

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LADRILLO ARTESANAL Y LADRILLO INDUSTRIAL, CAJAMARCA 2022"

Tesis para optar el título profesional de:

Ingeniero Civil

Autor:

Walther Stuard Hernandez Roman

Asesor:

Dr. Ing. Luis Vásquez Ramírez

Cajamarca - Perú

2022

DEDICATORIA

A Dios, por haberme dado la vida y guiarme en el transcurso de la vida y mejorar cada día. A mis padres Walter y Miriam que con su apoyo, cariño, amor y paciencia siempre estuvieron ahí respaldándome día a día. A mi hermano Junior que con su apoyo incondicional y preocupación me brindó su ayuda y así impulsarme a las diferentes adversidades. A mi asesor Ing, Dr. Luis gracias a él logré con éxito la finalización de mi carrera profesional y estuvo ahí como buen amigo y maestro, le agradecer infinitamente.

Finalmente quiero dedicar esta tesis a todas mis amistades especialmente Mónica y Taylin que en los buenos y malos momentos estuvieron hay conmigo brindándome su apoyo, siempre los llevare en mi corazón.

AGRADECIMIENTO

Ante todo, a Dios por guiarme. A mis docentes y en especial a mi asesor Ing. Luis Vásquez Ramírez, por orientarme constantemente, por su ayuda, paciencia y dedicación durante el proceso de la elaboración de esta investigación. A mis padres, a mi hermano por brindarme su apoyo incondicional, su respaldo y su confianza en mí durante este proceso. A mis amigos de toda la vida que me acompañan desde siempre que me apoyaron y contribuyeron al desarrollo de esta investigación

TABLA DE CONTENIDOS

DEDICATORIA	2
AGRADECIMIENTO	3
ÍNDICE DE TABLAS	5
ÍNDICE DE FIGURAS	6
ÍNDICE DE ECUACIONES	7
RESUMEN	8
CAPÍTULO I. INTRODUCCIÓN	9
CAPÍTULO II. MÉTODO	15
CAPÍTULO III. RESULTADOS	45
CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES	72
REFERENCIAS	78
ANEXOS	81

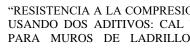
ÍNDICE DE TABLAS

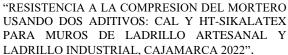
Tabla 1: Detalle de los ensayos del trabajo de investigación	
Tabla 2: Número de muestras por ensayo a la resistencia a la comprensión del trabajo de investigación	
Tabla 3: Identificación de Variables	18
Tabla 4: Ensayos previos que se realizaron para determinar propiedades físico-mecánicas de	
materiales	
Tabla 5: Clase de unidad de albañilería para fines estructurales.	
Tabla 6: Porcentaje que pasa para aceptar la granulometría en morteros	
Tabla 7: Cemento Portland Requisitos Físicos.	
Tabla 8: Cemento Portland Requisitos Químicos.	
Tabla 9: Resistencia de los prismas de albañilería según zona	
Tabla 10: Incremento de f'm y v'm por edad	
Tabla 11: Factores de corrección de f'm por esbeltez	43
Tabla 12: Rango de aceptación de los cubos de Mortero según la edad del ensayo	
Tabla 13: Especificaciones técnicas realizadas en Laboratorio para la Cal:	
Tabla 14: Especificaciones técnicas realizadas en Laboratorio para el HT-Sikalatex	
Tabla 15: Variación dimensional del largo del ladrillo artesanal	
Tabla 16: Variación dimensional del ancho del ladrillo artesanal	
Tabla 17: Variación dimensional de la altura del ladrillo artesanal	
Tabla 18: Variación dimensional del largo del ladrillo industrial	
Tabla 19: Promedio de alabeo en el ladrillo industrial	
Tabla 20: Resultados de la absorción del Ladrillo artesanal	
Tabla 21: Resultados de la absorción del Ladrillo industrial	
Tabla 22: Resultados de la Succión del Ladrillo artesanal	
Tabla 23: Resultados de la Succión del Ladrillo industrial	
Tabla 24: Resistencia A Compresión del ladrillo artesanal	
Tabla 25: Resistencia A Compresión del ladrillo industrial	
Tabla 26: Contenido de humedad de la Arena gruesa	
Tabla 27: Gravedad Específica Y Absorción De Agregados Finos	
Tabla 28: Peso Específico Del Cemento Hidráulico	
Tabla 29: Diferentes consistencias de mortero	
Tabla 30: Valores de "b" para distintas consistencias y módulos de finura de la arena	
Tabla 31: Datos de humedad de la arena	
Tabla 32: Proporciones en peso de los agregados	
Tabla 33: Dosificación del cemento-arena-agua	
Tabla 34: Dosificación por tanta de saco del cemento-arena-agua	
Tabla 35: Resistencia Promedio de los Morteros adicionado 4% de HT-SikaLatex	
Tabla 36: Resistencia Promedio de los Morteros adicionado 6% de HT-SikaLatex	
Tabla 37: Resistencia a la compresión de pilas de ladrillos artesanales sin incorporación de aditivo	
Tabla 38: Resistencia a la compresión de pilas de ladrillos artesanales con 4% de cal	
Tabla 39: Resistencia a la compresión de pilas de ladrillos artesanales con 6% de cal	
Tabla 40: Resistencia a la compresión de pilas de ladrillos artesanales con 4% de HT-SikaLatex	
Tabla 41: Resistencia a la compresión de pilas de ladrillos artesanales con 6% de HT-SikaLatex	
Tabla 42: Resistencia a la compresión de pilas de ladrillos industriales con 6% de cal	
Tabla 43: Resistencia a la compresión de pilas de ladrillos industriales con 4% de HT-SikaLatex	
Tabla 44: Resistencia a la compresión de pilas de ladrillos industriales con 6% de HT-SikaLatex	71

ÍNDICE DE FIGURAS

Figura 1: El diseño de la investigación	
Figura 2: Calibre vernier	
Figura 3: Medición con el Vernier en los ladrillos	
Figura 4: Cuña para medir alabeo	
Figura 5: Alabeo de los ladrillos	
Figura 6: Con la ayuda de la cuña se realiza la verificación de convexidad y concavidad	
Figura 7: Colocación de los ladrillos en la bandeja de absorción y curado	
Figura 8: Prensa hidráulica para el ensayo de compresión	
Figura 9: Ensayo de Resistencia a la unidad de albañilería	
Figura 10: Taras en el horno para el contenido de humedad	
Figura 11: Materiales que se usa para el peso específico y absorción del agregado fino	
Figura 12: Cemento Pacasmayo Porland Tipo ICo.	
Figura 13: Medición con el termómetro del agua y con la gasolina + cemento	
Figura 14: Cal de Obra que se utilizara en las dosificaciones + mortero	
Figura 15: SikaLatex, aditivo que se usara para el mortero	
Figura 16: Comparación de Variación dimensional Largo entre Ladrillo Artesanal y Ladrillo Industrial	
Figura 17: Comparación de Variación dimensional Ancho entre Ladrillo Artesanal y Ladrillo Industrial	
Figura 18: Comparación de Variación dimensional Altura entre Ladrillo Artesanal y Ladrillo Industrial	48
Figura 19: Comparación en Alabeo Lado A entre Ladrillo Artesanal y Ladrillo Industrial	50
Figura 20: Comparación en Alabeo Lado B entre Ladrillo Artesanal y Ladrillo Industrial	
Figura 21: Comparación de la Absorción del Ladrillo Artesanal y Ladrillo Industrial	
Figura 22: Comparación de la Succión del Ladrillo Artesanal y Ladrillo Industrial	53
Figura 23: Comparación de la Resistencia a la Compresión del Ladrillo Artesanal y Ladrillo Industrial.	
Figura 24: Granulometría de la Arena fina entre abertura de tamices y porcentaje que pasa	56
Figura 25: Correspondencia entre valores de relación agua-cemento y resistencia a la compresión p	oara
morteros hechos con cemento portland tipo I y arena de rio.	60
Figura 26: Relación entre la % fluidez y la relación agua-cemento	
Figura 27: Comparación de los Morteros desde el uso tradicional (sin aditivo) y con la incorporación	ı de
aditivos	65
Figura 28: Comparación de la resistencia a compresión de las diferentes incorporaciones	
dosificaciones de aditivos en ladrillo artesanal	68
Figura 29: Comparación de la resistencia a compresión de las diferentes incorporaciones	de
dosificaciones de aditivos en ladrillo industrial.	71
Figura 30: Ensayo de Alabeo	
Figura 31: Ensayo de Variabilidad dimensional	
Figura 32: Ensayo a comprensión de la unidad de albañilería	82
Figura 33: Ensayo de Succión	82
Figura 34: Posterior a las 24h recojo de la unidad de albañilería	83
Figura 35: Colocación en la Estufa la unidad de albañilería (ensayo de succión)	83
Figura 36: Subrayado de los ladrillos para el ensayo de absorción	. 84
Figura 37: Ensayo de absorción	. 84
Figura 38: Ensayo del peso específico del cemento hidráulico	85
Figura 39: Frascos de Le chateleir con gasolina hasta la marca 0	
Figura 40: Medida con el termómetro agua – gasolina + cemento en el frasco Chateleir	
Figura 41: Ensayo de Gravedad especifica – cono metálico	
Figura 42: Fiola + agregado fino(arena) + agua	
Figura 43: Ensayo de Contenido de humedad Taras + arena	
Figura 44: Ensayo de Granulometría del agregado fino	
Figura 45: Peso de cada Porcentaje que pasa	
Figura 46: Pilas de Ladrillos Industriales y Artesanales	
Figura 47: Toma de Medidas en las Pilas de Albañileria	
Figura 48: Ensayo de Resistencia a la Compresión de Pilas de Ladrillo Industrial	
Figura 49: Ensayo de Resistencia a la Compresión de Pilas de Ladrillo Artesanal	
Figura 50: Medición de los Morteros de concreto	
Figura 51: Resistencia a la Compresión de Morteros de concreto	
- ·	

ÍNDICE DE ECUACIONES


Ecuación 1:Longitud promedio del ancho	37
Ecuación 2: Longitud promedio de la altura	37
Ecuación 3: Longitud promedio del largo	
Ecuación 4: Variación dimensional del ancho	37
Ecuación 5: Variación dimensional de la altura	37
Ecuación 6: Variación dimensional del largo	37
Ecuación 7: Alabeo	38
Ecuación 8: Absorción (kg/m3)	38
Ecuación 9: Absorción (%)	
Ecuación 10: Porcentaje retenido	39
Ecuación 11: Porcentaje retenido acumulado	
Ecuación 12: Porcentaje que pasa	39
Ecuación 13: Modulo de Finura	40
Ecuación 14: Peso del material húmedo	
Ecuación 15: Peso del material seco	40
Ecuación 16: Contenido de humedad	41
Ecuación 17: Volumen de masa	
Ecuación 18: Peso específico de agregado	
Ecuación 19: Porcentaje de absorción	41
Ecuación 20: Volumen desplazado	42
Ecuación 21: Peso específico del cemento	42
Ecuación 22: Resistencia a la compresión	42
Ecuación 23: Área	
Ecuación 24: Proporción 1:n	61
Ecuación 25:Contenido del cemento	
Ecuación 26:Contenido de agua	62
Ecuación 27: Contenido de arena	62



RESUMEN

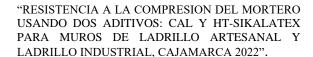
El presente trabajo de investigación, da a conocer la resistencia entre el mortero y la unidad de albañilería. Para ello tiene como base a las diferentes Normas Técnicas Peruanas (Reglamento Nacional de Edificaciones) y/o Internacionales, (NTP E.070, NTG 41050, ASTM C270-10). Donde se realizaron diferentes ensayos para obtener como resultado la resistencia axial del mortero – ladrillo. Se realizó el diseñó de mezcla del mortero con el aditivo (cal y HT-sikalatex) y sin el aditivo (testigos); con las siguientes combinaciones generales: combinación 1 (ladrillo artesanal de arcilla con mortero con cal), combinación 2 (ladrillo artesanal con mortero con HT-Sikalatex), combinación 3 (ladrillo industrial con mortero con cal), combinación 4 (ladrillo industrial con mortero con HT-Sikalatex). Para lograr esta comparación, se utilizaron ladrillos de tipo II y tipo solida clasificado por su resistencia; para los morteros se utilizó adición con cal y con HT-Sikalatex, con las proporciones que se especifican en el desarrollo de la tesis. Para determinar dicha resistencia, previamente se realizaron las propiedades físico-mecánicas de los materiales que se utilizaron para la presente tesis, donde los siguientes ensayos y/o evaluaciones fueron: Ladrillo: Peso, Variabilidad Dimensional, Alabeo, Absorción, Succión, Resistencia a la compresión; y de la forma colectiva: Resistencia a la compresión axial de las pilas de albañilería; Agregado fino -Granulometría, gravedad específica, Contenido de Humedad; Cemento - Peso específico, comparando con la NTP-E:0.70-Albañileria.

Palabras clave: Resistencia, Aditivo, Concreto, Mortero, Adherencia

CAPÍTULO I. INTRODUCCIÓN

En los últimos años, se han establecido varios estudios, investigaciones donde han creado nuevas formas para aumentar la resistencia y la adherencia del mortero, donde en la actualidad existen diversos aditivos que aumentan y mejoran dicha resistencia y/o adherencia. Según al progreso de la industria química y la nanotecnología, los aditivos se integran al concreto, y actualmente podemos encontrar un sin número de productos en el mercado que se encuentran la gran mayoría de las necesidades para los usuarios del mortero. Es cierto que el ladrillo artesanal tiene características menores que el ladrillo industrial, tanto como en resistencia y en costo, es por ello últimamente se le adiciona aditivos para aumentar esta resistencia. La construcción tradicional de albañilería utiliza unidades asentadas con mortero, este cumple una función de amoldar, unir o adherir las irregularidades entre unidades de albañilería, y a la vez estabilizar en el proceso constructivo; así como la rigidez en la asentada de ladrillo para permitir el asentado de la siguiente hilada y formar un conjunto durable (Gallegos & Casabonne, 2005). Estos aditivos pueden ser usados por razones de orden económico, ya que permiten, en algunos casos, reducir los costos de fabricación del concreto. (Sanchez de Guzmán, 1994). En la clasificación de aditivos diversos autores denotan lo siguiente: La publicación denominada: (Aditivos para hormigones, morteros y pastas) indica que, para la clasificación de los aditivos es según el material constituyente: Aditivos acelerantes, aditivos reductores de agua y que controlan el fraguado, aditivos para inyecciones, aditivos incorporadores de aire, aditivos formadores de gas, aditivos extractores de aire, aditivos productores de expansión (Comité 212 del ACI, 1994). En la NTP 334.090-2013 dividen los aditivos en A, B, C, D, E, F, G, la cual su denominación es: reductor de agua, retardador de fraguado,

acelerador de fragua, reductor de agua y retardador, reductor de agua y acelerador, reductor de agua de alto efecto, reductor de agua de alto efecto y retardador respectivamente (Indecopi, 2013). La mayoría de autores por lo general los aditivos normalmente se clasifican en categorías de acuerdo a su efecto: plastificadores, superplastificadores, inclusores de aire, aceleradores, retardadores (Aguirre Cabrera & Pacheco Giron, 2007). Para la producción de concreto hidráulico se cita la siguiente: "Aditivo es toda aquella sustancia diferente al agua, los agregados, el cemento y los refuerzos de fibra usada como ingrediente para el mortero que se agrega a la mezcla antes o durante del mezclado" (Aguirre Cabrera & Pacheco Giron, 2007). Si un aditivo es una sustancia química, generalmente dosificada por debajo del 6% de la masa del cemento, distinta del agua, los agregados, el cemento y los refuerzos de fibra, tales como ingrediente de la pasta, del mortero o del concreto, y se agrega al conjunto antes o durante el proceso de mezclado, con el fin de modificar alguna o algunas de sus propiedades física, de tal manera se adapte de una mejor forma a las características de la obra o las necesidades del constructor (Arizzi & Cultrone, 2012). Se puede definir la adherencia como la fuerza superficial que mantiene unidos dos sólidos. Si quisiéramos aplicar esta fuerza se entraría a más en detalle obtendríamos a resistencia, tendríamos que definir que es realmente esa fuerza, que la causa, que factores influyen en ella, que le afecta. (Vázquez Romero, 2010). Cuando se requiera una gran trabajabilidad, buena retención de agua y alta resistencia inicial, se recomienda este tipo de mortero. Utilizando como base un mortero 1:3, se puede sustituir parte del cemento por cal. Estos morteros reciben el nombre de "Morteros de Cemento Rebajados" cuando el contenido de cemento es escaso. Las proporciones más usadas, varían de 1:1/4:2 a 1:1:4 (cemento: cal: arena) (Donis Arriola, 2010). Los aditivos que se usen en el concreto deben



someterse a la aprobación de la Supervisión. Se debe demostrar que la mezcla utilizada en obra es capaz de mantener sustancialmente la misma composición y comportamiento que el producto utilizado para determinar la dosificación del concreto (Norma E.060 Concreto Armado, 2009). El mortero de cal hidratada ofrece plasticidad, trabajabilidad, mayor retención de agua, mayor adherencia, reducción de retracciones y fisuraciones además tiene como objetivo contribuir a generar una base de datos técnicos que permitan la reducción de los costos y aumentar el confort de los hogares sostenibles con un producto natural, utilizando procesos probados y sustentados para su elaboración basados en las normas ASTM e IMCYC. (Barajas, Castro, & Marco, 2012). Para ello se tiene que realizar una buena dosificación de los morteros o se tiene morteros adecuados, se puede lograr la máxima resistencia, esto se logrará realizando eficazmente una serie de ensayos según las normas dadas. (Navas C. & Campos R., 2018). El mortero es una mezcla homogénea entre materiales cementantes, un material de relleno, agua y algunas ocasiones de otros añadidos se ayudan a la trabajabilidad (aditivos); el uso del mortero en la construcción se usa ampliamente como material de revoque o de repello, como material de pega en la mampostería y en los últimos tiempos en la estructural (Gutiérrez, 2003). En la actualidad hablar de resistencia y adherencia casi significa lo mismo, por lo que ambos van de la mano, no es frecuente el empleo de aditivos por la creencia generalizada de que su alto costo no justifica su uso en el concreto de manera rutinaria; pero si en un estudio detallado del incremento en el costo en m3 de concreto (incremento que normalmente oscila entre el 0.5 al 5% dependiendo del producto en específico), es decir si se incorpora aditivos en el mortero o concreto mejora la resistencia y adherencia del conglomerado (San Bartolomé & Morante., 2009). Los

últimos terremotos suscitados en el Perú, ha demostrado la importancia del diseño y el

uso de buenos materiales, específicamente concreto, acero y ladrillo para el uso en la albañilería, la estructuración y procesos constructivo, especialmente las confinadas, la cual conlleva, a la fabricación y al uso de buenos materiales y utilización de aditivos como aumento a la resistencia (Cabrera B., 2013). Actualmente en la construcción con unidades de mampostería es una de las más populares; a pesar de que el mortero es de aproximadamente un 15% de la masa total de la pared, es un componente esencial para determinar la resistencia a compresión; ya que está diseñado para soportar este tipo de esfuerzo. En los muros de mampostería la presión, los esfuerzos combinados de flexocompresión y de corte debido a fuerzas de viento o sismo (a menudo en nuestro entorno), cuando se habla de la construcción el mortero juega un papel importante como responsable de las unidades que trabajen como un elemento estructural homogéneo, es por ello que se debe tener cuidado en la elaboración del mismo (San Bartolomé, Romero, & Torres, 2010). La aceptación de los diversos materiales para la elaboración de mortero, concreto, unidades de albañilería, mampostería, debe someterse a diversas pruebas dadas por la norma E:070 (Norma-E.070-Albañileria, 2015). Para Cajamarca, como otras ciudades del Perú, no está tan alejada del crecimiento urbano, lo que ha conllevado a la demanda excesiva de viviendas, siendo el ladrillo la mejor alternativa en la construcción de las edificaciones; sin embargo, las construcciones de albañilería ya existentes presentan muchas deficiencias, principalmente, debido a la baja calidad de los materiales, a la inadecuada selección de estos y a los no adecuados procesos constructivos (Gutierrez, 2017). En el ámbito de la construcción existe una realidad sobre el uso de cual aditivo es mejor, entonces se ve la necesidad de realizar una comparación de dos aditivos (los más usados): cal y HT-Sikalatex, de tal manera verificar su resistencia, que permita mejorar las propiedades físico - mecánicas del

mortero y saber con qué tipo de aditivo se obtiene resultados más satisfactorios, además de aumentar la utilización de aditivos como posible solución ante fallas por propiedades mecánicas. Entonces ¿Cómo influye la incorporación de los aditivos en la resistencia a la compresión del mortero usando Cal y Ht-sikalatex para los muros de ladrillo artesanal y ladrillo industrial en la ciudad de Cajamarca?, por lo que se tomará como objetivo general determinar la influencia de la adición de los aditivos Cal y Ht-sikalatex en los morteros para los ladrillos artesanales y en los ladrillos industriales. De acuerdo a los antecedentes, se determina que la calidad de los materiales debe ser apropiados que cumplan los parámetros necesarios según la norma E:070 (propiedades físico-mecánicas) por lo cual la resistencia del mortero incorporando Cal o HT-Sikalatex en los muros de ladrillo artesanal o industrial aumentaría en 1% - 5% en comparación con el método tradicional sin incorporación de dichos aditivos.

La presente investigación justifica la comparación entre la resistencia del mortero aplicando cal y Ht-Sikalatex en diferentes dosificaciones para los muros de ladrillo artesanal y ladrillo industrial usando pilas de ladrillo, usando la norma E:070; donde actualmente en el Perú, la importancia de la construcción se utiliza aditivos de mayor relevancia para mejorar y/o aumentar la calidad, resistencia y adherencia del mortero y así tener mejores resultados en la albañilería, el motivo por el cual Perú se encuentra en el cinturón de fuego, como consecuencia tiene un nivel alto de sismicidad, Cajamarca se encuentra en un nivel de Zona 3 según la Norma E.030; entonces para la elaboración de diferentes construcciones de albañilería especialmente confinada se requiere que sean resistentes, la presente investigación permitirá acceder información sobre los diferentes tipos de aditivos (plastificantes, reductores, aceleradores,

retardadores e inclusores de aire), que brindan aumento de la resistencia, por lo tanto así daremos respuesta, que tipo de aditivo es óptimo para mejorar la resistencia del mortero en diferentes muros de ladrillo artesanal e industrial.

CAPÍTULO II. MÉTODO

El tipo de investigación por el que se realiza esta tesis es experimental - comparativa, debido a que la variable dependiente (Resistencia a la compresión del mortero) será influenciada por la variable independiente (Aditivos Cal hidratada - HT-Sikalatex además los ladrillos Artesanales - Industriales) y estos serán comparados entre sí. El diseño de la investigación es experimental aplicada debido a que se manipula de manera intencional los aditivos (cal, HT-Sikalatex) para analizar las consecuencias que generan en las propiedades mecánicas del mortero, y a su vez comparando con la norma E-070 y su aplicación en los procesos de Ingeniería.

La población consta de 160 muestras donde se realizaron diversos ensayos, según diseño de la investigación.

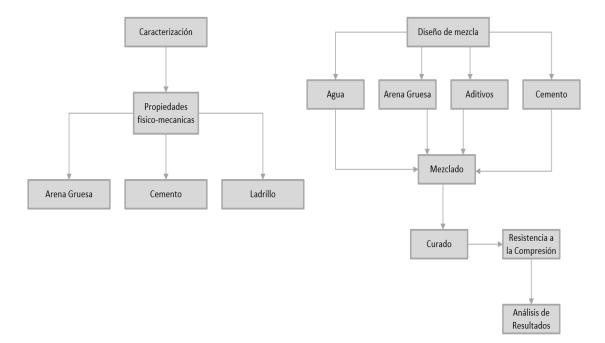


Figura 1: El diseño de la investigación

Tabla 1: Detalle de los ensayos del trabajo de investigación

UNIDAD DE ENSAYO	TIPO DE ENSAYO	CANTIDAD DE MUESTRAS X ENSAYO	INSTRUMENTO
	VARIABILIDAD DIMENSIONAL	10 LA	
llos		10 LI	
яdri	ALABEO	10 LA	
ra la		10 LI	
(pa iale.	GRADO DE ABSORCIÓN	5 LA	
.OS ustr		5 LI	•
EIL.I ind		5 LA	
ENSAYOS PARA LADRILLOS (para ladrillos artesanales e industriales)	GRADO DE SUCCION	5 LI	
YOS PAI artes	RESISTENCIA A LA COMPRESIÓN (f'b) Y	5 LA	
ENSA	COEFICIENTE DE VARIACIÓN (%)	5 LI	
ENSAYOS PARA ELABORAR LOS MORTEROS	COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO (CUBOS 50.8mm) PARA TESTIGOS	6	USO DE
PARA ELABO MORTEROS	COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO (CUBOS 50.8mm) CON INCORPORACION DE CAL PARA 4%	6 AL 4%	PROTOCOLOS DE LA UPN
PAK MO	Y 6%	6 AL 6%	
AYOS	COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO (CUBOS 50.8mm)	6 AL 4%	•
ENS	CON INCORPORACION DE HT- SIKALATEX PARA 4% Y 6%	6 AL 6%	
OTT	RESISTENCIA A COMPRESIÓN MODIFICADO - PILAS DE UNIDADES DE	6 PA	•
LA DRII	ALBAÑILERÍA PARA TESTIGOS	6 PI	
ENSAYOS A LA RESISTENCIA A I COMPRENSION DE MUROS DE LAD	DEGLGTENCIA A COMPREGIÓN	6 PA + 4%	
TEN OS D	RESISTENCIA A COMPRESIÓN MODIFICADO- PILAS DE UNIDADES DE 6 PA + 69	6 PA + 6%	
ESIS MUR	ALBAÑILERÍA PARA MORTEROS CON CAL	6 PI + 4%	
LA F DE		6 PI + 6%	
SA ION	DEGLETENCIA I COMPEZZÁN	6 PA + 4%	
4 YO	RESISTENCIA A COMPRESIÓN MODIFICADO- PILAS DE UNIDADES DE	6 PA + 6%	
ENS. APRE	ALBAÑILERÍA PARA MORTERO CON HT-	6 PI + 4%	
SIKALATEX		6 PI + 6%	
	TOTAL	160	MUESTRAS

La muestra consta de 06 ensayos de resistencia a la compresión, donde se usaron 60 muestra de pilas de albañilería (03 ladrillos + mortero), 30 muestras de morteros (cubos de 5cmx5cmx5cm) a su vez divididos en testigos y morteros utilizando cal o Ht-Sikalatex en dosificaciones al 4% y 6% en diferentes tipos de ladrillos artesanal (PA) e industrial (PI).

Tabla 2: Número de muestras por ensayo a la resistencia a la comprensión del trabajo de investigación

05	RESISTENCIA A COMPRESIÓN MODIFICADO - PILAS DE	6 PA
'A LA 'ADRILI	UNIDADES DE ALBAÑILERÍA PARA TESTIGOS	6 PI
~ ~		6 PA + 4%
CCCC S DE TRO	RESISTENCIA A COMPRESIÓN MODIFICADO- PILAS DE	6 PA + 6%
ELA ROS RTE	UNIDADES DE ALBAÑILERÍA PARA MORTEROS CON CAL	6 PI + 4%
S CON RELACIO. A EN MUROS DE CON MORTERO		6 PI + 6%
, , O		6 PA + 4%
ENSAYOS RESISTENCIA C	RESISTENCIA A COMPRESIÓN MODIFICADO- PILAS DE UNIDADES DE ALBAÑILERÍA PARA MORTERO CON HT-	6 PA + 6%
EN: SISTI	SIKALATEX	6 PI + 4%
RE		6 PI + 6%
ERLACION A LA EN MORTEROS	COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO (CUBOS 50.8mm) PARA TESTIGOS	6
ENSAYOS CON ERLACION A LA RESISTENCIA EN MORTEROS	COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO (CUBOS 50.8mm) CON INCORPORACION DE CAL PARA 4% Y 6%	
ENS,	(CUBOS 50.8mm) CON INCORPORACION DE HT-SIKALATEX - PARA 4% Y 6%	

Como técnica para la recolección de datos se utilizó la observación directa y la recolección de datos. En los instrumentos para la recolección de datos de esta investigación, son los protocolos establecidos y validados por la Universidad Privada del Norte, mismo que describen el procedimiento para realizar cada ensayo, y los datos que se deben recolectar de los mismo.

Para el análisis de datos, se procedió a realizar el trabajo en gabinete apoyándome en el software Microsoft Excel.

Tabla 3: Identificación de Variables

VARIABLES	UNIDAD DE ENSAYO	INSTRUMENTOS
DEPENDIENTE Resistencia a la compresión	ENSAYOS PARA LADRILLOS (artesanales e industriales)	
del mortero	ENSAYOS PARA ELABORAR LOS MORTEROS	PROTOCOLOS Y GUIAS DE
INDEPENDIENTES Tipo de Aditivos (Cal – Sikalatex) Tipo de Ladrillos (Artesanales – Industriales)	ENSAYOS CON RELACION DIRECTA A LA RESISTENCIA DEL MORTERO	- LABORATORIO

En la presente investigación las técnicas a usar serán las siguientes:

- 1. La observación simple, que es obtener los resultados de la resistencia a compresión (f'm) de las pilas de ladrillo artesanal e industrial tomando la medida en los instrumentos de medición y control, deformímetros y máquina de ensayo.
- **2. Revisión documental**, basando los resultados obtenidos en el presenta investigación con los distintos documentos que sirven como apoyo para determinar si el mortero es apto y cumple con lo que especifica la norma E.070 Albañilería.
- **3. Análisis de Contenido**, consiste en pasar los datos obtenidos de los protocolos de control y procesarlas para poder obtener conclusiones claras.

Tabla 4: Ensayos previos que se realizaron para determinar propiedades físicomecánicas de los materiales

ENSAYOS	PROTOCOLOS	NORMA	CODIGOS	
ıles e	RESISTENCIA A LA COMPRESIÓN (f'b) Y COEFICIENTE DE VARIACIÓN (%)	NTP E 070	ALA-LC-UPNC:	
sanc ()	VARIABILIDAD DIMENSIONAL (%)	NTP 399.604	ALA-LC-UPNC:	
rtes	ALABEO	NTP E 070	ALA-LC-UPNC:	
'ADRILLOS (artesanales e industriales)	ABSORCIÓN	NTP 399.613 NTP 399.604	ALA-LC-UPNC:	
ZILI in	SUCCIÓN	NTP 399.613	ALA-LC-UPNC:	
LADK	RESISTENCIA A COMPRESIÓN - PILAS DE UNIDADES DE ALBAÑILERÍA	NTP E.070	ALA-LC-UPNC:	
	CONTENIDO DE HUMEDAD DE AGREGADOS	MTC E 108 / ASTM D2216 / NTP 400.010	CH-LS-UPNC:	
ARENA	ANÁLISIS GRANULOMÉTRICO DE AGREGADOS FINOS	MTC E204 / ASTM C136 / NTP 400.012	AGGF-LC- UPNC:	
	GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADOS FINOS	MTC E205 – ASTM C128 – NTP 400.022	GEAF-LC- UPNC	
СЕМЕПТО	PESO ESPECÍFICO DEL CEMENTO HIDRÁULICO (FRASCO DE LE CHATELIER)	MTC E610 / ASTM C188 / NTP 334.005	PECH-LC- UPNC:	
MORTEROS	COMPRESIÓN DE MORTEROS DE CEMENTO HIDRÁULICO (CUBOS 50.8mm)	MTC E609 / ASTM C109 / NTP 334.051	CMCH-LC- UPNC:	
RESISTENCIA A COMPRESIÓN - PILAS DE UNIDADES DE ALBAÑILERÍA		NTP E.070	ALA-LC-UPNC:	

Para el procedimiento los diversos materiales usados para esta investigación se mencionarán en orden de uso: el ladrillo es la unidad donde su dimensión y peso permite que sea manipulada fácilmente y se denomina bloque a la unidad que por su dimensión y peso requiere mayor trabajabilidad (Vegas, Azkarate, & Juarrero, 2009). Las unidades de albañilería ya sean ladrillos o bloques su elaboración se utiliza arcilla, sílice-cal o concreto, como materia prima (Norma-E.070-Albañileria, 2015). Estas

unidades son sólidas, huecas, alveolares o tubulares y a la vez pueden ser fabricadas de manera artesanal o industrial (Vegas, Azkarate, & Juarrero, 2009). Para propósitos de diseño estructural, las unidades de albañilería tendrán las características indicadas en la Tabla 5

Tabla 5: Clase de unidad de albañilería para fines estructurales.

CLASE		CION DE LA DIMENSION KIMA EN POCENTAJE)		ALABEO (máximo en mm)	RESISTENCIA CARACTERÍSTICA A COMPRESIÓN f' b mínimo en MPa (kg/cm2) área neta
	Hasta 100	Hasta 150mm	Mas de 150mm		
	mm	13011111	13011111		
Ladrillo I	± 8	±6	<u>±</u> 4	10	4.9 (50)
Ladrillo II	±7	±6	±4	8	6.9 (70)
Ladrillo III	±5	<u>±</u> 4	±3	6	9.3 (95)
Ladrillo IV	<u>±</u> 4	±3	<u>+2</u>	4	12.7 (130)
Ladrillo V	±3	±2	±1	2	17.6 (180)
Bloque p(i)	<u>±</u> 4	±3	±2	4	4.9 (50)
Bloque $p(2)$	±7	±6	±4	8	2.0 (20)

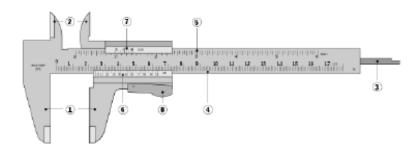
Fuente: Norma Técnica E.070

Sobre las propiedades de las unidades expresa lo siguiente: conocer las propiedades es necesario básicamente para tener una idea sobre la resistencia de la albañilería (Arriola, 2009), así como de su durabilidad ante el intemperismo. Sin embargo, no puede decir que la mejor unidad necesariamente proporcione la mejor albañilería. Las propiedades que están asociadas con la unidad de albañilería son:

• Variabilidad dimensional (%): NTP 399.604

• Alabeo: NTP: E.070

Absorción y Succión: NTP 399.613 - NTP 399.604


• Resistencia a la compresión (f'b) NTP- E070

El muestreo será efectuado a pie de obra. Por cada lote que está diseñado por 50 millares se seleccionará al azar una muestra de 10 unidades, la cual se efectúa las pruebas de variación y de alabeo. Cinco de ellas se ensayarán a compresión y las demás a absorción (Norma-E.070-Albañileria, 2015).

