

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Industrial

"DISEÑO DE UNA DISTRIBUCIÓN DE PLANTA PARA INCREMENTAR LOS NIVELES DE PRODUCTIVIDAD EN LA EMPRESA INVERSIONES CIMAS E. I. R. L."

Tesis para optar el título profesional de:

Ingeniera Industrial

Autora:

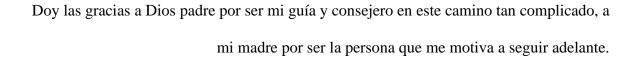
Ingrid Nicol Mendo Alvarez

Asesor:

Mg. Ing. Fanny Emelina Piedra Cabanillas

Cajamarca - Perú

2021



DEDICATORIA

Dedico este trabajo a Dios padre que me guía en mi camino para tomar decisiones correctas, y a mi familia por brindarme su apoyo en todo momento, especialmente a mi mamita, mi cuycito, y a mi amorcito Efraín, a quien amo 21 millones de infinitos, por ser mi fuerza para lograr mis objetivos.

AGRADECIMIENTO

Tabla de contenidos

DEI	DICATORIA	1
AG	RADECIMIENTO	2
ÍND	DICE DE CONTENIDOS	3
ÍND	DICE DE TABLAS	4
ÍND	DICE DE FIGURAS	5
	DICE DE ECUACIONES	
	PÍTULO I. INTRODUCCIÓN	
1.1.		
1.1.		
1.3.		
1.4.	3	
CAl	PÍTULO II. METODOLOGÍA	16
2.1	Tipo de investigación	16
2.2	Población y muestra (Materiales, instrumentos y métodos)	17
2.3	Técnicas e instrumentos de recolección de datos	17
2.4	Procesamiento de datos	22
2.5	Procedimiento de desarrollo de investigación	24
2.6	Operacionalización de variables	29
CAl	PÍTULO III. RESULTADOS	30
3.1	Información General de la empresa	30
3.2	Diagnóstico general del área de estudio	32
3.3	Diagnóstico de Distribución de planta	
3.4	Diagnóstico de Productividad	
3.5	Resultados del Diagnóstico Actual	
3.6	Diseño de la propuesta de distribución	
3.7	Análisis de las oportunidades de mejora alcanzadas	
3.8	Resultados tras la propuesta de diseño de distribución	
3.9	Resultados del análisis económico financiero	116
	PÍTULO IV. DISCUSIÓN Y CONCLUSIONES	
	Discusión	
4.2	Conclusiones	125
REI	FERENCIAS	127

ANEXOS	129
ÍNDICE DE TABLAS	17
Tabla 1 Técnicas de Recolección de datos	1/
Tabla 2 Detalle de Técnicas e Instrumentos de Recolección de datos	18
Tabla 4 Matriz de Operacionalización de variables	29
Tabla 6 Matriz multi-votación de problemas en la productividad de la empresa	33
Tabla 7 Zonificación por áreas	41
Tabla 8 Resumen del cuestionario de las relaciones cualitativas de adyacencia	48
Tabla 9 Productos más vendidos 2014-2018	54
Tabla 10 Resultado del Diagnóstico Actual	71
Tabla 11 Rutas de las familias de productos	74
Tabla 12 Alternativas de ruteo óptimos	74
Tabla 13 Cuadro resumen de ruteos óptimos	75
Tabla 14 Hoja de trabajo de relaciones de actividades	79
Tabla 15 Superficie total requerida	84
Tabla 16 Resultado tras la propuesta de diseño de distribución de planta	107
Tabla 17 Plan de Capacitación de la Estrategia 5'S y Prevención de Riesgos	115
Tabla 18 Costo por materiales y herramientas	116
Tabla 19 Costo de mano de obra por procedimientos de distribución	116
Tabla 20 Costos por incurrir en captaciones	117
Tabla 21 Costo de transportar el material	117
Tabla 22 Costos por dejar de producir	117
Tabla 23 Costo total anual de implementar la propuesta de distribución	118
Tabla 24 Costo total anual por no implementar la propuesta de distribución	118
Tabla 25 Flujo de caja neto	119
Tabla 26 Indicadores Financieros	119

ÍNDICE DE FIGURAS

Figura 1 Procedimiento de desarrollo de investigación	28
Figura 2 Organigrama de la empresa	30
Figura 3 Cadena de Suministros de la empresa Inversiones Cimas E.I.R.L	31
Figura 4 Diagrama de Ishikawa - Bajos niveles de Productividad	32
Figura 5 Diagrama de Pareto Factores que afectan la Productividad	34
Figura 6 Diagrama de Ishikawa – Inadecuada Distribución de Planta	35
Figura 7 Frecuencia de ocurrencia de problema en la distribución de planta	36
Figura 8 Plano de la ubicación de la planta Actual	38
Figura 9 Distribución de Planta actual del primer piso	39
Figura 10 Distribución de Planta actual del segundo piso	40
Figura 11 Procedimiento del Índice de Desempeño del Layout (IDL)	43
Figura 12 Matriz Cuadrada orientada de las intensidades de transporte parciales	46
Figura 13 Matriz T	46
Figura 14 Matriz R	49
Figura 15 Matriz X	50
Figura 16 Diagrama de Pareto según el valor monetario por producto	54
Figura 17 Diagrama General del Proceso de producción	56
Figura 18 Gráfico de Procesos de la obtención de Cajas de madera	58
Figura 19 Gráfico de Procesos de la obtención de Estacas	59
Figura 20 Gráfico de Procesos de la obtención de Parihuelas	60
Figura 21 Diagrama de recorrido de las familias 1,2,4,7,8,10 11	62
Figura 22 Planeamiento Sistemático de la Distribución (PSD)	72
Figura 23 Análisis P-Q	73
Figura 24 Ruteo óptimo 1	75

Figura 25 Ruteo óptimo 2	75
Figura 26 Ruteo óptimo 3	75
Figura 27 Tabla de proceso de columnas múltiples – Ruteo Óptimo 1	76
Figura 28 Tabla de proceso de columnas múltiples – Ruteo Óptimo 2	76
Figura 29 Tabla de proceso de columnas múltiples – Ruteo Óptimo 3	77
Figura 30 Diagrama de relación de actividades	78
Figura 31 Diagrama Adimensional de Bloques Alternativa 1	81
Figura 32 Diagrama Adimensional de Bloques Alternativa 2	82
Figura 33 Diagrama Adimensional de Bloques Alternativa 3	83
Figura 34 Alternativa de Distribución 1	87
Figura 35 Alternativa de distribución 2	88
Figura 36 Alternativa de Distribución 3	89
Figura 37 Evaluación de las alternativas de distribución	90
Figura 38 Distribución de planta propuesta del primer piso	94
Figura 39 Distribución de Planta Propuesto del segundo piso	95
Figura 40 Gráfico de Procesos de la obtención de Cajas tras la propuesta	97
Figura 41 Gráfico de Procesos de la obtención de Estacas tras la propuesta	98
Figura 42 Gráfico de Procesos de la obtención de parihuelas tras la propuesta	99
Figura 43 Diagrama de recorrido de las familias 1,2,4,7,8,10 y 11 tras la propuesta	100
Figura 44 Estrategias de las 5'S	108
Figura 45 Seiri – Clasificar	110
Figura 46 Seiton - Orden	111

ÍNDICE DE ECUACIONES

Ecuación 1 Índice del desempeño del Layout (IDL)	50
Ecuación 2 Índice de flujo operativo	51
Ecuación 3 Índice de las relaciones subjetivas	52
Ecuación 4 Indicador de Producción	63
Ecuación 5 Producción al día de la Familia 1	63
Ecuación 6 Producción al día de la Familia 2	64
Ecuación 7 Producción al día de la Familia 4	64
Ecuación 8 Indicador de Productividad	64
Ecuación 9 Productividad de Mano de Obra	65
Ecuación 10 Productividad Mano de obra Familia 1	65
Ecuación 11 Productividad Mano de obra Familia 2	66
Ecuación 12 Productividad Mano de obra Familia 3	66
Ecuación 13 Indicador de Actividades Productivas	67
Ecuación 14 Actividades Productivas Familia 1	67
Ecuación 15 Actividades Productivas Familia 2	67
Ecuación 16 Actividades Productivas Familia 4	68
Ecuación 17 Indicador de Actividades Improductivas	68
Ecuación 18 Actividades Improductivas Familia 1	69
Ecuación 19 Actividades Improductivas Familia 2	69
Ecuación 20 Actividades Improductivas Familia 4	70
Ecuación 21 Cantidad de relaciones entre dos centros de trabajo	77
Ecuación 22 Producción al día de la Familia 1	101
Ecuación 23 Producción al día de la Familia 2	101
Ecuación 24 Producción al día de la Familia 4	102

Ecuación 25 Productividad Mano de obra Familia 1	102
Ecuación 26 Productividad Mano de obra Familia 2	103
Ecuación 27 Productividad Mano de obra Familia 3	103
Ecuación 28 Actividades Productivas Familia 1	103
Ecuación 29 Actividades Productivas Familia 2	104
Ecuación 30 Actividades Productivas Familia 4	104
Ecuación 31 Actividades Improductivas Familia 1	104
Ecuación 32 Actividades Improductivas Familia 2	105
Ecuación 33 Actividades Improductivas Familia 4	105

RESUMEN

La presente investigación tiene el fin de incrementar la productividad de la empresa Inversiones Cimas E.I.R.L, a partir de la propuesta de un diseño de distribución de planta. En este contexto se analizó, evaluó y propuso este diseño gracias al índice de desempeño del layout (IDL) y la metodología del Planeamiento Sistemático de Distribución (PSD).

En el diagnóstico inicial de la empresa; se analizaron los procesos de producción actuales, y su influencia en la productividad, mediante técnicas de recolección de datos; como entrevistas, encuestas, y observaciones (Glosario de Investigación, 2016).

Así mismo el IDL permitió evaluar la distribución actual, y conocer los factores influyentes en la producción; como distancias recorridas, flexibilidad de planta, flujo de materiales y personas; y la seguridad laboral.

Los resultados obtenidos en el diagnóstico reflejaron la necesidad de contar con un óptimo diseño de distribución. La metodología PSD permitió realizar alternativas de distribución, las cuales fueron evaluadas mediante el IDL.

La alternativa de distribución escogida logró ubicar de manera óptima las áreas de trabajo, logrando reducir los tiempos de transporte; y las distancias recorridas; permitiendo el incrementar la productividad de la empresa, al reducir los recursos empleados y aumentar la cantidad de productos obtenidos.

Palabras clave: Productividad, Planeamiento Sistemático De Distribución, Índice De Desempeño Del Layout, y Diseños De Distribución De Planta,

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad Problemática

En la actualidad el mundo empresarial se encuentra ante una realidad competitiva, en donde el cliente toma la última decisión. Es por ello que empresas de todos los rubros se ven en la necesidad de rediseñar sus procesos de negocio; y por ende la actual distribución de sus instalaciones (Rau Alvarez, 2009). En el Perú, el éxito de las empresas más grandes del mercado se debe a "... calidad de la oferta de productos y servicios, integridad (transparencia y ética), innovación, entorno de trabajo, ciudadanía (compromiso social y medioambiental), liderazgo (calidad de gestión) y de sus resultados financieros..." (El Economista América, 2014). Cuando se hace mención a entorno de trabajo; se refiere a la distribución de planta y manejo de materiales; factor que afecta directamente la productividad y rentabilidad de una empresa; y uno de los objetivos estratégicos más desafiantes que esta puede enfrentar (Meyers & Stephens, 2006).

A partir de esta información se concluye que el diseño de instalaciones tiene un impacto directo en el logro de los objetivos de una empresa. Sin embargo, son pocas las empresas en el Perú y en especial las pymes, que se preocupan por la correcta distribución de sus áreas de trabajo; por ende, muchos de sus tropiezos derivan de la falta de conocimiento acerca de este tema (Gestiopolis, 2001). En el artículo "Evaluación de la distribución espacial de plantas industriales mediante un Índice de desempeño" (Peréz Gosende, 2016), muestra a la distribución de planta, como el "... proceso de ordenamiento de los elementos que conforman el sistema productivo en el espacio físico...". Es decir, la organización física de máquinas, materiales, equipos, estaciones de trabajo y personas.

La distribución de planta (FLP) tiene un desempeño multicriterio y multiobjetivo, lo que lo hace complejo de resolver. Para ello se han estudiado métodos de solución desde técnicas exactas hasta metaheurísticas; los cuales han dado resultados óptimos en tiempos reales. Estas soluciones han sido aplicadas a FLP nuevas; como a problemas de redistribución de planta (FRLP). Es por ello que cuando una empresa desea; incrementar o disminuir su capacidad productiva; introducir nuevas líneas de productos; aumentar su eficiencia y productividad; reducir costos; o implementar una nueva filosofía empresarial; es necesario que piense previamente en realizar un FRLP. El FRLP se encarga de reorganizar los centros de actividad de una empresa; con el fin de evitar el incremento de los tiempos de fabricación, y la disminución de los niveles de producción. Situaciones que derivan de la mala utilización del espacio; cogestión excesiva de inventario; cuellos botella; entre otros (Rivera, Cardona, Vásquez & Rodríguez, 2012).

Para dar a conocer un poco más acerca del diseño de una distribución de layout se presenta el artículo de investigación. "Rediseño de una planta productora de lácteos mediante la utilización de las metodologías SLP, CRAFT, Y QAP" (Paredes, Peláez, Chud, & Alarcón, 2016). Los autores mencionan a una empresa de productos lácteos, la cual tiene como fin incrementar su productividad. Para ello realizaron un análisis de la empresa y encontraron: Áreas funcionales con distancias muy estrechas; mala utilización de espacios físicos y lugares congestionados de inventario. Todo conllevaba a una inadecuada distribución de sus áreas de trabajo. A partir de ello analizaron los centros de actividad y propusieron alternativas de redistribución; mediante la metodología PSD (se centra en la minimización de las distancias recorridas, mediante el juicio de los especialistas). Al obtener las alternativas propuestas y para escoger la más optima, utilizaron los programas CRAFT Y QAP,

para reducir las distancias recorrida entre centros de actividad. Al final se obtuvo un flujo de 96.16%, logrando así una óptima distribución.

Otro caso en estudio sobre la distribución de planta y su incidencia en la productividad. Es el estudio realizado por los ingenieros Tigreros Arreaga, J. & Borja Manobanda, S. (2018). Evaluación y Propuesta de mejoras en la distribución espacial de la fábrica SERVIPAXA S.A. (Tesis de titulación). Universidad Politécnica Salesiana Del Ecuador, Ecuador. Realizaron una investigación en una empresa de elaboración de plásticos, la cual presentaba una incorrecta distribución de sus áreas de trabajo; situación determinada mediante el índice de desempeño del layout, el cual lanzó un resultado de 44,49%. Posterior a ello emplearon el método de Planeación Sistemática de Layout (SLP), el cual permitió obtener tres soluciones óptimas de redistribución de planta. Fueron evaluadas según el IDL; y al final optaron por la opción tres, la cual presentaba un IDL del 89,97%. Resultado que indicaría un eficiente flujo de materiales.

Como se mencionó anteriormente una empresa toma la decisión de realizar un diseño de distribución de sus áreas de trabajo, cuando quiere mejorar su desempeño organizacional. Las medianas y pequeñas empresas peruanas no son ajenas a esta problemática; y una de ellas es la empresa Inversiones Cimas E.I.R.L, dedicada al rubro de la carpintería. En una entrevista realizada al gerente de la organización, se mencionó que cuando inició sus operaciones, no pensó previamente en la posibilidad de llevar a cabo un plan de distribución de planta; y todo se manejó de manera subjetiva. Con el pasar de los años surgió en la empresa una serie de situaciones incómodas como: La congestión de tránsito por inventario, cuellos de botella en distintos procesos, recorridos transversales, máquinas inactivas o sobrecargadas y

desorden. Estos escenarios han afectado su producción, e impiden alcanzar la eficiencia en sus operaciones productivas (Marín Sanchez, 2018).

En una visita realizada a la empresa se pudo detectar que estos problemas radican en: La acumulación de madera, aserrín o viruta a lado de cada máquina; distancias estrechas entre máquinas (ocasionan congestionamiento e impiden el flujo esbelto de materiales, personas y equipos); no cuentan con áreas de trabajo específicas y señalizadas; falta de clasificación del tipo de madera adquirida (causan una mala selección del tipo de inventario requerido y, por ende reprocesos); apilamiento excesivo de productos terminados y desechos; techos dañados (pueden originar accidentes laborales catastróficos); numerosas máquinas inactivas; y operarios bien calificados realizando trabajos sencillos (incrementan los cuellos de botella). A partir de ello se propone realizar un diseño de distribución de planta que permita incrementar la productividad de sus operaciones.

El uso eficiente de recursos (trabajo, espacio, materiales, energía información, y tiempo) se denomina productividad; y determina el grado de competitividad que presenta una empresa. Así mismo es un indicador principal que mide la relación entre la producción obtenida y los recursos empleados. El cual puede expresarse en unidades físicas o unidades monetarias (Zocón Alva, 2019). Una empresa productiva sobresale por tener procesos eficientes; costos controlados y tiempos estandarizados para cada puesto de trabajo (Dinero, 2017).). La empresa en estudio presenta problemas en su productividad los cuales recaen en no contar con una distribución correcta de sus áreas de trabajo. Es por ello que se plantea hacer cambios en la ubicación y dimensión de los centros de actividad existente de la planta.

Como se mencionó anteriormente la empresa en estudio pretende mejorar su desempeño e incrementar la productividad de sus operaciones. Es por ello que, a partir

de la problemática encontrada en la compañía, se propone como solución realizar un diseño de distribución de planta, mediante la metodología del planeamiento sistemático de distribución. Lo cual implica reorganizar las áreas de trabajo; conservando la estructura general de la planta. La finalidad de esta propuesta es: Reducir los costos de manejo de materiales y transporte; mejorar la calidad de los productos obtenidos; promover el uso eficaz de personal, equipos, y energía; brindar a los operarios seguridad, comodidad y conveniencia; reducir o eliminar los inventarios excesivos; disminución de distancias y flujo esbelto de materiales, colaboradores y equipos; y una buena utilización del espacio físico (Meyers & Stephens, 2006).

1.2. Formulación del problema

¿En qué medida el diseño de distribución de planta incrementará los niveles de productividad de la empresa Inversión Cimas E.I.R. L?

1.3. Objetivos

1.3.1. Objetivo general

Proponer un diseño de distribución de planta para incrementar los niveles de productividad de la empresa Inversión Cimas E.I.R. L.

1.3.2. Objetivos específicos

- Realizar un diagnóstico de la distribución actual y la productividad en la empresa Inversión Cimas E.I.R.L.
- Proponer el desarrollo de la metodología Planeamiento Sistemático de la
 Distribución (PSD) para llevar a cabo el diseño de distribución de planta con
 el fin de incrementar los niveles de productividad de la empresa Inversión
 Cimas E.I.R.L.

- Medir los indicadores de productividad y distribución de planta después del diseño de distribución de planta en la empresa Inversión Cimas E.I.R.L.
- Realizar una análisis económico- financiero para medir la viabilidad de la propuesta en la empresa Inversión Cimas E.I.R.L.

1.4. Hipótesis

1.4.1. Hipótesis general

Al proponer un diseño de distribución de planta se incrementará la productividad de la empresa Inversión Cimas E.I.R.L.

CAPÍTULO II. MÉTODO

2.1 Tipo de investigación

Según su propósito

Investigación Aplicada: Es aquella investigación que aplica conocimientos básicos en un campo específico, con el fin de dar solución a un problema particular. La investigación va a aplicar conocimientos ya existen en este caso la metodología PSD y el índice de distribución de layout con el fin de incrementar los niveles de productividad (Glosario de Investigación, 2016, p.18).

Según su Profundidad

Investigación Correlacional: Es aquella investigación que pretende evaluar la relación entre dos o más variables o conceptos. En este caso la relación el diseño de distribución de planta y la productividad de una empresa. (Glosario de Investigación, 2018, p.30).

Según la naturaleza de los datos

Investigación Cualitativa – Cuantitativa: En la investigación se recolectará la información mediante la entrevista y la observación que son técnicas cualitativas y la encuesta que es una técnica cuantitativa, la cual muestra datos cuantificables obtenidos mediante indicadores de medición (Glosario de Investigación, 2018, p.34).

Según su manipulación de variable

Investigación No experimental: En el siguiente trabajo de investigación no se manipulará ninguna variable, solo se basará en la observación (Glosario de Investigación, 2018, p.35).

2.2 Población y muestra (Materiales, instrumentos y métodos)

Población

La población en esta investigación será la planta de producción de la empresa Inversiones Cimas E.I.R.L.

Muestra

La muestra serán los centros de actividad de la planta de producción de la empresa Inversiones Cimas E.I.R.L. En este caso área de almacén (almacén de materia prima, productos terminados y desechos), área de producción (zona de habilitado, zona de producción, zona de ensamble y zona de forrado), área de afilar maquinaria, área de tratamiento térmico y área de carga y descarga.

Se realizarán 20 observaciones de las estaciones de trabajo en 10 días calendarios laborables. Ver anexo n° 11.

2.3 Técnicas e instrumentos de recolección de datos

A continuación, se presentan una tabla donde se detalla los métodos, fuentes y técnicas.

Tabla 1 Técnicas de Recolección de datos

Método	Fuente	Técnica
Cualitativo	Primaria	Entrevista
Cuantitativo	Primaria	Encuesta
		 Observación Directa

Fuente: Elaboración Propia

En la siguiente tabla se detalla las técnicas e instrumentos a emplear:

Tabla 2 Detalle de Técnicas e Instrumentos de Recolección de datos

TÉCNICA	JUSTIFICACION	INSTRUMENTOS	APLICACIÓN	
	Permite detectar la	Guía de	El gerente de la	
	problemática existente	entrevista	empresa	
	en la empresa. En este		Inversiones	
	caso conocer bajos		Cimas EIRL.	
Entrevista	niveles de			
	productividad, debido a			
	una mala distribución			
	de planta			
	Permite conocer los		El comento de la	
		• Cuestionario	El gerente de la	
	problemas encontrados		empresa y los	
	y su frecuencia de		operarios de la	
Encuesta	ocurrencia en la actual		empresa	
	distribución de planta		Inversiones	
	desde un punto de vista		Cimas EIRL.	
	cuantitativo.			
	Permite recolectar	Guía de la	Los procesos	
	datos mediante la	observación	productivos de	
	observación del objeto		la empresa	
Observación	de estudio dentro de		Inversiones	
Directa	una situación	Cimas EIRL.		
	particular.			

Fuente: Elaboración Propia

2.3.1 Procedimiento de recolección de datos

Entrevista

Objetivo: Permite recopilar datos mediante una conversación con una o varias personas, de las cuales se pude rescatar información permanente, para un determinado tema de investigación.

Procedimiento: En la investigación la entrevista va dirigida al gerente de la empresa Inversiones Cimas, permite obtener información sobre la situación problemática de la misma, desde un enfoque global.

- Se realizará una guía de entrevista, para obtener información sobre la situación problemática actual de la empresa Inversiones Cimas ERI.
- La entrevista se llevará a cabo en la oficina administrativa de la empresa.
- La entrevista estará dirigida al gerente de la empresa.
- Tendrá una duración de 10 min.
- Se recopilará la información en una grabadora, con el fin de ser documentada posteriormente. (Ver ANEXO nº 1).
- La entrevista será archivada en anexos para futuras referencias.

Instrumentos:

- Guía de Entrevista

Encuesta

Objetivo: Permite recopilar datos, a través de una serie de peguntas de forma estructurada y que, en orden, las cuales pueden ser abiertas o cerradas, dirigidas a una muestra determinada. Haciendo uso de la encuesta podemos conocer las opiniones, motivaciones, actitudes, comportamientos, intenciones y características de los individuos, para a partir de ella generalizar la información para toda la población (Briones, 2018).

Procedimiento: En la investigación haremos uso de la encuesta con la finalidad de conocer los problemas encontrados y su frecuencia de ocurrencia en la actual distribución de planta desde un punto de vista cualitativo y su relación con el desempeño de la productividad en la empresa.

Para su elaboración se hará una vista técnica a la empresa y en base a los factores influyentes de una distribución de planta, se llevará a cabo su elaboración. (Ver ANEXO nº 2).

- Dirigida a operarios que cuenten con más de un año de experiencia laboral dentro de la planta y el gerente
- La encuesta se realizará en escala Liker (Nunca, raras veces, a veces, a menudo y siempre), con el fin de determinar la frecuencia de ocurrencia de los problemas encontrados.
- La entrevista será archivada en anexos para futuras referencias.
- Se llevarán a cabo en la oficina administrativa de la empresa.
- Tiene una duración de 10 minutos.
- Las encuestas serán archivadas en anexos para futuras referencias.

Instrumentos:

- Cuestionario

Observación Directa

Objetivo: Permite recopilar datos mediante la observación de un objeto de estudio dentro de una situación particular. Todo esto se hace sin necesidad de intervenir o alterar el ambiente en el que se desenvuelve el objeto. (Briones, 2018).

Procedimiento: En la investigación haremos uso de la observación directa con el fin de conocer los tiempos que se toman los procesos productivos de las

cajas, estacas y parihuelas para obtener indicadores de productividad como: Producción, Productividad de mano de obra, actividades productivas y actividades improductivas. una unidad de producto. Se realizarán 20 observaciones directas con el fin de ser llenadas procesadas en el gráfico de procesos. Ver Anexo n°11.

- Dirigida a los procesos productivos de cajas, estacas y parihuelas.
- La información será archivada en anexos para futuras referencias.
- Se llevarán a cabo en la planta de producción de la empresa.
- Tiene una duración de 10 días.

Instrumentos:

Guía de la observación

2.4 Procesamiento de datos

Se debe mencionar los métodos y procedimientos para el procesamiento de datos, con el fin de obtener información para llevar a cabo su análisis e interpretación, dirigida a un resultado para la toma de decisiones (Sisniegas, 2016).

Para la investigación a realizar se utilizará los siguientes programas para el procesamiento de información:

Microsoft Word

Tiene la finalidad de facilitar la redacción de los resultados.

Microsoft Excel

Permitirá realizar los gráficos a partir de los datos obtenidos. En la investigación haremos uso de histogramas, diagrama de Pareto, diagrama Ishikawa y matriz multivotación.

- Histograma: Muestra gráficamente la frecuencia de datos que caen dentro de los rangos. Su finalidad es el análisis de resultados de un proceso o de una actividad dentro de dicho proceso (Arzapalo, 2017).
 - En la presente de investigación el gráfico nos permitirá representar los resultados de las encuestas realizadas, según el sector establecido.
- O Diagrama de Pareto: Según Arzapalo (2017) recibe el nombre de Pareto gracias al economista italiano del siglo VIII, Wilfredo Pareto, quien observó que el 80% de las riquezas de una sociedad estaba a manos del 20% de las familias. Después Juran toma este principio y aplica las causas de los problemas estableciendo que el 80% de los efectos de un problema se debe al 20% de sus causas. En la investigación el diagrama de Pareto nos permitirá encontrar los productos con mayor demanda y las causas que expliquen el 80% de los problemas, a partir de las encuestas realizadas.

- Diagrama de Ishikawa: Según Arzapalo (2017) el nombre de Ishikawa se atribuye el nombre al ingeniero japonés Karou Ishikawa, y es una herramienta de control que permite conocer las causas de un problema identificado; es decir nos muestra un panorama de las causas que están influyendo para la no obtención de los resultados planificados. El esquema de Ishikawa está estructurado en cinco componentes, específicamente: mano de obra, métodos de trabajo, materiales, maquinaria, medio ambiente. En la investigación nos permitirá conocer las causas de un problema identificado, a partir de las encuestas realizadas. No brindará un panorama gráfico de lo que está influyendo en el problema.
- Matriz de Multi-votación de Causas: Técnica en grupo que permite seleccionar de una lista de opciones por votación, aquellas de mayor prioridad (Sociedad Latinoamérica de Calidad, s.f). En la investigación haremos uso de la matriz multi-votación con la finalidad de determinar el problema con mayor impacto en la productividad de la empresa inversiones Cimas. Para ello se hará una reunión grupo con el todo el personal de la empresa, incluyendo el gerente. A continuación, se mostrará los factores que tiene un efecto directo, según el artículo de investigación Indicadores de productividad para la industria dominicana" (Mirand & Toirac, 2010); y mediante la matriz se determinará cuál de todos los factores mencionados tienen un efecto directo en la productividad de la empresa Inversiones Cimas.
- Gráfica del Proceso: Permite evaluar las etapas sin valor agregado, como el manejo excesivo de los materiales, las demoras, la elaboración de trabajos en proceso, ayuda a reducir el desperdicio y a mejorar la eficiencia. (Ver ANEXO n°3). En la presente investigación es necesario realizar gráficas de

procesos según la muestra determinada, en este caso 20 observaciones dentro de la empresa Inversiones Cimas. A través de las gráficas se pueden determinar los detalles del método, las actividades realizadas, la distancia recorrida, cantidad producida.

- Según la muestra calculada se llevará a cabo 20 observaciones.
- Los gráficos de procesos serán archivados en anexos para futuras referencias.

Instrumentos:

- Formatos de gráficas de procesos.

