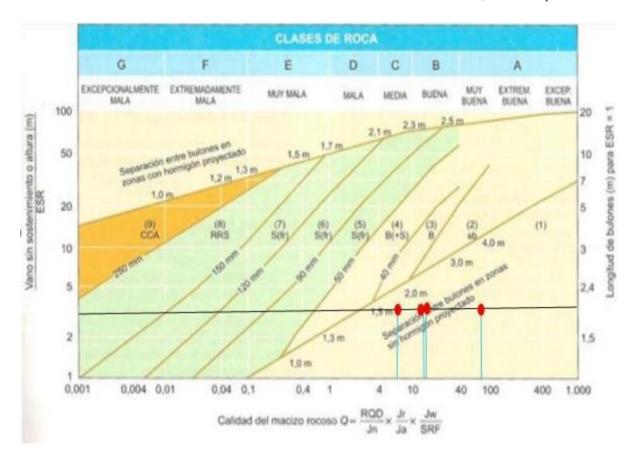


Figura 53: Tipo de sostenimiento en las 4 estaciones.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión

Algunas limitaciones que se tuvo, debido a que la zona es un poco alejada, no hay estudios realizados en esta zona, solo tenemos que ir a aplicar nuestros conocimientos in situ, guiándonos de estudios realizados en otros proyectos de túneles.

El estudio de la geomecánica de rocas realizada en el cerro sulluscocha se encontró mayoritariamente rocas areniscas, se hizo el estudio de las estaciones a lo largo de la zona de estudio como resultados nos indican:

Se calculó el RMR en las 4 estaciones, según las clasificaciones geomecánicas de Bieniawski, nos da roca Buena.

El índice Q de Barton indica que la roca es buena en las estaciones 1, 2; roca muy buena en la estación 3, y roca media en la estación 4.es decir tres zonificaciones dentro de una misma formación.

Se determinó el diámetro equivalente, considerando una altura de 5 metros para cada estación, y se analizó el SRF (categoría de excavación), donde se consideró la categoría de excavaciones mineras permanentes, túneles de conducción de agua para proyectos hidroeléctricos, galerías, túneles piloto y galería de avance dando un SRF de (1.6) para las estaciones.

A partir de los resultados obtenidos en la caracterización geomecánica del macizo rocoso en el RMR e Índice Q se propuso el tipo de sostenimiento para cada tipo de calidad de roca.

En la Figura 49: Estabilidad según RMR, al graficar las estaciones interpretamos que la construcción del túnel puede estar sin sostenimiento casi 3 meses.

Tipo de sostenimiento según Bieniawski, según la Figura 50: Recomendaciones para la excavación y sostenimiento según Bieniawski, acá tenemos que las cuatro estaciones son de calidad de roca buena lo que nos dice que; la excavación es de sección completa (1-15m), sostenimiento terminado a 20m del avance, el bulón localmente enclave en una longitud de 3m, espaciados a 2.5m con mallado opcional, hormigón proyectado a 50mm en clave donde sea necesario.

Tipo de sostenimiento según Índice Q, vamos a guiarnos de la Figura 51: Categorías de sostenimiento a partir del índice Q. Encontramos que todas las estaciones se encuentran en el rango 1 que nos dice, sin sostenimiento, entonces no será necesario ningún sostenimiento ni con pernos ni concreto armado en toda la galería, pero habrá zonas donde sea muy necesario ello y estos se recomiendan colocar los pernos fuera del área del concreto lanzado. La longitud para estos pernos dependerá del criterio y las discontinuidades que se vayan presentando.

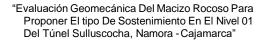
Por otro lado, este proyecto de investigación tiene muchas implicancias, desde un punto de vista académico, este trabajo de investigación va contribuir a llenar el vacío académico que existía cuando uno va al cerro al sulluscocha a hacer sus prácticas de campo, va aportar, desde un punto de vista teórico para generaciones futuras, y desde un punto de vista prácticos, las conclusiones de esta investigación permitirán tomar decisiones exactas ante cualquier duda.

4.2 Conclusiones

Se realizó la caracterización geomecánica del macizo rocoso dando como resultados, según Bieniawski para las 4 estaciones una calidad de roca Buena, por otro lado, el índice Q nos dice en las estaciones 1, 2 dio como resultado una roca buena; en la estación 3 nos dio una roca muy buena, y en la estación 4 una roca media.