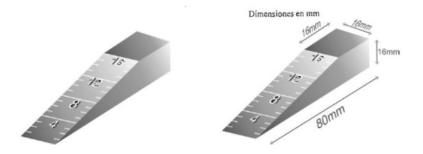
Variabilidad Dimensional: Para la determinación de la variación en las unidades de albañilería, sigue un procedimiento que rige en las Normas NTP 399.613 y 399.604. Se procede a medir y registrar 4 veces, el ancho en la longitud media de las superficies de apoyo superior e inferior, la altura en la longitud media del ladrillo, y la longitud en la altura media del ladrillo. (Gutierrez, 2017)

Figura 2: Calibre vernier

San Bartolomé, se refiere a la Variación Dimensional de la siguiente manera: "esta prueba es necesaria efectuar para determinar el espesor de las juntas (4 mm más dos veces a la desviación estándar, en milímetros correspondiente a la variación en la altura de las unidades, debiéndose emplear como mínimo un espesor de 10 mm). Debe notar si en cada incremento de 3 milímetros de espesor en las juntas horizontales (adicional al mínimo requerido de 10 milímetros), la resistencia a compresión de la albañilería disminuye en 15 %; asimismo, disminuye la resistencia al corte".

La manera de cómo se evalúa la Variación Dimensional (porcentaje) según la Norma Técnica Peruana: Para ello, de cada unidad se mide, en la parte media, sus cuatro

lados en cada medida; así se obtiene su promedio. De tal manera se obtiene tres valores de (largo, ancho y alto), NTP 339.613 y NTP 399.604 (Norma-E.070-Albañileria, 2015)


Figura 3: Medición con el Vernier en los ladrillos

Alabeo: Para la determinación del alabeo de las unidades de albañilería, se seguirá el procedimiento indicado en la Norma NTP 399.613. Eliminar con la brocha el polvo adherido a las superficies. Superficies cóncavas: Se coloca la varilla a lo largo de la superficie a ser medida, adoptándose a la ubicación que da la mayor desviación de la línea recta. Se escoge la distancia mayor de la superficie del espécimen a la varilla del borde recto, con la cuña se mide esta distancia con una aproximación de 1 mm y se la registra como la distorsión cóncava del borde. Superficies convexas: Se coloca el espécimen con la superficie convexa debe estar en una superficie plana y con los lados aproximadamente equidistantes de la superficie plana, utilizando la cuña se mide la distancia con una aproximación de 1 mm de cada una de las cuatro esquinas de la superficie plana. Se registrar el promedio de las 4 medidas como la distorsión convexa del espécimen.

Figura 4: Cuña para medir alabeo

San Bartolomé, expresa que el máximo alabeo (concavidad o convexidad) del ladrillo siempre conduce a un mayor espesor de la junta, este puede disminuir la resistencia con el mortero al formarse una especie de vacíos en las zonas más alabeadas incluso, puede este producir una serie de fallas a tracción por flexión. Se realiza colocando en la superficie de asiento, la unidad de albañilería sobre una superficie plana, luego de introducir una cuña graduada al milímetro en el ladrillo en la zona con mayor grado de alabeo; también se debe colocar una regla que conecte los ambos extremos diagonalmente opuestos a la unidad, después introducir esta cuña en el punto de mayor deflexión. Este resultado se promedia y se expresa en milímetros. (San Bartolomé & Morante., 2009)

Figura 5: Alabeo de los ladrillos

Eliminar con la brocha todo desperdicio o polvo adherido. Para superficies cóncavas se debe colocar la varilla a lo largo de la superficie, adoptándose a la

ubicación que da la mayor desviación de la línea recta. Se escoge la distancia mayor de la superficie del espécimen a la varilla del borde recto, con la cuña se mide esta distancia con una aproximación de 1 mm y se la registra como la distorsión cóncava del borde. Para las superficies convexas colocar el espécimen con la superficie convexa en una superficie plana y con las esquinas aproximadamente de igual distancia a la superficie plana, utilizando la cuña se mide la distancia con una aproximación de 1 milímetro en cada una de las cuatro esquinas de la superficie del ladrillo. Se registrar el promedio de las 4 medidas como la distorsión convexa del espécimen.

Figura 6: Con la ayuda de la cuña se realiza la verificación de convexidad y concavidad

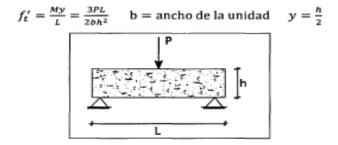
Absorción y Succión: La absorción se realiza de acuerdo a lo indicado a las Normas NTP 399.604 y 399.613. San Bartolomé, expresa lo siguiente con respecto a Succión, Absorción, Absorción Máxima, Coeficiente de Saturación y Densidad, la densidad se relaciona directamente con la resistencia a compresión así mismo evalúa el principio de Arquímedes. Por otro lado, el coeficiente de saturación es una medida de la durabilidad de la unidad.

Debe resaltar que las unidades de albañilería deben estar comprendidas entre 10 y 20 gr /200 cm2 – min de grado de succión, antes de asentarlas. Por otro lado, las unidades con coeficientes de saturación mayores que 0.85, estos son demasiados absorbentes es decir muy porosas ya que son poco durables. Finalmente, se aconseja que la absorción no sobrepase de 22%.

Figura 7: Colocación de los ladrillos en la bandeja de absorción y curado

Resistencia a la Compresión: Para la determinación de esta resistencia en las unidades, se efectúa diversos ensayos de acuerdo a las Normas NTP 399.613 y NTP 399.604. La resistencia es la característica de la compresión axial en la unidad de albañilería (f'b) y se obtendrá restando una desviación estándar sobre el valor promedio de la muestra. Así mismo San Bartolomé menciona, respecto a la Resistencia a la Compresión expresa que esta prueba se realiza aplicando sobre las unidades la carga vertical a una velocidad de deformación y desplazamiento de la máquina de ensayos de 1.25 mm/min; o en todo caso, se controla la velocidad de carga y así llega a la rotura en de un 3 a 5 minutos. La resistencia es la unidad que se expresa como único valor a la carga de rotura al área bruta (unidades sólidas) o el área neta (unidades huecas). Así

mismo en la Norma NTP 331.019, clasifica a la unidad mediante su resistencia (f'b), este resultado promedio a los ensayos menos la desviación estándar que este debe ser mayor al límite inferior por dicha Norma. Esto debe hacerse notar si la resistencia a compresión (f'b) se expresa mediante la calidad de la unidad ensayada bajo las mismas condiciones (a mayor resistencia se obtendrá una mayor durabilidad). Se debe a que el valor f'b depende de la altura de la probeta o muestra (a menor altura, mayor resistencia), del capping y de la restricción al desplazamiento lateral impuesto por los por los ensayos, ya que es la acción de confinamiento a la carga aplicada.


Figura 8: Prensa hidráulica para el ensayo de compresión

Al igual que la resistencia a compresión, f'm se constituye la medida de la calidad de la unidad. Esta evaluación se deberá realizar cuando si está incertidumbre de utilizar una unidad Tipo II o IV, si cuando se tenga un alto índice de alabeo puede conducir a la unidad de albañilería a una falla de tracción por flexión.

Figura 9: Ensayo de Resistencia a la unidad de albañilería.

Para la **aceptar la unidad** esta muestra presenta más de 20 % de dispersión en los resultados para unidades producidas industrialmente, o al 40 % para las unidades producidas artesanalmente, se realizaron ensayos de otras muestras si persisten esa dispersión de resultados, se rechazará el lote.

- La absorción de las unidades de arcilla y sílice calcáreas no será mayor que 22 %. El bloque de concreto debe tener una absorción no más de 12% de absorción.
- La absorción del bloque de concreto, no debe ser mayor que 15 %. El espesor mínimo en las caras laterales corresponde a la superficie de asentado será 25 milímetros para el Bloque clase P y 12 milímetros para el Bloque clase NP. Esta unidad no debe tener materias extrañas en sus superficies o en su interior, tales como guijarros, conchuelas o nódulos de naturaleza calcárea.
- La unidad de albañilería de arcilla debe estar en buenas perfectas condiciones, estará bien cocida, este deber tener un color uniforme y no presenta fisuras. Esta al ser golpeada con un martillo, producirá un sonido característico metálico.
- La unidad de albañilería no tendrá fisuras, hendiduras, grietas, fracturas u otros defectos similares ya que estos disminuyen su durabilidad o resistencia.
- La unidad de albañilería contiene manchas o alguna veta blanquecina característico de origen salitroso.

El mortero está constituido por diferentes tipos de mezclas de aglomerantes los cuales se añadirá una cantidad de agua que proporcione una mezcla trabajable y fluidica, a la misma vez adhesiva y sin desperdiciar la incorporación del agregado. Esta elaboración del mortero está destinado a diferentes obras de albañilería, se toma en cuenta lo indicado a las Normas NTP 399.607 y 399.610.

Cemento Portland o cemento adicionado debe estar normalizado y cal hidratada de igual manera de acuerdo a las Normas Técnicas Peruanas correspondientes.

El agregado fino será arena gruesa natural, libre de materia orgánica, inorgánica y otras sales, con las características indicadas en la Tabla 6. Se debe acepta otras granulometrías siempre y cuando que los ensayos de pilas y muretes proporcionen resistencias según lo especificado en la norma.

Tabla 6: Porcentaje que pasa para aceptar la granulometría en morteros

MALLA ASTM	%QUE PASA
N°4 (4.75mm)	100
N°8 (2.36mm)	95 a 100
N°16 (1.18mm)	70 a 100
N° 30 (0.60mm)	40 a 75
N°50 (0.30mm)	10 a 35
N°100 (0.15mm)	2 a 15
N°200 (0.075mm)	Menos de 2

Fuente: Norma Técnica. E.070 del Reglamento Nacional de Edificaciones

- No debe quedar retenido mayor del 50% de arena ubicados entre dos mallas consecutivas.
- El módulo de finura debe estar entre 1,6 y 2,5.
- El porcentaje máximo de partículas en las mallas y quebradizas será: 1 % en peso.

- No debe emplear una arena de mar.
- El agua será potable y a la vez libre de sustancias deletéreas, ácidos, álcalis y materia orgánica.

Arena Media. Se utilizó arena fina de río obtenido de la cantera "3M" para la elaboración del mortero, teniendo en cuenta que se encuentre libre de materia orgánica y otros materiales contaminantes. La arena tuvo que realizarse ensayos tales como: Granulometría, Gravedad Especifica y Contenido de humedad para comprobar si cumple con las normas (NTP.399.607, ASTM C144-03, NTP.400.011), especialmente la E.0.70.

Análisis granulométrico: Se procede a colocar la muestra en una tara previamente identificada, para luego ser colocado en la estufa por 24 horas. Pasadas las 24 horas se retira la muestra de la estufa y se deja enfriar por un momento. Luego se procede a ordenar de forma decreciente los tamices previamente seleccionados para este caso (agregado fino), (N°4, N°8, N°16, N°30, N°50, N°100, N°200). Una vez la muestra este fría se procede a verterla en los tamices ya ordenados, y se realiza el proceso de tamizado manual. Luego de concluir el tamizado, se pesa en la balanza el material retenido en cada tamiz.

Módulo de Fineza: Para realizar este cálculo se ha debido realizar previamente el ensayo de análisis granulométrico, ya que para determinarlo se utiliza los datos de porcentaje acumulado.

Contenido de humedad: Se pesa la tara, para luego colocar la muestra dentro de ella y se vuelve a registrar el peso. Se coloca la tara con la muestra dentro de la estufa por 24 horas. Pasadas las 24 horas se extrae la tara con la muestra del horno, y se

deja enfriar por 30 min, para posterior a ello registrar el peso en estado seco de la muestra.

Figura 10: Taras en el horno para el contenido de humedad

Gravedad específica y absorción de agregado fino: Primero se coloca la muestra agregada a la estufa por 24 horas, pasado este tiempo se retira la muestra y se lo expone al ambiente por 30 minutos; posterior a ellos se coloca la muestra en un recipiente, se lo cubre con agua y se deja reposar por 24 horas. Pasado este tiempo se retira el material utilizando el proceso de decantación, luego se retira la muestra, se lo esparce sobre una superficie plana y se procede a secar con la secadora de cabello, los granos del agregado no deben adherirse entre sí. Una vez obtenido este estado en los agregados, se realiza la compactación utilizando el molde cónico y la varilla compactadora, aplicando 25 golpes divididos en tres capas en la primera y segunda capa 8 golpes respectivamente, mientras que para la tercera 9 golpes y se levanta el molde, debiendo obtenerse como resultado la desintegración del cono de agregado, de no suceder eso se debe seguir secando el agregado y repitiendo el ensayo; cuando ya el cono de agregado se desintegra se procede a ingresar en la fiola agua y 500 gr de este material previo a ello se debe haber llenado la final con agua hasta la marca de 500 ml y registrado el peso, luego se agita durante 15 minutos para luego decantar el agua hasta que quede otra vez en la marca de 500 ml y se vuelve a registrar el peso, posterior a

ellos se extra el agregado mediante el proceso de decantación, se ingresa esta muestra al horno por 24 horas nuevamente para posteriormente obtener el peso.

Figura 11: Materiales que se usa para el peso específico y absorción del agregado fino

Cemento (NTP 334.090): El cemento que se utilizó es el Cemento Pacasmayo Portland Tipo ICo, es un cemento Portland que se obtiene por la pulverización conjunta de clinker Portland, materias calizas y/o inertes como máximo de 30 %, es decir es un cemento adicionado de alta resistencia inicial: Tipo I (American Concrete Institute ASTM-C494, 1991).

Figura 12: Cemento Pacasmayo Porland Tipo ICo.

Los materiales inorgánicos son incorporados al cemento, están destinados a mejorar sus propiedades. Los principales materiales que se adiciona son: Puzolanas, Fillers y Escoria de alto horno

Tabla 7: Cemento Portland Requisitos Físicos.

REQUISITOS FISICOS	TIPO I	TIPO II	TIPO V	TIPO MS	IP, I(PM), ICo
NORMA ASTM NORMA TECNICA PERUANA	ASTM C150 NTP 334.009	ASTM C150 NTP 334.009	ASTM C150 NTP 334.009	ASTM C1157 NTP 334.082	ASTM C1157 NTP 334.090
RESISTENCIA A COMPRESION 3 DIAS 7 DIAS 28 DIAS	120 190 280	100 170 280	80 150 210	100 170 280	130 200 250
TIEMPO DE FRAGUADO, Min INICIAL, Min FINAL, Max	45 75	45 375	45 375	45 420	45 420
CALOR DE HIDRATACION 7 DIAS 28 DIAS	 	290 	 	 	290 330

Fuente: Cementos Pacasmayo

Tabla 8: Cemento Portland Requisitos Químicos.

	TIPO I	TIPO II	TIPO V	TIPO MS	IP, I(PM),
REQUISITOS FISICOS					ICo
NORMA ASTM	ASTM	ASTM	ASTM	ASTM	ASTM
NORMA TECNICA	C150	C150	C150	C1157	C1157
PERUANA	NTP	NTP	NTP	NTP	NTP
	334.009	334.009	334.009	334.082	334.090
OXIDO DE MAGNESIO	6.0	6.0	6.0		6.0
(MgO)	0.0	0.0	0.0		0.0
TRIOXIDO DE AZUFRE (SO3)	3.5	3.0	2.3		4.0
PERDIDA DE IGNICION MAX	3.0	3.0	3.0		8.0
ALUMINIO TRICALCICO (C3A)		8	5		

Fuente: Cementos Pacasmayo

Peso específico del cemento hidráulico: Se llena el frasco Le Chateleir con gasolina hasta la marca de 0 ml, luego de sumerge el frasco en baño maría a temperatura ambiente hasta que no existan diferencias mayores de 0.2 °C entre la temperatura de la gasolina del frasco y la temperatura del agua que está en el exterior a éste. Luego de este se pesa 64 gr de cemento y se los ingresa en el frasco con la ayuda del embudo para evitar salpicaduras y adherencias en este, se coloca el tapón y se hace girar el frasco, al finalizar esto se vuelve a colocar a baño maría y se verifica las temperaturas tal como se describió previamente, para luego anotar los datos del volumen.

Figura 13: Medición con el termómetro del agua y con la gasolina + cemento

Cal: Es el producto resultante de la descomposición por el calor de las rocas calizas. Estas son puras, se calientan a temperatura mayor a 900° C, donde conforman la siguiente reacción:

$CaC03 + calor \sim CO2 + CaO$

El carbonato cálcico CaC03 se descompone, dando anhídrido carbónico CO2 que es gaseoso y se desprende junto con los humos del combustible y el óxido de calcio

Ca O. Donde se denomina Cal Viva (oxido de calcio) y se apaga sometiéndola a agua, y se le llama Cal Apagada (hidróxido de calcio). (Salguero Ferreira, Osornio Rubio, Martínez González, & Palma Tirado, 2013). Cal compuesta principalmente de hidróxido de calcio, silica (SiO2) y alumina (Al2O3) o mezclas sintéticas de composición similar. La propiedad de fraguar o endurecer incluso sumergido en agua. Proceden de la calcinación de calizas que contienen más del S% de arcilla; dan un producto que reúne, además de las propiedades de las cales-grasas, la de poderse endurecer y consolidar en sitios húmedos y debajo del agua. (Vegas, Azkarate, & Juarrero, 2009)

Figura 14: Cal de Obra que se utilizara en las dosificaciones + mortero

HT-SikaLatex® es un aditivo plastificante elaborado a base a una emulsión de polímeros, que se adiciona al mortero de cemento, esta mejora sus propiedades, especialmente la resistencia y/o adherencia. La lechada de adherencia confeccionada con HT-SikaLatex se utiliza para unir mortero fresco con Concreto o mortero endurecido.

Figura 15: SikaLatex, aditivo que se usara para el mortero

Pilas de Ladrillo: La resistencia de la unidad de albañilería a compresión axial (f'm) y a corte (v'm) se determina de manera empírica (por lo cual se recurre a tablas y registros históricos de resistencia a la compresión de las unidades) o mediante ensayos realizados en investigaciones de prismas, de acuerdo a la importancia de la zona sísmica y de la edificación donde se encuentre, según se indica en la Tabla 9.

Tabla 9: Resistencia de los prismas de albañilería según zona

RESISTENCIA CARACTERISTICA	EDIFICIOS DE 1 A 2 PISOS			EDIFICIOS DE 3 A 5 PISOS			EDIFICIOS DE MAS DE 5 PISOS		
	ZONA SISMICA			ZONA SISMICA			ZONA SISMICA		
	3 - 4	2	1	3 - 4	2	1	3 - 4	2	1
(f'm)	A	A	A	В	В	A	В	В	В
(v'm)	A	A	A	В	A	A	В	В	A

A: Se Obtiene de manera empírica sabiendo la calidad del ladrillo y del mortero.

Fuente: Norma Técnica. E. 070 del Reglamento Nacional de Edificaciones

Cuando se construyan conjuntos de edificios, la resistencia de la albañilería (f'm) y (v'm) deberá comprobarse mediante ensayos de laboratorio previos a la obra y durante

B: Determinar si los ensayos de compresión axial de pilas de ladrillo y de compresión diagonal en muretes mediante ensayos de laboratorio de acuerdo a lo indicado.

la obra. Los ensayos previamente realizados en la obra se harán sobre cinco especímenes. Durante la construcción de la obra, la resistencia será comprobada mediante ensayos con los criterios siguientes:

- Cuando se construye conjuntos de hasta dos pisos en las zonas sísmicas 3 y 2, f'm será verificado con ensayos de tres pilas por cada 500m2 de área techada y v'm con tres muretes por cada 1000 m2 de área techada.
- Cuando se construye conjuntos de tres o más pisos en las zonas sísmicas 3 y 2, f'm será verificado con ensayos de tres pilas por cada 500m2 de área techada y v'm con tres muretes por cada 500m2 de área techada.

Los prismas serán elaborados en el laboratorio, utiliza el mismo contenido de humedad de las unidades de albañilería, así la misma consistencia del mortero como el espesor de juntas debe ser de la misma calidad de la mano de obra que se emplea en la construcción definitiva. Cuando se trate de albañilería con unidades alveolares que irán llenas con concreto líquido, los alvéolos de las unidades de los prismas y muretes se llenarán con concreto líquido. (Norma-E.070-Albañileria, 2015)

Cuando se trate de albañilería con unidades alveolares sin relleno, los alvéolos de las unidades de los prismas y muretes quedarán vacíos. Los prismas antes de realizar los ensayos tendrán un refrendado de cemento o yeso con un espesor que permita corregir la irregularidad de la superficie. Los muretes serán almacenados a una temperatura ambiente no menor de 10°C durante 28 días. Los muretes no podrán ensayarse a una edad mayor que la nominal de 28 días. (Norma-E.070-Albañileria, 2015)

Para el procedimiento de análisis de datos de esta investigación se utilizó el software Microsot Excel, incorporando las ecuaciones mencionadas a continuación para la obtención de resultados.

Variabilidad dimensional: De los datos obtenidos en laboratorio se calcula el promedio para el ancho, alto y largo de cada uno de los especímenes utilizando las ecuaciones.

$$A_0 = \frac{A_1 + A_2 + A_3 + A_4}{4} \qquad (1)$$

$$H_0 = \frac{H_1 + H_2 + H_3 + H_4}{4} \tag{2}$$

$$L_0 = \frac{L_1 + L_2 + L_3 + L_4}{4}$$
(3)

Luego se calcula la variación dimensional V(%) aplicando las ecuaciones

$$V\% = \frac{A_f - A_0}{A_f} * 100 \qquad (4)$$

$$V\% = \frac{H_f - H_0}{H_f} * 100$$
(5)

$$V\% = \frac{L_f - L_0}{L_f} * 100$$
(6)

Alabeo: Como se han tomado medidas tanto de convexidad y concavidad para ambas caras del espécimen se debe calcular el promedio de dichas medidas para ambas, para calcular el alabeo total para ambas caras se saca el promedio de todos los resultados obtenidos con dicha ecuación.

$$Alabeo = \frac{Concavo + Convexo}{2}$$
 (7)

Absorción: Los datos registrados durante el desarrollo del ensayo en el laboratorio se procesan con la ecuación:

Absorción,
$$\frac{kg}{m^3} = \left(\frac{W_S - W_D}{W_S - W_t}\right) * 1000$$
 (8)

Absorción, % =
$$\left(\frac{W_S - W_D}{W_D}\right) * 100$$
(9)

Análisis Granulométrico: Para el análisis de este ensayo se debe tener como dato el peso retenido (gr), que refiere al peso de muestra retenido en cada tamiz, este

dato se obtiene en el laboratorio. Luego se calcula el % retenido en cada tamiz con la siguiente fórmula:

$$\%R = \frac{P_r}{P_t} * 100$$
(10)

Donde:

Pr: Peso retenido en cada malla.

Pt: Peso total de la muestra.

Paso siguiente se calcula el % retenido acumulado, obedeciendo a lo siguiente:

$$R_{acu} = R_{ant} + R_{act}$$
(11)

Donde:

%Rant: Porcentaje retenido anterior.

%Ract: Porcentaje retenido actual.

Luego se calcula el % que pasa para ello aplica la siguiente ecuación

$$%P = 100\% - %R_{acu}$$
 (12)

Finalmente se realiza el grafico Abertura vs Porcentaje que pasa, para que de este modo verificar si se encuentra dentro de los límites granulométricos que se detallaron en la Tabla 6.

Módulo de Fineza: Para obtener el módulo de fineza se utilizarán los datos del análisis granulométrico.

Contenido de humedad: Se calcula el peso del material húmedo, para ello se debe haber registrado previamente el peso de la tara o recipiente y el peso de la tara con la muestra en esta natural vertida en este, para este cálculo de aplica la siguiente ecuación:

$$W_{mh} = P_{mh+t} - P_t \tag{14}$$

Donde:

Pmh+t: Peso de la muestra húmeda más es el peso de la tara.

Pt: Peso de la tara.

Paso siguiente se calcula el peso del material seco procediendo de la siguiente manera:

$$W_s = P_{ms+t} - P_t \tag{15}$$

Donde:

Pms+t: Peso de la muestra seca en la estufa más es el peso de la tara.

Pt: Peso de la tara.

Para finalmente con ambos datos obtenidos calculas el contenido de humedad obedeciendo a la que ecuación que se muestra a continuación.

$$\%W = \frac{W_{mh} - W_s}{W_s} * 100$$
 (16)

Peso específico y absorción de agregado fino Como ya se han registrado todos los pesos necesarios se procede a aplicar las siguientes formulas:

El volumen de la masa se calcula aplicando:

$$V_m = V_v - (P_{sss} - P_s) \qquad (17)$$

Donde:

Vv: Volumen de vacíos.

Psss: Peso saturado superficialmente seco.

Ps: Peso seco.

Luego se determina el peso específico utilizando:

$$P_{s} = \frac{P_{ss}}{V_{m}} \tag{18}$$

Por último, se halla el porcentaje de absorción de los agregados aplicando:

$$Abs(\%) = \frac{P_{sss} - P_s}{P_s} \tag{19}$$

Peso específico del cemento hidráulico: Se determina el peso específico del cemento hidráulico aplicando las siguientes formula, habiendo registrado previamente los resultados del ensayo en laboratorio:

$$V_d = V_f - V_i \tag{20}$$

$$P_c = \frac{Peso_{cemento}}{V_d}$$
(21)

Resistencia a la compresión de unidades de albañilería: se calcula aplicando la ecuación 22, habiendo registrado previamente los datos de la medida del largo y el ancho, utilizándolos para calcular el área donde se aplicará la fuerza aplicando la ecuación 23.

Resistencia (
$$kg/cm2$$
) = Carga Máxima/Área....(22)

$$\text{Area} (cm2) = Largo * Ancho(23)$$

Resistencia a la compresión de pilas de albañilería: La resistencia se calcula aplicando la ecuación 22, teniendo en cuenta los factores de corrección que se establecen en las tablas 13 y 14 de ser necesarios.

Tabla 10: Incremento de f'm y v'm por edad

	Edad	28 días
Muretes	Ladrillo de arcilla	1.05
Muretes	Bloques de concreto	1.05
Pilas	Ladrillo de arcilla y	1.00
rnas	Bloques de concreto	1.00

Fuente: RNE, 2019

Tabla 11: Factores de corrección de f'm por esbeltez

Esbeltez	2.0	2.5	3.0	4.0	4.5	5.0
Factor	0.73	0.80	0.91	0.95	0.98	1.00

Fuente: RNE, 2019

Resistencia a la compresión de cubos de mortero: La resistencia a compresión se realiza de acuerdo a la NTP 334.051, de acuerdo a las proporciones del diseño de mezcla dada y fundamentada en los resultados, aplicando la ecuación 22, donde tiene que encontrarse en un rango de aceptación del mortero.

Tabla 12: Rango de aceptación de los cubos de Mortero según la edad del ensayo

Cemento Porland	Edad de Ensayo días	Coeficiente de Variación	Rango de Aceptación
Un laboratorio	28	7.5	21.2
Laboratorios múltiples	28	12.0	33.9

De acuerdo con la siguiente investigación describe como aspectos éticos, a la obtención de las recopilaciones de los resultados de laboratorios certificados por INACAL de las empresas que elaboran los aditivos, descritos en las especificaciones técnicas, que se presentan a continuación:

- Los siguientes datos se presentan resultados sin alterar datos reales
- No se ha usado información privada o institucional que requiera permiso.
- Se ha realizado un citado de todas las fuentes que han sido consultadas y consideradas en la presente investigación.
- Se respeta la política de las investigaciones el anti-plagio.

Tabla 13: Especificaciones técnicas realizadas en Laboratorio para la Cal:

Aspecto:	Polvo Gramilado
Color:	Variable de un blanco humo a grisaceo
Ca(OH) ² (%):	3-15
% Retenido (M-40):	8-15

Fuente: Laboratorio empresa Hades

Tabla 14: Especificaciones técnicas realizadas en Laboratorio para el HT-Sikalatex

Aspecto:	Liquido Viscoso
Color:	Blanco
Densidad:	$1.02 \text{ kg/L} \pm 0.01$
Dosis:	Puente adherente 200 g/m ²
	En mortero $400 - 500 \text{ g/m}^2$ por cada cm
	de espesor

Fuente: Laboratorio empresa SIKA

CAPÍTULO III. RESULTADOS

Variabilidad dimensional: Presentamos datos y gráficos y observamos las dimensiones promedio en longitud, ancho y alto de las unidades de albañilería.

Ladrillo artesanal

Tabla 15: Variación dimensional del largo del ladrillo artesanal

DIMENSION FABRICA		Laı	rgo:	210.00	mm	
ESPÉCIMEN -		Longi	itud Efectiva	(mm)		
ESPECIMEN -	L1	L2	L3	L4	Lprom.	
LA-01	208.0	208.0	208.0	207.7	207.93	
LA-02	207.0	207.6	207.9	207.4	207.48	
LA-03	208.3	208.5	209.6	209.0	208.85	
LA-04	208.0	208.0	207.9	207.8	207.93	
LA-05	208.0	208.0	208.0	207.6	207.90	
LA-06	207.0	207.5	207.4	208.1	207.50	
LA-07	208.0	208.0	207.9	208.0	207.98	
LA-08	208.5	208.3	208.9	207.7	208.35	
LA-09	209.0	208.4	208.4	207.4	208.30	
LA-10	208.6	208.5	208.0	209.0	208.53	
		Lprome	dio (mm)		208.07	
	Variabilidad Longitud (%)					

Tabla 16: Variación dimensional del ancho del ladrillo artesanal

DIMENSIONES DE FABRICACIÓN		Ancho:		120.00	mm		
ESPÉCIMEN -	Ancho Efectivo (mm)						
ESPECIMEN -	A1	A2	A3	A4	Lprom.		
LA-01	120.1	121.0	120.6	120.0	120.43		
LA-02	119.6	119.7	120.8	120.6	120.18		
LA-03	121.4	121.4	121.5	120.9	121.30		
LA-04	119.3	120.1	120. 5	120.0	119.98		
LA-05	119.9	120.6	120.4	120.4	120.33		
LA-06	122.5	120.0	122.6	121.5	121.65		
LA-07	121.0	121.5	120.6	119.7	120.70		
LA-08	122.4	122.1	122.0	121.3	121.95		
LA-09	121.2	122.3	122.2	122.4	122.03		
LA-10	120.4	121.0	121.0	120.8	120.80		
		Aprome	dio (mm)		120.93		
		Variabilida	d Ancho (%)		0.78%		

Tabla 17: Variación dimensional de la altura del ladrillo artesanal

DIMENSION FABRICAC	A Ituro ·		Altura: 80.00		mm
ESPÉCIMEN -		Altu	ra Efectiva	(mm)	
ESPECIMEN -	H1	H2	Н3	H4	Lprom.
LA-01	78.4	78.0	78.7	78.1	78.30
LA-02	77.3	78.4	79.0	79.4	78.53
LA-03	77.1	77.7	79.0	79.1	78.23
LA-04	77.5	77.3	77.2	77.1	77.28
LA-05	78.4	78.1	78.3	78.3	78.28
LA-06	78.0	76.8	77.1	77.3	77.30
LA-07	79.1	78.3	79.1	78.8	78.83
LA-08	77.3	77.7	79.7	79.8	78.63
LA-09	78.4	79.7	79.2	78.7	79.00
LA-10	81.0	79.6	79.1	79.3	79.75
Hpromedio (mm)					78.41
		Variabilidad	d Altura (%))	1.99%

Tabla 18: Variación dimensional del largo del ladrillo industrial

DIMENSIONES DE FABRICACIÓN		Largo:		230.00	mm
ESPÉCIMEN -		Longi	tud Efectiva	(mm)	
ESPECIMEN -	L1	L2	L3	L4	Lprom.
LI-01	228.5	228.5	228.4	228.6	228.50
LI-02	226.9	226.7	226.6	226.4	226.65
LI-03	229.0	227.8	227.8	227.8	228.10
LI-04	228.4	228.8	228.5	228.5	228.55
LI-05	227.5	226.0	227.5	227.5	227.13
LI-06	230.0	229.3	230.8	230.8	230.23
LI-07	229.2	229.1	228.8	228.8	228.98
LI-08	230.2	228.2	228.4	228.4	228.80
LI-09	230.0	229.7	229.2	229.2	229.53
LI-10	230.3	229.6	229.8	229.8	229.88
	228.63				
		⁷ ariabilidad	Longitud (%	(6)	0.59%

Tabla 19: Variación dimensional del ancho del ladrillo industrial

DIMENSIONES DE FABRICACIÓN		Ancho:		125.00	mm
ESPÉCIMEN -		Ancl	no Efectivo (mm)	
ESPECIVIEN -	A1	A2	A3	A4	Lprom.
LI-01	119.3	119.8	119.3	119.7	119.53
LI-02	121.9	121.6	122.4	123.2	122.28
LI-03	121.3	121.7	121.6	121.7	121.58
LI-04	121.7	121.8	121.8	122.5	121.95
LI-05	125.2	124.6	124.8	124.5	124.78
LI-06	124.4	125.0	124.4	124.7	124.63
LI-07	120.7	121.4	121.5	121.8	121.35
LI-08	125.0	125.5	125.6	125.3	125.35
LI-09	124.4	124.2	125.2	125.3	124.78
LI-10	120.1	122.4	122.3	122.2	121.75
	122.80				
	Apromedio (mm) Variabilidad Ancho (%)				

Tabla 20: Variación dimensional de la altura del ladrillo industrial

DIMENSIONES DE FABRICACIÓN		Altura:		90.00	mm	
ESPÉCIMEN -		Altu	ra Efectiva (mm)		
ESPECIMEN -	H1	H2	Н3	H4	Lprom.	
LI-01	92.8	91.6	91.7	91.2	91.83	
LI-02	91.4	90.4	90.0	90.3	90.53	
LI-03	91.6	91.4	91.9	92.0	91.73	
LI-04	92.0	91.2	91.1	90.9	91.30	
LI-05	92.9	93.1	92.0	91.9	92.48	
LI-06	92.0	91.7	91.5	91.6	91.70	
LI-07	90.9	90.4	90.4	90.6	90.58	
LI-08	91.6	91.3	91.3	91.5	91.43	
LI-09	93.6	94.1	93.5	92.6	93.45	
LI-10	92.0	91.7	91.5	91.8	91.75	
	91.68					
	Variabilidad Altura (%)					

Figura 16: Comparación de Variación dimensional Largo entre Ladrillo Artesanal y Ladrillo Industrial

Figura 17: Comparación de Variación dimensional Ancho entre Ladrillo Artesanal y Ladrillo Industrial

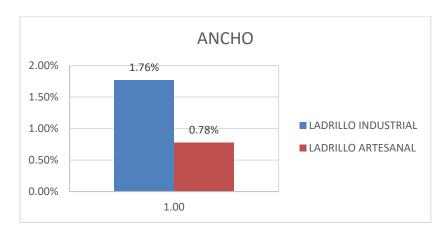
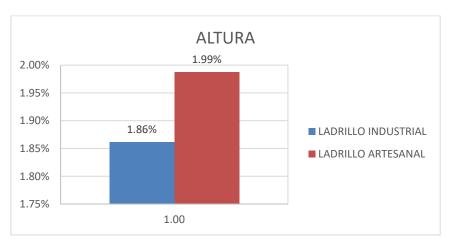



Figura 18: Comparación de Variación dimensional Altura entre Ladrillo Artesanal y Ladrillo Industrial

Alabeo: Las unidades de Albañileria se observa diversas variaciones en cada unidad ensayada, en donde la concavidad es de mayor alabeo.