2.5 Procedimiento de desarrollo de investigación

A continuación, se muestra en un gráfico los pasos para desarrollar la presente investigación, con el fin de mostrar al lector un resumen de lo que se va a realizar. Se debe mencionar los métodos

Figura 1 Procedimiento de desarrollo de investigación

Paso 2 Paso 4 Paso 5 Paso 6 Paso 1 Paso 3

de

Diagnóstico de la Problemática de la empresa

Paso 1 Realizar la recolección de datos; mediante:

- Entrevista
- Encuesta
- Observación Directa

Paso 1 Realizar el procesamiento de datos recopilado; mediante:

> Programas informáticos: Microsoft Word Microsoft Excel. permite realizar: histogramas, Gráfico de procesos, diagramas de Pareto, matriz multivotación y diagrama de

Diagnóstico de Distribución de planta

Identificar 1a distribución actual de la empresa mediante:

- * Planos del primer y segundo nivel de la empresa (zonificación de las áreas)
- * Indicadores de distribución de planta, usando el IDL el cual está conformado por el IFO y el IFS

Diagnóstico de Productividad de la empresa

Identificar los indicadores productividad actual:

- * Unidad es producidas
- * Productividad de mano de obra
- * Actividades **Productivas**
- * Actividad **Improductivas**

Diseño de la propuesta de mejora

Resultados tras la propuesta de diseño

Resultados del análisis económico financiero

Se empleará la metodología del Planeamiento Sistemático de Distribución (PSD) Verificar el antes y el después de la meiora de distribución propuesta, mediante la medición de lo siguientes indicadores:

- * Unidades producidas
- * Productividad de mano de obra
- * Actividades **Productivas**
- * Actividad Improductivas
- * IDL

Análisis del costo beneficio del diseño de la propuesta de diseño de distribución

Fuente: Elaboración Propia

2.6 Operacionalización de variables

Variable Independiente

Distribución de Planta

Variable Dependiente

Productividad

Tabla 3 Matriz de Operacionalización de variables

VARIABLES	DEFINICIÓN CONCEPTUAL	DIMENSIONES	INDICADORES	
VARIBLE	Organización de los centros de actividad de una empresa (Rivera, Cardona, Vásquez & Rodríguez, 2012).	Desempeño	Índice de desempeño del layout (IDL)	
INDEPENDIENTE: DISTRIBUCIÓN DE PLANTA			Índice de Flujo Operativo (IFO)	
PLANIA			Índice de Relaciones Subjetivas (IFS)	
	Relación entre la producción obtenida y los recursos empleados en su obtención (Zocón Alva, 2019).	Productividad	Unidades producidas	
VARIABLE DEPENDIENTE:			Productividad de mano de obra	
PRODUCTIVIDAD			Actividades Productivas	
			Actividades Improductivas	

Fuente: Elaboración Propia

CAPÍTULO III. RESULTADOS

3.1 Información General de la empresa

3.1.1 Descripción General de la empresa

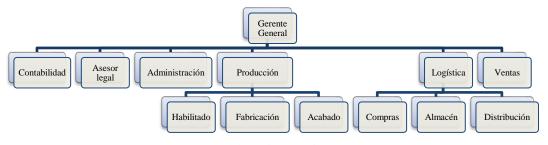
Inversiones Cimas E.I.R.L es una empresa cajamarquina dedicada a brindar el servicio de carpintería, y venta de madera. Fue fundada en el año 1992 por el señor Alejandro Sánchez Marín, cuenta con un staff altamente calificado de 16 personas. A continuación, se muestra información referencial de la empresa:

RUC: 20453777091

Dirección Legal: Av. Tahuantinsuyo N° 664 - Cajamarca

Teléfono: 076 – 340502 / Celular: 976 - 992796

3.1.2 Misión

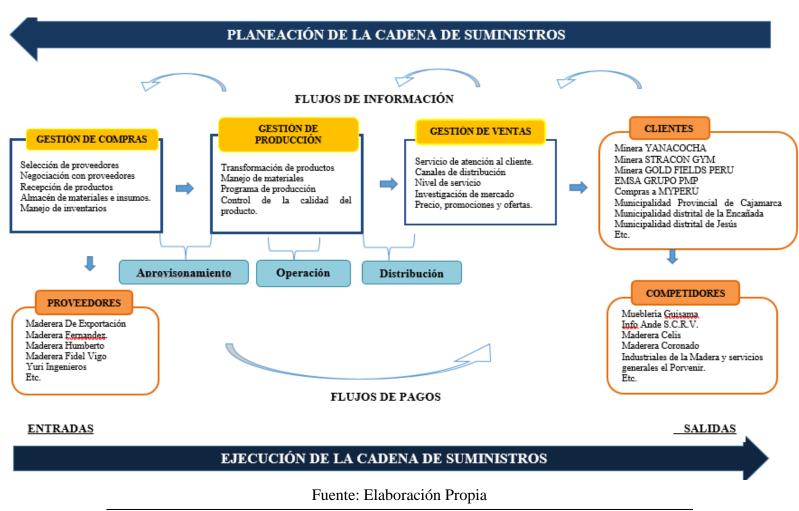

Proveer un servicio de carpintería y venta de madera, transcendentes a la expectativa del cliente. Para ello se trabaja con responsabilidad, puntualidad e innovación, logrando así ofrecer productos confiables y de calidad.

3.1.3 Visión

Ser la empresa líder a nivel nacional en el servicio de carpintería y venta de madera, ofreciendo productos de calidad que superen las expectativas de nuestros clientes.

3.1.4 Organigrama de la empresa

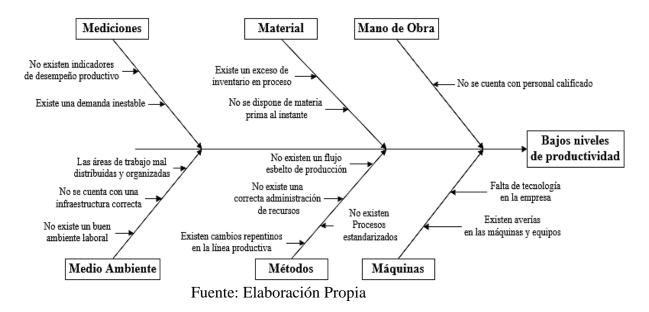
Figura 2 Organigrama de la empresa


Fuente: Elaboración Propia

3.1.5 Cadena de suministro de la empresa

A continuación, se muestra los procesos involucrados de manera directa e indirecta en el logro de la satisfacción del cliente.

Figura 3 Cadena de Suministros de la empresa Inversiones Cimas E.I.R.L



Interpretación: En el gráfico presentado se muestra la cadena de suministros de la empresa detallando de manera general su gestión de compras, gestión de producción, gestión de ventas, clientes y sus competidores.

3.2 Diagnóstico general del área de estudio

De la entrevista realizada en la empresa se pudo detectar la necesidad de incrementar los niveles de productividad en la empresa. A partir de ello revisó el artículo de investigación "Indicadores de productividad para la industria dominicana" (Mirand & Toirac, 2010), en el cual se muestra los principales factores que afectan directamente la productividad en empresas de manufactura. A raíz de esta revisión se pudo realizar un Ishikawa con las causas que impiden obtener óptimos niveles de productividad en la empresa.

Figura 4 Diagrama de Ishikawa - Bajos niveles de Productividad

Interpretación: El Diagrama de Ishikawa permitió detectar las posibles causas de los bajo niveles de productividad en la empresa Inversiones Cimas E.I.R.L.

A continuación, se pasó a hacer una matriz de multi-votación; con el fin de determinar el problema de mayor efecto en la empresa Inversiones Cimas.

Tabla 4 Matriz multi-votación de problemas en la productividad de la empresa

M	Causa	Descripción	Votos (fi)	hi%
	Causa 1	No existen indicadores de desempeño		
Mediciones	Causa 1	productivo	6	7%
	Causa 2	Existe una demanda inestable	2	2%
	Causa 3	Existe un exceso de inventario en		
Material		proceso	10	12%
Material	Causa 4	No se dispone de materia prima al		
	Causa +	instante	5	6%
Mano de	Causa 5	No se cuenta con personal calificado.	2	
Obra	Cuusu S			2%
	Causa 6	Las áreas de trabajo no están bien	13	
Medio		distribuidas y organizadas		16%
ambiente	Causa 7	No se cuenta con una infraestructura	7	
		correcta		9%
	Causa 8	No existe un buen ambiente laboral.	4	5%
	Causa 9	No existen procesos estandarizados	7	9%
	Causa 10	No existe una correcta administración	3	
		de los recursos		4%
Método	Causa 11	No existe un flujo esbelto de	10	
		producción		12%
	Causa 12	Existen cambios repentinos en la línea	2	
		productiva		2%
Máquinas	Causa 13	Falta de tecnología en la empresa	4	5%
maquinas	Causa 14	Existen avería en las máquinas	7	9%
Total			82	100%

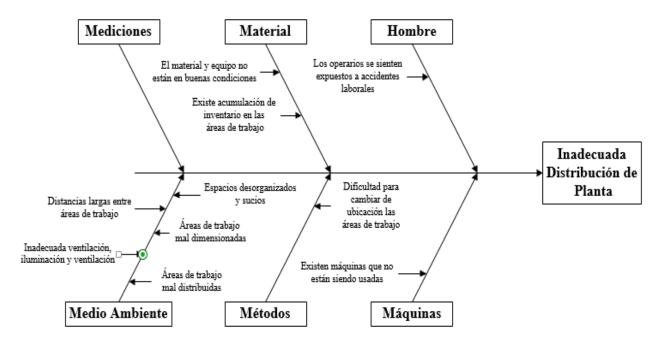
Fuente: Elaboración Propia

Diagrama de Pareto 100% 80 90% 70 80% 60 70% 60% 50% 40 40% 30 30% 20 20% 10 10% 0% Causas

Figura 5 Diagrama de Pareto Factores que afectan la Productividad

Fuente: Elaboración Propia

Interpretación: Según el gráfico realizado el 80% de los problemas que influyen que afectan la productividad de la empresa Inversiones Cimas, se deben al 20% de las causas. En este caso son:


- Causa 6: El 16% de las personas reunidas opinan que en la empresa el mayor problema se centra en la distribución y organización actual de las áreas de trabajo.
- Causa 3: El 12% opina que existe un exceso de inventario.
- Causa 11: El 12% opina que no existe un flujo esbelto de producción.
- Causa 7: El 9% opina que no existe una infraestructura correcta.
- Causa 9: El 9% opina que no existen procesos estandarizados.
- Causa 14: El 9% opina que existen averías en las máquinas.
- Causa 1: El 7% opina que no existen indicadores de desempeño dentro del flujo productivo.
- Causa 4: El 6% opina que no se dispone de la materia prima al instante.

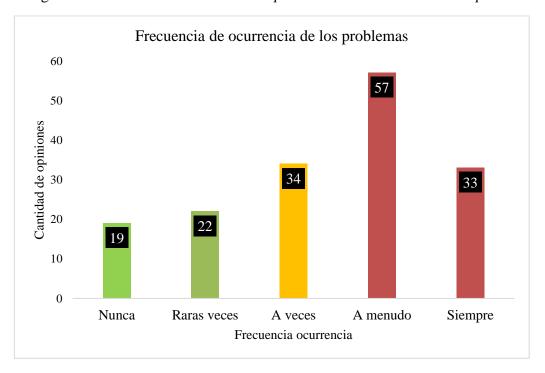
Una limitante para poder encontrar la solución a los problemas encontrados es el tiempo. Por ello se priorizó afrontar el problema con mayor influencia; en este caso la inadecuada distribución de sus áreas de trabajo.

A raíz del problema identificado se hizo una visita técnica a la empresa, con el fin de determinar aquellas situaciones que reflejan una incorrecta distribución de planta. Con la ayuda de los factores influyentes en el desempeño de un layout (Meyers & Stephens, 2006). Se llevó la siguiente encuesta "Desempeño de la actual distribución de planta". (Ver ANEXO N.° 2).

A partir de ello se obtuvieron los siguientes resultados.

Figura 6 Diagrama de Ishikawa – Inadecuada Distribución de Planta

Fuente: Elaboración Propia


Interpretación: A partir del diagrama de Ishikawa se pudo detectar que dentro de la empresa existen situaciones que reflejan una inadecuada distribución de planta entre ellas tenemos:

- Material: El material y equipo no están en buenas condiciones; y existe acumulación de inventario en las áreas de trabajo.
- Hombre: Los operarios se siente expuestos a accidentes laborales.
- Medio Ambiente: Las áreas de trabajo están muy separadas, no existe una adecuada ventilación, iluminación y ventilación, los espacios donde se realiza las áreas de trabajo están desorganizados y sucios, las áreas de trabajo están mal dimensionadas; y, por último, las áreas están mal distribuidas.
- Métodos: Existe dificultad para cambiar la ubicación de las áreas de trabajo.
- Máquinas: Existen máquinas que no están siendo usadas.

A continuación, se realizó un cuestionario "Diagnóstico Situacional de la Actual distribución de planta", con el fin de determinar la frecuencia de ocurrencia de las situaciones encontradas. (Ver ANEXO n.° 2).

A raíz de eso se obtuvieron los siguientes resultados.

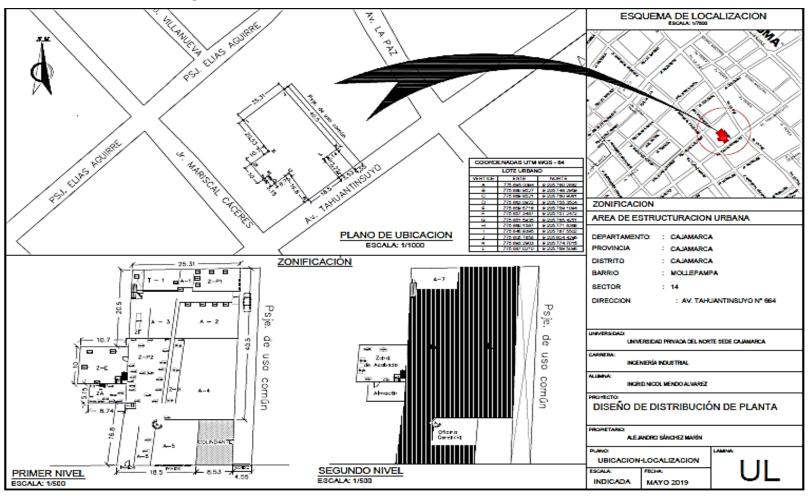
Figura 7 Frecuencia de ocurrencia de problema en la distribución de planta

Fuente: Elaboración Propia

Interpretación: Como se puede observar el gráfico resultante de la encuesta realizada.

Las situaciones que reflejan una inadecuada distribución suceden a menudo y

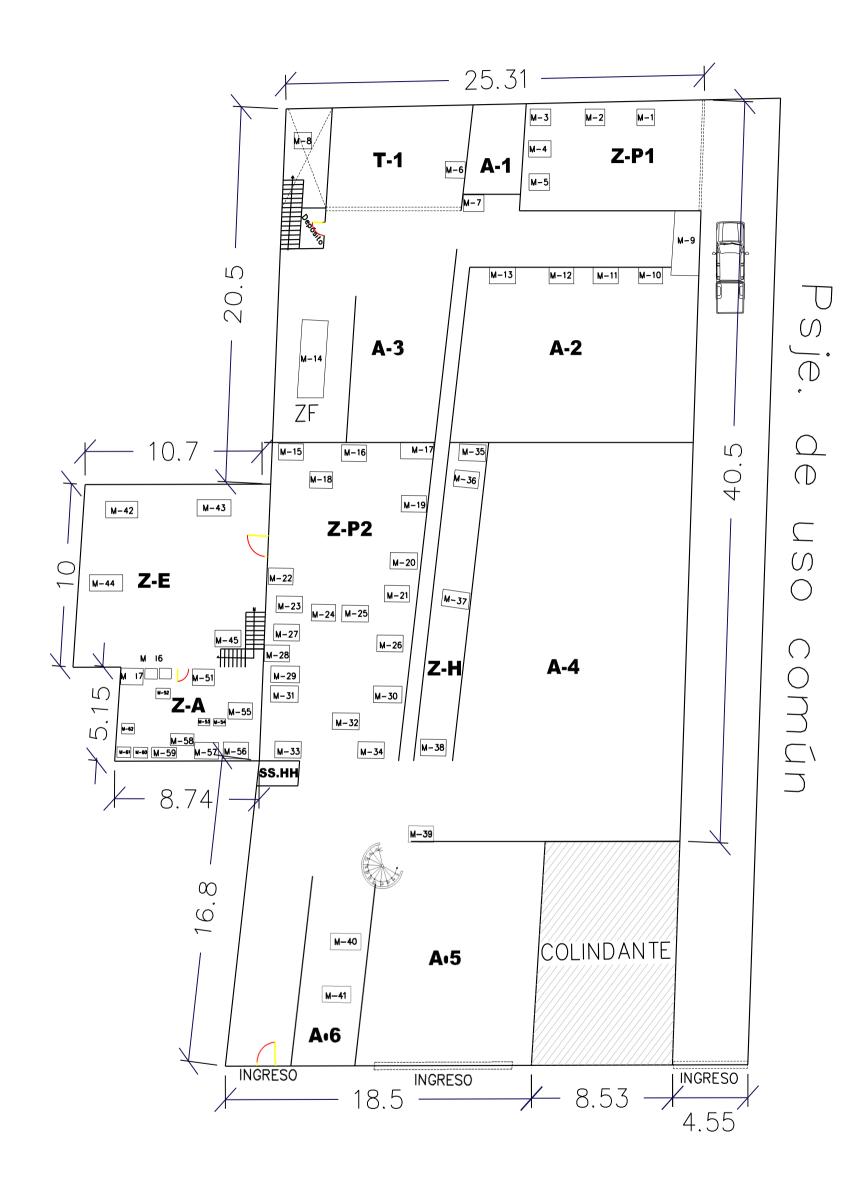
siempre.


Llegando a la conclusión que se debe tomar acción y realizar una redistribución, a fin de mejorar las situaciones que afectan la distribución actual y de manera directa incrementar los niveles de productividad dentro de la empresa.

3.3 Diagnóstico de Distribución de planta

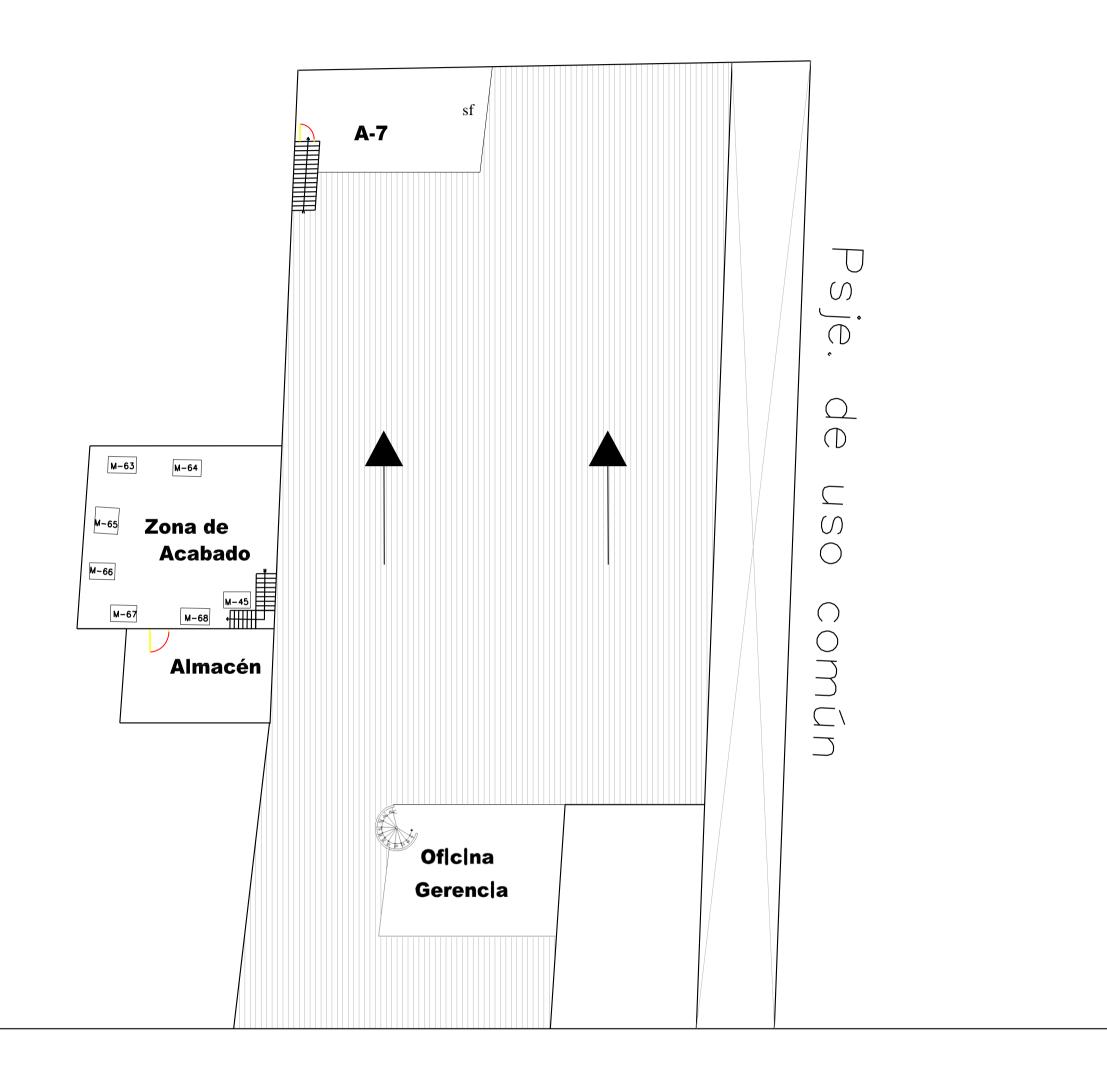
Actualmente la empresa Inversiones Cimas tiene una planta de producción ubicada en la avenida Tahuantinsuyo N° 664 – Cajamarca, con un área de 1427,54 m².

A continuación, se muestra los planos del centro de trabajo.


Figura 8 Plano de la ubicación de la planta Actual

Fuente: Elaboración Propia

Interpretación: En la presente imagen se observa la distribución actual de la carpintería. En el primer nivel se desarrolla toda la producción y en el segundo piso se encuentran las oficinas y el almacén.


Figura 9 Distribución de Planta actual del primer piso

Fuente: Elaboración Propia

Interpretación: En la imagen se muestra la distribución actual del primer piso, donde se desarrolla la producción. Más adelante se realizará la leyenda de las áreas de trabajo; es importante mencionar que los cuadros pequeños vendrían a ser los lugares donde se ubican las máquinas, para un mayor detalle ver la tabla N° 15.

Figura 10 Distribución de Planta actual del segundo piso

Fuente: Elaboración propia

Interpretación: Se observa la distribución actual del segundo piso, donde se encuentran las zonas deacabado y el almacén. Así mismo se encuentra la oficina. Más adelante se realizará la leyenda de las áreas de trabajo; es importante mencionar que los cuadros pequeños vendrían a ser los lugares donde se ubican las máquinas, para un mayor detalle ver la tabla N° 15.

Tabla 5 Zonificación por áreas

ZONA	N°	CÓDIGO	DESCRIPCIÓN
	1	A-1	Almacén de insumos 1
	2		Almacén de productos terminados y
		A-2	desechos 1
	3		Almacén de productos terminados y
A L M A CIENIEC		A-3	desechos 2
ALMACENES	4	A-4	Almacén de materia prima y desechos 1
	5	A-5	Almacén de desechos
	6	A-6	Almacén de insumos 2
	7	A-7	Almacén de productos terminados 1
	8	A-8	Área de secado y almacén de p.t. 2
	9	A-9	Almacén de productos terminados 3
	10	Z-P1	Zona de producción de mobiliario
	11	Z-P2	Zona de producción de otros productos
	12	Z-E1	Zona de ensamble 1
PRODUCCIÓN	13	Z-E2	Zona de ensamble 2
	14	Z-H	Zona de habilitado de madera
	15	Z-F	Zona de forrado
	16	Z-Acab.	Zona de acabado
AFILACIÓN	17	Z-A	Zona de afilación
TRT. TÉRMICO	18	T-1	Zona de tratamiento térmico
ZONA DE	19	ZD-1	Zona de carga y descarga 1
DESCARGAS	20	ZD-2	Zona de carga y descarga 2
OFICINAS	21	OF	Oficina Gerencia
BAÑO	22	SSHH	Baño

Fuente: Elaboración Propia

Interpretación:

En la tabla se indica la zonificación de las áreas de trabajo, en donde se encuentran cada estación de trabajo; la cual tiene un código para su identificación en los planos del primer y segundo piso.

Al realizar la inspección de las instalaciones del primer y segundo piso se pudo encontrar los siguientes problemas: Distancias estrechas; apilamiento excesivo de materia prima, viruta, aserrín, productos terminados, y desechos a lado de cada máquina; no existe una ubicación específica para el almacenamiento de inventarios; no existe un orden en la ubicación de área de trabajo; las máquinas han sido colocadas según orden de llegada, del total de máquinas el 77% están siendo usadas, el 23% restante se encuentran inoperativas. Para contrastar todo lo indicado se puede VER el ANEXO nº 4.

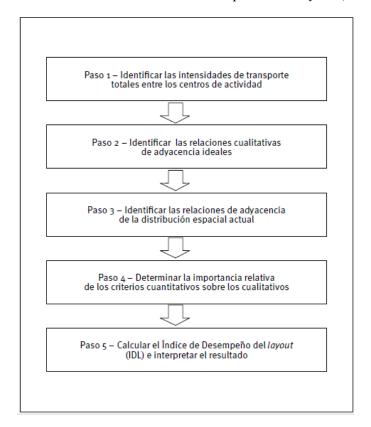
Estas situaciones ocasionan congestión e impiden el flujo esbelto de materiales, personas y equipos, lo que provoca cuellos de botella en distintos procesos, incrementando el tiempo y distancias recorridas entre estaciones de trabajo. A partir de lo señalado se puede indicar que la distribución del primer y segundo piso es inadecuada, lo cual se demostrará de una manera objetiva más adelante con el índice de distribución de layout.

Estos escenarios descritos afectan la producción de la empresa. Por ello que se propone como solución realizar un diseño de distribución de planta con el fin de incrementar la productividad de sus operaciones.

Tipo de distribución actual de la empresa

La empresa en estudio lleva una distribución orientada al trabajo en taller, es decir se guía por el proceso, presenta una producción múltiple (varios productos diferenciados y que técnicamente pueden ser interdependientes o no). En su mayoría el trabajo se desarrolla alrededor de la maquinaria, ya que las partes no son estables (flujo variable). En conclusión, el movimiento de materiales resulta caro y complejo.

A continuación, se desarrollarán indicadores que permiten validar la incorrecta distribución de planta en la empresa Inversiones Cimas E.R.I.L.



3.3.1 Indicadores de Distribución de Planta

• Índice de distribución del layout (IDL)

Este indicador permite evaluar el actual desempeño de una distribución espacial de planta de una manera rápida y sencilla. Para su obtención se lleva a cabo los siguientes pasos.

Figura 11 Procedimiento del Índice de Desempeño del Layout (IDL)

Fuente: Evaluación de la Distribución Espacial de Plantas industriales mediante un índice de desempeño (Peréz Gosende, 2016)

Paso 1: Identificar las intensidades de transporte totales en los centros de actividades

La intensidad de transporte se refiere a la cantidad de materiales (objeto de trabajo) que son llevados de un centro a otro en una unidad de tiempo (tij). La unidad de medida se expresa según el sistema productivo de la empresa en estudio, por ejemplo:

l/día, m3/mes, t/año, etc. La empresa en estudio es una carpintería, por ello, la intensidad de transporte entre centros de actividad estará en función de pies tablares anuales durante el año 2017.

Se debe mencionar que el flujo de materiales entre cada centro de actividad no es constante. Esto se debe a las limitaciones que poseen las máquinas y equipos (capacidad); así mismo en el flujo productivo es inevitable la pérdida de material y los reprocesos.

El primero paso para poder determinar las intensidades de transporte es:

a. Identificar los centros de actividad de la organización

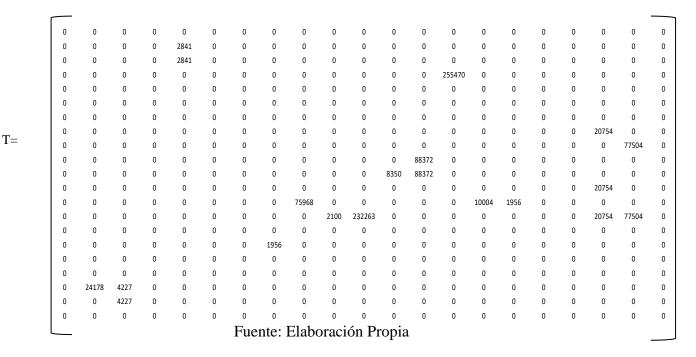
Un centro de actividad se considera como un espacio físico en el que se lleva cabo actividades productivas, estratégicas, de apoyo, y servicios auxiliares. Cada centro de actividad puede estar conformado por mesas de trabajo, equipos, máquinas, materiales. Para poder identificar los centros de actividad se emplearon entrevistas y observaciones directas.

A continuación, se muestran los determinados:

- 1. Almacén de insumos 1
- 2. Almacén de productos terminados y desechos 1
- 3. Almacén de productos terminados y desechos 2
- 4. Almacén de materia prima y desechos 1
- 5. Almacén de desechos
- 6. Almacén de insumos 2
- 7. Almacén de productos terminados
- 8. Área de secado y productos terminados
- 9. Almacén de productos terminados
- 10. Zona de producción de mobiliario

- 11. Zona de producción de otros productos
- 12. Zona de ensamble 1
- 13. Zona de ensamble 2
- 14. Zona de habilitado de madera
- 15. Zona de forrado
- 16. Zona de acabado
- 17. Zona de afilar máquinas
- 18. Zona de tratamiento térmico
- 19. Zona de carga y descarga 1
- 20. Zona de carga y descarga 2
- 21. Oficina

A continuación, se procede a definir el consumo de materia prima (madera) por mes, según el tipo de familia en el año 2017. (Ver ANEXO n.º 5).