Se calculó el RMR, dando como resultados: estación 1 (68), estación 2 (66), estación 3 (61) y la estación 4 (62).

Se determinó el índice Q de Barton, estación 1 (20), estación 2 (19.67), estación 3 (83.4) y en la estación 4 (8.3).


Se determinó el diámetro equivalente dando como resultado 3.13 para las zonas de estudio.

Se logró analizar la estabilidad del túnel según el RMR de Bieniawski en la Figura 50, se consideró una altura de 5 metros para las estaciones y con una intersección del RMR para cada estación 1 se interpretó que aproximadamente 3 meses puede estar sin sostenimiento, estación 2, aproximadamente 2 meses puede estar sin sostenimiento, estación 3 aproximadamente 1 mes sin sostenimiento y en la estación 4 un poco más de un mes sin sostenimiento.

Se analizó la estabilidad del túnel según Q de Barton en la figura 53, para las cuatro estaciones se interpretó que están dentro de la zona de separación entre bulones en zonas sin hormigón proyectado.

Se propuso el tipo de sostenimiento según Bieniawski y Barton:

El sostenimiento que proponemos guiándonos por Bieniawski, sostenimiento terminado a 20m del avance, los bulones localmente enclaven en una longitud de 3m, espaciados a 2.5m con mallado opcional, hormigón proyectado a 50mm en clave donde sea necesario.

El sostenimiento que proponemos guiándonos de Barton para las 4 estaciones estudiadas, es un sostenimiento de separación entre bulones en zonas sin hormigón proyectado.

REFERENCIAS

- Amilcar, T. G. (2017). http://repositorio.unsch.edu.pe. Obtenido de http://repositorio.unsch.edu.pe/bitstream/handle/UNSCH/2206/Tesis%20M789_Tac.pdf?sequenc e=1&isAllowed=y
- Arana, G. (19 de Octubre de 2019). *UNSAAC*. Obtenido de http://repositorio.unsaac.edu.pe/bitstream/handle/UNSAAC/4539/253T20190545_TC.pdf?sequen ce=1&isAllowed=y
- Arones, Y. I. (2012). http://cybertesis.uni.edu.pe. Obtenido de http://cybertesis.uni.edu.pe/bitstream/uni/1245/1/quispe_ay.pdf
- Bagley, A. (2015). https://slideplayer.com. Obtenido de https://slideplayer.com/slide/4129528/
- Calderon, M. (2018). http://repositorio.unap.edu.pe. Obtenido de http://repositorio.unap.edu.pe/handle/UNAP/8409
- CCente, B. C. (30 de Septiembre de 2015). https://es.slideshare.net. Obtenido de https://es.slideshare.net/billgonzalesingeniero/clasificacion-q-barton
- Ccocarahua, B. (2016). https://es.scribd.com. Obtenido de https://es.scribd.com/doc/299852194/GEOMECANICA-APLICADA-PARA-EL-SOSTENIMIENTO-DE-LA-MINA-RICOTONA-pdf
- Cruzado, P. (2017). http://repositorio.unc.edu.pe. Obtenido de http://repositorio.unc.edu.pe/bitstream/handle/UNC/1420/TESIS%20PA%C3%9AL%20CRUZAD O.pdf?sequence=1&isAllowed=y
- Fabian, E & Guerrero , J. (2017). http://repositorio.unh.edu.pe. Obtenido de http://repositorio.unh.edu.pe/bitstream/handle/UNH/1069/TP%20- %20UNH%20MIN.%200076.pdf?sequence=1&isAllowed=y
- Galeon.com. (2019). Galeon.com.
- geologiaweb.com. (27 de marzo de 2018). *geologiaweb.com*. Obtenido de https://geologiaweb.com/ingenieria-geologica/mecanica-de-rocas/clasificacion-rmr/
- Hergenrether, P. (7 de junio de 2017). http://digibuo.uniovi.es. Obtenido de http://digibuo.uniovi.es/dspace/bitstream/10651/43716/6/TFM_PabloDanielHergenretherPerez.pd f
- http://geotecniafacil.com. (s.f.). Obtenido de http://geotecniafacil.com/clasificacion-geomecanica-indice-q-barton/
- Lafuente, C., & Marín, A. (Diciembre de 2008). *Redalyc.* Obtenido de http://www.redalyc.org/pdf/206/20612981002.pdf
- Lazaro, J. (2017). http://repositorio.unasam.edu.pe. Obtenido de http://repositorio.unasam.edu.pe/handle/UNASAM/2439
- Mamani, N. (17 de JULIO de 2019). *PDFS.* Obtenido de https://pdfs.semanticscholar.org/b08a/b2f6eb1c1a682ea4315fe3598ea88999eb6e.pdf
- Minera, S. (12 de mayo de 2017). revistaseguridadminera.com. Obtenido de http://www.revistaseguridadminera.com/operaciones-mineras/estructuras-naturales-artificialessostenimiento/
- Pérez, D. P. (2012). http://www.bdigital.unal.edu.co. Obtenido de http://www.bdigital.unal.edu.co/6782/13/ANEXO_A._ASPECTOS_GENERALES_DEL_Q_DE_BA RTON Perez, D. (2012).pdf
- Quiles, L., & Herrera, L. (2011). *Dialnet.* Obtenido de https://dialnet.unirioja.es/descarga/articulo/3686006.pdf

