

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Geológica

"ESTIMACIÓN DE RECURSOS MINERALES DE ORO Y PLATA, MEDIANTE EVALUACIÓN GEOLÓGICA SUPERFICIAL, EN UN ÁREA DEL CASERÍO TUYUPAMPA, CAJAMARCA, 2020"

Tesis para optar el título profesional de:

Ingeniero Geólogo

Autores:

Walter Aaron Briones Aponte Jhoan Alexander Vásquez Sánchez

Asesor:

Ing. Wilder Chuquiruna

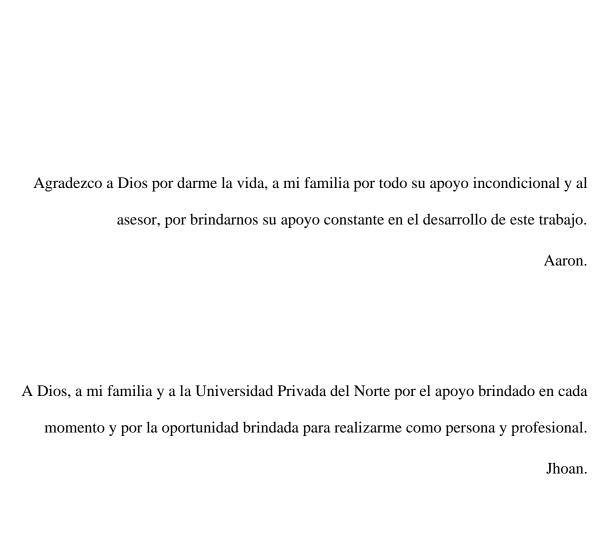
Cajamarca - Perú

2020

DEDICATORIA

A mis padres, por haberme permitido llegar hasta este punto y velar por mi salud, para lograr mis objetivos; también, por su invalorable y perseverante apoyo con mi carrera profesional; a mi novia, mis hermanos, familiares y amigos cercanos por participar directa o indirectamente en la elaboración de esta tesis.

Aaron.


A Dios

Por guiarme durante todo el camino y así poder lograr todas mis metas para superarme cada día.

Jhoan.

AGRADECIMIENTO

Tabla de contenidos

DEDICATORIA	2
AGRADECIMIENTO	3
ÍNDICE DE TABLAS	5
ÍNDICE DE FIGURAS	
RESUMEN	
CAPÍTULO I. INTRODUCCIÓN	10
CAPÍTULO II. METODOLOGÍA	18
CAPÍTULO III. RESULTADOS	27
CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES	65
REFERENCIAS	72
ANEXOS	75

ÍNDICE DE TABLAS

Tabla 1. Clasificación de Recursos Minerales USGS	12
Tabla 2. Coordenadas UTM de la zona de estudio.	28
Tabla 3. Firma espectral Dickita	32
Tabla 4. Firma espectral Montmorillonita	33
Tabla 5. Firma espectral Caolinita	33
Tabla 6. Firma espectral Illita	34
Tabla 7. Firma espectral Pirofilita	34
Tabla 8. Firma espectral Goethita.	35
Tabla 9. Campaña de Muestreo, M01	35
Tabla 10. Firmal Espectral - Mineral Dickita M 01	36
Tabla 11. Campaña de Muestreo, M02	36
Tabla 12. Firmal Espectral - Mineral Montmorillonita M 02	37
Tabla 13. Firmal Espectral - Mineral Caolinita M 02	37
Tabla 14. Campaña de Muestreo, M03	38
Tabla 15. Firmal Espectral - Mineral Montmorillonita M 03	38
Tabla 16. Campaña de Muestreo, M04	39
Tabla 17. Firmal Espectral - Mineral Caolinita M 04	39
Tabla 18. Campaña de Muestreo, M05	40
Tabla 19. Firmal Espectral - Mineral Caolinita M 05	40
Tabla 20. Campaña de Muestreo, M06	41
Tabla 21. Firmal Espectral - Mineral Caolinita M 06	41
Tabla 22. Firmal Espectral - Mineral Illita M 06	42
Tabla 23. Campaña de Muestreo, M07	42

Tabla 24.	Firmal Espectral - Mineral Dickita M 07	43
Tabla 25.	Firmal Espectral - Mineral Caolinita M 07	43
Tabla 26.	Campaña de Muestreo, M08	44
Tabla 27.	Firmal Espectral - Mineral Caolinita M 08	44
Tabla 28.	Campaña de Muestreo, M09	45
Tabla 29.	Firmal Espectral - Mineral Goethita M 09	45
Tabla 30.	Firmal Espectral - Mineral Montmorillonita M 09	46
Tabla 31.	Firmal Espectral - Mineral Caolinita M 09	46
Tabla 32.	Campaña de Muestreo, M10	47
Tabla 33.	Firmal Espectral - Mineral Goethita M 10	47
Tabla 34.	Firmal Espectral - Mineral Montmorillonita M 10	48
Tabla 35.	Firmal Espectral - Mineral Caolinita M 10	48
Tabla 36.	Campaña de Muestreo, M11	49
Tabla 37.	Firmal Espectral - Mineral Caolinita M 11	49
Tabla 38.	Firmal Espectral - Mineral Dickita M 11	50
Tabla 39.	Campaña de Muestreo, M12	50
Tabla 40.	Firmal Espectral - Mineral Caolinita M 12	51
Tabla 41.	Firmal Espectral - Mineral Montmorillonita M 12	51
Tabla 42.	Campaña de Muestreo, M13	52
Tabla 43.	Firmal Espectral - Mineral Pirofilita M 13	52
Tabla 44.	Firmal Espectral - Mineral Dickita M 13	53
Tabla 45.	Campaña de Muestreo, M14	53
Tabla 46.	Firmal Espectral - Mineral Goethita M 14	54
Tabla 47.	Firmal Espectral - Mineral Montmorillonita M 14	54

Tabla 48. Firmal Espectral - Mineral Caolinita M 14	55
Tabla 49. Campaña de Muestreo, M15	55
Tabla 50. Firmal Espectral - Mineral Caolinita M 15	56
Tabla 51. Campaña de Muestreo, M001	56
Tabla 52. Campaña de Muestreo, M002	57
Tabla 53. Campaña de Muestreo, M003	57
Tabla 54. Campaña de Muestreo, M004	58
Tabla 55. Campaña de Muestreo, M005	58
Tabla 56. Análisis por Absorción Atómica (AA), M01	59
Tabla 57. Análisis por Absorción Atómica (AA), M001	60
Tabla 58. Análisis por Absorción Atómica (AA), M003	60
Tabla 59. Análisis por Absorción Atómica (AA), M03	61
Tabla 60. Análisis por Absorción Atómica (AA), M005	61
Tabla 61. Análisis por Absorción Atómica (AA), M07	62
Tabla 62. Análisis por Absorción Atómica (AA), M004	62
Tabla 63. Análisis por Absorción Atómica (AA), M10	63
Tabla 64. Análisis por Absorción Atómica (AA), M12	63
Tabla 65. Análisis por Absorción Atómica (AA), M14	64
Tabla 66. Cuadro Comparativo de los resultados de Recursos Minerales	67
Tabla 67. Clasificación USGS de los recursos minerales obtenidos	69

ÍNDICE DE FIGURAS

Figura 1. Recursos y Reservas – Código JORC	11
Figura 2. Espectrómetro de llama	19
Figura 3. Rango del Espectrómetro ASD Terraspec	20
Figura 4. Componentes ASD Terraspec 4 Hi – Res	21
Figura 5. Ubicación de la zona de estudio en el caserío Tuyupampa	27
Figura 6. Área de estudio, Caserío Tuyupampa.	27
Figura 7. Zona de Oxidación, de coloración rojiza oscura, amarillenta, parduzca	30
Figura 8. Roca arenisca moderadamente oxidada con alteración argílica	30
Figura 9. Roca Dacita, expuesta al intemperismo.	31
Figura 10. Dacita con ocurrencia de cuarzo y pirita	31
Figura 11. Clasificación JORC de los recursos minerales obtenidos	68

RESUMEN

El caserío Tuyupampa está ubicado en el distrito de La Encañada, provincia de Cajamarca. Se caracteriza por presentar una importante diversidad minera, producto de la actividad magmática que ha dado origen a distintos depósitos minerales entre los que destacan proyectos mineros como Michiquillay y El Galeno. Impulsados por los antecedentes mineralógicos y por las evidencias geológicas, esta investigación tiene como objetivo, estimar recursos minerales de oro y plata, mediante evaluación geológica superficial, de un área seleccionada en el mencionado caserío y determinar si éstos resultan favorables para la industria minera. Para lograrlo, se realizaron campañas exploratorias en el área, consiguiendo distinguir zonas de alteración, una de argilización - oxidación y una sulfuración, de las cuales se recopilaron 20 muestras de roca alterada de los afloramientos, y se seleccionaron las 10 más representativas, para practicar análisis por Absorción Atómica. Los resultados permiten estimar leyes promedio para oro, en la zona de óxidos, de 1.24 gr/TM Au (0.04 oz/tc Au), y para plata de 7.33 gr/TM Ag (0.22 oz/tc Ag); y en la zona de sulfuros, leyes promedio para oro de 3.36 gr/TM Au (0.10 oz/tc Au), y para plata de 58.75 gr/TM Ag (1.72 oz/tc), concluyendo que dichos recursos minerales inferidos (JORC), o subeconómicos inferidos (USGS), resultan favorables para la industria minera.

Palabras clave: Recursos minerales, evaluación geológica superficial, industria minera.

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

Al pensar en cómo la industria minera contribuye al progreso del Perú, lo primero que viene a la mente son las contribuciones que ésta realiza al Estado a través del canon minero, el cual se materializa (o por lo menos debería) en proyectos de; salud, infraestructura, educación, entre otros, que favorecen a las localidades que se encuentran dentro del área de influencia de un proyecto minero. No obstante, pocas veces se interioriza que estos beneficios son posibles gracias a la realización de distintos estudios empleados para obtener información sobre el potencial mineralógico de un determinado sector, cuyos resultados posibilitaron la construcción y operación de una mina. Dichos estudios constituyen lo que se conoce como exploración minera. (Pachas, 2014, págs. 321-328).

Siendo la minería una actividad que impulsa el desarrollo del estado peruano, la exploración de nuevas fuentes minerales resulta cada vez más trascendente, requiriendo que los métodos analíticos que permiten su desarrollo sean sobre todo eficaces, accesibles y de fácil aplicación. En ese sentido, el análisis de muestras de roca por Absorción Atómica (AA), resulta muy útil para la determinación de zonas prospectivas y/o exploratorias. Ésta se define como una técnica capaz de detectar y determinar cuantitativamente la mayoría de los elementos químicos del sistema periódico, midiendo la absorción de especies atómicas a una longitud de onda particular. (Cornelis, 2001).

Esta herramienta ayudará a la estimación de recursos minerales presentes en determinadas zonas; entendiéndose como recurso mineral, según la segunda versión del código JORC (Australasian Joint Ore Reserves Committee), a las ocurrencias de interés económico dentro o fuera de la corteza terrestre, en forma y cantidad tal como para demostrar que hay perspectivas razonables para una eventual extracción económica. Dichos recursos minerales se clasifican, de acuerdo al grado de conocimiento geológico, en **inferidos** (bajo nivel de confianza), **indicados** (razonable nivel de confianza) **y medidos** (alto nivel de confianza). (Vázquez, 2012, págs. 48 - 49).

Figura 1. Recursos y Reservas – Código JORC Fuente: Manual de Yacimientos Minerales (Vázquez, 2012).

Asimismo, resulta importante mencionar la clasificación de recursos minerales realizada por el Servicio Geológico de los Estados Unidos (USGS), la cual es una versión similar a la anterior, que categoriza los recursos por el grado de conocimiento geológico y la viabilidad económica.

(-) ---Viabilidad Económica → (+)

Estimación de recursos minerales de oro y plata, mediante evaluación geológica superficial, en un área del caserío Tuyupampa, Cajamarca, 2020.

Tabla 1. Clasificación de Recursos Minerales USGS

PRODUCCIÓN	RECURSOS IDENTIFICADOS		RECURSOS NO DESCUBIERTOS		
ACUMULADA -	Demostrados			Grado de Probabilidad	
	Medidas	Indicadas	Inferidos	Hipotéticos	Especulativos
ECONÓMICOS	Res	ervas	Reservas Inferidas		
ECONÓMICOS MARGINALES	Reservas	Marginales	Reservas Marginales Inferidas		
SUBECONÓMICOS	Subeco	cursos onómicos ostrados	Recursos Subeconómicos Inferidos		

(+) <----- Grado de conocimiento geológico ----- (-)

Fuente: Manual de Yacimientos Minerales (Vázquez, 2012).

Aquellos recursos minerales hipotéticos o sub económicos, pueden pasar a la categoría de reservas, tanto por el aumento del conocimiento geológico, como por el alza de los precios de los metales. (Vázquez, 2012, pág. 48).

En tal sentido, concentraciones significativas de minerales metálicos como oro, plata, cobre, etc., resultan aprovechables para la industria minera, así lo ha señalado el estudio "Minería, Minerales y Desarrollo Sustentable en Perú" el cual refiere que desde inicios de la República, la minería del oro, plata y metales básicos han sido los cimientos y uno de los sectores más enérgicos de la economía peruana, siendo un importante impulso financiero al proveer servicios sociales básicos, puestos de empleo, infraestructura, etc.; convirtiendo a nuestro país en el octavo productor de oro en el mundo, el segundo de plata, el séptimo de cobre, y el cuarto de zinc y plomo. (Glave & Kuramoto, 2002, págs. 529-591).

El área de estudio, en el caserío Tuyupampa, distrito de La Encañada, se ha seleccionado teniendo en cuenta los antecedentes mineralógicos y atractivo geológico que muestra. Dicho atractivo se sustenta en diversas cualidades que se apreciaron tanto en la recopilación de información previa, como en las percibidas en las visitas de campo realizadas a la zona de estudio. (Anexos N° 3 - 6).

La recopilación de información, entre otros aspectos, permite reconocer que el área de estudio, en el distrito de la Encañada, se encuentra dentro de la franja metalogenética XXI de epitermales de Au-Ag del mioceno hospedados en rocas volcánicas cenozoicas. (Acosta, y otros, 2009); además dicha área puede verse influenciada, dada su cercanía, por cuerpos tipo pórfido como los de los proyectos mineros El Galeno y Michiquillay. Asimismo, los datos geológicos recogidos de la carta geológica 15g (INGEMMET), advierten presencia de intrusiones magmáticas (intrusivos dacíticos) en medios sedimentarios, reforzando así lo anteriormente mencionado. Estas características sugieren que en el caserío Tuyupampa se pueden llevar a cabo actividades prospectivas y/o exploratorias.

