

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA CIVIL

"INFLUENCIA DE LA ADICIÓN DE TEJA Y FIBRA DE BAGAZO DE CAÑA RECICLADA EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN POR UNIDAD, PILA Y MURETE DE LOS BLOQUES DE CONCRETO TIPO I, LIMA – 2022."

Tesis para optar al título profesional de:

Ingeniero Civil

Autores:

Christian Jesus Brazowich Marcos Christian Omar Farroñan Soto

Asesor:

Mg. Juan Miguel De La Torre Ostos https://orcid.org/0000-0001-8226-5376

Lima - Perú

JURADO EVALUADOR

Jurado 1	WILDER ALEXANDER CALIXTRO CALIXTRO	153803
Presidente(a)	Nombre y Apellidos	Nº Colegiatura

Jurado 2	JULIO CHRISTIAN QUESADA LLANTO	235412
Jurado 2	Nombre y Apellidos	Nº Colegiatura

lurado 2	CHRISTIAN MARLON ARAUJO CHOQUE	174993
Jurado 3	Nombre y Apellidos	Nº Colegiatura

INFORME DE SIMILITUD

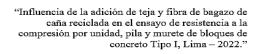
INFLUENCIA DE LA ADICIÓN DE TEJA Y FIBRA DE BAGAZO DE CAÑA RECICLADA EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN POR UNIDAD, PILA Y MURETE DE LOS BLOQUES DE CONCRETO TIPO I, LIMA – 2022

ORIGINA	LITY REPORT				
8 SIMILA	% RITY INDEX	6% INTERNET SOURCES	2% PUBLICATIONS	3% STUDENT PA	PERS
PRIMARY	/ SOURCES				
1	vibdoc.o				4%
2	Submitt Student Pape	ed to Universida	ad Privada del	Norte	2%
3	publicac	tiones.usanpedr	o.edu.pe		1%
4	Submitt Andes Student Pape	ed to Universida	ad Tecnologica	a de los	1%
5	enfoque del cont chilenos	ión de un cuest es de aprendizaj exto de aprendi s universitarios d a Universidad C	e y las percep izaje en estudi de primer año'	ciones antes ',	<1%
6		. Rodríguez Laca :les. "Predicción		_	<1%

DEDICATORIA

Gracias al apoyo que nos han prestado nuestros familiares y amigos para poder dar los mejores resultados en el desarrollo de la tesis. Por tanto, dedicamos todos nuestros esfuerzos a ellos por su valiosa colaboración.

AGRADECIMIENTO


Agradecemos a Dios por sus bendiciones, y orientarnos para continuar desarrollando esta tesis, y poder tener mucha fortaleza.

También estamos agradecidos por el apoyo incondicional de nuestras familias y padres, así como se le agradece a nuestro asesor por el conocimiento que nos ha hecho llegar.

Tabla de contenido

JURADO	O CALIFICADOR		2
INFORM	IE DE SIMILITUD		3
DEDIC	ATORIA		4
AGRAI	DECIMIENTO		5
TABLA	DE CONTENIDO		6
ÍNDICE	DE TABLAS		8
ÍNDICE	DE FIGURAS		12
RESUM	RESUMEN		18
ABSTR	ABSTRACT		19
CAPÍTU	JLO I: INTRODUCCIÓN		20
1.1.	Realidad problemática	20	
1.2.	Justificación	58	
1.3.	Definición de términos básicos	59	
1.4.	Formulación del problema	61	
1.5.	Objetivos	62	
1.6.	Hipótesis	63	
CAPÍTULO II: METODOLOGÍA			65
2.1	Tipo y diseño de la investigación	65	
2.2	Población y muestra (Materiales, instrumentos y métodos)	66	
2.3	Técnicas e instrumentos de recolección y análisis de datos	67	
2.4	Aspectos éticos	69	
2.5	Procedimiento	70	
Procedim	iento del objetivo específico 1	70	
		·	

Procedimiento del objetivo específico 2		106		
Procedim	Procedimiento del objetivo específico 3		111	
Procedim	Procedimiento del objetivo específico 4		118	
CAPÍTI	ULO III: RESULTADOS			124
3.1	Del objetivo específico 1		124	
3.2	Del objetivo específico 2		140	
	Análisis inferencial del específico 2			150
3.3	Del objetivo específico 3		164	
	Análisis inferencial del específico 3			174
3.4	Del objetivo específico 4		188	
	Análisis inferencial del específico 4			191
CAPÍTI	ULO IV: DISCUSIÓN Y CONCLUSIO	ONES		197
	Discusiones			197
	Conclusiones			200
REFERENCIAS			204	
ANEX(OS			208
Anexo N	° 1: Matriz de Operacionalización de Variables	;	208	
Anexo N	° 2: Matriz de Consistencia		209	
Anexo N	Anexo N° 3: Certificados de Laboratorio		211	
Anexo N	Anexo N° 4: Certificado de calibración		229	
Anexo N° 5: Panel Fotográfico		244		

ÍNDICE DE TABLAS

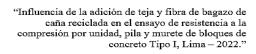

Tabla 1 Elementos que constituyen el cemento	41
Tabla 2 Clases de mezcla según su asentamiento	48
Tabla 3 Relación de la resistencia a la compresión y el peso volumétrico en concretos	51
Tabla 4 Propiedades químicas del bagazo.	55
Tabla 5 Muestreo de bloques de concreto convencional, con adición de teja reciclada y fibra de baga	zo de
caña reciclada	67
Tabla 6 Resistencia a la compresión promedio requerida	90
Tabla 7 Tipo de asentamiento de acuerdo a su uso estructural	90
Tabla 8 Volumen de Agua por m³. Agua en litros/m³ para TMN de agregados y consistencia	91
Tabla 9 Contenido de aire atrapado	91
Tabla 10 Relación agua/cemento de acuerdo a la resistencia requerida	92
Tabla 11 Peso del agregado grueso por unidad de volumen del concreto (b/b0)	93
Tabla 12 Cantidades de los materiales para el diseño mezcla Patrón.	94
Tabla 13 Cantidades de los materiales para el diseño mezcla al 3% de teja y 4% de fibra de bagazo d	e
caña	95
Tabla 14 Cantidades de los materiales para el diseño mezcla al 5% de teja y 4% de fibra de bagazo d	e
caña	95
Tabla 15 Cantidades de los materiales para el diseño mezcla al 7% de teja y 4% de fibra de bagazo d	e
caña	95
Tabla 16 Ensayo granulométrica del agregado fino	125
Tabla 17 Ensayo granulométrica del agregado grueso	126
Tabla 18 Características físicas del Agregado grueso.	128
Tabla 19 Características físicas del Agregado fino.	128
Tabla 20 Resumen de promedios de la resistencia a la compresión por unidad del tratamiento control	a los
días de rotura	141
Tabla 21 Resumen de promedios de % de resistencia a la compresión por unidad en función al	
f´c=90kg/cm² y resistencia mínima esperada de patrón.	141
Tabla 22 Resumen de promedios de porcentajes de adición del 3 % de teja y 4% bagazo de caña reci	clada
	143
Tabla 23 Resumen de promedios de % de resistencia a la compresión por unidad en función al	
f´c=90kg/cm² y resistencia mínima esperada del T1 – 4 % y 3%	143
Tabla 24 Resumen de promedios de porcentajes de adición del 5 % de teja y 4% bagazo de caña reci	clada
	145

Tabla 25 Resumen de promedios de % de resistencia a la compresión por unidad en función al
$f'c = 90 kg/cm^2 \ y \ resistencia \ m\'{n}ima \ esperada \ del \ T1-4 \ \% \ y \ 5\%.$
Tabla 26 Resumen de promedios de porcentajes de adición del 7% de teja y 4% bagazo de caña reciclada
Tabla 27 Resumen de promedios de % de resistencia a la compresión por unidad en función al
$f^{\prime}c = 90 kg/cm^2 \ y \ resistencia \ m^{\prime}nima \ esperada \ del \ T1-4 \ \% \ y \ 7\%.$
Tabla 28 Resumen de promedios de % de resistencia a la compresión por Unidad149
Tabla 29 Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por unidad a los
7 días de madurez
Tabla 30 Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por unidad a los
14 días de madurez
Tabla 31 Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por unidad a los
28 días de madurez
Tabla 32 Resultados de la prueba de normalidad de los ensayos a compresión por unidad a los días de
rotura
Tabla 33 Valores de coeficiente "r"
Tabla 34 Valores para la regresión lineal relacionando las resistencias a la compresión por unidad del
tratamiento T0 - patrón y tiempo de madurez
Tabla 35 Valores para la regresión lineal relacionando las resistencias a la compresión por unidad del
tratamiento T1 - 4% fibra de Bagazo de caña reciclada 3% de teja y tiempo de madurez156
Tabla 36 Valores para la regresión lineal relacionando las resistencias a la compresión por unidad del
tratamiento T2 - 4% fibra de Bagazo de caña reciclada 5% de teja y tiempo de madurez157
Tabla 37 Valores para la regresión lineal relacionando las resistencias a la compresión por unidad del
tratamiento T3 - 4% fibra de Bagazo de caña reciclada 7% de teja y tiempo de madurez159
Tabla 38 Resultados de la prueba de ANOVA a los tratamientos T0, T1, T2 y T3 para los resultados de la
resistencia a la compresión
Tabla 39 Tabla de valores DUNCAN para las resistencias medias a la compresión de los Tratamientos 163
Tabla 40 Resumen de promedios de la resistencia a la compresión por pilas del tratamiento control a los
días de rotura
Tabla 41 Resumen de promedios de % de resistencia a la compresión por pila en función al f´c=90kg/cm²
y resistencia mínima esperada de patrón
Tabla 42 Resumen de promedios de porcentajes de adición del 3 % de teja y 4% bagazo de caña reciclada
Tabla 43 Resumen de promedios de % de resistencia a la compresión por pila en función al f´c=90kg/cm²
y resistencia mínima esperada del T1 – 4 % y 3%.

1 abia 44 Resumen de promedios de porcentajes de adición del 5 % de teja y 4% bagazo de cana reciciada
Tabla 45 Resumen de promedios de % de resistencia a la compresión por pila en función al f´c=90kg/cm²
y resistencia mínima esperada del T1 – 4 % y 5%.
Tabla 46 Resumen de promedios de porcentajes de adición del 7 % de teja y 4% bagazo de caña reciclada
Tabla 47 Resumen de promedios de % de resistencia a la compresión por pila en función al f´c=90kg/cm²
y resistencia mínima esperada del T1 – 4 % y 7%.
Tabla 48 Resumen de promedios de % de resistencia a la compresión por Pila173
Tabla 49 Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por pila a los 7
días de madurez
Tabla 50 Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por pila a los 14 días de madurez
Tabla 51 Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por pila a los 28 días de madurez
Tabla 62 Resultados de la prueba de normalidad de los ensayos a compresión por pila a los días de rotura
Tabla 53 Valores de coeficiente "r"
Tabla 54 Valores para la regresión lineal relacionando las resistencias a la compresión por pila del
tratamiento T0 - patrón y tiempo de madurez
Tabla 55 Valores para la regresión lineal relacionando las resistencias a la compresión por pila del
tratamiento T1 - adición de 3% de teja y 4% de bagazo de caña reciclada
Tabla 56 Valores para la regresión lineal relacionando las resistencias a la compresión por pila del
tratamiento T2 - adición de 5% de teja y 4% de bagazo de caña reciclada
Tabla 57 Valores para la regresión lineal relacionando las resistencias a la compresión por pila del
tratamiento T3 - adición de 7% de teja y 4% de bagazo de caña reciclada
Tabla 58 Resultados de la prueba de ANOVA a los tratamientos T0, T1, T2 y T3 para los resultados de la
resistencia a la compresión por pila
Tabla 59 Tabla de valores DUNCAN para las resistencias medias a la compresión por pila de los
Tratamientos
Tabla 60 Resumen de promedios de la resistencia a la compresión por murete del tratamiento control a los
días de rotura
Tabla 61 Resumen de promedios de % de resistencia a la compresión por murete
Tabla 62 Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por murete a los
28 días de madurez

Tabla 63 Resultados de la prueba de normalidad de los ensayos a compresión por murete a los 28 días	de
rotura.	193
Tabla 64 Resultados de la prueba de ANOVA a los tratamientos T0, T1, T2 y T3 para los resultados de	e la
resistencia a la compresión por murete.	195
Tabla 65 Tabla de valores DUNCAN para las resistencias medias a la compresión por murete de los	
Tratamientos	196

ÍNDICE DE FIGURAS

Figura 1. Dimensiones de una unidad de mampostería de concreto	39
Figura 2. Tipos de unidades perforadas verticalmente (bloques de diferente modulación)	39
Figura 3. Límites permisibles para la calidad del agua	45
Figura 4. Constitución de la caña de azúcar.	54
Figura 5. Residuos de tejas artesanales	70
Figura 6. Obtención del bagazo de caña	71
Figura 7. Cuarteo y seleccionado de agregado grueso	73
Figura 8. Cuarteo y seleccionado de agregado fino	73
Figura 9. Huso 8 y 67	74
Figura 10. Llenado y tamizado del agregado grueso	75
Figura 11. Peso del agregado grueso obtenido	76
Figura 12. Límites granulométricos del agregado fino	76
Figura 13. Llenado y tamizado del agregado fino	77
Figura 14. Peso del agregado fino obtenido	78
Figura 15. Llenado y enrasado del agregado fino suelto	79
Figura 16. Pesado del agregado fino suelto	80
Figura 17. Llenado y enrasado del agregado grueso suelto	80
Figura 18. Pesado del agregado grueso suelto	81
Figura 19. Llenado y compactado del agregado fino	82
Figura 20. Enrasado y pesado del agregado fino compactado	83
Figura 21. Llenado y compactado del agregado grueso	83
Figura 22. Enrasado y pesado del agregado grueso compactado	84
Figura 23. Llenado y compactado del agregado fino para determinar el peso específico y la absorción.	86
Figura 24. Estado del agregado fino y llenado en fiola para determinar el peso específico y la absorció	in 87
Figura 25. Saturado y obtención del agregado fino para determinar el peso específico y la absorción	87
Figura 26. Saturado y pesado del agregado grueso para determinar el peso específico y la absorción	88
Figura 27. Dosificaciones de concreto f´c=90 kg/cm2	88
Figura 28. Medición de cantidad de agregados	97
Figura 29. Preparación de la mezcla adición de agregado grueso y fino	97
Figura 30. Preparación de la mezcla adición de agua y teja	98
Figura 31. Preparación de la mezcla adición de bagazo de caña y concreto obtenido	98
Figura 32. Llenado del cono de Abrams	99
Figura 33. Compactado y enrasado del concreto en la prueba del Slump	. 100
Figura 34. Medición del asentamiento del concreto en la prueba del Slump	. 100

Figura 35.	Llenado y vibrado del concreto en la elaboración del bloque1	01
Figura 36.	Enrasado y desmoldado del concreto en la elaboración del bloque	01
Figura 37.	Proceso de almacenaje de los bloques elaborados	02
Figura 38.	Medición para el ensayo de alabeo del bloque diseñado con concreto patrón1	03
Figura 39.	Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 3% de teja	
	1	04
Figura 40.	Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 5% de teja	
	1	04
Figura 41.	Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 7% de teja	
	1	05
Figura 42.	Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 3% de teja a los 7 :	y
14 días	1	08
Figura 43.	Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 3% de teja a los 28	1
días	1	08
Figura 44.	Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 5% de teja a los 7 :	y
14 días	1	09
Figura 45.	Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 5% de teja a los 28	
días	1	09
Figura 46.	Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 7% de teja a los 7 g	y
14 días	1	10
Figura 47.	Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 7% de teja a los 28	1
días	1	10
Figura 48.	Dimensiones de las pilas elaboradas	11
Figura 49.	Elaboración de las pilas con bloques de concreto	13
Figura 50.	Plomeado de la pila con bloques de concreto	13
Figura 51.	Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 3% de teja a los 7 y 1	4
días	1	14
Figura 52.	Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 3% de teja a los 28	
días	1	15
Figura 53.	Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 5% de teja a los 7 y 1	4
días	1	15
Figura 54.	Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 5% de teja a los 28	
días	1	16
Figura 55.	Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 7% de teja a los 7 y 1	14
días	1	16

Figura 56. Resistencia a la compresión por pila del diseño de 4% bagazo de caña y	· ·
días	
Figura 57. Dimensiones de los muretes elaboradas	
Figura 58. Nivelado y plomeado del murete	
Figura 59. Instalación de bloques en el murete	
Figura 60. Fraguado y limpiado de bloques en el murete	121
Figura 61. Resistencia a la compresión por murete del diseño de 4% bagazo de caña	a y 3% de teja a los 28
días	122
Figura 62. Resistencia a la compresión por murete del diseño de 4% bagazo de caña	a y 5% de teja a los 28
días	122
Figura 63. Resistencia a la compresión por murete del diseño de 4% bagazo de caño	a y 7% de teja a los 28
días	123
Figura 64. Curva granulométrica del agregado fino	126
Figura 65. Curva granulométrica del agregado grueso	127
Figura 66. Ensayo de alabeo del diseño patrón	137
Figura 67. Ensayo de alabeo del diseño con 4% de fibra de bagazo de caña y 3% de	e teja138
Figura 68. Ensayo de alabeo del diseño con 4% de fibra de bagazo de caña y 5% de	e teja138
Figura 69. Ensayo de alabeo del diseño con 4% de fibra de bagazo de caña y 7% de	e teja139
Figura 70. Grafica lineal de la resistencia a la compresión por unidad del tratamient	to T0 – tratamiento
control	142
Figura 71. Grafica lineal de la resistencia a la compresión por unidad con adición d	el 3 % de teja y 4%
bagazo de caña reciclada en función a los días de rotura.	144
Figura 72. Grafica lineal de la resistencia a la compresión por unidad con adición d	el 5 % de teja y 4%
bagazo de caña reciclada en función a los días de rotura.	146
Figura 73. Grafica lineal de la resistencia a la compresión por unidad con adición d	el 7 % de polvo de teja
y 4% bagazo de caña reciclada en función a los días de rotura	148
Figura 74. Diagrama de dispersión de correlación de los resultados de la resistencia	a la compresión por
unidad del tratamiento T0 vs el tiempo de madurez	155
Figura 75. Diagrama de dispersión de correlación de los resultados dela resistencia	a la compresión por
unidad del tratamiento T1 vs el tiempo de madurez	156
Figura 76. Diagrama de dispersión de correlación de los resultados dela resistencia	a la compresión por
unidad del tratamiento T2 vs el tiempo de madurez	158
Figura 77. Diagrama de dispersión de correlación de los resultados dela resistencia	a la compresión por
unidad del tratamiento T3 vs el tiempo de madurez	159
Figura 78. Grafica lineal de la resistencia a la compresión por pila del tratamiento	Γ0 – tratamiento
control	165

Figura 79. Grafica lineal de la resistencia a la compresión por pila con adición del 3 % de teja y 4%
bagazo de caña reciclada en función a los días de rotura
Figura 80. Grafica lineal de la resistencia a la compresión por pila con adición del 5 % de teja y 4%
bagazo de caña reciclada en función a los días de rotura
Figura 81. Grafica lineal de la resistencia a la compresión por pila con adición del 7 % de teja y 4%
bagazo de caña reciclada en función a los días de rotura
Figura 82. Diagrama de dispersión de correlación de los resultados de la resistencia a la compresión por
pila del tratamiento T0 vs el tiempo de madurez
Figura 83. Diagrama de dispersión de correlación de los resultados dela resistencia a la compresión por
pila del tratamiento T1 vs el tiempo de madurez
Figura 84. Diagrama de dispersión de correlación de los resultados dela resistencia a la compresión por
pila del tratamiento T2 vs el tiempo de madurez182
Figura 85. Diagrama de dispersión de correlación de los resultados dela resistencia a la compresión por
pila del tratamiento T3 vs el tiempo de madurez
Figura 86. Resumen de promedios de resistencia a la compresión por murete
Figura 87. Residuos de tejas artesanales
Figura 88. Obtención del bagazo de caña
Figura 89. Cuarteo y seleccionado de agregado grueso
Figura 90. Cuarteo y seleccionado de agregado fino
Figura 91. Llenado y tamizado del agregado grueso
Figura 92. Peso del agregado grueso obtenido
Figura 93. Llenado y tamizado del agregado fino24
Figura 94. Peso del agregado fino obtenido
Figura 95. Llenado y enrasado del agregado fino suelto
Figura 96. Pesado del agregado fino suelto248
Figura 97. Llenado y enrasado del agregado grueso suelto
Figura 98. Pesado del agregado grueso suelto
Figura 99. Llenado y compactado del agregado fino
Figura 100. Enrasado y pesado del agregado fino compactado
Figura 101. Llenado y compactado del agregado grueso
Figura 102. Enrasado y pesado del agregado grueso compactado
Figura 103. Llenado y compactado del agregado fino para determinar el peso específico y la absorción 252
Figura 104. Estado del agregado fino y llenado en fiola para determinar el peso específico y la absorción
Figura 105. Saturado y obtención del agregado fino para determinar el peso específico y la absorción 25.
Figura 106. Saturado y pesado del agregado grueso para determinar el peso específico y la absorción 253

Figura 107. Medición de cantidad de agregados	254
Figura 108. Preparación de la mezcla adición de agregado grueso y fino	254
Figura 109. Preparación de la mezcla adición de agua y teja	255
Figura 110. Preparación de la mezcla adición de bagazo de caña y concreto obtenido	255
Figura 111. Llenado del cono de Abrams	256
Figura 112. Compactado y enrasado del concreto en la prueba del Slump	256
Figura 113. Medición del asentamiento del concreto en la prueba del Slump	257
Figura 114. Llenado y vibrado del concreto en la elaboración del bloque	257
Figura 115. Enrasado y desmoldado del concreto en la elaboración del bloque	258
Figura 116. Proceso de almacenaje de los bloques elaborados	258
Figura 117. Medición para el ensayo de alabeo del bloque diseñado con concreto patrón	259
Figura 118. Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 3%	3
	259
Figura 119. Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 5%	-
Figura 120. Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 7%	Ü
Figura 121. Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 3% de teja	
14 días	•
Figura 122. Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 3% de teja	
días	261
Figura 123. Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 5% de teja	a a los 7 y
14 días	262
Figura 124. Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 5% de teja	a a los 28
días	262
Figura 125. Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 7% de teja	a a los 7 y
14 días	263
Figura 126. Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 7% de teja	
días	263
Figura 127. Elaboración de las pilas con bloques de concreto	264
Figura 128. Plomeado de la pila con bloques de concreto	264
Figura 129. Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 3% de teja a	
14 días	265
Figura 130. Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 3% de teja a	los 28
días	265

Figura 131. Resistencia a la compresion por pila del diseno de 4% bagazo de cana y 5% de teja a los / y
14 días
Figura 132. Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 5% de teja a los 28
días
Figura 133. Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 7% de teja a los 7 y
14 días
Figura 134. Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 7% de teja a los 28
días
Figura 135. Nivelado y plomeado del murete
Figura 136. Instalación de bloques en el murete
Figura 137. Fraguado y limpiado de bloques en el murete
Figura 138. Resistencia a la compresión por murete del diseño de 4% bagazo de caña y 3% de teja a los 28
días
Figura 139. Resistencia a la compresión por murete del diseño de 4% bagazo de caña y 5% de teja a los 28
días
Figura 140. Resistencia a la compresión por murete del diseño de 4% bagazo de caña y 7% de teja a los 28
días 270

RESUMEN

La presente investigación tiene como objetivo general determinar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de los bloques de concreto Tipo I, la metodología de la investigación es de tipo aplicada, porque servirá como una técnica nueva para el desarrollo y elaboración de un bloque de concreto Tipo I más la adición de teja y fibra de bagazo de caña reciclada, el diseño es tipo cuasi-experimental y el enfoque es cuantitativo y cualitativo. La elaboración de los bloques de concreto fue de acuerdo a los diseños patrón y con adición del 4% de bagazo de caña más el 3, 5 y 7% de teja a estos se les realizó los ensayos de resistencia a la compresión por unidad, pila y murete. De la prueba de resistencia a la compresión por unidad el resultado del diseño con el 4% de bagazo de caña más el 3% de teja fue superior al concreto patrón de teja con 88 kg/cm². De la prueba de resistencia a la compresión por pilas el resultado del diseño con el 4% de bagazo de caña más el 3% de teja fue superior al concreto patrón de teja con 66 kg/cm². De la prueba de resistencia a la compresión por muretes el resultado del diseño con el 4% de bagazo de caña más el 3% de teja fue superior al concreto patrón de teja con 25.50 kg/cm². De acuerdo a los resultados antes mencionados se concluye que el diseño con adición 4% de bagazo de caña más el 3% de teja alcanzo una mayor resistencia a la compresión por unidad pila y murete superando al concreto patrón a los 7, 14 y 28 días de secado.

PALABRAS CLAVES: Bloques de concreto, polvo de teja, fibra de bagazo de caña reciclada, resistencia a la compresión por unidad, pila y murete.

ABSTRACT

The present investigation has as a general objective to determine the influence of the addition of tile and recycled cane bagasse fiber in the compressive strength test per unit, pile and wall of Type I concrete blocks, the research methodology is of applied type, because it served as a new technique for the development and elaboration of a Type I concrete block plus the addition of tile and recycled cane bagasse fiber, the design is quasi-experimental and the approach is quantitative and qualitative. The elaboration of the concrete blocks was according to the standard designs and with additions of 4% of sugarcane bagasse plus 3, 5 and 7% of tile, compression resistance tests were carried out per unit, pile and die. From the compressive strength test per unit, the result of the design with 4% sugarcane bagasse plus 3% tile was superior to the concrete pattern tile with 88 kg/cm². From the pile compression resistance test, the result of the design with 4% sugarcane bagasse plus 3% tile was superior to the concrete pattern tile with 66 kg/cm². From the compressive strength test for walls, the result of the design with 4% sugarcane bagasse plus 3% tile was superior to the concrete pattern tile with 25.50 kg/cm². According to the results, it was concluded that the design with added 4% sugarcane bagasse plus 3% tile reached a higher compressive strength per unit pile and wall, surpassing the standard concrete at 7, 14 and 28 days. drying.

KEY WORDS: Concrete blocks, tile dust, recycled sugarcane bagasse fiber, compressive strength per unit, pile and low wall.

CAPÍTULO I: INTRODUCCIÓN

1.1. Realidad problemática

Además de las herramientas y los materiales utilizados para construir nuevas estructuras, la industria de la construcción innova y mejora constantemente los procesos de construcción para satisfacer las demandas económicas y funcionales del diseño y la construcción de ingeniería. A pesar de estas nuevas formas en la construcción, todavía existe el problema del agrietamiento temprano en los edificios, que muchas veces es causado no solo por el material o la construcción, sino también por los constantes cambios en el clima al que está expuesto el edificio, razón por la cual se utilizan aditivos artificiales para evitar estos problemas se están volviendo comunes, aunque costosos de ver el medio ambiente en contexto.

Al utilizar estos nuevos recursos no tradicionales en lugar del cemento Portland, además de mejorar la gestión de los recursos, se pueden reducir algunas de las emisiones de CO₂ hecho por la minería para producir cemento Portland, lo que reduce significativamente los costos ambientales de la construcción. En vertederos o áreas de desechos, esto también significa una reducción en el costo económico del concreto y por lo tanto es muy recomendable para aplicaciones donde la resistencia y trabajabilidad de la mezcla es suficiente. (Martirena, 2015).

A nivel mundial la industria azucarera genera anualmente enormes cantidades de residuos. Entre estos se encuentra la denominada ceniza de bagazo de caña de azúcar (CBCA) la cual resulta de combustionar este subproducto. En diversos estudios se logró demostrar que la CBCA tiene un alto contenido de silicio (SiO₂) y aluminato (Al₂O₃), lo cual se presenta características puzolánicas, por lo tanto, podría sustituir parcialmente el cemento y ser una alternativa de suma importancia por tener diversos beneficios, como

son valorar el desecho de CBCA y también contribuir a la reducción de gases de efecto invernadero en la manufacturación del cemento (0.85-1 kg CO₂/kg cemento). Esta es una propuesta interesante, si se considera la enorme proporción de contaminación generada por la industria cementera, que según datos del International Cement Review, su producción mundial para el 2010 alcanzó los 3.3 mil millones de toneladas (Vidal, 2014).