Ladrillo artesanal

Tabla 21: Promedio de alabeo en el ladrillo Artesanal

ALABEO							
	CAF	RA A	CARA B				
ESPÉCIMEN	CÓNCAVO	CONVEXO	CÓNCAVO	CONVEXO			
	(m	m)	(m	(mm)			
LA-01	5	-	7	5			
LA-02	3	-	5	7			
LA-03	-	-	2	4			
LA-04	3	-	9	5			
LA-05	2	-	2	1			
LA-06	9	-	1	-			
LA-07	3	-	-	1			
LA-08	4	-	-	5			
LA-09	1	-	3	4			
LA-10	-	-	4	-			
PROMEDIO (mm)	3.75		4.13	4.00			

Tabla 19: Promedio de alabeo en el ladrillo industrial

	A	LABEO			
	CAF	RA A	CARA B		
ESPÉCIMEN	CÓNCAVO	CONVEXO	CÓNCAVO	CONVEXO	
	(m	m)	(m	m)	
LI-01	4	-	4	-	
LI-02	4	-	1	-	
LI-03	1	-	4	-	
LI-04	3	-	5	-	
LI-05	3	-	5	-	
LI-06	4	-	1	-	
LI-07	4	-	1	-	
LI-08	7	-	-	-	
LI-09	7	-	-	-	
LI-10	1		1		
PROMEDIO (mm)	3.80		2.75		

Figura 19: Comparación en Alabeo Lado A entre Ladrillo Artesanal y Ladrillo Industrial

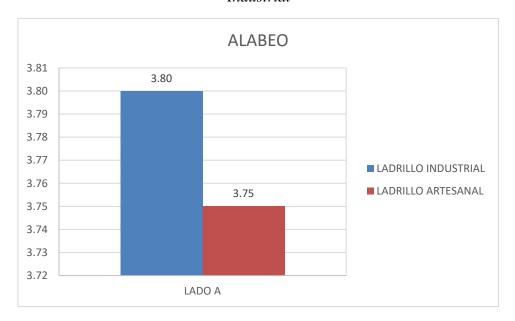
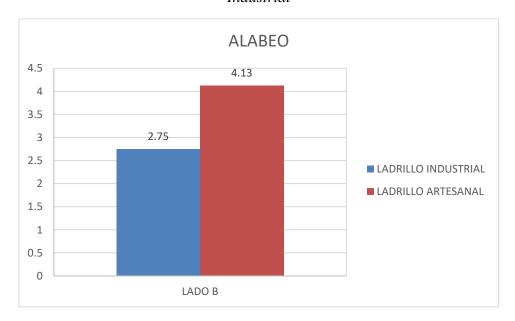
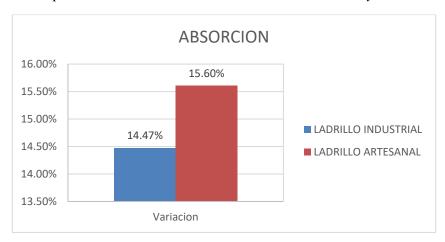



Figura 20: Comparación en Alabeo Lado B entre Ladrillo Artesanal y Ladrillo Industrial

Absorción: Según los datos procesados, los valores identificados de cada unidad de albañilería, el ladrillo artesanal tiene mayor capacidad de absorción.

Ladrillo artesanal


Tabla 20: Resultados de la absorción del Ladrillo artesanal

UNIDAD	Wi (Kg)	Ws (Kg)	Wd (Kg)	Absorsión (Kg/m3)	Absorción %
LA-06	1.200	3.360	2.975	178.075	12.92%
LA-07	1.219	3.384	2.892	227.113	17.00%
LA-08	1.219	3.461	2.993	208.636	15.63%
LA-09	1.252	3.512	3.046	206.387	15.32%
LA-10	1.253	3.493	2.982	228.159	17.14%
A	BSORCIÓN	PROMEDI	0	209.674	15.60%

Tabla 21: Resultados de la absorción del Ladrillo industrial

UNIDAD	Wi (Kg)	Ws (Kg)	Wd (Kg)	Absorsión (Kg/m3)	Absorción %
LI-06	1.487	3.370	2.945	225.279	14.40%
LI-07	1.461	3.419	2.982	223.419	14.67%
LI-08	1.463	3.370	2.938	226.529	14.70%
LI-09	1.486	3.411	2.975	226.354	14.65%
LI-10	1.463	3.344	2.936	217.156	13.92%
A	BSORCIÓN	PROMEDI	0	223.747	14.47%

Figura 21: Comparación de la Absorción del Ladrillo Artesanal y Ladrillo Industrial

Succión: Según los datos procesados, los valores identificados de cada unidad de albañilería, el ladrillo industrial tiene mayor capacidad de succión.

Ladrillo artesanal

Tabla 22: Resultados de la Succión del Ladrillo artesanal

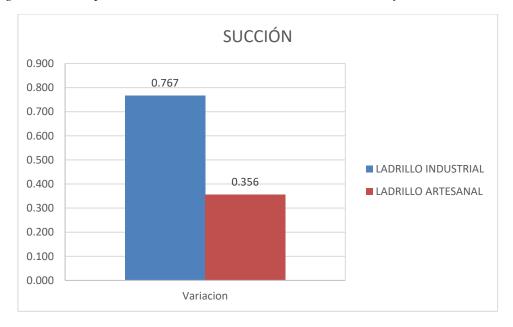

CARA - SUPERIOR DE ASIENTO								
UNIDAD	Pseco (Kg)	Pmojado (Kg)	B (cm)	L (cm)	Succión (g/min/200cm2)			
LA-01	2.887	2.936	120.425	207.925	0.391			
LA-02	2.950	2.985	120.175	207.475	0.281			
LA-03	2.925	2.968	121.300	208.850	0.339			
LA-04	2.933	2.984	119.975	207.925	0.409			
LA-05	2.975	3.020	120.325	207.900	0.360			
PROMEDIO	2.934	2.979	120.440	208.015	-			
SUCCIÓN (g/minuto/200cm2) 0.356								

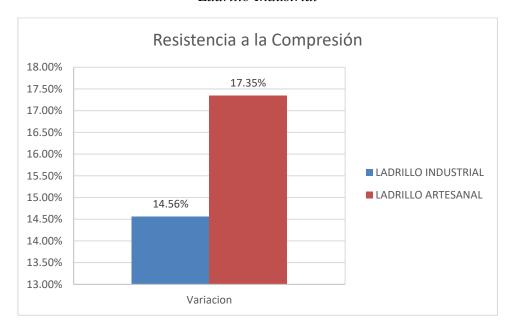
Tabla 23: Resultados de la Succión del Ladrillo industrial

	CARA - SUPERIOR DE ASIENTO								
UNIDAD	Pseco (Kg)	Pmojado (Kg)	B (cm)	L (cm)	Succión (g/min/200cm2)				
LI-01	2.988	3.096	119.53	228.50	0.791				
LI-02	2.974	3.104	122.28	226.65	0.938				
LI-03	2.997	3.111	121.58	228.10	0.822				
LI-04	3.017	3.068	121.95	228.55	0.366				
LI-05	2.924	3.054	124.78	227.13	0.917				
PROMEDIO	2.980	3.087	122.020	227.785	-				
SUCCIÓN	(g/minuto	/200cm2)		0.767	7				

Figura 22: Comparación de la Succión del Ladrillo Artesanal y Ladrillo Industrial

Resistencia a la compresión: Las unidades de albañilería al someterse al ensayo, el ladrillo artesanal tiene un coeficiente de variación mayor, por el motivo que las unidades no son muy uniformes en comparación al ladrillo industrial.

Ladrillo artesanal


Tabla 24: Resistencia A Compresión del ladrillo artesanal

RESIST	ENCIA A (COMPRESI	ON DE LA	UNIDAD DE	ALBAÑILE	RIA
ESPÉCIMEN	Lo (cm)	Ao (cm)	Ho (cm)	CARGA MÁX. (Kg)	ÁREA (cm²)	$fb = P/A$ (Kg/cm^2)
LA-01	20.79	12.04	7.83	21168.00	250.39	84.54
LA-02	20.75	12.02	7.85	22784.00	249.33	91.38
LA-03	20.89	12.13	7.82	18704.00	253.34	73.83
LA-04	20.79	12.00	7.73	14972.00	249.46	60.02
LA-05	20.79	12.03	7.83	16357.00	250.16	65.39
				fb promed	io. (kg/cm^2)	75.03
				Desviación Est	tándar	13.01
				f	"b (kg/cm ²)	62.02
				Coeficiente d	e variación (%)	17.35%

Tabla 25: Resistencia A Compresión del ladrillo industrial

RESISTENCIA A COMPRESION DE LA UNIDAD DE ALBAÑILERIA									
ESPÉCIMEN	Lo (cm)	Ao (cm)	Ho (cm)	CARGA MÁX. (Kg)	ÁREA (cm²)	$fb = P/A$ (Kg/cm^2)			
LI-01	22.85	11.95	9.18	19028.00	273.11	69.67			
LI-02	22.67	12.23	9.05	24817.00	277.14	89.55			
LI-03	22.81	12.16	9.17	19671.00	277.31	70.93			
LI-04	22.86	12.20	9.13	19980.00	278.72	71.69			
LI-05	22.71	12.48	9.25	17152.00	283.40	60.52			
				fb promed	io. (kg/cm^2)	72.47			
				Desviación Est	tándar	10.55			
				f	"b (kg/cm ²)	61.92			
				Coeficiente d	e variación (%)	14.56%			

Figura 23: Comparación de la Resistencia a la Compresión del Ladrillo Artesanal y Ladrillo Industrial

Arena

Contenido de humedad: Según los datos procesados la Arena gruesa contiene un porcentaje de humedad promedio regular de lo normal.

Tabla 26: Contenido de humedad de la Arena gruesa

		CONT	ENIDO L	DE HUMB	EDAD			
ID	DESCRIPCIÓN	UND	1	2	3	4	5	6
A	Identificación del recipiente o Tara		T1	T2	Т3	T4	T5	Т6
В	Peso del Recipiente	gr	29.80	28.80	28.50	27.70	28.20	27.80
С	Recipiente + Suelo Húmedo	gr	119.60	133.90	137.20	138.90	113.00	137.40
D	Recipiente + Suelo Seco	gr	108.90	121.30	124.80	126.10	103.90	124.70
E	Peso del suelo húmedo	gr	89.80	105.10	108.70	111.20	84.80	109.60
F	Peso Suelo Seco	gr	79.10	92.50	96.30	98.40	75.70	96.90
Н%	Porcentaje de humedad	%	11.92%	11.99%	11.41%	11.51%	10.73%	11.59%
G	Promedio Porcentaje Humedad	%	11.52%					

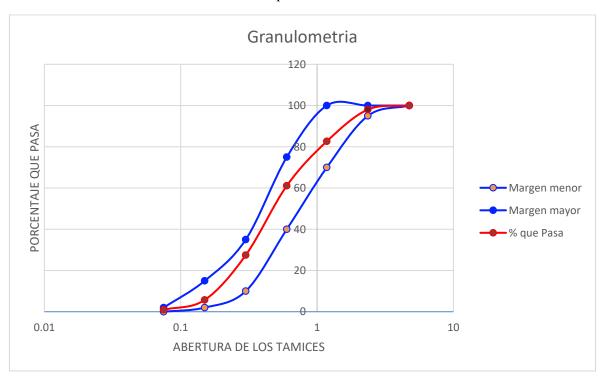

Granulometría: Se observa que la curva granulométrica se encuentra dentro de los limites superior e inferior permitidos según la Norma E.070-Albañileria.

Tabla 30: Granulometría del Agregado Fino (Arena)

N°	TAN	ΔIZ	PESO RETENIDO	% RETENIDO	% RETENIDO ACUMULADO	% QUE PASA		4
	(pulg)	(mm)	(gr)	(%)	(%)	ARENA	ESPECIFI	CACIÓN
1	1 ½"	37.5						
2	1"	25						
3	3/4"	19						
4	1/2"	12.5						
5	3/8"	9.5	-	,		100.00	100	100
6	N° 4	4.75	0	0.00	0.00	100.00	100	100
7	N° 8	2.36	9.7	1.94	1.94	98.06	95	100
8	N° 16	1.18	76.9	15.39	17.33	82.67	70	100
9	N° 30	0.6	107.7	21.55	38.88	61.12	40	75
10	N° 50	0.3	168.2	33.65	72.53	27.47	10	35
11	N° 100	0.15	108.7	21.75	94.28	5.72	2	15
12	N° 200	0.075	23.8	4.76	99.04	0.96	0	2
13	Fondo	0	4.8	0.96	100.00	0.00	0	0

Figura 24: Granulometría de la Arena fina entre abertura de tamices y porcentaje que pasa

Modulo de finura:

Tabla 31: Modulo de finura de la Arena fina

$$Modulo\ de\ Finura = \frac{N^{\circ}4 + N^{\circ}8 + N^{\circ}30 + N^{\circ}50 + N^{\circ}100}{100}$$

M.F.	2.08

Gravedad especifica: Se observa el grado de absorción y el peso especifico del Agregado fino, que servirá como base para el diseño de mezcla.

Tabla 27: Gravedad Específica Y Absorción De Agregados Finos

GF	GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADOS FINOS								
ID	DESCRIPCIÓN	UND	1	2	3	RESULTADO			
A	Peso Saturado Superficialmente Seco del suelo (Psss)	gr	500.00	500.00	500.00	P R			
В	Peso del frasco + agua hasta marca de 500ml	gr	1303.40	1303.40	1304.10	0			
C	Peso del frasco + agua + Psss,	gr	1803.40	1803.40	1804.10	\mathbf{M}			
D	Peso del frasco + Psss + agua hasta la marca de 500ml	gr	1603.60	1609.60	1608.90	E			
E	Volumen de masa + volumen de vacío,	cm ³	199.80	193.80	195.20	D			
F	Peso seco del suelo (en estufa a 105 °C \pm 5°C)	gr	478.30	475.90	472.90	I			
G	Volumen de masa,	cm ³	178.10	169.70	168.10	O			
Н	Peso específico bulk (base seca),	gr/cm ³	2.39	2.46	2.42	2.42			
I	Peso específico (base saturada),	gr/cm ³	2.50	2.58	2.56	2.55			
J	Peso específico aparente (base seca),	gr/cm ³	2.69	2.80	2.81	2.77			
K	Absorción	%	4.54	5.06	5.73	5.11			

Cemento:

Peso Específico: Se observa el grado del peso específico del cemento, la cual está en el rango de aceptación de Cemento Normal

Tabla 28: Peso Específico Del Cemento Hidráulico

PES	PESO ESPECÍFICO DEL CEMENTO HIDRÁULICO (FRASCO DE LE CHATELIER)									
ID	DESCRIPCIÓN	UND	1	2	3					
A	Peso de cemento utilizado (gr)	gr	64.00	64.00	64.00					
В	Volumen Inicial (cm ³)	cm ³	0.00	0.00	0.00					
C	Volumen Final (cm ³)	cm ³	20.30	20.50	20.30					
D	Volumen Desplazado,	cm ³	20.30	20.50	20.30					
E	Peso Específico del Cemento Hidráulico (gr/cm³)	gr/cm ³	3.15	3.12	3.15					
F	Peso Específico del agua a 4°C	gr/cm ³	1.00	1.00	1.00					
G	Peso Específico Relativo del Cemento	-	3.15	3.12	3.15					
Н	Temperatura del Ensayo (°C)	°C	17.30	17.90	17.50					
I	Peso Específico Promedio del Cemento (gr/cm³)	gr/cm ³		3.14						

Diseño de mezcla

Resultados Obtenidos De Los Ensayos Realizados En Laboratorio Según NTP.

Materiales.

- Cemento.

Portland ASTM tipo 1 Pacasmayo

Peso específico

 3.14 Kg/m^3

- Agregado fino.

Cantera de Rio.

Peso específico de masa 2.43 Kg/m³

Absorción (%) 5.87 %

Contenido de humedad (%) 11.52%

Módulo de finura 2.08 %

- Agua Potable de la red de servicio público.

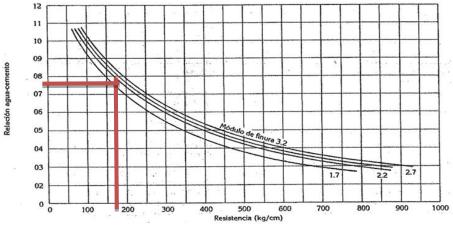
Para el diseño se realizó con el método UNE (cemento portland).

a. Tipo de Arena.

Cantera de Rio - "3M"

La decisión de optar con arena de rio y no arena de cerro, se ha decidido según varios parámetros:

- Ser limpio
- Cumple los requisitos mínimos de la NTP E-0.70
- Rango de Granulometría
- Rango de Modulo de finura



b. Determinación De La Relación Agua Cemento

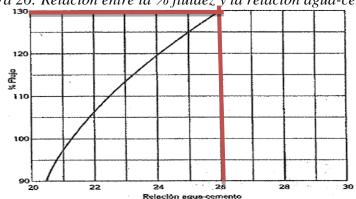
Para la determinación de la Relación agua/cemento, consideramos donde el F'c:

del mortero a los 28 días será de: 175 Kg/cm²

Figura 25: Correspondencia entre valores de relación agua-cemento y resistencia a la compresión para morteros hechos con cemento portland tipo I y arena de rio.

Resultado: Relación Agua-Cemento (A/C) = 0.75

c. Selección de la consistencia


Tabla 29: Diferentes consistencias de mortero

CONSISTENCIA	% DE FLUJO
Seca	90%
Plástica	110%
Fluida	130%

Donde: la consistencia será Fluidica. – 130%

d. Determinación de los factores que influyen en el contenido de agua. (K)

Figura 26: Relación entre la % fluidez y la relación agua-cemento

Resultado: K= 0.26

Tabla 30: Valores de "b" para distintas consistencias y módulos de finura de la arena

Consistencia	Módulo de Finura	Arena de Rio	Arena de Cerro
	1.7	0.3293	0.3215
Seca (90%)	2.2	0.3110	0.3028
Seca (90%)	2.7	0.2772	0.2930
	3.2	0.2394	0.2494
	1.7	0.3242	0.3238
Plástica (110%)	2.2	0.3033	0.2947
Flastica (110%)	2.7	0.2734	0.2879
	3.2	0.2368	0.2477
	1.7	0.3172	0.3216
Eluido (1200/.)	2.2	0.2927	0.3003
Fluida (130%)	2.7	0.2687	0.2949
	3.2	0.2340	0.2629

Para Mod. Fin. 2.08

Resultado: b = 0.2986

e. Determinación de la proporción 1 : n

$$n = \frac{\ln (A/C) - \ln (K)}{b} \dots (24)$$

Entonces:

$$n = \frac{\ln (7.5) - \ln (0.26)}{0.2991} = 3.55$$

Resultado: n = 3.54

f. Cálculo del contenido de cemento

$$C = \frac{1}{\frac{1}{Gc} + \frac{n}{Ga} + \frac{A}{C}} \dots (25)$$

Donde: Gc: Peso específico del cemento

Ga: Peso específico de la arena

$$C = \frac{1}{\frac{1}{3.14} + \frac{3.54}{2.43} + 0.75}$$

Por lo tanto, el Resultado es: $C = 394.41 \text{ Kg/m}^3$

g. Determinación del contenido de agua

$$A = (A/C) C \dots (26)$$

Resultado: A = 295.81 l/m3

h. Determinación del contenido de arena

$$a = n C \dots (27)$$

Resultado: A = 1400.16 l/m3

i. Ajustes por humedad de arena

Tabla 31: Datos de humedad de la arena

Humedad (%)	11.52	
Peso del agregado fino (kg/m3)	1400.160	
Peso del agregado fino húmedo (kg/m3)	1587.107	
Absorción (%)	5.11%	
Humedad Superficial (%)	6.41%	
Aporte de humedad (l/m3)	101.78	
Agua efectiva	219.72	

j. Proporciones en peso.

Tabla 32: Proporciones en peso de los agregados

Matarial	Peso seco	Peso especifico	Volumen
Material	Kg	g/cc	l
Cemento	394.41	3.14	125.60
Arena	1587.110	2.43	654.70
Agua	219.72	1.00	219.70
TOTAL	2201.24		1000.00

k. Dosificación.

Tabla 33: Dosificación del cemento-arena-agua

CEMENTO	ARENA	AGUA
394.41	1587.110	_
394.41	394.41	-
1.00	4.00	24 litros
1.00	4.00	por saco

l. Peso por tanteo de un saco.

Tabla 34: Dosificación por tanta de saco del cemento-arena-agua

CEMENTO	ARENA	AGUA
(kg)	(kg)	(lts)
42.5	170	24

Resistencia a la compresión de los cubos de Morteros de Concreto a los 28 dias: Según los datos observados, durante el procesamiento de datos, se identificó la resistencia comprensión de los cubos de mortero, aumento al tipo de aditivo incorporado en comparación al método tradicional (sin aditivo).

Tabla 40: Resistencia Promedio de los Morteros Testigos

COND. MORTERO	N° DE ESPECIMEN	EDAD DEL MORTERO	ANCHO (Cm)	LARGO (Cm)	AREA (Cm²)	CARGA (Kg)	δ (Kg/cm²)	δ PROMEDIO (Kg/cm²)
	1	28	5.08	5.07	25.756	3765	146.18	
	2	28	5.07	5.05	25.604	3845	150.17	
TEGTI GOG	3	28	5.07	5.08	25.756	3684	143.03	140.10
TESTIGOS	4	28	5.05	5.08	25.654	3841	149.72	148.10
	5	28	5.04	5.04	25.402	3840	151.17	
	6	28	5.05	5.07	25.604	3797	148.3	

Tabla 41: Resistencia Promedio de los Morteros adicionado 4% de Cal

COND. MORTERO	N° DE ESPECIMEN	EDAD DEL MORTERO	ANCHO (Cm)	LARGO (Cm)	AREA (Cm²)	CARGA (Kg)	δ (Kg/cm²)	δ PROMEDIO (Kg/cm²)
	1	28	5.04	5.02	25.301	3760	148.61	
	2	28	5.05	5.04	25.452	3782	148.59	
ADICIONANDO	3	28	5.02	5.07	25.451	3827	150.37	149.02
4% DE CAL	4	28	5.03	5.04	25.351	3854	152.03	149.02
	5	28	5.05	5.05	25.503	3738	146.57	
	6	28	5.04	5.05	25.452	3765	147.93	•

Tabla 42: Resistencia Promedio de los Morteros adicionado 6% de Cal

COND. MORTERO	N° DE ESPECIMEN	EDAD DEL MORTERO	ANCHO (Cm)	LARGO (Cm)	AREA (Cm²)	CARGA (Kg)	δ (Kg/cm²)	δ PROMEDIO (Kg/cm²)	
	1	28	5.05	5.06	25.553	3758	147.07		
	2	28	5.05	5.05	25.503	3897	152.81		
ADICIONANDO	3	28	5.06	5.08	25.705	3845	149.58	149.58	
6% DE CAL	4	28	5.06	5.05	25.553	3823	149.61	149.38	
	5	28	5.01	5.05	25.301	3816	150.82	•	
	6	28	5.05	5.05	25.503	3764	147.59		

Tabla 35: Resistencia Promedio de los Morteros adicionado 4% de HT-SikaLatex

COND. MORTERO	N° DE ESPECIMEN	EDAD DEL MORTERO	ANCHO (Cm)	LARGO (Cm)	AREA (Cm²)	CARGA (Kg)	δ (Kg/cm²)	δ PROMEDIO (Kg/cm²)
	1	28	5.05	5.05	25.503	3875	151.94	_
ADICIONANDO	2	28	5.06	5.02	25.401	3787	149.09	
ADICIONANDO 4% DE HT-	3	28	5.05	5.08	25.654	3859	150.42	150.04
SIKALATEX	4	28	5.05	5.05	25.503	3828	150.1	150.04
SIKALATEA	5	28	5.01	5.05	25.301	3729	147.39	•
	6	28	5.02	5.06	25.401	3843	151.29	

Tabla 36: Resistencia Promedio de los Morteros adicionado 6% de HT-SikaLatex

COND. MORTERO	N° DE ESPECIMEN	EDAD DEL MORTERO	ANCHO (Cm)	LARGO (Cm)	AREA (Cm²)	CARGA (Kg)	δ (Kg/cm²)	δ PROMEDIO (Kg/cm²)	
	1	28	5.06	5.02	25.401	3897	153.42		
ADICIONANDO	2	28	5.08	5.05	25.654	3868	150.78		
6% DE HT-	3	28	5.02	5.02	25.2	3727	147.9	151.29	
SIKALATEX	4	28	5.05	5.06	25.553	3905	152.82	131.27	
SIMILITIE	5	28	5.03	5.01	25.2	3828	151.9		
	6	28	5.05	5.08	25.654	3872	150.93		

Figura 27: Comparación de los Morteros desde el uso tradicional (sin aditivo) y con la incorporación de aditivos.

Resistencia a la compresión de Pilas de albañilería: Al realizar el ensayo, se obtuvo datos mostrando un aumento de la resistencia de acuerdo al tipo de aditivo a usar en comparación al método tradicional (sin aditivo).

Ladrillo Artesanal

Tabla 37: Resistencia a la compresión de pilas de ladrillos artesanales sin incorporación de aditivo

RE	RESISTENCIA A COMPRESIÓN - PILAS DE UNIDADES DE ALBAÑILERÍA											
ESPÉCIMEN -	DI	MENSIO	NES	Pmáx	T. 1. 1. 17/	ÁREA: L*t	f'm = Pmáx/Ab					
ESPECIVIEN	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2					
TA-01	20.80	12.01	26.22	21127	2.18	249.81	84.57					
TA-02	20.70	12.06	26.14	22854	2.17	249.64	91.55					
TA-03	20.83	12.00	26.43	21081	2.20	249.96	84.34					
TA-04	20.80	12.15	25.45	22748	2.10	252.72	90.01					
TA-05	20.80	12.21	26.48	21818	2.17	253.97	85.91					
TA-06	20.70	12.23	26.52	23475	2.17	253.16	92.73					
	PRO	OMEDIO			2.16	251.54	88.18					
	Fac	ctor (FC)			0.74	-	-					
					fm corregido =	65.256						
					Desv. Estándar ((σ)	3.696					
					f'm (kg/cm2)	61.560						

Tabla 38: Resistencia a la compresión de pilas de ladrillos artesanales con 4% de cal

RES	RESISTENCIA A COMPRESIÓN - PILAS DE UNIDADES DE ALBAÑILERÍA											
ESPÉCIMEN -	DI	DIMENSIONES			Esbeltez = H/t	ÁREA: L*t	f´m = Pmáx/Ab					
	L (cm)	t (cm)	H (cm)	kg	Esbeitez = H/t	cm2	Kg/cm2					
PAC4%-01	20.80	12.01	26.52	23087	2.21	249.81	92.42					
PAC4%-02	20.70	11.96	26.35	22854	2.20	247.57	92.31					
PAC4%-03	20.80	12.14	26.11	21127	2.15	252.51	83.67					
PAC4%-04	20.85	11.93	25.96	20826	2.18	248.74	83.73					
PAC4%-05	20.90	11.99	26.87	23672	2.24	250.59	94.46					
PAC4%-06	20.86	12.25	26.45	22854	2.16	255.54	89.44					
	PR(OMEDIO			2.19	250.79	89.34					
	Fac	ctor (FC)			0.75	-	-					
					fm corregido	=	67.003					
					Desv. Estándar	<u>(σ)</u>	4.654					
					f'm (kg/cm2)	62.349						

Tabla 39: Resistencia a la compresión de pilas de ladrillos artesanales con 6% de cal

RESIS	TENCIA	A COM	PRESIÓN	N - PILAS	DE UNIDAD	ES DE ALBAÑ	ŇILERÍA	
ESPÉCIMEN	DIMENSIONES			Pmáx	Esbeltez =	ÁREA: L*t	$f'm = Pm\acute{a}x/Ab$	
ESI ECIVIEN	L (cm)	t (cm)	H (cm)	kg	H/t	cm2	Kg/cm2	
PAC6%-01	20.80	12.10	26.45	23909	2.19	251.68	95.00	
PAC6%-02	20.76	11.97	26.87	22530	2.25	248.50	90.67	
PAC6%-03	20.85	12.14	26.52	23106	2.19	253.12	91.29	
PAC6%-04	20.81	12.01	26.21	22041	2.18	249.93	88.19	
PAC6%-05	20.83	12.06	26.12	22331	2.17	251.21	88.89	
PAC6%-06	20.75	11.94	26.40	22340	2.21	247.76	90.17	
	PRO	MEDIO			2.20	250.36	90.70	
	Fact	or (FC)			0.75	-	-	
					fm corregid	68.025		
				Desv. Estánda	<i>ur</i> (σ)	2.394		
	_					2)	65.631	

Tabla 40: Resistencia a la compresión de pilas de ladrillos artesanales con 4% de HT-SikaLatex

RESIST	RESISTENCIA A COMPRESIÓN - PILAS DE UNIDADES DE ALBAÑILERÍA												
ESPÉCIMEN	DIN	DIMENSIONES			Esbeltez =	ÁREA: L*t	f'm = Pmáx/Ab						
ESPECIMEN	L (cm)	t (cm)	H (cm)	kg	H/t	cm2	Kg/cm2						
PAS4%-01	20.79	12.06	26.88	22593	2.23	250.73	90.11						
PAS4%-02	20.80	12.08	26.46	22902	2.19	251.26	91.15						
PAS4%-03	20.74	12.15	26.52	22945	2.18	251.99	91.05						
PAS4%-04	20.79	12.05	26.11	22280	2.17	250.52	88.94						
PAS4%-05	20.89	12.04	26.87	22853	2.23	251.52	90.86						
PAS4%-06	20.84	12.26	25.96	21693	2.12	255.50	84.90						
	PRO	MEDIO			2.19	251.92	89.50						
	Facto	or (FC)			0.75	-	-						
					fm corregid	67.127							
				Desv. Estándo	<i>ur</i> (σ)	2.400							
	-					f'm (kg/cm2)							

Tabla 41: Resistencia a la compresión de pilas de ladrillos artesanales con 6% de HT-SikaLatex

ESPÉCIMEN	ENCIA A COMPRESIÓN - DIMENSIONES			Pmáx	Esbeltez =	ÁREA: L*t	f ′ m =
	L (cm)	t (cm)	H (cm)	kg	H/t	cm2	Pmáx/Ab Kg/cm2
PAS6%-01	20.77	12.00	26.11	22375	2.18	249.24	89.77
PAS6%-02	20.74	12.06	26.87	22540	2.23	250.12	90.12
PAS6%-03	20.9	12.09	26.45	22210	2.19	252.68	87.90
PAS6%-04	20.78	12.00	26.28	22966	2.19	249.36	92.10
PAS6%-05	20.76	12.04	26.12	22580	2.17	249.95	90.34
PAS6%-06	20.81	12.15	26.45	23853	2.18	252.84	94.34
	PRO	MEDIO			2.19	250.70	90.76
	Facto	or (FC)			0.75	-	-
					fm corregid	lo =	68.070
				ar (o)	2.208		
					65.863		

Figura 28: Comparación de la resistencia a compresión de las diferentes incorporaciones de dosificaciones de aditivos en ladrillo artesanal.

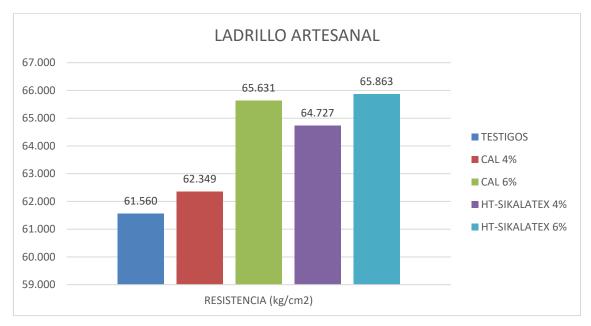


Tabla 50: Resistencia a la compresión de pilas de ladrillos industriales sin adición de aditivo

RESIST	ENCIA A	COMPRI	ESIÓN - I	PILAS DE	UNIDADES	DE ALBAÑ	ILERÍA
ESPÉCIM	DIMENSIONES			Pmáx	Esbeltez	ÁREA: L*t	f´m = Pmáx/Ab
EN	L (cm)	t (cm)	H (cm)	kg	= H /t	cm2	Kg/cm2
TI-01	22.84	11.93	29.31	24851	2.46	272.48	91.20
TI-02	22.66	12.24	29.16	25347	2.38	277.36	91.39
TI-03	22.78	12.16	29.24	23905	2.41	277.00	86.30
TI-04	22.85	12.18	29.74	25732	2.44	278.31	92.46
TI-05	22.75	12.48	29.27	24573	2.35	283.92	86.55
TI-06	23.08	12.44	29.43	25499	2.37	287.12	88.81
	PR	OMEDIO)		2.40	279.37	89.45
	Fa	actor (FC))		0.78	-	-
					fm	corregido =	69.772
					Desv. E	Sstándar (σ)	2.632
			_		f'	m (kg/cm2)	67.140

Tabla 51: Resistencia a la compresión de pilas de ladrillos industriales con 4% de cal.