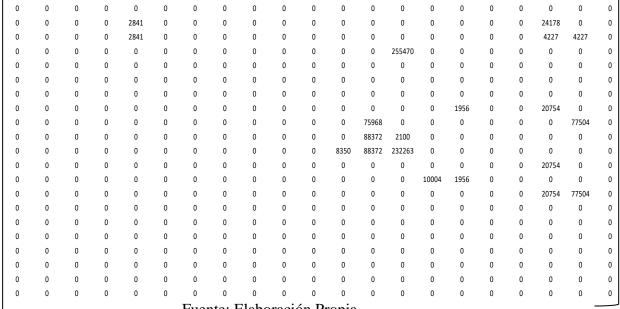

Para poder a partir de esa información desarrollar la secuencia y el flujo de materiales en entre centros de actividad. (Ver ANEXO n.º 6 y 7).

La finalidad es poder a partir de esta información desarrollar la matriz cuadrada orientada de las intensidades de transporte parciales (matriz T)

Desarrollar la matriz cuadrada orientada de las intensidades de transporte parciales (matriz T)

Una vez identificado las intensidades de transporte entre los 21 centros de actividad se desarrolla la siguiente matriz T. La cual se obtiene mediante la relación entre cada producto y centro de actividad. A continuación, se muestra la matriz.

Figura 12 Matriz Cuadrada orientada de las intensidades de transporte parciales



c. Desarrollar la matriz triangular no orientada de las intensidades de transporte parciales (matriz T)

En este paso se realiza la suma del flujo total en ambas direcciones por cada centro de actividad.

Figura 13 Matriz T

T=

Fuente: Elaboración Propia

Paso 2: Identificar las relaciones cualitativas de adyacencia ideales

Una vez determinada las relaciones cuantitativas entre cada par de centro de actividad; es decir la de intensidad de transporte; es preciso pasar a identificar las relaciones cualitativas que justifican su necesidad de adyacencia o distanciamiento entre cada par de centro de actividad.

Este caso las relaciones cualitativas relevantes pueden ser: Seguridad e higiene, energía y evacuación de residuos, los sistemas de control e información, abastecimiento de energía, entre otros.

La valoración entre centros de actividades i y j estará determinada por el personal más capacitado y experimentado, que cuente la empresa en estudio; ya que es mejor la opinión de un grupo de personas que de una sola. Para llevar a cabo este paso es imprescindible realizarlas siguientes dos etapas:

a. Seleccionar expertos en los procesos y operaciones de la organización objeto de estudio

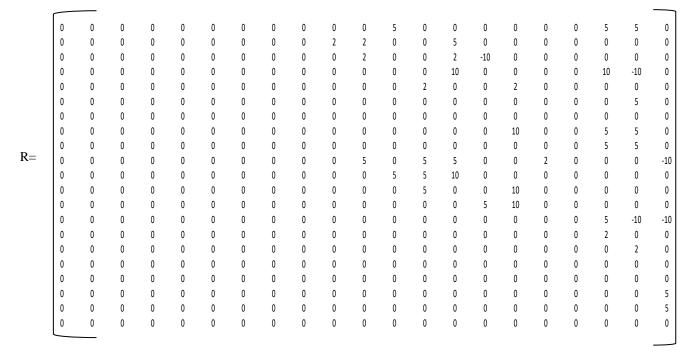
Se escogió al personal con un alto conocimiento y experiencia dentro de la empresa. La cantidad escogida fueron de siete trabajadores, y se les aplico un cuestionario, con el fin de obtener información sobre las relaciones cualitativas de adyacencia ideales entre cada par de centro de actividad. (Ver ANEXO n.º 8).

$\begin{tabular}{l} \textbf{b. Desarrollar la matriz triangular de las relaciones cualitativas de adyacencia} \\ \textbf{ideales (Matriz R)} \end{tabular}$

Una vez aplicada la encuesta, se procedió a analizar los datos mediante el coeficiente de medición Rij.

Para los resultados: Adyacencia extremadamente importante (E, 10); importante (I,5), ordinariamente importante (O,2), indiferente (D,0) e indeseable (N, -10).

Tabla 6 Resumen del cuestionario de las relaciones cualitativas de adyacencia


Centros de Relacion Actividad		Relaciones de Adyacencia					Moda	Rij	Razón		
i	j	01	02	03	04	05	06	07			
1	12	О	I	I	I	Е	О	I	I	5	Facilitaría el transporte de productos en proceso
1	13	I	E	I	O	I	O	I	I	5	Facilitaría el transporte de productos en proceso
1	20	I	E	I	O	I	O	I	I	5	Facilita el almacenamiento de insumos
2	10	N	N	O	O	O	D	O	O	2	Facilita el manejo de insumos
2	11	O	O	O	I	O	D	D	O	2	Facilita el manejo de insumos
2	14	O	I	O	I	I	E	I	I	5	Facilita el manejo de insumos
3	11	O	O	O	I	O	D	D	O	2	Facilita el manejo de insumos
3	14	O	O	O	I	O	O	0	O	2	Facilita el manejo de insumos
3	15	N	N	D	N	N	D	D	N	-10	Es peligroso y atenta contra la seguridad de los empleados
4	14	I	E	I	E	E	I	E	E	10	Facilita el translado de la materia prima a la zona de habilitado
4	19	O	I	I	E	E	E	E	E	10	Facilita la descarga, carga y traslado de materia prima
4	20	N	N	D	O	N	N	D	N	-10	Peligro y atenta contra la seguridad del perosonal
5	13	N	I	O	D	O	I	0	O	2	Facilita el manejo de insumos que se requieren en la zona de ensamble 2
5	16	I	O	I	D	I	O	0	O	2	Facilita el manejo de insumos que se requieren en la zona de acabado
6	20	D	O	I	I	I	O	N	I	5	Facilita el almacenamiento de insumos
8	16	E	I	I	I	E	E	E	E	10	Facilita el almacenamiento y secado de productos terminados
8	19	E	I	I	I	E	I	E	I	5	Facilita la carga y descarga de productos terminados
8	20	I	E	I	I	I	I	E	I	5	Facilita la carga y descarga de productos terminados
9	19	I	I	I	I	E	I	E	I	5	Facilita la carga y descarga de productos terminados
9	20	I	I	I	I	I	I	E	I	5	Facilita la carga y descarga de productos terminados
10	11	I	I	I	I	E	I	E	I	5	Las areas se asemnejan
10	12	D	O	N	D	D	D	D	D	0	Las dos áreas no guardan relación
10	13	D	I	I	E	I	O	I	I	5	Facilitaría el transporte de productos en proceso
10	21	D	D	N	N	N	N	N	N	-10	Mucho ruido e impide al gerente concentrarse
10	14	I	E	I	E	O	I	I	I	5	Facilita el transporte de materia prima
11	12	E	I	O	O	N	I	I	I	5	Si porque las máquinas de producción deben estar ubicadas una sola área
11	13	I	O	O	I	I	I	I	I	5	Facilitaría el transporte de productos en proceso
11	14	I	E	E	E	I	I	E	E	10	Facilita el transporte de la materia prima a la zona de producción 2
12	13	O	O	I	I	I	D	I	I	5	Las areas de asemnejan
12	16	E	E	I	O	E	I	E	E	10	Facilita el transporte de productos en proceso
13	15	I	O	I	I	O	I	I	I	5	Facilita el transporte de productos en proceso a la zona de forrado
13	16	E	E	E	I	I	E	E	E	10	Facilita el transporte de los productos en proceso al área de acabado
14	19	I	I	I	I	E	E	E	I	5	Facilita la descarga de la materia prima en su llegada
14	20	N	O	I	N	N	N	I	N	-10	No permite el ingreso esbelto de la materia prima
14	21	N	N	N	I	O	N	N	N	-10	Mucho ruido e impide al gerente concentrarse
15	19	I	I	I	O	I	O	O	I	2	Facilita el transporte de los productos terminados
16	20	O	I	N	O	N	I	O	O	2	Facilita la descarga de productos temrinados
17	10	O	I	O	D	E	D	O	O	2	Facilta la afilación de las maquinas que se usan para producir
19	21	I	E	I	E	I	I	I	I	5	Facil el control de ingreso y salida de inventario
20	21	I	I	I	I	I	I	I	I	5	Facil el control de ingreso y salida de inventario

Fuente: Elaboración Propia

El cuadro resumen facilitó la información para el desarrollo de la matriz R. A continuación, se muestra la matriz triangular de las relaciones cualitativas de adyacencia ideales.

Figura 14 Matriz R

Fuente: Elaboración Propia

Paso 3: Identificar las relaciones de adyacencia de la distribución actual

En este paso se procede a realizar la matriz X, cuya finalidad es determinar la actual cercanía de los centros de actividad dentro de la empresa en estudio. El coeficiente binario i y j (X_{ij}) tomará el valor de uno si los centros de actividad se encuentran adyacentes o cero si no lo están. Don centros de actividad se consideran contiguos cuando son fronterizos, o colindan. El objetivo es cumplir con el principio de la mínima distancia recorrida entre centros que presente la mayor intensidad de transporte.

Figura 15 *Matriz X*

Paso 4: Determinar la importancia relativa de los criterios sobre los cualitativos

Los pesos de los criterios cuantitativos y cualitativos no tienen que ser los mismo en un contexto de distribución espacial. El autor del IDL, recomienda que en empresas de manufactura el peso de los criterios cuantitativos respecto a los criterios cualitativos sea mayor a 0.5. De esta manera se está priorizando las intensidades de transporte entre los centros de actividad, ya que el flujo total de materiales tiene una mayor contribución en la reducción de costos y tiene un mayor impacto en el incremento de la productividad. En esta investigación se asignará un valor de α =0.75.

Paso 5: Calcular el índice de desempeño del Layout (IDL)

Se calculará a partir de la siguiente fórmula matemática:

Ecuación 1 Índice del desempeño del Layout (IDL)

$$IDL = \frac{\alpha \cdot Ifo + (1 - \alpha) \cdot Ifs}{100}$$

Fuente: Evaluación de la Distribución Espacial de Plantas industriales mediante un índice de desempeño (Peréz Gosende, 2016)

Para obtener los índices Ifo y Ifs es necesario realizar los siguientes pasos:

a. Cálculo del índice de flujo operativo (Ifo)

Para su obtención es necesario realizar la multiplicación de la matriz T (matriz triangular no orientada de las intensidades de transporte totales), y la Matriz X (matriz de relaciones de adyacencia de la distribución espacial actual; divido entre la sumatoria de matriz T. El lfo representa el porcentaje de flujo total de materiales que está siendo transportado de un centro de actividad a otro. Un Ifo $<\alpha$ indica que el flujo de trabajo en la distribución actual está alejado del escenario óptimo. Mientras más cerca este de la unidad, mejor será la distribución.

Ecuación 2 Índice de flujo operativo

$$lfo = \frac{\sum_{i=1}^{n-l} \sum_{j=l+i}^{n} (T_{ij} \cdot X_{ij})}{\sum_{i=1}^{n-l} \sum_{j=l+i}^{n} T_{ij}} \cdot 100$$

Fuente: Evaluación de la Distribución Espacial de Plantas industriales mediante un índice de desempeño (Peréz Gosende, 2016)

Al realizar la división de la suma producto de la matriz T por la matriz X, entre la suma de la matriz T. Se obtuvo el siguiente resultado:

$$Ifo = \frac{264073}{1020393} = 25.88\%$$

Interpretación: El porcentaje obtenido refleja que los flujos de materiales totales no están siendo transportados correctamente. Es decir, no se cumple con el principio de las distancias mínimas recorridas. Al obtener un 25.51% <75%, se demuestra que la distribución actual está alejada del escenario óptimo. Por ello se debe proponer alternativas de distribución que permitan mejorar la adyacencia y flujo de materiales ente centros de actividad.

b. Cálculo del índice de las relaciones subjetivas (Ifs)

Este índice representa la relación entre la distribución actual y las relaciones de adyacencias ideales según la opinión de los expertos.

Para su obtención se realiza la multiplicación de la Matriz R (matriz triangular de relaciones cualitativas de adyacencia ideales) y la Matriz X (matriz de relaciones de adyacencia de la distribución espacial actual); divido entre la sumatoria de matriz R. Un Ifs<α indica que la distribución actual está alejada de la opinión de los expertos. Mientras más cerca este de la unidad óptima será la distribución. A continuación, se muestra la fórmula.

Ecuación 3 Índice de las relaciones subjetivas

$$lfs = \frac{\sum_{i=1}^{n-1} \sum_{j=l+i}^{n} (R_{ij} \cdot X_{ij})}{\sum_{i=1}^{n-1} \sum_{j=l+i}^{n} R_{ij}} \cdot 100$$

Fuente: Evaluación de la Distribución Espacial de Plantas industriales mediante un índice de desempeño (Peréz Gosende, 2016)

Al realizar la división de la suma producto de la matriz R por la matriz X, entre la suma de la matriz R. Se obtuvo el siguiente resultado:

$$Ifs = \frac{30}{123} = 24.39\%$$

Interpretación: El resultado obtenido es menor al valor de alfa predeterminado (24.39% <25%), lo cual refleja que la distribución actual está alejada de la opinión de distribución que tienen los expertos. Es decir, la distribución actual está alejada del escenario óptimo. Por ello se debe proponer alternativas de distribución que permitan alcanzar la distribución espacial ideal establecida por los expertos.

c. Cálculo del índice de desempeño del layout (IDL)

Finalmente, la obtención del índice de desempeño del layout permite conocer el actual posicionamiento de la distribución espacial de planta en estudio. El valor que toma el IDL oscila entre cero y uno.

$$IDL = \frac{\alpha \cdot Ifo + (1-\alpha) \cdot Ifs}{100}$$

$$IDL = \frac{(0.75)(0.2588) + (1-0.75)(0.2439)}{100}$$

$$IDL = 25.51\%$$

Interpretación: Los valores obtenidos en lfo (25.88%) y lfs (24.39%) han dado como resultado un IDL con un valor muy bajo (25.51%). En este caso hay un 74.49% por mejorar. Ante el resultado obtenido se debe plantear nuevos diseños de distribución, los cuales cumplan con el principio de la distancia mínima recorrida, optimizando de esa manera los tiempos de fabricación; y por ende la reducción de costos operativos en la empresa. Estas situaciones se verán reflejadas en un incremento de la productividad, al reducir los recursos empleados e incrementar los productos obtenidos.

3.4 Diagnóstico de Productividad

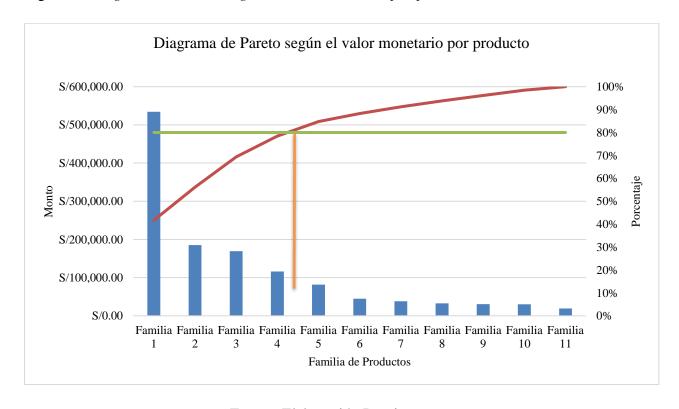
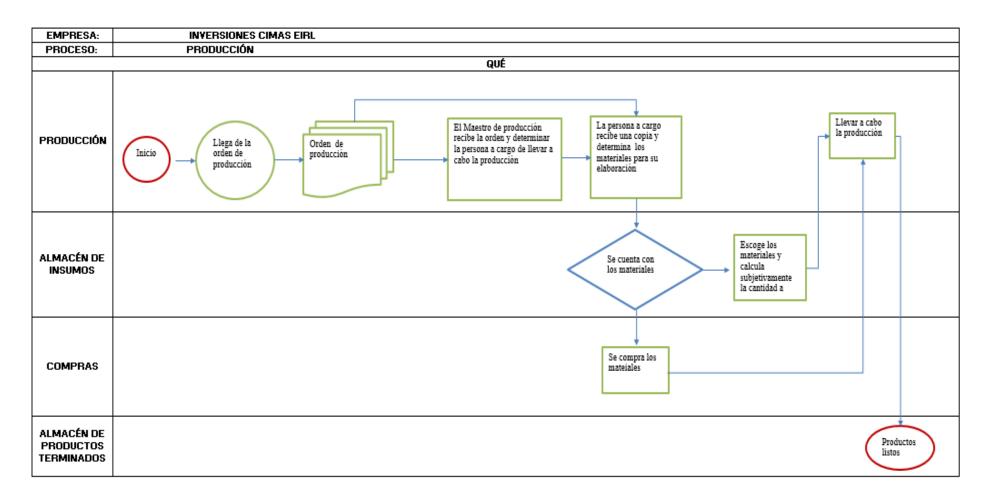

La empresa un taller de carpintería, por ello se pretende determinar este indicador en base a los productos que presentan un mayor porcentaje monetario desde el 2014-2018.

Tabla 7 Productos más vendidos 2014-2018

Producto	Familia		Monto	% Acumulado	% 80-20					
Cajas	Familia 1	S/	534,296.62	42%	80%					
Estacas	Familia 2	S/	185,222.48	56%	80%					
Reciclaje de Cajas	Familia 3	S/	169,227.28	69%	80%					
Parihuelas	Familia 4	S/	116,119.87	78%	80%					
Varios ferreteria	Familia 5	S/	81,548.41	85%	80%					
Postes	Familia 6	S/	44,994.09	88%	80%					
Tablones	Familia 7	S/	37,964.66	91%	80%					
Listones	Familia 8	S/	32,689.21	94%	80%					
Servicio de Mantenimiento	Familia 9	S/	30,489.93	96%	80%					
Mobiliario	Familia 10	S/	30,000.00	99%	80%					
Otros	Familia 11	S/	19,200.00	100%	80%					
Total S/ 1,281,752.53										

Fuente: Elaboración Propia

Figura 16 Diagrama de Pareto según el valor monetario por producto


Fuente: Elaboración Propia

Interpretación: En el gráfico se puede observar que el 80% de los ingresos monetarios de la empresa están conformado por los el 20% de los productos. En este caso son: Cajas, parihuelas, reciclaje de cajas, y estacas. Aun así, es necesario recordar que dentro de lo que producen solo están La familia 1, familia 2, familia 4 y familia 10. Lo demás forman parte de los servicios que ofrecen ya sea venta de madera o servicio de mantenimiento.

Figura 17 Diagrama General del Proceso de producción

Fuente: Elaboración Propia

Interpretación: En la presente imagen se visualiza el diagrama de procesos del área de producción de manera detallada. Desde que se recibe la orden de producción, se elabora la orden y pasa a ser almacenado.

Como se mencionó anteriormente el giro de la empresa se basa en la producción de tres familias de productos:

1. Familia 1: Cajas

2. Familia 2: Estacas

3. Familia 4: Parihuelas.

La familia 10, mobiliario, no se encuentran dentro de los productos con mayor rotación. Debido a que su producción es ocasional. Sin embargo, se lo toma en cuenta como parte de la fabricación. Al ser una familia poseen un procedimiento similar.

A continuación, analizará el flujo productivo de cada familia mediante los gráficos de procesos.

Familia 1 Cajas

Está conformado por:

- Cajas de Madera tipo PW de un solo canal
- Cajas de Madera tipo HQ
- Cajas de madera NX/NQ
- Cajas de Madera según medidas requeridas

A partir de las 20 observaciones realizadas se puedo sacar un promedio de cada actividad que conlleva el proceso de obtención de cajas de madera.

(Ver ANEXO n.° 9).

A continuación, se detallan las operaciones generalizadas para la obtención de cajas de madera mediante un gráfico de proceso.

Figura 18 Gráfico de Procesos de la obtención de Cajas de madera

GRÁFICA DEL PROCESO LA OBTENCIÓN CAJAS DE MADERA

Empresa: Inversiones Cimas E.I.R.L Nombre del producto: Cajas de madera Elaborado por: Nicol Mendo

Cantidad 100

Fecha:	13/05/2019

		Ac	ctual	Propi	iesto	Difen	e ncia
	RESUMEN TOTAL	Cantidad	Tiempo min	Cantidad	Tiempo	Cantidad	Tiempo
0	Operaciones	9	326.34				
$\stackrel{\triangle}{\Box}$	Transporte	12	155.43				
	Inspecciones	1	3.40				
	Demoras	0	0.00				
∇	Almacenamiento	1	5.46				
	TOTAL	23	490.62				
	Distancia Recorrida	124	.14 m		Pies		Pies

Paso	Detalles del Proceso	Método	Operación	Transporte	Inspección	Demoras	Almacén	Distancia en metros	Cantidad	Min /Unid
1	Requerimiento de la materia prima			ightharpoons			∇		333 pies	3.40
2	Transporte de la materia prima a la máquina garlopa 1	manual	0	\Rightarrow		D	∇	3.4 m	333 pies	7.93
3	Transporte de la materia prima a la máquina garlopa 2	manual	0	\Rightarrow		\Box	∇	7 m	333 pies	8.75
4	Procesamiento en la máquina garlopa 1			ightharpoons			∇		328 pies	24.42
5	Procesamiento en la máquina garlopa 2			\Rightarrow		D	∇		328 pies	24.50
6	Transporte desde la máquina garlopa 1 a la tableadora	manual	0	\Rightarrow		D	∇	8.28 m	16 listones	15.29
7	Transporte desde la máquina garlopa 2 a la tableadora	manual	0	\Rightarrow			∇	6.48 m	16 listones	8.13
8	Procesamiento en la máquina tableadora			\Rightarrow			∇		16 listones	20.08
9	Transporte a la máquina Cepilladora	manual	0	\Rightarrow			∇	4.06 m	16 listones	10.39
10	Procesamiento en la Cepilladora			\Rightarrow			∇		16 listones	52.21
11	Transporte al radial de brazo trozadora 1	manual	0	\Rightarrow			∇	9.98 m	16 listones	16.29
12	Procesamiento en el radial de brazo trozadora 1			\Rightarrow		D	∇		16 listones	33.01
13	Transporte de la materia prima a la máquina sierra circular 1	manual	0	\Rightarrow		D	∇	6.95 m	16 listones	9.63
14	Transporte de la materia prima a la máquina sierra circular 2	manual	0	\Rightarrow			∇	13 m	16 listones	17.79
15	Procesamiento en la máquina sierra circular			\Rightarrow		D	∇		350 pedazos de madera	38.13
16	Procesamiento en la máquina sierra circular 2			\Rightarrow		\Box	∇		350 pedazos de madera	39.75
17	Transporte desde la sierra circular 1 al área de ensamble	manual	0	\Rightarrow		\Box	∇	13.97 m	350 pedazos de madera	17.23
18	Transporte desde la sierra circular 2 al área de ensamble	manual	0	\Rightarrow		D	∇	20.52 m	350 pedazos de madera	15.88
19	Ensable			\Rightarrow		D	∇		100 cajas de madera	49.09
20	Transporte al área de forrado	manual	\circ	\Rightarrow		D	∇	29.1 m	100 cajas de madera	22.54
21	Forrado			\Rightarrow			∇		100 cajas de madera	45.15
22	Transporte al almacén	manual	0	\Rightarrow		\Box	∇	1.4 m	100 cajas de madera	5.56
23	Almacenamiento		\circ	\Rightarrow		\Box	$\overline{}$		100 cajas de madera	5.46

Fuente: Elaboración Propia

Interpretación: Mediante el gráfico de procesos se pudo detectar que durante todo el proceso de obtención de 100 cajas de madera se recorre una distancia total de 124.14 m. Así mismo se observa que se emplea 155.43 minutos (2 hr con 59 min), en transportar todo el material.

Familia 2 Estacas

En el caso de las estacas se realizan según el tipo de material requerido, ya sea de triplay o de madera; las medidas varían según los requerimientos de los clientes.

A partir de las 20 observaciones hechas. (Ver ANEXO n.° 10). Se obtuvo el siguiente gráfico de procesos, en el cual se detallan las actividades para la obtención de estacas.

Figura 19 Gráfico de Procesos de la obtención de Estacas

GRÁFICA DEL PROCESO LA OBTENCIÓN ESTACAS

Empresa: Inversiones Cimas E.I.R.L Nombre del producto: Estacas Elaborado por: Nicol Mendo Fecha: 13/05/2019

Cantidad 100

		Act	ual	Prop	uesto	Diferencia	
RESUMEN TOTAL		Cantidad	Tiempo	Cantidad	Tiempo	Cantidad	Tiempo
0	Operaciones	8	234.85				
\Rightarrow	Transporte	10	106.14				
	Inspecciones	1	5.79				
D	Demoras	0	0				
∇	Almacenamiento	1	5.24				
	TOTAL	20	352.02				
	Distancia Recorrida	61.0	9 m				

Paso	Detalles del Proceso	Método	Operación	Transporte	Inspección	Demoras	Almacén	Distancia en metros	Cantidad	Min/Unid
1	Requerimiento de la materia prima			\Rightarrow		\Box	∇		300 pies	5.79
2	Transporte de la materia prima a la máquina garlopa 1	manual	0	\Rightarrow		D	∇	3.3 m	300 pies	7.02
3	Procesamiento en la máquina garlopa 1	manual		\Rightarrow		\Box	∇		300 pies	25.10
4	Transporte desde la máquina garlopa 1 a la tableadora		0	\Rightarrow		D	∇	5.75 m	300 pies	7.59
5	Procesamiento en la máquina tableadora			ightharpoons		D	∇		33 listons	21.20
6	Transporte al radial de brazo trozadora 2	manual	\circ	\Rightarrow			∇	5.4 m	33 listones	8.05
7	Procesamiento en el radial de brazo trozadora 2	manual		\Diamond		D	∇		33 listones	20.65
8	Transporte de la materia prima a la máquina sierra circular 1		0	\Rightarrow		D	∇	9.15 m	500 estacas	15.77
9	Transporte de la materia prima a la máquina sierra circular 2	manual	0	\Rightarrow		D	∇	3.63 m	500 estacas	7.42
10	Procesamiento en la máquina sierra circular 1			\Diamond			∇		500 estacas	37.64
11	Procesamiento en la máquina sierra circular 2	manual		$\qquad \qquad $			∇		500 estacas	34.31
12	Transporte al radial de brazo trozadora 1		\circ	\Rightarrow			∇	7.93 m	500 estacas	16.42
13	Transporte al radial de carril	manual	0	\Rightarrow		D	∇	17.11 m	500 estacas	25.18
14	Procesamiento en el radial de brazo trozadora 1	manual		\Diamond		D	∇		500 estacas	37.06
15	Procesamiento en el radial de carril			ightharpoons		D	∇		500 estacas	36.40
16	Transporte desde el radial de brazo trozadora 1 al área de ensamble		0	\Rightarrow		D	∇	2.82 m	500 estacas	5.12
17	Transporte desde el radial de carril al área de ensamble	manual	0	\Rightarrow		D	∇	4.8 m	500 estacas	7.58
18	Empaque	manual		\Rightarrow		\Box	∇		1000 estacas	22.49
19	Transporte al almacén		0	\Rightarrow		D	∇	1.2 m	1000 estacas	5.99
20	Almacenamiento	manual		\Rightarrow		\Box	∇		1000 estacas	5.24

Fuente: Elaboración Propia

Interpretación: En el gráfico se pudo detectar que durante todo el proceso de obtención de 1000 estacas en una jornada laboral. Se recorre una distancia total de 61.09m. Así mismo se observa que se emplea 106.14 minutos (2 hr con 16 min), en transportar todo el material.

Familia 4 Parihuelas

Los tipos de parihuelas varían según las medidas requeridas. Mediante las 20 observaciones. (Ver ANEXO n.° 11). Se obtuvo el siguiente gráfico de procesos.