En ese sentido, la visita de campo resultó fundamental, pues permitió complementar la información antes mencionada, permitiendo el reconocimiento de características geológicas tales como la litología, compuesta principalmente por rocas dacíticas propias de la formación Porculla - Grupo Calipuy, rodeado de lutitas, areniscas y cuarcitas relacionadas a las formaciones Carhuaz y Farrat; asimismo, es posible la observación de una notable alteración en las rocas, tanto hipógena como supérgena dando origen a zonas de argilización - oxidación y sulfuración. (Anexos N° 7 y 8).

Wagner Viza en su "Estudio geológico y estimación de recursos del proyecto minero Vemusa, La Joya, Arequipa" pretende estimar el potencial de recursos

económicos de oro y plata del mencionado proyecto, hallándose éste aún en estudios preliminares, buscando convertirla en una oportunidad de minería sustentable. La mineralización de interés económico se encuentra en la denominada veta Vemusa, la cual es de tipo filoniana; dicha mineralización se distribuye irregularmente formando estructuras tipo rosario, ramificadas, etc. La recopilación y análisis de muestras, realizadas en trincheras, permitió asignar a la veta Vemusa, potenciales de hasta 6 423 TM con leyes máximas de 0.235 oz/tc de Au; y, 11.310 oz/tc de Ag, logrando concluir, en base a los resultados, que dicha estructura mineralizada es potencialmente explotable. (Viza, 2018, pág. 2).

Asimismo, el estudio "Estimación de recursos y reservas del yacimiento aurífero Fidami, Sancos – Lucanas - Ayacucho", llevado a cabo por Yack Castillo, busca estimar recursos y reservas de las distintas estructuras en la mina FIDAMI, determinando para ello, características geológicas y geoeconómicas de dichos cuerpos mineralizados. Para la estimación, se ha creado un archivo de tarjetas de cubicación, en donde se encuentra toda la población de muestras de labores que sirven de base para la cubicación y estimación, de acuerdo al historial de explotación que tiene cada estructura mineralizada. Realizado el proceso, se distinguen tres resultados generales; recursos minerales medidos, 43 858 TM con una ley promedio de 17.9 grAu/TM; recursos minerales indicados, 41 432 TM con una ley promedio de 17, 34 grAu/TM y, finalmente, recursos minerales inferidos en 128 155 TM con una ley promedio de 6.29 grAu/TM. (Castillo, 2018, pág. 2).

De igual forma, el estudio "Cálculo de reservas y estimación de recursos minerales de la veta Esperanza, yacimiento minero San Andrés-Puquio Ayacucho" realizado por Julio Chacca, está enfocado a elaborar un inventario de reservas y resumen de recursos

minerales de oro y plata de la mencionada estructura mineral. Para la recopilación de información se realizó una serie de proyectos de exploración a través de perforación diamantina y diversos laboreos, que permitan pasar el mineral potencial y recursos inferidos a reservas probables y probadas. Según los resultados, las reservas se valoran en 27 500 TM con 0.6 oz/tc de Au y 23 oz/tc de Ag, y los recursos se estiman en 18 030 TM, con 0.15 oz/tc de Au y 8 oz/tc de Ag, pudiendo, con un estudio de factibilidad, convertirse en reservas y por lo tanto proceder a su explotación. (Chacca, 2018).

Igualmente, Fausto Ramírez en su "Estudio geológico y mineralización de la UP Carahuacra proyecto de exploración y estimación de recursos de la veta Mary" realiza la cubicación y estimación de recursos minerales de la estructura, en donde la mineralización mena está constituida por esfalerita, marmatita, galena, calcopirita, con elementos de interés económico como Zn – Pb – Ag. La recopilación de información se realizó mediante el muestreo de rocas por canales, recolectados regularmente a lo largo de la potencia de la estructura; y también, por la exploración de sondajes diamantinos. Los resultados permiten estimar recursos minerales por un total de 235 400 TM, con potencia de 2.20 m y leyes de 0.19 % Cu, 0.16 % Pb, 6.63 % Zn, y 1.82 oz Ag. (Ramírez , 2017).

Finalmente, Miguel Caballero en su "Evaluación de los recursos de la mineralización de oro en el proyecto Antaña - Puno" pretende comprobar el potencial de la mineralización cercana a superficie del mencionado proyecto minero, en donde el interés económico reside en la mineralización de Au-Sb-As, integrando información geológica y de programas de perforación. Los programas de 41 taladros de perforación diamantina, y 78 de aire reverso, permitieron estimar recursos minerales para la zona

aurífera oxidada de 4 490 621 toneladas, con una ley promedio de 0.86 gr/t Au, y una ley de corte de 0.5 gr/t Au. (Caballero , 2010).

En suma; con los datos recopilados en gabinete y en campo, se definen las características geológicas de la localidad, compuesta por cuerpos dacíticos que intruyen capas sedimentarias de lutitas, cuarcitas y areniscas, los mismos que pueden dar origen a depósitos mineralizados tipo epitermales, lo cual guarda relación con la descripción de la franja metalogenética XXI; y se establece el objetivo de esta investigación el cual es estimar recursos minerales de oro y plata, mediante evaluación geológica superficial, de un área en el caserío Tuyupampa, aprovechando la situación geológica y minero-económica anteriormente expuesta, además determinar si éstos resultan favorables para la industria minera.

1.2. Formulación del problema

¿La estimación de recursos minerales de oro y plata, mediante evaluación geológica superficial, en un área del caserío Tuyupampa, es favorable para la industria minera?

1.3. Objetivos

1.3.1. Objetivo general

Estimar recursos minerales de oro y plata, mediante evaluación geológica superficial, en un área del caserío Tuyupampa, Cajamarca, 2020.

1.3.2. Objetivos específicos

- ✓ Reconocer la litología que conforma el área de estudio el sector Tuyupampa.
- ✓ Identificar zonas de alteración hidrotermal mediante el reconocimiento, vía terraspec, de minerales de arcilla principalmente.
- ✓ Realizar el análisis por Absorción Atómica de las muestras de roca, para la estimación de recursos.
- ✓ Realizar una aproximación de los recursos estimados a la clasificación JORC y USGS
- ✓ Determinar si los recursos minerales estimados resultan favorables para la industria minera.

1.4. Hipótesis Específica

Los recursos minerales estimados, mediante evaluación geológica superficial, resultan favorables para la industria minera.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

La investigación es de tipo no experimental – correlacional cuantitativa, esto según Sampieri quien afirma que los estudios correlacionales cuantitativos tienen como finalidad evaluar el grado de relación que existe entre dos o más variables; es decir, se mide cada variable presumiblemente relacionada y después también se mide y analiza la correlación. Dichas correlaciones se expresan en hipótesis sujetas a prueba. La utilidad y propósito principal son conocer cómo se puede comportar una variable conociendo el comportamiento de la otra variable relacionada. (Sampieri, Collado, & Lucio, 2004).

2.2.Población y muestra (Materiales, instrumentos y métodos)

Población: Afloramientos de roca en Tuyupampa, La Encañada, Cajamarca.

Muestra: 20 muestras de roca obtenidas de afloramientos, de las cuales 10 se tomarán para análisis en laboratorio.

Unidad de estudio: Muestra de roca.

2.3. Técnicas e instrumentos de recolección y análisis de datos

Técnicas de recolección de datos

- ✓ Observación directa en campo.
- ✓ Cartografiado geológico.
- ✓ Muestreo rock chip.

Instrumentos de recolección de datos

✓ Google Earth. ✓ GPS.

✓ INGEMMET. ✓ Brújula.

✓ Plano geológico.✓ Cámara fotográfica.

✓ Plano topográfico.
✓ Lupa geológica.

- ✓ Lápiz rayador y magnético.
- ✓ Bolsas herméticas.

✓ Picota de campo.

✓ Ficha de muestreo.

✓ Ácido clorhídrico.

Análisis de datos

Análisis por Absorción Atómica

En el estudio realizado por Rubén Manrique, se detalla que el Espectrofotómetro de Absorción Atómica es un instrumento que produce y mide la absorción con propósitos analíticos cuantitativos, ya que esto puede determinar cualquier elemento químico si su línea de resonancia está en el campo de la espectroscopia visible a ultravioleta.

Componentes

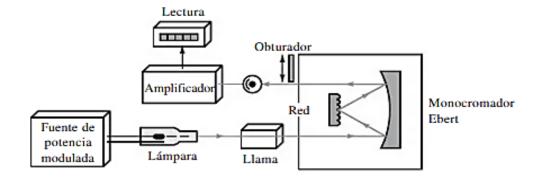


Figura 2. Espectrómetro de llama

Fuente: Libro Principios de análisis instrumental (Skoog, Holler, & Crouch, 2008).

Preparación de muestras

La preparación de muestras depende del metal que se esté midiendo. Para todas las muestras, se debe asegurar que las concentraciones de ácido y modificadores de la matriz sean iguales, tanto en las muestras como en los patrones. (Manrique, 2008, págs. 39 - 45).

Análisis por Terraspec

La espectrometría de reflectancia es una técnica de reconocimiento de minerales, basada en la emisión de radiación electromagnética en la región del espectro infrarrojo cercano (SWIR). Dentro de este rango, algunos iones y enlaces metal — ion tienen absorciones muy definidas, que permiten reconocer su existencia dentro de la muestra analizada. La mayoría de estos iones y enlaces se encuentran en los minerales de alteración hidrotermal, por este motivo el método es de amplia aplicación en la búsqueda de áreas mineralizadas. (Caiza, 2018, pág. 30).

Para ejecutarse, se emplea identificadores minerales como el ASD Terraspec HALO o, para este caso en concreto, el ASD Terraspec 4 Hi - Res, el cual es un espectrómetro VIS-NIR-SWIR de rango completo capaz de identificar distintos minerales de alteración hidrotermal; óxidos e hidróxidos como goethita, hematita; localizadas en zonas del VNIR (400 – 1200 nm) y arcillas y micas como illita, caolinita, paragonita, clorita, etc., presentes en los espectros del SWIR (1200 – 2500 nm). (Báscones , y otros, 2020, págs. 49 - 57).

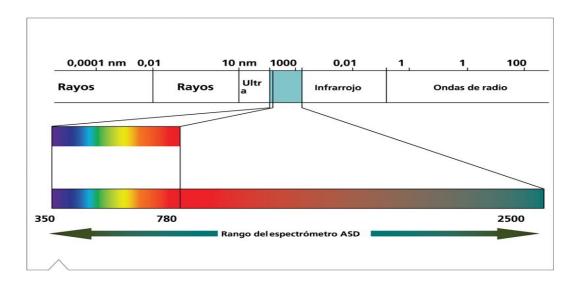


Figura 3. Rango del Espectrómetro ASD Terraspec

Fuente: Espectroscopia de reflectancia y sus aplicaciones (GUÍA LAB, 2021).

Componentes del equipo terraspec

Figura 4. Componentes ASD Terraspec 4 Hi – Res Fuente: TerraSpec 4 (PANalytical Company, 2021).

- Computadora
- Espectrómetro
- Cable de fibra óptica
- Cabeza lector A

- Disco Spectralon
- Cable Ethernet
- Cinta Velcro

Calibración

La calibración del equipo terraspec es externa, para ello se emplea el disco Spectralon, el cual debe ser mantenido tan limpio como sea posible.

La optimización y el blanco de referencia deben funcionar cada vez que la sonda de minerales esté encendida y el programa RS3 esté abierto. Estos procedimientos de calibración se cumplen con la lámina reflectante sintética del blanco de referencia.

- Dentro del programa RS3, se debe presionar la pestaña **Optimizar.**
- Poner la lámpara de contacto sobre el disco blanco Spectralon.
- En la pantalla principal se mostrará una línea horizontal que indica la calibración del equipo, ésta debe llegar al valor 1 del eje de reflectancia (%).

Las características que deben cumplir las muestras son:

- Superficie regular.
- Tamaño de muestra mayor al lente del equipo.
- El tramo de muestreo se determina según la necesidad del trabajo; a mayor detalle, más muestras en tramos cortos.
- No contar con muestras de abundantes sulfuros.

Inicialización

- Encender el equipo terraspec (el instrumento hará un pequeño "click" y el ventilador empezará a funcionar).
- Encender la laptop.
- Activar el software del instrumento haciendo doble click en el ícono RS3 en la computadora.
- Dentro del programa, en la pestaña Control, ajustar la configuración,
 programar el número de espectros a leer, el tiempo óptimo para la ejecución
 de la lectura y el número de espectros a guardar.
- Dejar calentar el instrumento por 20 minutos aproximadamente.
- En Control/Ajuste, ingresar la siguiente información: cantidad de muestras para espectro, corriente residual y blanco de referencia. ASD recomienda un valor de muestra de espectro entre 10 y 25.

- En el programa RS3, seleccionar Control/guardar espectros en el menú desplegable.
- Después de ejecutar la rutina Optimizar/Blanco de referencia, el equipo estará listo para adquirir las mediciones espectrales.
- Indicar el prefijo del nombre de la base para todos los espectros adquiridos.
- Especificar el número del espectro de inicio que se agregará a cada lectura sucesiva (00000 por defecto).

Procedimiento para obtención de espectros

- El espectrómetro TerraSpec dispone de una fuente de luz interna que incide sobre la muestra.
- El equipo capta la luz, producto de la reflexión de energía de las moléculas de minerales y genera los espectros.
- Sujetar la ventana de la sonda de minerales sobre la muestra y recoger los datos hasta que el espectro resultante no cambie. Las superficies planas permiten la pérdida mínima de luz, otorgando mejor respuesta espectral.
- Realizada la lectura, el espectro desconocido se ajusta a la biblioteca mineral a bordo y se busca su mejor coincidencia.
- Guardar el espectro presionando la barra espaciadora.
- Una vez guardados, estos son analizados e interpretados con la ayuda de distintos softwares, obteniendo porcentajes de minerales.
- Finalmente, los resultados se plasman en una base de datos en Excel.

Calidad de los espectros

Los espectros buenos deben generar distintas depresiones (características de absorción) en materiales espectralmente activos. Para materiales geológicos naturales, el espectro nunca debe generar valores de reflectancia superiores a 1.0, y en general, no debe mostrar "picos" positivos agudos. Si esto ocurre, será necesario optimizar y proporcionar un blanco de referencia. (ANGLOAMERICAN, 2021).

Aspectos limitantes

- Humedad: el agua posee características espectrales claramente definidas que pueden encubrir o disolver los rasgos diagnósticos de otros minerales. (agua meteórica).
- **Superficie irregular:** es importante que la superficie a analizar sea lo más regular posible, de lo contrario se obtiene un espectro deformado (ruido).
- Color: en el caso de minerales altamente reflectantes como los sulfuros, las
 características del espectro se ven afectadas por ruido, o si son muy oscuros
 como los minerales de Mn, el espectro es muy pobre o nulo por su baja
 reflexión.
- Tipo de muestra: se ha observado que las muestras que han sido sometidas
 a pulverización pueden presentar variaciones mínimas en sus rasgos
 espectrales ya que durante el proceso se puede generar algo de calor que altera
 la estructura cristalina de ciertos minerales.
- Campo visual: se debe cubrir por completo la superficie a medir, de lo
 contrario se produce interferencia del medio circundante debido a la
 dispersión de la luz.