En américa latina, en Brasil y México se emplearon diversos métodos para la obtención de agregados reciclados. En Colombia, según reportes demográficos se vio que Bogotá, es una ciudad con un promedio de 15 millones de toneladas de RCD anual, los cuales no son aprovechadas en la actualidad; el 54 % son materiales cerámicos (tejas, vidrios, ladrillos, azulejos y otros) y el 12 % residuos de concreto (Robayo et al., 2016).

En el Perú, el (Decreto Supremo N° 003-2013-VIVIENDA), regula el manejo adecuado de los residuos generados en el sector construcción para minimizar las fuentes de segregación de materiales, así como promover el aprovechamiento, recolección para prevenir los impactos ambientales y proteger la salud. Es oficio de los municipios provinciales en coordinación con los municipios distritales de establecer los puntos de disposición de escombreras, pero pese a ello no se ejerce una reutilización de residuos que permita el aprovechamiento de los beneficios que se podrían obtener, además de mejorar el aspecto ambiental.

Según Silva (2017), se generan en promedio de 2000 toneladas de residuos por día en ciudades de alto crecimiento demográfico, de las cuales el 90% de todos los RCD (concreto, ladrillos, tejas, vidrios, porcelanas, etc.), no son aprovechados y son depositados en botaderos (p.8).

Actualmente, el uso de diferentes tecnologías del concreto en cuanto a producción, se encuentra las adiciones de escorias, cenizas, humos de sílice, y distintos tipos y tecnologías

"Influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de bloques de concreto Tipo I, Lima – 2022."

de aditivos que se suma a la variabilidad determinada respecto al agregado cementicio. Esto quiere decir que, con una mayor calidad de la matriz cementante usada en la mezcla, por el uso de la baja relación agua/cemento, se genera una pasta con menor porosidad, menor permeabilidad, dependiendo del tipo de cemento y resistencia a obtener. Los concretos de hoy requieren en su composición la incorporación de aditivos y adiciones con la finalidad de mejorar sus propiedades mecánicas y de durabilidad. (Quimbay, 2009, p.8).

Las demandas de concreto han escalado cerca de 15 mil millones de toneladas anuales, que necesita consumir aproximadamente 20 mil millones de toneladas de agregado cada año (Wang et al., 2017), y siendo el agregado (fino o grueso) un recurso que tiene que ser extraído del suelo y que es un componente básico para la elaboración del concreto, la falta de este recurso también es un problema que lo afrontan muchos países que no cuentan con suficiente fuente de agregados. La búsqueda de nuevos materiales que reemplacen en diferentes porcentajes tanto al agregado como al cemento, es una larga tarea que tiene como pilar las investigaciones y pruebas.

Entre los antecedentes, se puede mencionar:

Antecedentes Internacionales

En el ambiento internacional tenemos a Gonzales (2016), en la ciudad de Veracruz - Colombia, realizó una investigación acerca del empleo de la ceniza de bagazo de caña de azúcar (CBCA) donde busca sustituir porcentualmente el agregado fino en el diseño del concreto. Se elaboraron probetas de concreto reemplazando 5% y 10% de agregado fino sustituyéndolo con CBCA, obteniendo resultados a los 7, 14, 21, 28 y 60 días. De acuerdo a los resultados obtenidos de las pruebas de resistencia a la compresión del concreto con sustitución al 5% y 10% del agregado fino por CBCA, los valores obtenidos fueron inferiores en comparación con el concreto convencional. También se debe mencionar que

a los 60 días de secado el concreto con un 5% de CBCA logro un esfuerzo de 335 kg/cm² el cual fue superior al diseño convencional. Se concluye que es factible, de acuerdo a lo analizado, reemplazar hasta un 15% del agregado fino por CBCA, porque beneficia la resistencia a la compresión, además permite una mejor trabajabilidad del concreto y también ayudaría a disminuir los desechos de CBCA.

Según Rivas (2017), en la ciudad de Nicaragua, utilizó la ceniza de bagazo de caña para sustituir parcialmente el cemento, realizó un análisis de las propiedades físicas mecánicas con sustitución del 15 y 45% de CBCA en vez del cemento. De los resultados obtenidos de la prueba de resistencia a la compresión a los 28 días de secado se obtuvo que los especímenes de control y con 15% de CBCA fueron los mejores con 29.56 MPa y 29.64 MPa respectivamente. De acuerdo a los datos recopilados se pudo afirmar que el diseño óptimo del concreto con reemplazo de CBCA en vez del cemento sería el de 15% CBCA, dicho concreto fue curado a 60°C y por 28 días. Por lo tanto, se concluyó que, si se puede sustituir el cemento por CBCA, pero hasta un máximo de 15% ya que de acuerdo a los resultados obtenidos a mayores porcentajes de CBCA sus propiedades mecánicas presentan un decaimiento.

En base a Carrasco, (2018). "Aplicación del uso de los residuos de construcción para la fabricación de bloques de hormigón en la ciudad de Riobamba", tuvo como objetivo principal identificar la potencialidad de los residuos de construcción y demolición (RCD) como alternativa a las materias primas naturales. Asimismo, se establecerá su capacidad para formar un nuevo material que minimice los volúmenes existentes de residuos, con el fin de contribuir a la conservación del medio ambiente. Para lograrlo, se llevó a cabo ensayos de Granulometría, Masa unitaria suelta (MUS), Masa unitaria compacta (MUC), contenido de humedad, Porcentaje de absorción, Peso

específico y Colorimetría, los cuales evaluaron e identificaron las cualidades físicas, mecánicas y químicas de los residuos (hormigón y ladrillo), mismos que permitieron obtener una dosificación óptima para el elemento prefabricado. Los análisis y resultados finales de Resistencia a compresión, Contenido de humedad y Absorción, garantizan un nuevo elemento prefabricado normado que cumple con los estándares de calidad INEN 3066. De esta manera, este estudio promueve a los RCD como una materia prima sustentable, que no solo reduce el costo e impacto ambiental, sino que además aporta al beneficio social y económico de la ciudad.

De acuerdo con Zambrano, (2016) "Estudio de las características físico-mecánicas de bloques de hormigón con fibra de cabuya", tuvo como objetivo obtener las características físico-mecánicas de bloques de hormigón elaborados con una mezcla de fibra de cabuya ligado con cemento portland, agua y agregados comercializados en la provincia de Imbabura, los resultados obtenidos fueron comparados con bloques convencionales, con el objeto de determinar si estos son económicamente sustentables y cumplen con la normativa vigente en nuestro medio local. Las concentraciones de fibra en el hormigón fueron de 0; 3,3; 6,6 y 9,9% del peso de cemento empleado en la mezcla, proporciones que se tomaron con el fin de poder observar el comportamiento de los bloques fabricados. Los resultados de los ensayos evidenciaron que las adiciones de esta fibra en proporciones determinadas aumentan la resistencia a tensión diametral, a flexión y la resistencia a compresión en bloques de hormigón, mientras que la resistencia al impacto muestra un incremento a mayores concentraciones de fibra.

Según Muñoz, Vera, Briones & Guerrero en su investigación "Determinación de la resistencia a la compresión de bloques, utilizando para su construcción, una mezcla de cemento, arena y triturados de ladrillos artesanales", tuvo como objetivo el estudio del

comportamiento del hormigón al sustituir distintos porcentajes de áridos gruesos, por material reciclado como los ladrillos de arcilla provenientes de escombros. Para esto se elaboraron mezclas con distintos porcentajes de material reciclado. A cada probeta con 28 días de curado se le realizaron los ensayos de resistividad superficial y resistencia a la compresión. Se realizó la comparación entre el hormigón sin material reciclado y los hormigones que contenían los porcentajes de ladrillos triturados como agregados gruesos, llegando a la conclusión que los ladrillos provenientes del reciclaje, solo se puede utilizar en porcentajes inferiores al 10% en la fabricación de hormigón, porque al incrementarse este material, se generan decrementos de resistencias a la compresión en el hormigón fabricado.

Antecedentes Nacionales

De acuerdo con Díaz, (2019) en su tesis "Eficiencia económica y estructural del ladrillo de concreto para losa aligerada con adición de poliestireno en diferentes porcentajes", tuvo como objetivo general determinar la eficiencia económica y estructural de ladrillo de concreto para losa aligerada con adición de poliestireno en diferentes porcentajes. La metodología consistió en obtener un concreto liviano que pueda ser aplicado a ladrillos de concreto para losas aligeradas con medidas de 30 x 23 x 15cm, proveniente de un diseño f'c=70 kg/cm², adicionando distintos valores de perlas de poliestireno (20%, 40% y 60%) y ladrillos patrón (sin incorporación de perlas de poliestireno), se evaluó la resistencia de los ladrillos de concreto al ensayo de compresión a la edad respectiva de 28 días de curado, obteniendo un valor de resistencia del concreto promedio de 78.82 kg/cm², un peso promedio de 8.22 kg y por otro lado, el concreto con porcentajes de poliestireno que presentó reducciones, con el 20% de adición de perlas de poliestireno obteniendo una resistencia del concreto de 39.19 kg/cm², un peso promedio

de 7.66 kg, con el 40% de adición de perlas de poliestireno, su resistencia a la compresión fue de 22.63 kg/cm², un peso promedio de 7.06 kg y con el 60% de adición de perlas de poliestireno obteniendo una resistencia del concreto de 12.04 kg/cm², un peso promedio de 6.49 kg. Finalmente, se hizo el diseño de una losa aligerada para evaluar el comportamiento estructural del ladrillo convencional con respecto a la adición en porcentajes de perlas de poliestireno.

En base a Castillo & Evangelista, (2019) en su tesis "Mejoras de las propiedades de ladrillos de concreto con el uso de limalla en nuevo Chimbote -2019", su principal objetivo fue determinar las características primarias de los ladrillos de concreto incorporando el uso de limalla con adición de 0%, 25%,35% y 50% de residuos metálicos de la siderúrgica Sider Perú(limalla) .Se obtuvo como principales resultados en las propiedades para el ensayo a compresión en "muretes" diagonal, de la muestra sin adición de limalla al 0% es 12.40 kg/cm², limalla al 25% es 15.00 kg/cm², limalla al 35% es 17.96 kg/cm², y limalla al 50% es 19.90 kg/cm². Asimismo, la incorporación de limalla sería un gran aliado, debido a que la absorción es similar en todas las unidades, demostrando de esta forma que se cumple con lo requerido por la norma. Finalmente, para las tres muestras empleadas, se encontró que las de albañilería con el 50% de limalla presentaron un mejor comportamiento mecánico, pero su costo de elaboración sería muy elevado si se realiza una comparación con la fabricación de elementos tradicionales.

También mencionamos a Ríos & Rojas, (2019) en su proyecto titulado "Ladrillo de concreto ligero utilizando como agregado grueso piedra pómez para muros de tabiquería en viviendas multifamiliares", se plantea sustituir el agregado grueso en las cantidades de 5%, 10% y 15% por el material de piedra pómez, reduciendo la cantidad del agregado inicial con la finalidad de lograr ladrillos de consistencia ligera. Basados en el objetivo se

obtuvieron para el ensayo a pilas los datos de la resistencia que obtuvo estos elementos en cuanto a la compresión de lo cual se puede apreciar que con respecto al promedio de compresión por pilas del diseño patrón es de 94.70 kg/cm², por diseño de 5% de piedra pómez es de 104.32 kg/cm², por diseño de 10% de piedra pómez es de 102.25 kg/cm² y por diseño de 15% de piedra pómez es de 96.78 kg/cm². Una vez realizado los ensayos correspondientes y procesado los datos que se obtuvieron encada uno, queda demostrado que los ladrillos de concreto aligerados por el reemplazo del material cumple con lo establecido para las características físicas según la Norma Técnica E.070 de Albañilería siendo esto aún más favorable.

Según Jiménez (2016), en la ciudad de Cajamarca - Perú, realizo estudios acerca de un diseño f´c=210 kg/cm² sometido a los ensayos de compresión al añadir distintas cantidades de porcentajes del bagazo de caña de azúcar en el estado de ceniza. Se fabricaron elementos de concreto cilíndricos y prismáticos con la adición del material en la cantidad de 8%, 10% y 12% (NPT. 339.183/ASTM C192M); estudiando el comportamiento del mismo según las edades correspondientes del elemento endurecido (NTP. 339.034/ASTM C39). Se obtuvieron resultados del ensayo a la compresión adicionando el 8% de la ceniza de bagazo resultando un 245.18 kg/cm² a los 28 días, este valor de adición determina que se presentó un incremento de la resistencia del elemento en un 16.94% respectivamente del diseño inicial; con la adición del 10% de ceniza de bagazo se logró un valor de resistencia a los 28 días de 245.31 kg/cm², determinando que se presentó un incremento de la resistencia del elemento en un 17.00% respectivamente del diseño inicial y finalmente al adicionar un 12% de ceniza de bagazo se obtuvo una resistencia de 242.43 Kg/cm² a los 28 días, determinando que se presentó un incremento de la resistencia del elemento en un 15.63% respectivamente del diseño inicial. Se puede

determinar que los resultados determinados en el laboratorio de estudio nos señalan que este diseño de mezcla adicionado la ceniza de bagazo de caña como un material puzolánico presenta un registro elevado en cuanto al diseño convencional, demostrando que los mejores valores de adición fueron el 8% y 10% para los diseños propuestos de concreto.

De acuerdo con Cueva, (2021) en su tesis "Evaluación del concreto elaborado con residuos de teja artesanal y vidrio, Chota", tuvo como objetivo general de la tesis fue determinar la influencia de los residuos de teja artesanal y vidrio en las propiedades físico-mecánicas del diseño para determinar su resistencia y ritmo de absorción. Se elaboraron 54 probetas cilíndricas ensayadas a compresión a los 7, 14 y 28 días y 12 probetas para ensayos de absorción a los 90 días. Del análisis de las propiedades físicas de los residuos de teja artesanal y vidrio se obtuvo una fineza de 2.776 y 2.774 respectivamente demostró que al utilizar residuos de teja artesanal y vidrio mejorados mediante el tamiza; de la cantidad del material fino pasante por el tamiz # 200 se obtuvo 2.56% y 1.09% cumpliendo con los parámetros establecidos en la normativa. De la resistencia a la compresión con el 0%, 5%, 10%, 15%, 20% y 30 % se obtuvo 219.28 kg/cm^2 , 229.18 kg/cm^2 , 239.36%, 229.36%, 220.10 kg/cm^2 y 220.34 kg/cm^2 ; de la absorción del concreto con 0%, 5%, 10%, 15%, 20% y 30 % se obtuvo 2.39mm, 2.381mm, 2.377mm, 2.389mm, 2.393mm y 2.396mm respectivamente. Según las conclusiones se evidencia que los residuos de teja artesanal y vidrio son materiales con las propiedades adecuadas para ser usados como reemplazo del agregado fino, además se determina que el valor más adecuado para el reemplazo fue el 10% ya que se obtuvo un incremento en su resistencia de compresión con un valor de 9.17% y una reducción del ritmo de absorción del concreto de 0.54%, mejorando la calidad del concreto.

Entre los **fundamentos teóricos**, podemos mencionar:

Ladrillo de concreto vibrado

A inicios del siglo XIX tuvo lugar en Inglaterra uno de los mayores avances en la construcción, que fue la producción de ladrillos de hormigón, elementos que ofrecían mayor peso y estabilidad que los ladrillos tradicionales. Estos elementos allanaron el camino para el uso del cemento, lo que abrió nuevas posibilidades e ideas para la industria de la construcción. La fabricación de ladrillos de concreto tubulares se dieron a partir del siglo XX, la principal característica de dichos ladrillos es la ligereza y facilidad de uso, por lo que es una innovación en la historia de la construcción. (Bernal, D., 2017, pág. 54-59)

Las maquinarias que se empleaban en aquellos años se basaba prácticamente en diseños elaborados por metales pesados, teniendo como mecanismo la compactación manual de las muestras; siendo utilizado hasta el siglo XX, siendo a partir de esa fecha en donde aparecieron las máquinas que contaban con un martillo mecánico; años después se descubre que el concreto fluye de mejor manera si en su compactación se logra un proceso de vibrado y compresión; en la actualidad se puede apreciar que las máquinas modernas y sofisticadas usadas en el ámbito de la construcción cuentan con un sistema de vibración para una eficaz elaboración de los ladrillos. (Macedo, A., 2016, pág. 16-19)

La primera fábrica de ladrillos de hormigón del Perú comenzó a funcionar en el año 1928 siendo utilizados los primeros elementos en la construcción del barrio obrero en la ciudad del Callao. Luego de su buen avance se optó por abrir más fábricas, estas situadas cerca al puente del Ejército en la antigua chancadora y la siguiente en breña cerca al Jr. Tingo María.

En la actualidad, se utilizan grandes máquinas vibratorias para la producción de ladrillos de hormigón, aun así, en muchas áreas rurales este equipo es escaso, optando por utilizar la vibración convencional de forma manual; de esta forma, al emplear el uso de las mesas vibratorias tiene un resultado favorable para la fabricación de estos elementos, siendo algo viable y de mayor confiabilidad para la albañilería.

La calidad del ladrillo depende de cada etapa del proceso productivo, principalmente de una cuidadosa selección de los áridos, correcta dosificación, perfecta preparación en cuanto a amasado, moldeado y compactación y suficiente curado (Peñaherrera, A., 2015, pág. 37-42).

Utilización de los ladrillos de concreto vibrado

La preparación de los ladrillos de concreto requiere únicamente los materiales habituales, tales como: piedra triturada, arena, cemento y agua; máquinas vibratorias y moldes de acuerdo al tipo de ladrillo requerido; la confección de estos es posible hacerla in situ, de esa manera produce un ahorro en el aspecto del transporte y facilita el uso en las diversas construcciones (Costa, A., 2015, pág. 52).

Los ladrillos de concreto pueden ser de tipo modular o pre moldeado, se encuentran en la categoría de mampostería y son ideales para el uso en el método constructivo de albañilería confinada y armada. Los ladrillos de concreto son usados para la elaboración de muros, parapetos, muretes de contención, etc., (Costa, A., 2015, pág. 53).

En el método constructivo de albañilería confinada los ladrillos de concreto requieren de vigas y columnas de confinamiento. En el método constructivo de albañilería confinada armada dichos ladrillos de concreto, requieren refuerzos de acero vertical y

horizontal distribuidos de manera regular a lo largo del muro. (Bohórquez, J., 2017, pág. 33-37)

Tecnología de los ladrillos de concreto vibrado

Los insumos para la elaboración de los ladrillos de concreto son; el cemento y los agregados de acuerdo al diseño de mezcla, en el aspecto de impermeabilidad y durabilidad se toma en cuenta una relación agua y cemento mínima; los elementos para la elaboración los ladrillos de concreto son moldes metálicos y una mesa vibradora. (Mora, W., 2016, pág. 75-78)

Muros

Definición: Los muros se pueden realizar con materiales tradicionales como la piedra o el hormigón, así como también con barro estabilizado o en la mayoría de los casos con arcilla cruda. (Tronconi, A., 2009, pág. 77)

Clasificación:

Según San Bartolomé (1994), los ladrillos pueden clasificarse según su función estructural o por la distribución del refuerzo. (p. 5).

Según su función estructural:

Muros no portantes:

Son aquellos muros que no reciben cargas verticales. Estos muros se diseñan para soportar cargas perpendiculares como, por ejemplo: el viento, sismos u otras cargas. (San Bartolomé, 1994, pág. 5).

Muros portantes:

Estos muros se emplean como elementos estructurales. Están elaborados para soportar todo tipo de cargas, ya sean contenidas en su plano o perpendiculares. (San Bartolomé, 1994, pág. 6).

Según la distribución del refuerzo:

Muros no reforzados o de albañilería simple:

Estos muros carecen de refuerzos y no cumplen con las condiciones mínimas reglamentarias que debe tener todo muro de refuerzo. (San Bartolomé, 1994, pág. 7).

Muros reforzados:

Estos muros se dividen en armados, laminares y confinados. También indica que estos muros cuentan con un espesor efectivo mínimo con el objetivo de evitar excentricidades por la falta de verticidad del muro. (San Bartolomé, 1994, pág. 8).

Mampostería

Como mampostería se entiende la elaboración de estructuras mediante la disposición ordenada de unidades de mampostería, cuyas dimensiones son pequeñas comparadas con las del elemento que se va a construir (muro, bóveda, etc.), y cuyo peso y tamaño depende del sistema de manejo que se vaya a emplear (manual, equipo mecánico, equipo motorizado, etc.). Según el tipo de junta, la mampostería puede ser: al tope cuando no tiene ningún elemento de unión en las juntas entre las unidades; y pegada, cuando existe una capa de mortero en las superficies o puntos de contacto entre las unidades, o sea en las juntas. (Gallegos & Casabonne, 2015, pág. 119)

Desde el punto de vista estructural, la mampostería puede ser: estructural, cuando los muros que conforma deben soportar tanto su propio peso como las cargas horizontales

y verticales actuantes sobre sus planos; y no estructural, cuando los muros deben soportar tan solo su propio peso y servir como división (partición) entre dos espacios. La mampostería estructural también sirve como divisoria. Ambos tipos de mampostería de concreto se pueden elaborar con unidades perforadas verticalmente (bloques) o macizas (ladrillos). Los principios de fabricación, calidad, construcción y desempeño aplican de igual manera para ambos. Sin embargo, en el presente documento, las unidades de mampostería a las que se hace referencia, a no ser que se indique lo contrario, serán unidades perforadas verticalmente (bloques) de concreto. (Carrasco, B., 2013, pág. 94)

Consideraciones sobre el sistema

Ventajas

De acuerdo a Flores, C., (2016), bajo condiciones adecuadas de diseño y construcción, el sistema de mampostería de bloques de concreto presenta grandes ventajas de orden económico y operativo:

- Dada la modulación y las estrictas tolerancias de fabricación de las unidades, se disminuyen los desperdicios de material de muros y de acabados, permitiendo aplicar directamente sobre los muros, estucos delgados o pinturas, o aprovechar las texturas y colores naturales de las unidades corrientes o de las que tienen características arquitectónicas.
- Los elementos de cierre (fachada) pueden ser portantes, brindando la doble función estructural y arquitectónica.
- Dentro de las celdas verticales de los muros elaborados con bloques, se pueden colocar las conducciones eléctricas, hidrosanitarias y de telecomunicaciones.
 Además, se eliminan, en gran cantidad, las perforaciones de los muros. las

"Influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de bloques de concreto Tipo I, Lima – 2022."

UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

reparaciones y los desperdicios, lo que reduce mano de obra, fijaciones y materiales de reparación.

- Dado que el refuerzo vertical de la estructura se coloca dentro de las celdas o en recintos conformados por bloques, se elimina la formaletería y la obra falsa de la estructura vertical.
- Permite utilizar entrepisos total o parcialmente prefabricados, lo que da mayor velocidad al proceso constructivo y la disminución de costos por la reducción en la utilización de formaletería y obra falsa.
- En obras debidamente diseñadas se puede construir toda la estructura con un solo material (la mampostería), reduciendo el número de proveedores y el manejo de materiales y equipos.
- Al emplear mano de obra especializada y unidades modulares, se tiene una gran velocidad y eficiencia en la construcción de los muros, por lo cual, en muchos casos se reducen los costos por menos actividades, equipos y mano de obra.
- Como sistema constructivo genera daños secundarios menores, con sismos dentro del espectro de diseño y se pueden utilizar en todo rango de riesgo sísmico, con gran desempeño.
- Como sistema estructural y constructivo se puede emplear desde viviendas de bajo costo de uno o dos pisos, hasta edificios de gran altura y costo, pasando por los de uso industrial, comercial, hotelero, hospitalario, educativo, etc., siempre con grandes beneficios económicos.
- La mampostería de concreto, por ser un sistema de muros portantes, facilita y hace económicas las estructuras regulares y repetitivas como hoteles, hospitales, edificios de apartamentos, centros educativos, cárceles, etc.

- Cuando se combinan las características estructurales y arquitectónicas de la mampostería de concreto, se obtienen estructuras duraderas, de muy bajo mantenimiento y de gran apariencia.
- Permite diseñar para un gran aislamiento térmico y acústico, ya que los bloques poseen perforaciones cercanas al 50 lo de su área bruta, brindando cámaras de aire aislantes para ambos factores, y que se pueden llenar con materiales de características adecuadas para tal fin.
- La mampostería de concreto se puede emplear no sólo como sistema constructivo sino con el fin de brindar y reflejar una imagen de innovación, seguridad y solidez, según el manejo que se haga de su diseño arquitectónico y estructural.
- La producción de unidades de mampostería está en continua evolución, de manera que a cada momento se cuenta con nuevos productos en el mercado, que encajan dentro del sistema, y le dan un nuevo rostro en cada proyecto.
- Potencialmente es un sistema adaptable a condiciones de producción y construcción de tecnología sencilla en lugares apartados, con un gran potencial social y económico, sin sacrificar aspectos básicos de seguridad y durabilidad.

Desventajas

En base a Flores, C., (2016), como desventajas relativas del sistema de mampostería de concreto se pueden anotar la siguientes, algunas de las cuales se convierten en beneficio para el usuario:

Por ser un sistema diferente al de pórticos y a otros de muros (incluyendo otros tipos de mampostería, es indispensable estudiarlo e identificar sus características, para no incurrir en ligerezas en cuanto al manejo y funcionamiento de sus materiales (unidades, morteros, etc.), con el fin de eliminar los defectos recurrentes.

- Requiere controles de calidad rigurosos y sistemáticos que, aunque especificados,
 rara vez se ejecutan para otros sistemas constructivos.
- Requiere de un diseño arquitectónico con una rigurosa modulación de muros, tanto vertical como horizontal.
- Tiene un peso ligeramente mayor que el de los edificios de pórticos de concreto con particiones livianas o de mampostería de arcilla.
- Dado que todos los muros son, en principio, estructurales (portantes), no se pueden modificar indiscriminadamente los espacios interiores de los edificios, suprimiendo algunos de ellos total o parcialmente.
- Provee, al igual que los edificios de muros de concreto, muros de gran dureza que dificultan su modificación o que se perfore o se clave en ellos.
- Por ser un sistema de muros portantes, tiende a generar estructuras regulares y repetitivas, de apariencia pesada, con lo cual debe trabajar el arquitecto para sacar provecho de los materiales y hacerlas más dinámicas, o aprovecharlas para edificaciones repetitivas.

Consideraciones de diseño

Diseño estructural

Según Mayorga K., (2016), un buen diseño de mampostería de concreto se fundamenta en la coordinación entre el diseño estructural y el arquitectónico, para lo cual se formulan las siguientes consideraciones:

- Seleccionar, desde la concepción de los diseños, el tipo (dimensiones) de las unidades a utilizar, para poder modular los muros según su longitud, espesor y altura.
- Hacer coincidir los ejes arquitectónicos con los estructurales, evitando el manejo de ejes múltiples para mayor facilidad constructiva y seguridad estructural.

- Diseñar y dibujar completa, en planta, la primera hilada de los muros, con el fin de establecer las cantidades y características de las unidades que se van a utilizar en la obra y poder ofrecer una guía precisa para su construcción. Dibujar la alzada de los muros. con el fin de verificar la modulación de las unidades a las necesidades de las alturas de puertas y ventanas, total del piso y las dimensiones de los vanos.
- Demarcar en los planos las celdas que van a llevar refuerzo, las que se van a inyectar con mortero y las que tienen ductos para instalaciones, para tener toda la información al alcance de todos los que participan en la construcción y así poder evitar errores.