"Evaluación Geomecánica Del Macizo Rocoso Para Proponer El tipo De Sostenimiento En El Nivel 01 Del Túnel Sulluscocha, Namora - Cajamarca"

- Quispe, k. (2018). https://repositorio.continental.edu.pe. Obtenido de https://repositorio.continental.edu.pe/bitstream/continental/4685/1/IV_FIN_110_TE_Quispe_Mato s_2018.pdf
- Rodríguez, B., Zafra, S., & Quintero, P. (2015). *Redalyc.* Obtenido de http://www.redalyc.org/html/5177/517751487013/
- Rondan, E. (2014). Repositorio UNI. Obtenido de http://repositorio.unsa.edu.pe/handle/UNSA/3924
- Tigre, M. (2016). http://dspace.espoch.edu.ec. Obtenido de http://dspace.espoch.edu.ec/handle/123456789/490
- Villanueva , J. & Rodriguez, J. (2016). http://repositorio.upn.edu.pe. Obtenido de http://repositorio.upn.edu.pe/bitstream/handle/11537/9941/Rodr%C3%ADguez%20D%C3%ADaz%20Jos%C3%A9%20Luis%20Villanueva%20S%C3%A1nchez%20Juan%20Carlos%20%28Tesis%20Parcial%29.pdf?sequence=1&isAllowed=y
- Yayama, J. (2006). Cybertesis. Obtenido de http://cybertesis.uni.edu.pe/handle/uni/11848

ANEXOS ANEXO N° 01: Tabla RMR.

	RESISTENCIA	ENSAYO DE CARGA PUNTUAL	> 10	10 - 4	4-2	2-1	03300000	PRESIG			
1	A LA MATRIZ ROCOSA (MPa)	COMPRESION SIMPLE	>250	250 - 100	100-50	50 - 25	25-5	5-1	<1		
	PUNT	TUACION	15	12	7	4	2	2 1	0		
2		RQD	90 % - 100 %	75 % - 90 %	50 % - 75 %	25 % - 50 %	<	25 %			
hires.	PUNTUACION		20	17	13	6		3			
3	SEPARACIO	N DE DIACLASA	> 2 m	0.6 - 2 m	0.2 - 0.6 m	0.06 - 0.2 m	<().06 m			
	PUNT	TUACION	20	15	10	8		5	- 9		
	89	LONG DE LA DISCONTINUIDAD	< 1 m	1 - 3 m	3 - 10 m	10 - 20 m	>	20 m			
	i i	PUNTUACION	6	4	2	- 1		0			
	DA	ABERTURA	Nada	< 0.1 mm	0.1 - 1.0 mm	1 - 5 mm	>	5 mm			
	N N	PUNTUACION	6	5	3	1		0			
	ESTADO DE LAS DISCONTINUIDADES	RUGOSIDAD	Muy Rugosa	Rugosa	Ligeramente Rugosa	Ondulada	S	uave			
4		DE LAS DIS	PUNTUACION	6	5	3	1		0		
			DELASI	DELAS	RELLENO	Ninguno	Relleno duro < 5 mm	Relleno duro > 5 mm	Relleno blando < 5 mm	100000000000000000000000000000000000000	o blan 5 mm
		PUNTUACION	6	4	2	2		0			
		ALTERACION	Inalterada	Ligeramente Alterada	Moderadamente alterada	Muy alterada	Desco	mpues	sta		
		PUNTUACION	6	5	3	1		0			
		CAUDAL POR 10m DE TUNEL	Nulo	< 10 litros/min	10 - 25 litros/min	25 - 125 litros/min	>125	litros/r	nin		
5	AGUA FREATICA	RELACION: PRESION DE AGUA/TENSION PRINCIPAL MAYOR	0	0 - 0.1	0.1 - 0.2	0.2 - 0.5	>	0.5			
		ESTADO GENERAL	Seco	Ligeramente húmedo	Húmedo	Goteando	Agua	fluyen	do		
	PUNT	TUACION	15	10	7	4		0			