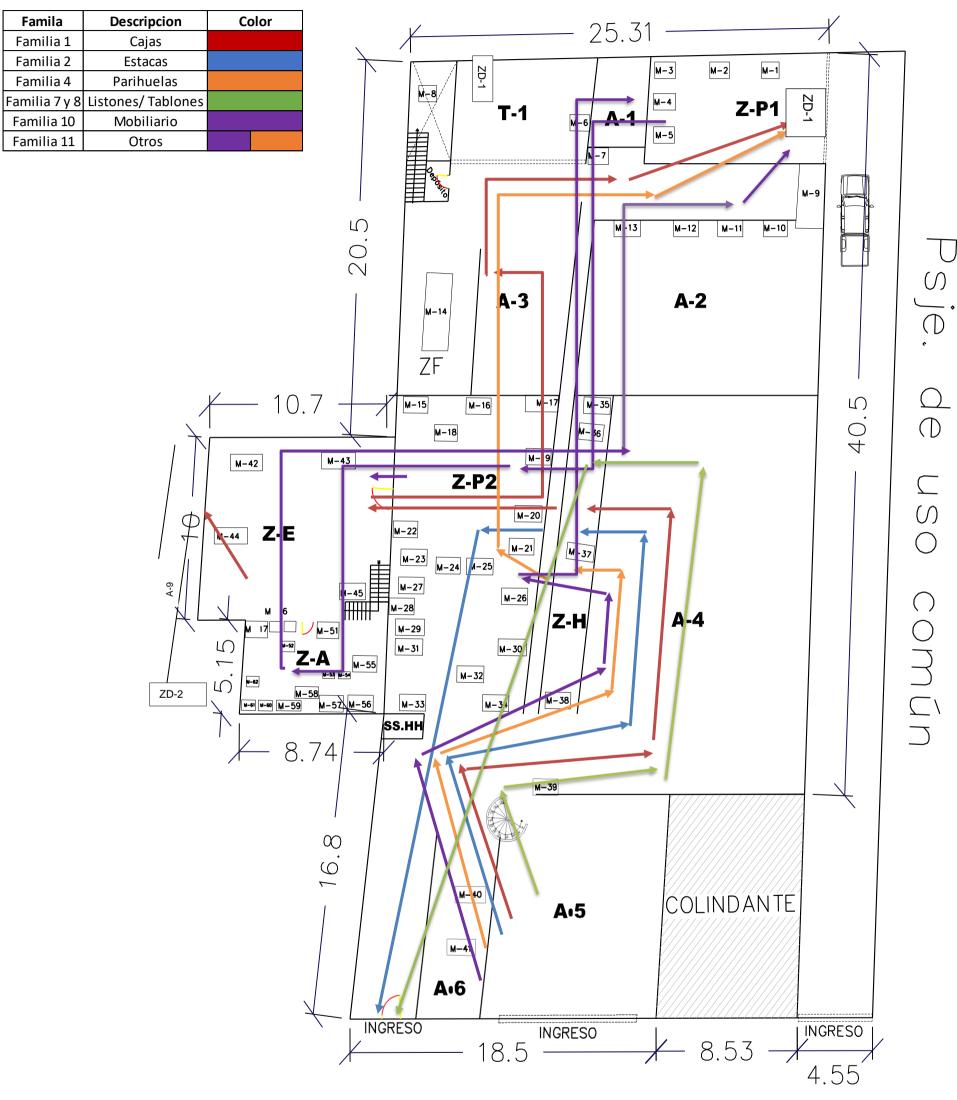
Figura 20 Gráfico de Procesos de la obtención de Parihuelas

GRÁFICA DEL PROCESO LA OBTENCIÓN DE PARIHUELAS

Nombre del producto: Parihuelas Elaborado por: Nicol Mendo 13/05/2019 Diferencia RESUMEN TOTAL Cantidad Cantidad Tiempo Cantidad Tie mpo Tiempo 310.00 Transporte 172.72 Inspecciones Demoras 0.00 Almacenamiento 24 490.07 Distancia Recorrida

								•		
Paso	Detalles del Proceso	Método	Operación	Transporte	Inspección	Demoras	Almacén	Distancia en metros	Cantidad	Min /Unid
1	Requerimiento de la materia prima			\Rightarrow			∇		2000 pies	3.38
2	Transporte de la materia prima a la máquina garlopa 1	manual	0	\Rightarrow		D	∇	3.3 m	2000 pies	9.08
3	Procesamiento en la máquina garlopa 1	manual		\Rightarrow			∇		2000 pies	20.97
4	Transporte desde la máquina garlopa 1 a la tableadora		0	ightharpoons		D	∇	6.58 m	2000 pies	10.11
5	Procesamiento en la máquina tableadora			ightharpoons			∇		2000 pies	20.12
6	Transporte a la máquina Cepilladora	manual	0	ightharpoons		D	∇	4.4 m	2000 pies	6.54
7	Procesamiento en la Cepilladora	manual		$\hat{\Box}$			∇		2000 pies	34.40
8	Transporte desde la cepilladora hacia el radial de brazo trozadora 2		0	\Rightarrow		D	∇	2.65 m	2000 pies	2.85
9	Transporte desde la cepilladora hacia el radial de brazo trozadora 2	manual	0				∇	10.95 m	2000 pies	16.66
10	Procesamiento en el radial de brazo trozadora 1			\Rightarrow		D	∇		2000 pies	38.49
11	Procesamiento en el radial de brazo trozadora 2	manual		$\hat{\Box}$		D	∇		2000 pies	34.92
12	Transporte desde el radial de brazo trozadora 1 hacia la máquina sierra circular 1		0	\Rightarrow		D	∇	5.05 m	2000 pies	7.27
13	Transporte desde el radial de brazo trozadora 2 hacia la máquina sierra circular 2	manual	0	\Rightarrow		D	∇	7.97 m	2000 pies	13.86
14	Procesamiento en la máquina sierra circular 1	manual		\Diamond		D	∇		300 listones	36.07
15	Procesamiento en la máquina sierra circular 2			$\hat{\Box}$			∇		1100 tablas	37.00
16	Transporte al marcado		0	\Rightarrow		D	∇	2.19 m	300 listones	4.95
17	Marcado	manual		$\hat{\Box}$		D	∇		300 listones	12.27
18	Transporte desde el marcado hacia la sierra cinta	manual	0	\Rightarrow		D	∇	18.7 m	300 listones	22.40
19	Procesamiento en la sierra cienta			$\hat{\Box}$		D	∇		300 listones	47.67
20	Transporte desde la sierra cinta al área de ensamble	manual	0	\uparrow		D	∇	25.6 m	300 listones	33.59
21	Transporte desde el la sierra circular 2 hacia el ensamble		0	\uparrow		D	∇	48.72 m	1100 tablas	43.38
22	Ensable y Sellado	manual		$\hat{\mathbb{T}}$		D	∇		100 parihuelas	28.09
23	Transporte al almacén		0	\Rightarrow		D	∇	1.1 m	100 parihuelas	2.03
24	Almacenamiento	manual	0	$\hat{\Omega}$		D			100 parihuelas	3.97

Fuente: Elaboración Propia



Interpretación: Mediante el gráfico de procesos se pudo detectar que durante todo el proceso de obtención de 100 parihuelas en una jornada laboral. Se recorre una distancia total de 137.21m. Así mismo se observa que se emplea 172.72 minutos (3 hr 27min), en transportar el material.

A continuación, se muestra el diagrama de recorrido de familias 1,2,4,7,8,10 y 11.

Figura 21 Diagrama de recorrido de las familias 1,2,4,7,8,10 11

Fuente: Elaboración Propia

Interpretación: En el gráfico se puede observar un desorden en el recorrido del flujo de producción, distancias muy estrechas entre máquinas, lo que ocasiona congestionamiento en el transporte, áreas de trabajo mal ubicadas, lo cual impide el flujo esbelto de personas y materiales e incrementa el tiempo de producción, debido a la gran cantidad de tiempo empleado en trasladarse de un centro de actividad a otro.

3.4.1 Indicadores de Productividad

Los siguientes indicadores serán aplicados a las familias de productos 1, 2 y 4.

Producción

Cantidad de bienes producidos en un periodo de tiempo (Zocón Alva, 2019).

Para calcular la producción se debe emplear la siguiente fórmula:

Ecuación 4 Indicador de Producción

$$Producci\'on = \frac{Tiempo\ de\ base\ (Tb)}{ciclo}$$

Fuente: Productividad y Competitividad (Carro Paz & Gonzalez Gómez, 2015)

Producción Familia 1

Mediante el gráfico de procesos se determinó que se producen 100 cajas de madera en un 490.62 minutos, siendo la estación de cepillado el cuello de botella (52.21 min) en la línea productiva. La producción en un día sería la siguiente:

Ecuación 5 Producción al día de la Familia 1

$$Producci\'on = \frac{480\frac{min}{d\~ia}*100\ unidades\ al\ d\~ia}{492.62\ min} = 98\ unidades\ al\ d\~ia$$

Fuente: Elaboración Propia

Interpretación: Según la ecuación se solo se fabrican 98 unidades en 480 min, lo que tiene una jordana laboral. Los empleados toman más tiempo del que deben para fabricar el pedido.

Producción Familia 2

Mediante el gráfico de procesos se determinó que se producen 1000 estacas de madera en 352 minutos, siendo la estación de sierra circular el cuello de botella (37.64 min) en la línea productiva. La producción en un día sería la siguiente:

Ecuación 6 Producción al día de la Familia 2

$$Producci\'on = rac{480 rac{min}{d\'aa} * 1000 unidades al d\'aa}{492.62 min} = 1363 unidades al d\'aa$$

Fuente: Elaboración Propia

Interpretación: En una jordana laboral completa (480 minutos) se pueden fabricar 1363 unidades.

Producción Familia 4

Mediante el gráfico de procesos se determinó que se producen 100 parihuelas de madera en 490 minutos, siendo la estación de sierra cinta el cuello de botella (47.67 min) en la línea productiva. La producción en un día sería la siguiente:

Ecuación 7 Producción al día de la Familia 4

$$Producci\'on = rac{480rac{min}{d\'a}*1000\ unidades\ al\ d\'a}{490\ min} = 98\ unidades\ al\ d\'a$$

Fuente: Elaboración Propia

Interpretación: Según la ecuación se fabrican 98 unidades en 480 min, lo que tiene una jordana laboral. Los empleados toman más tiempo del que deben para fabricar el pedido.

Productividad

La productividad se representa como la relación entre resultados obtenidos y recursos empleados:

Ecuación 8 Indicador de Productividad

$$Productividad = \frac{Salidas}{Entradas}$$

Fuente: Productividad y Competitividad (Carro Paz & Gonzalez Gómez, 2015)

En el presente trabajo la productividad se desarrolla en función al factor de producción., acá encontramos: La mano de obra, capital, materia prima, y energía. En este caso se tomará en cuenta la productividad de mano de obra:

Productividad de Mano de Obra

El cálculo para obtener este indicador se representa en la siguiente fórmula:

Ecuación 9 Productividad de Mano de Obra

$$Productividad\ M.P = \frac{Producción\ (productos\ obtenidos\ por\ hora)}{N\'umero\ de\ operarios\ empleados(hombre)}$$

Fuente: Elaboración Propia

Productividad Mano de Obra Familia 1

La información obtenida mediante el gráfico de procesos indica, que se producen 100 cajas de madera en un día, siendo la estación de cepillado el cuello de botella (52.21 min) en la línea productiva. Para su obtención se emplean 7 operarios.

Ecuación 10 Productividad Mano de obra Familia 1

$$Productividad \ M.O \ F1 = \frac{100 \ cajas \ de \ madera \ por \ día}{7 \ operarios}$$

Productividad de M.O
$$F1 = 14 \frac{unidades}{operario \ x \ día}$$

Fuente: Elaboración Propia

Interpretación: Un operario puede elaborar 14 unidades en un día.

Productividad Mano de Obra Familia 2

La producción en un día es de 1000 estacas, siendo la estación de sierra circular el cuello de botella en la línea productiva con 37.64 min. Para su obtención es emplean 7 operarios.

Ecuación 11 Productividad Mano de obra Familia 2

$$Productividad\ M.\ O\ F2 = \frac{1000\ estacas\ por\ día}{7\ operarios} = 143\frac{unidades}{operario\ x\ día}$$

Fuente: Elaboración Propia

Interpretación: Un operario puede elaborar 143 unidades en un día.

Productividad Mano de Obra Familia 4

La producción en un día es de 100 parihuelas en un día, siendo la estación de sierra cinta el cuello de botella en la línea productiva con 47.67 min. Para su obtención es emplean 6 operarios.

Ecuación 12 Productividad Mano de obra Familia 3

$$Productividad\ M.\ O\ F4 = \frac{100\ parihuelas}{6\ operarios} = 17\ \frac{unidades}{operario\ x\ día}$$

Fuente: Elaboración Propia

Interpretación: Un operario puede elaborar 17 unidades en un día.

Actividades Productivas

Un trabajo productivo en el área de manufactura es aquel que añade valor al elemento en producción, con el fin de obtener un producto terminado, tangible y almacenable; el cual tiene un valor en el mercado (Encolombia, 2014). Para lograr su obtención es necesario realizar previamente un diagrama de análisis de proceso. Las actividades productivas se pueden clasificar en: Inspección, producción, operación-inspección, verificación y operación (Sisniegas, 2016). A continuación, se muestra el cálculo para la obtención de este indicador.

Ecuación 13 Indicador de Actividades Productivas

Fuente: Actividades Productivas e Improductivas (Mendoza, 2014).

Para su obtención se tomará como base los gráficos de procesos realizados.

Actividades Productivas Familia 1

Ecuación 14 Actividades Productivas Familia 1

$$A.P.F1 = \frac{(326.34 \min + 3.40 \min)}{(326.4 \min + 155.43 \min + 3.40 \min + 5.46 \min)} = 67.21\%$$

Fuente: Elaboración Propia.

Interpretación: Mediante el gráfico de procesos se pudo determinar que el 67.21% de las actividades totales en la fabricación de 100 cajas de madera son productivas. Se desea poder incrementar dicho porcentaje disminuyendo el tiempo empleado en las actividades improductivas como es el transporte, demora y almacenaje, mediante el nuevo diseño de distribución de planta propuesto.

Actividades Productivas Familia 2

Ecuación 15 Actividades Productivas Familia 2

$$A.P.F2 = \frac{(234.85 \min + 5.79 \min)}{(234.85 \min + 106.14 \min + 5.79 \min + 5.24 \min)}$$

$$A.P.F2 = 68.36\%$$

Fuente: Elaboración Propia.

Interpretación: Mediante el gráfico de procesos se pudo determinar que el 68.36% de las actividades totales en la fabricación de 100 estacas son productivas. Se desea poder incrementar dicho porcentaje disminuyendo el

tiempo empleado en las actividades improductivas como es el transporte, demora y almacenaje, mediante el nuevo diseño de distribución de planta propuesto.

Actividades Productivas Familia 4

Ecuación 16 Actividades Productivas Familia 4

$$A.P.F4 = \frac{(310 \min + 3.38 \min)}{(310 \min + 172.72 \min + 3.38 \min + 3.97 \min)}$$

$$A.P.F4 = 63.95\%$$

Fuente: Elaboración Propia.

Interpretación: Mediante el gráfico de procesos se pudo determinar que el 63.95% de las actividades totales en la fabricación de 100 parihuelas son productivas. Se desea poder incrementar dicho porcentaje disminuyendo el tiempo empleado en las actividades improductivas como es el transporte, demora y almacenaje, mediante el nuevo diseño de distribución de planta propuesto.

Actividades Improductivas

Es aquel trabajo que no añade valor directamente dentro de la cadena productiva (Encolombia, 2014). Para lograr su obtención es necesario realizar previamente un diagrama de análisis de proceso. Las actividades improductivas en un área de producción pueden ser: Transporte, Demora, y almacenaje (Sisniegas, 2016).

Ecuación 17 Indicador de Actividades Improductivas

% de Actividades Improductivas =
$$\frac{\sum \left[\bigcirc \nabla \Box \right]}{\sum \left[\bigcirc \Box \Box \right] \nabla \Box}^{\times 100}$$

Fuente: Actividades Productivas e Improductivas (Mendoza, 2014).

Actividades Improductivas Familia 1

Ecuación 18 Actividades Improductivas Familia 1

$$A.IP.F1 = \frac{(155.43 min + 5.46 min)}{(326.4 min + 155.43 min + 3.40 min + 5.46 min)}$$

$$A.IP.F1 = 32.79\%$$

Fuente: Elaboración Propia.

Interpretación: Mediante el gráfico de procesos se obtuvo que el 32.79% de las actividades totales en la fabricación de 100 cajas de madera son improductivas. Indicador que demuestra que más de la cuarta parte del tiempo es empleado en el transporte, demora y almacenaje. Se desea disminuir dicho porcentaje mediante el nuevo diseño de distribución de planta propuesto.

Actividades Improductivas Familia 2

Ecuación 19 Actividades Improductivas Familia 2

$$A.IP.F2 = \frac{(106.14 min + 5.24 min)}{(234.85 min + 106.14 min + 5.79 min + 5.24 min)}$$

$$A.IP.F2 = 31.64\%$$

Fuente: Elaboración Propia.

Interpretación: Mediante el gráfico de procesos se obtuvo que el 31.64% de las actividades totales en la fabricación de 100 estacas son improductivas. Indicador que demuestra que más de la cuarta parte del tiempo es empleado en el transporte, demora y almacenaje. Se desea disminuir dicho porcentaje mediante el nuevo diseño de distribución de planta propuesto.

Actividades Improductivas Familia 4

Ecuación 20 Actividades Improductivas Familia 4

$$A.IP.F4 = \frac{(172.72 min + 3.97 min)}{(310 min + 172.72 min + 3.38 min + 3.97 min)}$$

$$A.IP.F4 = 36.05\%$$

Fuente: Elaboración Propia.

Interpretación: Mediante el gráfico de proceso se obtuvo que el 36.05% de las actividades totales en la fabricación de 100 parihuelas son improductivas. Indicador que demuestra que más de la cuarta parte del tiempo es empleado en el transporte, demora y almacenaje. Se desea disminuir dicho porcentaje mediante el nuevo diseño de distribución de planta propuesto.

3.5 Resultados del Diagnóstico Actual

Tabla 8 Resultado del Diagnóstico Actual

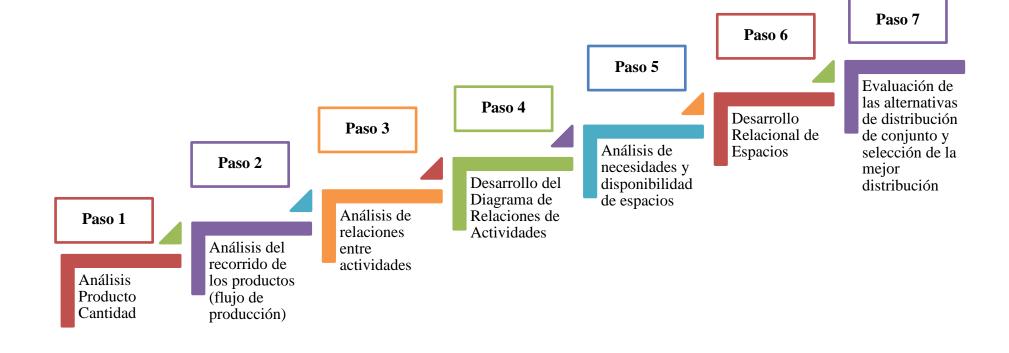
VARIABLE	DEFINICIÓN CONCEPTUAL	DIMENSIONES	INDICADORES		ACTUAL	
VARIABLE INDEPENDIENTE: DISTRIBUCIÓN	Organización de los centros de actividad de una empresa	Distribución de planta	Índice de desempeño del layout (IDL)		25.51%	
DE PLANTA	(Rivera, Cardona, Vásquez &		Índice de Flujo Operativo (IFO)		25.88%	
	Rodríguez, 2012).		Índice de Relaciones Subjetivas (IFS)		24.39%	
				FAMILIA 1 Cajas	FAMILIA 2 Estacas	FAMILIA 4 Parihuelas
			Producción	98 unidades al día	1363 unidades al día	98 unidades al día
VARIABLE DEPENDIENTE:	Relación entre la producción obtenida y los	Productividad	Productividad de mano de obra	14 cajas de madera/operario x día	143 estacas/operario x día	17 parihuelas/operario x día
PRODUCTIVIDAD	recursos empleados en su obtención (Zocón Alva, 2019).	Troductividad	Actividades Productivas	67.21%	68.36%	63.95%
			Actividades Improductivas	32.79%	31.64%	36.05%

Fuente: Elaboración Propia.

Interpretación: En el cuadro anterior se observa que existe una mala distribución de planta, ya que el IDL obtuvo un valor muy bajo, llegando a la conclusión que existe 74.49% por mejorar. Ante esto se puede decir que la empresa requiere de un nuevo diseño de distribución, con el fin de optimizar los tiempos de fabricación y por ende incrementar la productividad de la empresa.

3.6 Diseño de la propuesta de distribución

3.6.1 Metodología de Planeamiento Sistemático de Distribución (PSD)


Para realizar las alternativas de diseño de distribución de planta se ha escogido la metodología de Planeamiento Sistemático de Distribución (PSD), técnica de resolución de problemas de distribución de planta. Fue desarrollada por Richard Muther en los años 60; la cual tiene un procedimiento sistemático multicriterio, el cual puede ser utilizado para distribuciones de planta nuevas o existentes. Permite dar solución al problema de distribución de planta, determinando la opción óptima de distribución espacial.

A continuación, se detalla los pasos para desarrollar la presente metodología, debido a que es sistemático sigue un orden jerárquico.

- Paso 1: Análisis Producto Cantidad
- Paso 2: Análisis del recorrido de los productos (flujo de producción)
- Paso 3: Análisis de relaciones entre actividades
- Paso 4: Desarrollo del Diagrama de Relaciones de Actividades
- Paso 5: Análisis de necesidades y disponibilidad de espacios
- Paso 6: Desarrollo Relacional de Espacios
- Paso 7: Evaluación de las alternativas de distribución de conjunto y selección de la mejor distribución.

En la siguiente figura se puede observar la estructura general del PSD, y su composición.

Figura 22 Etapas del *Planeamiento Sistemático de la Distribución (PSD)*

Fuente: Planificación y Proyección de la empresa Industrial (Muther, 1968)

Interpretación: En el presente gráfico se muestran los cinco pasos para realizar la metodología del planeamiento sistemático de Distribución, el cual a continuación se desarrolla a más detalle.

3.6.2 Paso 1: Análisis Producto – Cantidad (P-Q)

Al ser la empresa una carpintería los procesos que llevan están orientados al trabajo en taller. No presenta una producción continua, y trabajan a pedido. Por ende, procesan varios productos. Es por ello que fueron clasificados previamente en familias, y clasificados según el valor monetario anual de cada uno. A continuación, se presenta una gráfica donde se ha ordenado a las familias de manera decreciente.

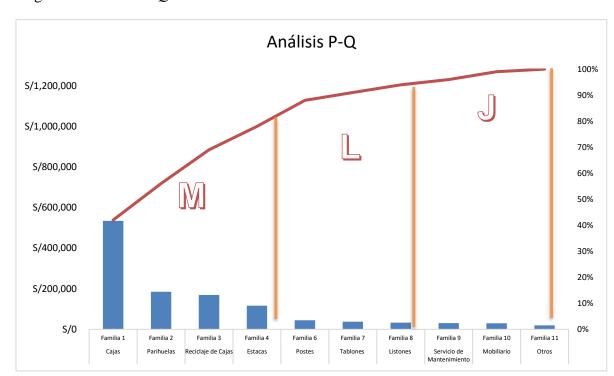


Figura 23 Análisis P-Q

Fuente: Elaboración Propia

Interpretación: En el gráfico se puede observar que las familias de productos situados en la zona M tienen una producción en cadena, los de la zona J requieren un trabajo manual y los ubicados entre la zona M y J se fabricaran combinando tipos y técnicas de producción. En la parte superior se muestra la forma de establecer la curva en la gráfica. Primero van los productos de mayor cantidad de fabricación (M - 80%-20%), luego va descendiendo (L - 95%-15%), y por último desciende hasta los de menor fabricación (J-100%-5%).

3.6.3 Paso 2: Análisis del recorrido de los productos (Flujo de producción)

La distribución de la empresa en la actualidad está orientada al proceso. A raíz de lo identificado se pretende presentar alternativas de distribución planta, orientadas al producto, ya que en este tipo se maneja la definición de manufactura esbelta. Por ello existen técnicas de análisis de flujo apropiadas, para hacer de una distribución orientada al proceso, una distribución orientada al producto.

• Diagrama de Cuerdas

Tabla 9 Rutas de las familias de productos

Famila	Descripcion	N°	Rutas (secuencia de operación)	Color de ruta
Familia 1	Cajas	1	DNKMÑRBE	
Familia 2	Estacas	2	DNKMISCE	
Familia 4	Parihuelas	3	DNKLRBE	
Familia 7 y 8	Listones/ Tablones	4	DNSCE	
Familia 10	Mobiliario	5	DNJMOHRC	
Familia 11	Otros	6	DNKMOHRC	

Fuente: Elaboración Propia

Interpretación: En la presente tabla se muestra las alternativas de las rutas de la familia de productos, definido mediante el diagrama de cuerdas.

Tabla 10 Alternativas de ruteo óptimos

Alternativas de distribución	Rutas (secuencias de operación)
1	DNKMLRÑOHJISCEB
2	DNKJMIOÑSLHRCEB
3	D N K M O I L S Ñ J H R B E C

Fuente: Elaboración Propia

Interpretación: En la presente tabla se muestra de todas las rutas las tres más optimas, definido mediante el diagrama de cuerdas.

Figura 24 Ruteo óptimo 1

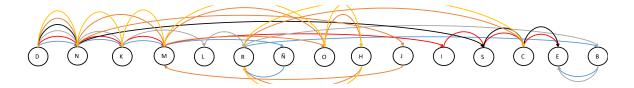
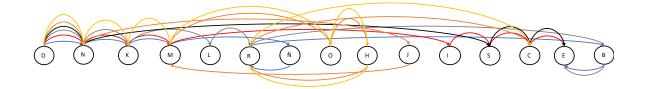
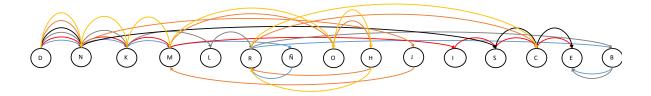




Figura 25 Ruteo óptimo 2

Fuente: Elaboración Propia

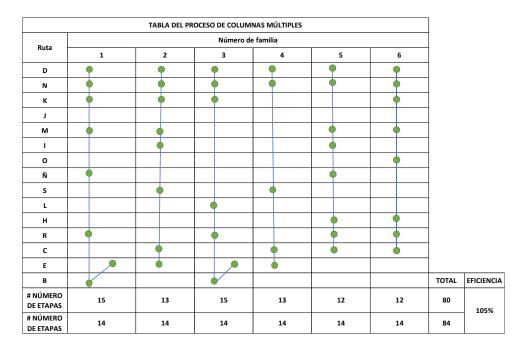
Figura 26 Ruteo óptimo 3

Fuente: Elaboración Propia

Tabla 11 Cuadro resumen de ruteos óptimos

Familia de productos	Ruteo óptimo 1	Ruteo óptimo 2	Ruteo óptimo 3						
	Número de etapas recorridas								
1	15	17	13						
2	13	13	15						
3	15	15	13						
4	13	13	15						
5	12	30	26						
6	12	18	14						
Total de etapas	80	106	96						
Total de etapas mínimas	84	84	84						
Eficiencia	105%	79%	88%						

Fuente: Elaboración Propia


Interpretación: Como se puede observar la alternativa 1 presenta el ruteo óptimo con una eficiencia del 105%. Esto permitirá tener un alcance de las distribuciones.

• Tabla de proceso de columnas múltiples

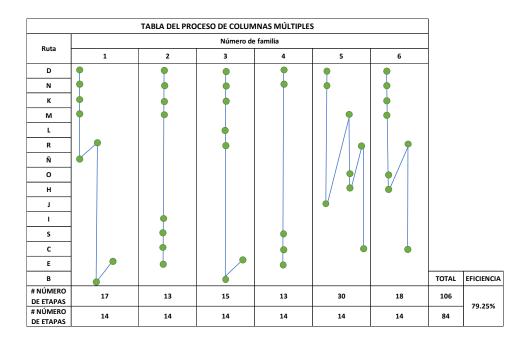

Con la información de los diagramas de rutas, se partió a realizar la tabla de proceso para cada familia de productos.

Figura 27 Tabla de proceso de columnas múltiples – Ruteo Óptimo 1

Fuente: Elaboración Propia

Figura 28 Tabla de proceso de columnas múltiples – Ruteo Óptimo 2

Fuente: Elaboración Propia

TABLA DEL PROCESO DE COLUMNAS MÚLTIPLES Ruta • • М 0 1 L s Ñ J н R В Ε TOTAL EFICIENCIA С # NÚMERO 14 15 13 15 26 14 97 DE ETAPAS # NÚMERO 13 DE ETAPAS

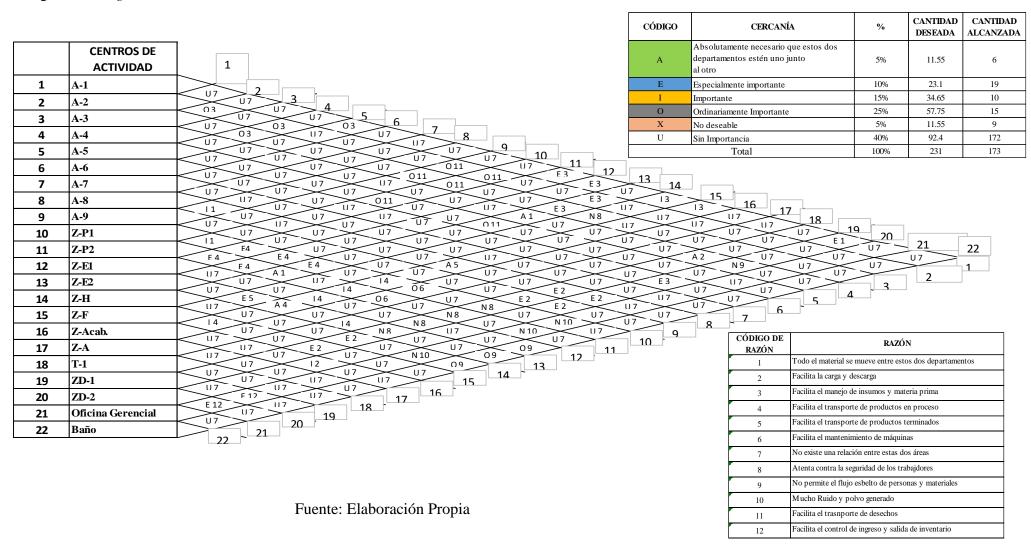
Figura 29 Tabla de proceso de columnas múltiples – Ruteo Óptimo 3

Interpretación: Con la técnica de la tabla de proceso se puede validar que el ruteo óptimo 1 es la mejor alternativa de distribución determinada. Esto nos permitirá tener un alcance de cómo llevar a cabo las propuestas de distribución.

3.6.4 Paso 3: Análisis de relaciones entre actividades

En este paso se analizará la proximidad entre centros de actividad, mediante la opinión de expertos. Es decir, la relevancia o insignificancia de cercanía entre dos áreas, considerando factores como la seguridad, transporte, entre otros (Fernández, 2017). Para su elaboración se tomó como base el cuestionario. (Ver Anexo 7).