Consideraciones constructivas

La amplia utilización de la mampostería de concreto parte, principalmente, de las ventajas que posee con respecto a otros materiales para la construcción de muros, que se traducen en facilidad de empleo tanto para soluciones constructivas simples (particiones y aplicaciones menores) como para las estructurales (edificios de baja y gran altura, muros de contención, etc.).

Inspección

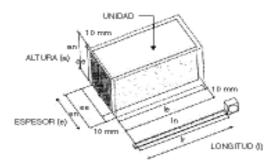
Según Mayorga K., (2016), una buena obra de mampostería de concreto se debe diseñar y construir bien. Para ello es fundamental tener un alto grado de inspección, con los controles necesarios para garantizar la calidad de los aspectos más importantes de dicho proceso. Por lo anterior es necesario que exista una supervisión profesional e independiente de la empresa y del personal de la construcción, la cual debe efectuar un seguimiento ordenado y estricto de los parámetros y los procesos constructivos, con el fin de evitar que se presenten problemas durante la ejecución de etapas posteriores.

Entre los parámetros y procesos a supervisar se destacan los siguientes:

• Recepción, almacenamiento, manejo y calidad de las unidades (bloques y ladrillos).

- Elaboración o recepción, almacenamiento, distribución, colocación y calidad de los morteros de pega y de inyección.
- Recepción, almacenamiento, corte, figurado, colocación y calidad del refuerzo, con énfasis en la disposición del refuerzo vertical en las celdas.
- Tolerancias dimensiónales (alineamiento, verticalidad, regularidad, etc.) de los muros y, por ende, de la mano de obra.

Coordinación modular


Otro aspecto importante a resaltar de la mampostería de concreto es que se puede y se debe diseñar y construir teniendo en cuenta los principios de la coordinación modular. Esto se logra gracias a que el sistema se basa en un módulo con submódulos (unidades enteras, medias, cuartos, etc.), que minimizan los cortes y ajustes en la obra.

La mampostería estructural con bloques de concreto se trabaja por lo general con un módulo de 200 mm y una unidad módulo de 200 mm de espesor x 200 mm de altura x 400 mm de longitud. Alternativamente también se trabaja con el módulo de 150 mm (unidades de 150 mm x 150 mm x 300 mm) o el módulo de 100 mm (unidades de 100 mm x 100 mm x 200 mm). Pero en algunos lugares, por razones fundamentalmente de economía, se ha alterado la modulación vertical para el módulo de 200 mm, aumentando la altura de la unidad a 250 mm, pero conservando la longitud en 400 mm. Para cada módulo y para cada alteración del mismo será necesario ajustar algunos parámetros en las consideraciones de diseño arquitectónico y estructural, económicas y constructivas (Ortiz, V., 2015, pág. 21).

A continuación, en figura 1 y 2 se muestran las dimensiones de la unidad de mampostería y los tipos de unidades.

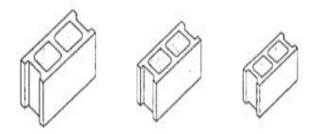


Figura 1.Dimensiones de una unidad de mampostería de concreto

Fuente: Ortiz, V., 2015

Figura 2.Tipos de unidades perforadas verticalmente (bloques de diferente modulación)

Fuente: Fuente: Ortiz, V., 2015

Para sacar el mayor provecho de todo lo anterior es necesario que los planos arquitectónicos se ajusten a dimensiones de acuerdo con las unidades ya referidas y que estén disponibles en el mercado. Si bien el módulo establecido es 200 mm, y proporciona completa flexibilidad para componer las distintas dimensiones de uso corriente en la construcción, tales como vanos para puertas y ventanas, alturas de entrepisos, etc., no es suficiente que las dimensiones sean las correctas, sino que se pueden estudiar los diseños para optimizar el uso de unidades diferentes a la unidad módulo. Para esto se ilustran los casos siguientes: (Ortiz, V., 2015, pág. 22)

"Influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de bloques de concreto Tipo I, Lima – 2022."

UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

Concreto

Actualmente en el ámbito de la construcción el concreto es uno de los materiales

existentes con mayor demanda debido a la diversidad que este presenta, permitiendo

además un ahorro en costos de obra en las diferentes construcciones en las que se aplica

dicho material, siendo necesario elaborar métodos que nos permitan obtener un óptimo

rendimiento.

El concreto está compuesto por pasta y agregados finos y gruesos. La pasta es una

mezcla de cemento y agua la cual se une con los agregados, normalmente arena y grava,

los cuales conforman el cuerpo del material, creando una masa que al endurecer forma

una roca artificial. La calidad del concreto depende de la calidad de la pasta y del

agregado y de la unión entre los dos. En un concreto adecuadamente confeccionado, cada

y toda partícula de agregado es completamente cubierta por la pasta y todos los espacios

entre las partículas de agregados se llenan totalmente con pasta (Mendez & Vargas, 2021,

pág. 12).

Usos estructurales

La resistencia y la rigidez tienen influencia en los elementos estructurales y estos a

su vez cumplen la función principal de resistir todo las cargas vivas y muertas de la

edificación y otras fuerzas externas como sismos, vientos, etc.

Los elementos más importantes en la construcción son:

Vigas y viguetas: son comúnmente barras horizontales, que desempeña una

función muy importante de trasferir el peso a las columnas. Están sometidas

generalmente a esfuerzos de flexión.

Pág.

- Pilar o columna: son comúnmente barras apoyadas verticalmente, cuya función esencial es trasferir cargas hacia los cimientos. Los principales esfuerzos que soporta son de compresión y pandeo.
- Cimientos: soportan principalmente esfuerzos de compresión y son los encargados de resistir y distribuir en el suelo todo el peso de la estructura.
- Placas: Son muros de concreto que proporcionan gran rigidez lateral ante movimientos laterales como los sismos (Velarde, 2017, pág. 22).

Componentes del concreto

Cemento Portland Compuesto Tipo I

El cemento Portland es un aglutinante generado por la molienda del Clinker cuya composición es de silicato de calcio, también incluye regularmente sulfato de calcio, en otras palabras, el Cemento Portland es una dosificación de Clinker Portland + un porcentaje de yeso dichos elementos se observan a continuación.

 Tabla 1

 Elementos que constituyen el cemento

•	Óxido componente	Porcentaje típico	Abreviatura
	CaO	58% - 67%	C
	SiO ₂	16% - 26%	S
	Al_2O_3	4% - 8%	A
	Fe_2O_3	2% - 5%	F
	SO_3	0.1% - 2.5%	
	MgO	1% - 5%	
	K ₂ O y Na ₂ O	0% - 1%	
	Mn_2O_3	0% - 3%	
	TiO ₂	0% - 0.5%	
	P_2O_5	0% - 1.5%	
	Pérdida por calcinación	0.5% - 3%	

Fuente: Norma Técnica Peruana (NTP 334.009).

Tipos de Cemento

De acuerdo a sus características y propiedades, el cemento Portland contiene diferentes tipos de aglutinantes para distintas aplicaciones. (Norma Tecnica Peruana, 2005)

Los tipos de cemento portland:

Según NTP 334.009, (2005). Los tipos de cementos Portland están clasificados según sus propiedades específicas y son los siguientes:

- Tipo I: se utiliza de manera convencional y que no sea necesaria para ninguna propiedad especial. (NTP 334.009 Y ASTM C150-84).
- Tipo II: se utiliza de manera convencional, y si se desea una moderada resistencia a los sulfatos. (NTP 334.009 Y ASTM C150-84).
- Tipo III: se utiliza para resistencias iniciales altas. (NTP 334.009 Y ASTM C150-84).
- Tipo IV: se emplea cuando es necesario baja cantidad de calor para hidratación.
 (NTP 334.009 Y ASTM C150-84).
- Tipo V: se utiliza para resistencias altas a los sulfatos. (NTP 334.009 Y ASTM C150-84).

"Las particularidades de los cementos adicionados, los que contienen además de los compuestos mencionados, escorias, puzolanas y materiales calizos que modifican el comportamiento" (Norma Tecnica Peruana, 2005).

Entre los tipos de cementos y el porcentaje añadido, tenemos:

 Tipo IS: Cemento portland con escoria de altos hornos entre 25% y 70% referido al peso total.

"Influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de bloques de concreto Tipo I, Lima – 2022."

UPN UNIVERSIDAD PRIVADA PRIVADA

Tipo ISM: Cemento portland de escoria modificado al que se le ha agregado

menos del 25% de escoria.

Tipo IPM: Cemento portland puzolánico con añadidura de puzolana no

mayor al 15% del peso total

Tipo ICO: Con añadidura de micro-filler calizo (Norma Tecnica Peruana,

2005).

Agregados

Se precisa a los agregados del concreto como un conjunto de materiales inertes,

también conocidos como áridos de forma granular, cuyo origen puede ser natural y

artificial, cuyas dimensiones (granulometría) están en relación a los límites dados por

la NTP 400.011 (Mendez Lino & Vargas Ramirez, 2021)

Por su naturaleza

Son aquellos provenientes de las fuentes naturales tales como canteras de

distintas rocas madres, depósitos de glaciares que han ocurrido en el planeta durante

miles de años para optimizar su empleo en la producción de concreto (Mendez Lino

& Vargas Ramirez, 2021).

Artificiales

Provienen de trasformaciones de materiales naturales y que con un tratamiento

industrial se emplean en la producción de concreto como Clinker, escorias resistentes

a altas temperaturas, ladrillos, etc. Sin embargo, estos tipos de agregados pueden ser

más pesados o ligeros que los convencionales (Mendez Lino & Vargas Ramirez,

2021).

Pág.

Agregado Fino

El agregado fino proviene de desintegrar natural o artificialmente las rocas, estas pasas por el tamiz 9.5 mm, los cuales deben cumplir con los limites basados en la NTP 400.037. Se determina al agregado fino o arena como el material pasante por el tamiz 4.75 mm de diámetro de partícula (Ruiz Perez, 2021, pág. 37).

Agregado Grueso

El agregado grueso está constituido por rocas graníticas, dioríticas y sieníticas. Puede usarse piedra partida en chancadora o grava zarandeada de los lechos de los ríos o yacimientos naturales. Al igual que el agregado fino, no debe contender más de un 5% de arcillas y finos ni más de 1.5% de materias orgánicas, carbón, etc. Es conveniente que su tamaño máximo sea menor que 1/5 de la distancia entre las paredes del encofrado, 3/4 de la distancia libre entre armaduras y 1/3 del espesor de las losas (ACI-3.3.2). Al igual que para la arena, la norma ASTM C-33-93 también establece una serie de condiciones para su gradación (Ruiz Perez, 2021, pág. 38).

Agua

Sustancia liquida transparente, compuesto de dos moléculas de hidrogeno y una de oxígeno, (H2O) en estado puro es inodora e insípida, no siempre se encuentra en estado puro por lo que puede contener en disolución de gases y sales, en suspensión, polvos y a veces microbios (Velarde Rubio, 2017, pág. 26).

En la figura a continuación se muestran los límites permisibles de acuerdo a la calidad del agua.

Figura 3.

Límites permisibles para la calidad del agua

Descripción	Límites permisibles		
Sólidos en suspensión	5 0000 p.p.m.	Máximo	
Conductividad, 25°C	1500 Us/cm	Máximo	
Alcalinidad (NaHCO ₃)	600 p.p.m.	Máximo	
Sulfatos (Ión SO ₄)	3000 p.p.m.	Máximo	
Cloruros (lón Cl ⁻)	1 000 p.p.m.	Máximo	
PH	5,5 - 8,0		

Fuente: ASTM C-1602

- Agua de mezcla: Agregadas a las mezclas de concreto o de mortero para hacer reaccionar el aglomerante (cemento) dándole a la mezcla las propiedades resistentes deseadas y la fluidez necesaria para facilitar su manejo y colocación (Velarde, 2017, pág. 26).
- Agua de curado: Constituye el suministro adicional de agua para hidratar eficientemente el cemento, con el fin de que este se hidrate y alcance sus propiedades potenciales (Velarde, 2017, pág. 27)

Aditivo

Para mejorar algunas de las propiedades que tiene el concreto se utilizan los aditivos que son añadidos a sus componentes fundamentales, que pueden ser aditivos orgánicos e inorgánicos, estos modifican de forma intencionada algunas características como son la hidratación del concreto, su secado, su durabilidad e inclusive sus características internas. Existen varios casos, en que la única alternativa de solución técnica y eficiente es el uso de aditivos (Camac, 2018, pág. 23).

Tipos de aditivos

Según la norma ASTM 494 son los siguientes:

- Tipo A Reductor de agua
- Tipo B Retardantes
- Tipo C Acelerante de fraguado inicial
- Tipo C2 Acelerante de resistencia
- Tipo D Reductor de agua y retardantes
- Tipo E Reductor de agua y acelerante
- Tipo F Reductor de agua de alto rango
- Tipo G Reductor de agua de alto rango y retardantes
- Tipo F2 Superplastificante
- Tipo G2 Superplastificante y retardantes (Camac Ramos, 2018, pág. 24)

Propiedades en estado fresco del concreto

Trabajabilidad y consistencia

A) Trabajabilidad del concreto

Según Rivva (2015) la trabajabilidad es la facilidad con la que se puede mezclar una cantidad específica de material y formar el concreto, para luego procesar, transportar y colocar con un mínimo de mano de obra con la máxima uniformidad posible (p.205).

La trabajabilidad no se define respecto a una sola variable, sino que está basado en diferentes factores tales como: propiedades del agregado, cantidad de cemento utilizado, tamaño de partícula, contenido de humedad, relación agregado fino/grueso, presencia de aire, aditivos y la temperatura ambiental (Rivva, 2015).

También se debe tomar en cuenta el módulo de finura del cemento ya que influye de manera considerable en la trabajabilidad, pero se debe verificar la cantidad

utilizada para evitar el agrietamiento. El cemento más recomendado es el que tiene un módulo de finura de cm2/gr (Rivva, 2015).

Oshiro (1979), menciona que para obtener una mejor trabajabilidad del concreto se deberán tener en cuenta los siguientes puntos:

- Utilizar cemento en cantidades necesarias.
- El agregado grueso deberá tener una forma adecuada.
- El agregado fino contara con una fineza alta.
- Utilizar aditivos de acuerdo a lo requerido en obra.
- Mezclar de manera uniforme los materiales para obtener una mezcla homogénea (p.54).

B) Consistencia del concreto

Rivva (2015) menciona que la consistencia es una propiedad que está basada en la fluidez de la mezcla, esta fluidez está basada en la cantidad de humedad que tenga dicha mezcla a mayor cantidad de humedad más fluido será (p. 208).

También debemos mencionar que la consistencia tiene relación con la trabajabilidad, pero no son lo mismo, esto se debe a que, de acuerdo al tipo de estructura, se define la consistencia de acuerdo al uso que se le dará a continuación mencionamos algunos usos, columnas, vigas, losas, placas, estructuras masivas, etc., (Rivva, 2015).

La consistencia depende de la cantidad de agua añadida y también de las características físicas de los agregados finos y gruesos (Rivva, 2015).

De acuerdo con Abanto, (2016) la consistencia es medida en base a pruebas de control, dicha prueba es el "Slump Test", dicha prueba se utiliza para analizar el

concreto en estado fresco. Dicha prueba fue creada por Duft Abrams, y está basada en medir la altura de asentamiento luego de verter la mezcla en un molde cónico y después desmoldarla. Dicho ensayo nos permite obtener la consistencia del concreto lo cual nos ayudará a definir el uso que se le dará de acuerdo al encofrado de la estructura y de esa manera evitar los vacíos.

A continuación, se mencionarán las clases de mezcla de acuerdo a su asentamiento:

Tabla 2Clases de mezcla según su asentamiento

CONSISTENCIA	SLUMP	TRABAJABILIDAD	MÉTODO DE COMPACTACIÓN
Seca	0" a 2"	Poco trabajable	Vibración normal
Plástica	3" a 4"	Trabajable	Vibración ligera chuseado
Fluida	> 5"	Muy trabajable	Chuseado

Fuente: Abanto (2016).

De acuerdo a la norma ACI 213R-03 el asentamiento para un concreto ligero deberá tener un máximo de 5", este debe ser no menor a 3" para de esa manera tener una cohesión correcta evitando de esa manera todo tipo de vacío o cangrejeras en el concreto.

La prueba de asentamiento o Slump, se debe realizar basados en la NTP 339.035.

Temperatura del concreto

La temperatura es una propiedad de suma importancia en el concreto, los agregados finos y gruesos por ser los más representativos en la mezcla son los más

influyentes. De acuerdo a lo mencionado en lugares de clima cálido se deberá enfriar los agregados mediante el rociado de agua fría y en casos contrarios de climas fríos se deberá calentar los agregados para de esa manera obtener una adecuada temperatura para la mezcla de concreto (Rivva, 2015).

La prueba de temperatura del concreto, se debe realizar basados en la NTP 339.184 (2002).

Peso unitario del concreto fresco

La prueba de peso unitario, se debe realizar basados en la NTP 339.046 (2008).

El peso unitario es representado en kg/m³ dicho dato se obtiene de una muestra de concreto fresco representativa. El peso unitario está basado en la cantidad de aire y el proceso de compactado, a mayor cantidad de aire el peso unitario disminuye, a mayor compactación se eleva el peso unitario. Los agregados finos y gruesos son los responsables de la variación del peso unitario.

La prueba de peso unitario al concreto es importante para poder realizar un análisis del diseño de mezcla, mediante él se obtiene la cantidad de insumos por m³ de concreto, también la cantidad de aire para de esa manera ver la calidad y el punto de compactación del concreto (Leandro, 2016).

De acuerdo con Ayala, (2015) define el peso unitario de concretos ligeros en un rango entre 400 y 1900 kg/m3, dicho resultados se obtienen por el uso de agregados ligeros para la elaboración del concreto fresco.

Propiedades en estado endurecido del concreto

Resistencia a compresión

Riva (2015) menciona que la resistencia es carga máxima que puede soportar el concreto sin fisurarse. La resistencia a la compresión nos da el rango de calidad del concreto" (p.232).

Según Neville y Brooks (2015) menciona que la densidad es una de las propiedades importantes para poder obtener la resistencia del concreto, por lo tanto, se puede decir que a mayor densidad se obtiene mayor resistencia. En el caso de un concreto ligero, el agregado ligero es el que variara la resistencia del concreto.

ACI 213R-03 define que un concreto ligero se puede considerar estructural, cuando la resistencia a la compresión obtenida sea mayor a 17 MPa a 28 días de secado.

Ventura (2015) define que es conveniente para crear una idea general de la gama de concretos livianos dependiendo del método de producción utilizado, por lo que en la Tabla 3 se muestra la relación entre la resistencia a compresión y el peso volumétrico del concreto liviano, donde se puede observar que los concretos livianos hormigón árido hormigón es el que consigue mayor resistencia al hormigón.

En la tabla siguiente se muestra la relación entre la resistencia a la compresión y el peso volumétrico del concreto

Tabla 3Relación de la resistencia a la compresión y el peso volumétrico en concretos

Concreto Ligero	Resistencia a la compresión (kg/cm²)	Peso Volumétrico (kg/m³)	
Sin Finos	50-90	1800-2000	
Celulares o Aireados	15-60	400-1600	
Agregado ligero	70-500	500-2100	

Fuente: Ayala, (2015)

Tantaquilla (2017) mencionó que la relación densidad y resistencia no es el único factor importante en el concreto, sino que hay otros factores de suma importancia los cuales se mencionan a continuación:

Relación Agua/Cemento

Terreros (2017) define que a menor rango de a/c, se obtienen mejores esfuerzos; en el caso de los concretos ligeros los esfuerzo varían por la porosidad del concreto.

Granulometría del agregado ligero

Tantaquilla (2017) menciona que el máximo tamaño nominal del agregado es de un aproximado de 8 mm y el tamaño máximo del agregado deberá ser no mayor a 20 mm.

Curado del concreto

Neville y Brooks (2017) mencionaron que la hidratación del concreto liviano por el agua es la base de su endurecimiento, pero sugirieron que el aumento de la resistencia a la compresión se ve menos afectado por un curado deficiente debido a que la estructura porosa del agregado liviano absorbe agua y ayuda a conservarla. el hormigón está hidratado, lo que ayuda al endurecimiento interno.

La prueba de resistencia a la compresión se debe realizar basado en norma ASTM C39 (2015).

Densidad de equilibrio

ASTM C567 (2015) menciona que la densidad en equilibrio es la exposición del concreto a una temperatura y humedad entre los rangos $50 \pm 5\%$ y 23 ± 2 °C respectivamente, por un lapso de tiempo prudente y hasta obtener una masa homogénea (p.344).

ASTM C567 (2015) define que la densidad del concreto ligero está basada en el diseño de mezcla, la cantidad de aire, agua, peso específico de los agregados finos y gruesos. Asimismo, a los 180 días de secado, el concreto estructural logra su densidad de equilibrio.

ASTM C567 (2015) define que la densidad de equilibrio es mayor a 50 kg/m³, aunque los agregados tengan diferentes contenidos de humedad obtenidos por los ensayos de laboratorio.

Según la ASTM C567 (2015) la densidad en equilibrio se obtiene:

$$Ec = Om + 50 \text{ kg/}m^3$$

Dónde:

Ec = Densidad de Equilibrio

Om = Densidad seca al horno medida, kg/m^3

El ensayo de densidad de equilibrio se realiza de acuerdo a la norma ASTM C567 (2005).

Densidad seca

ASTM C567 (2005) definió a la densidad seca al valor obtenido al colocar el concreto en el horno a 110 ± 5 °C (230 ± 9 °F) por un lapso de tiempo prudente y obtener una masa homogénea (p. 344).

La prueba de densidad seca se debe realizar basado en norma ASTM C567 (2005).

Bagazo de caña

El bagazo de caña es un residuo lignocelulósico, este proviene del tallo y se obtiene luego de la extracción del líquido de la caña de azúcar, en su gran mayoría está compuesto por fibra, asimismo compone el 28% de la caña. El bagazo tiene como compuesto principal la fibra, forma un parénquima estructurada amorfa rígido y muy absorbente (Olmo et al., 2016).

Composición química del bagazo de caña de azúcar

El bagazo de caña de azúcar (BCA) está constituido por aproximadamente 50% de celulosa, 25% de hemicelulosa y 25% lignina (Modani y Vyawahare, 2013). La constitución química del BCA lo hace un material excepcional para fabricación de compuestos.

La constitución de la caña de azúcar se muestra en la figura siguiente:

Figura 4.

Constitución de la caña de azúcar.

Fuente: Modani y Vyawahare, (2013)

La ceniza de bagazo de caña

Conocida abreviadamente como CBCA, se obtiene de la quema del bagazo de caña en las calderas de cogeneración. Estas son obtenidas durante el proceso cosecha, uno de los factores que tienen un efecto significativo sobre la producción de caña es el clima, de ello dependerá las cantidades de ceniza obtenidas del bagazo (Sánchez, Cruz, Zérega, Rodríguez, De Oliveira, Rodríguez, 2009). En las temporadas de baja lluvia se obtiene aproximadamente entre 2 y 4% de ceniza con respecto al peso del bagazo. En las temporadas de lluvia alta se obtiene aproximadamente entre 12 y 15% de ceniza con respecto al peso del bagazo (Cordeiro, Tavares, Toledo, Moraes, Fairbairn, 2009).

En la mayoría de los casos es empleada en el campo como fertilizante para el cultivo de la misma caña (aun cuando contiene pocos nutrientes). Solo el 30% se utiliza para el compostaje (Torres, Mejía, Escandón, Gonzales, 2014), el resto es desechado naturalmente sin un manejo eficiente (Souza et al., 2007).

Propiedades físicas y químicas del bagazo

Las 3 principales partes del bagazo se mencionan a continuación:

- El recubrimiento, es donde se encuentran la epidermis, la corteza y el periciclo.
- La fibra vascular, es donde se sitúan las células conductoras están se asocian a la fibra con estrecho lumen.
- El parénquima es donde se distribuyen de manera irregular las fibras.
 En la siguiente tabla se detallan los componentes químicos del bagazo:

Tabla 4 *Propiedades químicas del bagazo.*

	ENTERO	FIBRA	MEDULA
Solubilidad en éter (%)	0.25	0.12	2.5
Solubilidad en alcohol - benceno (%)	4.1	1.8	2.8
Solubilidad en agua caliente (%)	2.5	0.9	1.9
Lignina (%)	20.2	20.8	20.2
Pentosas (%)	26.7	27.9	28.4
Hemicelulosa (%)	76.6	77.8	77.7
Alfa Celulosa (%)	38.1	42.4	34.8
Ceniza (%)	38.1	42.4	34.8

Fuente: Arboleda, Cóndor, Cueva y Góngora (2016)

Materiales Cerámicos

Güemes y Martín (2012) mencionan que los cerámicos en su constitución van a actuar elementos químicos como carbono y silicio, principalmente. Los silicatos (mezcla de sílice con otros óxidos metálicos), son encontrados en abundancia en la naturaleza, y a partir de ellos se obtienen los productos de loza y tierra cocida, como tejas y ladrillos (p.22).

La estimación de los materiales cerámicos en el rubro de la ingeniería radica de su holgura en el ambiente, además de que sus características físicas y mecánicas difieren de las propiedades de los metales. "Un material cerámico es un compuesto inorgánico que consiste en un metal (o semimetal) y uno o más no metales". (Groover, 2007, p.127).

Clasificación de materiales cerámicos

Cerámicos tradicionales

La utilización de estas materias primas se realiza tal cual son extraídos sin control de pureza, están incluidos:

- Productos de tierra cocida. Encontramos las tejas y los ladrillos, constituidos por sílice SiO2.
- Vidrios. Constituidos de óxido generador del vidrio (SiO2 o B2O3), óxidos fundentes (K2O o Na2O) y de óxidos modificadores (PbO, Fe2O3, PbO, Cr2O3).
- Cementos. Materias primas como calizas y arcillas, ya que la composición del cemento incluye los óxidos SiO2, CaO y Al2O3. (Güemes & Martín, 2012, p.432)

Cerámicos ingenieriles o técnicos

Constituida de compuestos puros procedentes del ambiente natural, están: alúmina carburo de silicio y nitruro de silicio. (Güemes & Martín, 2012, p.432)

Materias primas de los cerámicos tradicionales (tejas artesanales)

Las arcillas son materiales inorgánicos, no metálicos que al contacto con el agua se convierte en material plástico, al secar adquieren resistencia y al estar sometidos a cocción adquieren durabilidad y dureza. Están constituidas por:

- Caolinita Al2O3, 2SiO2, 2H2O
- Montmorrillonita Al2O3. (Mg, Ca). 5SiO2. nH2O
- Illita K2O Mg O Al2O3 2SiO2 H2O. (Fernández, 2019)

Las materias primas más importantes de los cerámicos comunes son: Sílice SiO2 que existe en la naturaleza en formas diferentes como el cuarzo que es un material duro y estable; la Alúmina y el Feldespato. (Groover, 2007)

Las tejas artesanales en la construcción

Las tejas son piezas obtenidas mediante el proceso de prensado, secado y cocción de un material arcilloso, para la función de cubiertas de techos, son aislantes térmicos, acústicos e impermeabilizantes. (Tejas Hispalyt, s.f)

Funciones de las tejas artesanales

- Impermeabilidad al agua, proporcionada por las mismas tejas.
- Retraimiento térmico.
- Capacidad de resistir a las heladas.
- Capacidad de resistir al fuego.
- Estanqueidad al aire y vapor.
- Retraimiento acústico.

1.2. Justificación

Justificación teórica: La presente investigación se justifica por el limitado conocimiento sobre el uso de la teja reciclada y fibra de bagazo de caña reciclada en la elaboración de bloques de concreto Tipo I en el Perú, la presente nos servirá como conocimiento técnico para futuras investigaciones relacionadas al tema con la finalidad de crear nuevas alternativas constructivas en el país y el mundo.

Justificación práctica: En el presente estudio se busca desarrollar y crear una alternativa en el ámbito constructivo para facilitar información técnica sobre aplicaciones con materiales compuestos dando estrategias constructivas, para lograr una disminución del costo de los insumos.