- Tamaño de grano: el área de medición de la pistola es de aproximadamente 2 cm de diámetro, por lo tanto, los granos muy pequeños, como diseminaciones o microvetillas, son escasamente representadas en un espectro, predominando el espectro del medio en que estos estén inmersos.
- **Preparación de superficie:** esta debe estar libre de polvo del medio desde donde se extrajo. De ser necesario se debe romper la muestra para tener una cara fresca o bien cortarla, y así evitar cualquier contaminación de esta.
- Estabilidad del instrumento: la curva de calibración del espectrómetro debe ser verificada cada cierto tiempo, ya que los espectros comienzan a mostrar el efecto del ruido instrumental con el uso. Esto se debe hacer de manera regular durante las mediciones, por ejemplo, cada 15-20 minutos, o cuando se perciban espectros deformados por saltos o líneas discontinuas. (Stange, 2018).

2.4. Procedimiento

Primera fase (Pre- Campo)

- ✓ Se recopila información sobre el área de estudio con tesis, informes, y demás fuentes bibliográficas.
- ✓ Se obtiene la geología preliminar de la zona, mediante herramientas como GEOCATMIN e INGEMMET.
- ✓ Se plantean dos visitas preliminares a campo, realizadas durante dos semanas.

Segunda Fase (Campo)

- ✓ Levantamiento lito-estratigráfico de las unidades expuestas en el área de estudio.
- ✓ Cartografiado geológico, de alteración y mineralización, reconociendo zonas de alteración y diversas ocurrencias en superficie.
- ✓ Recopilación de 20 muestras de roca para análisis por terraspec, para el reconocimiento de arcillas, y para análisis en laboratorio (10 muestras), con el propósito de identificar minerales económicos (mena).

Tercera Fase (Laboratorio)

- ✓ Análisis por terraspec de las muestras de roca (roca argilizada), para el reconocimiento de minerales arcillosos.
- ✓ Análisis por Absorción Atómica de 10 muestras, para la detección y estimación de recursos minerales económicos (mena).
- ✓ Procesamiento e interpretación de resultados.

CAPÍTULO III. RESULTADOS

3.1 Ubicación

La zona de estudio, en el caserío Tuyupampa, se encuentra ubicada en el distrito de la Encañada, provincia de Cajamarca a una altura de 3522 m.s.n.m aproximadamente.

Figura 5. Ubicación de la zona de estudio en el caserío Tuyupampa. Fuente: Google Earth.

Figura 6. Área de estudio, Caserío Tuyupampa. Fuente: Propia.

Las coordenadas UTM que delimitan la zona son las siguientes:

Tabla 2. Coordenadas UTM de la zona de estudio.

_	UTM	
	ESTE	NORTE
P1	799078	9223851
P2	799095	9223314
Р3	800050	9223303
P4	800052	9223842
Área aproximada	0.52	2 km ²

Fuente: Propia.

3.2 Geología Local

Formación Carhuaz (Ki - ca)

Consta de una alternancia de areniscas con lutitas grises, las primeras con matices rojizos, violetas y verdosos. Hacia la parte superior contiene bancos de cuarcitas blancas que se intercalan con lutitas y areniscas. La formación Carhuaz yace con suave discordancia sobre la formación Santa, e infrayace concordantemente a la formación Farrat.

Edad y correlación: Probablemente correspondiente al Cretácico inferior, Valanginiano superior, Hauteriviano y Barremiano, ya que encima se encuentra la formación Farrat, que a su vez infrayace a sedimentos del Aptiano – Albiano. (Reyes, 1980, págs. 23 - 24).

Formación Farrat (Ki - f)

Esta formación representa el nivel superior de la parte clástica del Cretáceo inferior. Consta de cuarcitas y areniscas blancas de grano medio a grueso. La formación Farrat suprayace con aparente concordancia a la formación Carhuaz y subyace, con la misma relación, a la formación Inca.

Edad y correlación: La formación Farrat infrayace a sedimentos de los niveles más altos del Aptiano, por lo que se le asigna una edad aptiana. (Reyes, 1980, págs. 24 - 25).

Intrusivo Dacítico (Pal - da)

Las dacitas porfiríticas son grises claras, tienen textura porfirítica y matriz microcristalina. Sus minerales esencialmente están constituidos por cuarzo y plagioclasas (andesina) microfracturadas, macladas, zonadas y parcialmente alteradas. **Edad y correlación:** Generalmente, los intrusivos están mineralizados y truncados por las superficies de erosión oligo – miocénicas, en consecuencia, estas rocas son más antiguas que ellas, por lo que tentativamente, se les considera emplazados en la parte tardía del Paleógeno. (Reyes, 1980).

3.3 Zonas de alteración

Zona de Argilización – Oxidación

Producto de una alteración supérgena (argilización y oxidación), caracterizada principalmente por la presencia de arcillas y óxidos, que les brindan a las rocas una coloración rojiza a pardo amarillenta. Se localiza en la formaciones Carhuaz y Farrat.

Figura 7. Zona de Oxidación, de coloración rojiza oscura, amarillenta, parduzca. Fuente: Propia.

Figura 8. Roca arenisca moderadamente oxidada con alteración argílica. Fuente: Propia

Zona de Sulfuración

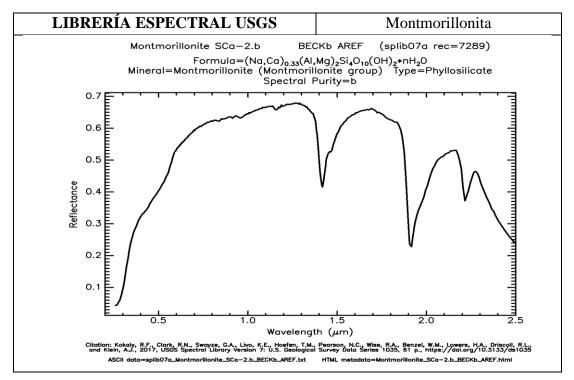
Producto de una alteración hipógena (sulfuración), con una coloración grisácea y caracterizada por la ocurrencia de pirita acompañada de cuarzo. Se logra distinguir en el intrusivo dacítico.

Figura 9. Roca Dacita, expuesta al intemperismo. Fuente: Propia

Figura 10. Dacita con ocurrencia de cuarzo y pirita Fuente: Propia

3.4 Muestreo en Campo e interpretación espectral

Se realizó la recolección de las muestras de roca (rock chip) de los afloramientos, en distintas campañas exploratorias, recopilando 20 muestras en total, aplicando el muestreo de puntos por conveniencia (Anexo N° 9), recolectando principalmente muestras de roca alterada.


A continuación, se presenta una descripción de las muestras de roca, adjuntando los resultados de análisis por terraspec. Cabe mencionar que para la correcta interpretación de los datos obtenidos mediante el análisis terraspec para la identificación de arcillas, se verifica el rango espectral en el que aparecen los espectros, así como su semejanza con aquellos recopilados de la librería espectral del Servicio Geológico de los Estados Unidos (USGS).

LIBRERÍA ESPECTRAL USGS Dickita Dickite NMNH46967 BECKa AREF (splib07a rec=3560) Formula=Al₂Si₂O₅(OH)₄ Mineral=Dickite (Kaolinite-Serpentine group) Type=Phyllosilicate Spectral Purity=a 0.7 0.6 Reflectance 0.5 0.4 0.3 Wavelength (μm) n: Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M., Pearson, N.C., Wise, R.A., Benzel, W.M., Lowers, H.A., Driscoll, R.L., Klein, A.J., 2017, USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035, 61 p., https://doi.org/10.3133/ds1035 NH46967_BECKa_AREF.txt HTML met H46967_BECKa_AREF.html

Tabla 3. Firma espectral Dickita

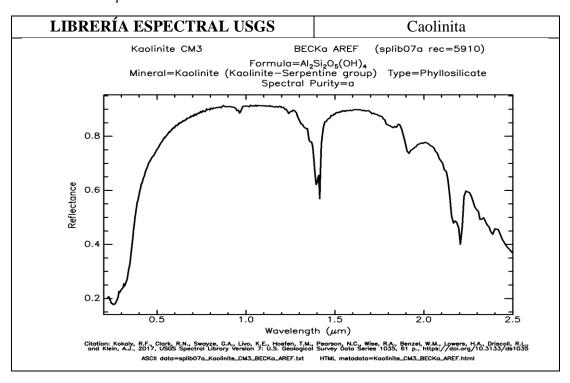

Fuente: Librería Espectral USGS

Tabla 4. Firma espectral Montmorillonita

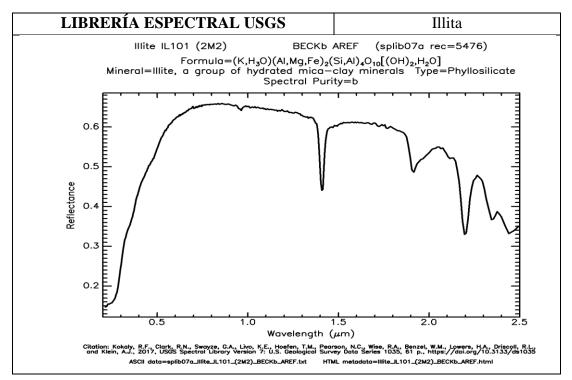

Fuente: Librería Espectral USGS

Tabla 5. Firma espectral Caolinita

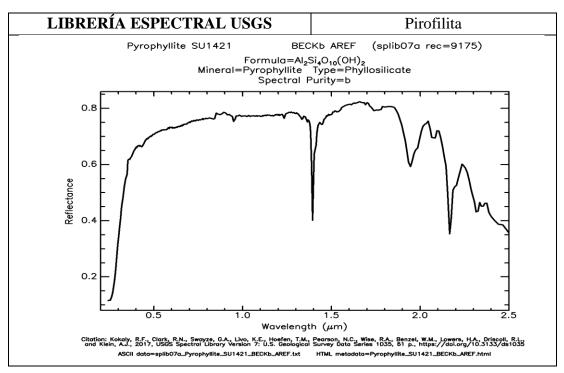

Fuente: Librería Espectral USGS

Tabla 6. Firma espectral Illita

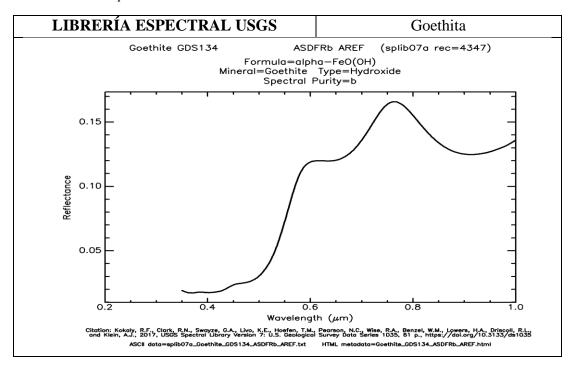

Fuente: Librería Espectral USGS

Tabla 7. Firma espectral Pirofilita

Fuente: Librería Espectral USGS

Tabla 8. Firma espectral Goethita

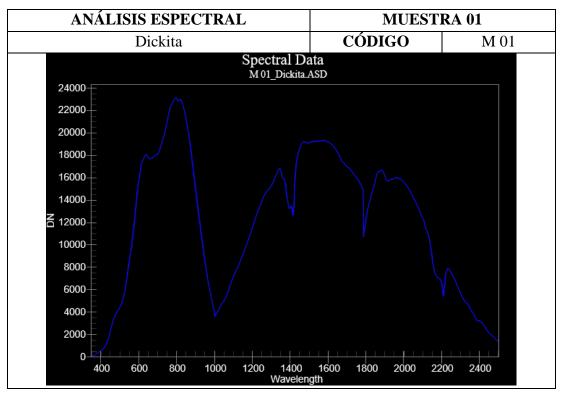

Fuente: Librería Espectral USGS

Tabla 9. Campaña de Muestreo, M01

Fuente: Propia.

Tabla 10. Firmal Espectral - Mineral Dickita M 01

Fuente: Análisis terraspec

Tabla 11. Campaña de Muestreo, M02

Fuente: Propia.

Tabla 12. Firmal Espectral - Mineral Montmorillonita M 02

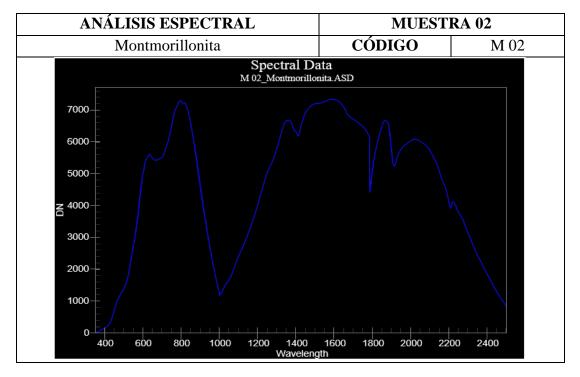
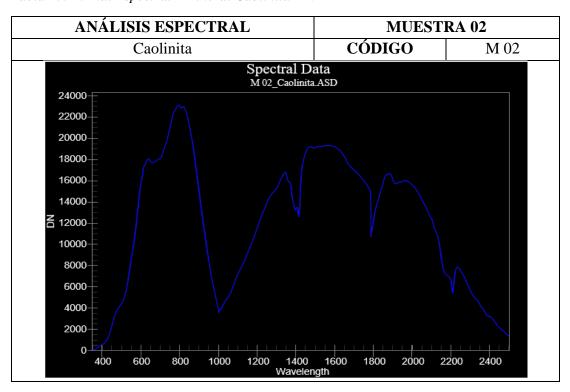



Tabla 13. Firmal Espectral - Mineral Caolinita M 02

Fuente: Análisis terraspec

Tabla 14. Campaña de Muestreo, M03

Fuente: Propia.

Tabla 15. Firmal Espectral - Mineral Montmorillonita M 03

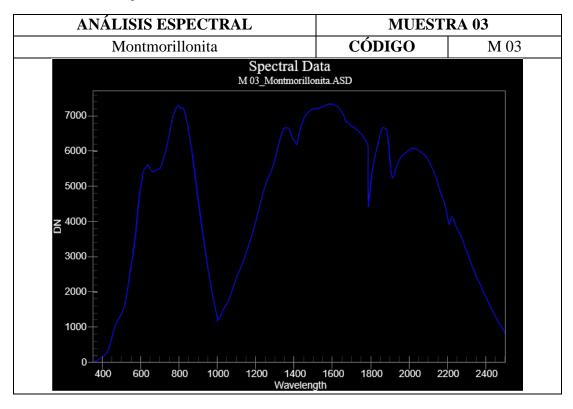


Tabla 16. Campaña de Muestreo, M04

Fuente: Propia.