El número total de relaciones entre centros de actividad se determinó mediante la siguiente fórmula:


Ecuación 21 Cantidad de relaciones entre dos centros de trabajo

$$N = \frac{n(n-1)}{2} = \frac{22(22-1)}{2} = 231$$

Fuente: Elaboración Propia

Figura 30 Diagrama de relación de actividades

Interpretación: En la presente imagen se muestra la relación que existe entre los 22 centros de actividad, evaluados mediante 6 códigos de cercanía (relación estrictamente cercana, relación especialmente importante, relación importante, ordinariamente importante, relación no deseable de cercanía, relación sin importancia). Dichos códigos tienen a su lado un número lo cual determina la razón por la cual recibió la codificación.

3.6.5 Paso 4: Desarrollo del Diagrama de Relaciones de Actividades

Una vez realizado el análisis del recorrido de los productos (flujos de producción) y el diagrama de relación de actividades. Se procede a unir estos dos pasos mediante:

Hoja de trabajo

Tabla 12 Hoja de trabajo de relaciones de actividades

					HOJA DE T	RABAJO	
	CENTRO DE ACTIVIDAD	Α	E	I	0	х	U
1	A-1		12,13,20	15,16			2,3,4,5,6,7,8,9,10,11,14,17,18,19
2	A-2		14		3,5,6,10,11		1,4,6,7,8,9,12,13,15,16,17,18,19,20
3	A-3		14		2,4,10,11	15	1,4,6,7,8,9,12,13,16,17,18,19,20
4	A-4	14,19				0	3,2,1,5,6,7,8,9,10,11,12,13,15,16,17,18,19
5	A-5				3,2,11,14		4,1,6,7,8,9,10,12,13,15,16,17,18,19,20
6	A-6		20		1		,145,4,3,2,1,6,8,9,10,11,12,13,1,15,16,17,18,19
7	A-7						6,5,4,3,2,1,8,9,10,11,12,13,14,15,16,17,18,19,20
8	A-8	16	20,19	9			7,6,5,4,3,2,1,9,10,11,12,13,14,15,17,18,19,20
9	A-9		20,19	8			8,7,6,5,4,3,2,1,10,11,12,13,14,15,16,17,18,19,20
10	Z-P1		12,13,14,11	16	3,17,2	21,19	9, 8,7,6,5,4,1,11,13,15,18,20
11	Z-P2	14	13,12,10	16	5,17,3,2,22	21,19	10,9,8,7,6,4, 1,13,15,18,20
12	Z-E1	16	11,13,1			19	9, 8,7,6,5,4,3,2,13,14,15,16,17,18,20
13	Z-E2	16	11,15,10,1	18	22	19	12,9,8,7,6,5,4,3,2,14,17,20
14	Z-H	11,4	10,19,3,2		5,22	21	13,12,9,8,7,6,1,15,16,17,18,20
15	Z-F		13,19	1,16		3	14,12,11,10,9,8,7,6,5,4,2,17,18,20
16	Z-Acab.	12,13, 8		20,11,10,1,15			14,12,9,7,6,5,4,3,2,17,18,19,20
17	Z-A				11,10		16,15,14,13,12,9,8,7,6,5,4,3,2,1,18,19,20
18	T-1			13			17,16,15,14,12,11,10,9,8,7,6,5,4,3,2,1,19,20
19	ZD-1	4	15,14,9,8,21	13		10,11	18,17,16,9,8,7,6,5,4,3,2,1,20
20	ZD-2		6,1,9,8,21	16		10,11	19,18,17,15,14,13,12,11,10,9,8,7,5,3,2
21	Oficina Gerencia	<u></u>	19,20	_		14,11,10	19,18,17,16,15,9,8,7,6,5,4,3,2,1
22	Baño				13,14,11		19,18,17,16,15,11,10,9,8,7,6,5,4,3,2,1

Fuente: Elaboración Propia

Interpretación: La hoja de trabajo es una muestra de las relaciones que existentes entre centros de actividad, la cual es una clave para la realización del diagrama adimensional de bloques.

• Diagrama Adimensional de bloques

Este diagrama permite proponer alternativas de distribución y es resultado de la relación de actividades y la hoja de trabajo. Se denomina adimensional porque no se toma en cuenta las áreas requeridas para cada centro de actividad.

A continuación, se muestran las alternativas de distribución realizadas.

Figura 31 Diagrama Adimensional de Bloques Alternativa 1

		ALTERNATIVA 1	1- PRIMER PISO		1	1		ALTERNATIVA	1- PRIMER PISO	
	A=0 E=12,13,2	A=0 E=11,10		A=4 E=15,14,	1		A=16 E=20, 19			
	A-0 E-12,13,2	A=0 ,		9,8,21			A-10 E-20, 19			
	1	18	9	19			8			
	X=0	X=0	X=0 O=1.16 O=0	X=10,11			X=0			
	I=15,16 O=	I=13 O=0	O=1,16 O=0	I=13 O=0			I=9 O=0			
	A=0 E=0									
	22									
	X=0 I=0 O=13,14,11									
	A=0 E=13.19	1-0 5 12 11 12 1]	
	A=0	A=0 E=12,11,13,1								
	15	12								
	X=3	X=19								
	I=1,16 O=0	I=1,16 O=13								
	A=12,13, E=13.19	A=16 E=11,15,10,1								
	16	13								
	X=0 I=20.11.10.1.15 O=0	I=18 O=22								
E=13,12,10 E=14	A=14 E=13,12,10	A=10, E=10,19,3,2			A:	=4 E=11,10				
						_				
2 x=0	11 X=21,19	14				9 X=0				
0=3.5.6.1	O=5.17.3.	X=21			0:	=1,16 O=0				
I=0	I=16 A=14 E=12,13,1	I=0 O=5,22 A=0 F=0				=4 E=11,10				
A=0 E=14	A=14 L-12,13,1 4,11	A=0 E=0								
3	10	17				9 X=0				
X=15	X=21,19	X=19								
O=0,2,4,1	I=16 O=3,17,2	I=0 O=11,10			0:	=1,16 O=0				
A=0 E=0	A=0 E=20	A=14,19 E=0					A=0 E=19,20			
22	6	4					21			
X=0	X=0	X=0					X=11,14,10			
I=0 O=13,14,11		I=0 O=0					I=0 O=0			
A=0 E=0	A=0 E=0	A=0 E=6,1,9,								
5	7	20								
X=0	X=0	X=10 11 O=0								
I=0 0-3 2 11 14		O=0 I=16								

Interpretación: En la presente imagen se puede visualizar la opción 1, en la cual en base a la hoja de trabajo se determina un bosquejo de distribución adimensional.

Figura 32 Diagrama Adimensional de Bloques Alternativa 2

	[Al	LTERNATIVA 2	2- PRIME	R PISO			1		ſ				AL	LTERNA	TIVA 2-	SEGUNDO	PISO	
		A=0 E	E=12,13,2	A=0		A=0		A=4	E=15,14,			•	A=0		E=0	A=0		E=0			
									9,8,21												
		1			18		1		19					7			7				
		X=0			X=0		X=0		=10,11					X=0			X=0				
		I=15,16	O= E=0	I=13		I=15,16	6 O=0	I=13	O=0				I=0		O=0	I=0		O=0			
		A=0	E=U																		
		22	2																		
		X=0	:0																		
		I=0 O=:	13,14,11			1						ŀ									
		A=0	E=0	A=16	E=20, 19																
		15	5		8																
		X=:		,	X=0																
		I=1,16	O=0	I=9	O=0																
		A=12,13,	E=0	A=4	E=11,10																
		16			9																
			=0 0=0		X=0																
		I=20,11,10,),1,15	O=1,16	O=0																
A=16	E=11,15,10,1	A=14 E=	=13,12,10	A=10,	E=10,19,3,2	E=13,12	2,10 E=14				A=0 E=	12,11,13,1									
	13	11	1		14		2				1	2									
	X=19		=21,19		X=21		X=0				X=	=19									
I=18	O=22	I=16	O=5,17,3,	I=0	O=5,22	I=0	O=3,5,6,1				I=1,16	O=13									
A=0	E=20	A=14 E	=12,13,1 4,11	A=10,	E=10,19,3,2	A=0	E=14				A=16	E=20, 19									
	6	10			14		3 X=15				8	3									
	V-0	X:	=21,19		X=21						X=0										
I=0	O=1	I=16	O=3,17,2	I=0	O=5,22	I=0	O=0,2,4,1				I=9	O=0									
A=0	E=0	A=0	E=0	A=14,1	19 E=0								A=0	E=	19,20						
	22	5	,		4									21							
	X=0	X=0	:0		X=0									=11,14,	10						
I=0	O=13,14	_{I=0} O=	3,2,11,14	I=0	O=0								I=0		O=0						
A=0	E=0	A=0	E=0	A=0	E=6,1,9,																
	17	5	,		20																
	X=19	X=0	:0		X=10 11																
I=0	O=11,10	I=0	-2 2 11 14	I=16	2-2	J															

Interpretación: En la presente imagen se puede visualizar la opción 2, en la cual en base a la hoja de trabajo se determina un bosquejo de distribución adimensional.

Figura 33 Diagrama Adimensional de Bloques Alternativa 3

	Γ			Al	LTERNATIVA	3- PRIME	R PISO								Al	LTERNA	TIVA 1	- SEGUNDO PISO	
		A=0	E=12,13,2	A=0	E=0	A=0	E=0	A=4	E=15,14,			A=0		E=0	A=0		E=0		\Box
									9,8,21										
			1		18		18		19				7			7			
			X=0		X=0 O=0		X=0 O=0		=10,11				X=0			X=0			
	F	I=15,1		I=13		I=13	0=0	I=13	O=0			I=0		O=0	I=O		O=0		
		A=0	E=0																
			22																
			X=0																
	L	I=O	0=13,14,11															•	
		A=10,	E=10,19,3,2	A=14,1	L9 E=0														
			14		4														
			X=21		X=0														
			O=5,22	I=0	O=0														
A=16 E=11,1	5,10,1	A=10,	E=10,19,3,2	A=14,1	L9 E=0														
13			14		4														
X=19			X=21		X=0														
I=18 O=2	-	I=16	0=5,22	I=0	O=0			l											
A=0 E=12,11,	13,1	A=14	E=12,11,13,	A=14	E=12,11,13	E=13,1	2,10 E=14			A=0	E=0								
12			11		10		2			1	5								
X=19			X=21,19		X=21,19		X=0			x	=3								
I=1,16 O=1	3		O=5,17,3,2,22	I=16	O=3,17,2	I=0	O=3,5,6,1			I=1,16	O=0								
A=0 E=	20	A=14	E=12,11,13,	A=14	E=12,11,13	A=0	E=14			A=12,13	, E=0								
6			11		10		3 X=15			1	6								
X=0			X=21,19		X=21,19						X=0								
I=O	0=1	I=16	O=5,17,3,2,22	I=16	O=3,17,2	I=0	O=0,2,4,1			I=20,11,10	,1,15 O=0								
A=0	E=0	A=4	E=11,10	A=4	E=11,10					A=16	E=20, 19	A=0	E=1	9,20					
22			9		9						В		21						
X=0			X=0		X=0					X=	:0	X	=11,14,10)					
I=0 O=1	3,14	I=16	O=0	I=16	O=0					I=9	O=0	I=0	(D=0					
A=0 E	=0	A=0	E=0	A=0	E=6,1,9,														
17			5		20														
X=19			X=0		X=10.11					1									
I=0 O=11	.10	I=0	O=3 2 11 14	I=16	O=0														

Interpretación: En la presente imagen se puede visualizar la opción 3, en la cual en base a la hoja de trabajo se determina un bosquejo de distribución adimensional.

3.6.6 Paso 5: Análisis de necesidades y disponibilidad de espacios

En este paso se determinará el área requerida por cada centro de actividad.

Se realizó una visita técnica con el fin de determinar el área total requerida para llevar a cabo las actividades productivas.

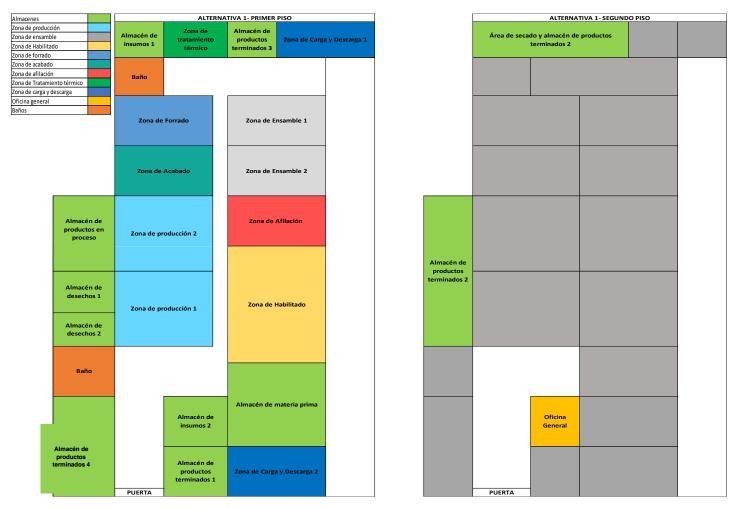
A continuación, se muestra el cuadro resumen de la superficie total requerida.

Tabla 13 Superficie total requerida

CODIGO	DESCRIPCIÓN	MED	DIDAS	SUPERCIFICII
CODIGO	DESCRIPCION	Largo	Ancho	TOTAL (m2)
	MANUF	ACTURA		•
ZONA DE PRO	DUCCIÓN DE MOBILIARIOS (Z-P1)			
M-2	Lijadora grande	2.00 m	1.36 m	2.72 m2
M-3	Aspiradora	1.70 m	0.68 m	1.16 m2
M-4	Espigadora	1.38 m	1.14 m	1.57 m2
M-5	Escopladora múltiple	2.46 m	1.90 m	4.67 m2
M-29	Lijadora de discos 1	0.91 m	0.65 m	0.59 m2
M-31	Lijadora de discos 2	0.92 m	1.37 m	1.26 m2
TOTAL				11.98 m2
ZONA DE PRO	DUCCIÓN DE OTROS PRODUCTOS (Z-P2)			
M-1	Duplicador de torno	2.44 m	0.90 m	2.20 m2
M-7	Cepilladora manual	0.75 m	0.61 m	0.46 m2
M-11	Taguradora	1.20 m	0.80 m	0.96 m2
M-15	Tupi	0.84 m	1.10 m	0.92 m2
M-18	Tupi	0.99 m	1.00 m	0.99 m2
M-23	Tupi	1.50 m	0.77 m	1.16 m2
M-27	Machimbradora	3.21 m	1.36 m	4.37 m2
M-35	Torno	0.81 m	0.43 m	0.35 m2
M-41	Sierra Cinta	1.18 m	0.71 m	0.84 m2
M-49	Taladro 1	0.55 m	0.29 m	0.16 m2
M-50	Taladro 2	0.38 m	0.20 m	0.08 m2
TOTAL				12.47 m2
ZONA DE ENS	AMBLE (E-1, E-2)			
M-6	Máquina de coser	1.20 m	0.55 m	0.66 m2
M-42	Mesa de Ensamble 1	1.30 m	0.92 m	1.20 m2
M-43	Mesa de Ensamble 2	1.30 m	0.92 m	1.20 m2
M-44	Mesa de Ensamble 3	1.30 m	0.92 m	1.20 m2
M-45	Mesa de Ensamble 4	1.30 m	0.92 m	1.20 m2
M-46	Mesa de Ensamble 5	1.30 m	0.92 m	1.20 m2
TOTAL				6.64 m2
ZONA DE HAE	BILITADO (Z-H)			
M-9	Escuadradora	3.80 m	3.84 m	14.59 m2
M-13	Retestadora	4.57 m	2.89 m	13.21 m2
M-16	Sierra Ingleteadora	3.64 m	0.95 m	3.46 m2
M-17	Radial de Carril	1.20 m	0.80 m	0.96 m2
M-19	Huequera o Taladro	0.89 m	0.97 m	0.86 m2
M-20	Garlopa	1.63 m	0.25 m	0.41 m2
M-21	Sierra Circular 1	0.90 m	0.78 m	0.70 m2
M-22	Cepilladora 1	0.67 m	0.59 m	0.40 m2
M-24	Garlopa pequeña	1.43 m	0.36 m	0.51 m2
M-25	Garlopa grande	1.97 m	0.66 m	1.30 m2

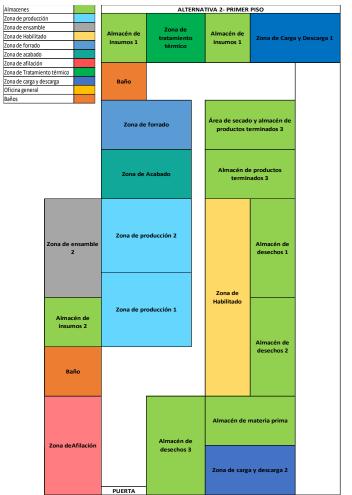
1				
M-26	Sierra Circular 2	1.14 m	1.05 m	1.20 m2
M-28	Sierra Circular 3	0.94 m	1.10 m	1.03 m2
M-30	Cepilladora 2	1.01 m	0.92 m	0.93 m2
M-32	Cepilladora 2	1.62 m	1.91 m	3.09 m2
M-33	Sierra Circular 4	1.10 m	1.43 m	1.57 m2
M-34	Sierra Circular 5	1.16 m	0.90 m	1.04 m2
M-36	Radial de brazo trozadora 1	2.54 m	0.80 m	2.03 m2
M-37	Tableadora	6.29 m	2.35 m	14.78 m2
M-38	Radial de brazo trozadora 2	2.43 m	0.69 m	1.68 m2
M-39	Radial de brazo trozadora 3	2.45 m	0.83 m	2.03 m2
M-60	Ingleteadora 1	0.80 m	0.52 m	0.42 m2
M-61	Ingleteadora 2	0.80 m	0.52 m	0.42 m2
M-62	Ingleteadora 3	0.80 m	0.52 m	0.42 m2
TOTAL				67.04 m2
ZONA DE FO	ORRADO (Z-F)			•
M-14	Mesa para forrar	2.45 m	0.96 m	2.35 m2
TOTAL				2.35 m2
ZONA DE A	CABADO (Z-ACAB)			•
M-10	Compresora 1	0.65 m	0.63 m	0.41 m2
M-12	Compresora 2	7.21 m	0.90 m	6.49 m2
M-40	Compresora 3	0.66 m	0.53 m	0.35 m2
M-63	Par de Caballete 1	0.01 m	0.60 m	0.01 m2
M-64	Par de Caballete 2	0.01 m	0.60 m	0.01 m2
M-65	Par de Caballete 3	0.01 m	0.60 m	0.01 m2
M-66	Par de Caballete 4	0.01 m	0.60 m	0.01 m2
M-67	Par de Caballete 5	0.01 m	0.60 m	0.01 m2
M-68	Par de Caballete 6	0.01 m	0.60 m	0.01 m2
M-69	Compresora 4	0.51 m	0.37 m	0.19 m2
M-70	Compresora 5	0.94 m	0.38 m	0.36 m2
TOTAL	Compresorus	0.54111	0.50111	7.84 m2
	SERVICIO	OS DE PRODUCCION		7.072
ZONA DE AI	FILACIÓN DE MÁQUINAS (Z-AF)			
M-47	Afiladora de cintas 1	1.20 m	1.12 m	1.34 m2
M-48	Esmeril	0.61 m	0.40 m	0.24 m2
M-51	Afiladora de discos	0.65 m	0.63 m	0.41 m2
M-52	Tronzadora	0.48 m	0.45 m	0.22 m2
M-53	Soldadora de cintas 1	0.44 m	0.25 m	0.11 m2
M-54	Soldadora de cintas 2	0.55 m	0.30 m	0.17 m2
M-55	Afiladora de cintas 2	2.00 m	0.01 m	0.02 m2
M-56	Afiladora de cuchillas 1	0.60 m	0.63 m	0.38 m2
M-57	Rola	2.10 m	0.71 m	1.49 m2
M-58	Afiladora de cintas 3	0.51 m	0.80 m	0.41 m2
M-59	Afiladora de cuchillas 2	1.65 m	0.73 m	1.20 m2
TOTAL	Amadora de cucimas 2	1.03111	0.73111	5.99 m2
	RATAMIENTO TÉRMICO (Z-AF)			3.331112
M-8	Alimentadora de aserrín	1.81 m	1.50 m	2.72 m2
TOTAL	/ IIII Cittadora de aserriri	1.01 111	1.50111	2.72 m2
ALMACENE	ES (A)			
A-1	Almacén 1	4.40 m	3.56 m	15.66 m2
A-2	Almacén 2	9.57 m	14.51 m	138.86 m2
A-3	Almacén 3	11.40 m	9.80 m	111.72 m2
A-4	Almacén 4	26.66 m	11.70 m	311.92 m2
A-5	Almacén 5	10.60 m	8.27 m	87.66 m2
A-6	Almacén 6	10.60 m	3.88 m	41.13 m2
A-7	Almacén 7	19.75 m	5.40 m	106.65 m2
A-8	Almacén 8	8.38 m	5.14 m	43.07 m2
A-9	Almacén 9	10.60 m	1.50 m	15.90 m2
TOTAL		10.00111	1.55111	872.58 m2
	SERVICIOS I	DE PARA EL PERSONAL		5, 2.30 III2
——				
OFICINA GE	ENERAL			
OFICINA GE		4.57 m	3,88 m	17.73 m2
O-F	Oficina General	4.57 m	3.88 m	17.73 m2 17.73 m2
O-F TOTAL		4.57 m	3.88 m	17.73 m2 17.73 m2
O-F		4.57 m 2.22 m	3.88 m	
O-F TOTAL BAÑOS	Oficina General			17.73 m2
O-F TOTAL BAÑOS SSHH 1	Oficina General Baño 1	2.22 m	1.37 m	17.73 m2 3.04 m2

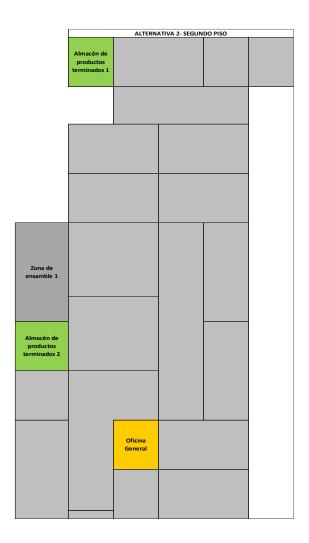
Interpretación: La presente imagen muestra las medidas y área de cada centro de trabajo, así como de las máquinas.



3.6.7 Paso 6: Desarrollo Relacional de Espacios

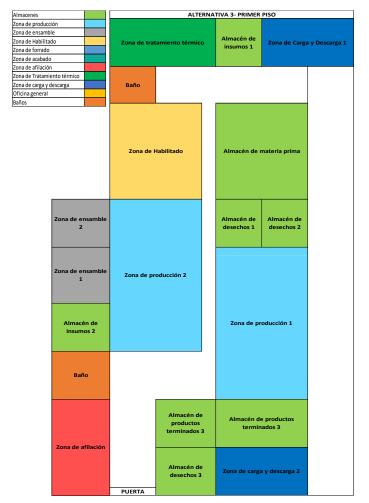
Es similar al Diagrama Relacional de Actividades presentado, con la diferencia que los símbolos de cada actividad son representados a escala.

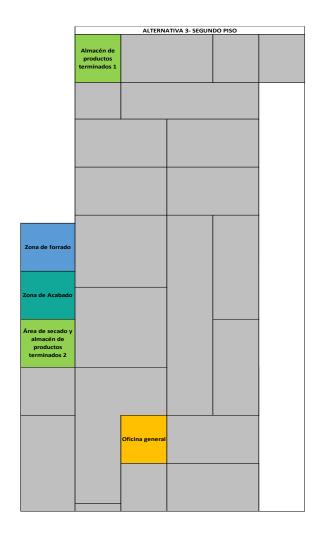

Figura 34 Alternativa de Distribución 1



Interpretación: La presente imagen muestra la propuesta 1 de distribución de las áreas de trabajo, tomando en consideración las áreas y dimensiones de los centros de trabajo

Figura 35 Alternativa de distribución 2





Interpretación: La presente imagen muestra la propuesta 2 de distribución de las áreas de trabajo, tomando en consideración las áreas y dimensiones de los centros de trabajo

Figura 36 Alternativa de Distribución 3

Interpretación: La presente imagen muestra la propuesta 3 de distribución de las áreas de trabajo, tomando en consideración las áreas y dimensiones de los centros de trabajo

3.6.8 Paso 7: Evaluación de las alternativas de distribución de conjunto y selección de la mejor distribución

Una vez propuesto las alternativas de distribución se procede a la seleccionar una de ellas. Para ello cada alternativa será evaluada empleando el índice de desempeño del layout (IDL).

Figura 37 Evaluación de las alternativas de distribución

	α	ΣΣ Τ x X	ΣΣ Τ	Ifo	ΣΣ R x X	ΣΣ R	Ifs	IDL
DISTRIBIBUCION ACTUAL	0.75	264073	1020393	25.88%	30	123	24.39%	25.51%
ALTERNATIVA 1	0.75	1037334	1020393	101.66%	24	123	19.51%	81.12%
ALTERNATIVA 2	0.75	1027639	1020393	100.71%	92	123	74.80%	94.23%
ALTERNATIVA 3	0.75	791972	1020393	77.61%	124	123	100.81%	83.41%

Fuente: Elaboración Propia

Antes de analizar las alternativas es importante recordar que la importancia relativa determinada del flujo de trabajo sobre los factores cualitativos es de 75%. Es decir que el flujo de trabajo tiene una importancia del 75% (α =75%) y los factores cualitativos tienen una importancia del 25% (1- α). Estas ponderaciones se determinaron al saber que el flujo de trabajo contribuye a la reducción de costos y tiene un impacto en el incremento de la productividad de la empresa.

Alternativa 1:

Para esta alternativa se obtuvo un Ifo de 101.66% lo cual indica el valor de alfa es menor al valor obtenido (75%<101.66%), logrando superar a la alternativa uno en un 0.95%. Esto muestra que se cumple con el principio de circulación y distancia mínima recorrida, logrando optimizar los tiempos de fabricación al reducir la cantidad de actividades improductivas en el flujo productivo (transporte), y por ende incrementar la productividad de la empresa.

La distribución planteada está orientado al producto; es decir lineado a una filosofía de manufactura esbelta, con el fin de reducir los reprocesos y permitir el flujo esbelto de materiales, personas; eliminando procesos transversales; alcanzando la producción continua deseada. Así mismo se ha determinado y especificado un espacio para cada área involucrada en el proceso productivo, con el fin de evitar el desorden y los accidentes laborales, tratando de mitigar los peligros encontrados según las observaciones y cuestionarios realizados.

En el caso del Ifs, se obtuvo un valor del 19.519%, logrando estar muy cerca de la distribución ideal establecida por los expertos de la empresa (19.52%<25), lo cual refleja una distribución más accesible de lograr y no tan idealista. De esta manera se está respetando la importancia de los valores cuantitativos sobre los cualitativos.

Ambos valores permitieron obtener un IDL del 81.12%, lo cual indica que se pudo mejorar la distribución actual en un 55.62%. Esta alternativa es la opción óptima y accesible, la cual se aproxima a la distribución ideal establecida por los expertos.

Alternativa 2:

Como se puede ver en el cuadro la alternativa un Ifo de 100.71% lo cual significa que sobre al valor de alfa determinado (α =75%) es menor al valor obtenido (75%<100.71%), quiere decir que la distribución propuesta alcanza al escenario óptimo planteado, logrando de esa manera cumplir con el principio de circulación esbelta y de la distancia mínima recorrida. Esto permitiría reducir los tiempos de fabricación, al reducir la cantidad de actividades improductivas (transporte); lo cual tendría un efecto directo en el incremento de la productividad de la empresa.

En cuanto al valor de Ifs se obtuvo un valor de 74.80%, lo cual refleja que el valor de alfa determinado 25%, en casi tres veces menor al valor calculado (25%<74.80%).

Esto indica que se está sobreestimando la importancia de los factores cualitativos sobre los cuantitativos. Es decir, se está superando en mucho la distribución ideal establecida por los expertos de la empresa, incumpliendo con la importancia definida para los valores cuantitativos.

Estos valores permiten que el valor del IDL sea de 94.23%, lo cual indica que se logró mejorar la distribución actual de la empresa en un 68.72%. Sin embargo, se debe evaluar los índices que influyen en la obtención del IDL.

Es preciso mencionar que los almacenes de desechos uno y dos, se encuentra ubicados en zona que puede atentar contra la seguridad de los operarios; aun sabiendo que su ubicación facilita el manejo de insumos. Es necesario priorizar la seguridad del personal.

Otro punto detectad es la ubicación de la zona de afiliación, al ser un cuarto estrecho cabe la posibilidad de que impidan el flujo esbelto de persona, ocasionando movimientos transversales.

Alternativa 3:

Para esta alternativa se obtuvo un Ifo de 77.61% lo cual se observa que superó al valor de alfa determinado (75%<77.61%). La distribución planteada cumple a las justas el principio de circulación y distancia mínima recorrida. Lo cual refleja que la adyacencia entre centros de actividad todavía no permite en su totalidad un flujo de trabajo esbelto.

En cuanto al valor de Ifs se obtuvo un valor del 100.81%, lo muestra un valor cuatro veces mayor al valor de alfa definido (25%<100.81%). Esta situación demuestra una sobreestimación exagerada de los factores cualitativos en cuanto a los factores cuantitativos. Lo cual se aleja de la realidad, siendo poco accesible de alcanzar.

Estos valores influyen en cálculo del IDL, arrojando un valor de 83.41%, mejorando en un 57.91% Según este valor la alternativa de distribución propuesta es óptima. Sin embargo, si se analiza el valor del Ifs, se determina que la opción supera la distribución ideal establecida por los expertos, reflejando la sobrevaloración de los valores cualitativos con respecto a los cuantitativos, aun sabiendo que estos tienen una ponderación del 75%, al tener un efecto directo en la productividad de la empresa, y en la reducción de costos.