Justificación Ambiental - Económica: Con esta investigación se pretende proporcionar una alternativa de solución para minimizar el impacto al medio ambiente, basándonos en la innovación de un concepto sostenible; el cual nos permita obtener un diseño innovador de unidades de albañilería de concreto con adición de teja reciclada y fibra de bagazo de caña reciclada como materia prima. También se considera la disminución de los costos en el cual se plantea obtener un producto competitivo frente al bloque de concreto Tipo I convencional.

1.3. Definición de términos básicos

Cemento: Es un conglomerante hidráulico obtenida por la trituración del clinker, el cual se compone primordialmente de los silicatos de calcio y se le adiciona algunas formas de sulfatos de calcio durante el proceso de molienda (Velásquez, 2018).

Concreto: Es aquella composición de cemento, agregados, agua, y aditivo que al fortalecer forman una materia más rígida usado en la construcción (Cruz, 2019).

Diseño de mezcla: El diseño de mezcla consiste en pasos dependientes en el cual se dosifica y calcula las proporciones de una determinada resistencia promedio (ACI, 2015).

Dosificación: Es el proceso de medición, por peso o volumen, de los materiales a usar en el diseño de mezcla de concreto (NTP 339.047, 2015).

Fraguado: Es la mezcla formada por una pasta en estado plástico, después de un tiempo la pasta alcanza la rigidez también llamado como un proceso de perdida de plasticidad del concreto y endurecimiento (Galicia, 2016).

Fibra de bagazo de caña: El bagazo de caña es un residuo lignocelulósico, este proviene del tallo y se obtiene luego de la extracción del líquido de la caña de azúcar. El bagazo tiene como compuesto principal la fibra, forma un parénquima estructurada amorfa rígido y muy absorbente (Olmo et al., 2016).

Resistencia a la compresión por muretes: La resistencia al corte de los muretes se deberá dividir la carga máxima entre el área bruta. Los especímenes cumplieron 28 días, por lo que no se necesitó ningún tipo de corrección por edad, aplicando la siguiente fórmula: Vm = Pmax/A (NTP 399.621, 2015).

"Influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de bloques de concreto Tipo I, Lima – 2022."

Resistencia a la compresión por pilas: La resistencia a la compresión axial por pilas, se basa en dividir la carga ejercida siendo esta la máxima entre el área de la superficie de contacto, aplicando la siguiente fórmula: f'm = Pmax/A (NTP 399.605, 2015).

Resistencia a la compresión por unidad: la resistencia unitaria se obtiene mediante el ensayo a la compresión clasificado como f'b, se debe dividir el área bruta en referencia a todas las unidades sin vacíos entre el área neta que hace referencia a todas las unidades con porcentaje de vacíos. Una vez obtenida la resistencia de compresión de unidades se procede a restar la desviación estándar, aplicando la siguiente fórmula: f'b = F/A (NTP 399.604, 2015).

Teja: Las tejas son piezas obtenidas mediante el proceso de prensado, secado y cocción de un material arcilloso, para la función de cubiertas de techos, son aislantes térmicos, acústicos e impermeabilizantes (Groover, 2019).

1.4. Formulación del problema

Problema General

¿Cuál será la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de los bloques de concreto Tipo I, Lima - 2022?

Problemas específicos:

Problema Específico 1

¿De qué manera se obtuvieron los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima – 2022?

Problema Específico 2

¿Cómo evaluar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima - 2022?

Problema Específico 3

¿De qué manera desmostar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima - 2022?

Problema Específico 4

¿En qué medida influye la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima - 2022?

1.5. Objetivos

Objetivo general

Determinar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de los bloques de concreto Tipo I, Lima - 2022.

Objetivos específicos

Objetivo Específico 1

Obtener los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima - 2022.

Objetivo Específico 2

Evaluar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima - 2022.

Objetivo Específico 3

Demostrar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima - 2022.

Objetivo Específico 4

Analizar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima - 2022.

1.6. Hipótesis

Hipótesis general

La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por unidad, pila y murete de los bloques de concreto Tipo I, Lima - 2022.

Hipótesis específicas

Hipótesis Específica 1

Se logró obtener los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima - 2022.

Hipótesis nula (H0): Si se obtuvieron los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima - 2022.

Hipótesis alterna (Ha): No se obtuvieron los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima - 2022

Hipótesis Específica 2

La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima - 2022.

Hipótesis nula (H0): La adición de fibra de bagazo de caña al 4% y de teja reciclada al 3%, 5% y 7% no mejorará significativamente la resistencia a la compresión por unidad, Lima 2022.

Hipótesis alterna (Ha): La adición de fibra de bagazo de caña al 4% y de teja reciclada al 3%, 5% y 7% mejorará significativamente la resistencia a la compresión por unidad, Lima 2022.

Hipótesis Específica 3

La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima - 2022.

Hipótesis nula (H0): La adición de fibra de bagazo de caña al 4% y de teja reciclada al 3%, 5% y 7% no mejorará significativamente la resistencia a la compresión por pila, Lima 2022.

Hipótesis alterna (Ha): La adición de fibra de bagazo de caña al 4% y de teja reciclada al 3%, 5% y 7% mejorará significativamente la resistencia a la compresión por pila, Lima 2022.

Hipótesis Específica 4

La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima - 2022.

Hipótesis nula (H0): La adición de fibra de bagazo de caña al 4% y de teja al 3%, 5% y 7% no mejorará significativamente la resistencia a la compresión por murete, Lima - 2022.

Hipótesis alterna (Ha): La adición de fibra de bagazo de caña al 4% y de teja al 3%, 5% y 7% mejorará significativamente la resistencia a la compresión por murete, Lima - 2022.

CAPÍTULO II: METODOLOGÍA

2.1 Tipo y diseño de la investigación

Tipo de Investigación

La presente investigación es aplicada en base a Hernández, Fernández & Baptista, (2014), el propósito de este tipo de investigación es resolver un determinado problema o planteamiento específico, enfocándose en la búsqueda y consolidación del conocimiento para su aplicación y, por ende, para el enriquecimiento del desarrollo cultural y científico.

Por lo tanto, en el presente caso de estudio se pretende resolver la pregunta de investigación mediante el desarrollo de los objetivos planteados los cuales nos permitieron mejorar la resistencia a la compresión por unidad, pila y murete de los bloques de concreto Tipo I mediante la adición de teja y fibra de bagazo de caña reciclada.

Diseño de Investigación

El presente estudio tiene un diseño cuasiexperimental se caracteriza por el hecho de que los objetos de investigación no se seleccionan al azar, sino que ya están descubiertos o determinados de antemano. También debemos mencionar que el tipo cuasi experimental se encuentra ubicada entre las investigaciones experimentales y observacionales (Sánchez & Reyes, 2015). La variable independiente son los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada y la variable dependiente son las pruebas de resistencia a la compresión por unidad, pila y murete.

Asimismo, basándose en la teoría de Anguiano & Ferrando (2010), el análisis factorial es un modelo estadístico que describe las relaciones entre muchas variables. Estas relaciones sugieren que el número de factores puede explicarse en términos de un conjunto de variables no observables (implícitas) llamadas factores, mucho más pequeñas que el

número de variables. Este modelo se deriva directamente como una extensión de algunas ideas básicas de la regresión lineal y los modelos de correlación parcial. Las ecuaciones básicas de análisis factorial se derivan del primer modelo. El segundo conduce a una idea importante para evaluar el ajuste del modelo a los datos.

Enfoque de Investigación

El enfoque de la presente investigación corresponde a un enfoque cuantitativo no probabilístico, ya que lo que se busca describir son las ventajas aportadas por la adición de fibra de bagazo de caña y teja reciclada a los bloques de concreto Tipo I tradicional en los ensayos de resistencia a la compresión por unidad, pila y murete.

2.2 Población y muestra (Materiales, instrumentos y métodos)

Población.

La población para el presente estudio es la cantidad de bloques de concreto diseñados de manera tradicional y diseñados con adición de fibra de bagazo de caña y de teja, dichos bloques de concreto se someterán a ensayos de compresión por unidad, pila y murete de acuerdo a los días de secado.

Muestra

Para la obtención de la muestra se realizó un muestreo por conveniencia no aleatorio, de dicho muestreo se obtuvo un total de 84 muestras, de los cuales 21 fueron diseñados con concreto tradicional, 21 Concreto convencional + 4% Fibra de bagazo de caña + 3% de teja, 21 Concreto convencional + 4% Fibra de bagazo de caña + 5% de teja y 21 Concreto convencional + 4% Fibra de bagazo de caña + 7% de teja asimismo, dichos bloques de concreto se someterán a ensayos de compresión por unidad, pila y murete a los días siguientes de secado: a los 7, 14 días y 28 días.

Tabla 5Muestreo de bloques de concreto convencional, con adición de teja reciclada y fibra de bagazo de caña reciclada

Muestreo de bloques de concreto convencional, con adición de teja reciclada y fibra de bagazo de caña reciclada

	Concreto convencional	4% Fibra de bagazo + 3% de teja	4% Fibra de bagazo + 5% de teja	4% Fibra de bagazo + 7% de teja	Total, de Muestras
Resistencia a la compresión por unidad	9	9	9	9	36
Resistencia a la compresión por pila	9	9	9	9	36
Resistencia a la compresión por murete	3	3	3	3	12
				TOTAL	84

2.3 Técnicas e instrumentos de recolección y análisis de datos

Técnicas de recolección de datos

Las principales técnicas a utilizarse en este proyecto serán:

- Análisis documental: es todo objeto o elemento material que contiene información procesada de hechos, sucesos o acontecimientos naturales o sociales que se han dado en el pasado y que poseen referencias valiosas (datos, cifras, fichas, índices, indicadores, etc.) para un trabajo de investigación. (Carrasco, 2015, p. 275).
- Observación: "Es un proceso sistemático de obtención, recopilación y registro de datos empíricos de un objeto, un suceso, un acontecimiento o conducta

humana con el propósito de procesarlo y convertirlo en información" (Carrasco, 2015, p. 282).

Instrumentos de recolección de datos

Los principales instrumentos utilizados en el presente estudio son:

- Ficha: instrumento consistente donde se registran datos sobre las variables de estudio.
- Equipos de laboratorio: son una serie de equipos e instrumentos los cuales se usaron en el laboratorio de mecánica de suelos y concreto.
- Fichas de ensayo del laboratorio: es una serie de documento que sirve para la toma de apuntes sobre los ensayos del Laboratorio de Ensayo de Materiales y Concreto.

Técnicas de procesamiento y análisis de datos

Dentro de las técnicas de procesamiento y análisis de datos se utilizó los siguientes:

- Se utilizó el programa Excel para el proceso de recolección y análisis de resultados obtenidos en el laboratorio.
- Estadística inferencial

El proceso de verificación de la hipótesis planteada, se realizará a través del análisis de varianza, uso de la ANOVA (análisis de varianza), la cual conlleva a la realización de pruebas de significación estadística, usando la denominada distribución "F" de Fisher; asimismo se realizará la prueba de comparación múltiple Tukey HSD (diferencia honestamente significativa). Para determinar la varianza significativa entre los datos recolectados con un 5% de nivel de significancia.

"Influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de bloques de concreto Tipo I, Lima – 2022."

 Cuadros comparativos para visualizar la incidencia de la variable independiente sobre la dependiente.

2.4 Aspectos éticos

De acuerdo a lo mencionado por Mohammad (2013), afirma que lo ético incluye ante todo las disposiciones del hombre en la vida, su carácter, sus costumbres y naturalmente también la moral, es el modo o forma de vida cotidiana de cada ser humano. La ética como ciencia establece leyes y normas para que el hombre pueda discernir mejor entre lo correcto y lo incorrecto, la ética es la ciencia de lo que el hombre debe hacer para vivir como debe vivir. (p.433).

Con respecto a los aspectos éticos toda la información contenida en este trabajo de investigación, así como los resultados obtenidos, garantiza la originalidad y autenticidad.

2.5 Procedimiento

Procedimiento del objetivo específico 1

Obtener los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima - 2022.

Obtención de materiales

La teja artesanal fue recolectada de una obra en el distrito de San Martin de Porres donde realizaron las instalaciones de las mismas, en dicha obra se recolectaron los residuos de las tejas utilizadas, posteriormente dichos residuos fueron almacenados para su chancado, triturado y reducido hasta volverlo polvo dicho material se pasó por la malla N°100 (0.15mm) para luego ser utilizado en la preparación de la mezcla de concreto.

En la siguiente figura se muestra la obtención de la teja a utilizar en los diversos ensayos.

Figura 5.

Residuos de tejas artesanales

El bagazo de caña se obtuvo de los vendedores de jugo caña, dicho insumo es triturado mediante un extractor y después se desecha, para el presente caso el insumo desechado se utilizó para poder obtener la fibra de bagazo de caña.

El bagazo de caña obtenido se procedió a pasar por el tamiz N°4 (4.75mm). De dicho proceso se seleccionó las fibras entre 2 y 5 cm de largo aproximadamente. Luego se procede a realizar el tratamiento de acetilación la fibra de bagazo de caña mediante parafina, este material se obtuvo en la tienda de materiales Maestro, el proceso para este desarrollo fue; se vertió un 1 kg (barra) de parafina en un recipiente luego se colocó en una estufa para poder de esa manera calentarlo y hacer que se diluya luego se añadieron las fibras de bagazo de caña seleccionadas y se dejó reposar en dicho líquido por unos 15 minutos, luego de eso se podrán extraer las fibras de bagazo mediante unas tenazas, dichas fibras seleccionadas se dejan reposar por 24 horas, posterior a eso se procedió a secar 350°C en el horno este proceso duro 20 minutos, por último dichas fibras obtenidas se utilizaron en la preparación de la mezcla de concreto.

En la siguiente figura se muestra el desarrollo para la obtención de la fibra de bagazo de caña.

Figura 6.

Obtención del bagazo de caña

"Influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de bloques de concreto Tipo I, Lima – 2022."

UPN
UNIVERSIDAD
PRIVADA
DEL MARTE

Para la obtención de los agregados convencionales, el agregado fino y grueso son provenientes de un depósito de materiales cercanos al laboratorio, el cemento es tipo I de la marca Sol y agua potable.

A continuación, se detallarán los ensayos requeridos:

Ensayos a los agregados

Cuarteo de los Agregados

Según la norma NTP 400.010, el cuarteado es un procedimiento realizado en agregados para seleccionar una muestra representativa de la muestra a ensayar. Primero, la muestra seleccionada se mezcla a fondo para lograr la homogeneidad, seguido de la reducción del material, que se realiza sobre una superficie plana y limpia para evitar la entrada de materias extrañas y la pérdida de agregados. Use la muestra uniforme para hacer una pila en forma de cono, luego divídala en cuatro partes iguales y tome las dos partes opuestas, y luego realice el proceso de reducción de material. Este proceso se repite tres veces. El material resultante de la reducción será una muestra representativa de árido fino apta para el ensayo correspondiente. A continuación, se muestra los procesos de cuarteo y seleccionado de los agregados gruesos y finos.

Figura 7.

Cuarteo y seleccionado de agregado grueso

Figura 8.

Cuarteo y seleccionado de agregado fino

Granulometría del agregado grueso y fino

Este ensayo sirve para determinar los distintos tamaños de agregado que contiene la muestra a analizar. Para ello es importante pasar por los diferentes tamices ya normados, ya que de ellos dependerán algunas propiedades del concreto.

En lo referido a concreto permeables valores de b/bo, se tiene valores de corrección para el agregado grueso para husos N°8 y N°67, muy importante para el diseño.

Especificaciones técnicas para el agregado grueso

Para el agregado grueso el requerimiento granulométrico indica que deben estar graduado en los siguientes límites según la norma NTP 400.012.

Figura 9. *Huso* 8 y 67

Tamiz	Huso 8	Huso 67
	Porcentaje que pasa	Porcentaje que pasa
2"		
1 ½"		
1"		100
3/4"		90 a 100
1/2"	100	
3/8"	85 a 100	20 a 55
N°4	10 a 30	0 a 10
N°8	0 a 10	0 a 5
N°16	0 a 5	
Fondo		

Fuente: norma NTP. 400.012

Para determinar la granulometría se utilizará los siguientes equipos y aparatos.

- Taras
- Balanza electrónica

- Juegos de tamices que la conforman las siguientes mallas: 2", 1 ½", 1, ¾",1/2", 3/8", N°4, N°8, N°16 y fondo.
- Un horno

Procedimiento

- Se toma una muestra de 3000.00 g pesada en una balanza electrónica.
- Se procede a realizar el tamizado de manera manual, pasando el 100% del material por la malla 1/2" obteniendo así su Tamaño Máximo (TM).
- Luego se tamiza por la malla N°3/8, en donde se retiene material y este viene hacer su Tamaño Máximo Nominal. (TMN).
- Luego sucesivamente se realizó el tamizado a través de las mallas N°8, N°16, y el fondo.

En las siguientes figuras se muestra el proceso del ensayo granulométrico del agregado grueso.

Figura 10.

Llenado y tamizado del agregado grueso

Figura 11.

Peso del agregado grueso obtenido

Especificaciones técnicas para el agregado fino

Para el agregado grueso el requerimiento granulométrico indica que deben estar graduado en los siguientes límites.

Figura 12. Límites granulométricos del agregado fino

Tamiz	Porcentaje que pasa		
3/8"	100		
N°4	95-100		
N°8	80-100		
N°16	50-85		
N° 30	25-60		
N° 50	10-30		
N°100	2-10		

Fuente: norma NTP 400.012

Para determinar la granulometría se utilizará los siguientes equipos y aparatos.

Taras

- Balanza electrónica
- Juegos de tamices que la conforman las siguientes mallas: 3/8", N°4, N°8, N°16,
 N°30, N°50, N°100 y fondo.
- Un horno

Procedimiento

- Se toma una muestra de 500.00 g pesada en una balanza electrónica.
- Se procede a realizar el tamizado de manera manual, pasando el 100% del material por la malla 3/8", obteniendo así el módulo de fineza.
- Luego se tamiza por la malla N°4, en donde se retiene material.
- Luego sucesivamente se realizó el tamizado a través de las mallas N°8, N°16, N°30,
 N°50, N°100 y el fondo.

En las siguientes figuras se muestra el proceso del ensayo granulométrico del agregado fino.

Figura 13.Llenado y tamizado del agregado fino

Figura 14.

Peso del agregado fino obtenido

Peso unitario suelto y compactado del agregado fino y grueso

Para este ensayo se necesita llenar con el material seco un recipiente de un volumen unitario. El peso unitario del agregado va depender del tamaño, forma, y granulometría para su mejor distribución así mismo de su grado de compactación, sea suelto o compactado.

Peso unitario suelto del agregado

Para determinar el peso unitario suelto se necesitará equipos y herramientas tales como:

- Balanza electrónica.
- El recipiente de volumen de 0.003 m³ aproximadamente.
- Un cucharon de kilo.
- Una brocha para limpiar el polvo restante.
- Una regla de metal.

Procedimiento

Antes de comenzar hacer el ensayo el material debe estar seco a temperatura ambiente.

- Primero pesamos el recipiente a llenar
- Llenamos el reciente con el cucharon hasta rebosar, este se verterá con una altura no mayor a 2" desde el borde superior del recipiente.
- Con la regla se eliminará el material restante.
- Luego con la brocha se limpiará los materiales fuera del recipiente.
- Una vez limpio todo se lleva a la balanza y se toma su peso.
- Este procedimiento se hará 3 o 4 veces.

En las siguientes figuras se muestra el proceso del ensayo de peso unitario suelto de los agregados fino y grueso.

Figura 15.

Llenado y enrasado del agregado fino suelto

Figura 16.

Pesado del agregado fino suelto

Figura 17.Llenado y enrasado del agregado grueso suelto

Figura 18.

Pesado del agregado grueso suelto

Peso unitario compactado del agregado

Para determinar el peso unitario suelto compactado se necesitará equipos y herramientas tales como:

- Balanza electrónica
- El recipiente de volumen de 0.003 m³ aproximadamente.
- Un cucharon de kilo
- Una brocha para limpiar el polvo restante
- Una regla de metal
- Un martillo de goma
- Barra compactadora de acero liso, de 5/8" de diámetro y 60 cm de largo con un extremo redondeado

Procedimiento

Antes de comenzar hacer el ensayo el material debe estar seco a temperatura ambiente.

- Primero pesamos el recipiente a llenar
- Llenamos 1/3 del recipiente con el cucharón hasta rebosar, este se verterá con una altura no mayor a 2" desde el borde superior del recipiente.
- Luego con la barra lisa se apisonará 25 veces en forma espiral, y con el martillo de goma se dará 15 golpes.
- Este procedimiento se repetirá en los otros dos tercios del recipiente
- Una vez lleno con la regla se eliminará el material restante.
- Luego con la brocha se limpiará los materiales fuera del recipiente.
- Una vez limpio todo se lleva a la balanza y se toma su peso.
- Este procedimiento se hará 3 o 4 veces.

En las siguientes figuras se muestra el proceso del ensayo de peso unitario compactado de los agregados fino y grueso.

Figura 19.

Llenado y compactado del agregado fino

Figura 20.

Enrasado y pesado del agregado fino compactado

Figura 21.

Llenado y compactado del agregado grueso

Figura 22.

Enrasado y pesado del agregado grueso compactado

Peso específico y de absorción de agregado fino y grueso.

La relación entre la densidad de un material y el agua se le conoce como peso específico, para valore elevados indican que los materiales tienen un buen comportamiento, mientras que para materiales de bajo peso específico indican que materiales débiles y absorbentes.

Para determinar el peso específico y contenido de absorción de los agregados se necesitará equipos y herramientas tales como:

- Balanza electrónica, con sensibilidad de 0.05 g y con capacidad no mayor de 2 kg.
- Pipetas
- Frascos volumétricos (fiolas) con una capacidad de 500 cm³.
- Recipientes para almacenar el material
- Horno con temperaturas de $110^{\circ}\text{C} \pm 5^{\circ}\text{C}$.

Procedimiento

- Se debe tomar 500 gramos de muestra del agregado.
- Se debe pesar la fiola y luego fiola con agua lleno hasta los dóndes nos marca los 500 cm³ y anotar los datos.
- Cogemos la fiola y comenzamos a girar en una superficie plana con la mano, para poder eliminar las burbujas.
- Se deja reposar aproximadamente una hora y luego se rellena hasta llegar nuevamente hasta la marca de los 500 cm³.
- Luego con los datos de los pesos, se determina el peso de agua introducida en la fiola.
- Luego ese material se vierte a una tara y se deja reposar, para que se sedimente.
- Una vez sedimentado se le extrae el agua con cuidado evitando extraer finos.
- Ya totalmente retirado el agua de la superficie se ingresa al horno a una temperatura de 110° C ± 10° C por 24 horas.
- Pasadas las 24 horas se retira la muestra y se anotan para a través de cálculos obtener el peso específico y el contenido de absorción.

Peso específico (g/cm³)

• El peso específico se determinará con la siguiente fórmula:

$$pe = \frac{A}{B - C} \left(\frac{g}{cm^2} \right)$$

Peso específico de la masa saturada superficialmente seca

El P.e.s.s.s. se determinará con la siguiente fórmula:

$$p.e.s.s.s. = \frac{B}{B-C} \left(\frac{g}{cm^3}\right)$$

- Peso específico aparente
- El P.e.a. se determinará con la siguiente fórmula:

$$p.e.a = \frac{A}{A - C} \left(\frac{g}{cm^3} \right)$$

Porcentaje de Absorción

El porcentaje de absorción se determinará con la siguiente fórmula:

$$Ab. = \frac{B - A}{A} \times 100 \text{ (\%)}$$

En las siguientes figuras se muestra el proceso del ensayo de peso específico y de absorción de agregado fino y grueso.

Figura 23.

Llenado y compactado del agregado fino para determinar el peso específico y la absorción

Figura 24.

Estado del agregado fino y llenado en fiola para determinar el peso específico y la absorción

Figura 25.Saturado y obtención del agregado fino para determinar el peso específico y la absorción

Figura 26.

Saturado y pesado del agregado grueso para determinar el peso específico y la absorción

Proceso de Diseño de Mezcla

Se estableció el diseño de mezcla mediante el uso del método ACI 211.

Figura 27.Dosificación para el concreto f´c=90 kg/cm²

Fuente: Aceros Arequipa

Diseño de mezcla de acuerdo al ACI 211

El diseño de mezcla se realiza bajo los parámetros de la Norma ACI 211, este proceso tiene características simples, está basado en tablas establecidas por la Norma, las cuales permitirán obtener distintos valores o cantidades de los insumos a utilizar en la elaboración del concreto.

Paso siguiente, se detallan los pasos a seguir para realizar un adecuado diseño de mezcla:

- 1. Se deberá calcular la resistencia promedio.
- 2. Se deberá realizar una selección del agregado grueso de acuerdo al TMN.
- 3. Se seleccionará las medidas del asentamiento.
- 4. Se seleccionará el volumen del agua en unidades.
- 5. Se seleccionará la cantidad de contenido de aire.
- 6. Se realizará la selección de la relación agua/cemento.
- 7. Se deberá obtener el factor del cemento.
- 8. Se deberá determinar la sumatoria de los volúmenes de manera unitaria del cemento, agua y aire
- 9. Se deberá determinar la cantidad volumétrica del agregado fino.
- 10. Se deberá determinar el peso seco del agregado fino.
- 11. Se deberá determinar los valores unitarios del diseño de mezcla.
- Se deberá corregir de acuerdo a la humedad y la absorción de líquido del agregado.
- 13. Se deberá obtener las cantidades óptimas para un correcto diseño de mezcla.

Diseño de mezcla según ACI 211

Basados en la Norma ACI 211 se procedió a realizar el diseño del concreto con un f´c=210 kg/cm². A continuación se calcula la resistencia promedio requerida de acuerdo a la tabla siguiente.

Tabla 6Resistencia a la compresión promedio requerida

Resistencia a la compresión (f´c)	Resistencia a la compresión requerida (f´cr)	
Valores menores a 210 kgf/cm ²	Al f´c se le suma 70	
Valores entre 210 kgf/cm ² hasta 350	Al f´c se le suma 84	
Valores mayores a 350 kgf/cm ²	Al f´c se le suma 98	

Fuente: ACI 211, 2016

Luego se procede a seleccionar el asentamiento basados en los parámetros brindados por la norma ACI 211 descrita a continuación.

Tabla 7Tipo de asentamiento de acuerdo a su uso estructural

Uso Estructural	Máximo Slump	Mínimo Slump
Zapatas y muros de cimentación reforzados	3"	1"
Cimentaciones simples y calzaduras	3"	1"
Vigas y muros armados	4"	1"
Columnas	4"	1"
Muros y pavimentos	3"	1"
Concreto Ciclópeo	2"	1"

Fuente: ACI 211, 2016

Para seleccionar el contenido de agua nos basamos en el análisis granulométrico hecho al agregado grueso de acuerdo al TMN en la siguiente tabla.

Tabla 8Volumen de Agua por m³. Agua en litros/m³ para TMN de agregados y consistencia

Asentamiento		Tamaño Máximo del Agregado Grueso						
(1" = 25mm)	3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	6"
		Con	creto sin	aire inco	rporado			
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	168	145	124
6" a 7"	243	228	216	202	190	178	160	
		Con	creto con	aire inco	orporado			
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	

Fuente: ACI 211, 2016

De acuerdo al TMN se procedió a seleccionar el contenido de aire atrapado en la siguiente tabla.

Tabla 9Contenido de aire atrapado

TMN Ag	gregado Grueso	Aire Atrapado %
3/4"	19.00 mm	2.0
1"	25.00 mm	1.5
1 1/2"	37.50 mm	1.0
2"	50.00 mm	0.5
3"	75.00 mm	0.3
6"	150.00 mm	0.2

Fuente: ACI 211, 2016

Paso siguiente se procedió a seleccionar la relación del agua y el cemento de acuerdo a la resistencia requerida para el diseño en la siguiente tabla.