Tabla 17. Firmal Espectral - Mineral Caolinita M 04

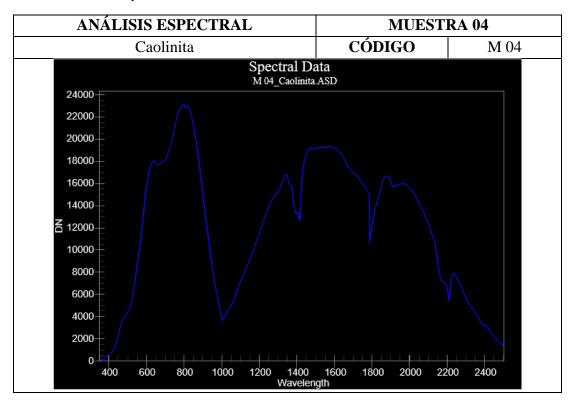


Tabla 18. Campaña de Muestreo, M05

MUESTRA 05	CÓDIG	0	M 05	
	UTM			
	ESTE	NORTE	COTA	
1 10 10 10 10 10 10 10 10 10 10 10 10 10			(m.s.n.m)	
with the state of	799589	9223642	3 852	
	DESCRIPCIÓN			
	Arenisca (F	. Farrat) mo	deradamente	
	argilizada, con presencia de caolin y paragonita.			

Fuente: Propia.

Tabla 19. Firmal Espectral - Mineral Caolinita M 05

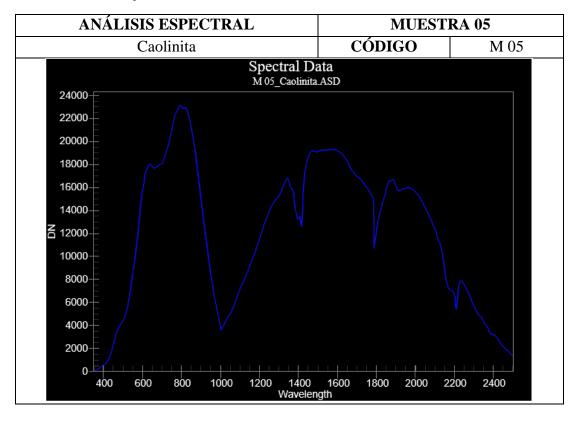
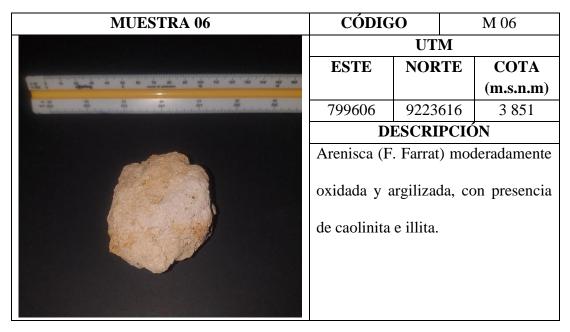
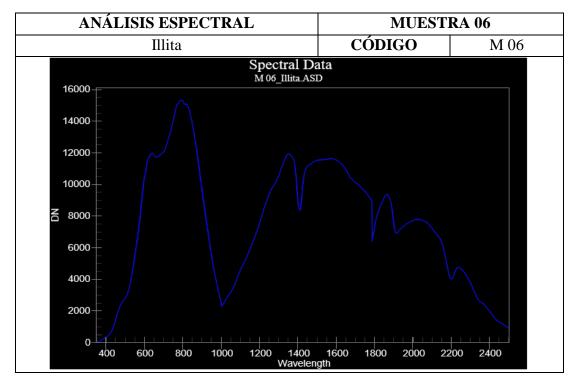



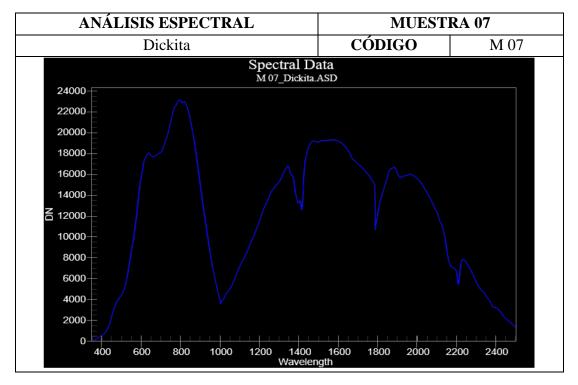
Tabla 20. Campaña de Muestreo, M06



Fuente: Propia.

Tabla 21. Firmal Espectral - Mineral Caolinita M 06

Tabla 22. Firmal Espectral - Mineral Illita M 06



Fuente: Análisis terraspec

Tabla 23. Campaña de Muestreo, M07

Tabla 24. Firmal Espectral - Mineral Dickita M 07

Fuente: Análisis terraspec

Tabla 25. Firmal Espectral - Mineral Caolinita M 07

Tabla 26. Campaña de Muestreo, M08

Fuente: Propia.

Tabla 27. Firmal Espectral - Mineral Caolinita M 08

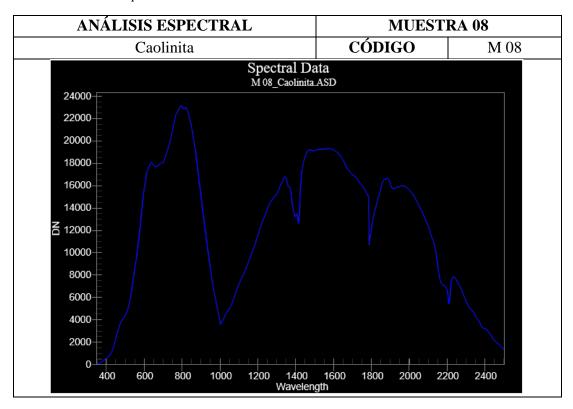


Tabla 28. Campaña de Muestreo, M09

Fuente: Propia.

Tabla 29. Firmal Espectral - Mineral Goethita M 09

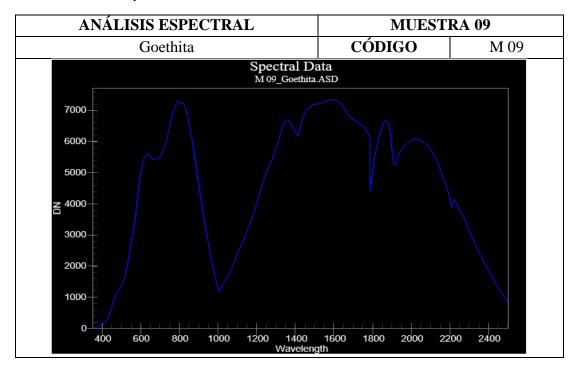
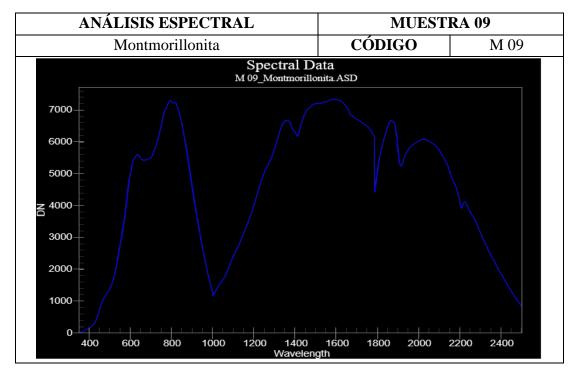



Tabla 30. Firmal Espectral - Mineral Montmorillonita M 09

Fuente: Análisis terraspec

Tabla 31. Firmal Espectral - Mineral Caolinita M 09

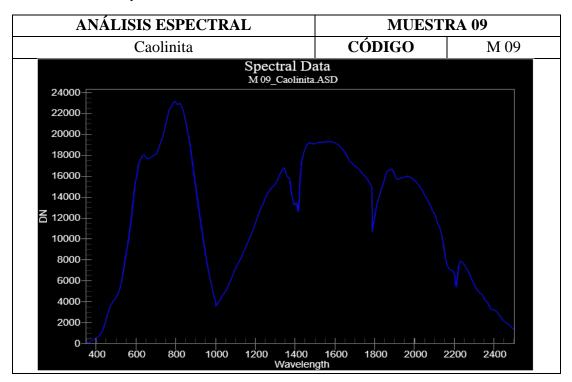


Tabla 32. Campaña de Muestreo, M10

Fuente: Propia.

Tabla 33. Firmal Espectral - Mineral Goethita M 10

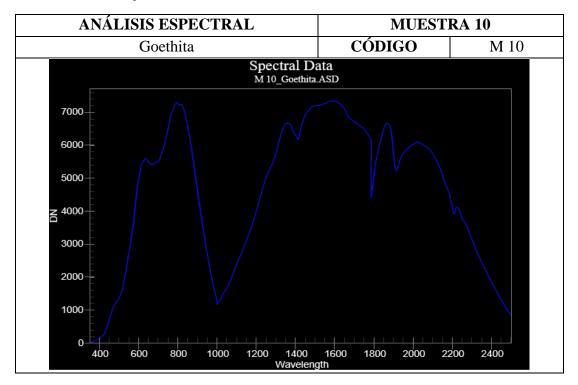
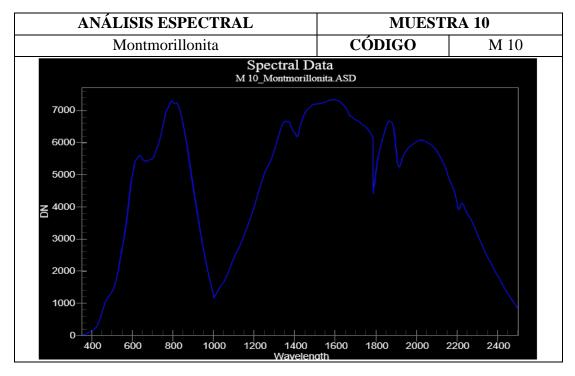



Tabla 34. Firmal Espectral - Mineral Montmorillonita M 10

Fuente: Análisis terraspec

Tabla 35. Firmal Espectral - Mineral Caolinita M 10

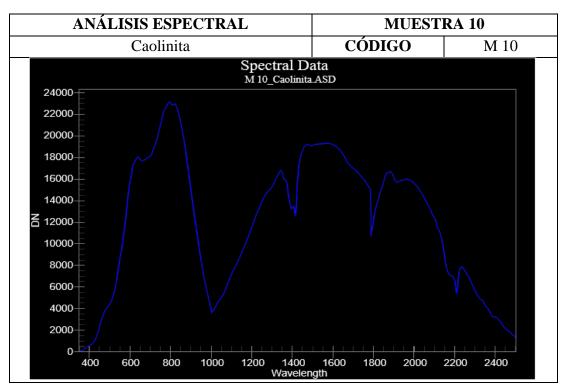


Tabla 36. Campaña de Muestreo, M11

Fuente: Propia.

Tabla 37. Firmal Espectral - Mineral Caolinita M 11

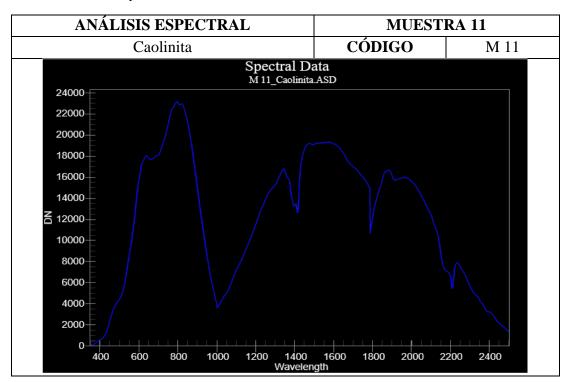
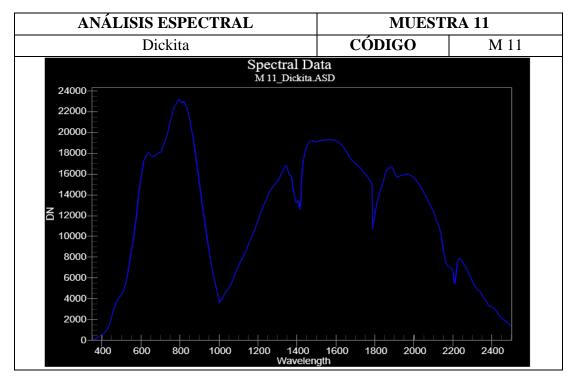
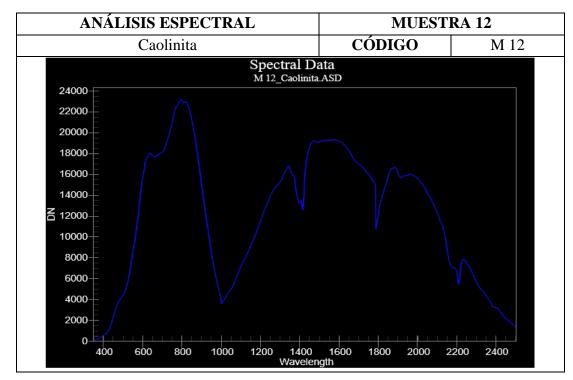



Tabla 38. Firmal Espectral - Mineral Dickita M 11



Fuente: Análisis terraspec

Tabla 39. Campaña de Muestreo, M12

MUESTRA 12	CÓDIG	O	M 12		
		UTM			
	ESTE	NORTE	COTA		
			(m.s.n.m)		
** ** ** ** ** ** ** ** ** ** ** ** **	799759	9223508	3 839		
	DESCRIPCIÓN Arenisca (F. Farrat) moderadamen				
	oxidada y a	argilizada, co	on presencia tmorillonita.		

Tabla 40. Firmal Espectral - Mineral Caolinita M 12

Fuente: Análisis terraspec

Tabla 41. Firmal Espectral - Mineral Montmorillonita M 12

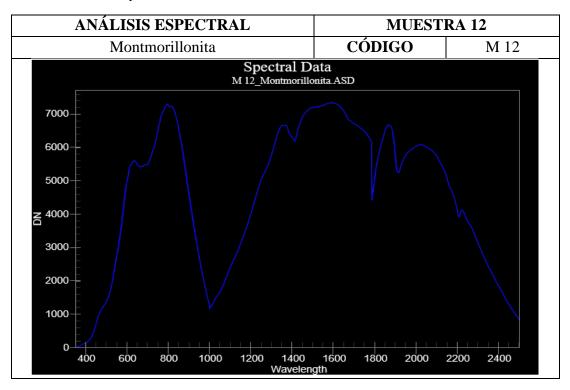


Tabla 42. Campaña de Muestreo, M13

Fuente: Propia.