10	CLASE	I	II	III	IV	V
CLASIFICACION	CALIDAD	Muy Buena	Buena	Media	Mala	Muy Mala
	PUNTUACION	100 - 81	80 - 61	60 - 41	40 - 21	< 20

ANEXO N° 02: Parámetros de Clasificación Q de Barton

Calidad del testigo RQD (Rock Quality Designation)	RQD%				
Calidad muy mala	0-25				
Calidad mala	25-50				
Calidad media	50-75				
Calidad buena	75-90				
Calidad excelente	90-100				
Notas: 1) Cuando se obtienen valores de RQD inferiores a 10 (incluyendo el 0), se toma un valor nominal de 10 para calcular el indice Q. II) Los intervalos de 5 unidades para el RQD, es decir					
	Quality Designation) Calidad muy maia Calidad mala Calidad media Calidad buena Calidad excelente Cuando se obtienen valores de RQD in 10 (incluyendo el 0), se foma un valor n 10 para calcular el indice Q.				

2	Indice de diaciasado	Jn
A	Roca masiva sin diaclasar o con fisuración escasa	0,5-1
œ	Una familia de diaclasamiento	2
С	Una familia y algunas disclasas aleaforias	3
	Dos familias de diaclasas	4
ш	Dos familias de diaciasas y algunas aleatorias	6
F	Tres familias de diadasas	9
Ø	Tres familias y algunas diaclasas aleaforias	12
н	Cuatro o más familias, diaclasas aleatorias, roca muy fracturada, roca en terrones	15
_	Roca triturada terrosa	20
Notas		
1	En intersecciones de túneles se utiliza la (3. Jn)	
П	En las bocas de los túneles, se utiliza la (2.Jn)	expresión

3	Indice de rugosidad de las discontinuidades	Jr
a b	Contacto entre las caras de la discontinuidad Contacto entre las dos caras de la disci ante desplazamiento contante inferior a 10	
A	Diaclasas discontinuas	4
В	Diaciasas onduladas rugosas o irregulares	3
C	Diaclasas onduladas lisas	2
D	Diaciasas onduladas perfectamente lisas	1,5
E	Diaclasas planas, rugosas o irregulares	1,5
F	Diaclasas planas, lisas	1
G	Diaciasas planas, perfectamente lisas	0,5
Notas	Las descripciones se refleren a caracterizaciones a pequeña escala y escala intermedia	
С	No existe contacto entre las cara: discontinuidad ante un desprendimiento o	
н	Zona que contiene minerales arcillosos con un espesor suficiente para impedir el contacto de las caras de la discontinuidad	-
J	Zona arenosa de gravas o triturada con un espesor sufliciente para impedir el contacto entre las dos caras de la discontinuidad	1

Not	as:							
10	Si el espacio de la principal familia de							
	discontinuidades es superior a 3m, se debe aumentar							
1	el Indice Jr en una unidad							
II)	En el caso de diaclasas planas perfectamente lisas							
	que presentan lineaciones y que dichas lineaciones							
1	estén orientadas según la dirección de mínima							
1	resistencia, se puede utilizar el valor de Jr =0.5							