Tabla 10Relación agua/cemento de acuerdo a la resistencia requerida

fс	Relación agua/cemento en peso			
(kg/cm ²)	Concreto sin aire incorporado	Concreto con aire incorporado		
140	0.82	0.74		
150	0.80	0.71		
200	0.70	0.61		
210	0.68	0.59		
250	0.62	0.53		
280	0.57	0.48		
300	0.55	0.46		
350	0.48	0.40		
400	0.43	-		
420	0.41	-		
450	0.38	-		

Fuente: ACI 211, 2016

A continuación, se procedió a realizar el cálculo de la cantidad de kilogramos de cemento.

$$\frac{\text{litros de agua}}{kg \ de \ cemento} = \text{Relación agua} - \text{cemento efectiva}$$

Luego mediante el análisis granulométrico del agregado fino y grueso se obtuvo el módulo de finura y el TMN con esos datos se obtendrá la cantidad de agregado grueso en metros cúbicos. Basados en la siguiente tabla.

Tabla 11Peso del agregado grueso por unidad de volumen del concreto (b/b0)

TMN Agregado Módulo de finura del Agregado I			lo Fino		
Grueso					
		2.40	2.60	2.80	3.00
3/8"	9.5 mm	0.50	0.48	0.46	0.44
1/2"	12.5 mm	0.59	0.57	0.55	0.53
3/4"	19.0 mm	0.66	0.64	0.62	0.60
1"	25.0 mm	0.71	0.69	0.67	0.65
1 1/2"	37.5 mm	0.76	0.74	0.72	0.70
2"	50.0 mm	0.78	0.76	0.74	0.72
3"	75.0 mm	0.81	0.79	0.77	0.75
6"	150.0 mm	0.87	0.85	0.83	0.81

Fuente: ACI 211, 2016

Luego se obtiene el volumen absoluto del agregado fino

$$Ag. grueso = \frac{b}{b_0} x$$
 (P. unit. comp. Agregado Grueso)

$$Vol. del \ agregado \ (m^3) = \frac{Peso \ obtenido \ del \ agregado}{Peso \ específico \ del \ agregadol}$$

Vol. de aire
$$(m^3) = \frac{\% \text{ aire}}{100}$$

Para calcular el volumen del agregado fino absoluto se deberá restar un metro cubico a la suma del volumen del agua + aire + cemento + agregado grueso.

El valor obtenido del agregado fino se deberá multiplicar por su peso específico y de esa manera obtener la cantidad en kilogramos del agregado fino.

Luego se deberá corregir el peso en kilogramos de acuerdo a la humedad de los agregados.

Peso de los materiales
$$x\left(\frac{\%\ contenido\ de\ humedad}{100}+1\right)=corrección\ en\ kg$$

Por último, se procedió a calcular la cantidad de agua que aportan los agregados.

$$\frac{(\% hum. -\% abs.) \times P. seco}{100} = Litros aportados por los agregados$$

Luego de obtener los pesos en m³ para el diseño se procedió a multiplicar cada peso por 0.03 m³ para obtener una tanda en base al volumen que ingresa en el trompo.

Tandas de acuerdo a las dosificaciones del diseño de mezcla

Las tandas a realizarse son de 0.03 m³ de concreto por ser la medida adecuada en base al trompo donde se realizó la mezcla. Primero se detalla la cantidad de materiales a utilizar en el diseño de mezcla convencional.

Tabla 12Cantidades de los materiales para el diseño mezcla Patrón.

Materiales	Unidad	Peso
Cemento	kg	7.96
Agua	L	5.67
Agregado grueso	kg	24.74
Agregado fino	kg	30.39

Luego se detalla las cantidades de materiales a utilizar en los diseños de mezcla con adición al 3%, 5% y 7% de teja y 4% de fibra de bagazo de caña.

Tabla 13

Cantidades de los materiales para el diseño mezcla al 3% de teja y 4% de fibra de bagazo de caña

Materiales	Unidad	Peso
Cemento	kg	7.96
Agua	L	5.67
Agregado grueso	kg	24.74
Agregado fino	kg	30.39
Teja	kg	0.24
Fibra de bagazo de caña	kg	0.32

Tabla 14Cantidades de los materiales para el diseño mezcla al 5% de teja y 4% de fibra de bagazo de caña

Materiales	Unidad	Peso
Cemento	kg	7.96
Agua	L	5.67
Agregado grueso	kg	24.74
Agregado fino	kg	30.39
Teja	kg	0.40
Fibra de bagazo de caña	kg	0.32

Tabla 15Cantidades de los materiales para el diseño mezcla al 7% de teja y 4% de fibra de bagazo de caña

Materiales	Unidad	Peso
Cemento	kg	7.96
Agua	L	5.67
Agregado grueso	kg	24.74
Agregado fino	kg	30.39
Teja	kg	0.56
Fibra de bagazo de caña	kg	0.32

"Influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de bloques de concreto Tipo I, Lima – 2022."

Después de calcular los pesos exactos como muestra el diseño, primero se procederá a realizar el concreto patrón, para lo cual se realiza un mezclado uniforme en la máquina trompito de los agregados y el cemento para luego incorporar el agua y obtener una mezcla adecuada.

De igual manera se calcula los pesos exactos como muestra el diseño, ahora añadiéndole el material reciclado de teja en proporciones de: 3%, 5% y 7% y fibra de bagazo de caña un 4%, el proceso de elaboración del concreto es el mismo que el patrón, de acuerdo a cada diseño realizado, luego del mezclado es sometida a la prueba de Slump.

El mezclado de los diseños experimentales se realizó de la siguiente manera: se agregó un poco de agua para humedecer el trompo luego se procedió a introducir el cemento, a continuación se agrega el agregado fino paso siguiente el agregado grueso y el agua, también se adicionó el bagazo de caña y la teja de acuerdo a los porcentajes obtenidos, luego de un mezclado homogéneo de la mezcla, se procedió a realizar la medición del Slump y el posterior llenado de los bloques de nuestros diseños experimentales. Dicho proceso es similar para todos los diseños de acuerdo a las dosificaciones respectivas. En las figuras siguientes se muestra el proceso de elaboración de la mezcla.

Figura 28.

Medición de cantidad de agregados

Figura 29.Preparación de la mezcla adición de agregado grueso y fino

Figura 30.

Preparación de la mezcla adición de agua y teja

Figura 31.

Preparación de la mezcla adición de bagazo de caña y concreto obtenido

Ensayos del asentamiento del concreto (NTP 339.035)

El grado de asentamiento del concreto se obtendrá mediante el uso del cono de Abrams, este proceso se realizó en el laboratorio. Para dicho proceso los materiales y equipos requeridos son; una varilla de 3/8" para compactar, una lámina metálica de 60 x 60 cm, una cuchara metálica de 1kg, una huincha métrica y el cono de Abrams.

A continuación se detalla el procedimiento, primero se humedece la parte interna del cono, luego colocamos el cono sobre la lámina metálica, luego se debe sujetar de manera firme el cono con los pies, luego se comienza a llenar el cono hasta la tercera parte inferior y se procede a compactar con la varilla con 25 golpes, este proceso es el mismo en las 3 capas luego de la última capa se procede a enrasar con la varilla y limpiar los excedentes de la lámina y el cono, paso siguiente se levanta el cono lentamente luego se coloca el cono de manera inversa paralelo al concreto se coloca la varilla en la parte superior del cono se mide el asentamiento. En las siguientes figuras se muestra el proceso de asentamiento.

Figura 32.

Llenado del cono de Abrams

Figura 33.

Compactado y enrasado del concreto en la prueba del Slump

Figura 34.Medición del asentamiento del concreto en la prueba del Slump

Luego se procedió a llenar las bloquetera y se uniformiza mediante una vibradora. El proceso de llenado se realiza por capas el concreto se acomoda mediante una varilla. El vibrado se realizó hasta que el líquido sobresalga de la superficie, luego se procede desmoldar lentamente hacia arriba con la ayuda de los pies, este proceso se debe realizar de manera correcta para evitar la deformación de los bloques y también depende mucho del mezclado y de acuerdo a la cantidad de materiales adecuados. Este proceso se muestra en las figuras siguientes.

Figura 35.Llenado y vibrado del concreto en la elaboración del bloque

Figura 36.

Enrasado y desmoldado del concreto en la elaboración del bloque

Después de dicho proceso se realiza el fraguado de los bloques.

Fraguado: Luego de la elaboración de los bloques de concreto, estos deben colocarse en un lugar cubierto donde no esté expuesto al sol ni al viento, para dejarlo reposando por un tiempo promedio de 23 horas.

A continuación, se procedió al almacenamiento en una zona adecuada a los 7, 14 y 28 días de fraguado para luego realizar los ensayos de propiedades mecánicas para bloques de concreto requeridos. Así como se muestra en la figura siguiente.

Figura 37.

Proceso de almacenaje de los bloques elaborados

Alabeo de los bloques propuestos

Cada bloque debe situarse en una mesa plana, luego se coloca la regla en una de las caras de la base del bloque de manera para saber si es cóncavo o convexo, después se debe medir con una cuña graduada al milímetro las zonas más alabeadas, tal como se muestra en la Figuras siguientes.

Si el alabeo tiende a ser cóncavo, se coloca la cuña en zona donde presenta mayor deflexión. Por el contrario, si se da el caso de convexo, se acomoda la regla metálica hasta que los valores en los extremos sean iguales. En las figuras siguientes continuación se detalla el proceso de alabeo.

Figura 38.

Medición para el ensayo de alabeo del bloque diseñado con concreto patrón

Figura 39.

Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 3% de teja

Figura 40.

Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 5% de teja

Figura 41.

Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 7% de teja

Procedimiento del objetivo específico 2

Evaluar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima - 2022.

Resistencia a compresión del concreto-NTP 339.604

Se realizó el ensayo utilizando elementos elaborado de concreto en estado seco, cubiertos por una capa de cemento y yeso con la finalidad de conseguir una superficie uniforme para poder ser manipulado por los técnicos del laboratorio, quedando tal cual se muestra en las Figuras a continuación.

Para determinar la resistencia unitaria mediante el ensayo a la compresión clasificado como f'b, se debe dividir el área bruta en referencia a todas las unidades sin vacíos entre el área neta que hace referencia a todas las unidades con porcentaje de vacíos. Una vez obtenida la resistencia de compresión de unidades se procede a restar la desviación estándar utilizando el siguiente planteamiento:

Cálculo y resultados del ensayo de resistencia a la compresión.

$$f'b = \frac{F}{A}$$

Donde:

F: Carga máxima o fuerza de rotura en kg.

A: Área neta del bloque en cm².

f'b: Resistencia neta kg/cm².

O: Desviación estándar.

"Influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de bloques de concreto Tipo I, Lima – 2022."

Primero se retiró los bloques de la poza de curado según la edad que cumpla el elemento correspondiente al ensayo a realizar. Se procede a tomar la medida de dimensiones del bloque de concreto con el micrómetro con la aproximación de 0,1 mm, utilizando estos datos se procederá a tomar el cálculo del área seccionada. Antes de colocar el bloque de concreto sobre la máquina se limpió completamente de impurezas o restos de concreto para poder mantener una base plana y realizar correctamente el ensayo.

Una vez que se coloca el bloque en la base de la máquina para realizar el ensayo correspondiente, se procede aplicar una carga en forma continua a una velocidad de 0.26 MPa/s. Esta carga se aplica de manera constante desde que se inicia el ensayo, hasta el punto de encontrar el fallo del bloque de concreto.

Finalmente, los datos que obtenemos por cada ensayo realizado deberán ser trasladado y digitado en el programa Excel mediante tablas elaboradas manualmente, con la finalidad de realizar el cálculo de acuerdo a las fórmulas establecidas y los parámetros que nos indican las normas del ACI, demostrando si se encuentra variación en las propiedades y características del elemento de concreto o si estas cumplen con las hipótesis planteadas en este proyecto. Habiendo obtenido los datos correspondientes mediante los ensayos realizados en el laboratorio de la muestra patrón y las muestras experimentales serán analizadas estadísticamente presentando los datos obtenidos para la muestra.

A continuación, en las figuras siguientes se detalla el proceso de obtención de los resultados en el ensayo de resistencia a la compresión por unidad.

Figura 42.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 3% de teja a los 7 y 14 días.

Figura 43.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 3% de teja a los 28 días.

Figura 44.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 5% de teja a los 7 y 14 días.

Figura 45.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 5% de teja a los 28 días.

Figura 46.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 7% de teja a los 7 y 14 días.

Figura 47.

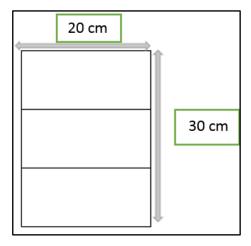
Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 7% de teja a los 28 días.

Procedimiento del objetivo específico 3

Demostrar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima - 2022.

Compresión axial en pilas de bloques (f'm)

NTP 399.605:2013


Para este ensayo se toma los procedimientos estandarizados según la NTP 399.605.

Características.

- En la figura se puede apreciar las características del bloque.
- Elemento de concreto con adición de teja y fibra de bagazo de caña reciclada.
- Dimensiones: 30 cm de altura, 10 cm de fondo y 20 cm de ancho.
- Para el mortero se utiliza la relación: 1: 4 (cemento Sol tipo I: arena).
- Espesor que ocupa el mortero entre hileras es de: 1.5 cm
- Proceso de capping el que consiste en emplear cemento/yeso en cada extremo.

Figura 48.

Dimensión del bloque elaborado para el ensayo a pila.

Cálculo del ensayo de compresión axial de pilas

Para determinar la resistencia de este elemento de concreto a la compresión axial, se basa en dividir la carga ejercida siendo esta la máxima entre el área de la superficie de contacto, aplicando la siguiente fórmula:

$$f'm = \frac{Pmax}{A}$$

Donde:

f'm: Resistencia a compresión axial (kg/cm²)

Pmax: Fuerza máximo que resiste la pila (kg)

A: Área bruta transversal a la fuerza (cm²)

Para obtener la resistencia final del elemento sometido al ensayo, se debe restar a la resistencia promedio el valor de la desviación estándar, tal cual indica la fórmula:

$$f'm = fm - 0$$

Dónde:

f'm: Resistencia característica a compresión axial (kg/cm²)

O: Desviación estándar (kg/cm²)

El procedimiento consiste en construir bloques con los elementos apilados en 3 unidades, previamente humedecidos antes de ser asentados con el mortero fabricado, debe quedar perfectamente medido con una plomada y regla de nivel, en tanto las juntas de mortero serán controladas con un nivel o escantillones. Finalmente, el proceso de capping consiste en emplear cemento/yeso en cada extremo de los bloques en pila, uniformizando los lados donde se tendrá contacto.

Pasado la edad correspondiente de la elaboración de los bloques a los 7, 14 y 28 días respectivamente, se ensaya estos elementos a la compresión axial demostrado a continuación.

Figura 49.

Elaboración de las pilas con bloques de concreto

Figura 50.

Plomeado de la pila con bloques de concreto

La fabricación y todo el proceso de elaboración de estos bloques de pilar fue hecho por nosotros mismos y la ayuda del personal del laboratorio, así como se muestran en las figuras anteriores, luego se ubicaron las pilas dentro de la máquina lo más centrado de acuerdo al eje como se aprecia en las evidencias.

A continuación, en las figuras siguientes se detalla el proceso de obtención de los resultados en el ensayo de resistencia a la compresión por pilas.

Figura 51.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 3% de teja a los 7 y 14 días

Figura 52.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 3% de teja a los 28 días

Figura 53.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 5% de teja a los 7 y 14 días

Figura 54.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 5% de teja a los 28 días

Figura 55.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 7% de teja a los 7 y 14 días

Figura 56.

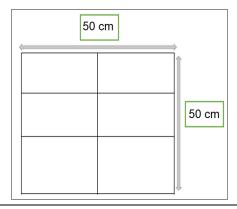
Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 7% de teja a los 28 días

Procedimiento del objetivo específico 4

Analizar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima - 2022.

Ensayo de Compresión de muretes (NTP 399.621)

El procedimiento de este ensayo se realizó según INDECOPI, (2004) está basado en la NTP E.070 y la NTP 399.621. Las dimensiones establecidas se muestran en la Figura 57.


Características

Las características de los muretes son:

- Está compuesto por bloques de concreto.
- Las medidas del murete se mencionan a continuación; tiene un espesor de 10
 cm, 50 cm de ancho y alto.
- El mortero a utilizar fue con una dosificación de 1:4 cemento y arena gruesa
- Resistencia promedio del mortero es 60.4 kg/cm²
- Las juntas son de un espesor de 1.5 cm
- Se deberá colocar en los extremos capping de yeso-cemento.

Figura 57.

Dimensión de los muretes elaborados

Cálculo de la resistencia al corte

Para calcular la resistencia al corte de los muretes se deberá dividir la carga máxima entre el área bruta. Los especímenes cumplieron 28 días, por lo que no se necesitó ningún tipo de corrección por edad. Para el cálculo se usaron las fórmulas

$$Vm = \frac{Pmax}{A}$$

Donde

Vm = Resistencia unitaria al corte (kg/cm²)

Pmax= Carga máxima que resiste el murete (kg)

A= Área bruta de la diagonal carga (cm²)

$$A = D * t$$

$$D = \sqrt{L^2 + H^2}$$

Donde

D: Dimensión diagonal

L: Largo del murete (cm)

H: Altura del murete (cm)

t: Espesor del murete(cm)

Para determinar la resistencia al corte (Vm) se deberá restar el promedio de los esfuerzos de los ensayos realizados (X) con la desviación estándar, esto se desarrolla de acuerdo a la fórmula siguiente:

$$Vm = X - 0$$

Donde

Vm: Resistencia característica al corte (kg/cm²)

X: Resistencia promedio al corte (kg/cm²)

O: Desviación estándar (kg/cm²)

Proceso de elaboración de los muretes

Un día antes de la elaboración de los muretes, los bloques deben ser mojados por 30 minutos aproximadamente.

En primer lugar, se asentaron los bloques maestros, usando el escantillón para controlar el grosor de las juntas y una plomada para controlar su verticalidad, tal como se muestra en las figuras siguientes.

Luego de los 28 días de elaboración de los muretes se realizaron los ensayos de compresión diagonal.

Figura 58.

Nivelado y plomeado del murete

Figura 59.

Instalación de bloques en el murete

Figura 60.

Fraguado y limpiado de bloques en el murete

Montaje del murete en la prensa de corte diagonal

El montaje de los muretes fue realizado por el personal del laboratorio, este fue el encargado de colocar cada uno de los muretes en el equipo, como se muestra en las figuras siguientes.

Figura 61.

Resistencia a la compresión por murete del diseño de 4% bagazo de caña y 3% de teja a los 28 días

Figura 62.

Resistencia a la compresión por murete del diseño de 4% bagazo de caña y 5% de teja a los 28 días

Figura 63.

Resistencia a la compresión por murete del diseño de 4% bagazo de caña y 7% de teja a los 28 días

Fuente: Resultados de laboratorio

CAPÍTULO III: RESULTADOS

3.1 Del objetivo específico 1

Obtener los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima - 2022.

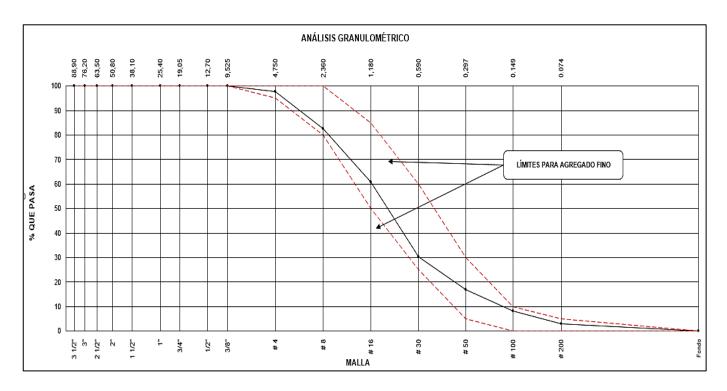
En primer lugar, se procedió a analizar las características físicas de los agregados convencionales y no convencionales, para de esa manera obtener un diseño de mezcla de concreto f´c=90 kg/cm² con adición de teja y fibra de bagazo de caña reciclada.

En base al análisis granulométrico del agregado fino se obtuvo un tamaño máximo de 3/8" y un tamaño máximo nominal del tamiz N° 4. De acuerdo a la curva granulométrica se obtuvieron los límites superior e inferior estos se definen en base al TMN de la tabla de husos de la NTP 400.037.

De acuerdo a los resultados, obtenidos del análisis granulométrico del agregado grueso se obtuvo un tamaño máximo de 1/2" y un tamaño máximo nominal de 3/8". De acuerdo a la curva granulométrica se obtuvieron los límites superior e inferior estos se definen en base al TMN de la tabla de husos de la NTP 400.037. También se debe mencionar que el agregado grueso cumple con el máximo porcentaje de arcilla el cual es 0.25%.

A continuación, se muestra el análisis granulométrico del agregado fino en la tabla 16 y su curva granulométrica en la figura 64, también se muestra el análisis granulométrico del agregado grueso en la tabla 17 y su curva granulométrica en la figura 65.

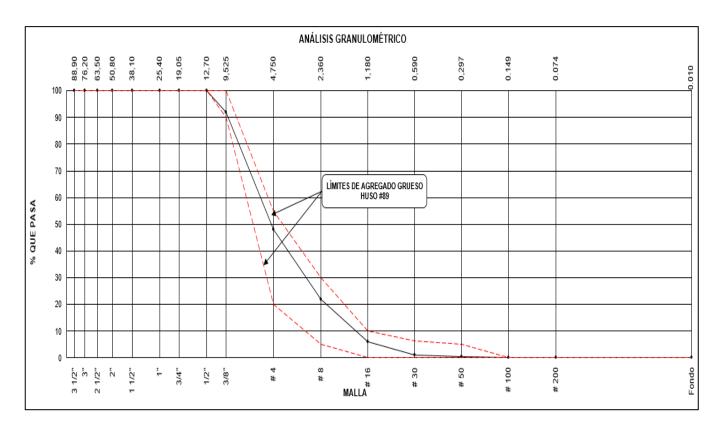
Tabla 16 *Ensayo granulométrica del agregado fino*


AGREGADO FINO ASTM C33 - ARENA GRUESA

	Malla	Peso Ret. (gr)	Peso Ret. (%)	Peso Ret. Acum.	% Pasa Acum.	ASTM "LIM SUP"	ASTM "LIM INF"
4"	101.60 mm	0.0	0.00	0.00	100.00	100.00	100.00
3 1/2"	88.90 mm	0.0	0.00	0.00	100.00	100.00	100.00
3"	76.20 mm	0.0	0.00	0.00	100.00	100.00	100.00
2 1/2"	63.50 mm	0.0	0.00	0.00	100.00	100.00	100.00
2"	50.80 mm	0.0	0.00	0.00	100.00	100.00	100.00
1 1/2"	38.10 mm	0.0	0.00	0.00	100.00	100.00	100.00
1"	25.40 mm	0.0	0.00	0.00	100.00	100.00	100.00
3/4"	19.05 mm	0.0	0.00	0.00	100.00	100.00	100.00
1/2"	12.70 mm	0.0	0.00	0.00	100.00	100.00	100.00
3/8"	9.53 mm	0.0	0.00	0.00	100.00	100.00	100.00
# 4	4.75 mm	5.0	2.18	2.18	97.82	95.00	100.00
#8	2.36 mm	35.0	15.28	17.47	82.53	80.00	100.00
# 16	1.18 mm	50.0	21.83	39.30	60.70	50.00	85.00
# 30	0.59 mm	70.0	30.57	69.87	30.13	25.00	60.00
# 50	0.30 mm	30.0	13.10	82.97	17.03	5.00	30.00
# 100	0.15 mm	20.0	8.73	91.70	8.30	0.00	10.00
# 200	0.07 mm	12.0	5.24	96.94	3.06	0.00	5.00
Fondo	0.01 mm	7.0	3.06	100.00	0.00	0.00	0.00

Figura 64.

Curva granulométrica del agregado fino


Tabla 17 *Ensayo granulométrica del agregado grueso*

	AGREGADO GRUESO ASTM C33 HUSO # 89						
	Malla	Peso Ret. (gr)	Peso Ret. (%)	Peso Ret. Acum. (%)	% Pasa Acum.	ASTM "LIM SUP"	ASTM "LIM INF"
4"	101.60 mm	0.0	0.00	0.00	100.00	100.00	100.00
3 1/2"	88.90 mm	0.0	0.00	0.00	100.00	100.00	100.00
3"	76.20 mm	0.0	0.00	0.00	100.00	100.00	100.00
2 1/2"	63.50 mm	0.0	0.00	0.00	100.00	100.00	100.00
2"	50.80 mm	0.0	0.00	0.00	100.00	100.00	100.00
1 1/2"	38.10 mm	0.0	0.00	0.00	100.00	100.00	100.00
1"	25.40 mm	0.0	0.00	0.00	100.00	100.00	100.00
3/4"	19.05 mm	0.0	0.00	0.00	100.00	100.00	100.00
1/2"	12.70 mm	0.0	0.00	0.00	100.00	100.00	100.00
3/8"	9.53 mm	70.0	8.03	8.03	91.97	90.00	100.00
# 4	4.75 mm	383.0	43.95	51.98	48.02	20.00	55.00
#8	2.36 mm	226.0	25.93	77.91	22.09	5.00	30.00
# 16	1.18 mm	140.0	16.06	93.98	6.02	0.00	10.00
# 30	0.59 mm	43.0	4.93	98.91	1.09	0.00	6.50
# 50	0.30 mm	5.0	0.57	99.48	0.52	0.00	5.00
# 100	0.15 mm	3.3	0.38	99.86	0.14	0.00	0.00
# 200	0.07 mm	1.2	0.14	100.00	0.00	0.00	0.00

Fondo	0.01 mm	0.0	0.00	100.00	0.00	0.00	0.00

Figura 65.Curva granulométrica del agregado grueso

Luego se procedió a obtener los resultados de acuerdo a los ensayos realizados a continuación se muestran las tablas de características físicas del agregado fino y grueso:

Tabla 18Características físicas del Agregado grueso.

CARACTERISTICAS FISICAS					
P. Especif. de Masa Seco (kg/m3)	2608.400 2653.300				
P. Especif. de Masa SSS (kg/m3)					
	2732.100				
P. Especif. de Masa Aparente (kg/m3)					
P. Unitario Compactado (kg/m3)	1502				
	1404				
P. Unitario Suelto (kg/m3)					
A1	1.75				
Absorción (%)					
Tamaño Máximo Tamaño Máximo Nominal	1/2'' 3/8''				
Contenido de Humedad (%)	1.66				
Módulo de Fineza	5.30				
modulo de i meza	5.50				
% < Malla N° 200 (0.75 mm)	0.24				

Tabla 19Características físicas del Agregado fino.

CARACTERISTICAS FISICAS					
P. Especif. de Masa Seco (kg/m ³)	2657.800				
P. Especif. de Masa SSS (kg/m ³)	2702.400				
P. Especif. de Masa Aparente (kg/m³)	2783.600				
P. Unitario Compactado (kg/m³)	1675				

P. Unitario Suelto (kg/m³)	1491
Absorción (%)	1.71
Contenido de Humedad (%)	3.64
Módulo de Fineza	2.00
% < Malla N° 200 (0.75 mm)	5.42

Luego de obtener los resultados en los ensayos antes mencionados se pasó a determinar el diseño del concreto de acuerdo a los valores planteados para la adición de teja y fibra de bagazo de caña reciclada correspondientes. Primero se obtendrá el diseño de mezcla f´c=90 kg/cm² Patrón que se describe a continuación.