Tabla 43. Firmal Espectral - Mineral Pirofilita M 13

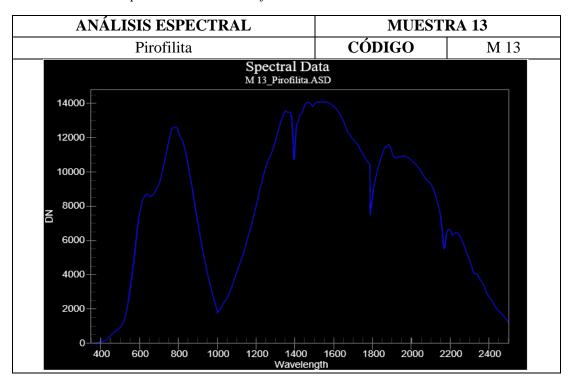
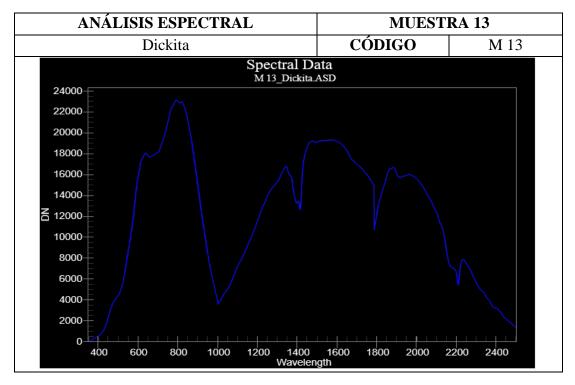
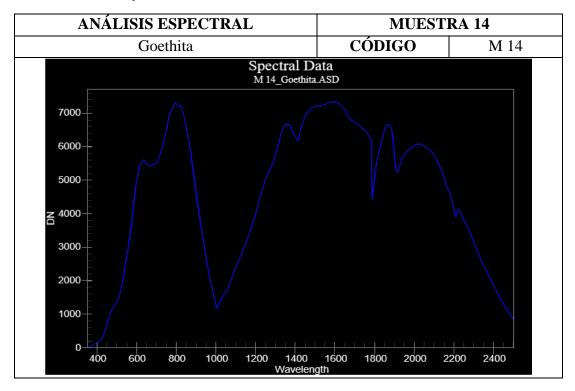



Tabla 44. Firmal Espectral - Mineral Dickita M 13



Fuente: Análisis terraspec

Tabla 45. Campaña de Muestreo, M14

Tabla 46. Firmal Espectral - Mineral Goethita M 14

Fuente: Análisis terraspec

Tabla 47. Firmal Espectral - Mineral Montmorillonita M 14

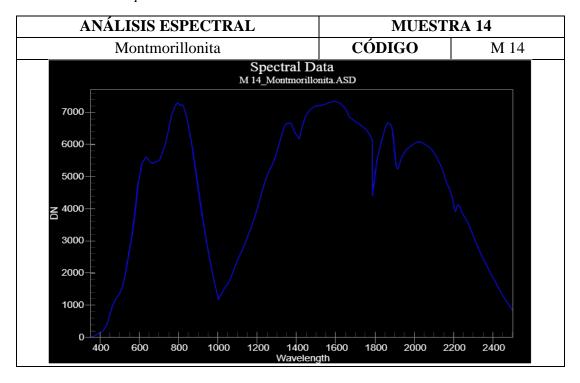
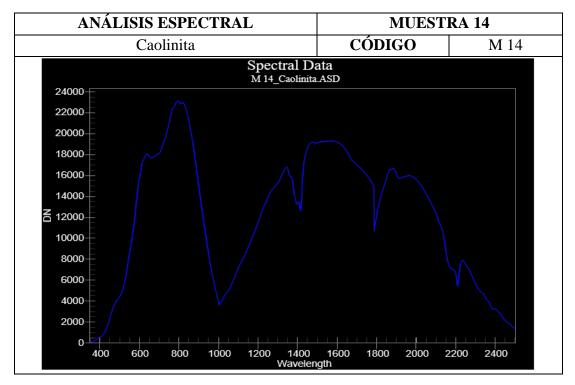
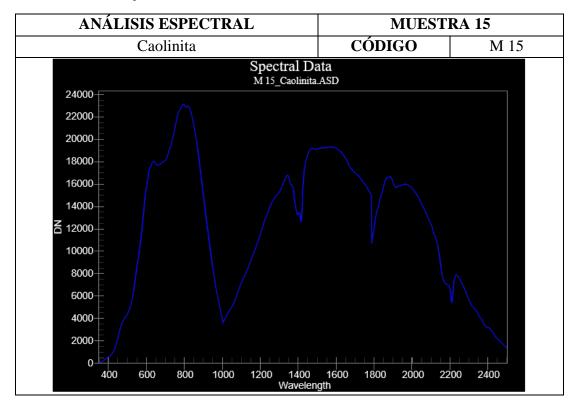



Tabla 48. Firmal Espectral - Mineral Caolinita M 14



Fuente: Análisis terraspec

Tabla 49. Campaña de Muestreo, M15

Tabla 50. Firmal Espectral - Mineral Caolinita M 15

Fuente: Análisis terraspec

Tabla 51. Campaña de Muestreo, M001

Tabla 52. Campaña de Muestreo, M002

Fuente: Propia.

Tabla 53. Campaña de Muestreo, M003

MUESTRA 18	CÓDIGO			M 003
	UTM			
	ESTE	NOR	TE	COTA
1 man a common to the control of the				(m.s.n.m)
we go the second section in adapted and the distribution bendered as the second section in adapted and the distribution bendered as the second section in adapted and the distribution bendered as the second section in adapted and the second section is an adapted and the second section is a second section in adapted and the second section is a second section in adapted and the section is a second section in adapted and the second section is a second section in adapted and the second section is a second section in adapted section in a second section is a second section in adapted section in a second section in a section is a second section in a second section in a second section in a second section in a second section is a second section in a s	799284	92236	591	3 815
	DESCRIPCIÓN			
	Dacita, levemente meteorizad			orizada, con
	presencia o	le cuar	rzo y	pirita en
	proporcione	s estima	ables	

Tabla 54. Campaña de Muestreo, M004

Fuente: Propia.

Tabla 55. Campaña de Muestreo, M005

CÓDIG	M 005		
UTM			
ESTE	NORTE	COTA	
		(m.s.n.m)	
799355	9223626	3 825	
DI	ESCRIPCIO	ÓN	
Dacita, débilmente meteorizada, co			
presencia o piritizada.	le cuarzo ː	y altamente	
	799355 Dacita, débi	TOTM ESTE NORTE 799355 9223626 DESCRIPCION Dacita, débilmente meter presencia de cuarzo y	

3.5 Resultados de análisis por terraspec

El análisis por terraspec de las muestras de roca se realizó posterior a la recolección de estas, se practicó en laboratorio con el equipo terraspec, con la finalidad de reconocer minerales de arcilla asociados a la alteración de las rocas recolectadas. (Anexos N° 10 - 13).

3.6 Resultados de análisis por Absorción Atómica

El análisis de muestras de roca fue llevado a cabo en el laboratorio LAB PERÚ Minerals S.R.L. (Anexos N° 14 - 23). Se realizó mediante ensayo de Absorción Atómica (AA) para la determinación de Ag y Au, seleccionando las diez (10) muestras más representativas del total (20).

Tabla 56. Análisis por Absorción Atómica (AA), M01

MUESTRA 01	CÓD	M 01		
	UTM			
	ESTE	NOF	RTE	COTA
	799499 9223			(m.s.n.m)
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			790	3 826
		RESUL	TADO	S
THE RESERVE OF THE PARTY OF THE	Au	Au	Ag	Ag
	(g/tm)	(oz/tc)	(g/tm)	(oz/tc)
	0.30	0.01	3	0.09

Tabla 57. Análisis por Absorción Atómica (AA), M001

MUESTRA 02	CÓD	I	M 001	
	UTM			
	ESTE NORTE			COTA
				(m.s.n.m)
	799198 9223714			3 801
29 9 55 \$ 57 + constab 20 5 22 5 23		RESUL	TADO	S
	Au Au		Ag	Ag
	(g/tm)	(oz/tc)	(g/tm) (oz/tc)
	0.90	0.03	124	3.62
CONTROL OF THE STATE OF THE STA		<u> </u>		

Fuente: Lab Perú Minerals S.R.L.

Tabla 58. Análisis por Absorción Atómica (AA), M003

MUESTRA 03	CÓD	IGO]	M 003
	UTM			
	ESTE	NOF	RTE	COTA
1 miles of the second of the s				(m.s.n.m)
w on the second of the second	799284 9223		691	3 815
		S		
	Au	Au	Ag	Ag
	(g/tm)	(oz/tc)	(g/tm	(oz/tc)
	0.15	0.00	1	0.03

Tabla 59. Análisis por Absorción Atómica (AA), M03

MUESTRA 04	CÓDIGO 1			M 03
		UT	°M	
	ESTE	NOF	RTE	COTA
Fig. 6 29 20 40 50 40 70 40 50 40 70 40 50 40 10 120 120 140 440 440 440 440 440 440 440 440 44				(m.s.n.m)
10 00 00 00 00 00 00 00 00 00 00 00 00 0	799553 9223		719	3 855
Technologia de la descripción	RESULTADOS			
	Au	Au	Ag	Ag
	(g/tm)	(oz/tc)	(g/tm	(oz/tc)
	0.35	0.01	8	0.23

Fuente: Lab Perú Minerals S.R.L.

Tabla 60. Análisis por Absorción Atómica (AA), M005

MUESTRA 05	CÓDIGO			M 005
	UTM			
	ESTE	NOI	RTE	COTA
ate interior de la company				(m.s.n.m)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	799355 9223		8626	3 825
tradicate the leading beat a beat extended to be should be tradical and an incident indicate the desire beat and a few from the standard and a	RESULTADOS			
. Allenan	Au Au		Ag	Ag
	(g/tm)	(oz/tc)	(g/tm	(oz/tc)
	6.71	0.20	92	2.68

Tabla 61. Análisis por Absorción Atómica (AA), M07

MUESTRA 06	CÓD	IGO		M 07
	UTM			
	ESTE	NOI	RTE	COTA
				(m.s.n.m)
10 10 10 10 10 10 10 10 10 10 10 10 10 1	799626 9223		588	3 848
	RESULTADOS			
	Au	Au	Ag	Ag
	(g/tm)	(oz/tc)	(g/tm	oz/tc)
	5.48	0.16	18	0.53

Fuente: Lab Perú Minerals S.R.L.

Tabla 62. Análisis por Absorción Atómica (AA), M004

MUESTRA 07	CÓDIGO M 004				
	UTM				
	ESTE	NOF	RTE	COTA	
				(m.s.n.m)	
	799322	9223	656	3 822	
	RESULTADOS				
	Au	Au	Ag	Ag	
在第一届	(g/tm)	(oz/tc)	(g/tm	(oz/tc)	
100	5.67	0.17	18	0.53	

Tabla 63. Análisis por Absorción Atómica (AA), M10

MUESTRA 08	CÓDIGO M 10			
	UTM			
	ESTE NORTE			COTA
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				(m.s.n.m)
= = 05 05 05 05 05 05 05 05 05 05 05 05 05	799694	9223	519	3 846
Company of the last of the las	RESULTADOS			
	Au	Au	Ag	Ag
	(g/tm)	(oz/tc)	(g/tm	(oz/tc)
	0.15	0.00	1	0.03

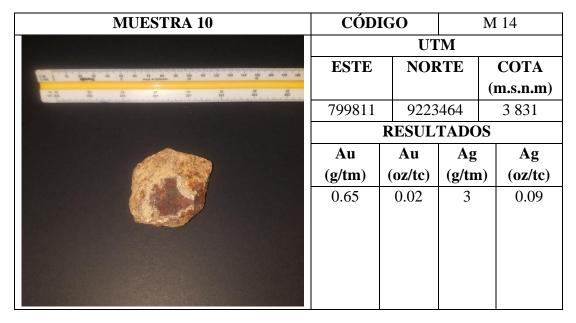

Fuente: Lab Perú Minerals S.R.L.

Tabla 64. Análisis por Absorción Atómica (AA), M12

MUESTRA 09	CÓDIGO			M 12	
	UTM				
	ESTE	NOF	RTE	COTA	
				(m.s.n.m)	
13 55 55 57 57 58 68 4 10 10 10 10 10 10 10 10 10 10 10 10 10	799759	9223	508	3 839	
	RESULTADOS			S	
	Au	Au	Ag	Ag	
	(g/tm)	(oz/tc)	(g/tm	oz/tc)	
	0.50	0.01	11	0.32	

Tabla 65. Análisis por Absorción Atómica (AA), M14

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión

En el proceso de obtención de resultados, se identifican como limitaciones; la escases de recursos económicos, que impidió la realización de ensayos en laboratorio como el análisis multielemental mineralógico por ICP, así como la cantidad de muestras analizadas por Absorción Atómica, diez (10), siendo ideal el análisis de un número mayor de muestras; no obstante, los resultados obtenidos acercan a responder la pregunta de investigación planteada.

A partir de los resultados conseguidos, se corrobora la hipótesis específica que establece; que los recursos minerales estimados, mediante evaluación geológica superficial, resultan favorables para la industria minera.

El trabajo de reconocimiento geológico y el cartografiado, ayudan a diferenciar dos zonas con una notable alteración hidrotermal, tanto hipógena como supérgena; una zona de argilización-oxidación, en donde predominan arcillas y micas como paragonita, dickita, montmorillonita, caolinita, illita y pirofilita; y óxidos como goethita; además de una zona de sulfuración con mineralización de pirita. Estas mineralizaciones identificadas en la zona de estudio guardan estrecha relación con el ensamble de la alteración argílica avanzada, según lo señalado por Samuel Canchaya, en su estudio "Ensambles de alteración en yacimientos epitermales de alta sulfuración", donde señala que el ensamble característico de este tipo de alteración es caolinita, dickita pirofilita, diásporo, alunita, cuarzo y pirita. (Canchaya, 2001).

Aunado a ello, los análisis realizados y los resultados obtenidos permiten estimar en la zona de óxidos, leyes minerales promedio para oro de 1.24 gr/TM Au (0.04 oz/tc Au), y para plata de 7.33 gr/TM Ag (0.22 oz/tc Ag); y en la zona de sulfuros, leyes

promedio para oro de 3.36 gr/TM Au (0.10 oz/tc Au), y para plata de 58.75 gr/TM Ag (1.72 oz/tc).

Estos resultados corroboran la hipótesis planteada; además respaldan el objetivo específico el cual es determinar si los recursos minerales estimados resultan favorables para la industria minería, esto último según lo señalado por Wagner Viza en su "Estudio geológico y estimación de recursos del proyecto minero Vemusa, La Joya Arequipa" el cual estimó los recursos de oro y plata de la mencionada veta, atribuyendo potenciales de hasta 6 423 TM con leyes máximas de 0.235 oz/tc de Au y 11.310 oz/tc de Ag, concluyendo que la estructura mineralizada es potencialmente explotable.