Es preciso acotar que la zona de ensamble 1 está ubicado en área pequeña donde la iluminación es muy escasa. Esta situación solo traería consigo accidentes, reprocesos e incomodidad en los trabajadores; además, si se tomase la opción de emplear iluminación artificial; se estaría incrementado el costo indirecto de energía eléctrica. En conclusión, la alternativa 1 sería la opción más adecuada, con un índice de 81.12%.


A pesar de tener el índice de desempeño más bajo se considera la opción más aceptable y factible.

Al momento de hacer la evaluación de cada alternativa de distribución no solo se tomó en cuenta el valor que el IDL arroja sino también el valor de los índices que influyen en su obtención (Ifo y Ifs). Así mismo se analizaron otros factores; como seguridad, comodidad y factibilidad de cada una de ellas.

Tras determinar que la alternativa 1 sería la mejor opción el diseño de distribución de planta quedaría de la siguiente manera:

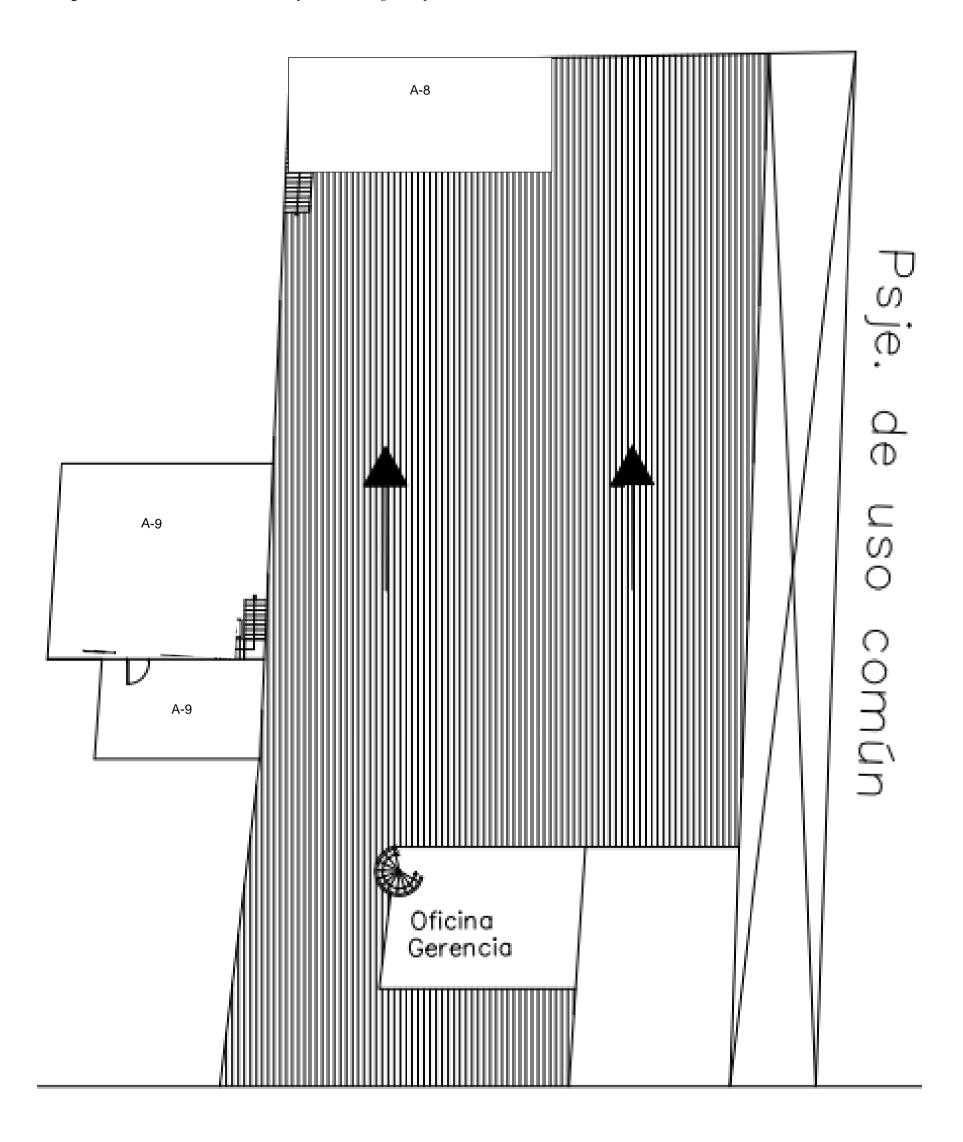


Figura 38 Distribución de planta propuesta del primer piso

Fuente: Elaboración Propia Interpretación: Se muestra la distribución actual de planta del nivel piso con la propuesta escogida.

Figura 39 Distribución de Planta Propuesto del segundo piso

Fuente: Elaboración Propia Interpretación: Se muestra la distribución actual de planta del segundo piso con la propuesta escogida.

En un principio la empresa mostraba una mala distribución, donde existía apilamiento excesivo de inventario a lado de las máquinas, distancias estrechas entre máquinas, no había delimitación de áreas de trabajo, y en especial no existen almacenes de inventario específicos. Estas situaciones impedían el flujo esbelto de materiales, personas y equipos, lo que ocasionaba cuellos de botella en distintos procesos, accidentes laborales, desorden, incremento del tiempo recorrido entre estaciones de trabajo y malestar del personal.

Con el diseño propuesto se busca obtener una circulación libre de obstáculos, áreas específicas para cada actividad realizada, proteger la seguridad de los colaboradores y disminuir las distancias recorridas entre centros de trabajo.

Además, esta propuesta de diseño tiene un impacto directo en la productividad de la empresa, buscando una producción orientada al producto, donde se maneja la filosofía de manufactura esbelta.

A continuación, se muestran las mejoras alcanzadas con el diseño de distribución de planta propuesto.

3.7 Análisis de las oportunidades de mejora alcanzadas

Tras haber determinado que la alternativa 1 es la opción óptima, y factible de lograr. Se procede a validar su efecto en la productividad de la empresa, mediante los gráficos de procesos para las familias 1,2 y4.

Familia 1 Cajas

Figura 40 Gráfico de Procesos de la obtención de Cajas tras la propuesta

GRÁFICA DEL PROCESO LA OBTENCIÓN CAJAS DE MADERA

Empresa: Inversiones Cimas E.I.R.L Nombre del producto: Cajas de madera Elaborado por: Nicol Mendo Fecha: 13/05/2019

Cantidad 100

	Ac	tual	Prop	uesto	Diferencia		
RESUMEN TOTAL	Cantidad	Tiempo min	Cantidad	Tiempo	Cantidad	Tiempo	
Operaciones	9	326.34	9	326.34	9	0.00	
Transporte	12	155.43	12	114.82	12	40.60	
Inspecciones	1	3.40	1	3.40	1	0.00	
Demoras	0	0.00	0	0.00	0	0.00	
Almacenamiento	1	5.46	1	5.46	1	0.00	
TOTAL	23	490.62	23	450.01	23	40.60	
Distancia Recorrida	124.14		84.2	22 m	39.92 m		

Paso	Detalles del Proceso	Método	Operación	Transporte	Inspección	Demoras	Almacén	Distancia en metros	Cantidad	Min/Unid
1	Requerimiento de la materia prima		0	\Rightarrow		D	∇		333	3.40
2	Transporte de la materia prima a la máquina garlopa 1	manual	0	†		D	∇	2.01 m	333 pies	5.23
3	Transporte de la materia prima a la máquina garlopa 2	manual	0			D	∇	4.12 m	333 pies	6.23
4	Procesamiento en la máquina garlopa 1		0	\Rightarrow		D	∇		328 pies	24.42
5	Procesamiento en la máquina garlopa 2		0	\Rightarrow		D	∇		328 pies	24.50
6	Transporte desde la máquina garlopa 1 a la tableadora	manual	0	⇒		D	∇	7.56 m	16 listones	9.50
7	Transporte desde la máquina garlopa 2 a la tableadora	manual	0	\Rightarrow		D	∇	7.12 m	16 listones	8.13
8	Procesamiento en la máquina tableadora		0	\Rightarrow		D	∇		16 listones	20.08
9	Transporte a la máquina Cepilladora	manual	0	\Rightarrow		D	∇	4.53 m	16 listones	6.45
10	Procesamiento en la Cepilladora		0	\Rightarrow		D	∇		16 listones	52.21
11	Transporte al radial de brazo trozadora 1	manual	0	\Rightarrow		D	∇	5.12 m	16 listones	8.49
12	Procesamiento en el radial de brazo trozadora l		0	\Rightarrow		D	∇		16 listones	33.01
13	Transporte de la materia prima a la máquina sierra circular l	manual	0	\Rightarrow		D	∇	7.26 m	16 listones	9.13
14	Transporte de la materia prima a la máquina sierra circular 2	manual	0	\Rightarrow		D	∇	10.13 m	16 listones	12.74
15	Procesamiento en la máquina sierra circular 1		0	\Rightarrow		D	∇		350 pedazos de madera	38.13
16	Procesamiento en la máquina sierra circular 2			\Rightarrow		D	∇		350 pedazos de madera	39.75
17	Transporte desde la sierra circular 1 al área de ensamble	manual	0	\Rightarrow		D	∇	16.02 m	350 pedazos de madera	20.15
18	Transporte desde la sierra circular 2 al área de ensamble	manual	0	\Rightarrow		D	∇	15.5 m	350 pedazos de madera	19.50
19	Ensable			ightharpoons		D	∇		100 cajas de madera	49.09
20	Transporte al área de forrado	manual	0	\Rightarrow		D	∇	3.65 m	100 cajas de madera	5.01
21	Fоrrado			\Rightarrow		D	∇		100 cajas de madera	45.15
22	Transporte al almacén	manual	0	⇒		D	∇	1.2 m	100 cajas de madera	4.26
23	Almacenamiento		0	\Rightarrow		D	lacksquare		100 cajas de madera	5.46

Fuente: Elaboración Propia

Interpretación: En el gráfico se observa que se ha disminuido el tiempo de transporte de material en 40 minutos con 60 segundos, así como la distancia recorrida, en este caso se recorren 39.92 metros menos en transportar el material. Por lo tanto, se logró producir 100 cajas en 313.83 min (5hr 23 min), teniendo un impacto positivo en la productividad de la empresa.

Familia 2 Estacas

Figura 41 Gráfico de Procesos de la obtención de Estacas tras la propuesta

GRÁFICA DEL PROCESO LA OBTENCIÓN ESTACAS

Empresa: Inversiones Cimas E.I.R. Nombre del producto: Estacas Elaborado por: Nicol Mendo Fecha: 13/05/2019

Cantidad 100

		Actual		Prop	ouesto	Diferencia		
	RESUMEN TOTAL	Cantidad	Tiempo	Cantidad	Tiempo	Cantidad	Tiempo	
0	Operaciones	8	234.8495	8	234.85	8	0.00	
\Rightarrow	Transporte	10	106.1395	10	67.95	10	38.19	
	Inspecciones	1	5.7925	1	5.79	1	0.00	
	Demoras	0	0	0	0	0	0.00	
∇	Almacenamiento	1	5.2365	1	5.24	1	0.00	
TOTAL		20	352.018	20	313.83	20	38.19	
Distancia Recorrida		61.09 m		46.	97 m	14.12 m		

Paso	Detalles del Proceso	Método	Operación	Transporte	Inspección	Demoras	Almacén	Distancia en metros	Cantidad	Min /Unid
1	Requerimiento de la materia prima		0	\Rightarrow		D	∇		300 pies	5.79
2	Transporte de la materia prima a la máquina garlopa 1	manual	0	\Rightarrow		D	∇	2.12 m	300 pies	3.58
3	Procesamiento en la máquina garlopa 1	manual	0	\Rightarrow		D	∇		300 pies	25.10
4	Transporte desde la máquina garlopa 1 a la tableadora		0	\Rightarrow		D	∇	4.25 m	300 pies	6.45
5	Procesamiento en la máquina tableadora			\Rightarrow		D	∇		33 listons	21.20
6	Transporte al radial de brazo trozadora 2	manual	0	\Rightarrow		D	∇	4.48 m	33 listones	6.80
7	Procesamiento en el radial de brazo trozadora 2	manual		\Rightarrow		D	∇		33 listones	20.65
8	Transporte de la materia prima a la máquina sierra circular 1		0	\Rightarrow		D	∇	7.25 m	500 estacas	11.00
9	Transporte de la materia prima a la máquina sierra circular 2	manual	0	\Rightarrow		D	∇	3.12 m	500 estacas	4.74
10	Procesamiento en la máquina sierra circular 1			ightharpoons		D	∇		500 estacas	37.64
11	Procesamiento en la máquina sierra circular 2	manual		\Diamond		D	∇		500 estacas	34.31
12	Transporte al radial de brazo trozadora 1		0	\Rightarrow		D	∇	6.35 m	500 estacas	9.06
13	Transporte al radial de carril	manual	0	\Rightarrow		D	∇	12.45 m	500 estacas	15.63
14	Procesamiento en el radial de brazo trozadora 1	manual		\Rightarrow		D	∇		500 estacas	37.06
15	Procesamiento en el radial de carril		•	\Rightarrow		D	∇		500 estacas	36.40
16	Transporte desde el radial de brazo trozadora 1 al área de ensamble		0	\Rightarrow		D	∇	2.5 m	500 estacas	3.12
17	Transporte desde el radial de carril al área de ensamble	manual	0	\Rightarrow		D	∇	3.25 m	500 estacas	3.01
18	Empaque	manual		\Diamond		D	∇		1000 estacas	22.49
19	Transporte al almacén		0	\Rightarrow		D	∇	1.2 m	1000 estacas	4.56
20	Almacenamiento	manual	0	\Diamond		D	$\overline{}$		1000 estacas	5.24

Fuente: Elaboración Propia

Interpretación: En el gráfico se observa que se ha disminuido el tiempo de transporte de material en 38.19 min, debido a que se redujo la distancia recorrida en 14.12 metros. Esta situación permitió disminuir el tiempo de producción, llegando a producir 1000 estacas en 313.83 min (5 horas con 23 min), permitiendo incrementar la productividad de la empresa.

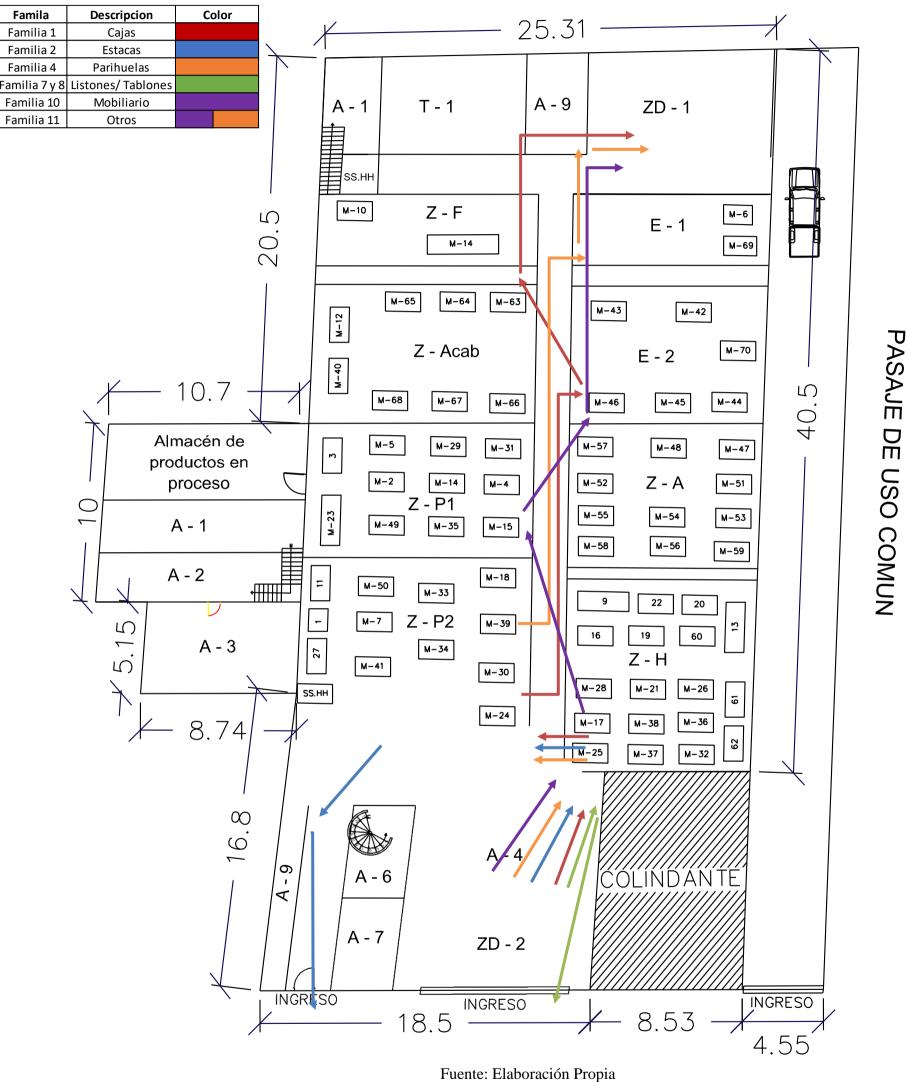
Familia 4 Parihuelas

Figura 42 Gráfico de Procesos de la obtención de parihuelas tras la propuesta

GRÁFICA DEL PROCESO LA OBTENCIÓN DE PARIHUELAS

	a: Inversiones Cimas E.I.R.L del producto: Parihuelas			Cantidad	100			
Elabora	do por: Nicol Mendo							
Fecha: 1	13/05/2019	Act	tual	Prop	uesto	Diferencia		
	RESUMEN TOTAL	Cantidad	Tiempo	Cantidad	Tiempo Cantidad Tiempo		Tiempo	
0	Operaciones	10	309.998	10	310.00	10	0.00	
Î	Transporte	12	172.7205	12	104.60	12	68.12	
	Inspecciones	1	3.381	1	3.38	1	0.00	
Ω	Demoras	0	0	0	0.00	0	0.00	
\triangle	Almacenamiento	1	3.9728571	1	3.97	1	0.00	
	TOTAL		490.07236	24	421.95	24	68.12	
Distancia Recorrida		137.	137.21 m		05 m	69.16 m		

Paso	Detalles del Proceso	Método	Operación	Transporte	Inspección	Demoras	Almacén	Distancia en metros	Cantidad	Min /Unid
1	Requerimiento de la materia prima			$\hat{\Box}$		D	∇		2000 pies	3.38
2	Transporte de la materia prima a la máquina garlopa 1	manual	0	ightharpoons		D	∇	2.01 m	2000 pies	5.25
3	Procesamiento en la máquina garlopa 1	manual		$\hat{\Gamma}$		D	∇		2000 pies	20.97
4	Transporte desde la máquina garlopa 1 a la tableadora		0	\Rightarrow		D	∇	5.14 m	2000 pies	10.11
5	Procesamiento en la máquina tableadora			$\hat{\Box}$		D	∇		2000 pies	20.12
6	Transporte a la máquina Cepilladora	manual	0	\Rightarrow		D	∇	2.77 m	2000 pies	6.54
7	Procesamiento en la Cepilladora	manual		$\hat{\Box}$		D	∇		2000 pies	34.40
8	Transporte desde la cepilladora hacia el radial de brazo trozadora 2		0	\Rightarrow		D	∇	1.29 m	2000 pies	2.85
9	Transporte desde la cepilladora hacia el radial de brazo trozadora 2	manual	0	\Rightarrow		D	∇	7.29 m	2000 pies	16.66
10	Procesamiento en el radial de brazo trozadora 1			$\hat{\Box}$		D	∇		2000 pies	38.49
11	Procesamiento en el radial de brazo trozadora 2	manual		$\hat{\Box}$		D	∇		2000 pies	34.92
12	Transporte desde el radial de brazo trozadora 1 hacia la máquina sierra circular 1		0	\Rightarrow		D	∇	4.39 m	2000 pies	7.27
13	Transporte desde el radial de brazo trozadora 2 hacia la máquina sierra circular 2	manual	0	1		D	$\overline{}$	6.57 m	2000 pies	13.86
14	Procesamiento en la máquina sierra circular 1	manual		$\hat{\Box}$		D	∇		300 listones	36.07
15	Procesamiento en la máquina sierra circular 2			\Diamond		D	∇		1100 tablas	37.00
16	Transporte al marcado		0	\Rightarrow		D	∇	2.19 m	300 listones	4.95
17	Marcado	manual		$\hat{\Box}$		D	∇		300 listones	12.27
18	Transporte desde el marcado hacia la sierra cinta	manual	0	\Rightarrow		D	∇	4.97 m	300 listones	22.40
19	Procesamiento en la sierra cienta			$\hat{\Gamma}$		D	∇		300 listones	47.67
20	Transporte desde la sierra cinta al área de ensamble	manual	0	\uparrow		D	∇	12.1 m	300 listones	5.12
21	Transporte desde el la sierra circular 2 hacia el ensamble		0	ightharpoons		D	∇	18.23 m	1100 tablas	7.56
22	Ensable y Sellado	manual		$\hat{\Box}$		D	∇		100 parihuelas	28.09
23	Transporte al almacén		0	ightharpoons		D	$\overline{}$	1.1 m	100 parihuelas	2.03
24	Almacenamiento	manual	0	\Diamond		D	$\overline{}$		100 parihuelas	3.97


Fuente: Elaboración Propia

Interpretación: En el gráfico se observa que se ha disminuido el tiempo de transporte de material en 68.12 min, debido a que se redujo la distancia recorrida en 69.16 metros. Esta situación permitió disminuir el tiempo de producción llegando a producir 100 parihuelas en 421.95 min (7 hr 3 min), permitiendo incrementar la productividad de la empresa.

A continuación, se muestra el diagrama de recorrido de las familias las 1,2,4,7,8,10 y 11 tras la propuesta.

Figura 43 Diagrama de recorrido de las familias 1,2,4,7,8,10 y 11 tras la propuesta

Interpretación: En el gráfico se puede observar que con el nuevo diseño se ha reducido las distancias recorridas entre centros de trabajo, además se ve un orden entre las máquinas, existen áreas delimitadas para cada actividad. Estas mejoras afectan positivamente la productividad de la

empresa, al incrementar el número de unidades producidas por cada familia de productos.

A continuación, se puede observar las mejoras realizadas en los indicadores de productividad

3.7.1 Indicadores de Productividad

Los siguientes indicadores serán aplicados a las familias de productos 1, 2 y 4.

Producción

Producción Familia 1

Mediante el gráfico de procesos se determinó que con la nueva distribución de planta se producen 100 cajas de madera en un 450.01 (7hr 50 min). La producción en un día sería la siguiente:

Ecuación 22 Producción al día de la Familia 1

$$Producci\'on = rac{480 rac{min}{d\'a} * 100 \ unidades \ al \ d\'a}{450.01 \ min} = 107 \ unidades \ al \ d\'a$$

Fuente: Elaboración Propia

Interpretación: Según la ecuación solo se fabrican 107 unidades en una jornada laboral de un día (480 min). Anteriormente se llegó a fabricar 98 unidades. En la aalternctualidad con la nueva propuesta de diseño de distribución de planta se llegaría a producir 9 unidades más.

Producción Familia 2

Mediante el gráfico de procesos se determinó que se producen 1000 estacas de madera en 313 (5hr 21 min). La producción en un día sería la siguiente:

Ecuación 23 Producción al día de la Familia 2

$$Producci\'on = \frac{480\frac{min}{d\'a}*1000\ unidades\ al\ d\'a}{492.62\ min} = 1530\ unidades\ al\ d\'a$$

Fuente: Elaboración Propia

Interpretación: Mediante la fórmula se determinó que en una jordana laboral (480 minutos) se pueden llegar a fabricar 1530 unidades. Anteriormente se produjeron

1363 unidades, con el nuevo diseño de distribución de planta se puede incrementar la producción en 167 unidades.

Producción Familia 4

El gráfico de procesos se determinó que se producen 100 parihuelas de madera en 421.95 minutos (7hr 3 min). La producción en un día sería la siguiente:

Ecuación 24 Producción al día de la Familia 4

$$Producción = \frac{480 \frac{min}{dia} * 1000 \text{ unidades al día}}{421.95 \text{ min}} = 114 \text{ unidades al día}$$

Fuente: Elaboración Propia

Interpretación: Según la ecuación se fabrican 114 unidades en 480 min, lo que tiene una jordana laboral. Anteriormente se producían 98 unidades, con el nuevo diseño de distribución de planta se llegarían a producir 16 unidades más.

Productividad

Productividad Mano de Obra Familia 1

Para la obtención de las 107 cajas en una jordana laboral se requieren 7 operarios.

La productividad de mano de obra sería la siguiente:

Ecuación 25 Productividad Mano de obra Familia 1

$$Productividad\ M.\ O\ F1 = \frac{107\ cajas\ de\ madera\ por\ día}{7\ operarios} = 15\frac{unidades}{operario\ x\ día}$$

Fuente: Elaboración Propia

Interpretación: Con el nuevo diseño de distribución de planta se puede incrementar la productividad de mano para las estacas, llegando a producir un operario 15 unidades en un día.

Productividad Mano de Obra Familia 2

Para la obtención de 1530 estacas en una jordana laboral se requieren 7 operarios. La productividad de mano de obra sería la siguiente:

Ecuación 26 Productividad Mano de obra Familia 2

$$Productividad\ M.\ O\ F2 = \frac{1530\ estacas\ por\ día}{7\ operarios} = 219 \frac{unidades}{operario\ x\ día}$$

Fuente: Elaboración Propia

Interpretación: Con el nuevo diseño de distribución de planta se puede incrementar la productividad de mano, llegando a producir un operario 219 unidades en un día.

Productividad Mano de Obra Familia 4

Para la obtención de 121 parihuelas estacas en una jordana laboral se requieren 6 operarios. La productividad de mano de obra sería la siguiente:

Ecuación 27 Productividad Mano de obra Familia 3

$$Productividad\ M.\ O\ F4 = \frac{114\ parihuelas}{6\ operarios} = 19\frac{unidades}{operario\ x\ día}$$

Fuente: Elaboración Propia

Interpretación: Con la propuesta de distribución se incrementaría la productividad de mano de obra para las parihuelas, produciendo un operario 19 unidades en un día.

Actividades Productivas

Actividades Productivas Familia 1

Ecuación 28 Actividades Productivas Familia 1

$$A.P.F1 = \frac{(326.34 \min + 3.40 \min)}{(326.4 \min + 114.82 \min + 3.40 \min + 5.46 \min)} = 73.27\%$$

Fuente: Elaboración Propia.

Interpretación: Se logró incrementar el porcentaje de actividades productivas en un 6.06%, logrando obtener un 73.27%. Este indicador muestra que el nuevo diseño de distribución de planta permitió disminuir el tiempo empleado en transportar el material de un centro de actividad a otro.

Actividades Productivas Familia 2

Ecuación 29 Actividades Productivas Familia 2

$$A.P.F2 = \frac{(234.85 \min + 5.79 \min)}{(234.85 \min + 67.95 \min + 5.79 \min + 5.24 \min)} = 76.68\%$$

Fuente: Elaboración Propia.

Interpretación: Este indicador muestra que con el nuevo diseño de distribución de planta se llega a obtener 76.68% de actividades productivas, logrando incrementarse en un 8.32%. Este indicador incrementó por el hecho de disminuir el tiempo empleado en transportar el material de un centro de actividad a otro.

Actividades Productivas Familia 4

Ecuación 30 Actividades Productivas Familia 4

$$A.P.F4 = \frac{(310 \min + 3.38 \min)}{(310 \min + 104.60 \min + 3.38 \min + 3.97 \min)} = 74.27\%$$

Fuente: Elaboración Propia.

Interpretación: Se logró incrementar el porcentaje de actividades productivas en un 10.32%, logrando obtener un 74.27%. Este indicador muestra que el nuevo diseño de distribución de planta permitió disminuir el tiempo empleado en transportar el material de un centro de actividad a otro.

Actividades Improductivas

Actividades Improductivas Familia 1

Ecuación 31 Actividades Improductivas Familia 1

$$A.IP.F1 = \frac{(114.82 \min + 5.46 \min)}{(326.4 \min + 114.82 \min + 3.40 \min + 5.46 \min)} = 26.73\%$$

Interpretación: Este indicador muestra que las actividades improductivas disminuyeron en un 6.06%. Anteriormente se tenía un 32.79% y ahora con el nuevo diseño de distribución de planta se obtuvo un 26.73% de actividades que no añaden valor.

Actividades Improductivas Familia 2

Ecuación 32 Actividades Improductivas Familia 2

$$A.IP.F2 = \frac{(67.95 min + 5.24 min)}{(234.85 min + 67.95 min + 5.79 min + 5.24 min)} = 23.32\%$$

Fuente: Elaboración Propia.

Interpretación: Como se observa el 23.2% son el porcentaje de actividades improductivas, valor que se obtuvo gracias a la disminución de logró disminuir en 8.32%, ya que anteriormente se obtuvo un 31.64%. Esto como sucedió como consecuencia de la disminución del tiempo empleado en transportar el material de un centro de actividad a otro.

Actividades Improductivas Familia 4

Ecuación 33 Actividades Improductivas Familia 4

$$A.IP.F4 = \frac{(104.60 min + 3.97 min)}{(310 min + 104.60 min + 3.38 min + 3.97 min)} = 24.79\%$$

Fuente: Elaboración Propia.