RESISTENCIA A COMPRESIÓN - PILAS DE UNIDADES DE ALBAÑILERÍA											
ESPÉCIME	DIMENSIONES			Pmáx	Esbeltez = H/t	ÁREA: L*t	f′m = Pmáx/Ab				
N	L (cm)	t (cm)	H (cm)	kg	Π/ι	cm2	Kg/cm2				
PIC4%-01	22.85	11.98	29.13	24337	2.43	273.74	88.90				
PIC4%-02	22.69	12.16	29.54	25206	2.43	275.91	91.36				
PIC4%-03	22.90	12.17	29.47	25084	2.42	278.69	90.01				
PIC4%-04	22.84	12.18	29.22	24754	2.40	278.19	88.98				
PIC4%-05	22.75	12.46	29.65	25127	2.38	283.47	88.64				
PIC4%-06	23.00	12.50	29.79	25201	2.38	287.50	87.66				
	PF	ROMEDIO)		2.41	279.58	89.26				
	Fa	actor (FC)			0.78	-	-				
						fm corregido =	69.621				
					Des	v. Estándar (σ)	1.273				
						f'm (kg/cm2)	68.348				

Tabla 42: Resistencia a la compresión de pilas de ladrillos industriales con 6% de cal.

RESI	ISTENCIA	A A COM	PRESIÓN -	PILAS DE U	UNIDADES 1	DE ALBAÑILE	RÍA
ESPÉCIME N	DIMENSIONES			Pmáx	Esbeltez	ÁREA: L*t	f´m = Pmáx/Ab
11	L (cm)	t (cm)	H (cm)	kg	= H /t	cm2	Kg/cm2
PIC6%-01	22.85	11.98	29.79	25467	2.49	273.74	93.03
PIC6%-02	22.67	12.16	29.22	24973	2.40	275.67	90.59
PIC6%-03	22.78	12.17	29.54	25881	2.43	277.23	93.35
PIC6%-04	22.88	12.18	29.13	26694	2.39	278.68	95.79
PIC6%-05	22.6	12.46	29.22	25258	2.35	281.60	89.70
PIC6%-06	22.93	12.5	29.3	25293	2.34	286.63	88.24
	P	ROMED	Ю		2.40	278.92	91.78
	J	Factor (F	C)		0.78	-	-
					j	fm corregido =	71.592
			-		Desi	v. Estándar (σ)	2.770
			-			f'm (kg/cm2)	68.822

Tabla 43: Resistencia a la compresión de pilas de ladrillos industriales con 4% de HT-SikaLatex.

ESPÉCIMEN	DIMENSIONES			Pmáx	Esbeltez = H/t	ÁREA: L*t	f´m = Pmáx/Ab
	L (cm)	t (cm)	H (cm)	kg	22,7	cm2	Kg/cm2
PIS4%-01	22.86	12.06	29.79	24346	2.47	275.69	88.31
PIS4%-02	22.64	12.08	29.22	25754	2.42	273.49	94.17
PIS4%-03	22.78	12.15	29.54	25232	2.43	276.78	91.16
PIS4%-04	22.85	12.05	29.13	25534	2.42	275.34	92.74
PIS4%-05	22.75	12.04	29.22	25098	2.43	273.91	91.63
PIS4%-06	23.08	12.26	29.65	24938	2.42	282.96	88.13
	I	PROMEDIO)		2.43	276.36	91.02
]	Factor (FC)			0.79	-	-
					,	fm corregido =	71.908
			_		Des	v. Estándar (σ)	2.405
			_			f'm (kg/cm2)	69.503

Tabla 44: Resistencia a la compresión de pilas de ladrillos industriales con 6% de HT-SikaLatex.

RES	ISTENCIA	A COMP	RESIÓN -	PILAS DE U	INIDADES D	E ALBAÑILER	ÍΑ
ESPÉCIMEN	DIMENSIONES			Pmáx	LODGICEL	ÁREA: L*t	f'm = Pmáx/Ab
_	${L \text{ (cm)} t \text{ (cm)} H \text{ (cm)}} = H/t$	– п/ เ	cm2	Kg/cm2			
PIS6%-01	22.85	11.97	29.65	27170	2.48	273.51	99.34
PIS6%-02	22.75	12.32	29.43	26061	2.39	280.28	92.98
PIS6%-03	23.08	12.17	29.39	26183	2.42	280.88	93.22
PIS6%-04	22.88	12.25	29.79	26362	2.43	280.28	94.06
PIS6%-05	22.84	12.45	29.47	25773	2.37	284.36	90.64
PIS6%-06	22.92	12.47	29.54	25949	2.37	285.81	90.79
	Р	ROMEDIC)		2.41	280.85	93.50
	F	actor (FC))		0.78	-	-
			_		fn	n corregido =	72.932
			_		Desv.	Estándar (σ)	3.171
			_			f'm (kg/cm2)	69.761

Figura 29: Comparación de la resistencia a compresión de las diferentes incorporaciones de dosificaciones de aditivos en ladrillo industrial.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

Discusión:

En las tablas 15, 16 y 17 en Ladrillo Artesanal (Variabilidad Dimensional), podemos identificar que la variación es de **3.68%**, además en las tablas 18, 19 y 20 en Ladrillo Industrial (Variabilidad Dimensional), podemos identificar que la variación es de **4.22%**; lo cual cumplen según norma E.070-Albañileria, para la aceptación de la unidad de albañilería no mayor a 20% en ladrillos industriales y 40% en ladrillos artesanales.

En las figuras 19 y 20 (Alabeo), el alabeo de concavidad promedio es en Ladrillo Artesanal **3.93** milímetros, y en el Ladrillo Industrial **3.27** milímetros, lo cual cumplen según la norma E.070-Albañileria, para la aceptación de la unidad de albañilería para un alabeo no mayor a 4mm.

En la Tabla 24 (Residencia a la comprensión de la unidad de albañilería), se obtiene una resistencia promedio de **75.03** Kg/cm2 para Ladrillo Artesanal, mientras en la Tabla 25 (Resistencia a la comprensión de la unidad de albañilería), se obtiene una resistencia promedio de **72.47** Kg/cm2 para Ladrillo industrial, la cual diferimos por motivo que la norma indica que tiene que estar por un promedio de 95 Kg/cm2, estos ladrillos se encuentran en un **78.94%** de su capacidad real de la resistencia.

En la figura 28 (Resistencia a la comprensión de la unidad de albañilería), el promedio de la Coeficiente de Variación en Ladrillos Artesanales es **17.35%** donde la variación de ladrillos se encuentra en un intervalo de no mayor a 40%, mientras el promedio de la Coeficiente de Variación en Ladrillos Industriales es **14.56%** donde la variación de ladrillos se encuentra en un intervalo de no mayor a 20%.

La humedad natural es la cantidad de agua que contiene la unidad de albañilería por lo que este valor interviene en el curado del ladrillo, así como la absorción y la

succión. En la figura 21 (Absorción), los valores de absorción en Ladrillo Artesanal **15.60%** y Ladrillo Industrial **14.47%**, lo cual cumplen según norma E.070-Albañileria, para la aceptación de la unidad de albañilería sillico calcáreas que no deben ser mayores al 22%.

El contenido de humedad del agregado fino es de 11.52%, significa que es relativamente media, esto quiere decir que los poros de este agregado estaban parcialmente húmedos y con esto se deduce que los agregados aportan una mínima cantidad de agua a la mezcla.

En la figura 23 (curva granulométrica), empleada para el mortero de las pilas de unidades de albañilería artesanal e industrial, se encontró dentro de los limites establecidos de la Norma E.070-Albañileria, para la aceptación del agregado fino, obtenido un módulo de finura de **2.08**, valor que se encuentra dentro de lo permitido entre 1.6 – 2.5, de la norma E.070-Albañileria.

La albañilería conformada por el ladrillo, el mortero con cal y/o HT-SikaLatex de proporción 1:4 con 6% de adición, presentó mayor resistencia, con ladrillo industrial de arcilla, debido a que la resistencia a la compresión con característica al corte, son mayores. Por lo tanto, cabe concluir que la Hipótesis es verdadera, que afirma que aumenta la resistencia en un 3.75%.

En la Tabla 28 (Peso específico del cemento hidráulico), el Promedio del peso específico obtenido es **3.14** gr/cm3, según la norma MTC E610 / ASTM C188 / NTP 334.005, indica que se encuentra dentro del rango aceptable para cemento normal entre 3.10 – 3.15 gr/cm3.

En base a los resultados obtenidos para los cubos de mortero basados en la norma MTC E609 / ASTM C109 / NTP 334.051, se analizó una comparación de la

Resistencia a los 28 días de curado, se muestra en la figura 24 donde la resistencia va aumentando conforme el tipo de aditivo a usar (Cal o HT-Sikalatex) y el porcentaje de dosificación (4% o 6%), la cual el HT-Sikalatex brinda un resultado de **151.29** Kg/cm2.

En base a los resultados obtenidos para f'm de las pilas de Ladrillo Artesanal y Ladrillo Industrial basada en la norma NTP E.070-Albañileria, se analizó una comparación de la resistencia a los 28 días de curado, se muestra en la figura 25(Ladrillo Artesanal), donde la resistencia a la comprensión muestra un incremento del 6.20% para el uso de la Cal y un 6.53% para el uso del HT-Sikalatex vs a las pilas sin uso de aditivo, a la vez se muestra en la figura 26(Ladrillo Industrial), donde la resistencia a la comprensión muestra un incremento del 2.44% para el uso de la Cal y un 3.75% para el uso del HT-Sikalatex vs a las pilas sin uso de aditivo.

Donde este último existe una importancia entre el mortero en si, como la unión entre mortero y ladrillo (artesanal e industrial) donde de mayor resistencia fue con la incorporación del aditivo HT-Sikalatex al 6% vs la Cal al 6%.

Según (Vega, 2019) en la investigación titulada "Evaluación del Uso de Aditivos sobre la mezcla convencional de concreto en morteros de cemento para el aumento de su resistencia" indica el aumento de un 12.50%, implementando el aditivo Sika-Viscocrete, que representa un mejor desempeño en cuanto la resistencia, así mismo en la presente tesis aumenta un promedio de 2.44% a 6.53% con la incorporación de aditivo Ht-Sikalatex, todo esto basado en su desarrollo experimental de la investigación.

Según (Montoya, 2009), de acuerdo a la investigación "Comportamiento Mecánico y de Fraguado de Morteros de Cemento Pórtland Gris Tipo III con Aditivos" demuestra al aplicar aditivos con dosificaciones de 6, 9 y 12% obtienen una resistencia mayor con respecto al método tradicional un 2% homogéneo en las 3 dosificaciones, en

cuanto a esta investigación a aumentado un 2.44% mínimo, donde el curado ha sido en los 28 días para ambos.

Según (Hidalgo, 2015) encontró que la incorporación del aditivo impermeabilizante aumentó la resistencia mecánica del mortero, presentando resultados de un 8,14% de aumento entre el mortero patrón y la proporción más óptima en relación a la resistencia mecánica del mortero (proporción 1:8), mientras que la presente tesis, demuestra que con la incorporación aditivo plastificante aumenta en un 6.53% con la proporción de 6% del total de la mezcla.

Limitaciones:

La presente investigación ha brindado resultados interesantes para las unidades de albañilería (artesanal e industrial), mortero y aditivos anteriormente mencionados, la cual para la obtención de estos materiales debe ser de calidad y que contengan los parámetros o especificaciones técnicas de la empresa que los ha realizado y que cumplan dichas certificaciones, en la presente investigación la limitación se dio en la obtención de los ladrillos artesanales, que no cuentan con certificación, por ser elaborados en forma manual.

El número de pilas realizadas y puestas en ensayos fue un número mínimo obtenido por las diferentes bibliografías de investigaciones, la cual la norma E.070 no indica un número mínimo de ensayos.

Para el diseño de mezcla del mortero, que es fundamental para la realización de las pilas o muretes de ladrillo, el Perú no cuenta una norma para la realización, la cual para el diseño se ha apoyado en la norma UNE (española para el uso de Cementos Porland).

Conclusiones:

De acuerdo a las características físico-mecánicas de las unidades de albañilería, agregados, cemento y aditivos, se realizó diversos ensayos, para determinar si los materiales son aceptables dentro de los parámetros de la Norma E0.70-Albañileria, lo cual se determinó la influencia de la adición del aditivo (Cal o HT-Sikalatex) en diferentes porcentajes (4%-6%) en el mortero para los Ladrillos (Artesanal o Industrial), donde se obtuvo que el Ladrillo Industrial es de mayor trabajabilidad y menor porcentaje de variación, a la vez el aditivo HT-Sikalatex fue de mayor relevancia en comparación a la Cal.

El mortero proyectado, fue sometido a pruebas mecánicas, con cal y con HT-Sikalatex, obteniendo resultados en sus diferentes dosificaciones de aditivo, para resistencia a la compresión se obtuvo la máxima resistencia dando como resultados 149.58 kg/cm2 para el mortero con cal y 151.29 kg/cm2 para el mortero con HT-SikaLatex; haciendo la comparación entre ambos aditivos se encontró una variación de aumento a favor del aditivo Ht-Sikalatex en un 1.71.%.

Se realizó el análisis comparativo, en 10 combinaciones para las pilas o muretes de ladrillo : a:(ladrillos artesanales + mortero) b:(ladrillo artesanal + mortero cal 4%), c:(ladrillo artesanal + mortero cal 6%), d:(ladrillo artesanal + mortero HT-Sikalatex 4%), e:(ladrillo artesanal + mortero HT-Sikalatex 6%), f:(ladrillo industrial + mortero), g:(ladrillo industrial + mortero cal 4%), h:(ladrillo industrial + mortero cal 6%), i:(ladrillo industrial + mortero HT-Sikalatex 4%), j:(ladrillo industrial + mortero HT-Sikalatex 4%), j:(ladrillo industrial + mortero HT-Sikalatex 6%); en cuanto al valor de la resistencia a la compresión el uso de aditivos es importante para aumentar la resistencia y/o a la vez la adherencia entre el mortero y la unidad de albañilería en comparación del método tradicional(mortero sin aditivo),

aumentando un valor de **2.44%** a **6.20%** con incorporación de Cal en Ladrillo Industrial y Artesanal respectivamente, y un valor de **2.75%** a **6.53%** con incorporación de HT-Sikalatex en Ladrillo Industrial y Artesanal respectivamente

Recomendaciones:

Ubicar los agregados y el cemento en un lugar seco y libre de lluvias, para que el material esté siempre en las condiciones más optimas, y así no exista variación en los diseños y dosificaciones.

Se recomienda para las futuras investigaciones obtener datos de la adherencia, el motivo la cual va de la mano con la resistencia de los muros de ladrillo, además probar con diversos aditivos que existen en el mercado y así sacar una conclusión ¿Cuál de todos es mejor?

Se recomienda hacer un modelamiento y estudio estructural de una edificación con estas características de albañilería de las diferentes combinaciones propuestas en esta tesis, además de utilizar y realizar ensayos, estudios con diferentes tipos de ladrillos, las combinaciones que puedan salir de todas éstas y utilizar agregados de diferentes canteras, así como agregados de río o de cerro.

REFERENCIAS

- Aguirre Cabrera, D., & Pacheco Giron, R. (2007). *Aditivos para Concreto*. Obtenido de http://www.uae.edu.sv/docs/investigacion/USO%20DE%20ADITIVOS%20PA RA%20CONCRETO.pdf
- American Concrete Institute ASTM-C494. (1991). *Aditivos químicos para concreto*. American Concrete Institute, EE.UU.
- Arizzi, A., & Cultrone, G. (2012). La Influencia de la Interfase Árido-Matriz en las propiedades del mortero Cal. *Revista de la Sociedad Española de Mineralogia*, 2 5.
- Arriola, J. (2009). Diseño de morteros con cementos hidráulicos para la construcción de muros con elementos de mampostería. Guatemala: Universidad de San Carlos de Guatemala.
- Barajas, B., Castro, A., & Marco, d. (2012). Evaluación de la adherencia, Rendimiento y Costo de los Morteros a base de cal en la Vivienda sustentable. *Congreso Internacional de Ingeniería de Proyectos*, 8.
- Cabrera B., K. (2013). Estudio de las Propiedades Fisico y Mecanicas del ladrillo King Kong del Centro Poblado El Cerrillo. *Universidad Nacional de Cajamarca*, 131 pp.
- Cabrera Montes, F., Herrera Valencia, J., Pesantez Cedeño, G., Cedeño, J., Santos, E., & Aguirre, C. (2011). Dosificación de Mortero con Cascara de Arroz y Comprobación de Adherencia en Paredes de Bloques de Concreto. *Universidad Laica Vicente Rocafuerte*, 8.
- Calero Amores, M. (2018). Ficha Tecnica Comparativa de la Adherencia del Mortero a Elementos Estructurales Mediante Metodos Artesanales y Productos Adherentes. Guayaquil.
- Comité 212 del ACI. (1994). Aditivos para hormigones, morteros y pastas. Madrid.
- Donis Arriola, J. M. (2010). Diseño de Morteros con Cementos Hidráulicos para la Construccion de Muros con Elementos de Manposteria. *Universidad de San Carlos de Guatemala*, 162 pp.
- Edificaciones, R. N. (2018). Reglamento Nacional de Edificaciones.
- Gallegos, H., & Casabonne, C. (2005). Albañilería estructural. Fondo editorial de la Pontificia Universidad católica del Perú., 250pp.
- Gaspar, D. (2002). Aditivos para hormigones,. *Consejo Superior de Investigaciones Científicas*, 9.
- Guaman Martillo, M. A., & Ortiz Valverde, V. H. (2018). Flicha Técnica comparativa de la Adherencia del Mortero a Elementos Estructurales mediante metodos Artesanales y Productos adherentes. Guayaquil,.
- Gutiérrez, L. (2003). El concreto y otros materiales para la construcción. Manizales, Colombia: Centro de publicaciones universidad nacional de Colombia., 24-30.

- Gutierrez, M. D. (2017). Adherencia entre el Mortero y el Ladrillo Maciso al invertir su Cara de Asiento. *Universidad Privada Del Norte*, 140 pp.
- Hidalgo, C. A. (2015). *Influencia sobre la Adherencia Mortero-Ladrillo del Aditivo Impermeabilizante en Albañilerias*. Chile: Universidad Valparaiso de Chile.
- Indecopi. (2013). *Cementos Portland adicionados*. INDECOPI 2013. Lima: NTP: 334.090-2013.
- Leon Consuegra, L., & Torres Fuentes, M. (2012). Propuesta de mortero para ser utilizado en la reparación y rehabilitación de estructuras. *Arquitectura e Ingeniería*, 9.
- Mendoza Rangel, J., Flores Jarquin, J., De Los Santos, E., & Garcés Terradillos, P. (2016). Durabilidad de morteros de reparación sustentables expuestos a ambiente industrial. *ALCONPAT*, 12.
- Montoya, Y. (2009). Comportamiento Mecanico y de Fraguado de Morteros de Cemento Portland gris tipo III con Aditivos. *Rev.EIA.Esc.Ing.Antioq*, 5 pp.
- Montoya, Y., Cadavid, A., & Gomez, M. (2009). Comportamiento Mecánico y de fraguado de Morteros de Cemento Portland Gris tipo III con Aditivos. Colombia: Rev.EIA.Esc.Ing.Antioq no.11.
- Morante Portocarrero, A. A. (2009). *Mejora de la Adherencia Mortero-Ladrillo de Concreto*. Lima.
- Navas C., A., & Campos R., A. M. (2018). Influencia de la cal en el mortero de pega para mampostería. *Universidad de Costa Rica*, 11 pp.
- Norma E.060 Concreto Armado. (2009). *Reglamento Nacional de Edificaciones*. Lima: Servicio Nacional de Capacitación para la Industria de la Construcción SENCICO.
- Norma-E.070-Albañileria. (2015). *Reglamento Nacional de Edificaciones*. Lima: Sencico.
- Ortiz, J., Aguado, A., Roncero, J., & Zermeño, M. (2015). Influencia de la Temperatura Ambiental sobre las Propiedades de Trabajabilidad y Microestructurales de Morteros y pasta de Cemento. *Departamento de Construcción*, 23.
- Paes, I., Bauer, E., Carasek, H., & Pavón, E. (2014). Influencia del transporte de agua en morteros de revestimiento, en la resistencia a la adherencia. *Revista Ingeniería de Construcción RIC*, 12.
- Salguero Ferreira, J. M., Osornio Rubio, N. R., Martínez González, G. M., & Palma Tirado, M. L. (2013). Optimización de la adherencia de un Geopolímero al ladrillo rojo por medio de un Diseño de Experimentos y Metodología de superficie de respuesta. *LPCN CINVESTAV*, 6.
- San Bartolomé, Á., & Morante., Á. (2009). Estudio de la Adherencia Mortero Concreto vibrado en tres técnicas de Construcción. *Pontificia Universidad Cátolica del Perú*, 10 pp.
- San Bartolomé, A., Romero, C., & Torres, J. C. (2010). Mejora de la adherencia Bloque-Mortero. *Mejora de la adherencia Bloque-Mortero*, pág. 8.

- Sanchez de Guzmán , D. (1994). *Tecnologia del Concreto y del Mortero*. Bogotá: Bhandar Editores.
- Valentini, P., & Kazmierczak, C. (2016). Evaluación de la adherencia de baldosas cerámicas aplicadas como revestimiento de fachada. *Asociación Latinoamericana de Control de Calidad, Patología y Recuperación de la Construcción*, 13.
- Vázquez Romero, J. (2010). Adherencia al Hormigón de morteros de diferentes Bases Quimicas. *TESIS DOCTORAL*, (pág. 367). Madrid.
- Vega, M. C. (2019). Evaluacion del uso de Aditivos sobre la Mezcla Convencional de Concreto en Morteros de Cementos para el aumento de su Resistencia. *Fundacion Universidad America*, 163 pp.
- Vegas, I., Azkarate, I., & Juarrero, A. (2009). Diseño y prestaciones de morteros de albañilería elaborados con áridos reciclados procedentes de escombro de hormigón. *Materiales de Construcción*, 14.

ANEXOS

Anexo N° 1: Fotografías

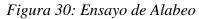


Figura 31: Ensayo de Variabilidad dimensional

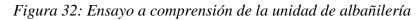


Figura 33: Ensayo de Succión

Figura 34: Posterior a las 24h recojo de la unidad de albañilería

Figura 35: Colocación en la Estufa la unidad de albañilería (ensayo de succión)

Figura 36: Subrayado de los ladrillos para el ensayo de absorción

Figura 37: Ensayo de absorción

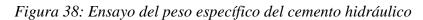


Figura 39: Frascos de Le chateleir con gasolina hasta la marca 0

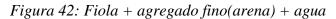

Figura 40: Medida con el termómetro agua – gasolina + cemento en el frasco Chateleir

Figura 41: Ensayo de Gravedad especifica – cono metálico

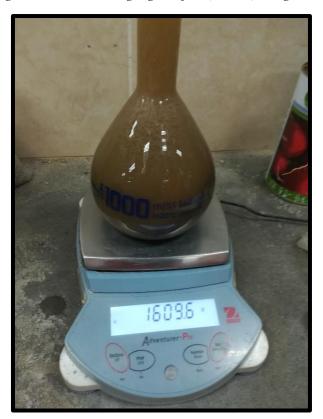


Figura 43: Ensayo de Contenido de humedad Taras + arena

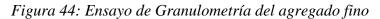


Figura 45: Peso de cada Porcentaje que pasa

Figura 46: Pilas de Ladrillos Industriales y Artesanales

Figura 47: Toma de Medidas en las Pilas de Albañileria

Figura 48: Ensayo de Resistencia a la Compresión de Pilas de Ladrillo Industrial

Figura 49: Ensayo de Resistencia a la Compresión de Pilas de Ladrillo Artesanal

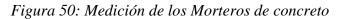


Figura 51: Resistencia a la Compresión de Morteros de concreto

Anexo N° 2: Ficha Técnica de la Cal de obra.

CAL DE OBRA LINEA CONSTRUCCION

CAL DE OBRA

DESCRIPCION DEL PRODUCTO

Compuesto formado de trazas de carbonato de calcio, hidróxido de calcio o bien una mezcla de carbonato de calcio y partículas de rocas disgregadas.

ALMACENAMIENTO Y ESTABILIDAD DEL ENVASADO

12 meses en envase cerrado si se mantiene almacenado en ambiente protegido, fresco y seco

CARACTERISTICAS

Aspecto: Polvo granulado

Color: Variable de un blanco humo a grisáceo

Ca(OH)2 (%): 3 - 15

% Retenido (M-40): 8 - 15

TIPO DE ENVASE	PRESENTACION
Saco de polietileno	Saco * 20 kg
Bolsa Laminada	Bolsa * 1kg

LAS INSTRUCCIONES DE FORMA DE USO ESTAN BASADOS EN NUESTROS CONOCIMIENTOS, EXPERIENCIA TECNICA Y NO SUPONEN COMPROMISO. ESTA INFORMACION NO LIBERA A NUESTROS CLIENTES A REALIZAR SUS PROPIOS ENSAYOS Y/O VERIFICACIÓN DE LOS PRODUCTOS PARA SU CORRECTA UTILIZACIÓN EN CASOS PARTICULARES. EL USO APLICACIÓN Y MANEJO DE LOS PRODUCTOS, QUEDA FUERA DE NUESTRO CONTROL Y ES DE EXCLUSIVA RESPONSABILIDAD DEL USUARIO.

CAL DE OBRA LINEA CONSTRUCCION

CAL DE OBRA

PREPARACION

Para mejorar suelos ácidos y suelos sódicos. En construcción y marcado de campos.

USOS RECOMENDADOS

En suelos sódicos que tienen en promedio 1.56 kg de Na+/50m2, esparcir 20 Kg de cal de obra por cada 50 m2 previamente el suelo esté rastrillado. Espolvorear de manera uniforme en zanjas y suelos salitrosos

Condiciones de aplicación

En caso de contacto con los ojos enjuagar con abundante agua limpia.

Dilución

1.5 kg/ m₂

PRECAUCIONES DE SEGURIDAD

Se debe aplicar en ambientes frescos y evitar el contacto con los ojos. Para mayor información favor consultar hoja de seguridad.

LAS INSTRUCCIONES DE FORMA DE USO ESTAN BASADOS EN NUESTROS CONOCIMIENTOS, EXPERIENCIA TECNICA Y NO SUPONEN COMPROMISO. ESTA INFORMACION NO LIBERA A NUESTROS CLIENTES A REALIZAR SUS PROPIOS ENSAYOS Y/O VERIFICACIÓN DE LOS PRODUCTOS PARA SU CORRECTA UTILIZACIÓN EN CASOS PARTICULARES. EL USO APLICACIÓN Y MANEJO DE LOS PRODUCTOS, QUEDA FUERA DE NUESTRO CONTROL Y ES DE EXCLUSIVA RESPONSABILIDAD DEL USUARIO.

Anexo N° 3: Ficha Técnica del Cemento

ESPECIFICACIÓN TÉCNICA CEMENTO TIPO I

P-CC-EST-08 Versión 19 / 03 de setiembre d 2018 Página 1/1

Descripción: El Cemento Pórtland TPO I es un producto que se obtiene mediante la pulverización conjunta de clinker, yeso y en ocasiones caliza en pequeñas proporciones. El clinker es un mineral artificial y esta compuesto esencialmente de silicatos de calcio producidos a partir de materiales calcáreos y correctores de sílice, alúmina y hierro en un proceso efectuado a temperaturas cercanas a los 1450°C.

Este tipo de cemento sigue los requisitos de la Norma Técnica Peruana 334.009 y de la ASTM C 150. Es un cemento de uso general, para proyectos que no requieran propiedades especiales.

Ensayos		Requisitos		Normas de Referencia	Normas de Ensayo
	REQUI	ERIMIENTOS Q	UIMICOS		
MgO	Máximo	6.0	%	ASTM C150 NTP 334.009	ASTM C114 NTP 334.086
SO ₃	Máximo	3.0	%	ASTM C150 NTP 334.009	ASTM C114 NTP 334.086
Pérdida por Ignición	Máximo	3.5	%	ASTM C150 NTP 334.009	ASTM C114 NTP 334.086
Residuo insoluble	Máximo	1.5	%	ASTM C150 NTP 334.009	ASTM C114 NTP 334.086
	REQU	JERIMIENTOS I	FISICOS		
Contenido de Aire	Máximo	12	%	ASTM C150 NTP 334.009	ASTM C185 NTP 334.048
Finura, Superficie Especifica	Mínimo	2,600	cm ² /g	ASTM C150 NTP 334.009	ASTM C 204 NTP 334.002
Expansión en autoclave	Máximo	0.80	%	ASTM C150 NTP 334.009	ASTM C 151 NTP 334.004
Resistencia a la Compresión	•				
a) Resistencia compresión a 1 día (*)	Mínimo	12.0 (1,740)	MPa (psi)	n/a	ASTM C 109 NTP 334.051
b) Resistencia compresión a 3 días	Mínimo	12.0 (1,740)	MPa (psi)	ASTM C150 NTP 334.009	ASTM C 109 NTP 334.051
c) Resistencia compresión a 7 días	Mínimo	19.0 (2,760)	MPa (psi)	ASTM C150 NTP 334.009	ASTM C 109 NTP 334.051
d) Resistencia compresión a 28 días	Mínimo	28.0 (4,060)	MPa (psi)	ASTM C150 NTP 334.009	ASTM C 109 NTP 334.051
Tiempo de Fraguado Vicat					
a) Fraguado Inicial	Mínimo	45	minutos	ASTM C150 NTP 334.009	ASTM C 191 NTP 334.006
b) Fraguado Final	Máximo	375	minutos	ASTM C150 NTP 334.009	ASTM C 191 NTP 334.006
	REQUERI	MIENTOS DE PI	SOS NETOS	8	
eso unitario (Neto)	Mínimo	41.65	kg	ASTM C 150 NTP 334.009	n/a
'eso promedio por lotes ≥ 50 bolsas (Neto)	Minimo	42.50	kg	ASTM C 150 NTP 334.009	n/a

Generado por:	Revisado por:	Aprobado por:
Ing. Victor Milla Analista de Aseguramiento de la Calidad	Ing. Gabriel Mansilla Superintendente de Aseguramiento de la Calidad e Investigación y Desarrollo	Ing. Hugo Villanueva Castillo Gerente Central de Operaciones

^(*) Requisito interno impuesto por la compañía.

Anexo N° 4: Ficha Tecnica del HT-SikaLatex

HOJA TÉCNICA

Sika® Latex

Mejorador de Adherencia para Morteros y Pastas de Cemento

DESCRIPCIÓN DEL PRODUCTO

Sika® Latex es un aditivo elaborado en base a una emulsión de polímeros, que adicionada al mortero de cemento, mejora sus propiedades, especialmente la adherencia. La lechada de adherencia confeccionada con Sika® Latex se utiliza para unir mortero fresco con Concreto o mortero endurecido.

usos

- Puente de adherencia en lechada adhesiva para el tarrajeo y mortero de reparación.
- Aditivo para mortero de reparaciones en concreto y albañilería.
- Aditivo para mortero para incrementar la impermeabilidad y la resistencia a ataques químicos.
- Aditivo para lechadas y morteros de inyección.
- Aditivo para mejorar la adherencia de pinturas a base de cemento o cal.

CARACTERÍSTICAS / VENTAJAS

- Mayor adherencia del mortero sobre concreto, albañilería, piedra, acero, entreotros.
- Mayor flexibilidad del mortero, reduciéndose la formación de fisuras y aumentando la resistencia al impacto.
- Mayor retención de agua del mortero y mayor cohesión, lo que se traduce en mezcla homogénea de mayor resistencia a la abrasión
- Mayor impermeabilidad y estabilidad al agua.
- Mayor resistencia química del mortero de cemento.
- Alta calidad y durabilidad en mortero de reparación.

Hoja Técnica Sika® Latex 12.04.16, Edición 1

1/3

DATOS BÁSICOS	
FORMA	COLORES
	Blanco
	PRESENTACIÓN
	Envase PET x 4 Litros
ALMACENAMIENTO	CONDICIONES DE ALMACENAMIENTO / VIDA ÚTIL
	Un año en su envase original cerrado protegido del congelamiento
DATOS TÉCNICOS	DENSIDAD
	1.02 kg/L ± 0.01
Información del Sistema	a
DETALLES DE APLICACIÓN	CONSUMO / DOSIS
	Como puente de adherencia : 200 g/m²

MÉTODO DE APLICACIÓN

MODO DE EMPLEO

Preparación de Superficie:

Como aditivo en mortero

Las superficies de concreto deben encontrarse limpias, exentas de polvo, partes sueltas o mal adheridas, sin impregnaciones de grasa, aceite, pintura, etc. Al aplicar la lechada, la base debe encontrarse húmeda, pero sin agua superficial (saturada superficialmente seca).

La temperatura mínima de aplicación debe ser 5°C.

: 400 a 500 g/m² por cada cm de espesor

APLICACIÓN

Lechada para puente de adherencia.

Agregar 1 parte de Cemento en una dilución 1:1 formada por 1 parte de Sika Latex y 1 parte de agua, hasta obtener una consistencia plástica deseada. Aplicar con brocha en un espesor no inferior a 1 mm. Colocar el mortero sobre la lechada antes de que esta última comience a secarse (20 a 30 minutos a 20 °C).

Mortero para tarrajeos y reparaciones.

Diluir Sika Latex en 4 a 6 partes de agua, agregar al mortero en la cantidad necesaria para obtener la consistencia deseada. Aplicar el mortero antes de 30 minutos de mezclado, en forma tradicional.

Pinturas en base a cemento o cal.

Agregar 200 g de Sika Latex a cada 4 litros de pintura.