Del mismo modo, se apoyan en el estudio llevado a cabo por Yack Castillo "Estimación de recursos y reservas del yacimiento aurífero Fidami, Sancos-Lucanas-Ayacucho" el cual señala que la estimación de recursos minerales medidos con 43 858 TM, poseen una ley promedio de 17.9 gr/TM Au; los recursos indicados con 41 432 TM, tienen una ley promedio de 17.34 gr/TM Au y, los recursos inferidos con 128 155 TM, ostentan una ley promedio de 6.29 gr/TM Au.

De igual manera, son sustentados por el estudio hecho por Julio Chacca "Cálculo de reservas y estimación de recursos minerales de la veta Esperanza, yacimiento minero San Andrés-Puquio Ayacucho" el cual establece que las reservas minerales se valoran en 27 500 TM con leyes de 0.6 oz/tc Au y 23 oz/tc Ag, y los recursos minerales se estiman en 18 030 TM, con leyes de 0.15 oz/tc Au y 8 oz/tc Ag.

De manera análoga, son secundados por el "Estudio geológico y mineralización de la UP Carahuacra proyecto de exploración y estimación de recursos de la veta Mary" realizado por Fausto Ramírez, quien menciona que la estimación de recursos minerales por un total de 235 400 TM posee una ley mineral de 1.82 oz de Ag.

Finalmente, los resultados se encuentran reforzados por el estudio llevado a cabo por Miguel Caballero "Evaluación de los recursos de la mineralización de oro en el proyecto Antaña - Puno", quien pone de manifiesto que la estimación de recursos minerales de la zona aurífera oxidada, con 4 490 621 toneladas, ostenta una ley promedio de 0.86 gr/t de Au, y una ley de corte de 0.5 gr/t Au.

Tabla 66. Cuadro Comparativo de los resultados de Recursos Minerales

RECURSOS MINERALES							
OBTENIDOS					ANTECEDENTES		
ÓXIDOS			ANTECEDENTES				
Código	Au		Ag		Autor	Au	Ag
Codigo	gr/tm oz/tc	gr/tm	oz/tc				
M01	0.3	0.01	3	0.09	Wagner Viza	0.235 oz/tc	11.310 oz/tc
M03	0.35	0.01	8	0.23			
M07	5.48	0.16	18	0.53		6.29 gr/TM	
M10	0.15	0	1	0.03	Yack Castillo		
M12	0.5	0.01	11	0.32			
M14	0.65	0.02	3	0.09			
Prom Ley	1.24	0.04	7.33	0.22	Julio Chacca	0.15 oz/tc	8 oz/tc
SULFUROS							
Cádias	A	u	A	g			
Código	gr/tm	oz/tc	gr/tm	oz/tc	Fausto Ramírez		1.82 oz/tc
M001	0.9	0.03	124	3.62			
M003	0.15	0	1	0.03		0.86 gr/t 0.5 gr/t (corte)	
M005	6.71	0.2	92	2.68	Miguel		
M004	5.67	0.17	18	0.53	Caballero		
Prom Ley	3.36	0.10	58.75	1.72			

Es importante mencionar que los resultados de los antecedentes anteriormente presentados, son recursos minerales que fácilmente podrían clasificarse como indicados, medidos, o incluso como reservas minerales, ya que el grado de conocimiento geológico que se posee es mucho mayor, puesto que son producto de un profundo y más detallado estudio geológico (labores de exploración superficial y subterránea, perforación diamantina, geoquímica, geofísica, modelamiento, etc.); y no distan demasiado de los obtenidos en esta investigación; sin mencionar el hecho que se ha empleado únicamente evaluación geológica superficial (cartografiado, reconocimiento geológico – litológico, análisis por terraspec y Absorción Atómica), sin realizar demás labores geológicas de mucho mayor detalle, necesarias para estimar con un mejor nivel de confianza los recursos minerales de un sector; lo que permite clasificar remotamente estos resultados como recursos minerales INFERIDOS (JORC), o SUBECONÓMICOS INFERIDOS (USGS), que, ya sea por el aumento del conocimiento geológico, el alza de los precios de los metales, o distintos factores modificadores, podrían resultar favorables para la industria minera.

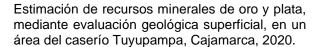

Figura 11. Clasificación JORC de los recursos minerales obtenidos Fuente: Manual de Yacimientos Minerales (Vázquez, 2012).

Tabla 67. Clasificación USGS de los recursos minerales obtenidos

PRODUCCIÓN ACUMULADA	RECURSOS IDENTIFICADOS			RECURSOS NO DESCUBIERTOS		
	Demostrados			Grado de Probabilidad		
	Medidas	Indicadas	Inferidos	Hipotéticos	Especulativos	
ECONÓMICOS	Reservas		Reservas Inferidas			
ECONÓMICOS MARGINALES	Reservas Marginales		Reservas Marginales Inferidas			
Recursos SUBECONÓMICOS Subeconómicos Demostrados		Recursos Subeconómicos Inferidos				

Fuente: Manual de Yacimientos Minerales (Vázquez, 2012).

4.2 Conclusiones

Se logró reconocer la litología predominante en la zona de estudio, la cual está conformada por areniscas blancas y lutitas grises intercaladas con cuarcitas blancas propias de la formaciones Carhuaz y Farrat respectivamente, intruidas por cuerpos ígneos mayoritariamente dacíticos.

Se identificaron, vía terraspec, minerales de argilización – oxidación como dickita, montmorillonita, caolinita, illita, pirofilita, goethita, así como mineralización de cuarzo y pirita, los cuales están estrechamente relacionados con el ensamble de alteración argílica avanzada. (Canchaya, 2001), y ésta a su vez, con depósitos epitermales, lo cual concuerda con la descripción de la franja metalogenética XXI.

El análisis de las muestras de roca se practicó en el laboratorio LAB PERÚ Minerals S.R.L. Se realizó mediante ensayo de Absorción Atómica (AA) para la determinación de Au y Ag, consiguiendo estimar los recursos minerales de oro y plata en la zona de óxidos con leyes minerales promedio para oro de 1.24 gr/TM Au (0.04 oz/tc Au), y para plata de 7.33 gr/TM Ag (0.22 oz/tc Ag); y en la zona de sulfuros, leyes promedio para oro de 3.36 gr/TM Au (0.10 oz/tc Au), y para plata de 58.75 gr/TM Ag (1.72 oz/tc). (Anexo N° 24)

Dado que se ha empleado únicamente evaluación geológica superficial (cartografiado, reconocimiento geológico – litológico, análisis por terraspec y Absorción Atómica), sin realizar demás labores geológicas de mucho mayor detalle, necesarias para estimar con un mejor nivel de confianza los recursos minerales de un sector; los resultados podrían clasificarse como **recursos minerales INFERIDOS** (JORC), o SUBECONÓMICOS INFERIDOS (USGS), y que podrían cambiar su

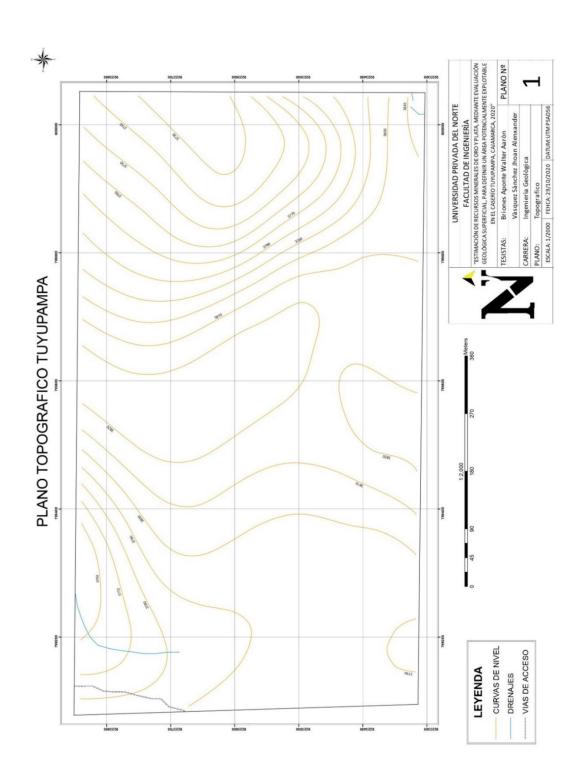
categoría ya sea por el aumento del conocimiento geológico, el alza de los precios de los metales, o distintos factores modificadores.

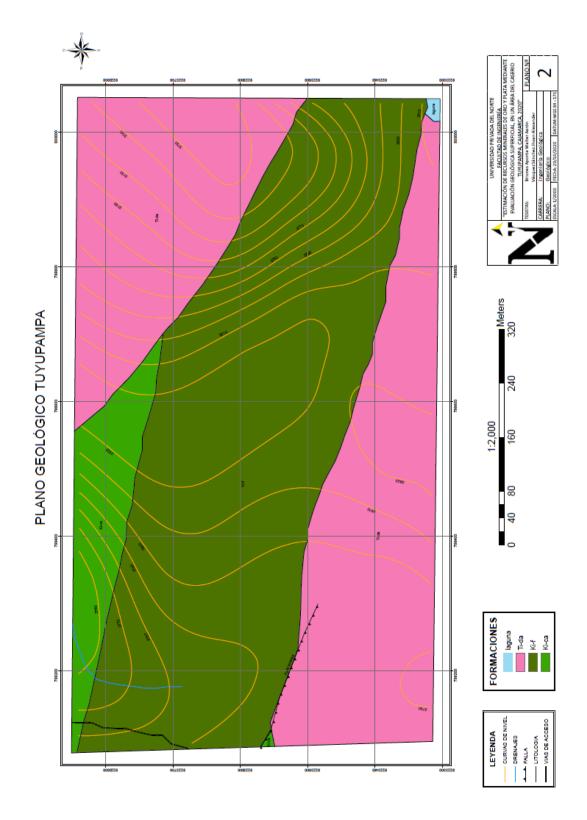
Finalmente, en base a los resultados obtenidos tanto de la litología, de las zonas de alteración, de la estimación de los leyes minerales de oro y plata, que en la zona de óxidos presenta leyes minerales promedio para oro de 1.24 gr/TM Au (0.04 oz/tc Au), y para plata de 7.33 gr/TM Ag (0.22 oz/tc Ag); y en la zona de sulfuros, leyes promedio para oro de 3.36 gr/TM Au (0.10 oz/tc Au), y para plata de 58.75 gr/TM Ag (1.72 oz/tc), se determinó que dichos recursos minerales **inferidos (JORC)**, o **subeconómicos inferidos (USGS)**, resultan favorables para la industria minera.

REFERENCIAS

- Acosta , J., Rivera, R., Valencia , M., Chirif, H., Huanacuni, D., Rodríguez, I., . . . Santisteban, A. (2009). *Mapa Metalogenético del Perú*. Lima: INGEMMET.
- ANGLOAMERICAN. (2021). *Manejo del espectrómetro Terraspec*. Cajamarca: AngloAmerican.
- Báscones , A., Suárez, M., Ferrer Julia, M., García Meléndez, E., Colmenero Hidalgo,
 E., & Quirós, A. (2020). CARACTERIZACIÓN DE MNERALES DE ARCILLA Y
 ÓXIDOS DE HIERRO MEDIANTE ESPECTROSCOPÍA DE REFLECTANCIA
 DIFUSA (VNIR SWIR). España: Revista de Teledetección Asociación Española de Teledetección.
- Caballero, M. (2010). Evaluación de los recursos de la mineralización de oro en el proyecto Antaña - Puno. Puno: Universidad Nacional de Ingeniería.
- Caiza, E. (2018). Estimación de zonas de alteración hidrotermal mediante interpretación de imágenes satelitales tipo Aster y uso del equipo terraspec en la zona oriental de Cerro de Pasco, Perú. Quito: Universidad Central del Ecuador.
- Canchaya, S. (2001). Ensambles de alteración en yacimientos epitermales de alta sulfuración. Lima: Escuela de Geología U.N.I.
- Castillo, Y. (2018). Estimación de recursos y reservas del yacimiento aurífero FIDAMI, Sancos Lucanas Ayacucho. Puno: Universidad Nacional del Altiplano.
- Chacca, J. (2018). Cálculo de reservas y estimación de recursos minerales de la veta Esperanza, yacimiento minero San Andrés-Puquio Ayacucho. Arequipa: Universidad Nacional de San Agustín de Arequipa.

- Condori, J., & Pacco, A. (2019). Implementación de un sistema de aseguramiento de la calidad en ensayos por vía seca, para mejorar la confiabilidad de resultados de laboratorio químico de minerales. Arequipa: Universidad Nacional de San Agustín.
- Cornelis, K. (2001). Manual de Mineralogía. Reverte, S.A.
- Glave, M., & Kuramoto, J. (2002). Minería, Minerales y Desarrollo Sustentable en América del Sur. En *Minería, Minerales y Desarrollo Sustentable en Perú* (págs. 529-591). Centro de Investigación y Planificación del Medio Ambiente.
- GUÍA LAB. (22 de Febrero de 2021). *GUÍALAB*. Obtenido de https://www.guialab.com.ar/notas-tecnicas/espectroscopia-de-reflectancia-nir-y-sus-aplicaciones/
- Hunt, G. (1977). Spectral signatures of particulates minerals in the visible and near infrared.