	Índice de alteración de las discontinuidades	Φr aprox	ş
a	Contacto entre los planos de la disco minerales de relieno intermedio)	ontinuidad	(sin
A	Discontinuidad cerrada, dura, sin reblandecimiento, impermeable, cuarzo		0,8
В	Planos de discontinuidad inalterados, superficies ligeramente manchadas	25-35	4
С	Planos de discontinuidad ligeramente. Presentan minerales no reblandecidos, partículas arenosas, roca desintegrada libre de arcilia	25-30	2
D	Recubrimiento de arcillas limosas o arenosas. Fracción pequeña de arcilla no blanda	20-25	3
Е	Recubrimiento de arcilias blandas o de baja fricción, es decir, caolinita o mica. También dorita, talco, yeso, grafito, etc., y pequeñas cantidades de arcilias expansivas	°8-16	4
ь	Contacto entre los planos de la disconti des aplazamiento cortante inferior a 10 de relieno en pequeños espesores)		
F	Partículas arenosas roca desintegrada libre de arcillas, etc.	25-30	4
G	Fuertemente sobreconsolidadas con rellenos de minerales arciliosos no blandos (continuos, pero de espesores inferiores a 5mm)	16-24	6
н	Sobresonsolidación media a baja, con reblandecimiento, relienos de minerales arcillosos (continuos, pero con espesores inferiores a 5mm)	12-16	8
J	Rellenos de arcillas expansivas, es decir montmorillonita (continuos pero con espesores inferiores a 5mm). El valor de Ja depende del porcentaje de particulas con tamaños similares de las arcillas expansivas.	6-12	78- 12
С	No se produce contacto entre los discontinuidad ante un desplazami (relienos de minerales de gran espesor)		e la tante
K L M	Zonas o bandas de roca desintegrada o triturada y arcillas (ver clases G, Hay J para la descripción de las condiciones de las arcillas)	16-24	6, 8 o 8- 12
N	Zonas o bandas de arcilia limosas o arenosas , con pequeñas fracciones de arcilia no rebiandecibles	-	60
OPR	Zonas o bandas continuas de arcilla, de espesor grueso (ver clase G, H y J, para la descripción de las condiciones de arcilla)	16-24	10, 13 0 13 -

Los valores expresados para los parámetros Jr y Ja se aplican a las familias de diaciasas o discontinuidades que son menos favorables con relación a la estabilidad, tanto por la orientación de las mismas como por su resistencia al corte (esta resistencia puede evaluarse mediante la expresión:o= Tan¹(J/Ja)

5	Factor de reducción por la presencia de agua	Presión Kg/cm²	Jw
A	Excavaciones secas o pequeñas afluencias de agua inferiores a 5l/m, de forma localizada	٧.	1
В	Afluencia o presiones medias con lavado ocasional de los rellenos de las discontinuidades	1-1,5	0,7
С	Afluencia importante o presión alta en rocas competentes con discontinuidades sin relienos	2,5-10	0,5
D	Afluencia importante o presión atta, produciendose un lavado considerable de los relienos de las diaclasas	2,5-10	0,33
E	Afluencia excepcionalmente alta o presión elevada en el momento de realizar voladuras, decreciendo con el tiempo	>10	0,2-0,1
F	Afluencia excepcionalmente alta o presión elevada de carácter persistente, sin disminución apreciable	>10	0,1- 0,05

as:

Los valores de las clases C, D, E y F son meramente estimativos. Si se acometen medidas de drenaje, puede incrementarse el valor de Jw

No se ha considerado los problemas especiales derivados de la formación de hielo

6	Condiciones tensiónales de la roca (Stre	ss SR
	Reduction Factor)	F
	Las zonas débiles intersecan a la excavación,	
а	producirse desprendimientos de roca a medio	la que la
—	excavación del túnel va avanzando	
١	Múltiples zonas débiles, conteniendo arcilla o	10
A	roca desintegrada químicamente, roca muy	10
\vdash	suelta (cualquier profundidad)	
В	Zonas débiles aisladas, conteniendo arcilla o	
В	roca desintegrada quimicamente (profundidad	5
\vdash	de la excavación ≤ 50m) Zonas débiles alsladas, conteniendo arcilla o	
c	roca desintegrada quimicamente (profundidad	2.5
_	de la excavación > 50m)	2,0
-	Múltiples zonas de fracturas en roca	
D	competente (libres de arcillas) roca de	7.5
-	contomo suelta (a cualquier profundidad)	
	Zonas de fracturas alsladas en roca	
E	competente (libre de arcillas), (profundidad	5
\Box	de la excavación ≤ 50m)	
	Zonas de fracturas alsladas en roca	
F	competente (libre de arcillas), (profundidad	2,5
\vdash	de la excavación > 50m)	
I _	Terreno suelto, diaclasas abiertas,	_
G	fuertemente fracturado en terrones, etc. (a	D
	cualquier profundidad)	