Interpretación: Este indicador muestra que las actividades improductivas disminuyeron en un 11.26%. Anteriormente se tenía un valor de 36.05% y ahora con

el nuevo diseño de distribución de planta se obtuvo un 24.79% de actividades que no añaden valor

3.8 Resultados tras la propuesta de diseño de distribución

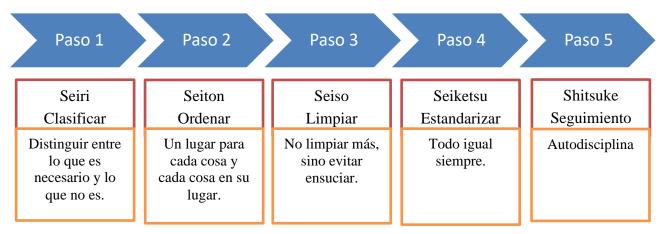
Tabla 14 Resultado tras la propuesta de diseño de distribución de planta

VARIABLE	DIMENSIONES	INDICADORES		ACTUAL			PROPUESTO)		
VARIABLE	Distribución de	Índice de desempeño del layout (IDL)		25.51%			81.12%			
INDEPENDIENTE: DISTRIBUCIÓN DE	planta	Índice de Flujo Operativo (IFO)		25.88%			101.66%			
PLANTA		Índice de Relaciones Subjetivas (IFS)	24.39%				19.51%			
			FAMILIA 1 Cajas	FAMILIA 2 Estacas	FAMILIA 4 Parihuela	FAMILIA 1 Cajas	FAMILIA 2 Estacas	FAMILIA 4 Parihuela		
			98	1363	98	107	1530	114		
		Producción	unidades al	unidades al	unidades al	unidades al	unidades al	unidades al		
			día	día	día	día	día	día		
VARIABLE DEPENDIENTE: PRODUCTIVIDAD	Productividad	Productividad de mano de obra	14 cajas /operario x día	143 estacas/ operario x día	17 parihuelas/ operario x día	rihuelas/ erario x	219 estacas/oper ario x día	19 parihuelas/ operario x día		
TRODUCTIVIDAD		Actividades Productivas	67.21%	68.36%		73.27%	76.68%	74.27%		
		Actividades Improductivas	32.79%	31.64%	36.05%	26.73%	23.32%	24.79%		

Fuente: Elaboración Propia

Interpretación: En el cuadro anterior se puede observar las mejoras obtenidas con el nuevo diseño de distribución de planta propuesto. Llegando a la conclusión que el un óptimo diseño de distribución permite el incremento de las unidades producidas y por ende de la productividad de la empresa.

Existen otras alternativas de solución para incrementar la productividad de la empresa.


Al tener en cuenta que toda la investigación se centra en proponer un nuevo diseño de distribución de planta, y este tema tiene una relación directa con manufactura esbelta se propone como otra alternativa para incrementar la productividad, el hecho de capacitar a los trabajadores la estrategia 5's.

Estrategia de las 5's

Este sistema tiene como fin mantener las áreas de una empresa organizadas, limpias, seguras; con el fin de incrementar la productividad de una empresa.

Esta técnica tiene como ejes principales las siguientes palabras japonesas: Seiri (organizar), seiton (organizar), seiso (limpiar), Seiketsu (estandarizar), y shitsuke (seguimiento).

Figura 44 Estrategias de las 5'S

Fuente: Sigconsulting (2018)

Interpretación: En el cuadro se muestra las estrategias 5'S y su concepto básico.

A continuación, un mayor detalle de lo que se debe realizar en cada estrategia y lo que debe tener en cuenta el expositor.

1. SEIRI: Clasificar

Concepto: Actividad que tiene como fin retirar todos aquellos elementos que no son necesarios de un centro de actividad o área de trabajo.

Objetivo: Tener un área de trabajo la cual cuente solo con los artículos y herramientas necesarias.

Beneficios: La herramienta te permite eliminar los obstáculos, interrupciones y fallas causadas por elementos innecesarios, generando de esa manera lugares de trabajo más libres y espaciosos.

Herramienta a utilizar:

Tarjetas rojas para clasificar lo necesario de lo innecesario.

Procedimiento:

- 1. Identificar todos los artículos innecesarios.
- 2. Eliminar todo aquello que definitivamente no se utiliza.
- 3. Almacenar en un área para artículos de uso poco frecuente.

Una vez presentado y expuesto la estrategia se procede a poner en práctica con cada uno de los participantes.

Figura 45 Seiri – Clasificar

Fuente: Sigconsulting (2018)

2. SEITON: Orden

Concepto: Actividad que tiene como fin ordenar y etiquetar los elementos necesarios en un área de trabajo. De tal manera que sean de fácil acceso y uso.

Objetivo: Contar con los elementos de un área de trabajo a disposición inmediata. Es decir, listo para ser utilizados y con su señalización correspondiente.

Beneficios: Esta herramienta te permite optimizar en tiempo y movimiento la búsqueda de elementos necesarios, mediante su fácil identificación; y con ello también su almacenamiento correcto.

Con los beneficios señalados se puede establecer un flujo de trabajo esbelto (eliminar retrocesos y cuellos de botella).

Herramienta a utilizar:

Códigos de color y señalización.

Procedimiento:

- 1. Asignar e Identificar un lugar para cada elemento.
- 2. Determinar la cantidad exacta que debe haber por cada elemento.
- 3. Asegurarse que cada elemento esté listo para usarse.
- 4. Crear los medios para asegurar que cada elemento regrese a su lugar.

Una vez presentado y expuesto la estrategia se procede a poner en práctica con cada uno de los participantes.

Figura 46 Seiton - Orden

Fuente: Sigconsulting (2018)

3. SEISO: Limpiar

Concepto: Actividad que tiene como fin limpiar las áreas de trabajo, equipos y materiales que conforman a una empresa.

Objetivo: Contar con un lugar de trabajo limpio, seguro y cómodo, lo cual se puede lograr mediante una metodología de limpieza.

Beneficios: Esta herramienta te permite disminuir los riesgos laborales, mejorar el aspecto de un lugar de trabajo y la ampliación de la vida útil de los equipos e instalaciones.

Herramienta a utilizar:

Checklist de inspección y limpieza y tarjeta amarilla.

Procedimiento:

- Identificar materiales necesarios y adecuados para la limpieza del área de trabajo.
- 2. Asignar un lugar adecuado y funcional a cada artículo usado para mantener limpia el área de trabajo.
- 3. Establecer métodos de prevención que eviten que se ensucie el área.
- 4. Implementar actividades de limpieza como rutina.

Una vez presentado y expuesto la estrategia se procede a poner en práctica con cada uno de los participantes.

4. SEIKETSU: Estandarizar

Concepto: Actividad que tiene como fin lograr el bienestar personal debido a que se adopta un estándar de vida que mejora la higiene, la salud física y mental del individuo.

Objetivo: Mejorar las condiciones de trabajo mediante el hábito de clasificar, ordenar y limpiar un lugar de trabajo.

Beneficios: Esta herramienta te permite mejorar los estándares operativos, obtener una adecuada gestión visual, formar al personal en cuanto a hábitos de limpieza, orden y clasificación.

Herramienta a utilizar:

Instrucciones y procedimientos.

Procedimiento:

1. Estandarizar todo y hacer visibles los estándares utilizados.

2. Implementar métodos que faciliten el comportamiento relacionado a

los estándares.

3. Compartir la información con toda la organización.

Una vez presentado y expuesto la estrategia se procede a poner en práctica

con cada uno de los participantes.

5. SHITSUKE: Disciplina

Concepto: Actividad que tiene como fin dar seguimiento a los

procedimientos establecidos, es decir se implanta la disciplina y el

cumplimiento de las normas y procedimientos adoptados implantados.

Objetivo: Alcanzar una disciplina en todss las estrategias dentro de la

organización.

Beneficios: Esta herramienta te permite alcanzar la calidad de los procesos

dentro de una organización, así como cumplir eficientemente las obligaciones

laborales.

Herramienta a utilizar:

Checklist de 5 S

Procedimiento:

1. Mostrar los resultados de las 5'S.

2. Incentivar la crítica constructiva entre trabajadores.

3. Incentivar la participación de todos en la generación de de ideas de

5'S

Prevención de Riesgos en la actividad de Carpintería

Es responsabilidad de la empresa velar por la seguridad y salud de los trabajadores, para ello se capacitará a los colaboradores de la empresa en cuanto a qué acciones se deben hacer con el fin de prevenir accidentes laborales dentro del taller de carpintería. Los riesgos laborales en una carpintería tienen un impacto en el incremento de la eficiencia y rentabilidad de la empresa, ya los gastos incurridos en horas pérdidas, ocasionadas por accidentes laborales y enfermedades; así como daños materiales, se pueden mitigar capacitando a los operarios en la identificación riesgos laborales y acciones preventivas.

A continuación, un mayor detalle de lo que se debe realizar y debe tener en cuenta el expositor.

Concepto: Son un conjunto de medidas que tienen como finalidad evitar o disminuir las posibilidades de que los trabajadores sufran daños al realizar los trabajos. Es necesario la formación, capacitación y sensibilización de todo el personal involucrado en las actividades de la empresa.

Objetivos: La presente tiene el fin de capacitar al personal para que realice un trabajo seguro, mitigar las posibilidades de que los trabajadores sufran daños derivados al trabajo y sensibilizar al trabajador con las consecuencias que puede sufrir al no seguir un correcto procedimiento.

Herramientas a utilizar:

Charlas de sensibilización de inicio de actividades diarias, Talleres de elaboración de IPERC y PETS y capacitaciones constantes para cada área

Procedimiento:

1. Enfocarse en el área de trabajo

- 2. Identificar los trabajadores afectados
- 3. Identificar los peligros existentes y potenciales
- 4. Analizar los riesgos
- 5. Aplicar la jerarquía de controles
- 6. Adoptar el enfoque de mejora continua

Para poder poner en práctica la capacitación a los trabajadores se propone el siguiente plan:

Tabla 15 Plan de Capacitación de la Estrategia 5'S y Prevención de Riesgos

SOLU	SOLUCIÓN: "CAPACITACIÓN EN LA ESTRATEGIA 5'S Ty PREVENCIÓN DE RIESGOS"					
	Definir participantes, expositor, posibles fechas, y duración					
Planificar	Definir recursos (lugar, equipamiento, etc)					
	Coordinar con jefatura asistencia de participantes					
	Fijar fecha definitiva y difundir a los trabajadores					
II	Elaborar taller a cargo del expositor, el cual teórico práctico.					
Hacer	Dictar taller					
	Examen teórico al final del taller					
Verificar	Prueba práctica a las 2 semanas de dictado el taller					
	Verificar en in-situ que el método es correcto o se requiere ajustes					
	Reforzar a participantes con notas menores a 16					
Asegurar	Normalizar y entregar procedimiento final a todos					
risegurur	Establecer indicadores para medir desempeño mensual y corregir					
	desviaciones oportunamente.					

Fuente: Elaboración Propia

Interpretación: La finalidad del plan de capacitación anterior es lograr en los empleados la concientización en cuanto a cuán importante es mantener un lugar de trabajo limpio, ordenado y seguro en la empresa, lo cual tiene un impacto directo en la productividad de la empresa.

3.9 Resultados del análisis económico financiero

Costos por implementar la propuesta de distribución

Tabla 16 Costo por materiales y herramientas

Descripción	Cantidad	Costo S/.	Total S/.
Cinta aislante americana de zonificación	15	48	720
Letrero nombres de las áreas	23	35	805
Letrero de señalización	18	8	144
Clavos de pared	2	5	10
Taladro	3	450	1350
Lentes	3	50	150
Guantes	6	25	150
Total			S/. 3,329.00

Fuente: Elaboración Propia

Tabla 24 Costo de mano de obra por procedimientos de distribución

Descripción	Cantidad de horas requeridas	Cantidad de operarios	Costo S/.	Total S/.
Reubicación del área de almacén 1	16	3	8	384
Reubicación del área almacén 2	40	3	8	960
Reubicación del área almacén 3	40	3	8	960
Reubicación del área almacén 4	40	3	8	960
Reubicación del área almacén 5	8	3	8	192
Reubicación del área almacén 6	8	3	8	192
Reubicación del área almacén 7	24	3	8	576
Reubicación del área almacén 8	8	3	8	192
Reubicación del área de acabado	8	3	8	192
Desarmado, reubicación y armado de las máquinas de la zona de habilitado	80	3	8	1920
Desarmado, reubicación y armado de las máquinas de la zona de producción 1	36	3	8	864
Desarmado, reubicación y armado de las máquinas de la zona de producción 2	80	3	8	1920
Desarmado, reubicación y armado de las mesas de la zona de ensamble 2	24	3	8	576
Desarmado, reubicación y armado de máquinas afiladoras	36	3	8	864
Total	448			S/. 6,528.0

Fuente: Elaboración Propia

Tabla 25 Costos por incurrir en captaciones

Capacitaciones							
Temas	N° de capacitadores	Tiempo horas	Costo S/./hora	Tota	l trimestral S/.	Total	anual S/.
Capacitación en la estrategia 5'S	1	4	300		1200	,	3600
Capacitación en prevención de riesgos laborales	1	8	450		3600	1	0800
	Tota	l		S/.	4,800.00	S/.	14,400.00
Materiales							
Descripción	Costo de material S/.	N° de trabajadores Total cuatrimestral S/.			Total anual S/.		
Diapositivas impresas Estrategia 5'S	1.5	18	27			81	
Diapositivas impresas Prevención de Riesgos laborales	1.5	18	27			81	
Examen teórico al final de la exposición Estrategia 5's	0.5	18	9			27	
Examen teórico al final de la exposición Prevención de Riesgos	0.5	18	9			27	
	Total		S/. 54.00	S/.	216.00		
Materiales							
Descripción	Cantidad	Costo S/.	Total mensual		Tota	al anual S	!.
Cuadernillos de registro	2	0.5	1			3	
Ficha de evaluación de desempeño	2	0.5	1			12	
	Total		1			15	

• Costos por No implementar la propuesta de distribución

Tabla 26 Costo de transportar el material

Descripción	Tiempo empleado en transportar el material con la actual distribución en un día hr	Tiempo empleado en transportar el material con la distribución propuesta hr	Diferencia de horas	Costos por hora	Costo Total	Total anual
Obtención de cajas de madera	2.59	1.91	1.07	8.00	8.56	753.28
Obtención de estacas	1.77	1.13	1.06	8.00	8.48	610.56
Obtención de parihuelas	2.88	1.74	1.14	8.00	9.08	708.45
7	Fotal					S/. 2,072.29

Fuente: Elaboración Propia

Tabla 27 Costos por dejar de producir

Descripción	Cantidad producida en la actual distribución	Cantidad producida en la distribución propuesta	Lo que no se está produciendo	Precio de Venta	Costo Total		Total anual
Producción de Cajas de madera	98	107	9	18	162		14256.00
Producción de Estacas	1363	1530	167	0.45	75.15		5410.80
Producción de Parihuelas	98	114	16	16.58	265.3		20691.84
Tot	tal					S/.	40,358.64

Fuente: Elaboración Propia

Tabla 31 Costo total anual de implementar la propuesta de distribución

Descripción	Año 0	Año 1	Año 2	Año 3	Año 4	Año 5
Cinta aislante americana de zonificación	720	720	720	720	720	720
Letrero nombres de las áreas	805	805	805	805	805	805
Letrero de señalización	144	144	144	144	144	144
Clavos de pared	10	10	10	10	10	10
Taladro	1350					
Lentes	150					
Guantes	150					
Reubicación del área de almacén 1	384	384	384	384	384	384
Reubicación del área almacén 2	960	960	960	960	960	960
Reubicación del área almacén 3	960	960	960	960	960	960
Reubicación del área almacén 4	960	960	960	960	960	960
Reubicación del área almacén 5	192	192	192	192	192	192
Reubicación del área almacén 6	192	192	192	192	192	192
Reubicación del área almacén 7	576	576	576	576	576	576
Reubicación del área almacén 8	192	192	192	192	192	192
Reubicación del área de acabado	192	192	192	192	192	192
Desarmado, reubicación y armado de las máquinas de la zona de habilitado	1920	1920	1920	1920	1920	1920
Desarmado, reubicación y armado de las máquinas de la zona de producción 1	864	864	864	864	864	864
Desarmado, reubicación y armado de las máquinas de la zona de producción 2	1920	1920	1920	1920	1920	1920
Desarmado, reubicación y armado de las mesas de la zona de ensamble 2	576	576	576	576	576	576
Desarmado, reubicación y armado de máquinas afiladoras	864	864	864	864	864	864
Capacitación en la estrategia 5'S	3600	3600	3600	3600	3600	3600
Capacitación en prevención de riesgos laborales	10800	10800	10800	10800	10800	10800
Diapositivas impresas Estrategia 5'S	81	81	81	81	81	81
Diapositivas impresas Prevención de Riesgos laborales	81	81	81	81	81	81
Examen teórico al final de la exposición Estrategia 5's	27	27	27	27	27	27
Examen teórico al final de la exposición Prevención de	27	27	27	27	27	27
Cuadernillos de registro	3	3	3	3	3	3
Ficha de evaluación de desempeño	12	12	12	12	12	12
TOTAL DE COSTOS	28,712.00	27,062.00	27,062.00	27,062.00	27,062.00	27,062.00

Tabla 32 Costo total anual por no implementar la propuesta de distribución

Descripción	Año 1	Año 2	Año 3	Año 4	Año 5
Obtención de cajas de madera	753.28	753.28	753.28	753.28	753.28
Obtención de estacas	610.56	610.56	610.56	610.56	610.56
Obtención de parihuelas	708.448	708.448	708.448	708.448	708.448
Producción de Cajas de madera	14256	14256	14256	14256	14256
Producción de Estacas	5410.8	5410.8	5410.8	5410.8	5410.8
Producción de Parihuelas	20691.84	20691.84	20691.84	20691.84	20691.84
TOTAL DE COSTOS	42,430.93	42,430.93	42,430.93	42,430.93	42,430.93

Fuente: Elaboración Propia

Tabla 33 Flujo de caja neto

AÑO	PROPUESTA DE DISTRIBUCIÓN
Año 0	-28,712.00
Año 1	15,368.93
Año 2	15,368.93
Año 3	15,368.93
Año 4	15,368.93
Año 5	15,368.93

Tabla 34 Indicadores Financieros

INDICADORES FINANCIEROS	VALOR
COK	15%
VA	S/.51,519.03
VAN	S/.22,807.03
TIR	45.25%
IR	1.79

Fuente: Elaboración Propia

Interpretación: A partir de todas las tablas anteriores se pudo determinar el cuadro final de indicadores financieros con el fin de determinar si la propuesta de distribución es viable.

Según el VAN (Valor actual neto) el proyecto es viable; al haber obtenido un valor mayor que cero (22,807.03 > 0); se puede llevar a cabo la propuesta, al generar valor para la empresa. Es decir, la propuesta podría generar a la empresa utilidades de s/. 22,807.03.

Con respecto al valor obtenido en el TIR (Tasa interna de retorno), este es mayor que el COK (tasa de descuento); (45.25% > 15%), lo cual hace que el proyecto sea viable. El TIR indica que el capital invertido en la realización del proyecto genera una tasa de retorno del 45.25%.

Por último, el IR (índice de rentabilidad) dice que por cada sol invertido la empresa gana 0.79 céntimos.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión

A partir del diagnóstico inicial que se hizo a la empresa se pudo detectar una inadecuada distribución de planta; ya que se encontró un excesivo apilamiento de inventario en las zonas de trabajo, distancias estrechas entre máquinas, falta de espacios específicos para el almacenaje de inventario, congestionamiento de personas, materiales y equipos; lo que incidía en ocasionar cuellos de botella en distintos procesos, accidentes laborales, desorden, incremento del tiempo recorrido entre estaciones de trabajo y malestar del personal.

Para validar la mala distribución de planta se empleó el Índice de Distribución del Layout (IDL), índice; que según el trabajo realizado por Gonsende (2016); permite evaluar la distribución espacial de plantas industriales. En su artículo demostró la eficiencia del presente indicador en una empresa del sector metalmecánico al permitir diagnosticar la necesidad de realizar un nuevo diseño de distribución del layout.

Al ser la empresa en estudio una carpintería cumplía con este criterio. Se hizo la evaluación al layout actual de la empresa y se obtuvo como resultado: Un IDL de 25.51%, el cual es el resultado matemático entre un IFO de 25.88% y un IFS de 24.39%. El obtener un IDL de 25.51% más cercano a cero, indicará que el layout está muy lejos de la distribución ideal esperada, es decir, los centros de actividad están distribuidos de manera desordenada, sin ningún tipo de relación cualitativa y/o cuantitativa que justifique su adyacencia o cercanía.

A partir de los resultados obtenidos se puede sustentar lo indicado por Gosende (2016); en este caso el índice de distribución de layout nos permitió evaluar la necesidad de proponer un nuevo diseño de distribución.

Según (Meyers & Stephens, 2006), el layout de una empresa indistintamente su rubro tiene un efecto directo en su productividad.

A raíz esto se analizó la presente productividad de la empresa en base a su actual diseño de distribución de layout. Se realizó el cálculo en las familias de productos que lideran las ventas; en este caso: Cajas de madera, estacas y parihuelas. Se obtuvo que la producción diaria de cada uno era de 98 unidades, 1363 unidades y 98 unidades; con dicha información se pudo obtener la productividad de mano de obra diaria; 14 de cajas de madera por operario, 143 unidades de estacas por operario, y 17 unidades de parihuelas producidas por operario. Así mismo se pudo encontrar que en la producción diaria de cada familia, el 66.51% en promedio son actividades productivas (inspección, operación y almacenaje) y el 33.49% restantes son actividades que no añaden valor (demoras y transporte). Los resultados obtenidos son indicadores que muestran la productividad actual de la empresa en base a su diseño de distribución de planta.

A partir de ello se quiso demostrar que el proponer un nuevo diseño de distribución de planta puede incrementar la productividad de la empresa, al reducir los recursos empleados e incrementar los productos obtenidos (Meyers & Stephens, 2006.

Para para llevar acabo un diseño de distribución de planta existen muchas técnicas. Sin embargo, la más aceptada y comúnmente usada es el Planeamiento Sistemático de Distribución (PSD) (Leyva, M.; Mauricio, D. &Salas, J., 2013).

En el trabajo realizado por Tigreros Arreaga, J. & Borja Manobanda, S. (2018). Evaluación y Propuesta de mejoras en la distribución espacial de la fábrica SERVIPAXA S.A. (Tesis de titulación). Universidad Politécnica Salesiana Del Ecuador, Ecuador. Los autores ante una problemática de una mala distribución de planta en una empresa de plásticos proponen tres alternativas de diseño de distribución

mediante el uso de la metodología PSD. Según los autores la presente técnica permite obtener una ubicación adecuada en base a las relaciones de mayor prioridad entre cada una de las áreas de trabajo, además de tener un enfoque sistemático o jerárquico, que se puede resumir en Analizar, Desarrollar y Evaluar. A partir de los indicado presentaron tres alternativas de diseño de distribución los fueron cuales fueron evaluados mediante el IDL presentado por Perez Gosende (2016). Al final optaron por la opción tres la cual presentaba un IDL del 89,97%, resultado que indicaría un eficiente flujo de materiales. Lo indicado por los autores se pudo contrastar con la investigación de Paredes, Peláez, Chud, & Alarcón (2016), quienes emplearon la metodología del PSD, para proponer un diseño de distribución de planta adecuado. De igual manera la etapa final de esta metodología es la de evaluar los diseños propuestos, ellos emplearon la metodología CRAFT y QAP con el fin de poder evaluar la mejor opción.

Teniendo como antecedente estos estudios, en la presente investigación se propusieron tres diseños de distribución mediante la metodología PSD, los cuales fueron evaluados mediante el índice de distribución del layout, ya que te permite evaluar de manera cualitativa y cuantitativa la adyacencia de los centros de actividades.

De esta evaluación se obtuvieron los siguientes resultados: Alternativa 1 (81.12%), Alternativa 2 (94.23%), y Alternativa 3 (83.41%).

De estas tres alternativas se escogió la alternativa 1 (81.12%), valor obtenido del resultado matemático entre el IFO de 101.66% y el IFS de 19.51%. A pesar de que alternativa 1 presenta el IDL más bajo, muestra el mejor desempeño, en cuanto a seguridad, flujo de material, comodidad y factibilidad; tomando en cuenta la opinión de los expertos en el flujo productivo.

Para poder demostrar lo indicado por (Meyers & Stephens, 2006), con respecto a que una adecuada distribución de planta puede incrementar los niveles de productividad de una empresa. Se aplicó la distribución escogida a las tres familias de productos que generan más ventas; en este caso la familia de cajas de madera, estacas y parihuelas. Esto se midió a través de los indicadores de productividad: Producción; cantidad de unidades producidas al día, llegando a producir 107 unidades de cajas de madera, 1530 estacas y 114 parihuelas; Productividad de mano de obra, llegando a producir un operario en un día 15 unidades de cajas de madera, 219 unidades de estacas y 19 parihuelas; y Actividades productivas e Improductivas, al disminuir la cantidad de tiempo empleado en transportar el material de un centro de actividad a otro, se lograría reducir a 24.95% el porcentaje de actividad improductivas (demoras y transporte); y se incrementaría el porcentaje de actividades productivas a 74.74%.

Llegando a la conclusión que una adecuada distribución de planta si permite incrementar la productividad de una empresa.

Como todo trabajo arduo se presentó ciertas limitaciones; una de ellas fue que, al realizar el diagnóstico actual de la empresa, se encontró muchos problemas y al no saber cuál abarcar; se tomó la decisión de realizar una reunión con todo el personal; con el fin de realizar una matriz de multi-votación de problemas que afectan la productividad de la empresa. Esto permitió definir que el problema con mayor ocurrencia y severidad era la inadecuada distribución de planta.

Otra limitación encontrada fue la falta de cooperación de los empleados en la recopilación de información. Para ello se habló con el gerente para que informará al personal sobre el estudio y pedirles que me facilitaran toda la información requerida.

Estas limitaciones fueron solucionadas, y se espera que en un futuro la empresa y otras microempresas manufactureras de la región de Cajamarca, se preocupen más por los factores que influyen en los resultados de su productividad actual. Siendo uno de ellos, la distribución de planta, ya que promueve la eliminación de movimientos y esfuerzos, logrando tener un impacto en la productividad, al incrementar la producción, reduciendo los recursos empleados, en este caso el tiempo empleado en transportar el material.

Una vez determinada la factibilidad de la propuesta de distribución se procedió a analizar si es económicamente viable.

A partir de los valores obtenidos en los siguientes indicadores financieros, se pudo aceptar la viabilidad de la propuesta de distribución. El VAN arrojó un valor mayor que cero (22,807.03 > 0), indicando que la empresa podría generar a la empresa utilidades de s/. 22,807.03. En cuanto al TIR, se obtuvo un valor del 45.25%; es decir, que el valor que el capital invertido en la realización del proyecto genera una tasa de retorno del 45.25%. Por último, el IR (índice de rentabilidad) dice que por cada sol invertido la empresa gana 0.79 céntimos.

4.2 Conclusiones

- Se realizó un diagnóstico situacional de la empresa, encontrándose una mala distribución de la planta lo cual se validó con: El Índice de Desempeño de Layout (IDL), el cual arrojó un valor de 25.51%; este es el resultado matemático de obtener un Índice de Flujo Operativo (IFO) de 25.88% y un Índice de Relaciones Subjetivas (IFS) de 24.39%; %. Ambos valores obtenidos indicaban que el layout actual no cumplía con el principio de la distancia mínima recorrida, ni con la distribución ideal propuesta por los operarios expertos de la empresa. Con respecto a la productividad se encontró que se producían al día 98 cajas, 1363 estacas y 98 parihuelas; teniendo en promedio un con respecto a actividades improductivas 33.49% y con respecto a actividades productivas un 66.49%.
- Se analizó la influencia de la inadecuada distribución de planta de la empresa; en el área de producción. En la actualidad las familias de productos que lideran las ventas; son las cajas de madera, las estacas y las parihuelas; cuya producción al día son de 98 unidades, 1363 unidades y 98 unidades; lo cual hace que la productividad de mano de obra sea en cada caso de; 14 unidades producidas por operario en un día de cajas de madera, 143 unidades de estacas por operario en un día, y 17 unidades de parihuelas por operario en un día. Así mismo las observaciones directas lanzaron que en la obtención diaria de cada familia, el 66.51% en promedio son actividades productivas el 33.49% restantes son actividades que no añaden valor.
- Se propuso tres diseños de distribución de planta mediante la metodología PSD, con el fin de incrementar los niveles de productividad de la empresa Inversión Cimas E.I.R.L. De estas tres propuestas se escogió la alternativa 1, ya que presentó un IDL de 81.12%, valor obtenido del resultado matemático entre el IFO de 101.66% y el IFS de 19.51%.

El IDL obtenido logró superar al valor esperado (75%); demostrando así un mejor desempeño, en cuanto a seguridad, flujo de material óptimo, comodidad y factibilidad; tomando en consideración la distribución ideal propuesta por los expertos de la empresa.

Se midió los niveles de productividad de la empresa tras la propuesta de distribución de planta y se obtuvo como resultados, el incremento de unidades producidas en cada familia de productos que lideran las ventas. En este caso las cajas de madera se incrementaron a 9 unidades producidas en un día; en las estacas a 167 unidades y en las parihuelas a 16 unidades. Este escenario hizo que la productividad de mano de obra de incrementará; 14 unidades producidas por operario en un día de cajas de madera, 143 unidades de estacas por operario en un día, y 17 unidades de parihuelas producidas por operario en un día.

Se logró estos resultados debido al decremento del porcentaje de actividades que no añaden valor (transporte y demoras), en este caso bajó a un promedio de 24.95% y por lo tanto se incrementó el porcentaje de actividades productivas a 74.74%.