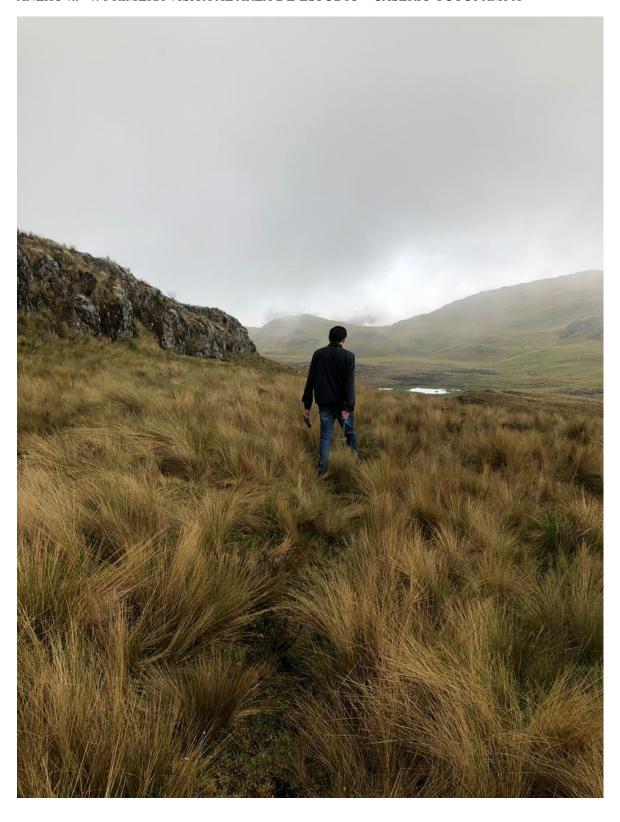

 Society of Exploration Geophysicists, 501-513.
- INGEMMET. (22 de Febrero de 2021). *INGEMMET*. Obtenido de https://portal.ingemmet.gob.pe/web/lab/imagenes_satelitales_tl
- Manrique, R. (2008). Validación del método de análisis combinado (Fire Assay y Absorción Atómica a la flama) para la determinación de oro en minerales. Huancayo: Universidad Nacional del Centro del Perú.
- Pachas, D. (2014). La Exploración minera en el Perú: Un breve alcance sobre las principales autorizaciones para el desarrollo de un proyecto de exploración en el Perú. *Derecho & Sociedad*, 321-328.
- PANalytical Company. (23 de Febrero de 2021). *PANalytical get insight*. Obtenido de http://www.geopool.fi/images/products/pdf/TerraSpec/TerraSpec_Standard-Res_Bilaga.pdf


- Ramírez, F. (2017). Estudio geológico y mineralización de la UP Carahuacra proyecto de exploración y estimación de recursos de la veta Mary. Arequipa: Universidad Nacional de San Agustín de Arequipa.
- Reyes, L. (1980). *Geología de los cuadrángulos de Cajamarca, San Marcos y Cajabamba*. Lima: INGEMMET.
- Sampieri, R., Collado, C., & Lucio, P. (2004). *Metodología de la investigación*. México: McGraw-Hill Interamericana.
- Skoog , D., Holler , J., & Crouch, S. (2008). *Principios de análisis Instrumental*. México: Cengage Learning Editores.
- Stange, F. (2018). Estudio de espectroscopía de reflectancia en el pórfido San Manuel-Kalamazoo, Arizona, EE.UU.: aplicaciones para proyectos en etapas de prefactibilidad. Concepción: Universidad de Concepción.
- Vargas, P. (s/f). *Introducción a la Espectroscopía de Reflectancia*. Lima: GeoSciences REFLEX PERÚ.
- Vázquez, F. (2012). *MANUAL DE YACIMIENTOS MINERALES*. Madrid: UD. PROYECTOS.
- Viza, W. (2018). Estudio geológico y estimación de recursos del proyecto minero Vemusa, La Joya, Arequipa. Tacna: Universidad Nacional Jorge Basadre Grohmann.

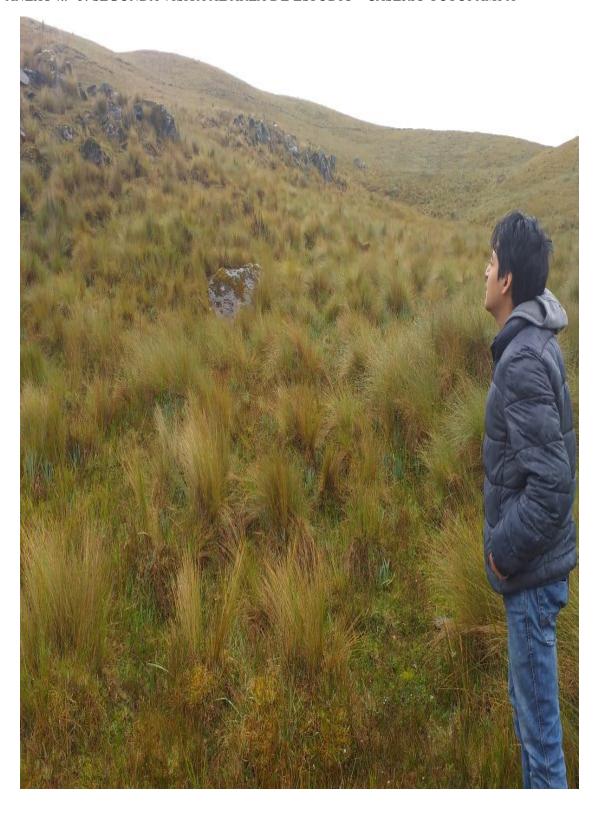
ANEXOS

ANEXO n.º 1. PLANO TOPOGRÁFICO DEL ÁREA DE ESTUDIO - CASERÍO TUYUPAMPA

ANEXO n.º 2. PLANO GEOLÓGICO DEL ÁREA DE ESTUDIO - CASERÍO TUYUPAMPA



ANEXO n.º 3. ÁREA DE ESTUDIO - CASERÍO TUYUPAMPA

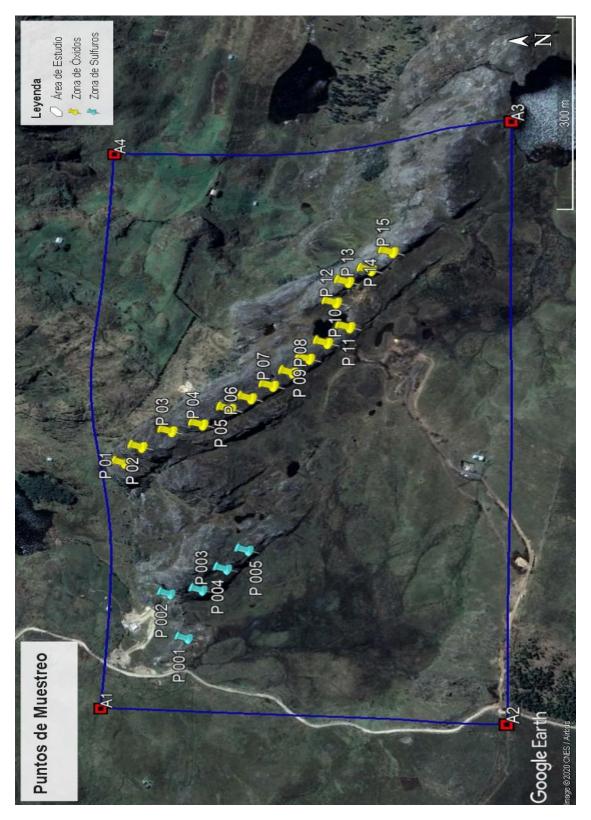


ANEXO n.º 4. PRIMERA VISITA AL ÁREA DE ESTUDIO - CASERÍO TUYUPAMPA

ANEXO n.º 5. SEGUNDA VISITA AL ÁREA DE ESTUDIO - CASERÍO TUYUPAMPA

ANEXO n.º 6. TERCERA VISITA AL ÁREA DE ESTUDIO - CASERÍO TUYUPAMPA

ANEXO n.º 7. ZONA DE OXIDACIÓN - ARGILIZACIÓN



ANEXO n.º 8. ZONA DE SULFURACIÓN

ANEXO n. ° 9. MUESTREO DE PUNTOS POR CONVENIENCIA

ANEXO n.° 10. RESULTADOS ANÁLISIS POR TERRASPEC 01

Sample	Sample Name	Min1 sTSAS	Wtl sTSAS	Min2 sTSAS	Wt2 sTSAS	Error sTSAS
MUESTRAS_UPN_M01.asd.sco	FSFR.23037 Int=5.0 sec	Paragonite	0.594	Dickite	0.406	59.585
MUESTRAS_UPN_M02.asd.sco	FSFR.23037 Int=5.0 sec Montmorillonite	Montmorillonite	0.509	Kaolinite-PX	0.491	52.661
MUESTRAS_UPN_M03.asd.sco	FSFR.23037 Int=5.0 sec	Paragonite	0.692	Montmorillonite	0.308	41.634
MUESTRAS_UPN_M04.asd.sco	FSFR.23037 Int=5.0 sec	Kaolinite-PX	69'0	Paragonite	0.31	34.357
MUESTRAS_UPN_M05.asd.sco	FSFR.23037 Int=5.0 sec	Kaolinite-PX	0.715	Paragonite	0.285	29.704
MUESTRAS_UPN_M06.asd.sco	FSFR.23037 Int=5.0 sec	Kaolinite-PX	0.585	Illite	0.415	41.997
MUESTRAS_UPN_M07.asd.sco	FSFR.23037 Int=5.0 sec	Dickite	0.64	Kaolinite-PX	0.36	56.827
MUESTRAS_UPN_M08.asd.sco	FSFR.23037 Int=5.0 sec	Paragonite	0.697	Kaolinite-PX	0.303	59.869
MUESTRAS_UPN_M09.asd.sco	FSFR.23037 Int=5.0 sec Montmorillonite	Montmorillonite	0.657	Kaolinite-PX	0.343	35.905
MUESTRAS_UPN_M10.asd.sco	FSFR.23037 Int=5.0 sec	Kaolinite-PX	0.617	Montmorillonite	0.383	27.281
MUESTRAS_UPN_M11.asd.sco	FSFR.23037 Int=5.0 sec	Kaolinite-WX	0.737	Dickite	0.263	55.238
MUESTRAS_UPN_M12.asd.sco	FSFR.23037 Int=5.0 sec Montmorillonite	Montmorillonite	0.635	Kaolinite-PX	0.365	35.212
MUESTRAS_UPN_M13.asd.sco	FSFR.23037 Int=5.0 sec	Pyrophyllite	0.783	Dickite	0.217	118.59
MUESTRAS_UPN_M14.asd.sco	FSFR.23037 Int=5.0 sec	Kaolinite-PX	0.549	Montmorillonite	0.451	73.337
MUESTRAS_UPN_M15.asd.sco	FSFR.23037 Int=5.0 sec Kaolinite-PX	Kaolinite-PX	0.527	Kaolinite-WX	0.473	51.756

ANEXO n.° 11. RESULTADOS ANÁLISIS POR TERRASPEC 02

Sample	Sample Name	Min1 sTSAV	Wtl sTSAV	Min2 sTSAV	Wt2 sTSAV	Error sTSAV
MUESTRAS_UPN_M01.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NULL	NULL	NULL	NOLL
MUESTRAS_UPN_M02.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NOLL	NULL	NOLL	NOLL
MUESTRAS_UPN_M03.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NOLL	NULL	NOLL	NOLL
MUESTRAS_UPN_M04.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NULL	NOLL	NOLL	NOLL
MUESTRAS_UPN_M05.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NULL	NULL	NOLL	NOLL
MUESTRAS_UPN_M06.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NOLL	NULL	NOLL	NOLL
MUESTRAS_UPN_M07.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NOLL	NULL	NOLL	NOLL
MUESTRAS_UPN_M08.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NOLL	NULL	NOLL	NOLL
MUESTRAS_UPN_M09.asd.sco	FSFR.23037 Int=5.0 sec	Goethite	0.654	NULL	NULL	17.727
MUESTRAS_UPN_M10.asd.sco	FSFR.23037 Int=5.0 sec	Goethite	1	NULL	NULL	105.24
MUESTRAS_UPN_M11.asd.sco	FSFR.23037 Int=5.0 sec	NULL	NULL	NULL	NULL	NOLL
MUESTRAS_UPN_M12.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NOLL	NULL	NULL	NOLL
MUESTRAS_UPN_M13.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NOLL	NULL	NOLL	NOLL
MUESTRAS_UPN_M14.asd.sco	FSFR.23037 Int=5.0 sec	Goethite	1	NULL	NULL	266.44
MUESTRAS_UPN_M15.asd.sco	FSFR.23037 Int=5.0 sec	NULL	NULL	NULL	NULL	NULL

ANEXO n.° 12. RESULTADOS ANÁLISIS POR TERRASPEC 03

Sample	Sample Name	IND 1485	IND 2200	IND 2300	CRISTI	CRIST2
MUESTRAS_UPN_M01.asd.sco	FSFR.23037 Int=5.0 sec	NULL	2205.37	NULL	0.252	13.675
MUESTRAS_UPN_M02.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	2206.26	NOLL	0.128	17.97
MUESTRAS_UPN_M03.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	NOLL	NOLL	0.233	10.14
MUESTRAS_UPN_M04.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	2206.4	NOLL	0.256	16.883
MUESTRAS_UPN_M05.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	2206.41	NOLL	0.258	17.319
MUESTRAS_UPN_M06.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	2205.88	NOLL	0.243	17.495
MUESTRAS_UPN_M07.asd.sco	FSFR.23037 Int=5.0 sec	NULL	2206.49	2256.84	0.356	12.407
MUESTRAS_UPN_M08.asd.sco	FSFR.23037 Int=5.0 sec	NULL	2209.53	2240.26	0.231	10.951
MUESTRAS_UPN_M09.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	2206.19	NULL	0.283	16.67
MUESTRAS_UPN_M10.asd.sco	FSFR.23037 Int=5.0 sec	NULL	2206.02	NULL	0.285	15.887
MUESTRAS_UPN_M11.asd.sco	FSFR.23037 Int=5.0 sec	NULL	2208.38	NULL	0.378	11.537
MUESTRAS_UPN_M12.asd.sco	FSFR.23037 Int=5.0 sec	NOLL	2205.4	NULL	0.257	18.216
MUESTRAS_UPN_M13.asd.sco	FSFR.23037 Int=5.0 sec	NULL	2208.32	NULL	NULL	NULL
MUESTRAS_UPN_M14.asd.sco	FSFR.23037 Int=5.0 sec	NULL	2207.13	2241.04	0.139	20.549
MUESTRAS_UPN_M15.asd.sco	FSFR.23037 Int=5.0 sec	NULL	2207.58	NULL	0.227	13.517

ANEXO n.° 13. RESULTADOS ANÁLISIS POR TERRASPEC 04

Sample	Sample Name	REF2181	REF2164	CRIST_KAO	CRIST_MICA
MUESTRAS_UPN_M01.asd.sco	FSFR.23037 Int=5.0 sec	0.589	699'0	88.0	0.0185
MUESTRAS_UPN_M02.asd.sco	FSFR.23037 Int=5.0 sec	0.757	884.0	96'0	0.00715
MUESTRAS_UPN_M03.asd.sco	FSFR.23037 Int=5.0 sec	0.612	269.0	828.0	0.023
MUESTRAS_UPN_M04.asd.sco	FSFR.23037 Int=5.0 sec	0.685	0.729	0.94	0.0152
MUESTRAS UPN M05.asd.sco	FSFR.23037 Int=5.0 sec	0.699	0.738	0.947	0.0149
MUESTRAS_UPN_M06.asd.sco	FSFR.23037 Int=5.0 sec	0.724	0.771	0.939	0.0139
MUESTRAS_UPN_M07.asd.sco	FSFR.23037 Int=5.0 sec	0.598	0.693	0.863	0.0287
MUESTRAS_UPN_M08.asd.sco	FSFR.23037 Int=5.0 sec	0.735	0.833	0.882	0.0211
MUESTRAS_UPN_M09.asd.sco	FSFR.23037 Int=5.0 sec	0.665	0.724	0.918	0.017
MUESTRAS_UPN_M10.asd.sco	FSFR.23037 Int=5.0 sec	0.719	9.75	656.0	0.0179
MUESTRAS_UPN_M11.asd.sco	FSFR.23037 Int=5.0 sec	0.523	0.533	0.981	0.0328
MUESTRAS_UPN_M12.asd.sco	FSFR.23037 Int=5.0 sec	0.686	0.749	0.916	0.0141
MUESTRAS_UPN_M13.asd.sco	FSFR.23037 Int=5.0 sec	0.583	0.48	1.216	NULL
MUESTRAS_UPN_M14.asd.sco	FSFR.23037 Int=5.0 sec	0.891	0.93	0.958	0.00675
MUESTRAS_UPN_M15.asd.sco	FSFR.23037 Int=5.0 sec	0.798	0.81	0.985	0.0168

ANEXO n.º 14. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 01

INFORME DE ENSAYO N° 18532

Cliente : JHON ALEXANDER VASQUEZ SANCHEZ

Referencia del Cliente : 1

Cantidad de Muestras 1

Fecha de Recepción : 17/11/2020
Fecha de Inicio de Ensayo : 18/11/2020
Lugar de ejecución del Ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Lugar de ejecución del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Determinación de Ag., As., Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines fines Au por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines Descripción MLP-001 / Ver. 00 MLP-010 / Ver. 00 Código de Método

MLP-001	Ag	oz/tc	18 0000000 BL
MLP-001	Ag	g/tm	Lab Paris A Berrate 5 ft L
MLP-010	Au	oz/tc	Las mariantes e Las massages
MLP-010	Au	g/tm	
Método Elemento MLP-010 MLP-010 MLP-001 MLP-001	-	Observación	
		Cód. Laboratoпо	NOV20-0599-001
		Tipo Ensayo Tipo Muestra Presentación Muestra Cód. Laboratono	Bolsa Sellada
		l ipo Muestra	Geoquímicos
		Tipo Ensayo	M01-OXIDOS Lote (Duplicado) Geoquímicos
		N° Cód. Cliente	M01-OXIDOS
	-	ž	_

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso contrario se procederá a desecharlas".