	as:				
•	Los valores de las clases C, D, E y F son meramente estimativos. Si se acometen medidas de drenaje, puede				
	Incrementarse el valor de Jw				
	No se ha considerado los problemas especiales derivados de la				
-	formacion de hielo				
ь	Rocas competentes, problemas				
_	tensionales en las rocas	se/s ₁	se/sc	SRF	
I	Tensiones pequeñas cerca de la	> 200	٨	2.5	
	superficie, diaclasas abiertas	> 200	0,01	2,0	
_	Tensiones medias, condiciones	200 - 10	0,01 -	1	
	tensionales favorables		0,3	l	
K	Tensiones elevadas, estructura	10 - 5	0,3 -	0,5 - 2	
	muy compacta. Normalmente		0,4		
	favorable para la estabilidad,			l l	
	puede ser desfavorable para la			l l	
	estabilidad de los hastlales				
٢	Lajamiento moderado de la roca				
	después de 1 hora en rocas		0,5 -	l	
	masivas.	5-3	0,65	5-50	
М	Lajamiento y estallido de la roca	3-2	0,6 -	50-	
	después de algunos minutos en		1	200	
	rocas masivas.				
Ν	Estallidos violentos de la roca				
	(deformación explosiva) y			l	
	deformaciones dinâmicas			200-	
	inmediatas en rocas masivas.	<2	<1	400	
Not					
Il SI se comprueba la existencia de campos tensiónale					
	fuertemente anisotrópicos: cuando	5 £s1/s3£1	0, se dis	minuye s	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s si s1/s3	5 Es1/s3E1 3 > 10, se tor	0, se dis nará en v	minuye s rez de s1	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s si s1/s3 el valor 0,5 s1 donde s1 es la resi	5 £s1/s3£1 3 > 10, se tor istencia a co	0, se disi nará en v mpresión	minuye s rez de s1 n simple .	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s si s1/s3 el valor 0,5 s1 donde s1 es la resi s1 y s3 son las tensiones p	5 £s1/s3£1 3 > 10, se tor istencia a co principales	0, se disi narå en v mpresión mayor y	minuye s vez de s1 simple , menor	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s si s1/33 el valor 0,5 s1 donde s1 es la resi s1 y s3 son las tensiones p respectivamente, y s1 es la tensión	5 £s1/s3£1 5 > 10, se tor istencia a co principales in tangencial i	0, se disi narå en v mpresión mayor y	minuye s vez de s1 simple , menor	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is 1/s2 el valor 0,5 s 1 donde s1 es la res s1 y s3 son las tensiones ; respectivamente, y s1 es la tensión a partir de la teoría de la elasticida	o 5 £s1/s3£1 3 > 10, se tor istencia a co principales in tangencial i d)	0, se disa nará en v mpresión mayor y máxima (minuye s vez de si n simple , menor, estimada	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s s st/s3 el valor 0,5 s t donde s1 es la resi s1 y s3 son las tensiones p respectivamente, y s1 es la tensión a partir de la teoría de la elasticida En aquellos casos en que los que	o 5 Es1/s3E1 3 > 10, se tor istencia a co principales in tangencial in d)	0, se disi nará en v mpresión mayor y máxima (ad de la	minuye s vez de s1 simple , menor, estimada	
	fuertemente anisotrópicos: cuando el valor 0,5 s 1 donde s1 es is 1/83 el valor 0,5 s1 donde s1 es la resl s1 y s3 son las tensiones ; respectivamente, y s1 es la tensiór a partir de la teoría de la elasticida En aquellos caos en que los que túnel es menor que la anchura ·	o 5 £s1/s3£1 3 > 10, se tor istencia a co principales i n tangencial i d) la profundid de la excav	0, se distinarà en vi mpresión mayor y màxima (ad de la ación, se	minuye s vez de st simple ; menor, estimada clave de sugiere	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is s1/s2 el valor 0,5 s 1 donde s1 es la res s1 y s3 son las tensiones ; respectivamente, y s1 es la tensión a partir de la teoría de la elasticida En aquellos casos en que los que túnel es menor que la anchura aumentar el valor del factor SRF -	o 5 £s1/s3£1 3 > 10, se tor istencia a co principales i n tangencial i d) la profundid de la excav	0, se distinarà en vi mpresión mayor y màxima (ad de la ación, se	minuye s vez de st simple ; menor, estimada clave de sugiere	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is st/s2 el valor 0,5 s t donde s1 es la resi s1 y s3 son las tensiones ; respectivamente, y s1 es la tensión a partir de la teoría de la elasticida En aquellos casos en que los que túnel es menor que la anchura aumentar el valor del factor SRF clase H)	o 5 £s1/s3£1 s > 10, se tor istencia a co principales i n tangencial i d) la profundid de la excav entre 2,5 y 5	0, se distinarà en vi mpresión mayor y màxima (ad de la ación, se	minuye s vez de st simple ; menor, estimada clave de sugiere	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is 1/43 el valor 0,5 s t donde st es la res s1 y s3 son las tensiones ; respectivamente, y st es la tensior a partir de la teoria de la elasticida En aquellos casos en que los que túnel es menor que la anchura aumentar el valor del factor SRF clase H) Rocas deformables: flujo plástico	o 5 £s1/s3£1 s > 10, se tor istencia a co orincipales i n tangencial i d) la profundid de la excav entre 2,5 y 5 de la roca	0, se dis nará en v mpresión mayor y máxima (ad de la ación, se s unidade	minuye s vez de s1 simple , menor, estimada clave del sugiere s (véase	