1. Resistencia a la compresión requerida

$$f'cr = 160 \text{ kg/cm}^2$$

2. Relación de agua cemento

$$R a/c = 0.78$$

3. Determinación del volumen de agua

$$Agua = 207 L$$

4. Cantidad de aire atrapado

Aire =
$$3.0\%$$

5. Cálculo de la cantidad de cemento

Cemento =
$$265 \text{ kg}$$

6. Factor cemento

Bolsas $x m^3 = 6.2 \text{ bolsas}.$

7. Cálculo del volumen de agregados.

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO					
Cemento SOL	3150 kg/m ³	0.0842 m ³					
Agua	1000 kg/m ³	0.2070 m ³					
Aire	1	$0.0300 \; m^3$					
			HUMEDAD	ABSORCIÓN	FINEZA	P.U. SUELTO	тм
Agregado grueso	2689 kg/ m ³		1.66%	1.75%	5.30	1404	3/8
Agregado fino	2571 kg/ m ³		3.64%	1.71%	2.00	1491	

8. Proporción de agregados secos

Agregado grueso
$$= 0.3109 \text{ m}^3 = 811 \text{ kg}$$

Agregado fino
$$= 0.3678 \text{ m}^3 = 978 \text{ kg}$$

9. Peso húmedo de los agregados – corrección por humedad

10. Agua efectiva corregida por absorción y humedad

$$Agua = 189 L$$

Volumen de tanda de prueba	0.03 m^3
Cemento SOL Tipo I	7.96 kg
Agua	5.67 L
Agregado grueso	24.74 kg
Agregado fino	30.39 kg
Slump Obtenido	1 1/2"

11. Proporción en volumen en obra

CEM A.F. A.G. AGUA

1 : 3.8 : 3.11 : 30.2 L/bolsa

Segundo se obtendrá el diseño de mezcla f´c=90 kg/cm² con 4% de Fibra de bagazo de caña reciclada y 3% de adición de teja reciclada se describe a continuación.

1. Resistencia a la compresión requerida

$$f'cr = 160 \text{ kg/cm}^2$$

2. Relación de agua cemento

$$R a/c = 0.78$$

3. Determinación del volumen de agua

$$Agua = 207 L$$

4. Cantidad de aire atrapado

Aire =
$$3.0\%$$

5. Cálculo de la cantidad de cemento

Cemento =
$$265 \text{ kg}$$

6. Factor cemento

Bolsas
$$x m^3 = 6.2 \text{ bolsas}.$$

7. Cálculo de adición de teja reciclada

Porcentaje: 3.0%

8. Cálculo de adición de fibra de bagazo de caña reciclada

Porcentaje: 4.0%

9. Cálculo del volumen de agregados.

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO					
Cemento SOL Tipo I	3150 kg/ m ³	0.0842 m ³					
Agua	1000 kg/ m ³	0.2070 m ³					
Aire		0.0300 m ³					
			HUMEDAD	ABSORCIÓN	MÓD. FINEZA	P.U. SUELTO	тм
Agregado grueso	2608 kg/ m ³		1.66%	1.75%	5.30	1404	3/8 "
Agregado fino	2658 kg/ m ³		3.64%	1.71%	2.00	1491	

10. Proporción de agregados secos

Agregado grueso
$$= 0.3109 \text{ m}^3 = 811 \text{ kg}$$

Agregado fino
$$= 0.3678 \text{ m}^3 = 978 \text{ kg}$$

11. Peso húmedo de los agregados – corrección por humedad

12. Agua efectiva corregida por absorción y humedad

$$Agua = 189 L$$

13. Volumen de tanda de prueba 0.03 m³

Cemento SOL Tipo I	7.96 kg
Agua	5.67 L
Agregado grueso	24.74 kg
Agregado fino	30.39 kg
Slump Obtenido	1 1/2"
Teja reciclada	0.24 kg

0.32 kg

14. Proporción en volumen en obra

Fibra de bagazo de caña reciclada

CEM A.F. A.G. AGUA

1 : 3.8 : 3.11 : 30.2 L / bolsa

En tercer lugar, se obtendrá el diseño de mezcla f'c=90 kg/cm² con 4% de Fibra de bagazo de caña reciclada y 5% de adición de teja reciclada se describe a continuación.

1. Resistencia a la compresión requerida

$$f'cr = 160 \text{ kg/cm}^2$$

2. Relación de agua cemento

$$R a/c = 0.78$$

3. Determinación del volumen de agua

$$Agua = 207 L$$

4. Cantidad de aire atrapado

Aire =
$$3.0\%$$

5. Cálculo de la cantidad de cemento

Cemento =
$$265 \text{ kg}$$

6. Factor cemento

Bolsas
$$x m^3 = 6.2 \text{ bolsas}.$$

7. Cálculo de adición de teja reciclada

8. Cálculo de adición de fibra de bagazo de caña reciclada

9. Cálculo del volumen de agregados.

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO					
Cemento SOL Tipo 1	3150 kg/ m ³	0.0842 m ³					
Agua	1000 kg/ m ³	0.2070 m^3					
Aire		0.0300 m^3					
			HUMEDAD	ABSORCIÓN	MÓD. FINEZA	P.U. SUELTO	TM
Agregado grueso	2608 kg/ m ³		1.66%	1.75%	5.30	1404	3/8 "
Agregado fino	2658 kg/ m ³		3.64%	1.71%	2.00	1491	

10. Proporción de agregados secos

Agregado grueso
$$= 0.3109 \text{ m}^3 = 811 \text{kg}$$

Agregado fino
$$= 0.3678 \text{ m}^3 = 978 \text{kg}$$

11. Peso húmedo de los agregados – corrección por humedad

12. Agua efectiva corregida por absorción y humedad

$$Agua = 189 L$$

13. Volumen de tanda de prueba 0.03 m³

Cemento SOL Tipo I	7.96 kg
Agua	5.67 L
Agregado grueso	24.74 kg
Agregado fino	30.39 kg
Slump Obtenido	1 1/2"
Teja reciclada	0.40 kg
Fibra de bagazo de caña reciclada	0.32 kg

14. Proporción en volumen en obra

Finalmente se obtendrá el diseño de mezcla f´c=90 kg/cm² con 4% de Fibra de bagazo de caña reciclada y 7% de adición de teja reciclada se describe a continuación.

1. Resistencia a la compresión requerida

$$f'cr = 160 \text{ kg/cm}^2$$

2. Relación de agua cemento

$$R a/c = 0.78$$

3. Determinación del volumen de agua

$$Agua = 207 L$$

4. Cantidad de aire atrapado

Aire =
$$3.0\%$$

5. Cálculo de la cantidad de cemento

Cemento =
$$265 \text{ kg}$$

6. Factor cemento

Bolsas
$$x m^3 = 6.2 \text{ bolsas}.$$

7. Cálculo de adición de teja reciclada

8. Cálculo de adición de fibra de bagazo de caña reciclada

9. Cálculo del volumen de agregados.

INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO					
Cemento SOL Tipo 1	3150 kg/ m ³	0.0842 m ³					
Agua	1000 kg/ m ³	0.2070 m ³					
Aire		0.0300 m ³					
			HUMEDAD	ABSORCIÓN	MÓD. FINEZA	P.U. SUELTO	ТМ
Agregado grueso	2608 kg/ m ³		1.66%	1.75%	5.30	1404	3/8 "
Agregado fino	2658 kg/ m ³		3.64%	1.71%	2.00	1491	

10. Proporción de agregados secos

Agregado grueso
$$= 0.3109 \text{ m}^3 = 811 \text{ kg}$$

Agregado fino
$$= 0.3678 \text{ m}^3 = 978 \text{ kg}$$

11. Peso húmedo de los agregados – corrección por humedad

12. Agua efectiva corregida por absorción y humedad

$$Agua = 189 L$$

Cemento SOL Tipo I

13. Volumen de tanda de prueba 0.03 m³

Agua		5.67 L

7.96 kg

14. Proporción en volumen en obra

CEM A.F. A.G. AGUA

 $1 \qquad : \ 2.3 \qquad : \ 2.46 \qquad : \ 26.7 \ L \ / \ bolsa$

A continuación, se muestran los resultados del método de prueba de ensayo de alabeo a bloques de concreto estructurales (NTP 339.613).

Primero tenemos los resultados del ensayo de alabeo del diseño patrón

Figura 66.Ensayo de alabeo del diseño patrón

IDENTIFICACIÓN	LARGO (mm)					ANCHO (mm)			ALTURA (mm)		
	L - 1	L - 2	L - 3	L - 4	L - P	A - 1	A - 2	A - P	H - 1	H - 2	H - P
DISEÑO PATRÓN	200.00	199.90	200.00	199.80	199.93	100.00	99.90	99.95	89.90	90.00	89.95
DISEÑO PATRÓN	199.90	199.90	199.80	199.80	199.85	99.80	99.50	99.65	89.74	89.65	89.70
DISEÑO PATRÓN	199.80	199.80	199.70	199.80	199.78	99.70	99.00	99.35	89.60	90.00	89.8

Luego los resultados del ensayo de alabeo del diseño con 4% de fibra de bagazo de caña y 3% de teja.

Figura 67.

Ensayo de alabeo del diseño con 4% de fibra de bagazo de caña y 3% de teja

IDENTIFICACIÓN		ANCHO (mm)			ALTURA (mm)						
	L - 1	L - 2	L - 3	L - 4	L-P	A - 1	A - 2	A - P	H - 1	H - 2	H - P
PATRÓN + 4% F.B.C + 3% T.R	200.00	199.80	199.90	200.00	199.93	99.90	99.50	99.70	89.99	90.00	89.995
PATRÓN + 4% F.B.C + 3% T.R	199.90	200.00	200.00	199.80	199.93	99.90	99.80	99.85	88.77	89.56	89.17
PATRÓN + 4% F.B.C + 3% T.R	199.80	199.90	200.00	199.90	199.90	98.90	99.00	98.95	88.99	89.36	89.175

Luego los resultados del ensayo de alabeo del diseño con 4% de fibra de bagazo de caña y 5% de teja.

Figura 68.

Ensayo de alabeo del diseño con 4% de fibra de bagazo de caña y 5% de teja

IDENTIFICACIÓN .		ANCHO (mm)			ALTURA (mm)						
	L - 1	L - 2	L - 3	L - 4	L-P	A - 1	A - 2	A - P	H - 1	H - 2	H - P
PATRÓN + 4% F.B.C + 5% T.R	199.98	199.97	200.00	199.90	199.96	100.00	99.80	99.90	88.65	88.56	88.60
PATRÓN + 4% F.B.C + 5% T.R	200.00	199.98	199.97	200.00	199.99	99.80	99.70	99.75	89.63	89.36	89.50
PATRÓN + 4% F.B.C + 5% T.R	199.90	200.00	199.98	200.00	199.97	100.00	99.90	99.95	89.36	90.00	89.68

Por último, los resultados del ensayo de alabeo del diseño con 4% de fibra de bagazo de caña y 7% de teja.

Figura 69.

Ensayo de alabeo del diseño con 4% de fibra de bagazo de caña y 7% de teja

IDENTIFICACIÓN ,		ANCHO (mm)			ALTURA (mm)						
	L - 1	L - 2	L - 3	L - 4	L-P	A - 1	A - 2	A - P	H - 1	H - 2	H - P
PATRÓN + 4% F.B.C + 7% T.R	199.90	199.97	199.99	199.98	199.96	99.80	100.00	99.90	90.00	88.97	89.49
PATRÓN + 4% F.B.C + 7% T.R	200.00	199.98	199.97	199.99	199.99	99.90	99.70	99.80	88.78	90.00	89.39
PATRÓN + 4% F.B.C + 7% T.R	199.90	199.98	199.97	200.00	199.96	100.00	99.90	99.95	89.00	90.00	89.5

3.2 Del objetivo específico 2

Evaluar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima - 2022.

En primer lugar, se desarrolla la prueba estándar para la resistencia a la compresión de unidades de albañilería a los 7, 14 y 28 días de elaborado el bloque de concreto de diseño de mezcla f´c=90 kg/cm² con adición de Fibra de bagazo de caña reciclada y teja reciclada mostrado en las tablas 30, 32 y 34.

Según NTP 339.604 (2015) se procedió con el ensayo correspondiente de compresión al someter el elemento a una carga axial hasta conseguir la falla del mismo. El resultado de este ensayo se obtuvo calculando la división de la carga máxima entre el área transversal de toda la sección del elemento, estos datos utilizados se encuentran determinados según su tamaño, dosificación exacta de acuerdo al diseño, forma, temperatura, proceso de elaboración adecuada, condiciones de curado correctamente controlados según su edad correspondiente, y moldeo correcto.

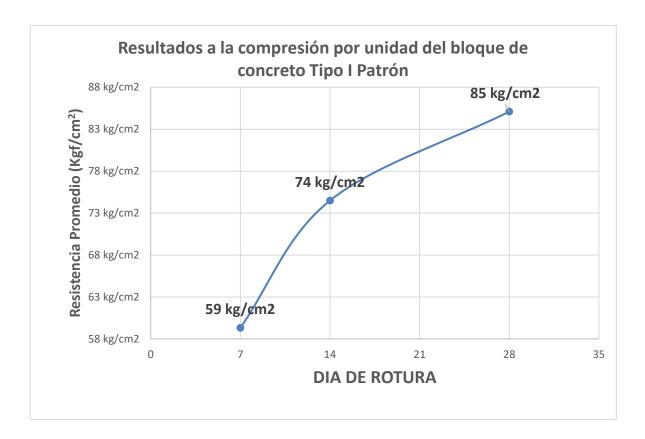
Comportamiento de la resistencia a la compresión de un concreto f´c=90 kg/cm² del tratamiento control.

En las tablas 20 y 21 se detallan los resultados obtenidos de la prueba de resistencia a la compresión por unidad.

Tabla 20Resumen de promedios de la resistencia a la compresión por unidad del tratamiento control a los días de rotura

RESISTENCIA A LA COMPRESIÓN POR UNIDAD NTP 399.604

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO f'm	% f'c
PATRÓN	7	11845	200.0	59 kg/cm ²	65.8%
PATRÓN	7	11863	200.0	59 kg/cm ²	65.9%
PATRÓN	7	11882	200.0	59 kg/cm ²	66.0%
PATRÓN	14	14878	200.0	74 kg/cm ²	82.7%
PATRÓN	14	14898	200.0	74 kg/cm ²	82.8%
PATRÓN	14	14919	200.0	75 kg/cm ²	82.9%
PATRÓN	28	16998	200.0	85 kg/cm ²	94.4%
PATRÓN	28	17018	200.0	85 kg/cm ²	94.5%
PATRÓN	28	17039	200.0	85 kg/cm ²	94.7%


Tabla 21Resumen de promedios de % de resistencia a la compresión por unidad en función al $f'c=90kg/cm^2$ y resistencia mínima esperada de patrón.

RESISTENCIA A LA COMPRESIÓN DE UNIDADES NTP 399.604 **EDAD FUERZA** ÁREA **ESFUERZO IDENTIFICACIÓN** % f'c (días) MÁXIMA (kg) BRUTA (cm²) f'm **PATRÓN** 7 11863 200 59 kg/cm^2 65.91% **PATRÓN** 74 kg/cm^2 14 14898 200 82.77% **PATRÓN** 85 kg/cm^2 28 17018 200 94.55%

Figura 70.

Grafica lineal de la resistencia a la compresión por unidad del tratamiento T0 – tratamiento control.

En la gráfica indicada de la figura 70, podemos observar cómo se genera el comportamiento de un elemento de concreto al ser sometido a una carga para determinar su resistencia siendo este por unidad, una muestra natural sin adición de teja y fibra de bagazo de caña reciclada, presentando valores superiores a los estimados según a la edad de resistencia al que pertenecen así como se muestra en la tabla 20, los cuales se interpretan de tal forma que la resistencia final a los 28 días alcanza un valor de 85 kg/cm².

Comportamiento de la resistencia a la compresión por unidad de un concreto f´c=90 kg/cm² con la adición de teja y bagazo de caña reciclada en proporciones de

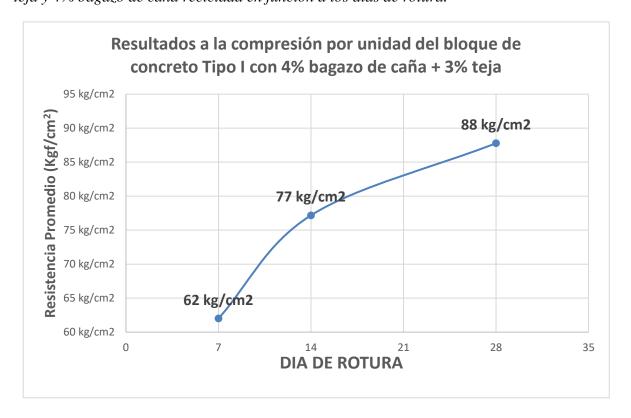
3% y 4% del peso del cemento. En las tablas 22 y 23 se detallan los resultados obtenidos de la prueba de resistencia a la compresión por unidad.

Tabla 22Resumen de promedios de porcentajes de adición del 3 % de teja y 4% bagazo de caña reciclada

RESISTENCIA A LA COMPRESIÓN POR UNIDAD ASTM C140 / NTP 399.604

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO f'm	% f'c
4% B. de caña 3% de teja	7	12336	200.0	62 kg/cm ²	68.5%
4% B. de caña 3% de teja	7	12411	200.0	62 kg/cm^2	69.0%
4% B. de caña 3% de teja	7	12456	200.0	62 kg/cm ²	69.2%
4% B. de caña 3% de teja	14	15369	200.0	77 kg/cm ²	85.4%
4% B. de caña 3% de teja	14	15446	200.0	77 kg/cm ²	85.8%
4% B. de caña 3% de teja	14	15493	200.0	77 kg/cm ²	86.1%
4% B. de caña 3% de teja	28	17489	200.0	87 kg/cm ²	97.2%
4% B. de caña 3% de teja	28	17566	200.0	88 kg/cm^2	97.6%
4% B. de caña 3% de teja	28	17613	200.0	88 kg/cm^2	97.9%

Tabla 23Resumen de promedios de % de resistencia a la compresión por unidad en función al $f'c=90kg/cm^2$ y resistencia mínima esperada del T1-4 % y 3%.


RESISTENCIA A LA COMPRESIÓN POR UNIDAD ASTM C140 / NTP 399.604

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO f'm	% f'c
4% B. de caña 3% de teja	7	12401	200	62 kg/cm ²	68.89%
4% B. de caña 3% de teja	14	15436	200	77 kg/cm ²	85.76%
4% B. de caña 3% de teja	28	17556	200	88 kg/cm ²	97.53%

Figura 71.

Grafica lineal de la resistencia a la compresión por unidad con adición del 3 % de teja y 4% bagazo de caña reciclada en función a los días de rotura.

En la gráfica indicada de la figura 71, podemos observar cómo se genera el comportamiento de un elemento de concreto al ser sometido a una carga para determinar su resistencia siendo este por unidad, una muestra natural con adición de 3% de teja y 4% de fibra de bagazo de caña reciclada, presentando valores superiores a los estimados según a la edad de resistencia al que pertenecen así como se muestra en la tabla 22, los cuales se interpretan de tal forma que la resistencia final a los 28 días alcanza un valor de 88 kg/cm².

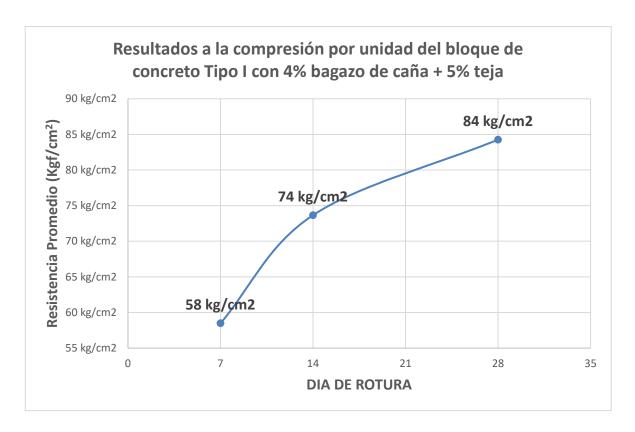
Comportamiento de la resistencia a la compresión por unidad de un concreto f´c=90 kg/cm² con adición de teja y bagazo de caña reciclada en proporciones de 5% y 4% del peso del cemento. En las tablas 24 y 25 se detallan los resultados obtenidos de la prueba de resistencia a la compresión por unidad.

Tabla 24Resumen de promedios de porcentajes de adición del 5 % de teja y 4% bagazo de caña reciclada

RESISTENCIA A LA COMPRESIÓN POR UNIDAD ASTM C140 / NTP 399.604

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO f'm	% f'c
4% B. de caña 5% de teja	7	11741	200.0	59 kg/cm ²	65.2%
4% B. de caña 5% de teja	7	11652	200.0	58 kg/cm^2	64.7%
4% B. de caña 5% de teja	7	11696	200.0	58 kg/cm ²	65.0%
4% B. de caña 5% de teja	14	14774	200.0	74 kg/cm ²	82.1%
4% B. de caña 5% de teja	14	14687	200.0	73 kg/cm ²	81.6%
4% B. de caña 5% de teja	14	14733	200.0	74 kg/cm ²	81.9%
4% B. de caña 5% de teja	28	16894	200.0	84 kg/cm^2	93.9%
4% B. de caña 5% de teja	28	16807	200.0	84 kg/cm ²	93.4%
4% B. de caña 5% de teja	28	16853	200.0	84 kg/cm ²	93.6%

Tabla 25Resumen de promedios de % de resistencia a la compresión por unidad en función al $f'c=90kg/cm^2$ y resistencia mínima esperada del T1-4 % y 5%.


RESISTENCIA A LA COMPRESIÓN POR UNIDAD ASTM C140 / NTP 399.604

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (g)	ÁREA BRUTA (cm²)	ESFUERZO f'm	% f'c
4% B. de caña 5% de teja	7	11696	200	58 kg/cm ²	64.98%
4% B. de caña 5% de teja	14	14731	200	74 kg/cm^2	81.84%
4% B. de caña 5% de teja	28	16851	200	84 kg/cm ²	93.62%

Figura 72.

Grafica lineal de la resistencia a la compresión por unidad con adición del 5 % de teja y 4% bagazo de caña reciclada en función a los días de rotura.

En la gráfica indicada de la figura 72, podemos observar cómo se genera el comportamiento de un elemento de concreto al ser sometido a una carga para determinar su resistencia siendo este por unidad, una muestra natural con adición de 5% de teja y 4% de fibra de bagazo de caña reciclada, presentando valores menores a los estimados según a la edad de resistencia al que pertenecen así como se muestra en la tabla 24, los cuales se interpretan de tal forma que la resistencia final a los 28 días alcanza un valor de 84 kg/cm².

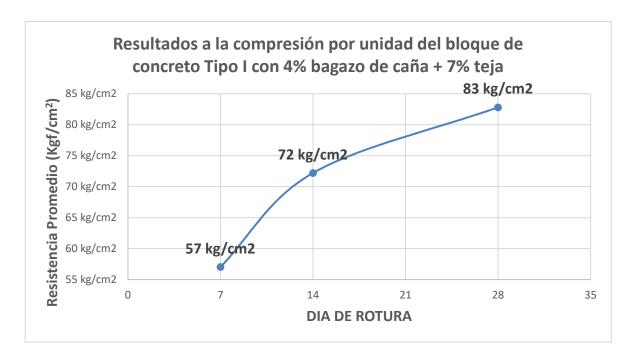
Comportamiento de la resistencia a la compresión por unidad de un concreto f´c=90 kg/cm² con adición de teja y bagazo de caña reciclada en proporciones de 7% y

4% del peso del cemento. En las tablas 26 y 27 se detallan los resultados obtenidos de la prueba de resistencia a la compresión por unidad.

Tabla 26Resumen de promedios de porcentajes de adición del 7% de teja y 4% bagazo de caña reciclada

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO f'm	% f'c
4% B. de caña 7% de teja	7	11474	200.0	57 kg/cm ²	63.7%
4% B. de caña 7% de teja	7	11325	200.0	57 kg/cm ²	62.9%
4% B. de caña 7% de teja	7	11422	200.0	57 kg/cm^2	63.5%
4% B. de caña 7% de teja	14	14507	200.0	73 kg/cm^2	80.6%
4% B. de caña 7% de teja	14	14360	200.0	72 kg/cm^2	79.8%
4% B. de caña 7% de teja	14	14459	200.0	72 kg/cm^2	80.3%
4% B. de caña 7% de teja	28	16627	200.0	83 kg/cm^2	92.4%
4% B. de caña 7% de teja	28	16480	200.0	82 kg/cm^2	91.6%
4% B. de caña 7% de teja	28	16579	200.0	83 kg/cm ²	92.1%

Tabla 27Resumen de promedios de % de resistencia a la compresión por unidad en función al $f'c=90kg/cm^2$ y resistencia mínima esperada del T1-4 % y 7%.


RESISTENCIA A LA COMPRESIÓN POR UNIDAD ASTM C140 / NTP 399.604

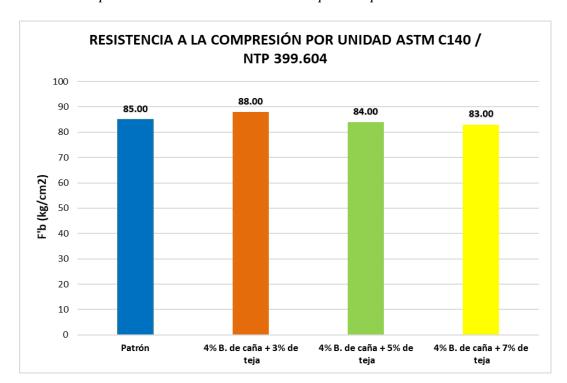
IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO f'm	% f'c
4% B. de caña 7% de teja	7	11407	200	57 kg/cm ²	63.37%
4% B. de caña 7% de teja	14	14442	200	72 kg/cm ²	80.23%
4% B. de caña 7% de teja	28	16562	200	83 kg/cm ²	92.01%

Figura 73.

Grafica lineal de la resistencia a la compresión por unidad con adición del 7 % de polvo de teja y 4% bagazo de caña reciclada en función a los días de rotura.

En la gráfica indicada de la figura 73, podemos observar cómo se genera el comportamiento de un elemento de concreto al ser sometido a una carga para determinar su resistencia siendo este por unidad, una muestra natural con adición de 7% de teja y 4% de fibra de bagazo de caña reciclada, presentando valores menores a los estimados según a la edad de resistencia al que pertenecen así como se muestra en la tabla 26, los cuales se interpretan de tal forma que la resistencia final a los 28 días alcanza un valor de 83 kg/cm².

En la tabla 28 se detallan el resumen de los resultados promedios obtenidos de la prueba de resistencia a la compresión por unidad a los 28 días de secado.


Tabla 28Resumen de promedios de % de resistencia a la compresión por Unidad

DECICERNAL	A T /			ASTM C140 / NTP 399.604
KRAISTRINGTA	\mathbf{A}	LUDVIPKESIU	IN PUK UINIDAD	AS I VI C.140 / N I P 199.004

IDENTIFICACIÓN	EDAD (días)	LARGO (mm)	ANCHO (mm)	ALTURA (mm)	FUERZA MAX. (kg)	ESFUERZO F'b (kg/cm²)
Patrón	28	200	100	90	17018	85.00
4% B. de caña 3% de teja	28	200	100	90	17556	88.00
4% B. de caña 5% de teja	28	200	100	90	16851	84.00
4% B. de caña 7% de teja	28	200	100	90	16562	83.00

Figura 74.

Resumen de promedios de resistencia a la compresión por Unidad.

En la figura 74, se observa el comportamiento en el ensayo de resistencia a la compresión por unidad a los 28 días de secado, de los resultados obtenidos, el único superior al diseño patrón es el diseño con 4% de bagazo de caña + 3% de teja con 88.00 kg/cm², también se puede observar que a mayor adición de bagazo de caña y polvo de teja la resistencia a la compresión por unidad disminuye.

Análisis inferencial del específico 2

Evaluar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima - 2022.

Hipótesis Específica 2

La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima -2022.