Hoja Técnica Sika® Latex 12.04.16, Edición 1

BUILDING TRUST

2/3

INSTRUCCIONES DE SEGURIDAD

PRECAUCIONES DE MANIPULACIÓN

Durante la manipulación de cualquier producto químico, evite el contacto directo con los ojos, piel y vías respiratorias. Protéjase adecuadamente utilizando guantes de goma natural o sintéticos y anteojos de seguridad. En caso de contacto con los ojos, lavar inmediatamente con abundante agua durante 15 minutos manteniendo los párpados abiertos y consultar a su médico.

Tenga en cuenta todas las precauciones normales para la aplicación de empastes convencionales.

OBSERVACIONES

La Hoja de Seguridad de este producto se encuentra a disposición del interesado. Agradeceremos solicitarla a nuestro Departamento Comercial, teléfono: 618-6060 o descargarla a través de Internet en nuestra página web:

www.sika.com.pe

NOTAS LEGALES

La información y en particular las recomendaciones sobre la aplicación y el uso final de los productos Sika son proporcionadas de buena fe, en base al conocimiento y experiencia actuales en Sika respecto a sus productos, siempre y cuando éstos sean adecuadamente almacenados, manipulados y transportados; así como aplicados en condiciones normales. En la práctica, las diferencias en los materiales, sustratos y condiciones de la obra en donde se aplicarán los productos Sika son tan particulares que de esta información, de alguna recomendación escrita o de algún asesoramiento técnico, no se puede deducir ninguna garantía respecto a la comercialización o adaptabilidad del producto a una finalidad particular, así como ninguna responsabilidad contractual. Los derechos de propiedad de las terceras partes deben ser respetados.

Todos los pedidos aceptados por Sika Perú S.A. están sujetos a Cláusulas Generales de Contratación para la Venta de Productos de Sika Perú S.A. Los usuarios siempre deben remitirse a la última edición de la Hojas Técnicas de los productos; cuyas copias se entregarán a solicitud del interesado o a las que pueden acceder en Internet a través de nuestra página web www.sika.com.pe.

Sika Perú S.A.C.

Refurbishment Centro Industrial "Las Praderas de Lurín S/N - Mz "B" Lote 5 y 6, Lurín Lima Perú www.sika.com.pe

Hoja Técnica Sika® Latex 12.04.16, Edición 1 Versión elaborada por: Sika Perú S.A.

JDS, Departamento Técnico Telf: 618-6060 Fax: 618-6070

Mail: informacion@pe.sika.com.pe

BUILDING TRUST

© 2013 Sika Perú S.A

3/3

Anexo N° 5: Ficha Técnica del ladrillo Industrial

FICHA TÉCNICA

CARACTERISTICAS GENERALES

Denominación del Bien	: KIN	G K	ONG CA	RAVISTA	
Denominación técnica	: KING KONG CARAVISTA				
Grupo/clase/familia	: CONSTRUCCIONES DE TABIQUERIA				
Dimensiones (mm)	: L.Co		Ancho 125	Largo 230	
Peso	: 2.70 Kg.				
Unidades m²	: 36				

Anexos adjuntos:

Descripción general: Es el ladrillo fabricado de arcilla moldeada, extruida y quemada o cocida en un horno tipo túnel de proceso continuo.

CARACTERISTICAS TECNICAS

DE LOS TIPOS DE LADRILLOS

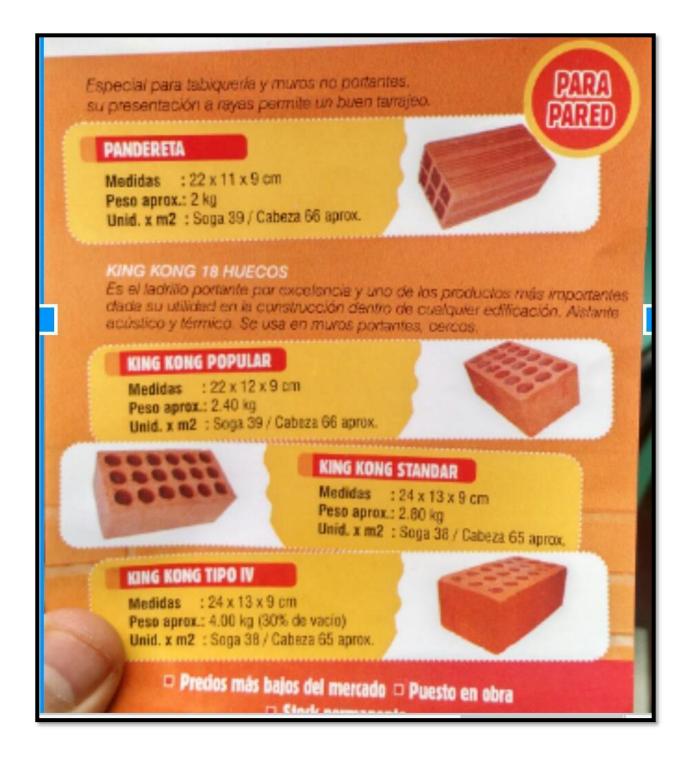
Según la Norma NTP 399.613:2005 - 339.604 - 399.604 este ladrillo corresponde:

Tipo IV: Resistencia y durabilidad altas. Apto para construcciones de albañilería en condiciones de servicio rigurosas.

CARACTERISTICAS FISICAS

	según NTP	según muestra
VARIACION DE LA DIMENSION (mm)	± 2.0	± 2.0
ALABEO (mm)	2	1
RESISTENCIA A LA COMPRESION (Kg/cm²)	130.0 Kg/cm ²	289.0 Kg/cm ²
ABSORCION (%)	<22	13.70
EFLORESCENCIA	NO EFLORESCENTE	NO EFLORESCENTE

OTRAS ESPECIFICACIONES


- -Proceso de fabricación altamente controlado.
- -Control de Calidad riguroso en todos los procesos.
- -Peso exacto
- -Secado tradicional.

EL CONTENIDO DE LA FICHA PUEDE VARIAR POR CAMBIOS EN LOS PROCEDIMIENTOS O EN LAS ESPECIFICACIONES TÉCNICAS.

ACTUALIZADO: FEBRERO 2019

Parcela 10234 Fundo Santa Inés, Puente Piedra – Lima. Telf: (051) 711-3322 www.ladrilloslark.com.pe

Anexo N° 6: Ficha Técnica del ladrillo Artesanal

Anexo N° 7: Protocolos del Laboratorio de Concreto de la UPN

LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJ					
II	* + +			PROTOCOLO	
II	N	ENSAYO	VARIABILIDAD D	IMENSIONAL (%)	CÓDIGO DEL DOCUMENTO:
II	7.4	NORMA	NTP 39	99.604	ALA-LC-UPNC:
II	UNIVERSIDAD		"RESISTENCIA A LA (COMPRESION DEL MO	RTERO USANDO DOS ADITIVOS:
II	PRIVADA DEL NORTE	TESIS	CAL Y HT-SIKALAT	EX PARA MUROS I	DE LADRILLO ARTESANAL Y
ш			LADRILLO INDUSTRIA	AL, CAJAMARCA 2022'	'.
LADRILLERA: SODIMAC TAMAÑO DE MUE				TAMAÑO DE MUESTR	RA: 10 LADRILLOS
UBICACIÓN: CAJAMARCA TIPO DE MATERIAL: LADRILLO INDUSTR					LADRILLO INDUSTRIAL
FECHA DE MUESTRA: 11/10/19 RESPONSABLE:					
IL	FECHA DE ENS	AYO:	12/10/19	REVISADO POR:	

	DIMENSIONES DE FABRICACIÓN Largo:		230.00	mm			
ESPÉCIMEN		Longitud Efectiva (mm)					
ESPECIMEN	L1	L2	L3	L4	Lprom.		
LI-01	228.5	228.5	228.4	228.6	228.50		
LI-02	226.9	226.7	226.6	226.4	226.65		
LI-03	229.0	227.8	227.8	227.8	228.10		
LI-04	228.4	228.8	228.5	228.5	228.55		
LI-05	227.5	226.0	227.5	227.5	227.13		
LI-06	230.0	229.3	230.8	230.8	230.23		
LI-07	229.2	229.1	228.8	228.8	228.98		
LI-08	230.2	228.2	228.4	228.4	228.80		
LI-09	230.0	229.7	229.2	229.2	229.53		
LI-10	230.3	229.6	229.8	229.8	229.88		
		Lpromedio (mm)					
	Vai	Variabilidad Longitud (%)					

OBSERVACIO	ONES:			
RESPONSA	ABLE DEL ENSAYO	COORDINADO	R DE LABORATORIO	ASESOR
7	Voca f/2		July Z	fruit 5
NOMBRE: wax	her Steward Hermandez Roman	NOMBRE:	ALISSON PANHELA, AYALA BARRANTES	NOMBRE In Dr. Lie Vasgue Ramires
FECHA 83/xe	/14	FECHA: 83/10/19	Lebératoriés Especialization UPS-C UNIVERSIDAS PRIMASA DEL MORTE	FERHA: 23/10/19

LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA						
- ÷						
N	ENSAYO	VARIABILIDAD D	IMENSIONAL (%)	CÓDIGO DEL DOCUMENTO:		
7.4	NORMA	NTP 39	99.604	ALA-LC-UPNC:		
UNIVERSIDAD		"RESISTENCIA A LA C	COMPRESION DEL MOR	TERO USANDO DOS ADITIVOS:		
DEL NORTE	TESIS			E LADRILLO ARTESANAL Y		
	J	LADRILLO INDUSTRIA	AL, CAJAMARCA 2022"			
LADRILLERA:		ROMERO	TAMAÑO DE MUESTR	A: 10 LADRILLOS		
UBICACIÓN: CAJAMARCA TIPO DE MATERIAL:				LADRILLO ARTESANAL		
FECHA DE MUESTRA: 11/10/19 RESPONSABLE:						
FECHA DE ENSAYO: 12/10/19 REVISADO POR:						

	l argo:		NSIONES DE RICACIÓN Largo:		go:	210.00	mm
ESPÉCIMEN		Longitud Efectiva (mm)					
ESPECIMEN	L1	L2	L3	L4	Lprom.		
LA-01	208.0	208.0	208.0	207.7	207.93		
LA-02	207.0	207.6	207.9	207.4	207.48		
LA-03	208.3	208.5	209.6	209.0	208.85		
LA-04	208.0	208.0	207.9	207.8	207.93		
LA-05	208.0	208.0	208.0	207.6	207.90		
LA-06	207.0	207.5	207.4	208.1	207.50		
LA-07	208.0	208.0	207.9	208.0	207.98		
LA-08	208.5	208.3	208.9	207.7	208.35		
LA-09	209.0	208.4	208.4	207.4	208.30		
LA-10	208.6	208.5	208.0	209.0	208.53		
	Lpromedio (mm)			208.07			
	Variabilidad Longitud (%)				0.92%		

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
affect for	Juli Z	hunt
NOMBRE: watther strand Hernandez Paman	NOMBRE: ALISSON FAMELA MENA BARBANTES	NOMBRE Fy Dr. Lie Vasque (Ranires
FECHA 23/10/19	FECHA: 23 /10/19 Lebinitorile Bibliocalizades UPRIC UNIVERSIDAD PRIVADA DEL NORTE	FECHA: \$3/10/19

П		LABORA1	LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA					
Ш	* 4		PROTOCOLO					
Ш		ENSAYO	VARIABILIDAD D	IMENSIONAL (%)	CÓDIGO DEL DOCUMENTO:			
Ш	14	NORMA	NTP 39	99.604	ALA-LC-UPNC:			
Ш	UNIVERSIDAD		"RESISTENCIA A LA C	COMPRESION DEL MO	RTERO USANDO DOS ADITIVOS:			
Ш	DEL NORTE	TESIS	CAL Y HT-SIKALAT	EX PARA MUROS I	DE LADRILLO ARTESANAL Y			
Ш			LADRILLO INDUSTRIA	AL, CAJAMARCA 2022'	'.			
L	ADRILLERA:		SODIMAC	TAMAÑO DE MUESTR	RA: 10 LADRILLOS			
UBICACIÓN: CAJAMARC.			CAJAMARCA	TIPO DE MATERIAL:	LADRILLO INDUSTRIAL			
FECHA DE MUESTRA: 11/10/19				RESPONSABLE:				
E	ECHA DE ENS	SAYO:	12/10/19	REVISADO POR:				

DIMENSIONES DE FABRICACIÓN		Ancho:		125.00	mm
ESPÉCIMEN		Anch	o Efectivo	(mm)	
ESPECIMEN	A1	A2	A3	A4	Lprom.
LI-01	119.3	119.8	119.3	119.7	119.53
LI-02	121.9	121.6	122.4	123.2	122.28
LI-03	121.3	121.7	121.6	121.7	121.58
LI-04	121.7	121.8	121.8	122.5	121.95
LI-05	125.2	124.6	124.8	124.5	124.78
LI-06	124.4	125.0	124.4	124.7	124.63
LI-07	120.7	121.4	121.5	121.8	121.35
LI-08	125.0	125.5	125.6	125.3	125.35
LI-09	124.4	124.2	125.2	125.3	124.78
LI-10	120.1	122.4	122.3	122.2	121.75
		·	Aprome	edio (mm)	122.80
		Vari	iabilidad /	Ancho (%)	1.76%

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
affragef/2	Juli Z	fun/5
NOMBRE: watther steard Hernandez Promon	NOMBRE: ALISSON PANAELA MYALA BARRANTES	NOMBRE In Dr. This Vasgue Ramires
FECHA 23/10/19	FECHA: 23/10/14 Laboratoria Expansional MAC UNIVERSIDAD PROPERTIES	FECHA: 23/10/19

, A	LABORAT	LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA					
N. 17			PROTOCOLO				
	ENSAYO	VARIABILIDAD D	IMENSIONAL (%)	CÓDIGO DEL DOCUMENTO:			
7.4	NORMA	NTP 39		ALA-LC-UPNC:			
UNIVERSIDAD		"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADIT					
PRIVADA DEL NORTE	TESIS	CAL Y HT-SIKALAT	EX PARA MUROS I	DE LADRILLO ARTESANAL Y			
		LADRILLO INDUSTRIA	AL, CAJAMARCA 2022	'.			
LADRILLERA:		ROMERO	TAMAÑO DE MUESTR	RA: 10 LADRILLOS			
UBICACIÓN:		CAJAMARCA TIPO DE MATERIAL:		LADRILLO ARTESANAL			
FECHA DE MUESTRA: 11/10/19			RESPONSABLE:				
FECHA DE ENS	SAYO:	12/10/19	REVISADO POR:				

DIMENSIONES DE FABRICACIÓN		Ancho:		120.00	mm
ESPÉCIMEN		Anch	o Efectivo	(mm)	
ESPECIMEN	A1	A2	A3	A4	Lprom.
LA-01	120.1	121.0	120.6	120.0	120.43
LA-02	119.6	119.7	120.8	120.6	120.18
LA-03	121.4	121.4	121.5	120.9	121.30
LA-04	119.3	120.1	120.5	120.0	119.98
LA-05	119.9	120.6	120.4	120.4	120.33
LA-06	122.5	120.0	122.6	121.5	121.65
LA-07	121.0	121.5	120.6	119.7	120.70
LA-08	122.4	122.1	122.0	121.3	121.95
LA-09	121.2	122.3	122.2	122.4	122.03
LA-10	120.4	121.0	121.0	120.8	120.80
	Apromedio (mm) 120				120.93
		Variabilidad Ancho (%)			

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
affrageffe	July 2	Kunt
NOMBRE: walther steard Hernandez Roman	NOMBRE: ALISSON PAMELA MINIA BARRANTES	NOMBRE Try Dr. Inis Varguer Ramirez
FECHA 33/10/19	FECHA: 23/10/19 Lebinsonio Bipadalizados UPRG UNIVERSIDAD PRIMIDADEL MORTE	FECHA: 23/10/19

		LABORAT	LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA					
x 4				PROTOCOLO				
		ENSAYO	VARIABILIDAD D	IMENSIONAL (%)	CÓDIGO DEL DOCUMENTO:			
7.4		NORMA	NTP 39	99.604	ALA-LC-UPNC:			
UNIVERS	DAD		"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADITIVOS:					
DEL NORT	re	TESIS	CAL Y HT-SIKALAT	EX PARA MUROS I	DE LADRILLO ARTESANAL Y			
			LADRILLO INDUSTRIA	AL, CAJAMARCA 2022	'.			
LADRILLERA:			SODIMAC	TAMAÑO DE MUESTR	RA: 10 LADRILLOS			
UBICACIÓN:			CAJAMARCA	TIPO DE MATERIAL:	LADRILLO INDUSTRIAL			
FECHA DE MUESTRA: 11/10/19				RESPONSABLE:				
FECHA D	E ENS	AYO:	12/10/19	REVISADO POR:				

DIMENSIONES DE FABRICACIÓN		Altura:		90.00	mm
ESPÉCIMEN		Altur	a Efectiva	(mm)	
ESPECIMEN	H1			H4	Lprom.
LI-01	92.8	91.6	91.7	91.2	91.83
LI-02	91.4	90.4	90.0	90.3	90.53
LI-03	91.6	91.4	91.9	92.0	91.73
LI-04	92.0	91.2	91.1	90.9	91.30
LI-05	92.9	93.1	92.0	91.9	92.48
LI-06	92.0	91.7	91.5	91.6	91.70
LI-07	90.9	90.4	90.4	90.6	90.58
LI-08	91.6	91.3	91.3	91.5	91.43
LI-09	93.6	94.1	93.5	92.6	93.45
LI-10	92.0	91.7	91.5	91.8	91.75
		Hpromedio (mm) 91.68			
		Variabilidad Altura (%)			

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
a Joseffe	July 2	Junt 8
NOMBRE: walther strand Hernandez Person	NOMBRE: ALISSON PANELA MENLA BARRANTES	NOMBRE: In Dr. Luis Visignes Ramires
FECHA 23/10/19	FECHA: 23 /10/19 Lebératurés Expedializades UPINC UMINERODAD PRIVADA DEL NORTE	FECHA: \$3/10/19

	LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
		LABORA							
N 77				PROTOCOLO					
		ENSAYO	VARIABILIDAD D	IMENSIONAL (%)	CÓDIGO DEL DOCUMENTO:				
7.4		NORMA	NTP 39	99.604	ALA-LC-UPNC:				
	RSIDAD		"RESISTENCIA A LA C	COMPRESION DEL MO	RTERO USANDO DOS ADITIVOS:				
DEL NO		TESIS	CAL Y HT-SIKALAT	EX PARA MUROS I	DE LADRILLO ARTESANAL Y				
			LADRILLO INDUSTRIA	AL, CAJAMARCA 2022	'.				
LADRIL	LERA:		ROMERO	TAMAÑO DE MUESTR	RA: 10 LADRILLOS				
UBICACIÓN:			CAJAMARCA	TIPO DE MATERIAL:	LADRILLO ARTESANAL				
FECHA DE MUESTRA: 11/10/19			11/10/19	RESPONSABLE:					
FECHA	DE ENS	AYO:	12/10/19	REVISADO POR:					

DIMENSIONES DE FABRICACIÓN		Altura:		80.00	mm	
ESPÉCIMEN		Altur	a Efectiva	(mm)		
ESPECIMEN	H1			H4	Lprom.	
LA-01	78.4	78.0	78.7	78.1	78.30	
LA-02	77.3	78.4	79.0	79.4	78.53	
LA-03	77.1	77.7	79.0	79.1	78.23	
LA-04	77.5	77.3	77.2	77.1	77.28	
LA-05	78.4	78.1	78.3	78.3	78.28	
LA-06	78.0	76.8	77.1	77.3	77.30	
LA-07	79.1	78.3	79.1	78.8	78.83	
LA-08	77.3	77.7	79.7	79.8	78.63	
LA-09	78.4	79.7	79.2	78.7	79.00	
LA-10	81.0	79.6	79.1	79.3	79.75	
		Hpromedio (mm) 78.41				
		Variabilidad Altura (%) 1.99%				

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
a Joseph	July &	hunts
NOMBRE: walther steard Hernounder fromm	NOMBRE: ALISSON PANELA MALA BARRANTES	NOMBRE Ty Dr. This Virgue Ramirez
FECHA 23/co/c9	FECHA: 23 /10/14 Laptinization Expansional UNIVERSIDAD PRIMADADE, MORTE	FECHA: 23/10/19

, <u>4</u>	LABORA	ORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO			
M	ENSAYO	ALA	BEO	CÓDIGO DEL DOCUMENTO:	
7.4	NORMA	NTP:	E.070	ALA-LC-UPNC:	
UNIVERSIDAD				TERO USANDO DOS ADITIVOS:	
DEL NORTE	TESIS		CAL Y HT-SIKALATEX PARA MUROS DE LADRILLO		
		LADRILLO INDUSTRIA	AL, CAJAMARCA 2022".		
LADRILLERA:		ROMERO	TAMAÑO DE MUESTRA	A: 10 LADRILLOS	
UBICACIÓN:		CAJAMARCA TIPO DE MATERIAL: LADRILLO ARTESANAL			
FECHA DE MUI					
FECHA DE ENS	SAYO:	12/1019 REVISADO POR:			

ALABEO					
	CARA A		CARA B		
ESPÉCIMEN	CÓNCAVO	CONVEXO	CÓNCAVO	CONVEXO	
	(m	(mm)		im)	
LA-01	5	-	7	5	
LA-02	3	-	5	7	
LA-03			2	4	
LA-04	3	-	9	5	
LA-05	2	-	2	1	
LA-06	9		1	-	
LA-07	3		-	1	
LA-08	4		-	5	
LA-09	1		3	4	
LA-10			4	-	
PROMEDIO (mm)	3.75	-	4.13	4.00	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
affragffe	July &	Sant 1
NOMBRE: walther strand Hernolides fromm	NOMBRE: ALISSON PANNELA, MIALA BARRANTES	NOMBRE: Try Dr. Lis Vasgue Ramirez
FECHA 23/Lo/L9	FECHA: 23 /10/19 Laboratoria Expensionados UPRO UNIVERSIDA PER NORTE	FECHA: \$3/10/19

	LABORAT	ORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA			
7 17		PROTOCOLO			
N	ENSAYO	ALAI	BEO	CÓDIGO DEL DOCUMENTO:	
7.4	NORMA	NTP:	E.070	ALA-LC-UPNC:	
UNIVERSIDAD		"RESISTENCIA A LA C	COMPRESION DEL MOF	RTERO USANDO DOS ADITIVOS:	
DEL NORTE	TESIS	CAL Y HT-SIKALAT	EX PARA MUROS [E LADRILLO ARTESANAL Y	
		LADRILLO INDUSTRIA	AL, CAJAMARCA 2022'		
LADRILLERA:		SODIMAC	TAMAÑO DE MUESTR	A: 10 LADRILLOS	
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO INDUSTRIAL	
FECHA DE MUE	ESTRA:	11/10/19 RESPONSABLE:			
FECHA DE ENS	SAYO:	12/10/19	REVISADO POR:		

ALABEO					
	CA	RA A	CARA B		
ESPÉCIMEN	CÓNCAVO	CONVEXO	CÓNCAVO	CONVEXO	
	(n	nm)	(m	m)	
LI-01	4	-	4	-	
LI-02	4	-	1	-	
LI-03	1	-	4	-	
LI-04	3	-	5	-	
LI-05	3	-	5	-	
LI-06	4	-	1		
LI-07	4	-	1		
LI-08	7	-	-	-	
LI-09	7	-	-		
LI-10	1	-	1	-	
ROMEDIO (mm)	3.80	-	2.75	-	

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR,
aff said for	July 2	funds
NOMBRE: walther strand Hernandez Pernan	NOMBRE: ALISSON PANELAMENA BARRANTES	NOMBRE To Dr. Lis Varguez Ramirce
FECHA 23/10/19	FECHA: \$3/10/19 Leptratures Expenditures UPINC UNIVERSIDAD PROMBADO. NORTE	FECHA 23/10/19

1	LABORAT	ABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA				
N 19		PROTOCOLO				
N	ENSAYO	ABSOF	RCIÓN	CÓDIGO DEL DOCUMENTO:		
7.4	NORMA	NTP 399.613	NTP 399.604	ALA-LC-UPNC:		
UNIVERSIDAD		"RESISTENCIA A LA C	COMPRESION DEL MOR	TERO USANDO DOS ADITIVOS:		
DEL NORTE	TESIS	CAL Y HT-SIKALAT	EX PARA MUROS D	E LADRILLO ARTESANAL Y		
		LADRILLO INDUSTRIAL, CAJAMARCA 2022".				
LADRILLERA:		ROMERO	TAMAÑO DE MUESTR	A: 5 LADRILLOS		
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO ARTESANAL		
FECHA DE MUI	ESTRA:	11/10/19 RESPONSABLE:				
FECHA DE ENS	SAYO:	13/10/19	REVISADO POR:			

UNIDAD	Wi (Kg)	Ws (Kg)	Wd (Kg)	Absorsión (Kg/m3)	Absorción %
LA-06	1.200	3.360	2.975	178.075	12.92%
LA-07	1.219	3.384	2.892	227.113	17.00%
LA-08	1.219	3.461	2.993	208.636	15.63%
LA-09	1.252	3.512	3.046	206.387	15.32%
LA-10	1.253	3.493	2.982	228.159	17.14%
ABSORCIÓN PROMEDIO				209.674	15.60%

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
aff reaffe	July 2	hant
NOMBRE: walther strand Hernander Remain	NOMBRE: ALISSON PANELA MENTA BARRANTES	NOMBRE In Dr. Juis Vasque Ranirez
FECHA 25/10/19	FECHA: 23 /10/19 Lipotatorios Expecializados UMAC UMATERIO DA PROJUDA DEL MONTE.	FECHA: 23/10/19

ı	LABORAT	TORIO DE CONCRETO		A DEL NORTE CAJAMARCA
N 17			PROTOCOLO	
N	ENSAYO	ABSOF	RCIÓN	CÓDIGO DEL DOCUMENTO:
7.4	NORMA	NTP 399.613	NTP 399.604	ALA-LC-UPNC:
UNIVERSIDAD	TESIS	"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADITIVOS:		
DEL NORTE		CAL Y HT-SIKALAT	EX PARA MUROS DE	LADRILLO ARTESANAL Y
		LADRILLO INDUSTRIA	AL, CAJAMARCA 2022".	
LADRILLERA:		SODIMAC	TAMAÑO DE MUESTRA	: 5 LADRILLOS
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO INDUSTRIAL
FECHA DE MUI	ESTRA:	11/10/19	RESPONSABLE:	
FECHA DE ENS	SAYO:	13/10/19	REVISADO POR:	

UNIDAD	Wi (Kg)	Ws (Kg)	Wd (Kg)	Absorsión (Kg/m3)	Absorción %
LI-06	1.487	3.370	2.945	225.279	14.40%
LI-07	1.461	3.419	2.982	223.419	14.67%
LI-08	1.463	3.370	2.938	226.529	14.70%
LI-09	1.486	3.411	2.975	226.354	14.65%
LI-10	1.463	3.344	2.936	217.156	13.92%
	ABSORCIÓN	223.747	14.47%		

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR /
uJosef/e-	July Z	Kuth
NOMBRE: walther steard Hernander Person	NOMBRE: ALISSON PANELA MALA BARRANTES	NOMBRE Ly Dr. Lis Vasgue Ranires
FECHA 23/10/19	FECHA: 23/10/19 Legislatures Expenditures UNIC UNIVERSIDAD PROMINE ADMINISTRATION OF THE PROMINE	FECHA: 23/10/19

. Á	LABORA	TORIO DE CONCRETO	– UNIVERSIDAD PRIVA PROTOCOLO	DA DEL NORTE CAJAMARCA	
	ENSAYO	SUC	CIÓN	CÓDIGO DEL DOCUMENTO:	
7.4	NORMA	NTP	399.613	ALA-LC-UPNC:	
UNIVERSIDAD PRIVADA		"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LADRILLO ARTESANAL Y			
DEL NORTE	TESIS		TEX PARA MUROS D IAL, CAJAMARCA 2022"		
LADRILLERA:	•	ROMERO	TAMAÑO DE MUESTRA	: 5 LADRILLOS	
UBICACIÓN: CA		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO ARTESANAL	
FECHA DE MUESTRA: 11/10/19		11/10/19	RESPONSABLE:		
FECHA DE ENS	SAYO:	12/10/19	REVISADO POR:		

	CARA - SUPERIOR DE ASIENTO						
UNIDAD	Pseco (Kg)	Pmojado (Kg)	B (cm)	L (cm)	Succión (g/min/200cm2)		
LA-01	2.887	2.936	120.425	207.925	0.391		
LA-02	2.950	2.985	120.175	207.475	0.281		
LA-03	2.925	2.968	121.300	208.850	0.339		
LA-04	2.933	2.984	119.975	207.925	0.409		
LA-05	2.975	3.020	120.325	207.900	0.360		
PROMEDIO	2.934	2.979	120.440	208.015	-		
SUCCIÓN (g/minuto/200cm2)				0.356			

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORI	O ASESOR
a Joseph -	July &	funt to
NOMBRE: walther strend Hernolides fromm	NOMBRE: ALISSON PANELA MALA BARRA	NOMBRE: Try Dr. Lie Vasgue Ramires
FECHA 23/10/19	FECHA: 23 /10/19 Legislatoria Especializadas UM UNIFERCIDA PROVIDA DEL NO	FECHA: 23/10/19

Г	,	LABORA	TORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA			
Ш	7. 77			PROTOCOLO		
Ш	N	ENSAYO	SUC	CCIÓN	CÓDIGO DEL DOCUMENTO:	
Ш	TA	NORMA	****	399.613	ALA-LC-UPNC:	
Ш	UNIVERSIDAD		"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADITIVOS:			
Ш	PRIVADA DEL NORTE	TESIS	CAL Y HT-SIKALA	TEX PARA MUROS [E LADRILLO ARTESANAL Y	
L			LADRILLO INDUSTR	IAL, CAJAMARCA 2022		
I	LADRILLERA:		SODIMAC	TAMAÑO DE MUESTRA	: 5 LADRILLOS	
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO INDUSTRIAL		
FECHA DE MUESTRA: 11/10/19		11/10/19	RESPONSABLE:			
	FECHA DE ENS	SAYO:	12/10/19	REVISADO POR:		

	CARA - SUPERIOR DE ASIENTO						
UNIDAD	Pseco (Kg)	Pmojado (Kg)	B (cm)	L (cm)	Succión (g/min/200cm2)		
LI-01	2.988	3.096	119.53	228.50	0.791		
LI-02	2.974	3.104	122.28	226.65	0.938		
LI-03	2.997	3.111	121.58	228.10	0.822		
LI-04	3.017	3.068	121.95	228.55	0.366		
LI-05	2.924	3.054	124.78	227.13	0.917		
PROMEDIO	2.980	3.087	122.020	227.785			
SUCC	SUCCIÓN (g/minuto/200cm2)			0.767			

OBSERVACIONES:			
RESPONSABLE DEL ENSAYO	COORDINADOR	DE LABORATORIO	ASESOR
aff reaffe		July Z	huth
NOMBRE: wolther steard Hernander Remain	NOMBRE:	ALISSON PANNELA MYALA BARRANTES	NOMBRE: In Dr. Lie Vargues Kaniver
FECHA 23/10/19	FECHA: \$3/10/19	Universidate Expecializados UPIN-C UNIVERSIDAD PROVADA DEL NORTE	FECHA: 83/10/19

LABORATORIO DE CONCRETO - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA						
		PROTOCOLO				
ENSAYO			CÓDIGO DEL DOCUMENTO:			
NORMA	NT	ALA-LG-UPNO				
TESIS	ADITIVOS: CAL Y H	T-SIKALATEX PARA MUR	OS DE LADRILLO ARTESANAL			
	ROMERO	TAMAÑO DE MUESTRA	A: 5 LADRILLOS			
UBICACIÓN:		TIPO DE MATERIAL:	LADRILLO ARTESANAL			
FECHA DE MUESTRA:		RESPONSABLE:				
AYO:	12/10/19	REVISADO POR:				
	ENSAYO NORMA TESIS	ENSAYO RESISTENCIA A LA COEFICIENTE NORMA "RESISTENCIA A ADITIVOS: CAL Y H Y LADRILLO INDUS ROMERO CAJAMARCA STRA: 11/10/19	PROTOCOLO ENSAYO RESISTENCIA A LA COMPRESIÓN (f'b) Y COEFICIENTE DE VARIACIÓN (%) NORMA NTP E 070 "RESISTENCIA A LA COMPRESION DE ADITIVOS: CAL Y HT-SIKALATEX PARA MUR Y LADRILLO INDUSTRIAL, CAJAMARCA 202 ROMERO TAMAÑO DE MUESTRA CAJAMARCA TIPO DE MATERIAL: STRA: 11/10/19 RESPONSABLE:			

ESPÉCIMEN	Lo (cm)	Ao (cm)	Ho (cm)	CARGA MÁX. (Kg)	ÁREA (cm²)	fb = P/A (Kg/cm ²)
LA-06	20.79	12.04	7.83	21168.00	250.39	84.54
LA-07	20.75	12.02	7.85	22784.00	249.33	91.38
LA-08	20.89	12.13	7.82	18704.00	253.34	73.83
LA-09	20.79	12.00	7.73	14972.00	249.46	60.02
LA-10	20.79	12.03	7.83	16357.00	250,16	65.39
			•	fb promedic	. (kg/cm²)	75.03
				Desviación E	stándar (σ)	13.01
				f'b (kg	/cm²)	62.02
				Coeficiente de	variación (%)	17.35%

OBSERVACIONES:				
RESPONSABLE DEL ENSAYO	COORDINADO	R DE LABORATORIO	7	ASESOR
- Franky		July 2	for	wiff
NOMBRE: watther stead Hernauter Francis	NOMBRE:	ALISSON PIANELA MENA BARRANTES	NOMBRE:T-	3 Dr. Lus Vorgers Rames
FECHA 23/x0/x9	FECHA: 23/10/19	Landratorilla Expecialization UPVI-C UNIVERDIDAD PROMISA DEL NORTE	FECHA: 23	10/19