Se realizó un análisis económico financiero para validar la viabilidad económica de la propuesta del diseño de distribución, la cual se aceptó gracias a los siguientes indicadores financieros: El VAN tuvo un valor mayor que cero (22,807.03 > 0), señalando que la empresa podría generar a la empresa utilidades de s/. 22,807.03; el TIR, obtuvo un valor del 45.25%; es decir, que el valor que el capital invertido en la realización del proyecto genera una tasa de retorno del 45.25%; y, por último, el IR indica que por cada sol invertido la empresa gana 0.79 céntimos.

REFERENCIAS

- Alva, D. & Paredes, D. (2014). Diseño De La Distribución De Planta De Una Fábrica De Muebles De Madera Y Propuesta De Nuevas Políticas De Gestión De Inventarios. Facultad De Ciencias E Ingeniería. Pontífice Universidad Católica Del Perú. Perú, pp. 73-77.
- Borja, S. & Tigreros, J. (2018). Evaluación Y Propuestas De Mejoras En La Distribución Espacial De La Fábrica SERVIPAXA S.A. Facultad de Ingeniería Industrial. Universidad Politécnica Salesiana Del Ecuador. Ecuador, pp. 8-167.
- Carro, R. & González, D. (2015). Productividad y Competividad. Universidad Nacional Del Mar Del Plata. Buenos Aires, vol.1, pp. 1-8.
- Castaño, R. Distribución En Planta (Lay-Out). Centro Tecnológico CIDETE. Pp. 2-33.
- Espino, A. (2018). La Disposición De Planta En La Fabricación De Productos De Madera Y Su Relación Con La Productividad En La Empresa Derivados De La Madera S.R.L Cajamarca. Facultad de Ingeniería. Universidad Privada Del Norte. Perú, pp. 1-117.
- Gosende, P. (2016). Evaluación De La Distribución Espacial De Plantas Industriales Mediante Un Índice De Desempeño. Facultad de Administración de Empresas. Universidad Politécnica Salesiana. Perú, pp. 1-15.
- Hernández, R.; Fernández, C. & Baptista, M. (2006). Metodología de la Investigación. Mcgraw-Hill / Interamericana Editores, S.A. De C.V. México, vol. 5, pp. 5-12.
- Instituto Nacional De Seguridad E Higiene En El Trabajo. Evaluación De Riesgos Series Microempresas- Guías Para La Acción Preventiva Taller De Carpintería. Ministerio De Trabajo Y Asuntos Sociales. España, pp.3-22.
- Leyva, M.; Mauricio, D. &Salas, J. (2013). Una Taxonomía Del Problema De Distribución

 De Planta Por Procesos Y Sus Métodos De Solución. Facultad De

 Ingeniería Industrial. Universidad Nacional Mayor De San Marcos. Perú,

 pp. 1-12.
- Meyers, F. & Stephens, M. (2006). Diseño de instalaciones de manufactura y manejo de materiales. Pearson Eduaction, México, vol. 3, pp. 1-528.

- Muther, R. (2014). Systematic Layout Planning. Management & Industrial Research Publications. River Cliff Chase, Marietta, GA 30067, USA, vol. 4 pp. 8-20.
- Oblitas, J. (2018). Guía de Investigación Científica. Universidad Privada Del Norte. Perú, vol. 2, pp. 13-22.
- Rivera, L; Cardona, L.; Palacios, V. & Rodríguez, M. Selección De Alternativas De Redistribución De Planta: Un Enfoque Desde Las Organizaciones. Sistemas & Telemática. Universidad ICESI. Colombia, vol. 10, pp. 1-19.

ANEXOS

ANEXO n.º 1. Entrevista.

Problemática actual de la empresa

Objetivo

Entablar una conversación con el gerente y la administradora de la empresa Inversiones Cimas, con la finalidad de conocer la problemática actual de la empresa; y proponer posibles soluciones ante lo mencionado.

Participantes

- Gerente General: Sr. Alejandro Chávez Marín.
- Encargada de la investigación: Ingrid Nicol Mendo Alvarez.

Procedimiento

Evaluar la problemática de la empresa

Se presentaron todos los participantes y el tema tratar fue: ¿Cuáles son los problemas principales dentro de la empresa? Para lo cual el gerente mencionó: La congestión de todo tipo de inventario, cuellos de botella en distintos procesos, accidentes laborales, máquinas inactivas o sobrecargadas, y malestar del personal. Estos escenarios han afectado su producción, e impiden alcanzar la eficiencia en sus operaciones productivas (Marín Sanchez, 2018). Así mismo como se pudo observar existe un desorden de una gran magnitud; a raíz de: La acumulación de madera, aserrín o viruta a lado cada máquina; distancias estrechas entre máquinas (ocasionan congestionamiento e impiden el flujo esbelto de materiales, personas y equipos); no cuentan con zonas de trabajo específicas y señalizadas; falta de clasificación del tipo de madera adquirida (causan una mala selección del tipo de inventario requerido y, por ende reprocesos); apilamiento excesivo de productos terminados y desechos; techos dañados (pueden originar accidentes laborales catastróficos); numerosas

máquinas inactivas; y operarios bien calificados realizando trabajos sencillos (incrementan los cuellos de botella).

Evaluar la problemática de la empresa

La empresa en estudio presenta problemas en su productividad los cuales recaen en no contar con una distribución correcta de sus áreas de trabajo. Es por ello que se plantea hacer cambios en la ubicación y dimensión de los centros de actividad existente de la planta. Engloba la organizar las áreas de trabajo; conservando la estructura general de la planta. La finalidad de esta propuesta es: Reducir los costos de manejo de materiales y transporte; mejorar la calidad de los productos obtenidos; promover el uso eficaz de personal, equipos, y energía; brindar a los operarios seguridad, comodidad y conveniencia; reducir o eliminar los inventarios excesivos; disminución de distancias y flujo esbelto de materiales, colaboradores y equipos; y una buena utilización del espacio.

Con la propuesta planteada se mejorar el desempeño de la empresa mediante el incremento en los niveles de productividad en sus operaciones.

ANEXO n.º 2. Encuesta.

Instrucciones Generales

La Técnica de la Encuesta está dirigida a los colaboradores de la empresa Inversiones Cimas E.I.R.L, con el fin de recopilar información sobre el tema "Diseño de una distribución de planta para incrementar los niveles de productividad en la empresa Inversiones Cimas".

Instrucciones Específicas

Elige la alternativa que considere correcta, marcando para tal fin con un aspa (X). Su aporte será de mucho interés en este trabajo de investigación. Se te agradece tu participación.

Diagnóstico Situacional de la actual distribución de planta

Positivo			Negativo		
Nunca	Raras veces	A veces	A menudo	Siempre	

		Nunca	Raras veces	A veces	A menudo	Siempre
1	Existe acumulación de inventario en las áreas de trabajo (impedimento el transporte flexible del material).	0	1	2	3	4
2	El material y equipo no se encuentran en buenas condiciones al iniciar el proceso productivo.	0	1	2	3	4
3	Ha visualizado máquinas que no están siendo correctamente usadas.	0	1	2	3	4
4	Se siente expuesto a accidentes laborales dentro de la planta donde labora.	0	1	2	3	4
5	Encuentra el espacio donde labora desorganizado y sucio.	0	1	2	3	4
6	Las áreas de trabajo están muy distanciadas, y pierde tiempo en trasladarse.	0	1	2	3	4
7	La planta donde labora no presenta la temperatura, iluminación y ventilación adecuada.	0	1	2	3	4
8	Su área de trabajo no está bien dimensionada.	0	1	2	3	4
9	Encuentra complicado y trabajoso cambiar la ubicación de las áreas de trabajo.	0	1	2	3	4
10	Las áreas de trabajo no están bien distribuidas.	0	1	2	3	4
11	La actual distribución de las áreas está afectando enormemente la producción.	0	1	2	3	4

Fuente: Elaboración Propia

ANEXO n.º 3. Gráfico de procesos.

F	RED N	AE	YE	iRS	5 &	AS	SSC	CI	AI	ΓE	S	TABL	A DE F	PROCESO)
	MÉTODO EXIST	ENTE			MÉTODO) PRO	PUESTO):	FEC	HA:		p	ÁGINA _	DE	
DES	CRIPCIÓN DE L	A PAR	TE:												
DES	CRIPCIÓN DE L	A OPE	RACI	ÓΝ:											
							_								
	SUMEN	N(M.	STENTE HORA		OPUESTO HOSA		HENCIA HORA		ANÁI	LISIS:	!		DIA	GRAMA.	
	BIACIONES			_				POR Q	υÉ	СШ	NDO		DEF	LUJO	
	PECCIONES	_		+-		-		QUÉ		Qu	DEM:			OTAL	
D DEI								DÓYDE	=	Ĉάι	мо		(IMP	ORTANTE)	
	(ACENAMIENTOS VCIA RECORRIDA							REALI	ZADC	POR	:				
			PE		PES / a	12	PES	. 7	a / x	7 7	1,	RIn	e / ch	LOULOS DE	_
PASO	DETALLES DEL	.PRO	CESO	MÉTOI	00/3/	<u> </u>	<u> </u>	8/8p		<u> </u>	<u> </u>	#/8 ₈	er er	MPO/COST	
1					0	<u>[</u>	\Box	∇							
2					O	□ [∇							
3					O	□ [∇							
4					О	□>[∇							
5					0) $ abla$							
6					Ŏ	Ď		∇							
7					Ŏ	尌	TĬ.	ΣĎ					-		
8					Ŏ	Ė	٦ř	∇							
9					Ŏ	Ď	ĪĎ	∇					-		
10					Ō) (
11					Ō		<u> </u>) ▽							
12					Ō)							
13					Ō	□		∇							
14					Ō	□Ī		∇							
15					Ō	□) ▽							
16					Ō			∇							
17					ŌI) (

Fuente: Diseño de instalaciones de manufactura y manejo de materiales

(Meyers & Stephens, 2006).

ANEXO n.º 4. Diagnóstico de la actual distribución de planta.

> Apilamiento excesivo de materia prima, productos terminados y desechos a lado de las máquinas

> Falta de áreas específicas para el almacén de inventario (materia prima y productos terminados)

ANEXO n.º 5. Consumo de materia prima (madera) por mes y por cada familia de producto.

Producto	Descripción	Familia	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set
1	Cajas	Familia 1	10989	1166	1332	1665	6660	7326	4662	5162	-
2			36000	4000	-	10000	24000	14000	17200	39000	32400
3] Parihuelas	Familia 4	13800	600	1350	2400	1659	600	-	-	2112
5	Listones	Familia 8	42	105	-	-	-	42	63	965	-
6	Mobiliario	Familia 10	-	-	-	-	299	-	-	-	1892
7	Otros	Familia 11	-	7400	-	55	-	-	857	-	-
	TOTALES		60831	5870	2682	14065	32618	21968	21925	45127	36404

Fuente: Elaboración Propia

ANEXO n. $^{\circ}$ 6. Secuencia de flujo de material entre centros de actividad.

					A	lmacenes	i							Producc	ión			Afilación de Maq.	Trat. Térmico	Zons de Desc	Carga y arga	Oficina de Gerencia
Producto	Descripción	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	Z-P1	Z-P2	Z-E1	Z-E2	Z-H	Z-F	Z-Acab.	Z-A	T-1	ZD-1	ZD-2	O-F
Troducto	Bescription	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
		A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	Ñ	0	P	Q		R	S
1 Cajas			7		1	8						3		4	2	5				6		
2	Estacas			7	1	8				5		3		4	2						6	
3	Parihuelas		6		1	7						3	4		2					5		
5	Listones			4	1	5									2						3	
6	Mobiliario			8	1	9			6		3			4	2		5			7		
7	Otros			8	1	9			6			3		4	2		5			7		
TO	TALES	0	13	27	6	46	0	0	12	5	3	12	4	16	12	5	10	0	0	25	9	0

Fuente: Elaboración Propia

ANEXO n. $^{\circ}$ 7. Flujo de material entre centros de actividad.

					Al	macenes								Produce	ión			Afilación de Maq	Trat. Térmico	Zona de Desc	Carga y arga	Oficina de Gerencia
Producto	Descripción	A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	A-9	Z-P1	Z-P2	Z-E1	Z-E2	Z-H	Z-F	Z-Acab.	Z-A	T-1	ZD-1	ZD-2	O-F
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	Cajas		4169		38961	417						34792		10448	37013	10004				10448		S
2	Estacas			2731	25521	273				75968		22790		75968	24245						75968	
3	Parihuelas		20009		187000	2001						166991	8350		177650					8350		
5	Listones			324	6471	32									6147						1537	
6	Mobiliario			252	2352	25			738		2100			738	2234		738			738		
7	Otros			921	8612	92			1218			7690		1218	8181		1218			1218		
ТОТ	TALES	0	24178	4227	268916	2841	0	0	1956	75968	2100	232263	8350	88372	255470	10004	1956	0	0	20754	77504	0

Fuente: Elaboración Propia

ANEXO n.º 8. Cuestionario sobre las relaciones de adyacencia cualitativas entre los centros de actividad de la empresa Inversiones Cimas E.I.R.L.

Instrucciones Específicas

Responda ¿Según su opinión qué tan importante o insignificante es la cercanía entre los centros de actividad i y j? Explique el porqué de su respuesta.

E= Extremadamente importante; I= Importante; O= Ordinariamente importante;

D= Indiferente; N= Indeseable

Centros de	e Actividad	¿Qué tan importante o insignificante es la cercanía entre los centros de actividad i y j?	¿Por qué?
i	j		
1	12		
1	13		
1	20		
2	10		
2	11		
2	14		
3	11		
3	14		
3	15		
4	14		
4	19		
4	20		
5	13		
5	16		
6	20		
8	16		
8	19		
8	20		
9	19		
9	20		
10	11		
10	12		
10	13		
10	21		
10	14		
11	12		
11	13		
11	14		
12	13		
12	16		
13	15		
13	16		
14	19		
14	20		
14	21		
15	19		
16	20		
17	10		
19	21		
20	21		

Fuente: Elaboración Propia

ANEXO n.º 9. Consolidado de las 20 observaciones realizadas en el proceso de obtención de cajas de madera.

												CAJA	S DE MAI	DERA										1
													Procedir											l
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Nª de Observaciones		3.4 m	7 m			8.28 m	6.48 m		4.06 m		9.98 m		6.95 m	13 m			13.97 m	20.52 m		29.1 m		1.4 m		SUMA
1	4.62	9.45	9.53	22.90	29.20	18.46	8.92	15.26	13.26	64.35	18.02	30.13	8.89	10.23	32.99	47.88	10.06	14.62	54.76	28.98	45.17	2.68	4.01	504.37
2	2.95	7.47	8.44	22.60	19.63	15.89	9.33	10.61	8.11	46.38	19.47	29.70	9.28	20.85	23.02	30.66	15.77	14.85	57.25	10.58	45.23	9.89	3.83	441.79
3	3.26	8.41	8.16	26.60	25.78	16.04	7.41	24.49	12.16	47.97	11.20	29.08	10.63	20.14	41.10	46.44	14.26	17.62	47.58	26.11	46.30	5.67	1.63	498.04
4	4.38	8.74	7.46	20.41	22.70	11.16	9.15	23.95	13.35	63.70	15.88	32.70	10.18	21.29	25.07	59.11	20.88	20.79	56.79	32.91	40.65	2.32	9.13	532.70
5	4.83	8.60	7.32	27.80	25.11	15.62	6.32	26.38	12.48	53.96	21.45	29.48	8.55	24.33	50.53	22.03	24.21	15.98	52.27	18.86	47.56	4.97	8.44	517.08
6	1.93	7.98	7.92	22.98	26.60	12.15	9.99	13.56	10.82	46.35	14.58	31.14	9.50	19.47	36.56	53.07	13.57	20.75	43.17	23.85	46.15	5.23	6.88	484.20
7	3.60	7.26	7.83	21.86	25.55	13.70	7.97	22.08	11.15	44.58	11.18	37.31	11.51	17.59	46.40	21.95	17.24	13.39	50.52	22.39	42.42	5.40	5.07	467.95
8	1.69	8.81	9.63	25.34	18.73	11.11	8.73	16.70	12.51	59.64	15.81	32.59	9.86	14.29	47.01	24.99	20.90	13.45	45.93	13.08	49.01	7.84	4.14	471.79
9	2.03	8.59	9.72	29.06	29.53	17.45	7.50	19.32	9.87	41.12	14.09	37.27	10.57	11.74	33.37	37.37	22.41	17.73	54.99	33.33	42.05	6.56	2.96	498.63
10	4.00	8.17	8.56	24.04	22.46	19.32	7.21	19.81	7.93	63.00	13.25	30.08	11.41	18.24	22.15	38.89	11.85	14.37	45.50	11.82	47.67	9.41	3.12	462.26
11	1.26	7.85	8.09	28.81	17.82	19.07	9.42	26.75	8.91	44.67	18.11	36.82	8.70	15.78	31.61	29.07	19.58	11.75	43.61	25.89	45.19	2.83	7.11	468.70
12	4.16	7.11	8.18	20.36	23.22	18.35	6.21	26.22	7.99	53.76	19.85	28.93	9.46	22.85	43.32	27.52	24.48	17.90	40.52	17.85	48.64	5.93	3.12	485.93
13	3.75	7.04	9.34	20.29	26.27	12.23	8.04	28.98	9.15	49.76	15.67	32.91	10.77	14.28	58.31	55.15	10.14	13.47	45.60	19.88	44.49	1.82	4.77	502.11
14	3.06	7.42	8.70	21.37	29.31	13.99	8.05	24.84	9.08	61.72	21.64	37.68	9.86	12.07	49.35	35.73	18.61	15.99	44.98	26.55	45.68	7.01	9.94	522.63
15	4.96	7.37	9.22	20.81	29.73	14.70	7.57	10.16	8.98	52.56	11.40	29.20	10.44	23.30	48.88	54.42	23.69	19.66	54.57	32.84	49.83	7.94	9.55	541.78
16	3.70	7.50	9.35	28.64	30.00	14.60	8.65	12.19	7.63	44.76	18.70	37.25	8.14	10.95	46.67	30.31	12.27	17.20	45.32	32.74	42.55	3.33	4.10	476.55
17	2.46	7.27	9.71	26.16	21.94	12.48	9.16	16.06	13.76	54.78	14.18	34.53	9.47	12.42	40.18	52.78	20.67	12.70	53.57	20.03	49.48	3.97	8.35	506.11
18	3.07	7.99	8.22	25.98	23.34	16.74	6.77	21.12	9.03	44.59	14.66	34.05	8.49	20.45	21.92	52.53	13.06	10.48	51.34	14.56	43.53	3.39	5.36	460.67
19	4.92	8.14	10.00	26.81	23.66	13.40	7.97	17.34	12.21	61.81	21.93	36.36	8.30	21.82	30.56	38.32	14.50	14.90	40.88	19.58	41.19	8.80	6.48	489.88
20	3.27	7.51	9.67	25.49	19.51	19.33	8.31	25.76	9.48	44.65	14.82	33.07	8.64	23.64	33.59	36.74	16.48	20.07	52.74	18.99	40.13	6.13	1.13	479.15
PROMEDIO	3.40	7.93	8.75	24.42	24.50	15.29	8.13	20.08	10.39	52.21	16.29	33.01	9.63	17.79	38.13	39.75	17.23	15.88	49.09	22.54	45.15	5.56	5.46	490.62

Fuente: Elaboración Propia

ANEXO n.º 10. Consolidado de las 20 observaciones realizadas en el proceso de obtención de estacas.

										E	STACAS										
										Nª de P	rocedime	nto									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Nª de Observaciones		3.10		5.40		5.07		8.59	3.41			7.45	16.06			2.65	4.51			1.12	SUMA
1	4.58	6.13	24	7.61	25.49	8.48	20.08	15.3	5.92	42.89	47.16	13.58	20.75	22.7	27.98	1.56	8.21	21.71	3.82	4.9	327.95
2	6.02	7.1	23	8.53	18.87	9.28	21.7	17.95	5.65	22.64	34.62	19.01	20.33	49.98	46.76	3.07	5.85	26.68	1.32	7.19	348.36
3	3.75	9.19	21	6.83	28.5	9.68	16.93	16.65	7.11	38.77	28.46	13.11	29.82	47.33	41.43	9.18	5.34	15.29	2.49	1.86	350.86
4	6.01	6.24	20	6.4	28	7.28	21.87	17.19	7.99	47.4	31.23	19.67	25.16	22.62	40.66	6.82	9.55	15.36	7.54	2.39	346.99
5	5.76	7.37	29	8.82	12.56	8.22	22.21	12.41	7.22	30.24	35.15	17.59	21	38.89	43.28	9.3	7.46	28.02	3.38	5.04	347.88
6	4.96	6.32	29	6.14	19.18	7.58	18.42	14.52	9.64	35.88	41.63	18.55	28.28	39	33.12	2.9	7.65	15.64	9.39	5.71	347.8
	6.00	5.27	26	0.0	20.40	C 45	24.55	45.24	6.00	27.04	44.74	11.01	20.24	20.44	27.66	6.52	0.04	24.42	6.04	6.50	250.22
7 8	6.83	5.37	26	9.9	28.49	6.45	24.55	15.34	6.83	27.84	44.71	14.81	29.21	30.41	27.66	6.52	8.04	24.42	6.84	6.59	350.22
9	7.34 6.22	5.49 6.19	20 25	7.77 8.22	19.27 19.36	7.17	23.6	14.91 16.57	5.69 9.24	45.51 40.45	29.95 39.63	18.45 13.32	29.33 27.64	42.81 31.7	34.25 48.33	3.89 9.08	6.13 8.43	22.68	6.87 8.18	1.37 7.77	352.63 375.14
10	7.06	8.22	26	6.35	25.58	9.07	22.58	15.34	9.89	38.22	22.51	18.11	25.08	42.84	42.22	5.87	5.93	10.31	8.33	1.77	349.51
11	3.93	8.35	30	6.68	24.2	7.08	23.81	18.47	6.18	45.53	20.6	15.49	27.06	46.65	23.17	6.83	9.85	27.3	9.13	2.7	360.31
12	5.21	7.91	30	7.98	20.59	9.83	22.34	19.39	7.33	29.8	32.85	16.01	24.76	35.14	22.18	6.95	5.17	19.64	5.95	3.38	329.03
13	6.62	7.65	25	7.78	24.62	8.1	17.49	18.18	9	33.39	46.52	19.24	21.35	47.75	47.5	4.19	7.54	27.58	9.96	7.31	389.46
14	6.59	7.64	26	8.82	11.9	7.05	16.09	15.31	8.88	28.67	47.56	18.44	23.29	20.27	34.39	1.64	9.02	16.71	6.9	9.97	315.17
15	7.86	6.89	20	7.07	28.89	7.3	19.36	16.03	6.92	47.63	24.06	15.85	28.77	28.3	29.15	2.13	8.55	28.14	1.91	8.59	334.81
16	6.4	5.43	30	6.12	14.89	9.63	18.1	12.74	5.09	47.1	21.67	15.52	20.01	27.73	48.33	8.64	5.2	26.06	9.08	4.21	337.74
17	4.41	7.11	20	5.1	29.96	6.57	17.55	13.66	8.24	47.46	46.5	17.46	28.84	33.4	26.69	1.63	7.26	25.88	6.39	3.94	354.11
18	4.05	5.15	26	9.26	13.41	7.7	19.38	12.52	6.49	32.6	38.19	18.39	22.4	46.94	27.88	5.14	8.93	23.16	3.13	9.9	330.72
19	5.2	8.55	24	7.74	16.67	6.73	21.86	15.22	5.55	41.81	21.61	12.73	27.12	38.63	33.74	4.89	7.96	29.77	2.75	5.79	332.53
20	7.05	8.11	28	8.74	13.58	9.05	24.43	17.75	9.46	29.06	31.55	13.01	23.37	48.1	49.33	2.25	9.6	15.58	6.39	4.35	354.41
PROMEDIO	5.7925	7.0205	25.1	7.593	21.2005	8.047	20.6465	15.7725	7.416	37.6445	34.308	16.417	25.1785	37.0595	36.4025	5.124	7.5835	22.488	5.9875	5.2365	352.018

ANEXO n.º 11. Consolidado de las 20 observaciones realizadas en el proceso de obtención de parihuelas.

										PARIH	IUELAS]				
										Nª de Pro	cedimento														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Nª de Observaciones		3.3 m		6.58 m		4.4 m		2.65 m	10.95 m			5.05 m	7.97 m			2.19 m		18.7 m		25.6 m	48.72 m		1.1 m		
1	3.74	10.17	18.44	11.38	18.52	7.9	37.25	2.3	16.51	40.05	39.34	7.4	14.85	38.21	47.67	2.84	12.22	26.73	59.76	30.99	39.18	32.88	2.59	4.8	525.72
2	4.67	8.3	18.61	11.93	22.34	6.71	27.55	1.55	17.96	38.95	31.27	9.51	15.78	35.09	28.11	6.19	8.17	23.51	35.82	40.25	38.69	23.26	2.7	9.87	466.79
3	3.64	8.16	18.51	9.9	21.24	6.47	39.02	4.13	16.84	35.1	33.11	8.17	12.13	31.51	30.72	6.2	16.35	17.47	36.35	39.29	41.11	24.21	3	1.44	464.07
4	4.89	8.13	23.63	10.51	22.86	5.16	37.39	3.08	15.5	39.09	34.17	6.69	12.28	32.58	35.07	3.44	8.8	21.14	57.68	27.02	37.95	24.45	1.08	1.17	473.76
5	2.77	8.73	19.19	8.62	18.02	6.16	28.39	1.54	17.41	39.6	37.04	8.94	14.63	39.81	49.63	1.74	14.43	25.23	32.9	30.27	57.93	24.05	1.06	2.78	490.87
6	3.57	9.28	19.28	11.31	23.5	7.82	36.76	3.89	15.89	38.57	34.37	5.66	12.6	30.77	40.26	4.96	13.21	18.92	46.62	28.77	37.89	25.89	1.07	4.62	475.48
																								1.6	1.6
7	3.05	10.77	21.56	9.81	24.49	6.65	34.37	2.71	17.56	38.47	35.23	5.26	12.47	31.19	42.4	7.24	9.49	17.92	40.56	25.58	37.86	29.54	1.45	3.48	469.11
8	4.04	7.18	20.23	9.45	18.96	7.46	36.44	2.06	15.59	35.95	30.7	6.56	14.99	39.08	27.16	4.55	10.67	19.41	48.53	34.99	34.03	30.61	1.55	3.7	463.89
9	3.12	5.74	21.35	11.09	21.24	6.61	30.19	4.25	16.41	35.05	30.43	7.91	13.93	25.11	35.26	7.79	14.76	23.47	59.31	43.28	50.92	26.49	2.08	1.9	497.69
10	4.53	11.46	19.47	11.72	19.92	5.58	37.66	2.74	17.33	37.47	31.82	6.79	14.14	39.11	41.51	5.41	11.78	20.24	49.61	28.4	32.89	33.17	2.48	1.17	486.4
11	1.69	9.33	20.54	11.27	24.91	5.6	36.87	3.99	15.79	37.79	36.21	7.13	15.16	25.81	34.81	7.2	11.1	20.32	31.7	27.38	45.24	30.15	2.77	1.75	464.51
12	1.89	6.07	23.78	8.66	20.44	5.81	36.61	1.66	16.44	36.47	36.79	8.83	13.33	27.36	42.99	6.42	8.52	29.38	48.42	29.11	33.71	25.72	2.24	1.71	472.36
13	4.53	9.68	21.46	10.03	21.39	5.71	35.95	2.03	17.19	38.59	40.29	7.8	14.95	37.77	41.8	4.38	13.8	20.91	56.53	40.21	45.82	22.23	2.05	6.37	521.47
14	4.73	10.32	21.99	8.28	17.69	7.79	30.06	3.6	17.05	40.44	33.73	5.69	14.48	33.7	42.1	1.32	17.92	28.12	53.03	40.58	39.63	33.7	1.43	5.78	513.16
15	3.19	10.78	22.96	8.23	18.52	6.19	33.99	4.49	16.39	38.95	37.09	7.64	12.49	38.77	25.2	6.12	10.78	29.79	35.57	40.81	55.08	28.98	2.67	3.78	498.46
16	3.82	5.77	21.2	11.05	18.07	7.27	37.33	1.29	17.87	39.16	38.18	7.68	12.87	43.48	26.11	5.72	16.06	27.45	54.12	35.87	30.96	26.14	2.36	8.65	498.48
17	1.52	10.96	23.79	8.36	15.93	6.81	34.78	4.2	15.05	39.85	37.63	7.92	15.32	40.01	44.06	7.59	16.85	20.66	59.36	32.1	53.49	31.26	1.44	6.34	535.28
18	2.81	9.86	19.53	9.34	16.99	6.69	35.34	3.6	18	38.73	30.94	6.09	14.05	38.21	34.19	3.75	13.97	15.05	38.55	39.33	58.41	27.64	2.09	2.76	485.92
19	2.04	9.6	19.04	10.07	18.85	6.46	27.49	2.08	16.03	40.87	32.34	7.93	13.96	47.35	39.94	3.36	8.02	16.83	52.72	31.49	44.27	29.41	2.8	1.5	484.45
20	3.38	11.36	24.83	11.24	18.45	5.89	34.51	1.85	16.29	40.7	37.71	5.77	12.87	46.49	30.99	2.76	8.59	25.54	56.29	26.14	52.48	31.96	1.6	8.26	515.95
PROMEDIO	3.381	9.0825	20.9695	10.1125	20.1165	6.537	34.3975	2.852	16.655	38.4925	34.9195	7.2685	13.864	36.0705	36.999	4.949	12.2745	22.4045	47.6715	33.593	43.377	28.087	2.0255	3.97285714	490.072357

Fuente: Elaboración Propia