ANEXO n.º 15. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 02

inerales a fines

Ing. Diana Silvestre Jefe de Laboratorio Químico CIP: 185/141

INFORME DE ENSAYO N° 18533

Cliente : JHON ALEXANDER VASQUEZ SANCHEZ

Referencia del Cliente : 17/11/2020

Fecha de Recepción : 17/11/2020
Fecha de Inicio de Ensayo : 18/11/2020
Lugar de ejecución del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú Lugar de ejecución del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Descripción	Determinación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y M	Determinación de Au por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines
Código de Método	MLP-001 / Ver. 00	MLP-010 / Ver. 00

1LP-001 MLP-001	Ag	oz/tc	124.629.50 to
0.0		0	Special Section
MLP-001	Ag	g/tm	735 8 476 40 1817
MLP-010	Au	oz/tc	14500000 1400000000000000000000000000000
MLP-010	Au	g/tm	100 000 000 00 00 00 00 00 00 00 00 00 0
Método Elemento MLP-010 MLP-010 MI	i	Observacion	
		Cod. Laboratorio	NOV20-0599-002
	:	ipo Ensayo I ipo Muestra Presentación Muestra Cod. Laboratorio	M001-SULFURO Lote (Duplicado) Geoquímicos Bolsa Sellada
	:	I ipo Muestra	Geoquímicos
	ı I	lipo Ensayo	Lote (Duplicado)
		Cod. Cliente	M001-SULFURO
		2	-

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso contrario se procederá a desecharlas".

ANEXO n.º 16. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 03

Cliente : JHON ALEXANDER VASQUEZ SANCHEZ : Referencia del Cliente :

INFORME DE ENSAYO N° 18534

Fecha de Recepción : 17/11/2020 Fecha de Inicio de Ensayo : 17/11/2020

Cantidad de Muestras

Fecha de Inicio de Ensayo : 17/11/2020 Fecha de Término de Ensayo : 18/11/2020

Lugar de ejecución del ensayo

Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Descripción	Determinación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y M	Determinación de Au por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines
Código de Método	MLP-001 / Ver. 00	MLP-010 / Ver. 00

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso contrario se procederá a desecharlas".

ANEXO n.º 17. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 04

INFORME DE ENSAYO N° 18535

Cliente : JHON ALEXANDER VASQUEZ SANCHEZ

Referencia del Cliente : 1

Cantidad de Muestras 1

Fecha de Recepción : 17/11/2020
Fecha de Inicio de Ensayo : 18/11/2020
Lugar de ejecución del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú Lugar de ejecución del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Determinación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines Determinación de Au por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines MLP-001 / Ver. 00 MLP-010 / Ver. 00 Código de Método

N° Cod. Cliente Tipo Ensayo Tipo Muestra Presentación Muestra Cód. Laboratorio Observación g/m oz/lc g/fm oz/lc 1 M03-OXIDO Lole (Duplicado) Geoquímicos Bolsa Sellada NOV20-0599-004 Immediate Immediate							Método Elemento MLP-010 MLP-010 MLP-001	MLP-010	MLP-010	MLP-001	MLP-001
Tipo Ensayo Tipo Muestra Presentacion Muestra Cod. Laboratorio Observacion gytm oz/tic gytm Lote (Duplicado) Geoquimicos Bolsa Sellada NOV20-0599-004								Au	Au	Ag	Ag
Bolsa Sellada NOV20-0599-004 Land-8-86-751 Land-8-64-751 Land-8-6-751	ž_	Cód. Cliente	Tipo Ensayo	Tipo Muestra	Presentación Muestra	Cód. Laboratorio	Observación	ml/g	oz/tc	g/tm	oz/tc
	<u>-</u>	M03-OXIDO	Lote (Duplicado)	Geoquímicos	Bolsa Sellada	NOV20-0599-004		La P.0:35-5FL	Les POOGOTESEL	_	14146999 111

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso contrario se procederá a desechadas".

ANEXO n.º 18. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 05

INFORME DE ENSAYO N° 18536

Cliente : JHON ALEXANDER VASQUEZ SANCHEZ
Referencia del Cliente : 1
Cantidad de Muestras 1
Fecha de Recepción : 17/11/2020
Fecha de Inicio de Ensayo : 18/11/2020
Lugar de ejecución del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú
Lugar de ejecución del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Determinación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines Determinación de Ag, Au por Gravimetría en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines MLP-001 / Ver. 00 MLP-003 / Ver. 00 Código de Método

	-		_
MLP-001	Ag	oz/tc	100 00 00 00 00 00 00 00 00 00 00 00 00
MLP-001	Ag	g/tm	Labour Banssel
MLP-003	Au	oz/tc	LE POSITATE LE POSITIONE
MLP-003	Au	g/tm	12 00 00 00 00 00 00 00 00 00 00 00 00 00
Método Elemento MLP-003 MLP-001 MLP-001	:	Observacion	
		Cod. Laboratorio	NOV20-0599-005
		lipo Ensayo I ipo Muestra Presentacion Muestra Cod. Laboratorio Observacion	Bolsa Sellada
		l ipo Muestra	Geoquímicos
	-	lipo Ensayo	M005-SULFURO Lote (Duplicado) Geoquímicos
		Cod. Cliente	M005-SULFURO
1			H

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso contrario se procederá a desecharlas".

ANEXO n.º 19. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 06

INFORME DE ENSAYO N° 18537

Cliente : JHON ALEXANDER VASQUEZ SANCHEZ
Referencia del Cliente : 11/11/12020
Fecha de Recepción : 17/11/2020
Fecha de Inicio de Ensayo : 18/11/2020
Lugar de ejecución del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, P.

del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Descripción	Determinación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Mi	Determinación de Ag, Au por Gravimetría en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines	
Código de Método	MLP-001 / Ver. 00	MLP-003 / Ver. 00	

					Método Elemento MLP-003 M	MLP-003	MLP-003	ALP-003 MLP-001 MLP-001	MLP-001	
						Αu	Au	Ag	Ag	
m	Tipo Ensayo	Tipo Muestra	N° Cód. Cliente Tipo Ensayo Tipo Muestra Presentación Muestra Cód. Laboratorio	Cód. Laboratorio	Observación	g/tm	oz/tc	g/tm	oz/Ic	
S	OXIDOS Lote (Duplicado)	Ouplicado) Geoquímicos	Bolsa Sellada	NOV20-0599-006		underfig.s.c.	mogetherer modifferer	un transfignesses	100 00 00 00 00 00 00 00 00 00 00 00 00	

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso contrario se procederá a desecharlas".

ANEXO n.º 20. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 07

INFORME DE ENSAYO N° 18538

Cliente : JHON ALEXANDER VASQUEZ SANCHEZ

Referencia del Cliente : 1

Cantidad de Muestras 1

Fecha de Recepción : 17/11/2020
Fecha de Inicio de Ensayo : 17/11/2020
Fecha de Término de Ensayo : 18/11/2020
Lugar de ejecución del ensayo : Lab Perú Minerals S. R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Lugar de ejecución del ensayo : Lab Perú Minerals S. R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Determinación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines Determinación de Ag, Au por Gravimetría en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines MLP-001 / Ver. 00 MLP-003 / Ver. 00 Código de Método

			_
MLP-001	Ag	oz/tc	Laborate Contract
MLP-001	Ag	g/tm	Las Proofignes y R.L.
MLP-003	Αu	oz/tc	L LADOMANTE LADOMA & CASTEL
MLP-003	Au	g/tm	100 10 10 10 10 10 10 10 10 10 10 10 10
Método Elemento MLP-003 MLP-003 MLP-001 MLP-001		Observación	
		Cód. Laboratorio	NOV20-0599-007
		Tipo Muestra Presentación Muestra Cod. Laboratono	Bolsa Sellada
		Tipo Muestra	Geoquímicos
		Lote (Duplicado)	
		Cod. Cliente	M004-SULFUROS Lote (Duplicado) Geoquímicos
		-	

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso

ANEXO n.º 21. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 08

Ing. Diana Silvestre Jefe de Laboratorio Químic CIP : 185141

INFORME DE ENSAYO N° 18539

JHON ALEXANDER VASQUEZ SANCHEZ 17/11/2020 17/11/2020 18/11/2020 Lugar de ejecución del ensayo Fecha de Término de Ensayo Fecha de Inicio de Ensayo Referencia del Cliente Cantidad de Muestras Fecha de Recepción

Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

Descripción	Determinación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Mine	Determinación de Au por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines
Código de Método	MLP-001 / Ver. 00	MLP-010 / Ver. 00
		ligo de Método Descripción 0-001 / Ver. 00 Determinación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrado

) Muestra Presentac	Tipo Ensayo Tipo Muestra Presentación Muestra Cód. Laboratorio
0,	oquímicos Bolsa Sellada	0-OXIDOS Lote (Duplicado) Geoquímicos Bolsa (

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso contranio se procederá a desecharlas".

ANEXO n.º 22. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 09

Ing. Diana Silvestre
Jefe de Laboratorio Químico
CIP: 185/14

INFORME DE ENSAYO N° 18540

Cliente : JHON ALEXANDER VASQUEZ SANCHEZ
Referencia del Cliente : 1
Cantidad de Muestras 1
Fecha de Recepción : 17/11/2020
Fecha de Inicio de Ensayo : 18/11/2020
Fecha de Término de Ensayo : 18/11/2020
Lugar de ejecución del ensayo : Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú

beterminación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines Determinación de Au por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines MLP-001 / Ver. 00 MLP-010 / Ver. 00 Código de Método

MLP-001	Ag	oz/tc	Last 6:023 3 FL
MLP-001	Ag	g/tm	Lab Paro Belgate 5 FL
MLP-010	Au	oz/tc	La ra 0.044 5 FL
MLP-010	Au	g/tm	1950 000 1950 1950 000 000 000 000 000 000 000 000 000
Método Elemento MLP-010 MLP-010 MLP-001 MLP-001		Observación	
		Cód. Laboratono	NOV20-0599-009
		Cod. Cliente I ipo Ensayo I ipo Muestra Presentación Muestra Cod. Laboratono	Bolsa Sellada
		l ipo Muestra	Geoquímicos
	ı	M12-OXIDOS Lote (Duplicado) Geoquímicos	
		Cod. Cliente	M12-OXIDOS
	1	ž	-

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso contrario se procederá a desecharlas".

ANEXO n.º 23. RESULTADOS ANÁLISIS POR ABSORCIÓN ATÓMICA 10

Ing. Diana Silvestre Jefe de Laboratorio Químico CIP: 185141

INFORME DE ENSAYO N° 18541

JHON ALEXANDER VASQUEZ SANCHEZ 18/11/2020 17/11/2020 17/11/2020 Lugar de ejecución del ensayo Fecha de Término de Ensayo Fecha de Inicio de Ensayo Referencia del Cliente Cantidad de Muestras Fecha de Recepción

Determinación de Ag, As, Cu, Fe, Pb, Sb, Zn por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines Lab Perú Minerals S.R.L., Mz. N19, Lote 1C, Parque Industrial, La Esperanza, La Libertad, Perú Código de Método MLP-001 / Ver. 00 MLP-010 / Ver. 00

Determinación de Au por Absorción Atómica en Concentrados Polimetálicos, Muestras Geoquímicas y Minerales a fines

					Método Elemento MLP-010 MLP-010 MLP-001 MLP-001	MLP-010	MLP-010	MLP-001	MLP-001
i	i	:	:		:	Αu	Au	Ag	Ag
N° Cod. Cliente	lipo Ensayo	l ipo Muestra	lipo Muestra Presentacion Muestra Cod. Laboratono	Cod. Laboratorio	Observacion	g/tm	oz/tc	g/tm	oz/tc
M14-OXIDOS	Lote (Duplicado)	Geoquímicos	Bolsa Sellada	NOV20-0599-010		профево	1000016657RL 1000010207RL	Lab Parts Samuel S. R. L.	182-80-00-001

"Las muestras podrán ser retiradas por los interesados transcurrido el tiempo de almacenamiento que es de 20 días calendario a partir de la fecha de recepción para Contramuestras, rechazos o gruesos, caso contrario se procederá a desecharlas".

ANEXO n.º 24. ESTIMACIÓN PROMEDIO DE RECUROS MINERALES ORO Y PLATA

	ÓX	CIDOS		
	Aı	1	Aş	3
Código	gr/tm	oz/tc	gr/tm	oz/tc
M01	0.3	0.01	3	0.09
M03	0.35	0.01	8	0.23
M07	5.48	0.16	18	0.53
M10	0.15	0	1	0.03
M12	0.5	0.01	11	0.32
M14	0.65	0.02	3	0.09
Prom Ley	1.24	0.04	7.33	0.22
	SUL	FUROS		
	Aı	1	Aş	3
Código	gr/tm	oz/tc	gr/tm	oz/tc
M001	0.9	0.03	124	3.62
M003	0.15	0	1	0.03
M005	6.71	0.2	92	2.68
M004	5.67	0.17	18	0.53
Prom Ley	3.36	0.10	58.75	1.72