	LABORAT	ORIO DE CONCRETO	THE RESERVE THE PARTY OF THE PA	A DEL NORTE CAJAMARCA	
		And the second s	PROTOCOLO	All I	
UNIVERSIDAD PRIVADA DEL NORTE	ENSAYO		A COMPRESIÓN (f'b) Y DE VARIACIÓN (%)	CÓDIGO DEL DOCUMENTO: ALA-LC-UPNC:	
	NORMA	NT	P E 070	ALA-LO-OF NO	
	TESIS	"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LADRILLO ARTESANAI Y LADRILLO INDUSTRIAL, CAJAMARCA 2022".			
LADRILLERA:		SODIMAC	TAMAÑO DE MUESTRA	A: 5 LADRILLOS	
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO INDUSTRIAL	
FECHA DE MU	ESTRA:	11/10/19	RESPONSABLE:		
FECHA DE ENSAYO:		12/10/19	REVISADO POR:		

ESPÉCIMEN	Lo (cm)	Ao (cm)	Ho (cm)	CARGA MÁX. (Kg)	ÁREA (cm²)	fb = P/A (Kg/cm ²)
LI-06	22.85	11.95	9.18	19028.00	273.11	69.67
LI-07	22.67	12.23	9.05	24817.00	277.14	89.55
LI-08	22.81	12.16	9.17	19671.00	277.31	70.93
LI-09	22.86	12.20	9.13	19980.00	278.72	71.69
LI-10	22.71	12.48	9.25	17152.00	283.40	60.52
		-	•	fb promedic	o. (kg/cm²)	72.47
				Desviación E	stándar (σ)	10.55
				f'b (kg	/cm²)	61.92
				Coeficiente de	variación (%)	14.56%

OBSERVACIONES:			
RESPONSABLE DEL ENSAYO	COORDINADO	R DE LABORATORIO	ASESOR
a free flo		July 2	Sample
NOMBRE: walker should Hernauder Flower	NOMBRE:	ALISSON FINNELA MIALA BARRANTES	NOMBRE Jug Dr Jus Vargue Parior
FECHA 23/x0/x9	FECHA: さっ/いっ/いつ	Legislation of Provide Signature Communication Communicati	FECHA: 23/10/19

	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA					
Ń	1	PROTOCOLO							
	ENSAYO:		D DE HUMEDAD DE REGADOS	CÓDIGO DEL DOCUMENTO:					
Charles and Charles	NORMA:	MTC E 108 / AST	TM D2216 / NTP 400.010	CH-LS-UPNC:					
UNIVERSIDAD PRIVADA DEL NORTE	TESIS:	"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LADR ARTESANAL Y LADRILLO INDUSTRIAL, CAJAMARCA 2022"							
CANTERA:		"3M" - Rio	TIPO DE MATERIAL:	AGREGADO FINO					
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:						
FECHA DE N	(UESTREO:	31/10/19	RESPONSABLE:						
FECHA DE E	NSAYO:	02/11/19	REVISADO POR:						

 Temperatura de Secado
 Método

 60 °C / 110 °C /Ambiente
 Horno 110 ± 5 °C

	C	ONTEN	IDO DE H	UMEDAD)	W.		
ID	DESCRIPCIÓN	UND	1	2	3	4	5	6
Α	Identificación del recipiente o Tara		T1	T2	Т3	T4	T5	Т6
В	Peso del Recipiente	gr	29.80	28.80	28.50	27.70	28.20	27.80
С	Recipiente + Suelo Húmedo	gr	119.60	133.90	137.20	138.90	113.00	137.40
D	Recipiente + Suelo Seco	gr	108.90	121.30	124.80	126.10	103.90	124.70
E	Peso del suelo húmedo	gr	89.80	105.10	108.70	111.20	84.80	109.60
F	Peso Suelo Seco	gr	79.10	92.50	96.30	98.40	75.70	96.90
Н%	Porcentaje de humedad	%	11.92	11.99	11.41	11.51	10.73	11.59
G	Promedio Porcentaje Humedad	%	34.00		11	.52		

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Marffe	July &	Kuth
NOMBRE: wather should Herneinder Franch	NOMBRE: ALISSON PLANELA MINIA BARRANTES	NOMBRE IT Dr. Lis Vargers Ramires
FECHA 07/1/19	FECHA: 67/11/19 Listoriums Baselinous UPPA-	FECHA: 67/11/19

UNIVERSIDAD PRIVADA DEL MORTE	PROTOCOLO							
	ENSAYO		CÍFICA Y ABSORCIÓN DE GADOS FINOS	CÓDIGO DEL DOCUMENTO:				
	NORMA	MTC E205 – ASTM C128 – NTP 400.022						
	TESIS	"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LADRILLO ARTESANAL Y LADRILLO INDUSTRIAL, CAJAMARCA 2022"						
CANTERA:	-	"3M"	TIPO DE CANTERA:	RIO				
		CAJAMARCA	COLOR DE MATERIAL:					
UBICACIÓN:								
UBICACIÓN: FECHA DE N		31/10/19	RESPONSABLE:					

ID	DESCRIPCIÓN	UND	1	2	3	RESULTADO
A	Peso Saturado Superficialmente Seco del suelo (Psss)	gr	500.00	500.00	500.00	
В	Peso del frasco + agua hasta marca de 500ml	gr	1303.40	1303.40	1304.10	
С	Peso del frasco + agua + Psss,	gr	1803.40	1803.40	1804.10	P R O
D	Peso del frasco + Psss + agua hasta la marca de 500ml	gr	1603.60	1609.60	1608.90	M E
E	Volumen de masa + volumen de vacio,	cm ³	199.80	193.80	195.20	I O
F	Peso seco del suelo (en estufa a 105°C ± 5°C)	gr	478.30	475.90	472.90	
G	Volumen de masa,	cm ³	178.10	169.70	168.10	
н	Peso específico bulk (base seca),	gr/cm ³	2.39	2.46	2.42	2.42
1	Peso específico (base saturada),	gr/cm³	2.50	2.58	2.56	2.55
J	Peso específico aparente (base seca),	gr/cm ³	2.69	2.80	2.81	2.77
ĸ	Absprción,	%	4.54	5.06	5.73	5.11

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
m Joure fla	Chief &	that I
NOMBRE: walthur strand Hermonder Francis	NOMBRE: ALISSON PANELA MELLA BARRANTES	NOMBRE TO Dr. Los Vingues Rame
FECHA 67/1/19	FECHA: 67/1/19 Laboratoria population UNIC	FECHA OTILIZE

	LABORA	LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA					
A			PROTOCOLO				
N	ENSAYO		NULOMÉTRICO DE ADOS FINOS	CÓDIGO DEL DOCUMENTO: AGGF-LC-UPNC:			
	NORMA	MTC E204 - ASTI	M C136 - NTP 400.012	AGGF-EC-OFNC			
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		PEL MORTERO USANDO DOS ARA MUROS DE LADRILLO CAJAMARCA 2022"				
CANTERA:	•	"3M" - Rio	MODULO DE FINURA 2.08				
UBICACIÓN	l:	CAJAMARCA	PASA N° 4 (gr):	500			
FECHA DE	MUESTRA:	31/10/19	RESPONSABLE:				
FECHA DE	FECHA DE ENSAYO: 02/11/19 REVIS		REVISADO POR:				

N°	TA	MIZ	PESO	% RETENIDO		% QUE PASA		
N	(pulg)	(mm)	RETENIDO (gr)	RETENIDO (%)	ACUMULADO (%)	ARENA	ESPECIF	ICACIÓN
1	1 1/2"	37.50						
2	1"	25.00						
3	3/4"	19.00						
4	1/2"	12.50						
5	3/8"	9.50	-	-	-	-	100	100
6	N° 4	4.75	0	0.00	0.00	100.00	100	100
7	N° 8	2.36	9.7	1.94	1.94	98.06	95	100
8	N° 16	1.18	76.9	15.39	17.33	82.67	70	100
9	N° 30	0.60	107.7	21.55	38.88	61.12	40	75
10	N° 50	0.30	168.2	33.65	72.53	27.47	10	35
11	N° 100	0.15	108.7	21.75	94.28	5.72	2	15
12	N° 200	0.075	23.8	4.76	99.04	0.96	0	2
13	Fondo	0	4.8	0.96	100.00	0.00	0	0

NOMBRE: Walker Should His wonder Famon NOMBRE: AUSSIN FINANCIA BARRANTES NOMBRE: To July Vinague Ramirez Fecha 07/11/19 FECHA: 07/11/19 FECHA:

J.		PROTOCOLO						
N	ENSAYO	PESO ESPECÍFICO DEL CEMENTO HIDRAULICO (FRASCO DE LE CHATELIER) CÓDIGO DEL DOCUMENTO						
UNIVERSIDAD PRIVADA DEL NORTE	NORMA	MTC E610 - ASTM C188 - NTP 334.005						
	TESIS	"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LADRILLO ARTESANAL Y LADRILLO INDUSTRIAL, CAJAMARCA 2022"						
TIPO DE CE	MENTO:	PORTLAND TIPO I	MUESTRA N°:					
louinour	117400	GASOLINA	N° DE FRASCO	1				
LÍQUIDO UTILIZADO:		NAFTA	RESPONSABLE:					

ID	DESCRIPCIÓN	UND	1	2	3
A	Peso de cemento utilizado (gr)	gr	64.00	64.00	64.00
В	Volumen Inicial (cm³)	cm ³	0.00	0.00	0.00
С	Volumen Final (cm ³)	cm ³	20.30	20.50	20.30
D	Volumen Desplazado,	cm ³	20.30	20.50	20.30
E	Peso Específico del Cemento Hidráulico (gr/cm³)	gr/cm ³	3.15	3.12	3.15
F	Peso Específico del agua a 4°C	gr/cm ³	1.00	1.00	1.00
G	Peso Específico Relativo del Cemento	23	3.15	3.12	3.15
Н	Temperatura del Ensayo (°C)	°C	17.30	17.90	17.50
ı	Peso Específico Promedio del Cemento (gr/cm³)	gr/cm ³		3.14	

RANGO ACEPTABLE DEL PESO ESPECÍFICO DEL CEMENTO					
TIPO DE CEMENTO	PESO ESPECÍFICO				
CEMENTO NORMAL	3.10 gr/cm ³ - 3.15 gr/cm ³				
CEMENTO ADICIONADO	3.00 gr/cm ³ - 3.10 gr/cm ³				

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
affect for	July &	16
NOMBRE: Walker Stated Harmander Fernan	NOMBRE: ALISSON PANELA MOLLA BARRANTES	NOMBRE Dr. Las Virgies Rames
FECHA 23/10/19	FECHA: 23/10/19 Legintonia processiona unic	FECHA: 23/10/19

			PROTOCOLO	
N	ENSAYO		OMPRESIÓN - PILAS DE ALBAÑILERÍA	CÓDIGO DEL DOCUMENTO: ALA-LC-
UNIVERSIDAD PRIVADA DEL NORTE	NORMA	NTI	UPNC:	
	TESIS	"RESISTENCIA A ADITIVOS: CAL Y ARTESANAL Y LAD		
LADRILLERA:		ROMERO	TAMAÑO DE MUESTRA	6 PILAS
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO ARTESANAL
FECHA DE MUE	STRA:	08/11/19	RESPONSABLE:	
FECHA DE ENSAYO:		30/11/19	REVISADO POR:	
MUESTREO:		SIN DOSIFICACION DE ADITIVO		

ESPÉCIMEN	DIMENSIONES			Pmáx		ÁREA: L*t	f'm = Pmáx/Ab
	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2
TA-01	20.80	12.01	26.22	21127	2.18	249.81	84.57
TA-02	20.70	12.06	26.14	22854	2.17	249.64	91.55
TA-03	20.83	12.00	26.43	21081	2.20	249.96	84.34
TA-04	20.80	12.15	25.45	22748	2.10	252.72	90.01
TA-05	20.80	12.21	26.48	21818	2.17	253.97	85.91
TA-06	20.70	12.23	26.52	23475	2.17	253.16	92.73
PROMEDIO					2.16	251.54	88.18
Factor (FC)					0.74		2
				×	- form	carragida -	65.256

fm corregido =	65.256
Desv. Estándar (σ)	3.696
f'm (kg/cm2)	61.560

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
aff rear ffe	July &	Ats
NOMBRE: walther strand Mernander flower	NOMBRE: ALISSON PANELA ATMA BARRANTES	NOMBRETTA Dr. Los Vargers Ramer
FECHA 50/U/19	FECHA: 50/Ls/19 Laboratoria Biologicana UPITO	FERHA: 50/11/19

Desv. Estándar (0)

f'm (kg/cm2)

4.654

62.349

	LABORATO	RIO DE CONCRETO -	IINIVERSIDAD PRIVAD	Δ DE	I NORTE CAJAMARCA		
A.	LABORATO	LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO					
NY	ENSAYO	RESISTENCIA A COMPRESIÓN - PILAS			CÓDIGO DEL		
13	ENGATO	DE UNIDADES DE ALBAÑILERÍA			DOCUMENTO: ALA-LC-		
UNIVERSIDAD	NORMA	NTP	E.070		UPNC:		
PRIVADA	TESIS	"RESISTENCIA A L	A COMPRESION DEL	. MO	RTERO USANDO DOS		
DEL NORTE		ADITIVOS: CAL Y	HT-SIKALATEX PAR	A N	IUROS DE LADRILLO		
		ARTESANAL Y LADRILLO INDUSTRIAL, CAJAMARCA 2022"					
LADRILLERA:		ROMERO	TAMAÑO DE MUESTR	RA:	6 PILAS		
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:		LADRILLO ARTESANAL		
FECHA DE MUE	STRA:	08/11/19	RESPONSABLE:				
FECHA DE ENS	AYO:	30/11/19	REVISADO POR:				
MUESTREO:		CON DOSIFICACION	AL 4% DE CAL				

RESISTENCIA A COMPRESIÓN - PILAS DE UNIDADES DE ALBAÑILERÍA							
ESPÉCIMEN	DIMENSIONES			Pmáx	F-1-10	ÁREA: L*t	f'm = Pmáx/Ab
	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2
PAC4%-01	20.80	12.01	26.52	23087	2.21	249.81	92.42
PAC4%-02	20.70	11.96	26.35	22854	2.20	247.57	92.31
PAC4%-03	20.80	12.14	26.11	21127	2.15	252.51	83.67
PAC4%-04	20.85	11.93	25.96	20826	2.18	248.74	83.73
PAC4%-05	20.90	11.99	26.87	23672	2.24	250.59	94.46
PAC4%-06	20.86	12.25	26.45	22854	2.16	255.54	89.44
PROMEDIO					2.19	250.79	89.34
Factor (FC)					0.75		
					fm	corregido =	67.003

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
u Joseph -	July Z	146
NOMBRE: Walthur Strand Hernomber Roman	NOMBRE: ALISSON PANNELA MENA BARRANTES	NOMBREITY Dr. Inib Vineyer Ramivez
FECHA 30/U/19	FECHA: 30/U/L9 Lebonstone Separations UNIC	FECHA: 80/U/L9

Desv. Estándar (o)

f'm (kg/cm2)

2.394

65.631

,	LABORATO	THE DE CONCILETO	- UNIVERSIDAD PRIVADA PROTOCOLO	DEL HOITTE OADAMA	TOA
N	ENSAYO	RESISTENCIA A C DE UNIDADES	CÓDIGO DEL DOCUMENTO: ALA-LC- UPNC:		
UNIVERSIDAD	NORMA	NTI			
PRIVADA DEL NORTE	TESIS		MORTERO USANDO A MUROS DE LADR AMARCA 2022"	1	
LADRILLERA:		ROMERO	TAMAÑO DE MUESTRA	RA: 6 PILAS	
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO ARTESA	ANAL
FECHA DE MUE	STRA:	08/11/19	RESPONSABLE:		
FECHA DE ENS	AYO:	30/11/19	REVISADO POR:		
MUESTREO:		CON DOSIFICACION	N AL 6% DE CAL	Mi.	

PAC6%-01 PAC6%-02 PAC6%-03 PAC6%-04	L (cm) 20.80	t (cm)	H (cm)	1,000			
PAC6%-02 PAC6%-03	20.80			kg	Esbeltez = H/t	cm2	Kg/cm2
PAC6%-03		12.10	26.45	23909	2.19	251.68	95.00
	20.76	11.97	26.87	22530	2.25	248.50	90.67
PAC6%-04	20.85	12.14	26.52	23106	2.19	253.12	91.29
	20.81	12.01	26.21	22041	2.18	249.93	88.19
PAC6%-05	20.83	12.06	26.12	22331	2.17	251.21	88.89
PAC6%-06	20.75	11.94	26.40	22340	2.13	247.76	90.17
PROMEDIO				-	2.18	250.36	90.70
Factor (FC)					0.75	8 8	
- 2					fm	corregido =	68.025

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
affect/2	July &	hunt
NOMBREWAYAN Shord Hornander Francis	NOMBRE: ALISSON FILMELA MALA BARRANTES	NOMBRE To Dr. July Vinages Paris

Desv. Estándar (a)

f'm (kg/cm2)

NOMBRE:

2.400

64.727

			PROTOCOLO			
N	ENSAYO		COMPRESIÓN - PILAS DE ALBAÑILERÍA	CÓDIGO DOCUMENTO:	Maria Carana	
UNIVERSIDAD	NORMA	NTI	P E.070	UPNC:		
PRIVADA DEL NORTE	TESIS	ADITIVOS: CAL	LA COMPRESION DEL Y HT-SIKALATEX PARA PRILLO INDUSTRIAL, CAJ	MUROS DE		
LADRILLERA:		ROMERO	TAMAÑO DE MUESTRA	A: 6 PI	LAS	
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO A	RTESANAL	
FECHA DE MUE	ESTRA:	08/11/19	RESPONSABLE:			
FECHA DE ENS	SAYO:	30/11/19	REVISADO POR:	O POR:		
MUESTREO:		CON DOSIFICACION	NAL 4% DE HT-SIKALATE	X		

ESPÉCIMEN	DIMENSIONES			Pmáx	ÁREA: L*t	f'm = Pmáx/Ab	
ESPECIMEN	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2
PAS4%-01	20.79	12.06	26.88	22593	2.23	250.73	90.11
PAS4%-02	20.80	12.08	26.46	22902	2.19	251.26	91.15
PAS4%-03	20.74	12.15	26.52	22945	2.18	251.99	91.05
PAS4%-04	20.79	12.05	26.11	22280	2.17	250.52	88.94
PAS4%-05	20.89	12.04	26.87	22853	2.23	251.52	90.86
PAS4%-06	20.84	12.26	25.96	21693	2.12	255.50	84.90
PROMEDIO				111	2.19	251.92	89.50
Factor (FC)					0.75		8
V.	7			Ŷ	fm	corregido =	67.127

SERVACIONES:		
ESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR /
		11 1 11

A AYALA BARRANTES

NOMBRE:

NOMBRE: WATHER Should Hernandez P

FECHA

			PROTOCOLO		
N	ENSAYO	Proceedings (1997) 100 (1997) 100 (1997) 100 (1997)	OMPRESIÓN - PILAS DE ALBAÑILERÍA	CÓDIG DOCUMENT	The state of the s
UNIVERSIDAD	NORMA	NTF	P E.070	UPNC:	
PRIVADA DEL NORTE	TESIS	"RESISTENCIA A ADITIVOS: CAL Y ARTESANAL Y LAD	MUROS D	E LADRILLO	
LADRILLERA:		ROMERO	TAMAÑO DE MUESTRA	A: 6	PILAS
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO	ARTESANAL
FECHA DE MUE	ESTRA:	08/11/19	RESPONSABLE:		
FECHA DE ENS	AYO:	30/11/19	REVISADO POR:		
MUESTREO:		CON DOSIFICACION	AL 6% DE HT-SIKALATE	X	

rentemen	DIMENSIONES			Pmáx		ÁREA: L*t	f'm = Pmáx/Ab
ESPÉCIMEN	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2
PAS6%-01	20.77	12.00	26.11	22375	2.18	249.24	89.77
PAS6%-02	20.74	12.06	26.87	22540	2.23	250.12	90.12
PAS6%-03	20.90	12.09	26.45	22210	2.19	252.68	87.90
PAS6%-04	20.78	12.00	26.28	22966	2.19	249.36	92.10
PAS6%-05	20.76	12.04	26.12	22580	2.17	249.95	90.34
PAS6%-06	20.81	12.15	26.45	23853	2.18	252.84	94.34
PROMEDIO					2.19	250.70	90.76
Factor (FC)					0.75		6
- 0					fm	corregido -	68.070

8 88	fm corregido =	68.070
	Desv. Estándar (σ)	2.208
	f'm (kg/cm2)	65.863

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
aff out ffe	Cinfle &	huts
NOMBRE: Walthur Strand Her nowder Hamm	NOMBRE: AUSSON FEMELA ATALA BARRANTES	NOMBRETTO DE Juis Visignes Passires
FECHA 30/11/19	FECHA: 30/LI/L9 Librarons phisosphine UPINC	FECHA: 50/U/19

		PROTOCOLO					
N	ENSAYO		OMPRESIÓN - PILAS DE ALBAÑILERÍA	CÓDIGO DEL DOCUMENTO: ALA-LC-			
UNIVERSIDAD	NORMA	NTI	P E.070	UPNC:			
PRIVADA DEL NORTE	TESIS	ADITIVOS: CAL	LA COMPRESION DEL I Y HT-SIKALATEX PARA PRILLO INDUSTRIAL, CAJA				
LADRILLERA:		SODIMAC	TAMAÑO DE MUESTRA:	6 PILAS			
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO INDUSTRIAL			
FECHA DE MUE	STRA:	08/11/19	RESPONSABLE:				
FECHA DE ENS	AYO:	30/11/19 REVISADO POR:					
MUESTREO:		SIN DOSIFICACION	DE ADITIVO	10			

rentement	DIMENSIONES			Pmáx		ÁREA: L*t	f'm = Pmáx/Ab
ESPÉCIMEN	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2
TI-01	22.84	11.93	29.31	24851	2.46	272.48	91.20
TI-02	22.66	12.24	29.16	25347	2.38	277.36	91.39
TI-03	22.78	12.16	29.24	23905	2.41	277.00	86.30
TI-04	22.85	12.18	29.74	25732	2.44	278.31	92.46
TI-05	22.75	12.48	29.27	24573	2.35	283.92	86.55
TI-06	23.08	12.44	29.43	25499	2.37	287.12	88.81
PROMEDIO					2.40	279.37	89.45
Factor (FC)					0.78		6
				Ŷ	fm	corregido =	69.772

fm corregido =	69.772
Desv. Estándar (σ)	2.632
f'm (kg/cm2)	67.140

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
affrage ffe	Chief &	family
NOMBRE: Walthur Strand Hernamber Premin	NOMBRE: ALISSON PANELA ATALA BARRANTES	NOMBRE In Dr. Jus Vorger Raver
FECHA 50/U/19	FECHA: 150/LI/L9 Usbritonia processia UPRC	FECHA: 30/4/19

Desv. Estándar (a)

f'm (kg/cm2)

1.273

68.348

			PROTOCOLO			
N	ENSAYO	RESISTENCIA A C DE UNIDADES	CÓDIGO DEL DOCUMENTO: ALA-LC-			
Lawrence	NORMA	NTI	P E.070	UPNC:		
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LAI ARTESANAL Y LADRILLO INDUSTRIAL, CAJAMARCA 2022"				
LADRILLERA:		SODIMAC	TAMAÑO DE MUESTRA	A: 6 PILAS		
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO INDUSTRIAL		
FECHA DE MUESTRA:		08/11/19	RESPONSABLE:			
FECHA DE ENSAYO:		30/11/19	REVISADO POR:			
MUESTREO:		CON DOSIFICACION AL 4% DE CAL				

rentement	0	IMENSIONE	S	Pmáx		ÁREA: L*t	f'm = Pmáx/Ab
ESPÉCIMEN	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2
PIC4%-01	22.85	11.98	29.13	24337	2.43	273.74	88.90
PIC4%-02	22.69	12.16	29.54	25206	2.43	275.91	91.36
PIC4%-03	22.90	12.17	29.47	25084	2.42	278.69	90.01
PIC4%-04	22.84	12.18	29.22	24754	2.40	278.19	88.98
PIC4%-05	22.75	12.46	29.65	25127	2.38	283.47	88.64
PIC4%-06	23.00	12.50	29.79	25201	2.38	287.50	87.66
PROMEDIO					2.41	279.58	89.26
Factor (FC)					0.78		
V.	9				fm	corregido =	69.621

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
aff receffe	July 2	January
NOMBRE: Willflux Strand Hernander Premin	NOMBRE: ALISSON TAMELA MULA BARRANTES	NOMBRE IN Dr. Las Varguet Parent
FECHA 30/11/19	FECHA: 30/U/L9 Lapristuria Expositional UNIX	FECHA: 30/11/19

			PROTOCOLO			
N	ENSAYO	RESISTENCIA A C DE UNIDADES	CÓDIGO DEL DOCUMENTO: ALA-LO			
UNIVERSIDAD	NORMA	NTF	P E.070	UPNC:		
PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESION DEL MORTERO USAND ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LA ARTESANAL Y LADRILLO INDUSTRIAL, CAJAMARCA 2022"				
LADRILLERA:		SODIMAC	TAMAÑO DE MUESTRA	4: 6 PI	LAS	
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LADRILLO I	NDUSTRIAL	
FECHA DE MUESTRA:		08/11/19	RESPONSABLE:			
FECHA DE ENSAYO:		30/11/19	REVISADO POR:			
MUESTREO:		CON DOSIFICACION	AL 6% DE CAL	**		

rentement		IMENSIONE	S	Pmáx	F-1-10 110-	ÁREA: L*t	f'm = Pmáx/Ab
ESPÉCIMEN	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2
PIC6%-01	22.85	11.98	29.79	25467	2.49	273.74	93.03
PIC6%-02	22.67	12.16	29.22	24973	2.40	275.67	90.59
PIC6%-03	22.78	12.17	29.54	25881	2.43	277.23	93.35
PIC6%-04	22.88	12.18	29.13	26694	2.39	278.68	95.79
PIC6%-05	22.6	12.46	29.22	25258	2.35	281.60	89.70
PIC6%-06	22.93	12.5	29.3	25293	2.34	286.63	88.24
PROMEDIO				111	2.40	278.92	91.78
Factor (FC)					0.78		
					fm	corregido =	71.592
				Desv. Estándar (σ)			2.770

OBSERVACIONES:						
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR				
- Jane fly	Chiple &	hat .				
NOMBRE: NAME STORY IN THE STORY	NOMBRE ALICCOMPANIES A WALL BADDANTES	NOMBRET				

68.822

f'm (kg/cm2)

	LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA							
A			PROTOCOLO					
N	ENSAYO	RESISTENCIA A CO	MPRESIÓN - PILAS		CÓDIGO DEL			
	ENSATO	DE UNIDADES D	E ALBAÑILERÍA	D	OCUMENTO: ALA-LC-			
UNIVERSIDAD	NORMA	NTP	E.070		UPNC:			
PRIVADA		"RESISTENCIA A L	A COMPRESION DEL	MO	RTERO USANDO DOS			
DEL NORTE	TESIS	ADITIVOS: CAL Y	HT-SIKALATEX PAR	A N	IUROS DE LADRILLO			
		ARTESANAL Y LADR	ILLO INDUSTRIAL, CA	JAM/	ARCA 2022"			
LADRILLERA:		SODIMAC	TAMAÑO DE MUESTR	A:	6 PILAS			
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:		LADRILLO INDUSTRIAL			
FECHA DE MUESTRA:		08/11/19	RESPONSABLE:					
FECHA DE ENSAYO:		30/11/19	REVISADO POR:					
MUESTREO:		CON DOSIFICACION	AL 4% DE HT-SIKALATE	EX				

	RESISTENCIA A COMPRESIÓN - PILAS DE UNIDADES DE ALBAÑILERÍA							
ESPÉCIMEN	D	IMENSIONE	s	Pmáx	Fabrahara - 11/a	ÁREA: L*t	f'm = Pmáx/Ab	
ESPECIMEN	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2	
PIS4%-01	22.86	12.06	29.79	24346	2.47	275.69	88.31	
PIS4%-02	22.64	12.08	29.22	25754	2.42	273.49	94.17	
PIS4%-03	22.78	12.15	29.54	25232	2.43	276.78	91.16	
PIS4%-04	22.85	12.05	29.13	25534	2.42	275.34	92.74	
PIS4%-05	22.75	12.04	29.22	25098	2.43	273.91	91.63	
PIS4%-06	23.08	12.26	29.65	24938	2.42	282.96	88.13	
PROMEDIO					2.43	276.36	91.02	
Factor (FC)					0.79			
			fm corregido =				71.908	

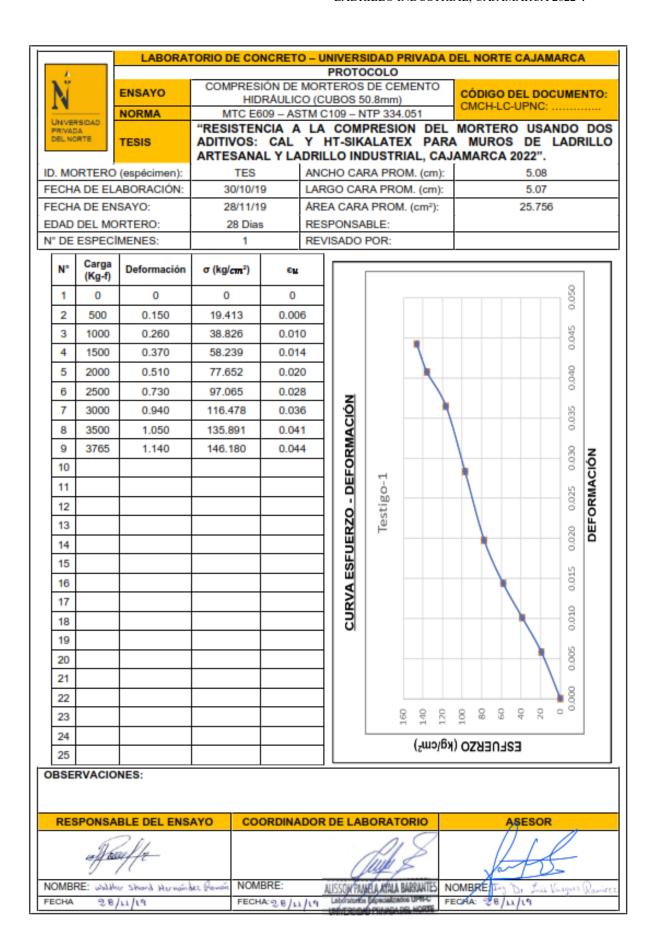
OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
aff overfly	July &	Valo
NOMBRE: Walthur Strand Hernander Framen	NOMBRE: ALISSON PANNELANTALA BARRANTES	NOMBRETTY Dr. Lie Vargue Ramires
FECHA: 30/U/L9	FECHA: 30 / U / L9 Laboratoria Experiations up the	FECHA: 50/LL/L9

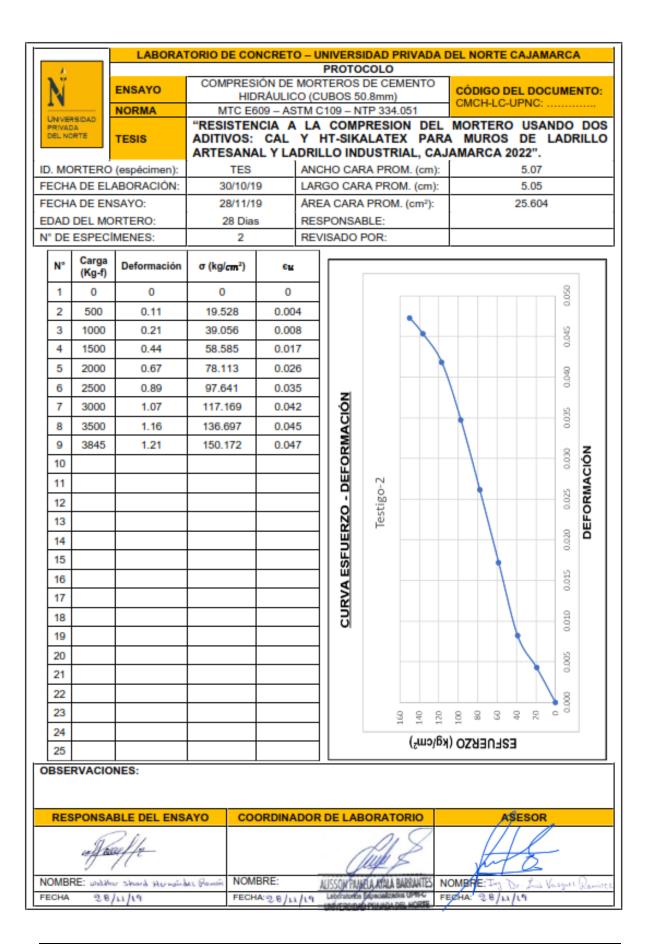
2.405

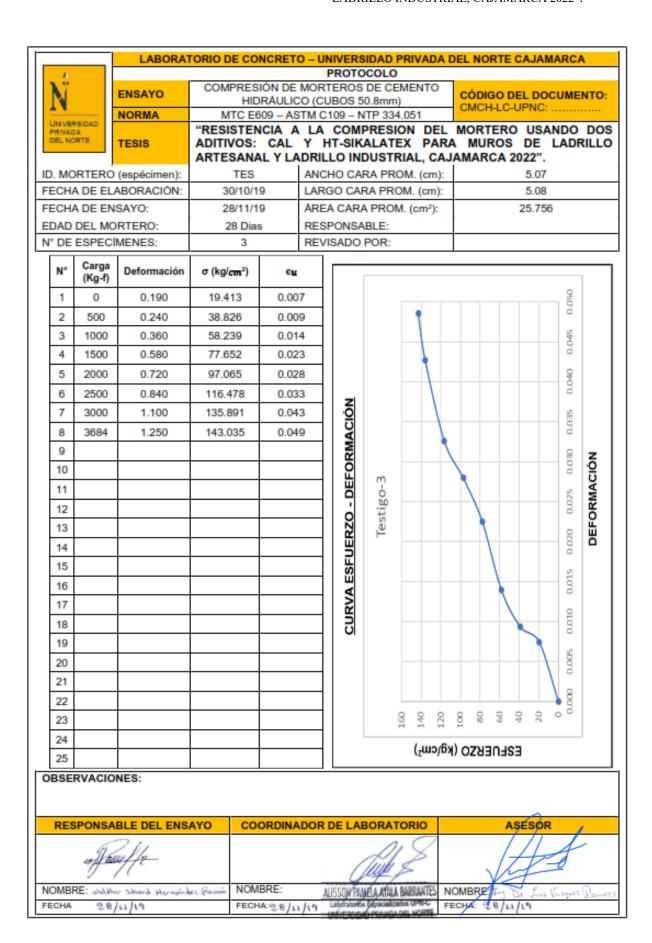
69.503

Desv. Estándar (σ)