• Planteamiento de la prueba de hipótesis general:

- ✓ Hipótesis nula (H0): La adición de fibra de bagazo de caña al 4% y de teja reciclada al 3%, 5% y 7% no mejorará significativamente la resistencia a la compresión por unidad, Lima 2022.
- ✓ Hipótesis alterna (Ha): La adición de fibra de bagazo de caña al 4% y de teja reciclada al 3%, 5% y 7% mejorará significativamente la resistencia a la compresión por unidad, Lima 2022.

Para realizar la prueba de los análisis de las hipótesis, se inicia analizandolos resultados descriptivamente obtenidos de la compresión según la edad de 7, 14 y 28 días de curado en el especimen endurecido, a los cuales se le realizará posteriormente las pruebas de homogenización y normalidad. Se define su nivel a un α =0.05 de significancia, el cual hace referencia al valor del margen de error que se asume en los resultados obtenidos de las pruebas.

Continuando con los análisis correspondientes de las hipótesis, se inicia con el análisis a los resultados de resistencia a la compresión de forma descriptiva según la edad de 7, 14 y 28 días de curado por cada diseño elaborado, verificamos que la relación exista siendo esta de manera positiva o negativa según el tiempo que

transcurre hasta el ensayo final, realizando un ensayo de regresión lineal teniendo como relación los datos de la compresión y las edades de curado, esto con la finalidad de encontrar un resultado en el análisis de sus características.

Se llevó a cabo la realización de la prueba conocida como ANOVA la cual nos permitirá realizar una comparación de todos los diseños elaborados y poder determinar si estos tienen alguna comparación o diferencia significativa según sus diseños, finalmente se pretende encontrar el diseño más factible mediante la prueba de DUNCAN o T modificado.

Análisis descriptivo de los ensayos a compresión en función al tiempo de madurez

Tabla 29 *Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por unidad a los 7 días de madurez*

Desv. Descripción Recuento Media Mediana Máx. Mín. estándar **FRATAMIENTO** TIPO DE TO - Patrón 3.00 59.32 59.32 59.41 59.23 0.09 T1-4% Bagazo de caña+3% de teja 62.28 0.30 3.00 62.00 62.06 61.68 T2-4% Bagazo de caña+5% de teja 3.00 58.26 0.22 58.48 58.48 58.71 0.38 T3-4% Bagazo de caña+7% de teja 3.00 57.03 57.11 57.37 56.63

Resistencia de concreto a la compresión a los 7 días

Tabla 30Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por unidad a los 14 días de madurez

	Resistencia de concreto a la compresión a los 14 días							
TO	Descripción	Recuento	Media	Mediana	Máx.	Mín.	Desv. estándar	
DE	T0 - Patrón	3.00	74.49	74.49	74.60	74.39	0.10	
TIPO	T1-4% Bagazo de caña+3% de teja	3.00	77.18	77.23	77.47	76.85	0.31	
T	T2-4% Bagazo de caña+5% de teja	3.00	73.66	73.67	73.87	73.44	0.22	
T	T3- 4% Bagazo de caña+ 7% de teja	3.00	72.21	72.30	72.54	71.80	0.37	

Tabla 31Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por unidad a los 28 días de madurez

Resistencia de concreto a la compresión a los 28 días

	ΓO	Descripción	Recuento	Media	Mediana	Máx.	Mín.	Desv. estándar
DE	IIENTO	T0 - Patrón	3.00	85.09	85.09	85.20	84.99	0.10
TIPO DE	TAMI	T1-4% Bagazo de caña+3% de teja	3.00	87.78	87.83	88.07	87.45	0.31
	TRA	T2-4% Bagazo de caña+5% de teja	3.00	84.26	84.27	84.47	84.04	0.22
		T3-4% Bagazo de caña+7% de teja	3.00	82.81	82.90	83.14	82.40	0.37

Según los resultados obtenidos del análisis descriptivo se aprecia que el diseño T1 a los 7, 14 y 28 días es el único superior al tratamiento patrón, la forma de los tratamientos T2 y T3 a los 7, 14 y 28 días de madurez son inferiores al tratamiento del diseño inicial; se pueden apreciar que los resultados a primera vista muestran valores diferentes, pero esto se definirá mediante la prueba que se realizará según las hipótesis para comprobar si existe o no diferencias.

Pruebas de normalidad de los resultados de la resistencia a la compresión en función al tiempo de madurez.

Se quiere comprobar los supuestos de normalidad, se pueden aplicar distintos metodos, uno de ellos es Shapiro Wilk el cual se emplea si se tiene pequeñas muestras menores a 50 datos y la de Kolmogorov-Smirnov utilizada en casos de que la muestra sea mayor a 50 datos, para este proyecto contamos con una muestra menor a 50 datos, por ello optamos utilizar y aplicar los resultados que se obtienen de Shapiro Wilk, partiendo del siguiente plantemiento de hipótesis:

✓ Planteamiento de las hipótesis

Ho: Los datos provienen de una distribución normal

Ha: Los datos no provienen de una distribución normal

✓ Criterio para determinar la normalidad

Si p-valor de la prueba $< \alpha = 0.05$ entonces se rechaza la hipótesis nula Ho. Si p-valor de la prueba $\ge \alpha = 0.05$ entonces se acepta la hipótesis nula Ho.

Tabla 32Resultados de la prueba de normalidad de los ensayos a compresión por unidad a los días de rotura.

Pruebas de normalidad							
Días de Rotura Compre	esión	Kolmogórov-	Smir	nov	Shapiro-Wilk		
Unidad	-	Estadístico	gl	Sig.	Estadístico	gl	Sig.
	7	0.343	3		0.842	3	0.220
T0 patrón	14	0.264	3		0.955	3	0.591
	28	0.260	3		0.958	3	0.606
	7	0.384	3		0.752	3	0.051
T1- 4% Bagazo de caña+	14	0.335	3		0.858	3	0.263
3% de teja	28	0.195	3		0.996	3	0.882
	7	0.321	3		0.881	3	0.328
T2- 4% Bagazo de caña+	14	0.212	3		0.990	3	0.811
5% de teja	28	0.196	3		0.996	3	0.878
	7	0.186	3		.998	3	0.920
T3- 4% Bagazo de caña+	14	0.224	3		0.984	3	0.762
7% de teja	28	0.280	3	•	0.938	3	0.520
a. Corrección de significaci	ón de Li	lliefors					

• Corrección de la significación de Lilliefors

Se pueden apreciar los valores según la prueba de Shapiro – Wilk tanto del T0 (diseño patrón) y de los demás diseños elaborados los cuales presentan un valor superior de 0.05; aceptando de esta forma que la hipótesis nula determina que la distribución proveniente es normal, teniendo una distribución normal.

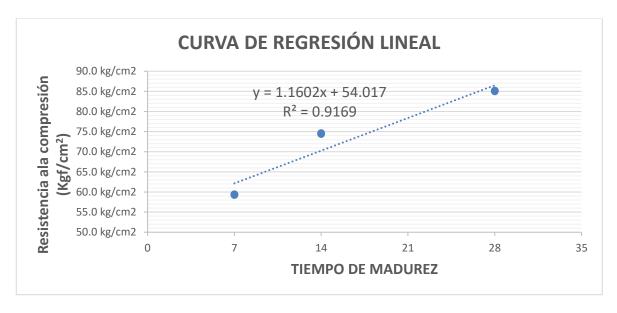
• Análisis de regresión lineal

Se procede a realizar un análisis de regresión para medir el nivel de correlación mediante una evaluación.

Tabla 33Valores de coeficiente "r"

Valor del coeficie	ente "r"	Significado
-0.9 -0.75	= =	Correlación negativa muy fuerte. Correlación negativa considerable.
-0.5	=	Correlación negativa media.
-0.25	=	Correlación negativa débil.
-0.1	=	Correlación negativa muy débil.
0	=	No existe correlación alguna entre las variables.
0.1	=	Correlación positiva muy débil.
0.25	=	Correlación positiva débil.
0.5	=	Correlación positiva media
0.75	=	Correlación positiva considerable.
0.9	=	Correlación positiva muy fuerte.
1	=	Correlación positiva perfecta

Fuente: Tomado de Hernández & otros, Metodología de la investigación, 2014, p 305


Tabla 34Valores para la regresión lineal relacionando las resistencias a la compresión por unidad del tratamiento T0 - patrón y tiempo de madurez.

Testigo	Tiempo de madurez	Resistencia a la compresión del patrón
Bloque 1	7	59.2 kg/cm ²
Bloque 2	7	59.3 kg/cm^2
Bloque 3	7	59.4 kg/cm^2
Bloque 1	14	74.4 kg/cm^2
Bloque 2	14	74.5 kg/cm^2
Bloque 3	14	74.6 kg/cm^2
Bloque 1	28	85.0 kg/cm^2
Bloque 2	28	85.1 kg/cm ²
Bloque 3	28	85.2 kg/cm ²

Figura 75.

Diagrama de dispersión de correlación de los resultados de la resistencia a la compresión por unidad del tratamiento T0 vs el tiempo de madurez.

Coeficiente de correlación r'' = 0.9575

Coeficiente de determinación " r^2 " = 0.9169

Coeficientes de regresión

Intersección con eje Y a = 54.017

Pendiente b= 1.1602

Ecuación de la recta de regresión Y= a + bX

$$Y = 54.017 + 1.1602X$$

En el gráfico de la figura 75 observamos que se presenta un valor de correlación de 0.9575 el cual nos demuestra que se presenta una correlación positiva muy fuerte entre los resultados de los tratamientos y el tiempo de endurecimiento.

Así como también el 91.69% del ensayo a compresión en 85.2 kgf/cm² del diseño

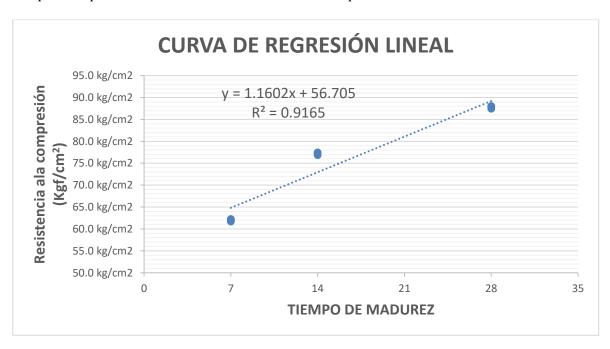

sin ningún tipo de adición, siendo de 0.0% de teja y 0.0% de bagazo de caña reciclada se debe al tiempo de curado de los bloques.

Tabla 35Valores para la regresión lineal relacionando las resistencias a la compresión por unidad del tratamiento T1 - 4% fibra de Bagazo de caña reciclada 3% de teja y tiempo de madurez.

Bloque	Tiempo de madurez	Resistencia a la compresión por und. al 4% Bagazo de caña 3% de teja.
Bloque 1	7	61.7 kg/cm ²
Bloque 2	7	62.1 kg/cm^2
Bloque 3	7	62.3 kg/cm^2
Bloque 1	14	76.8 kg/cm^2
Bloque 2	14	77.2 kg/cm^2
Bloque 3	14	77.5 kg/cm^2
Bloque 1	28	87.4 kg/cm^2
Bloque 2	28	87.8 kg/cm^2
Bloque 3	28	88.1 kg/cm ²

Figura 76.

Diagrama de dispersión de correlación de los resultados de la resistencia a la compresión por unidad del tratamiento T1 vs el tiempo de madurez.

Coeficiente de correlación

"r" = 0.9573

Coeficiente de determinación "r2" = 0. 9165

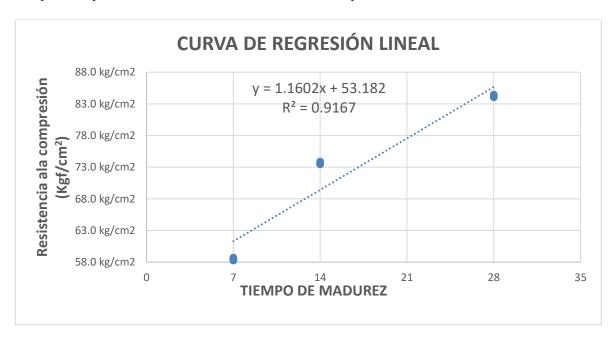
Intersección con eje Y a = 56.705

Pendiente b= 1.1602

Ecuación de la recta de regresión Y= a + bX

Y = 56.705 + 1.1602X

En el gráfico de la figura 76 observamos que se presenta un valor de correlación de 0.9573 el cual nos demuestra que se presenta una correlación positiva muy fuerte entre los resultados de los tratamientos T1 y el tiempo de endurecimiento. Así como también el 91.65% del ensayo a compresión en 88.10 Kgf/cm² del diseño con los porcentajes de adición, siendo de 3% de teja y 4% de bagazo de caña reciclada se debe al tiempo de curado de los bloques.


Tabla 36Valores para la regresión lineal relacionando las resistencias a la compresión por unidad del tratamiento T2 - 4% fibra de Bagazo de caña reciclada 5% de teja y tiempo de madurez.

Bloque	Tiempo de madurez	Resistencia a la compresión por und. al 4% Bagazo de caña 5% de teja
Bloque 1	7	58.7 kg/cm ²
Bloque 2	7	58.3 kg/cm ²
Bloque 3	7	58.5 kg/cm^2
Bloque 1	14	73.9 kg/cm^2
Bloque 2	14	73.4 kg/cm^2
Bloque 3	14	73.7 kg/cm^2
Bloque 1	28	84.5 kg/cm^2
Bloque 2	28	84.0 kg/cm^2
Bloque 3	28	84.3 kg/cm^2

Figura 77.

Diagrama de dispersión de correlación de los resultados de la resistencia a la compresión por unidad del tratamiento T2 vs el tiempo de madurez.

Coeficiente de correlación "r" = 0.9574

Coeficiente de determinación "r2" = 0.9167

Intersección con eje Y a = 53.182

Pendiente b= 1.1602

Ecuación de la recta de regresión Y= a + bX

Y = 53.182 + 1.1602X

En el gráfico de la figura 77 observamos que se presenta un valor de correlación de 0.9574 el cual nos demuestra que se presenta una correlación positiva muy fuerte entre los resultados de los tratamientos T2 y el tiempo de endurecimiento. Así como también el 91.67% del ensayo a compresión en 84.30

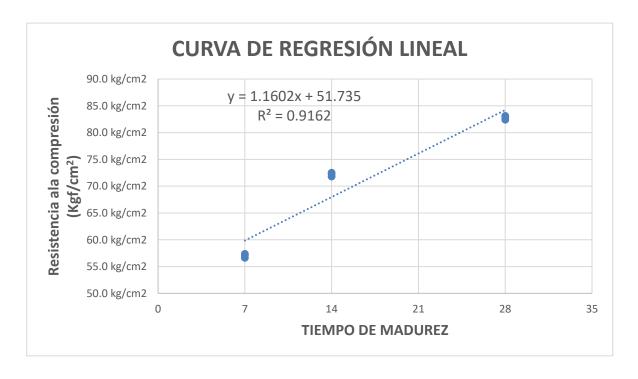

kgf/cm² del diseño con los porcentajes de adición, siendo de 5% de teja y 4% de bagazo de caña reciclada se debe al tiempo de curado de los bloques.

Tabla 37Valores para la regresión lineal relacionando las resistencias a la compresión por unidad del tratamiento T3 - 4% fibra de Bagazo de caña reciclada 7% de teja y tiempo de madurez.

Bloque	Tiempo de madurez	Resistencia a la compresión por und. al 4% Bagazo de caña 7% de teja
Bloque 1	7	57.4 kg/cm ²
Bloque 2	7	56.6 kg/cm^2
Bloque 3	7	57.1 kg/cm ²
Bloque 1	14	72.5 kg/cm^2
Bloque 2	14	71.8 kg/cm^2
Bloque 3	14	72.3 kg/cm^2
Bloque 1	28	83.1 kg/cm^2
Bloque 2	28	82.4 kg/cm^2
Bloque 3	28	82.9 kg/cm^2

Figura 78.

Diagrama de dispersión de correlación de los resultados de la resistencia a la compresión por unidad del tratamiento T3 vs el tiempo de madurez.

Coeficiente de correlación "r" = 0.9572

Coeficiente de determinación "r2" = 0.9162

Coeficientes de regresión

Intersección con eje Y a = 51.735

Pendiente b= 1.1602

Ecuación de la recta de regresión Y = a + bX

Y = 1.1602X + 51.735

En el gráfico de la figura 78 observamos que se presenta un valor de correlación de 0.9572 el cual nos demuestra que se presenta una correlación positiva muy fuerte entre los resultados de los tratamientos T3 y el tiempo de endurecimiento. Así como también el 91.62% del ensayo a compresión en 82.90 kgf/cm² del diseño con los porcentajes de adición, siendo de 7% de teja y 4% de bagazo de caña reciclada se debe al tiempo de curado de los bloques.

• Prueba de ANOVA

Se aplica con la finalidad de encontrar la diferencia entre la resistencias a la compresión de cada diseño según a la edad de 28 días de endurecimiento y curado, esto se determina según los siguientes planteamiento y criterios propuestos:

✓ Planteamiento de las hipótesis

Ho:
$$T0 = T1 = T2 = T3$$

Ha: $Ti \neq Tj$

✓ Criterio para determinar la prueba de ANOVA

Si p-valor de la prueba de ANOVA para determinar la igualdad viene siendo menor a α =0.05 entonces se puede rechazar el planteamiento de la hipótesis..

Si p-valor de la prueba de ANOVA para determinar la igualdad viene siendo mayor a α =0.05 entonces se puede aceptar el planteamiento de la hipótesis.

- ✓ Cálculos estadísticos de la prueba de ANOVA
 - 1. Factor de corrección (FC)

Fc= 73411.703

2. Suma de cuadrados (SC)

SC Total 1 = 1584.185

3. Suma cuadrado de tratamientos (SCT)

SCT= 1581.767

4. Suma de cuadrado error (SCE)

SCE= 2.418

5. Cálculo de cuadrados medios (CM)

Cuadrado medio de tratamientos (CMT)

CMT = 527.256

6. Cuadrado medio del error (CME)

CME = .302

7. F calculado (Fc)

Fc= 1744.628

Finalmente se obtiene la siguiente tabla :

Tabla 38Resultados de la prueba de ANOVA a los tratamientos T0, T1, T2 y T3 para los resultados de la resistencia a la compresión

	ANOVA de un factor								
Resistencia a la Compresión por Unidad									
	Suma de cuadrados	gl	Media cuadrática	F	Sig.				
Tratamientos	1581.767	3	527.256	1744.628	0.000				
Error	2.418	8	0.302						
Total	1584.185	11							

Como se observa el p-valor es menor que 0.05 (0.000 < 0.005), lo c<u>u</u>al nos permite dar un rechazo a la hipótesis que dábamos como nula HO el cual nos indica que los tratamientos presentados tienen una igualdad pero al aceptar la hipótesis alternativa nos dice que estos tratamientos presentan una diferencia, lo cual demuestra que estos datos se ven alterados por medio de las diferentes dosificaciones; mediante la realización de la prueba de DUNCAN O T modificado se procederá a verificar cual de todos los tratamientos presentan un parecido entre si mismas o cual de todos no es efectivo ya que se aprecia una diferencia significativa entre todas las muestras presentadas.

Tabla 39Tabla de valores DUNCAN para las resistencias medias a la compresión de los Tratamientos

Resistencia a la Compresión por Unidad								
	Duncan a							
Tratamientos	N -	S	ubconjunto p	ara alfa = 0.0	5			
Tratamientos	11 -	1	2	3	4			
T3- 4% Bagazo de caña+ 7% de teja	3	82.81						
T2-4% Bagazo de caña+ 5% de teja	3		84.26					
Patrón	3			85.09				
T1-4% Bagazo de caña+3% de teja	3				87.78			
Sig.		1.000	1.000	1.000	1.000			
Se visualizan las medias	Se visualizan las medias para los grupos en los subconjuntos homogéneos.							
a Utiliza el tamaño	a Utiliza el tamaño de la muestra de la media armónica = 3,000.							

Según los datos expresados obtenidos de la prueba de DUNCAN se aprecia en los resultados que para el T1 el cual contiene adición de 3% de teja y 4% fibra de bagazo de caña reciclada, es el que mejor resultado presentó en cuanto a todos los tratamientos elaborados el cual destacó más en el ensayo a la resistencia mediante la compresión de los elementos; presentando además como evidencia que existe una diferencia entre cada tratamiento de manera significativa T0, T1, T2 o T3.

3.3 Del objetivo específico 3

Demostrar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima -2022.

En segundo lugar, se desarrolla la prueba estándar para la resistencia a la compresión por pila de albañilería a los 7, 14 y 28 días de elaborado el bloque de concreto de diseño de mezcla f´c=90 kg/cm² con adición de teja y fibra de bagazo de caña reciclada mostrado en las tablas 50, 52 y 54.

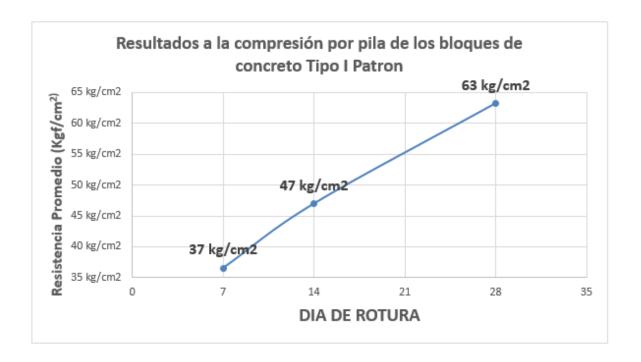
Según NTP 339.604 (2015) se procedió con el ensayo correspondiente de compresión al someter el elemento a una carga axial hasta conseguir la falla del mismo. El resultado de este ensayo se obtuvo calculando la división de la carga máxima entre el área transversal de toda la sección del elemento, estos datos utilizados se encuentran determinados según su tamaño, dosificación exacta de acuerdo al diseño, forma, temperatura, proceso de elaboración adecuada, condiciones de curado correctamente controlados según su edad correspondiente, y moldeo correcto.

Comportamiento de la resistencia a la compresión por pila de un concreto f´c=90 kg/cm² del tratamiento control.

En las tablas 40 y 41 se detallan los resultados obtenidos de la prueba de resistencia a la compresión por pila.

Tabla 40Resumen de promedios de la resistencia a la compresión por pilas del tratamiento control a los días de rotura

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO F'm	% f'c
PATRÓN	7	5820	200.0	36 kg/cm ²	40.4%
PATRÓN	7	5835	200.0	36 kg/cm^2	40.5%
PATRÓN	7	5863	200.0	37 kg/cm ²	40.7%
PATRÓN	14	7480	200.0	47 kg/cm ²	52.0%
PATRÓN	14	7505	200.0	47 kg/cm^2	52.1%
PATRÓN	14	7543	200.0	47 kg/cm ²	52.4%
PATRÓN	28	10080	200.0	63 kg/cm ²	70.0%
PATRÓN	28	10105	200.0	63 kg/cm ²	70.2%
PATRÓN	28	10143	200.0	63 kg/cm ²	70.5%


Tabla 41Resumen de promedios de % de resistencia a la compresión por pila en función al $f'c=90kg/cm^2$ y resistencia mínima esperada de patrón.

RESISTENCIA A LA COMPRESIÓN POR PILA NTP 399.605								
IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO F'm	% f'c			
PATRÓN	7	5839.3	200.0	37 kg/cm ²	40.57%			
PATRÓN	14	7509.3	200.0	47 kg/cm ²	52.17%			
PATRÓN	28	10109.3	200.0	63 kg/cm ²	70.24%			

Figura 79.

Grafica lineal de la resistencia a la compresión por pila del tratamiento T0 – tratamiento control.

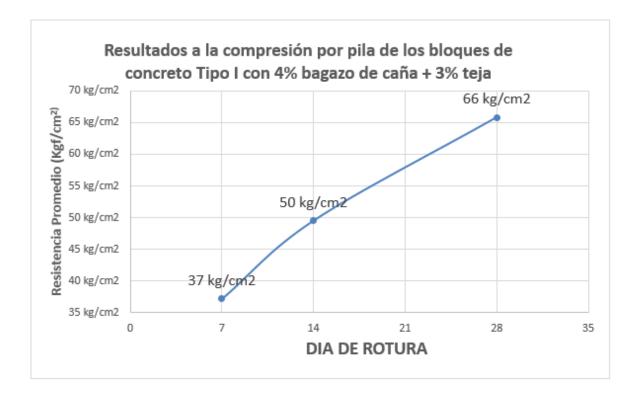
En la gráfica indicada de la figura 79, podemos observar cómo se genera el comportamiento de un elemento de concreto al ser sometido a una carga para determinar su resistencia siendo este por pilas, una muestra natural sin adición de teja y fibra de bagazo de caña reciclada, presentando valores superiores a los estimados según a la edad de resistencia al que pertenecen así como se muestra en la tabla 40, los cuales se interpretan de tal forma que presentan un valor creciente a la resistencia final de acuerdo a los 28 días alcanzando un valor de 63 kg/cm².

Comportamiento de la resistencia a la compresión por pila de un concreto f´c=90 kg/cm² con la adición de teja y bagazo de caña reciclada en proporciones de 3% y 4% del peso del cemento. En las tablas 42 y 43 se detallan los resultados obtenidos de la prueba de resistencia a la compresión por pila.

Tabla 42Resumen de promedios de porcentajes de adición del 3 % de teja y 4% bagazo de caña reciclada

RESISTENCIA A LA COMPRESIÓN POR PILAS NTP 399.605

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO F'm	% f'c
4% B. de caña 3% de teja	7	5920	200.0	37 kg/cm^2	41.1%
4% B. de caña 3% de teja	7	5944	200.0	37 kg/cm ²	41.3%
4% B. de caña 3% de teja	7	5997	200.0	37 kg/cm^2	41.7%
4% B. de caña 3% de teja	14	7880	200.0	49 kg/cm ²	54.7%
4% B. de caña 3% de teja	14	7914	200.0	49 kg/cm^2	55.0%
4% B. de caña 3% de teja	14	7977	200.0	50 kg/cm^2	55.4%
4% B. de caña 3% de teja	28	10480	200.0	66 kg/cm^2	72.8%
4% B. de caña 3% de teja	28	10514	200.0	66 kg/cm^2	73.0%
4% B. de caña 3% de teja	28	10577	200.0	66 kg/cm ²	73.5%


Tabla 43Resumen de promedios de % de resistencia a la compresión por pila en función al $f'c=90kg/cm^2$ y resistencia mínima esperada del T1-4 % y 3%.

RESISTENCIA A LA COMPRESIÓN POR PILAS NTP 399.605								
IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO F'm	% f'c			
4% B. de caña 3% de teja	7	5953.7	200.0	37 kg/cm^2	41.36%			
4% B. de caña 3% de teja	14	7923.7	200.0	50 kg/cm^2	55.05%			
4% B. de caña 3% de teja	28	10523.7	200.0	66 kg/cm ²	73.12%			

Figura 80.

Grafica lineal de la resistencia a la compresión por pila con adición del 3 % de teja y 4% bagazo de caña reciclada en función a los días de rotura

En la gráfica indicada de la figura 80, podemos observar cómo se genera el comportamiento de un elemento de concreto al ser sometido a una carga para determinar su resistencia siendo este por pilas para el T1, una muestra natural con adición de 3% teja y 4% fibra de bagazo de caña reciclada, presentando valores superiores a los estimados según a la edad de resistencia al que pertenecen así como se muestra en la tabla 42, los cuales se interpretan de tal forma que presentan un valor creciente a la resistencia final de acuerdo a los 28 días alcanzando un valor de 66 kg/cm².