	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is 1/s2 el valor 0,5 s 1 donde s1 es la res s1 y s3 son las tensiones ; respectivamente, y s1 es la tensión a partir de la teoría de la elasticida En aquellos casos en que los que túnel es menor que la anchura aumentar el valor del factor SRF clase H) Rocas deformables: flujo plástico incompetente sometida a altas	o 5 £s1/s3£1 s > 10, se tor istencia a co orincipales i n tangencial i d) la profundid de la excav entre 2,5 y 5 de la roca	0, se distinarà en vi mpresión mayor y màxima (ad de la ación, se	minuye s vez de s1 simple , menor, estimada clave del sugiere	
III	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is st/s2 el valor 0,5 s t donde s1 es la resis 1 y s3 son las tensiones prespectivamente, y s1 es la tensión a partir de la teoria de la elasticida En aquellos casos en que los que túnel es menor que la anchura aumentar el valor del factor SRF- ciase H) Rocas deformables: flujo plástico incompetente sometida a altas litostáticas.	o 5 £s1/s3£1 s > 10, se tor istencia a co orincipales i n tangencial i d) la profundid de la excav entre 2,5 y 5 de la roca	0, se dis- nará en v mpresión mayor y máxima (ad de la ación, se sunidade se/sc	minuye s yez de s1 simple , menor, estimada clave dei s sugiere s (véase	
III C)	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is 1/43 el valor 0,5 s t donde st es la res s1 y s3 son las tensiones ; respectivamente, y st es la tensiora partir de la teoria de la elasticida En aquellos casos en que los que túnel es menor que la anchura aumentar el valor del factor SRF clase H) Rocas deformables: flujo plástico incompetente sometida a altas titostaticas.	o 5 £s1/s3£1 s > 10, se tor istencia a co orincipales i n tangencial i d) la profundid de la excav entre 2,5 y 5 de la roca	0, se dis nará en v mpresión mayor y máxima (ad de la ación, se s unidade	minuye s vez de s1 simple ; menor, estimada clave de s sugiere s (véase	
III	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is st/s2 el valor 0,5 s t donde s1 es la resis 1 y s3 son las tensiones prespectivamente, y s1 es la tensión a partir de la teoria de la elasticida En aquellos casos en que los que túnel es menor que la anchura aumentar el valor del factor SRF- ciase H) Rocas deformables: flujo plástico incompetente sometida a altas litostáticas.	o 5 £s1/s3£1 s > 10, se tor istencia a co orincipales i n tangencial i d) la profundid de la excav entre 2,5 y 5 de la roca	0, se dis- nará en v mpresión mayor y máxima (ad de la ación, se sunidade se/sc	minuye s yez de s1 simple ; menor, estimada clave de s sugiere s (véase	
III C) O P	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is 1/43 el valor 0,5 s 1 donde s1 es la res s1 y s3 son las tensiones ; respectivamente, y s1 es la tensión a partir de la teoría de la elasticida En aquellos casos en que los que utinel es menor que la anchura aumentar el valor del factor SRF - clase H) Rocas deformables: flujo plástico incompetente sometida a altas iltostáticas. Presión de deformación suave Presión de deformación intensa a:	o 5 Es1/s3E1 i > 10, se tor istencia a co principales in tangencial in d) la profundid de la excav entre 2,5 y 5 de la roca presiones	o, se disinarà en vimpresiònimmento y mayor y maxima (i ad de la ación, se si unidade se/sc 1-5 > 5	minuye s vez de s1 simple s menor, estimada ciave de s sugiere s (véase SRF 5 - 10	
III C) O	fuertemente anisotrópicos: cuando el valor 0,5 s hasta 0,75 s is st/s2 el valor 0,5 s t donde s1 es la resis 1 y s3 son las tensiones ; respectivamente, y s1 es la tensión a partir de la teoria de la elasticida En aquellos casos en que los que túnel es menor que la anchura aumentar el valor del factor SRF- ciase H) Rocas deformables: flujo plástico incompetente sometida a altas litostáticas. Presión de deformación suave Presión de deformación intensa	o 5 Es1/s3E1 3 > 10, se tor istencia a co principales in 1 tangencial i d) la profundid de la excav entre 2,5 y 5 de la roca presiones	o, se disinará en vimpresión mayor y máxima (i ad de la ación, se sunidade se/sc 1-5 > 5	minuye sez de sta simple ; menor, menor, menor, menor, estimada clave de se sugiere se (véase SRF 5 - 10 10 20 se suelen	