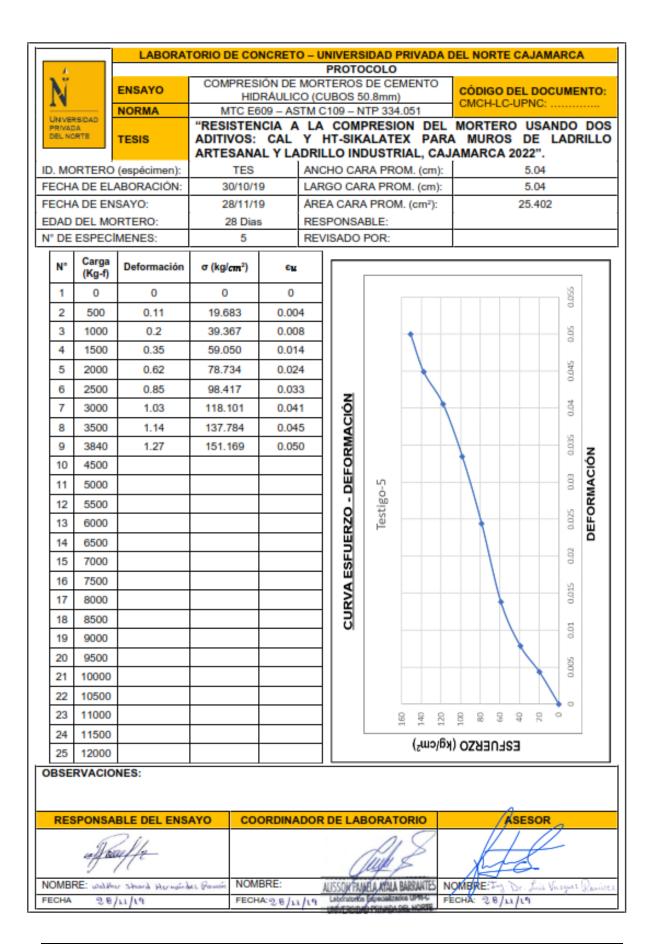
f'm (kg/cm2)

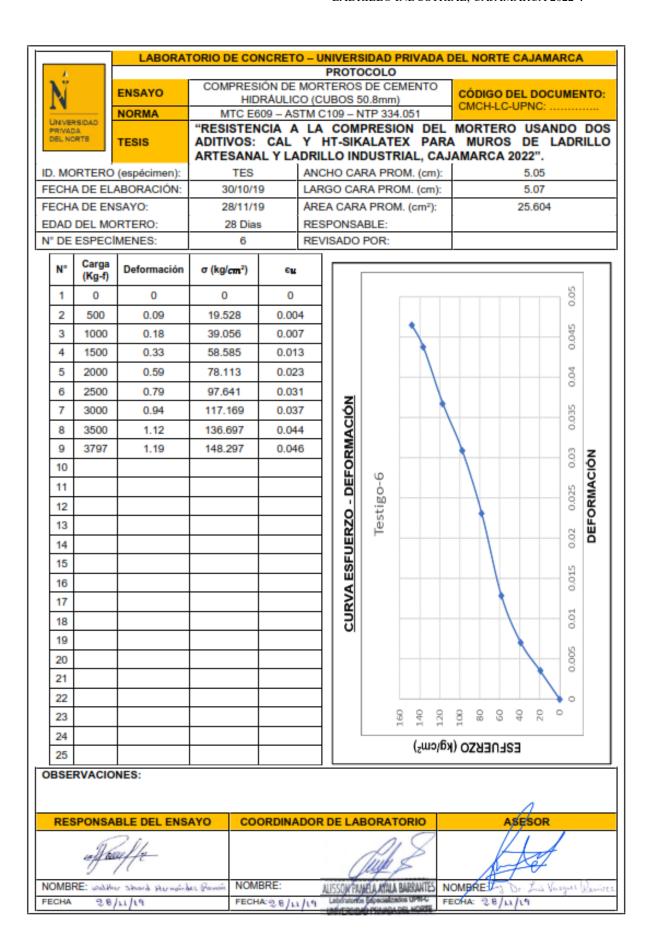

f'm (kg/cm2)

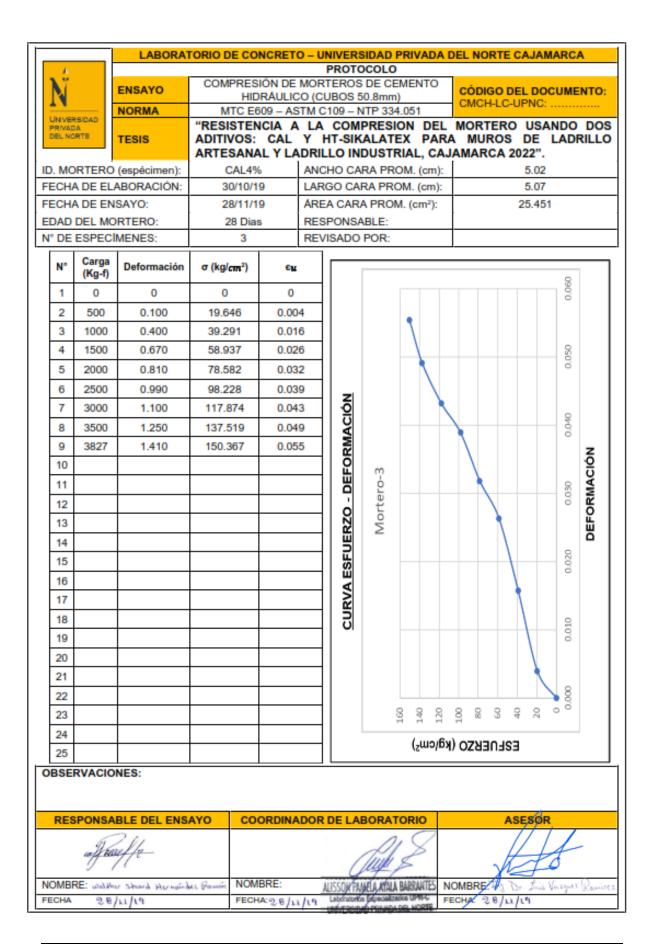

69.761

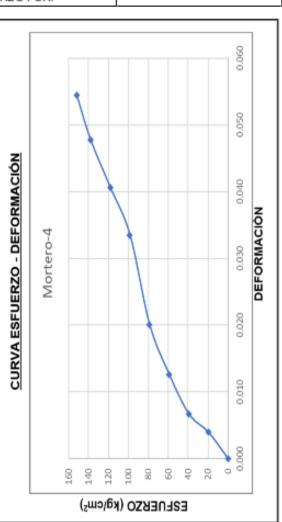

	LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA						
A			PROTOCOLO				
NY	ENSAYO	RESISTENCIA A CO	MPRESIÓN - PILAS	C	ÓDIGO DEL		
	ENSATO	DE UNIDADES D	E ALBAÑILERÍA	DOCU	MENTO: ALA-LC-		
UNIVERSIDAD	NORMA	NTP	E.070	UP	NC:		
PRIVADA		"RESISTENCIA A L	A COMPRESION DEL	MORTE	RO USANDO DOS		
DEL NORTE	TESIS	ADITIVOS: CAL Y	HT-SIKALATEX PAR	A MURC	OS DE LADRILLO		
		ARTESANAL Y LADR	ILLO INDUSTRIAL, CA	JAMARCA	A 2022"		
LADRILLERA:		SODIMAC	TAMAÑO DE MUESTR	RA:	6 PILAS		
UBICACIÓN:		CAJAMARCA	TIPO DE MATERIAL:	LAD	ORILLO INDUSTRIAL		
FECHA DE MUESTRA:		08/11/19	RESPONSABLE:				
FECHA DE ENSAYO:		30/11/19	REVISADO POR:				
MUESTREO: CON DOSIFICACION AL 6% DE HT-SIKA			AL 6% DE HT-SIKALATI	EX			

RESISTENCIA A COMPRESIÓN - PILAS DE UNIDADES DE ALBAÑILERÍA							
ESPÉCIMEN	D	IMENSIONE	s	Pmáx	Fabrahara - 11/a	ÁREA: L*t	f'm = Pmáx/Ab
ESPECIMEN	L (cm)	t (cm)	H (cm)	kg	Esbeltez = H/t	cm2	Kg/cm2
PIS6%-01	22.85	11.97	29.65	27170	2.48	273.51	99.34
PIS6%-02	22.75	12.32	29.43	26061	2.39	280.28	92.98
PIS6%-03	23.08	12.17	29.39	26183	2.42	280.88	93.22
PIS6%-04	22.88	12.25	29.79	26362	2.43	280.28	94.06
PIS6%-05	22.84	12.45	29.47	25773	2.37	284.36	90.64
PIS6%-06	22.92	12.47	29.54	25949	2.37	285.81	90.79
PROMEDIO	PROMEDIO 2.41 280.85					93.50	
Factor (FC)					0.78		
					fm	corregido =	72.932
				Desv. Estándar (σ)			3.171


OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
affect fly	July 2	
NOMBRE: welther stoord Hernander Roman	NOMBRE: ALISSON PANNELA MENLA BARRANTES	NOMBRE: 7 Dr. Inis Vargue Ramirez
FECHA 30/U/L9	FECHA: 30/U/L9 Legicularios Edpadalizados UPINC	FECHA: 50/U/L9

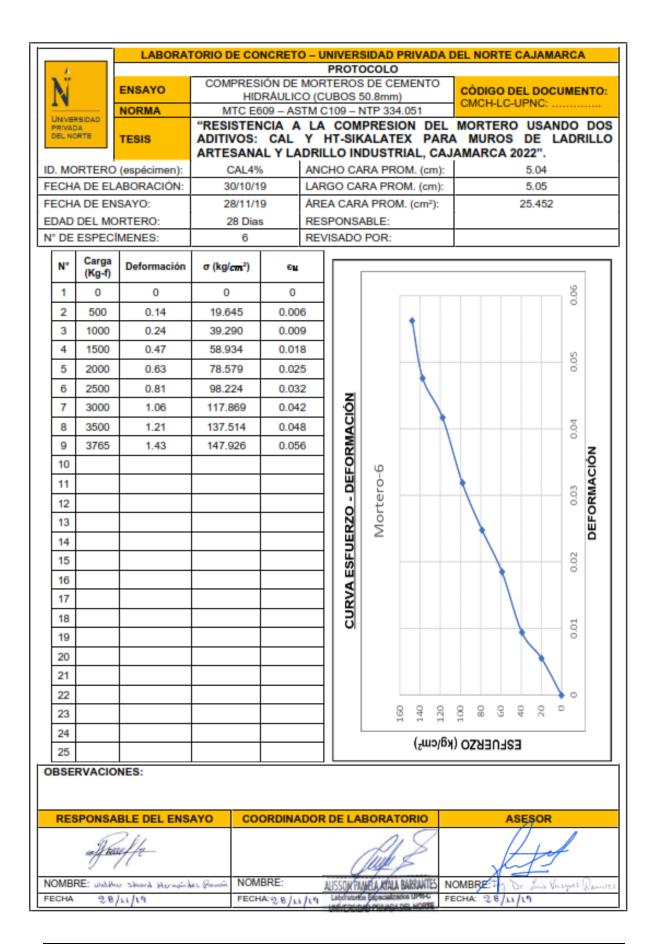


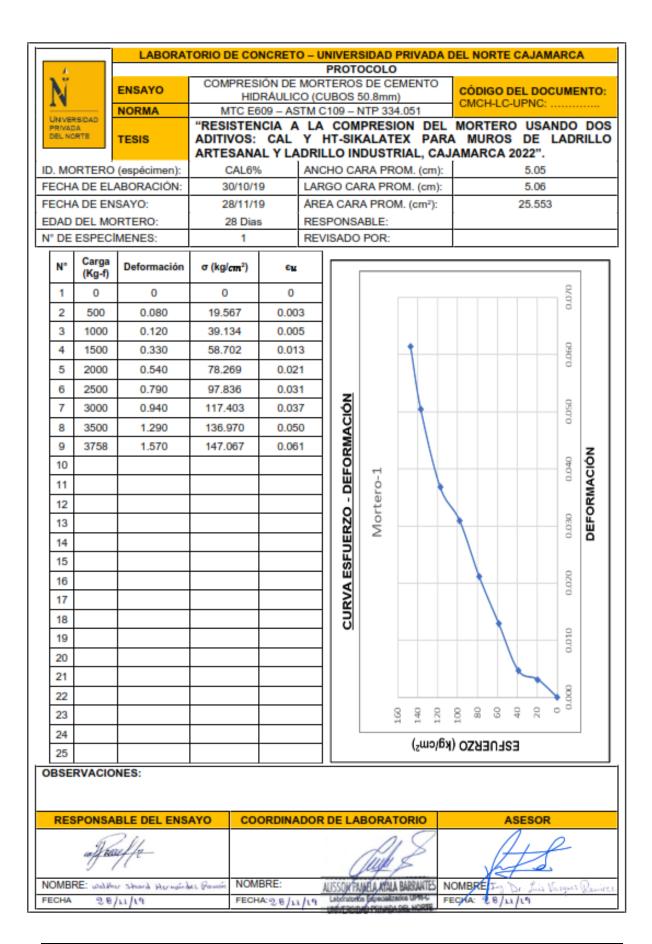

		LABORA	TORIO DE CO	NCRET	_			RIVADA	DEL NORTE CA	AJAMARC	A
. 4			COMPRES	IÓN DE		PROTO		/ENTO			
M		ENSAYO				UBOS 50		MENTO	CÓDIGO DE		
14		NORMA				109 – N		051	CMCH-LC-UF	PNC:	
PRIVAD DEL NO		TESIS							MORTERO A MUROS		
									JAMARCA 20		
D. MO	RTERO) (espécimen):	TES		ANC	HO CAR	RA PRO	M. (cm):		5.05	
ECH/	A DE EL	ABORACIÓN:	30/10/1	9	LAR	GO CAR	RA PRO	M. (cm):		5.08	
ECH/	A DE EN	NSAYO:	28/11/1	9	ARE	A CARA	PROM	. (cm²):	2	5.654	
		ORTERO:	28 Dias	5		PONSA					
I° DE	ESPEC	IMENES:	4		REV	ISADO F	POR:				
N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	€w							1
1	0	0	0	0						0.0055	
2	500	0.1	19.490	0.00	4			•			
3	1000	0.19	38.980	0.00	7					0.050	
4	1500	0.37	58.470	0.01	4			\			
5	2000	0.66	77.961	0.02	6					0.045	
6	2500	0.87	97.451	0.03	4						
7	3000	1.01	116.941	0.03	9	Š		\		0.040	
8	3500	1.15	136.431	0.04	5	💆					
9	3841	1.34	149.723	0.05		¥			1	0.035	_
10		1			_	6					ò
11		+			$\overline{}$	👸	4		\rightarrow	0.030	DEFORMACIÓN
12						9	Testigo-4		\ \		RM
13		1				🏻	est		1	0.025	5
14					-	🖺	_				2
15					-	릾			1	0.020	
16		1			-	🖺			\		
17						\$			\	0.015	
18		1			-	CURVA ESFUERZO - DEFORMACIÓN				010	
19					-	0				0.0	
20					\dashv					(g	
21					-					0.00%	
22		+								8	
23		+					9	140	00 80 60 60	0.000	
24		_			-		,	140	21 8 9	PN	
25					\dashv			(გლა ₅)	ESENEBZO (K		
	DVACC	NEC.									
JRZE	RVACIO	JNES:									
RES	PONS	ABLE DEL ENS	AYO CO	ORDINA	DOR	DE LAB	ORAT	ORIO	AŞE	SOR	9
	affe	affr-				((upli)	8		To the second	
OMB	RE: walk	her Steard Hermond	M. Famon NOM	BRE:		ALISSON PANA	ELA, ATALA B	ARRANTES N	NOMBRÉ TO DE	Luis Varguer	Rami
ECHA		121/19		A:28/1	119	Laboratoriba			ECHA: 28/11/1		


	$\overline{}$	LABORA	TORIO DE CO	NCRET				RIVADA	DEL NORTE CAJAN	IARCA	١
. A						PROTO					
M		ENSAYO	COMPRES					MENTO	CÓDIGO DEL DO	CUME	ито
IA		NORMA	MTC E6	RAULIC	_			051	CMCH-LC-UPNC:		
	RSIDAD	NORMA							MORTERO USA	NDO	DO
DEL NO		TESIS							RA MUROS DE		
		. 25.5							JAMARCA 2022".		
o. MO	RTERO) (espécimen):	CAL4%					M. (cm):	r		
		ABORACIÓN:	30/10/1	9				M. (cm):			
ECH/	A DE EN	ISAYO:	28/11/1	9	AREA	A CARA	PROM	. (cm²):	25.301	1	
DAD	DEL MO	ORTERO:	28 Dias			PONSA		. ()-			
		IMENES:	1			SADO F					
N°	Carga	Deformación	σ (kg/cm²)	€ _W					-1		
	(Kg-f)				-						7
1	0	0	0	0						0.070	
2	500	0.050	19.762	0.00	_					0	
3	1000	0.110	39.524	0.00	_						
4	1500	0.290	59.286	0.01	_			1		0.060	
5	2000	0.600	79.048	0.02	_					0	
7	2500 3000	0.840	98.810 118.572	0.03		z					
8	3500	1.150	138.334	0.03	_	8				0.050	
9	3760	1.540	148.611	0.04	_	≰		1		"	
10	3/00	1.040	140.011	0.00	_	🕺					Ş
11					-	🖺	Ţ.			0.040	ğ
12					\dashv	CURVA ESFUERZO - DEFORMACIÓN	Mortero-1				DEFORMACIÓN
13						2	ort		 	2	요
14						🖺	Σ			0.030	8
15						ᅵ릹ᅵ					
16						ĕ				0.020	
17						≱				0	
18						5					
19						"				0.010	
20										0	
21											
22										0.000	
23							8	8 9 9	2 6 8 8 6 2	0 0	
24							,				
25								(cm ²)	ESENEKSO (kg		
BSE	RVACIO	NES:									
RES	PONS/	BLE DEL ENS	AYO CO	ORDINA	DOR	DE LAB	ORATO	ORIO	ASESOR		
	6	20			JUNI		1			1	
	and the	affe				1	Tunk 2	2	the	1	
		ur steard Hermand	NOM			4	//		/1 < 1		Rami

		LABORA	TORIO DE CO	NCRET				NDAVIS	DEL NORTE	CAJAMA	RCA	١
						PROTO			_			
N		ENSAYO	COMPRES					ENTO	CÓDIGO D	EL DOC	JME	ито
IA		NORMA				JBOS 50		51	CMCH-LC-			
UNIVER		NORMA	"RESISTEN			109 - NT			MORTER	LISAN	DO	DO
DEL NO		TESIS	ADITIVOS:									
		. 20.0	ARTESANA									
o. MO	RTERO	(espécimen):	CAL4%			HO CAR				5.05		
		ABORACIÓN:	30/10/1	9	_	GO CAR		, ,		5.04		
ECH/	A DE EN	ISAYO:	28/11/1	9		A CARA				25.452		
DAD	DEL MO	ORTERO:	28 Dias	3	RES	PONSAE	BLE:		1			
° DE	ESPEC	IMENES:	2		REV	ISADO F	OR:					
N°	Carga	Deformación	σ (kg/cm²)	€w					1			
<u> </u>	(Kg-f)				\dashv						0	
1	500	0	0 19.645	0	1						09070	
3	1000	0.29	19.645 39.290	0.01				•				
4	1500	0.58	58.934	0.02								
5	2000	0.72	78.579	0.02	_			\rightarrow			0500	
6	2500	0.86	98.224	0.03	4	_						
7	3000	1.13	117.869	0.04	4	ō			<i> </i>			
8	3500	1.2	137.514	0.04	7	AC			\		0.040	
9	3782	1.42	148.593	0.05	6	N. N.			\			z
10						입	2		\			Ç
11					_	- DEFORMACIÓN	Mortero-2				0000	DEFORMACIÓN
12					-		orte		\		100	Ğ
14					\dashv	CURVA ESFUERZO	Σ					DE
15					\dashv	딦					8	
16					\dashv	Ĕ					0.020	
17						\ <u>\$</u>						
18						3				\ \		
19						-				\perp	0.010	
20										\		
21										\		
22											0000	
23					\dashv		160	140	900	4 %		
25					\dashv			a _\ cm²)	ŁNEBZO (K	ES		
	DVA CIC	NEC.										
BSE	RVACIO	NES:										
RES	PONSA	BLE DEL ENS	AYO CO	ORDINA	DOR	DE LAB	ORATO	RIO	А	SESOR		
	61	201					11	0			2	
	call to	4/12				1	Tul 2	2	- k	1		
			ı				1/		1	_ /		

_											
			LABORAT	TORIO DE CO	NCRET	0 – U	NIVERS	IDAD PRI	VADA [DEL NORTE CA	AJAMARCA
	A						PROTO	COLO			
	N		ENSAYO	COMPRES HID			TEROS UBOS 5		NTO		DOCUMENTO:
Ш			NORMA	MTC E6	309 – AS	TM C	109 – N	TP 334.05	1	CMCH-LC-UF	NC:
	PRIVAD DEL NO		TESIS	ADITIVOS:	CAL	Υ	HT-SIK	ALATEX	PARA		USANDO DOS DE LADRILLO 22".
I	D. MC	RTERO	(espécimen):	CAL4%	6	ANG	HO CA	RA PROM	(cm):	[5.03
F	ECH/	A DE EL	ABORACIÓN:	30/10/1	9	LAR	GO CAF	RA PROM.	(cm):		5.04
F	ECH/	A DE EN	SAYO:	28/11/1	9	ARE	A CAR	A PROM. (cm²):	2	5.351
E	DAD	DEL MO	RTERO:	28 Dias	5	RES	PONSA	BLE:			
١	√° DE	ESPEC	MENES:	4		RE\	/ISADO	POR:			
	N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	€W.						
	1	0	0	0	0			_			90.0
	2	500	0.1	19.723	0.00	4					0.0
	3	1000	0.17	39.446	0.00	7					
	4	4500	0.00	50.400	0.04	_	- 1	'	\		


N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	€¥
1	0	0	0	0
2	500	0.1	19.723	0.004
3	1000	0.17	39.446	0.007
4	1500	0.32	59.169	0.013
5	2000	0.51	78.892	0.020
6	2500	0.85	98.615	0.034
7	3000	1.03	118.339	0.041
8	3500	1.21	138.062	0.048
9	3854	1.38	152.026	0.054
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				



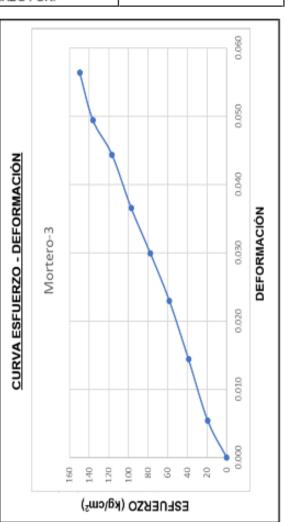
OBSERVACIONES:

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
aff confly	July 2	Jago de la companya della companya d
NOMBRE: weather strand Hernolides Parish	NOMBRE: ALISSON PANELA ATALA BARRANTES	NOMBRE Try Dr. Luis Voisques Ramirez
FECHA 28/11/19	FECHA: 28/11/19 Libbratoritis Expecializates UPIAC	FECHA 28/11/19

		LABORA	TORIO DE CO	NCRET	D – U				DEL NORTE CAJAMA	ARC/	A
, A						PROTO					
M		ENSAYO	COMPRES						CÓDIGO DEL DOC	UME	NTO
TA		NORMA				UBOS 5 0109 - N			CMCH-LC-UPNC:		
UNIVER	RSIDAD	HORMA							L MORTERO USAN	IDO	DO
DEL NO	RTE	TESIS							RA MUROS DE L		
			ARTESANA	L Y LA	DRII	LLO INI	DUSTE	RIAL, CA	JAMARCA 2022".		
D. MO	RTERO	(espécimen):	CAL4%	6	ANG	CHO CA	RA PR	DM. (cm):	5.05		
ECH/	A DE EL	ABORACIÓN:	30/10/1	9	LAR	RGO CAF	RA PRO	DM. (cm):	5.05		
ECH/	A DE EN	ISAYO:	28/11/1	9	ARE	EA CARA	A PROM	И. (cm²):	25.503		
DAD	DEL MO	ORTERO:	28 Dias	5	RES	SPONSA	BLE:				
l° DE	ESPEC	IMENES:	5		REV	/ISADO	POR:				
N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	€w							7
1	0	0	0	0						0.07	
2	500	0.08	19.606	0.00	3						
3	1000	0.15	39.211	0.00	6						
4	1500	0.3	58.817	0.01	2					90'0	
5	2000	0.59	78.422	0.02	3						
6	2500	0.88	98.028	0.03	5						
7	3000	1.09	117.633	0.04	3	CURVA ESFUERZO - DEFORMACIÓN				50.0	
8	3500	1.25	137.239	0.04	9	N N					
9	3738	1.51	146.571	0.05	9	N.W.					z
10						<u> </u>				0.04	읐
11							0-5			l °	¥
12						-	Mortero-5		\		DEFORMACIÓN
13						ZŽ	9			0.03	F
14							_			0	۵
15						SFI					
16					\neg	Ü			T I I	0.02	
17					\neg	≥				0	
18					\neg						
19					\neg	"			 		
20					\neg					0.01	
21					\neg						
22					\neg						
23					\neg				8 8 8 8 8	• •	
24					\dashv			091	10 10 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
25					\dashv			t _{(z} wo/t	ESENEBZO (K		
	RVACIO	ME6.									
BSE	RVACIO	NES:									
RES	PONSA	BLE DEL ENS	AYO CO	ORDINA	DOR	DE LA	BORAT	ORIO	ASESOR		
	1	21/2					1	18	14	_	_
	and to	11/10				/	luk	8	VATA		

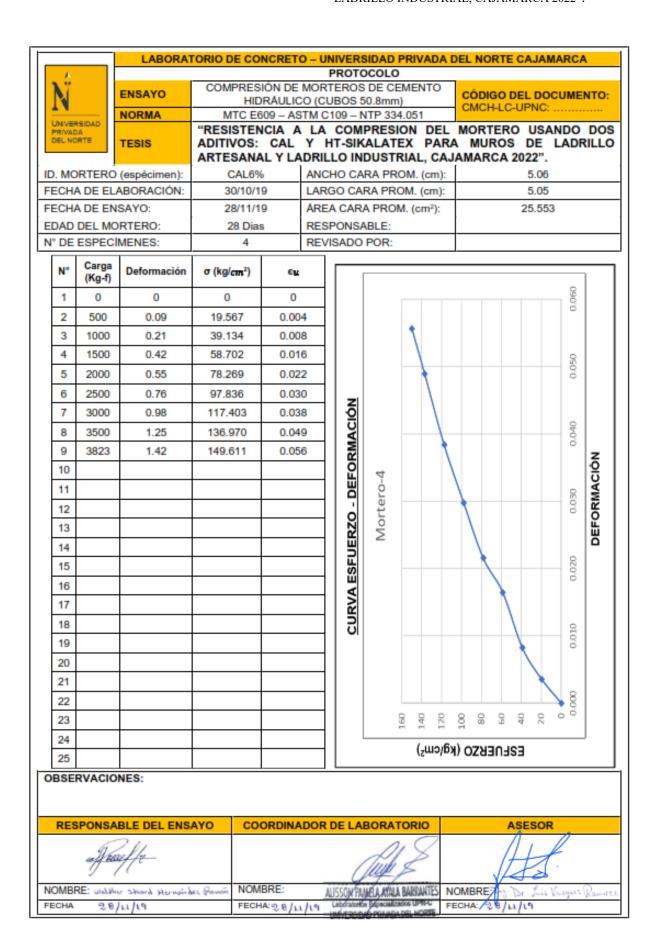
		LABORA	TORIO DE CO	NCRET	0 – U	NIVERS	IDAD P	RIVADA	DEL NORTE CA.	IAMARCA	١
A						PROTO					
N		ENSAYO	COMPRES HID			TEROS UBOS 5			CÓDIGO DEL I		
UNIVER	RIDAD	NORMA	MTC E6								
PRIVAD DEL NO	Ι,Δ,	TESIS	ADITIVOS:	CAL	Y	HT-SIK	ALATE	X PAR	MORTERO U A MUROS DI JAMARCA 2022	E LADE	
). MO	RTERO	(espécimen):	CAL6%	5	ANC	HO CA	RA PRO	M. (cm):	5.	05	
ECHA	A DE EL	ABORACIÓN:	30/10/1	9	LAR	GO CAF	RA PRO	M. (cm):	5.	05	
	A DE EN		28/11/1					I. (cm²):	25.	503	
		RTERO:	28 Dias	5		PONSA					
DE.	ESPEC	IMENES:	2		REV	ISADO	POR:				
N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	€W							1
1	0	0	0	0						09000	
2	500	0.05	19.606	0.00	2						
3	1000	0.1	39.211	0.00	4						
4	1500	0.29	58.817	0.01	1			1		8	
5	2000	0.43	78.422	0.01	7					0.050	
6	2500	0.67	98.028	0.02	6			\			
7	3000	0.81	117.633	0.03	2	Š		1			
8	3500	1.14	137.239	0.04	5	G				0.040	
9	3897	1.34	152.806	0.05	3	Mg Mg		\		0	,
10						6			\		DEFORMACIÓN
11					\neg		0-2		1		IAC
12					\neg]	Mortero-2			0.030	N.
13						🐹	No		 		EFC
14					\neg	🔄	_				٥
15						URVA ESFUERZO - DEFORMACIÓN				0.020	
16					\neg	l ä				0.0	
17						≵					
18						5					
19						~			+	0.010	
20											
21											
22										N 8	
23							8	140	120		
24											
25								(alcm2)	ESFUERZO (F		
BSE	RVACIO	NES:									
RES	PONSA	BLE DEL ENS	AYO CO	ORDINA	DOR	DE LA	BORAT	ORIO	ASES	OR	
	and to	reffe				/	Tinh	8		4	

FECHA: 28/11/19

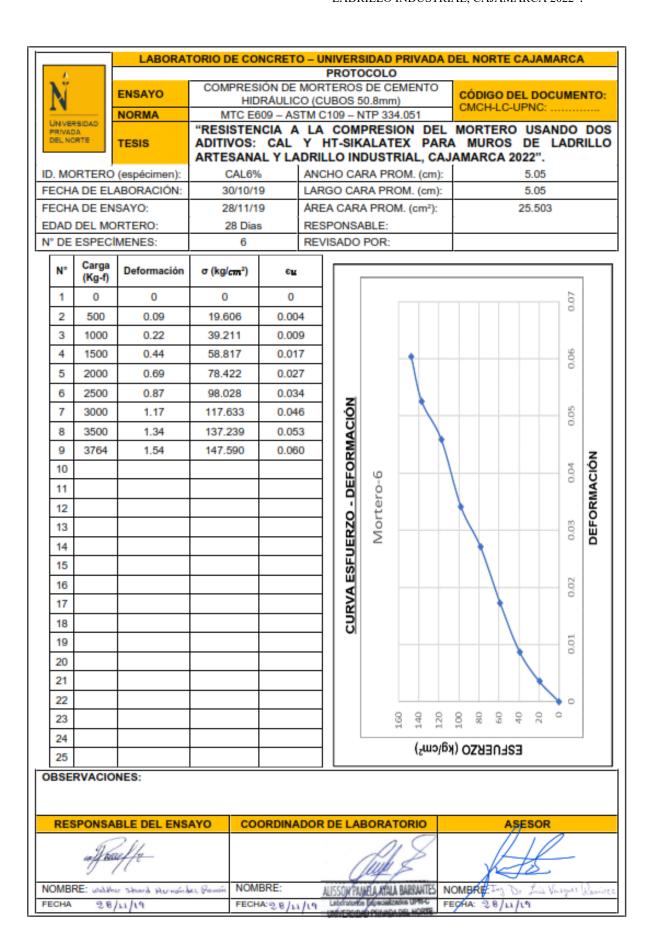

28/11/19

FECHA

FECHA:

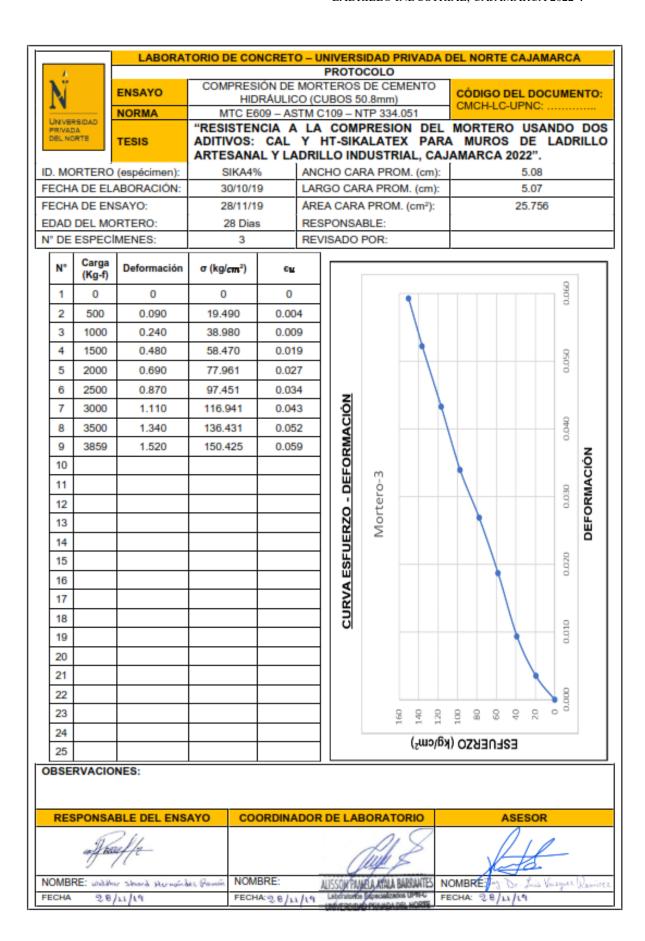

	LABORA	TORIO DE CONCRET	O – UNIVERSIDAD PRIVADA [DEL NORTE CAJAMARCA
A			PROTOCOLO	
NT	ENSAYO	COMPRESIÓN DE	MORTEROS DE CEMENTO	CÓDIGO DEL DOCUMENTO:
	ENSATO	HIDRAULIC	CO (CUBOS 50.8mm)	CMCH-LC-UPNC:
	NORMA	MTC E609 - AS	STM C109 - NTP 334.051	CMCFFEC-OF NO.
UNIVERSIDAD PRIVADA		"RESISTENCIA A	LA COMPRESION DEL	MORTERO USANDO DOS
DEL NORTE	TESIS	ADITIVOS: CAL	Y HT-SIKALATEX PARA	A MUROS DE LADRILLO
		ARTESANAL Y LA	DRILLO INDUSTRIAL, CAJ	AMARCA 2022".
ID. MORTERO) (espécimen):	CAL6%	ANCHO CARA PROM. (cm):	5.06
FECHA DE EL	ABORACIÓN:	30/10/19	LARGO CARA PROM. (cm):	5.08
FECHA DE EN	NSAYO:	28/11/19	AREA CARA PROM. (cm²):	25.705
EDAD DEL M	ORTERO:	28 Dias	RESPONSABLE:	
N° DE ESPEC	IMENES:	3	REVISADO POR:	