d	Rocas expansivas: actividad expansiva química dependir la presencia de agua	endo de
R	Presión de expansión suave	5 -
93	Presión de expansión intensa	10 - 15
	$Q = \frac{RQD}{JN} \cdot \frac{Jr}{Ja} \frac{Jw}{SRF}$	

de la roca en g/cm3 (Singh, 1993.)

mediante la expresión: q(Mpa)=7 y Q13, donde y es la densidad

ANEXO N° 03: FOTOS EN EL AREA DE ESTUDIOS FOTOS

Foto 1. Llegando con el asesor al sitio del Proyecto.



Foto 2. Vista de la posible entrada del túnel

Foto 3. Llegando al sitio de estudio.

Foto 4. Vista desde la parte superior de la posible entrada del túnel.

Foto 5. Vista de la posible entrada del túnel.

Foto 6. Revisando la coordenada con ayuda del GPS.

Foto 7. Tomando nota del punto GPS.

Foto 8. Viendo la calidad de roca con la picota geológica en la estación.

Foto 9. Llegando a la estación para hacer la prueba de compresión simple.

Foto 10. Revisando la compresión simple en la estación.

Foto 11. Revisando las coordenadas con el GPS en la estación.

Foto 12. Acondicionamiento de estación.

Foto 13. Revisando la compresión simple en la estación.

Foto 14. Tomando nota de las coordenadas con ayuda del GPS.

Foto 15. Revisando el rumbo y buzamiento.

Foto 16. Revisando el rumbo y buzamiento con la brújula en una estación.

Foto 16. Haciendo las mediciones de las diaclasas

Foto 17. Medición de las diaclasas

Foto 18. Comprobando los datos de rumbo y buzamiento con el asesor

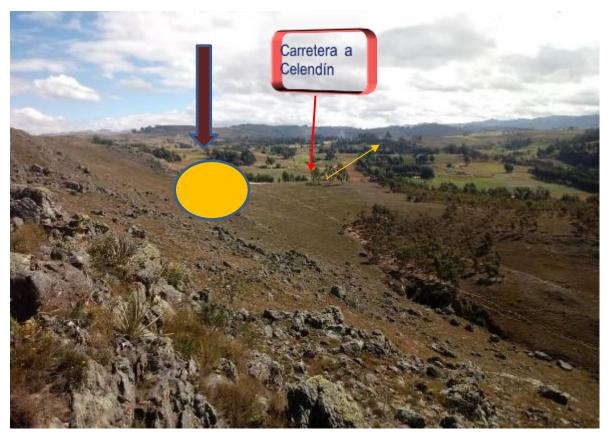


Foto 19. Vista de posible salida del túnel.