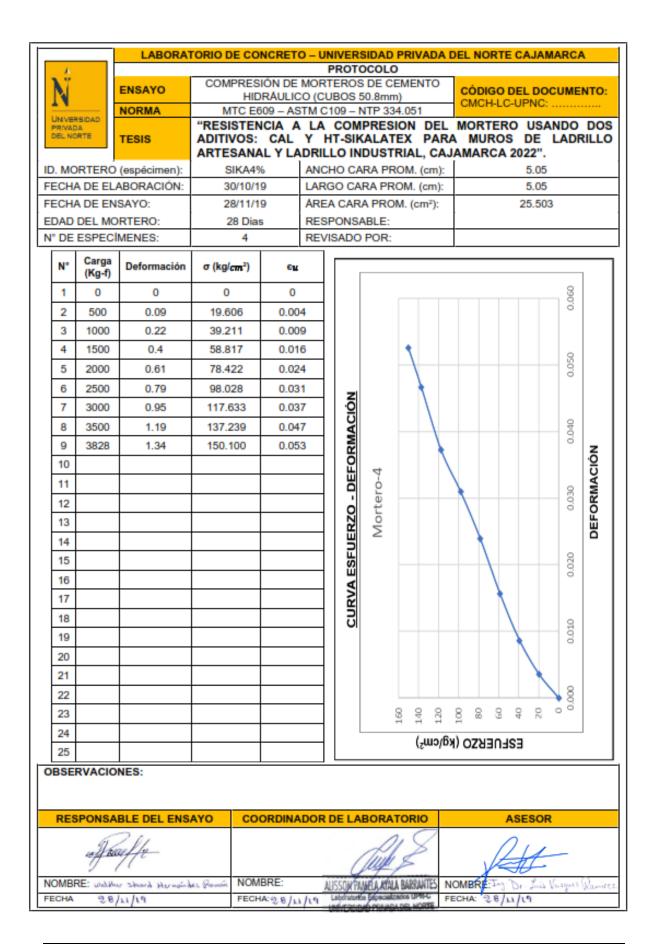
N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	eц
1	0	0	0	0
2	500	0.140	19.451	0.005
3	1000	0.370	38.903	0.014
4	1500	0.590	58.354	0.023
5	2000	0.770	77.806	0.030
6	2500	0.940	97.257	0.037
7	3000	1.140	116.709	0.044
8	3500	1.270	136.160	0.049
9	3845	1.450	149.582	0.056
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				



OBSERVACIONES:

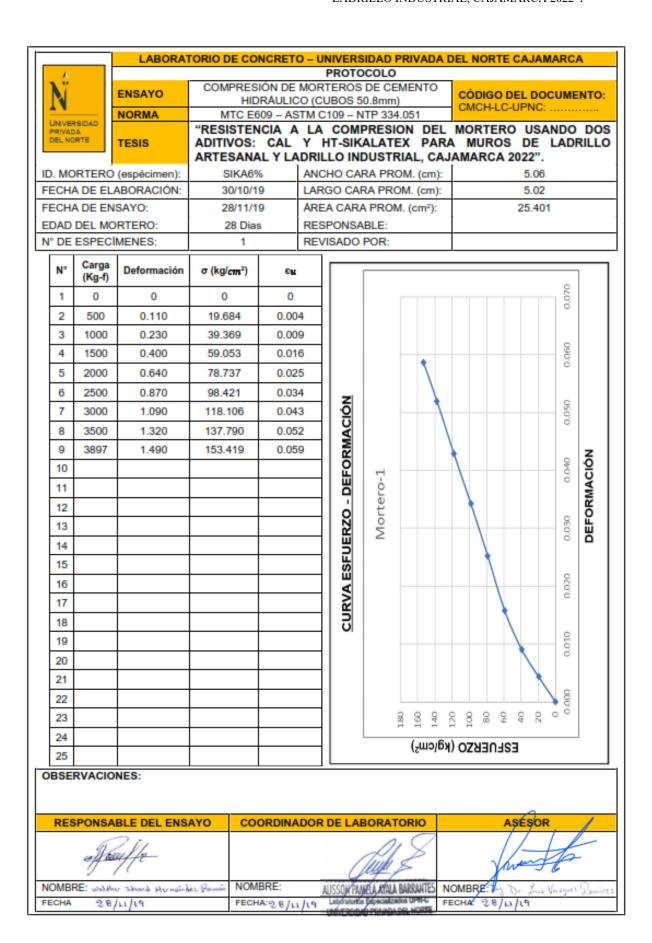
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
aff confle	July 2	Jan 15
NOMBRE: weather strend Hernolides Parish	NOMBRE: ALISSOM PANELA ATALA BARRANTES	NOMBRE Dr. Inis Vargues Ramirez
FECHA 28/11/19	FECHA: 2,8/L1/19 Libbratorios Expecializados UPRIC	FECHA: /2 #/L1/19

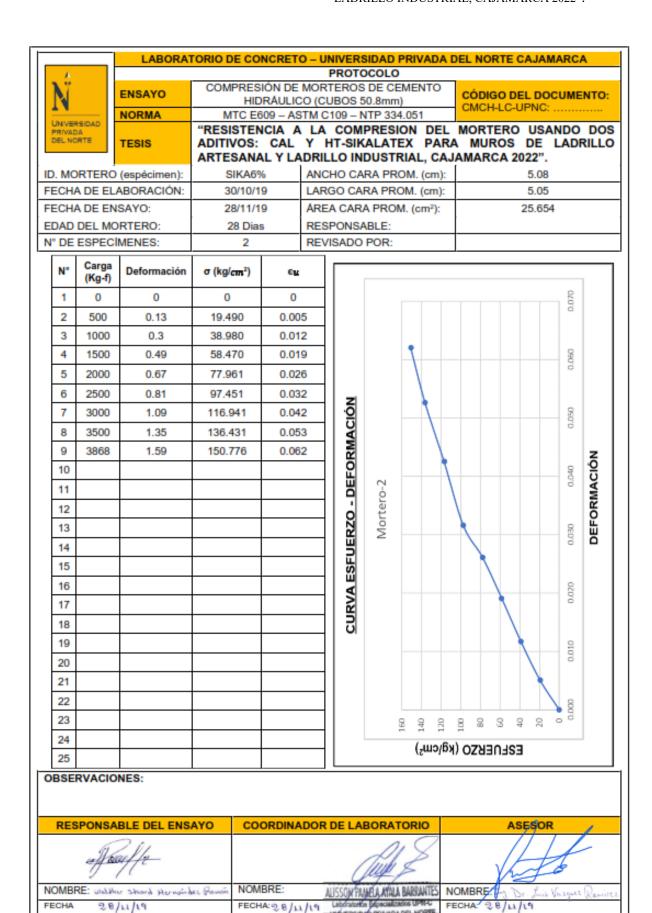


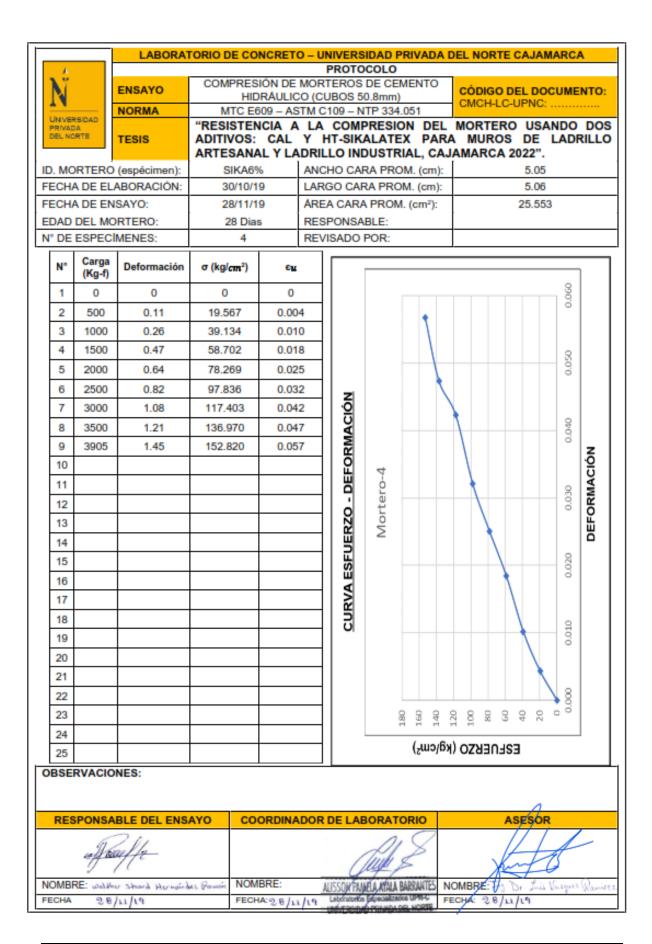

CÓDIGO DEL DOCUMENTO CMCH-LC-UPNC: ON DEL MORTERO USANDO DO X PARA MUROS DE LADRILL IAL, CAJAMARCA 2022". M. (cm): 5.01 M. (cm): 5.05 . (cm²): 25.301
CODIGO DEL DOCUMENTO CMCH-LC-UPNC: ON DEL MORTERO USANDO DO X PARA MUROS DE LADRILL IAL, CAJAMARCA 2022". M. (cm): 5.01 M. (cm): 5.05 (cm²): 25.301
051 ON DEL MORTERO USANDO DO X PARA MUROS DE LADRILL IAL, CAJAMARCA 2022". M. (cm): 5.01 M. (cm): 5.05 . (cm²): 25.301
N DEL MORTERO USANDO DO X PARA MUROS DE LADRILL IAL, CAJAMARCA 2022". M. (cm): 5.01 M. (cm): 5.05 . (cm²): 25.301
X PARA MUROS DE LADRILL IAL, CAJAMARCA 2022". M. (cm): 5.01 M. (cm): 5.05 . (cm²): 25.301
M. (cm): 5.01 M. (cm): 5.05 . (cm²): 25.301
M. (cm): 5.05 . (cm²): 25.301
(cm²): 25.301
, 000 9000
0.00
0.00
0.00
0.00
500
0.005
z
- s <u>S</u>
0.03 0.04 DEFORMACIÓN
/
i \

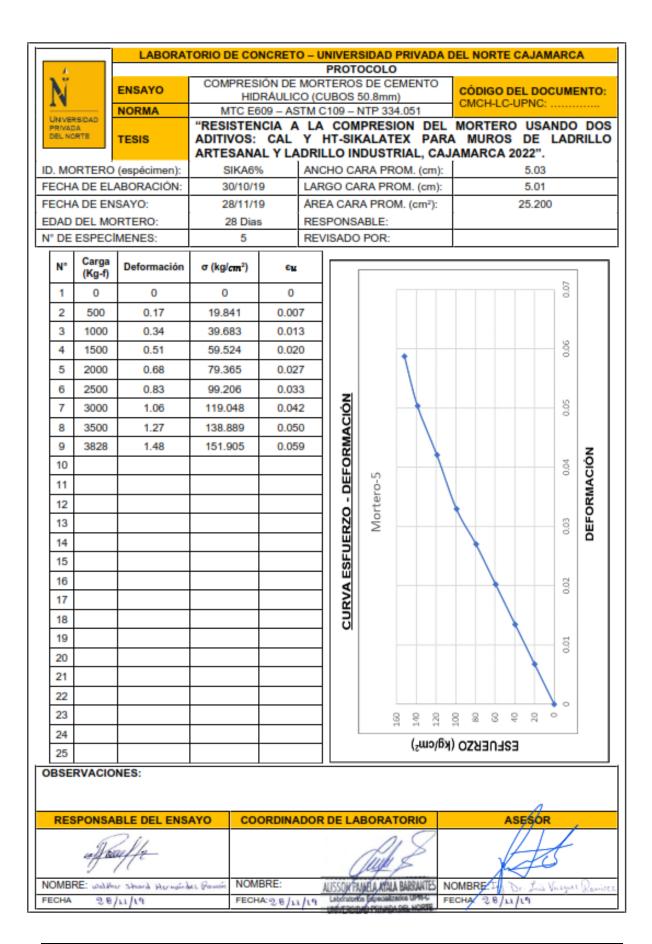
2
000
00
E2ENEKZO (kālcıu _s)
ORIO ASESOR
8 11
& hate
ARRANTES NOMBREATY Dr. Lis Visignes Ram

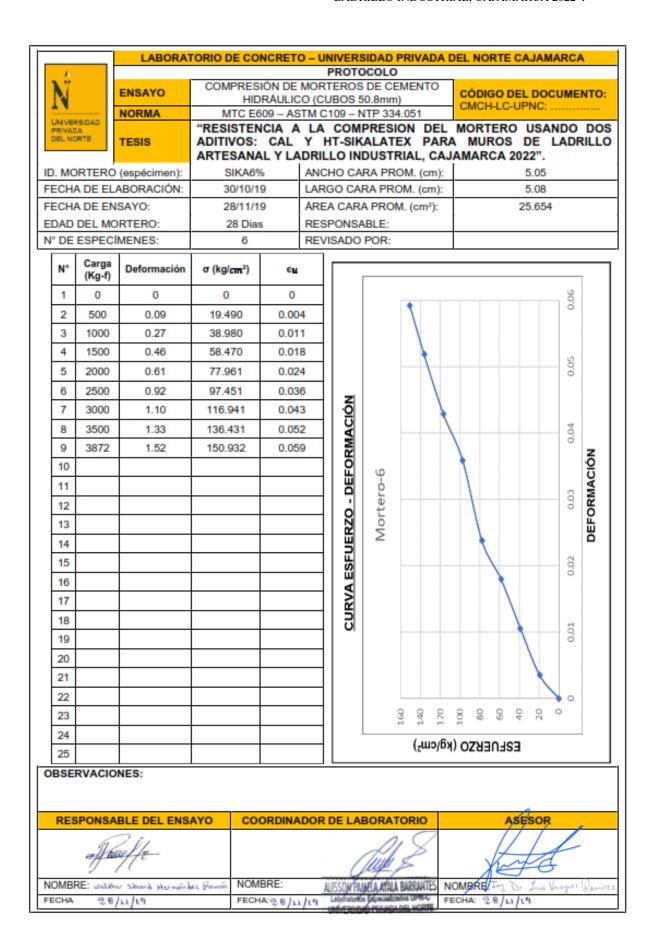
		LABORA	TORIO DE CO	NCRET				PRIVADA	DEL NORTE CAJA	AMARCA	4
NÎ		ENSAYO	COMPRES		MORT		DE CE		CÓDIGO DEL D	OCUME	NTC
IN				RÁULIO					CMCH-LC-UPN		
UNIVER		NORMA	MTC E6						MORTERO US	ANDO	D.C
PRIVAD DEL NO		TESIS	ADITIVOS:	CAL	Y H	T-SIK/	ALATE	X PAR	A MUROS DE	LADE	
) MO	RTERO) (espécimen):	SIKA49		1			OM. (cm):	JAMARCA 2022' 5.0		
		ABORACIÓN:	30/10/1					OM. (cm):	5.0		
ECH/	A DE EN	ISAYO:	28/11/1	9				1. (cm²):	25.5	03	
DAD	DEL MO	ORTERO:	28 Dias	5	1	ONSA					
° DE	ESPEC	IMENES:	1		REVIS	SADO F	POR:				
N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	€w							1
1	0	0	0	0						0.060	
2	500	0.100	19.606	0.00)4					0	
3	1000	0.220	39.211	0.00	9						
4	1500	0.430	58.817	0.01	7					9	
5	2000	0.670	78.422	0.02	26					0.050	
6	2500	0.890	98.028	0.03	5						
7	3000	1.090	117.633	0.04	3	CURVA ESFUERZO - DEFORMACIÓN		\	.		
8	3500	1.240	137.239	0.04	9	ᄝ				0.040	
9	3875	1.430	151.943	0.05	6	≩				0	_
10						6	_		\		ō
11						👸	Mortero-1		\		DEFORMACIÓN
12					\neg	3	ter		\	0.030	S
13					\neg		Ιο̈́		,		5
14					\dashv	🖺	2		\ \		ă
15						딟				0.020	
16					$\overline{}$	🕮				0.0	
17					\dashv	🕺			\ \ \ \ \		
18					$\overline{}$	5				١ .	
19					\neg				1	0.010	
20					$\overline{}$						
21					$\overline{}$						
22					-					0.000	
23								9 17 07	00 00 00 00 00	0.0	
24					-		,		-		
25					-			$\mathfrak{g}(cm_5)$	ESENEBZO (K		
	RVACIO	MES.		<u> </u>							_
BSE	KVACIC	MES.									
RES	PONSA	BLE DEL ENS	AYO CO	ORDINA	NDOR D	E LAB	ORAT	ORIO	ASESO	DR	
	and the	ref/z				1	Tul	8		<u>/</u>	_
OMBE	RE: walk	ur steard Hermand	AL Famon NOM	BRE:	MI	SSOWPIA	FLARINA	BARRANTES	NOMBRE A	is Varguer	(Ran
CHA		/21/19		A:28/1	119	aboratorios	Mpecializa		ECHA 28/11/19		-


LABORA	TORIO DE CO	NCRET			/ADA [DEL NORTE CAJAMARCA
ENSAYO			ORTEROS	DE CEMEI	NTO	CÓDIGO DEL DOCUMENTO
						CMCH-LC-UPNC:
NORMA						MODIFICA HIGHNIDO DA
TESIS	ADITIVOS:	CAL	HT-SIK	ALATEX	PAR/	A MUROS DE LADRIL
O (espécimen):	1				-	5.06
						5.02
					, ,	25.401
						20.401
	20 Dia					
	σ (kg/cm²)	€W				,
0	0	0	 			9900
0.09	19.684	0.00	\neg \vdash			
0.26	39.369	0.01	7			
0.44	59.053	0.01	기			
0.59	78.737	0.02	-			050.0
0.74	98.421	0.02			1	
0.99	118.106	0.03	_ <u>§</u>			
1.19	137.790	0.04	- ₽		\perp	0.040
1.25	149.089	0.04	MA I			
					'	0030 DEFORMACIÓN
				9-7		\
			_ .	Te .		00000
			X	Š		/
			ᆜᆝ삙			
			_ 5			0.00
			_ ≝			
			_ ≩			
			_ 리			0000
_			\dashv \mid			\ 8
			-			
			\dashv \mid			
+			\dashv \mid	9	9 9	00000
			\dashv			7
1			\dashv	(d\cm ⁵	ESFUERZO (k
IONES:	<u> </u>					
	(a) (espécimen): ELABORACIÓN: ENSAYO: MORTERO: CIMENES: a) Deformación 0 0.09 0 0.26 0 0.44 0 0.59 0 0.74 0 0.99 0 1.19	NORMA MTC E6 NORMA MTC E6 TESIS ADITIVOS: ARTESANA RO (espécimen): SIKA49 RO	HIDRAULICO NORMA	COMPRESIÓN DE MORTEROS HIDRAULICO (CUBOS 5 HIDRAULICO (CUBOS 5	HIDRAULICO (CUBOS 50.8mm) MTC E609 - ASTM C109 - NTP 334.05	COMPRESIÓN DE MORTEROS DE CEMENTO HIDRAULICO (CUBOS 50.8mm) NORMA




		LABORA	TORIO DE CO	NCRET					A DEL NORTE CAJAI	MARC	A
						PROTO					
N		ENSAYO	COMPRES HID	IÓN DE RÁULIO					CODIGO DEL DO		
-		NORMA	MTC E6	809 – AS	тм с	109 – N	NTP 33	4.051	CMCH-LC-UPNC:		
PRIVAD DEL NO		TESIS	ADITIVOS:	CAL	Y	HT-SIK	ALAT	EX PA	L MORTERO USA RA MUROS DE AJAMARCA 2022".		
D. MC	RTERO	(espécimen):	SIKA49		1			OM. (cm	1		
		ABORACIÓN:	30/10/1	9	LAR	GO CA	RA PR	OM. (cm)): 5.05		
ECH/	A DE EN	ISAYO:	28/11/1	9	ARE	A CAR	A PRO	M. (cm²):	25.30	1	
DAD	DEL MO	ORTERO:	28 Dias	5	RES	PONSA	ABLE:				
l° DE	ESPEC	IMENES:	5		REV	/ISADO	POR:				
N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	€w							1
1	0	0	0	0						- 60	
2	500	0.14	19.762	0.00	6						
3	1000	0.31	39.524	0.01	2						
4	1500	0.45	59.286	0.01	8			+		900	
5	2000	0.62	79.048	0.02	5						
6	2500	0.79	98.810	0.03	11	2					
7	3000	0.98	118.572	0.03	9			1		- 0.05	
8	3500	1.27	138.334	0.05	0	ĕ		\			
9	3729	1.49	147.385	0.05	9	N ₹		\			z
10						l 입		H-1		- 60	Ŝ
11							Mortero-5				MA
12							rte				S.
13						22	ž			0.03	DEFORMACIÓN
14											-
15						CURVA ESFUERZO - DEFORMACIÓN					
16						₹				0.02	
17					\dashv	🖺					
18					-	디디					
19					—					- 100	
20					\dashv						
21					-						
22					\dashv					-	
					\dashv			160	120 100 80 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70		
24					-			cm ²)	ESENEKZO (k ^a)		
25											
BSE	RVACIO	NES:									,
RES	SPONSA	BLE DEL ENS	AYO CO	ORDINA	DOR	DE LA	BORA	TORIO	ASESOF	₹ //	
	affe	affe-				/	Turk	8	for for	_	
	*	ur steard Hermand	AL Promise NOM		_	4	7/				Ram


		LABORA [*]	TORIO DE CO	NCRET					DEL NORTE CAJA	MARC	١
N.T		FURING	COMPRES	IÓN DE			DE CE				
N		ENSAYO	HID	RAULIC	O (CI	JBOS 5	50.8mm)	CÓDIGO DEL DO CMCH-LC-UPNO		
UNIVER	RSIDAD	NORMA	MTC E6								
"RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DO ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LADRILI ARTESANAL Y LADRILLO INDUSTRIAL, CAJAMARCA 2022".											
D. MC	RTERO) (espécimen):	SIKA49					OM. (cm):	5.0		
		ABORACIÓN:	30/10/1					OM. (cm):	5.0		
ECHA	A DE EN	NSAYO:	28/11/1	9	_			Л. (cm²):	25.4	01	
DAD	DEL M	ORTERO:	28 Dias	5	RES	PONSA	ABLE:	, , , ,			
° DE	ESPEC	IMENES:	6		REV	ISADO	POR:				
N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	eи							1
1	0	0	0	0				A .		0.06	
2	500	0.12	19.684	0.00	5			1			
3	1000	0.26	39.369	0.01	0			1			
4	1500	0.44	59.053	0.01	7					10	
5	2000	0.67	78.737	0.02	6					0.05	
6	2500	0.89	98.421	0.03	5	_					
7	3000	1.21	118.106	0.04	8	<u>ŏ</u>		'	\		
8	3500	1.36	137.790	0.05	4					0.0	
9	3843	1.49	151.293	0.05	9	🗟			\	0	_
10						6	10		†		ō
11					\dashv	ᅵᇦᅵ	Mortero-6		\		DEFORMACIÓN
12					\dashv	1 31	ter			0.03	8
13					\dashv	8	0		\		S.
14					\dashv	🖺	Σ				ä
15		1			\dashv	ᅵ릹				0.02	
16		1			\dashv	🕮			1	0	
17					\dashv	≸					
18					\dashv	CURVA ESFUERZO - DEFORMACIÓN					
19		+			\dashv					- 10.0	
20					\dashv						
21					\dashv						
22		+			\dashv						
23					\dashv		9	140	90 90 90 90 90 90 90 90 90 90 90 90 90 9		
24		+			\dashv		-		н		
25		+			\dashv			მ\cш ₅)	ESENEBZO (K		
	RVACIO	NES.									
/BOE	KVACIC	MES.									
RES	PONS	ABLE DEL ENS	AYO CO	ORDINA	DOR	DE LA	BORAT	ORIO	ASESC	R	
	affe	affe				6	Tugli,	8	W. F.	<u></u>	_
OMB	RE: walk	our shound Hermond	MIL Famon NOM	BRE:	I	LISSONPA	MELA, AYALA	BARRANTES	NOMBRE TO Dr. L.	s Vinsguer	Rawi
ECHA	5.6	121/19	FECH	A:28/1	1/19	Laboratorio	e Expecializa	SOS UPM-C	ECHAL 28/11/19	-	



		LABORAT	ORIO DE CO	NCRET					DEL NORTE CAJ	AMARC	A
* Å			COMPRES	IÓN DE			DEC				
N		ENSAYO		RAULIC					CÓDIGO DEL D		
		NORMA	MTC E6						CMCH-LC-UPN	G:	
PRIVAD									MORTERO US		
DEL NO	RTE	TESIS							RA MUROS DE		RILL
									JAMARCA 2022'		
		(espécimen):	SIKA69					OM. (cm):			
		ABORACIÓN:	30/10/1					OM. (cm):			
	A DE EN		28/11/1					M. (cm²):	25.2	200	
		ORTERO:	28 Dias	5		ONSA					
" DE	ESPEC	IMENES:	3		REVI	SADO	POR:				
N°	Carga (Kg-f)	Deformación	σ (kg/cm²)	€W						_	1
1	0	0	0	0						0.060	
2	500	0.080	19.841	0.00	3					"	
3	1000	0.190	39.683	0.00	3			9			
4	1500	0.370	59.524	0.01	5			1		9	
5	2000	0.590	79.365	0.02	3			1		0.050	
6	2500	0.780	99.206	0.03	$ \cdot $						
7	3000	0.960	119.048	0.03	-	Ö					
	3500	1.270	138.889	0.05		ŏ		\		용	
8					-	ΑĀ		7		0.040	
9	3727	1.390	147.897	0.05		꽁			\backslash		Ş
10					—	CURVA ESFUERZO - DEFORMACIÓN	w				DEFORMACIÓN
11					ЩI	ä	Mortero-3		•	0:030	¥
12						ò	T.			9	OR.
13						Z	8				Ш
14						픠			\		0
15						SFI				0.020	
16						Ë				0	
17					\neg I	≳					
18					$\exists 1$	5				99	
19					\neg	o				0.01	
20					\dashv I					"	
21					$\dashv \mid$						
22					$\dashv \mid$					8	
23					$\dashv \mid$			0 0 0	8 8 9 8	0000	
					-			140	00 8 09 06	1	
24					-			(¿wɔ/ß	ESENEBZO (K		
25								/			
BSE	RVACIO	NES:									
RES	SPONS#	BLE DEL ENS	AYO CO	ORDINA	DOR D	E LA	BORA	TORIO	ASES	OR .	
		20						,0	- //	/ /	1
	affe	4//2					Tent.	X	//-	1	
	9	/(6	llift)		yvany	-	
		ur steard Herwind	NOM	DDE			7. 7.	THE R. LEWIS CO., LANSING, MICH.	NOMBRE TO DE L	is Virgini	\triangle

Anexo N° 8: Diseño de Mezcla del Mortero – Metodología UNE

LABORATORIO DE CONCRETO UNIVERSIDAD PRIVADA DEL NORTE.

TESIS: "RESISTENCIA A LA COMPRESION DEL MORTERO USANDO DOS ADITIVOS: CAL Y HT-SIKALATEX PARA MUROS DE LADRILLO ARTESANAL Y LADRILLO INDUSTRIAL, CAJAMARCA 2022".

DISEÑO DE MEZCLA

En base a los parámetros de los agregados obtenidos, se desarrollará el diseño de mezclas para un motero de f'c = 175 Kg/cm2, considerando que será usado para muro portante. Usar la dosificación de acuerdo al agregado fino que se haya obtenido. Así mismo se considerará el uso de cemento Portland Pacasmayo Tipo 1.

El diseño de mezcla se realizará mediante el método UNE (Cemento Portland).

RESULTADOS OBTENIDOS DE LOS ENSAYOS REALIZADOS EN LABORATORIO SEGÚN NTP

Materiales.

a. Cemento.

Portland ASTM tipo 1 Pacasmayo

Peso específico 3.14 Kg/m³

Agregado fino.

Cantera de Rio.

Peso específico de masa 2.43 Kg/m³
Absorción (%) 5.87 %
Contenido de humedad (%) 11.52%
Módulo de finura 2.08 %

c. Agua Potable de la red de servicio público.

PARA EL DISEÑO SEGÚN UNE (Cemento Portland).

Tipo de Arena.

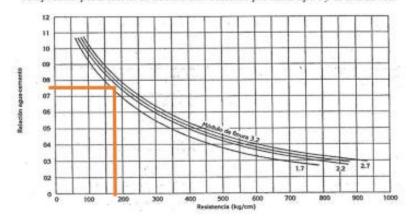
Cantera de Rio - "3M"

La decisión de optar con arena de rio y no arena de cerro, se ha decidido según varios parâmetros:

Ser limpio

Cumple los requisitos mínimos de la NTP E-0.70

Rango de Granulometria


Rango de Modulo de finura

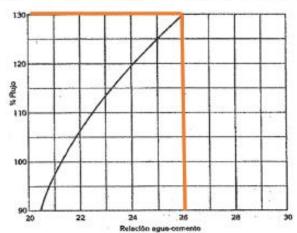
II. Determinación De La Relación Agua Cemento

Para la determinación de la Relación agua/cemento, consideramos donde el F^{*}c: del mortero a los 28 días será de: 175 Kg/cm²

Imagen 1: Correspondencia entre valores de relación agua-cemento y resistencia a la compresión para morteros hechos con cemento portland tipo I y arena de rio.

Resultado: Relación Agua-Cemento (A/C) = 0.75

III. Selección de la consistencia


Tabla 1: Diferentes consistencias de mortero

CONSISTENCIA	% DE FLUJO	
Seca	90%	
Plástica	110%	
Fluida	130%	

Donde: la consistencia será Fluidica. - 130%

IV. Determinación de los factores que influyen en el contenido de agua. (K)

Imagen 2: Relación entre la % fluidez y la relación agua-cemento

Resultado: K= 0.26

Tabla 2: Valores de "b" para distintas consistencias y módulos de finura de la arena

Consistencia	Módulo de Finura	Arena de Rio	Arena de Cerro
- Cytest design (Sec. 1)	1.7	0.3293	0.3215
C (000/)	2.2	0.3110	0.3028
Seca (90%)	2.7	0.2772	0.2930
	3.2	0.2394	0.2494
	1.7	0.3242	0.3238
planting (1100/)	2.2	0.3033	0.2947
Plástica (110%)	2.7	0.2734	0.2879
	3.2	0.2368	0.2477
	1.7	0.3172	0.3216
PL-11 (1200)	2.2	0.2927	0.3003
Fluida (130%)	2.7	0.2687	0.2949
	3.2	0.2340	0.2629

Para Mod. Fin. 2.08

Resultado: b = 0.2986

V. Determinación de la proporción 1 : n

$$n = \frac{\ln\left(A/C\right) - \ln\left(K\right)}{b} \dots (1)$$

Entonces:

$$n = \frac{\ln(0.75) - \ln(0.26)}{0.2991} = 3.55$$

Resultado: n = 3.55

VI. Calculo del contenido de cemento

Donde: Gc: Peso específico del cemento

Ga: Peso específico de la arena

$$C = \frac{1}{\frac{1}{3.14} + \frac{3.54}{2.43} + 0.75}$$

Por lo tanto, el Resultado es: C = 394.54 Kg/m3

VII. Determinación del contenido de agua

$$A = (A/C) C \dots (3)$$

Resultado: A = 295.91 l/m3

VIII. Determinación del contenido de arena

$$a = n C \dots (4)$$

Resultado: A = 1399.83 l/m3

IX. Ajustes por humedad de arena

Humedad (%)	11.52	
Peso del agregado fino (kg/m3)	1399.830	
Peso del agregado fino húmedo (kg/m3)	1586.739	
Absorción (%)	5.11%	
Humedad Superficial (%)	6.41%	
Aporte de humedad (l/m3)	101.76	
Agua efectiva	219.72	

X. Proporciones en peso.

Material	Peso seco	Peso especifico	Volumen
Material	Kg	g/cc	1
Cemento	394.54	3.14	125.60
Arena	1586.74	2.42	654.60
Agua	219.85	1.00	219.80
TOTAL	2201.08		1000.00

XI. Dosificación.

CEMENTO	ARENA	AGUA
394.54	1586.74	-
394.54	394.54	-
1.00	4.00	24 litros
1.00	4.00	por saco

XII. Peso por tanteo de un saco.

CEMENTO	ARENA	AGUA
(kg)	(kg)	(lts)
42.5	170.85	23.68

ASESOR	RESPONSABLE
Lant B	afforceffe
NOMBRE, Ing. Luis Vásquez Ramírez. FECHA: 09/11/2019	NOMBRE: Walther Stuard Hernández Román FECHA: 09/11/2019