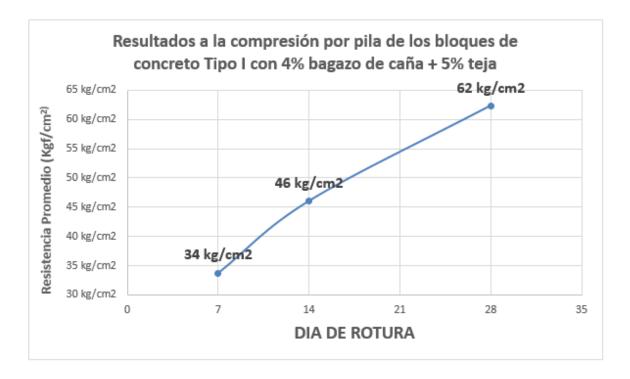
Comportamiento de la resistencia a la compresión por pila de un concreto f´c=90 kg/cm² con adición de teja y bagazo de caña reciclada en proporciones de 5% y 4% del peso del cemento. En las tablas 44 y 45 se detallan los resultados obtenidos de la prueba de resistencia a la compresión por pila.

Tabla 44Resumen de promedios de porcentajes de adición del 5 % de teja y 4% bagazo de caña reciclada

RESISTENCIA A LA COMPRESIÓN POR PILA NTP 399.605

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO F'm	% F'c
4% B. de caña 5% de teja	7	5371	200.0	34 kg/cm ²	37.3%
4% B. de caña 5% de teja	7	5395	200.0	34 kg/cm ²	37.5%
4% B. de caña 5% de teja	7	5410	200.0	34 kg/cm ²	37.6%
4% B. de caña 5% de teja	14	7331	200.0	46 kg/cm ²	50.9%
4% B. de caña 5% de teja	14	7365	200.0	46 kg/cm ²	51.2%
4% B. de caña 5% de teja	14	7390	200.0	46 kg/cm ²	51.3%
4% B. de caña 5% de teja	28	9931	200.0	62 kg/cm ²	69.0%
4% B. de caña 5% de teja	28	9965	200.0	62 kg/cm ²	69.2%
4% B. de caña 5% de teja	28	9990	200.0	62 kg/cm ²	69.4%

Tabla 45Resumen de promedios de % de resistencia a la compresión por pila en función al $f'c=90kg/cm^2$ y resistencia mínima esperada del T1-4 % y 5%.


RESISTENCIA A LA COMPRESIÓN POR PILA NTP 399.605

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO F'm	% f'c
4% B. de caña 5% de teja	7	5392.0	200.0	34 kg/cm ²	37.46%
4% B. de caña 5% de teja	14	7362.0	200.0	46 kg/cm^2	51.15%
4% B. de caña 5% de teja	28	9962.0	200.0	62 kg/cm ²	69.21%

Figura 81.

Grafica lineal de la resistencia a la compresión por pila con adición del 5 % de teja y 4% bagazo de caña reciclada en función a los días de rotura.

En la gráfica indicada de la figura 81, podemos observar cómo se genera el comportamiento de un elemento de concreto al ser sometido a una carga para determinar su resistencia siendo este por pilas para el T2, una muestra natural con adición de 5% teja y 4% fibra de bagazo de caña reciclada, presentando valores mínimos a los estimados según a la edad de resistencia al que pertenecen así como se muestra en la tabla 44, los cuales se interpretan de tal forma que presentan un valor creciente a la resistencia final de acuerdo a los 28 días alcanzando un valor de 62 kg/cm².

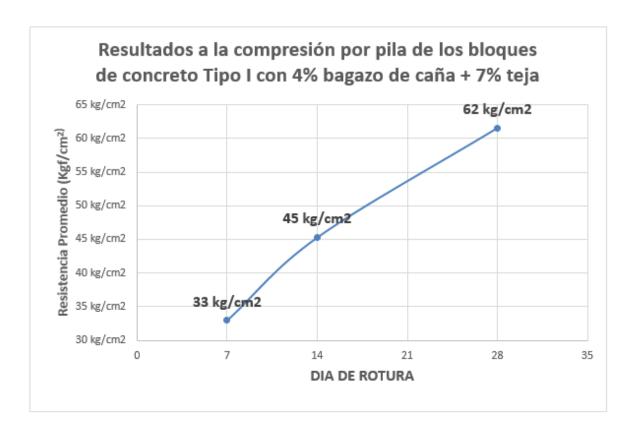
Comportamiento de la resistencia a la compresión por pila de un concreto f´c=90 kg/cm² con adición de teja y bagazo de caña reciclada en proporciones de 7% y 4% del peso del cemento. En las tablas 46 y 47 se detallan los resultados obtenidos de la prueba de resistencia a la compresión por pila.

Tabla 46Resumen de promedios de porcentajes de adición del 7 % de teja y 4% bagazo de caña reciclada

RESISTENCIA A LA COMPRESIÓN POR PILA NTP 399.605

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO F'm	% f'c
4% B. de caña 7% de teja	7	5255	200.0	33 kg/cm ²	36.5%
4% B. de caña 7% de teja	7	5278	200.0	33 kg/cm^2	36.7%
4% B. de caña 7% de teja	7	5293	200.0	33 kg/cm^2	36.8%
4% B. de caña 7% de teja	14	7215	200.0	45 kg/cm^2	50.1%
4% B. de caña 7% de teja	14	7248	200.0	45 kg/cm^2	50.4%
4% B. de caña 7% de teja	14	7273	200.0	45 kg/cm^2	50.5%
4% B. de caña 7% de teja	28	9815	200.0	61 kg/cm ²	68.2%
4% B. de caña 7% de teja	28	9848	200.0	62 kg/cm^2	68.4%
4% B. de caña 7% de teja	28	9873	200.0	62 kg/cm ²	68.6%

Tabla 47Resumen de promedios de % de resistencia a la compresión por pila en función al $f'c=90kg/cm^2$ y resistencia mínima esperada del T1-4 % y 7%.


RESISTENCIA A LA COMPRESIÓN POR PILA NTP 399.605

IDENTIFICACIÓN	EDAD (días)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm²)	ESFUERZO F'm	% F'c
4% B. de caña 7% de teja	7	5275.3	200.0	33 kg/cm ²	36.65%
4% B. de caña 7% de teja	14	7245.3	200.0	45 kg/cm ²	50.34%
4% B. de caña 7% de teja	28	9845.3	200.0	62 kg/cm ²	68.40%

Figura 82.

Grafica lineal de la resistencia a la compresión por pila con adición del 7 % de teja y 4% bagazo de caña reciclada en función a los días de rotura.

En la gráfica indicada de la figura 82, podemos observar cómo se genera el comportamiento de un elemento de concreto al ser sometido a una carga para determinar su resistencia siendo este por pilas para el T3, una muestra natural con adición de 7% teja y 4% fibra de bagazo de caña reciclada, presentando valores mínimos a los estimados según a la edad de resistencia al que pertenecen así como se muestra en la tabla 46, los cuales se interpretan de tal forma que presentan un valor creciente a la resistencia final de acuerdo a los 28 días alcanzando un valor de 62 kg/cm².

En la tabla 48 se detallan el resumen de los resultados promedios obtenidos de la prueba de resistencia a la compresión por unidad a los 28 días de secado.

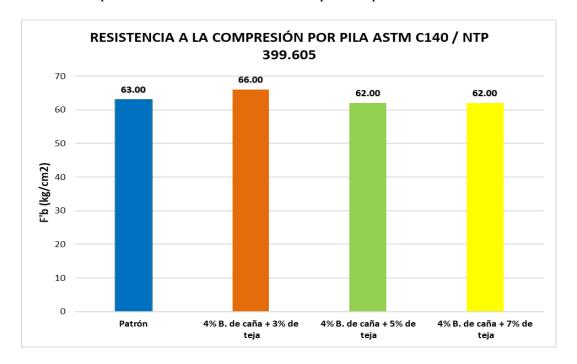


Tabla 48Resumen de promedios de % de resistencia a la compresión por Pila

	,	
RECICTENCIA	LA COMPRESIÓN POR PILA ASTM C140 / 1	NTP 300 605
KESIS LENUTA	A COMPRESION POR PILA ASTM C.1407	N I P . 199.

IDENTIFICACIÓN	EDAD (días)	LARGO (mm)	ANCHO (mm)	ALTURA (mm)	FUERZA MAX. (Kg)	ESFUERZO F'm (kg/cm²)
Patrón	28	200	100	300	10109.30	63.00
4% B. de caña 3% de teja	28	200	100	300	10523.70	66.00
4% B. de caña 5% de teja	28	200	100	300	9962.00	62.00
4% B. de caña 7% de teja	28	200	100	300	9845.30	62.00

Figura 83.Resumen de promedios de resistencia a la compresión por Pila.

En la figura 83, se observa el comportamiento en el ensayo de resistencia a la compresión por Pila a los 28 días de secado, de los resultados obtenidos, el único superior al diseño patrón es el diseño con 4% de bagazo de caña + 3% de teja con 66.00 kg/cm², también se puede observar que a mayor adición de bagazo de caña y polvo de teja la resistencia a la compresión por Pila disminuye.

Análisis inferencial del específico 3

Demostrar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima -2022.

Hipótesis Específica 3

La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima -2022.

• Planteamiento de la prueba de hipótesis general:

- ✓ Hipótesis nula (H0): La adición de fibra de bagazo de caña al 4% y de teja reciclada al 3%, 5% y 7% no mejorará significativamente la resistencia a la compresión por pila, Lima 2022.
- ✓ Hipótesis alterna (Ha): La adición de fibra de bagazo de caña al 4% y de teja reciclada al 3%, 5% y 7% mejorará significativamente la resistencia a la compresión por pila, Lima 2022.

Para realizar la prueba de los análisis de las hipótesis, se inicia analizandolos resultados descriptivamente obtenidos de la compresión según la edad de 7, 14 y 28 días de curado en el especimen endurecido, a los cuales se le realizará posteriormente las pruebas de homogenización y normalidad. Se define su nivel a un α =0.05 de significancia, el cual hace referencia al valor del margen de error que se asume en los resultados obtenidos de las pruebas.

Continuando con los análisis correspondientes de las hipótesis, se inicia con el análisis a los resultados de resistencia a la compresión de forma descriptiva según la edad de 7, 14 y 28 días de curado por cada diseño elaborado, verificamos que la relación exista siendo esta de manera positiva o negativa según el tiempo que

transcurre hasta el ensayo final, realizando un ensayo de regresión lineal teniendo como relación los datos de la compresión y las edades de curado, esto con la finalidad de encontrar un resultado en el análisis de sus características.

Se llevó a cabo la realización de la prueba conocida como ANOVA la cual nos permitirá realizar una comparación de todos los diseños elaborados y poder determinar si estos tienen alguna comparación o diferencia significativa según sus diseños, finalmente se pretende encontrar el diseño más factible.

Análisis descriptivo de los ensayos a compresión en función al tiempo de madurez

Tabla 49 *Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por pila a los 7 días de madurez*

	10	Descripción	Recuento	Media	Mediana	Máx.	Mín.	Desv. estándar
DE	MIENTO	T0 - Patrón	3.00	36.51	36.49	36.66	36.39	0.14
	$\mathbf{T}_{\mathbf{A}}$	T1- 4% Bagazo de caña+ 3% de teja	3.00	37.23	37.17	37.50	37.02	0.25
	TRA	T2- 4% Bagazo de caña+ 5% de teja	3.00	33.72	33.73	33.83	33.58	0.12
		T3-4% Bagazo de caña+7% de teja	3.00	32.99	33.00	33.10	32.86	0.12

Resistencia de concreto a la compresión por pila a los 7 días

Tabla 50Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por pila a los 14 días de madurez

Desv. Descripción Recuento Media Mediana Máx. Mín. **TRATAMIENTO** estándar TIPO DE T0 - Patrón 3.00 46.96 46.93 47.17 0.20 46.77 T1-4% Bagazo de caña+3% de teja 3.00 49.55 49.49 49.88 49.27 0.31 46.03 45.84 0.19 T2-4% Bagazo de caña+5% de teja 3.00 46.05 46.21 T3-4% Bagazo de caña+7% de teja 3.00 45.30 45.32 45.48 45.12 0.18

Resistencia de concreto a la compresión por pila a los 14 días

Tabla 51 *Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por pila a los 28 días de madurez*

	Resistencia de concreto a la compresión por pila a los 28 días							
	0	Descripción	Recuento	Media	Mediana	Máx.	Mín.	Desv. estándar
DE	IIENTO	T0 - Patrón	3.00	63.21	63.19	63.42	63.03	0.20
TIPO DE	TAM	T1-4% Bagazo de caña+3% de teja	3.00	65.80	65.74	66.14	65.53	0.31
	TRA	T2- 4% Bagazo de caña+ 5% de teja	3.00	62.29	62.31	62.47	62.10	0.19
		T3- 4% Bagazo de caña+ 7% de teja	3.00	61.56	61.58	61.74	61.37	0.18

Según los resultados obtenidos del análisis descriptivo se aprecia que el diseño T1 a los 7, 14 y 28 días es el único superior al tratamiento patrón, la forma de los tratamientos T2 y T3 a los 7, 14 y 28 días de madurez son inferiores al tratamiento del diseño inicial; se pueden apreciar que los resultados a primera vista muestran valores diferentes, pero esto se definirá mediante la prueba que se realizará según las hipótesis para comprobar si existe o no diferencias.

 Pruebas de normalidad de los resultados de la resistencia a la compresión por pila en función al tiempo de madurez.

Se quiere comprobar los supuestos de normalidad, se pueden aplicar distintos métodos, uno de ellos es Shapiro Wilk el cual se emplea si se tiene pequeñas muestras menores a 50 datos y la de Kolmogorov-Smirnov utilizada en casos de que la muestra sea mayor a 50 datos, para este proyecto contamos con una muestra menor a 50 datos, por ello optamos utilizar y aplicar los resultados que se obtienen de Shapiro Wilk, partiendo del siguiente plantemiento de hipótesis:

Planteamiento de las hipótesis

Ho: Los datos provienen de una distribución normal

Ha: Los datos no provienen de una distribución normal

✓ Criterio para determinar la normalidad

Si p-valor de la prueba $< \alpha = 0.05$ entonces se rechaza la hipótesis nula Ho. Si p-valor de la prueba $\ge \alpha = 0.05$ entonces se acepta la hipótesis nula Ho.

Tabla 52Resultados de la prueba de normalidad de los ensayos a compresión por pila a los días de rotura

• Corrección de la significación de Lilliefors

Se pueden apreciar los valores según la prueba de Shapiro – Wilk tanto del T0 (diseño patrón) y de los demás diseños elaborados los cuales presentan un valor superior de 0.05; aceptando de esta forma que la hipótesis nula determina que la distribución proveniente es normal, teniendo una distribución normal.

		Pruebas de no	rmalida	ıd			
		Kolmogórov-Smirnov			Shapiro-Wilk		
Dias de Rotura Compresion P	Días de Rotura Compresión Pilas		gl	Sig.	Estadístico	gl	Sig.
	7	0.272	3		0.946	3	0.554
T0 patrón	14	0.357	3		0.815	3	0.151
	28	0.357	3		0.815	3	0.151
	7	0.326	3		0.874	3	0.307
T1- 4% Bagazo de caña+ 3% de teja	14	0.177	3		1.000	3	0.967
Ю	28	0.177	3		1.000	3	0.967
	7	0.195	3		0.996	3	0.882
T2- 4% Bagazo de caña+ 5% de teja	14	0.346	3		0.837	3	0.206
Юја	28	0.346	3		0.837	3	0.206
	7	0.312	3		0.896	3	0.372
T3- 4% Bagazo de caña+ 7% de	14	0.243	3		0.973	3	0.682
teja	28	0.243	3		0.973	3	0.682
a. Corrección de significación de L	illiefor	S					

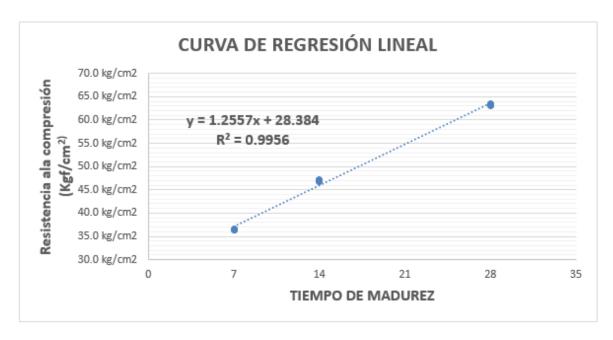
• Análisis de regresión lineal

Procedemos a un análisis de regresiones para evaluar el nivel de correlación de resultados obtenidos.

Tabla 53Valores de coeficiente "r"

Valor del coeficiente "r"		Significado	
-0.9 -0.75	= =	Correlación negativa muy fuerte. Correlación negativa considerable.	
-0.5	=	Correlación negativa media.	
-0.25	=	Correlación negativa débil.	
-0.1	=	Correlación negativa muy débil.	
0	=	No existe correlación alguna entre las variable	
0.1	=	Correlación positiva muy débil.	
0.25	=	Correlación positiva débil.	
0.5	=	Correlación positiva media	
0.75	=	Correlación positiva considerable.	
0.9	=	Correlación positiva muy fuerte.	
1	=	Correlación positiva perfecta	

Fuente: Tomado de Hernández & otros, Metodología de la investigación, 2014, p 305


Tabla 54Valores para la regresión lineal relacionando las resistencias a la compresión por pila del tratamiento T0 - patrón y tiempo de madurez.

Pila	Tiempo de madurez	Resistencia a la compresión de pila - Patrón
Pila 1	7	36.4 kg/cm ²
Pila 2	7	36.5 kg/cm^2
Pila 3	7	36.7 kg/cm^2
Pila 1	14	46.8 kg/cm^2
Pila 2	14	46.9 kg/cm^2
Pila 3	14	47.2 kg/cm^2
Pila 1	28	63.0 kg/cm^2
Pila 2	28	63.2 kg/cm^2
Pila 3	28	63.4 kg/cm ²

Figura 84.

Diagrama de dispersión de correlación de los resultados de la resistencia a la compresión por pila del tratamiento T0 vs el tiempo de madurez.

Coeficiente de correlación "r" = 0.9978

Coeficiente de determinación " r^2 " = 0.9956

Coeficientes de regresión

Intersección con eje Y a = 28.384

Pendiente b= 1.2557

Ecuación de la recta de regresión Y= a + bX

$$Y = 28.384 + 1.2557X$$

En el gráfico de la figura 84 observamos que se presenta un valor de correlación de 0.9578 el cual nos demuestra que se presenta una correlación positiva muy fuerte entre los resultados de los tratamientos y el tiempo de endurecimiento.

Así como también el 99.56% del ensayo a compresión en pilas en 63.40 Kgf/cm² del

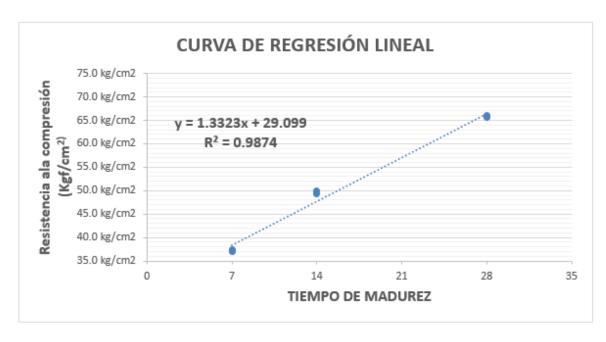

diseño sin ningún tipo de adición, siendo de 0.0% de teja y 0.0% de bagazo de caña reciclada se debe al tiempo de curado de los bloques.

Tabla 55Valores para la regresión lineal relacionando las resistencias a la compresión por pila del tratamiento T1 - adición de 3% de teja y 4% de bagazo de caña reciclada.

Pila	Tiempo de madurez	Resistencia a la compresión por pila al 4% Bagazo de caña 3% de teja.
Pila 1	7	37.0 kg/cm ²
Pila 2	7	37.2 kg/cm^2
Pila 3	7	37.5 kg/cm^2
Pila 1	14	49.3 kg/cm^2
Pila 2	14	49.5 kg/cm^2
Pila 3	14	49.9 kg/cm^2
Pila 1	28	65.5 kg/cm^2
Pila 2	28	65.7 kg/cm^2
Pila 3	28	66.1 kg/cm ²

Figura 85.

Diagrama de dispersión de correlación de los resultados de la resistencia a la compresión por pila del tratamiento T1 vs el tiempo de madurez.

Coeficiente de correlación r'' = 0.9937

Coeficiente de determinación "r2" = 0.9874

Coeficientes de regresión

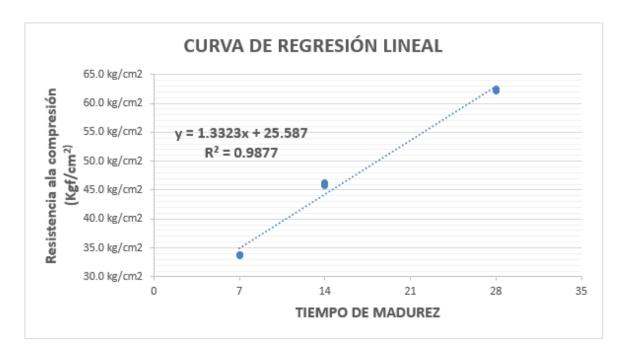
Intersección con eje Y a = 29.099

Pendiente b= 1.3323

Ecuación de la recta de regresión Y = a + bX

$$Y = 29.099 + 1.3323X$$

En el gráfico de la figura 85 observamos que se presenta un valor de correlación de 0.9937 el cual nos demuestra que se presenta una correlación positiva muy fuerte entre los resultados de los tratamientos y el tiempo de endurecimiento del T1. Así como también el 98.74% del ensayo a compresión en pilas en 66.10 kgf/cm² del diseño adicionando los porcentajes de 3% de teja y 4% de bagazo de caña reciclada se debe al tiempo de curado de los bloques.


Tabla 56Valores para la regresión lineal relacionando las resistencias a la compresión por pila del tratamiento T2 - adición de 5% de teja y 4% de bagazo de caña reciclada.

Testigo	Tiempo de madurez	Resistencia a la compresión por pila al 4% Bagazo de caña 5% de teja.
Pila 1	7	33.6 kg/cm^2
Pila 2	7	33.7 kg/cm^2
Pila 3	7	33.8 kg/cm^2
Pila 1	14	45.8 kg/cm^2
Pila 2	14	46.1 kg/cm^2
Pila 3	14	46.2 kg/cm^2
Pila 1	28	62.1 kg/cm^2
Pila 2	28	62.3 kg/cm^2
Pila 3	28	62.5 kg/cm ²

Figura 86.

Diagrama de dispersión de correlación de los resultados de la resistencia a la compresión por pila del tratamiento T2 vs el tiempo de madurez.

Coeficiente de correlación r'' = 0.9938

Coeficiente de determinación "r2" = 0.9877

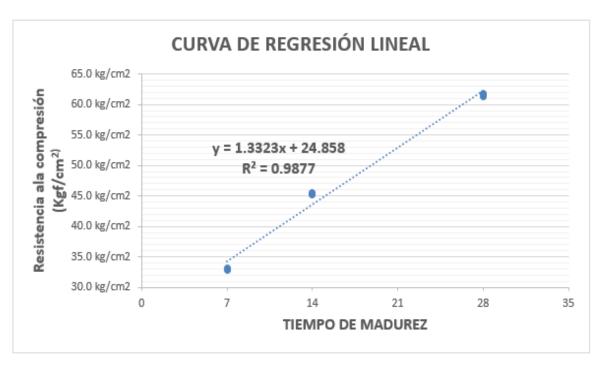
Intersección con eje Y a = 25.587

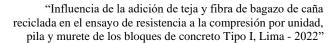
Pendiente b= 1.3323

Ecuación de la recta de regresión Y= a + bX

Y = 25.587 + 1.3323X

En el gráfico de la figura 86 observamos que se presenta un valor de correlación de 0.9938 el cual nos demuestra que se presenta una correlación positiva muy fuerte entre los resultados de los tratamientos y el tiempo de endurecimiento del T2. Así como también el 98.77% del ensayo a compresión en pilas en 62.50 kgf/cm² del diseño adicionando los porcentajes de 5% de de teja y 4% de bagazo de caña reciclada se debe al tiempo de curado de los bloques.




Tabla 57Valores para la regresión lineal relacionando las resistencias a la compresión por pila del tratamiento T3 - adición de 7% de teja y 4% de bagazo de caña reciclada

Testigo	Tiempo de madurez	Resistencia a la compresión por pila al 4% Bagazo de caña 7% de teja.
Pila 1	7	32.9 kg/cm ²
Pila 2	7	33.0 kg/cm^2
Pila 3	7	33.1 kg/cm^2
Pila 1	14	45.1 kg/cm^2
Pila 2	14	45.3 kg/cm^2
Pila 3	14	45.5 kg/cm^2
Pila 1	28	61.4 kg/cm^2
Pila 2	28	61.6 kg/cm^2
Pila 3	28	61.7 kg/cm ²

Figura 87.

Diagrama de dispersión de correlación de los resultados de la resistencia a la compresión por pila del tratamiento T3 vs el tiempo de madurez.

Coeficiente de correlación r'' = 0.9938

Coeficiente de determinación "r2" = 0.9877

Coeficientes de regresión

Intersección con eje Y a = 24.858

Pendiente b= 1.3323

Ecuación de la recta de regresión Y = a + bX

Y = 1.3323X + 24.858

En el gráfico de la figura 87 observamos que se presenta un valor de correlación de 0.9938 el cual nos demuestra que se presenta una correlación positiva muy fuerte entre los resultados de los tratamientos y el tiempo de endurecimiento del T3. Así como también el 98.77% del ensayo a compresión en pilas en 61.7 kgf/cm² del diseño adicionando los porcentajes de 7% de de teja y 4% de bagazo de caña reciclada se debe al tiempo de curado de los bloques.

• Prueba de ANOVA

Se aplica con la finalidad de encontrar la diferencia entre la resistencias a la compresión de cada diseño según a la edad de 28 días de endurecimiento y curado, esto se determina según los siguientes planteamiento y criterios propuestos:

✓ Planteamiento de las hipótesis

Ho: T0 = T1 = T2 = T3

Ha: $Ti \neq Tj$

✓ Criterio para determinar la prueba de ANOVA

Si p-valor de la prueba de ANOVA para determinar la igualdad viene siendo menor a α =0.05 entonces se puede rechazar el planteamiento de la hipótesis.

Si p-valor Si p-valor de la prueba de ANOVA para determinar la igualdad viene siendo mayor a α =0.05 entonces se puede aceptar el planteamiento de la hipótesis.

✓ Cálculos estadísticos de la prueba de ANOVA

1. Factor de corrección (FC)

2. Suma de cuadrados (SC)

SC Total
$$1 = 604.443$$

3. Suma cuadrado de tratamientos (SCT)

$$SCT = 602.822$$

4. Suma de cuadrado error (SCE)

$$SCE = 1.621$$

5. Cálculo de cuadrados medios (CM)

Cuadrado medio de tratamientos (CMT)

$$CMT = 200.941$$

6. Cuadrado medio del error (CME)

$$CME = 0.203$$

7. F calculado (Fc)

$$Fc = 991.524$$

Finalmente se obtiene la siguiente tabla :

Tabla 58Resultados de la prueba de ANOVA a los tratamientos T0, T1, T2 y T3 para los resultados de la resistencia a la compresión por pila.

	ANOVA de un factor								
Resi	Resistencia a la Compresión por Pilas								
	Suma de		Media						
	cuadrados	gl	cuadrática	F	Sig.				
Tratamientos	602.822	3	200.941	991.524	.000				
Error	1.621	8	0.203						
Total	604.443	11							

Como se observa el p-valor es menor que 0.05 (0.000 < 0.005), lo cual nos permite dar un rechazo a la hipótesis que dábamos como nula HO el cual nos indica que los tratamientos presentados tienen una igualdad pero al aceptar la hipótesis alternativa nos dice que estos tratamientos presentan una diferencia, lo cual demuestra que estos datos se ven alterados por medio de las diferentes dosificaciones; mediante la realización de la prueba de DUNCAN O T modificado se procederá a verificar cual de todos los tratamientos presentan un parecido entre si mismas o cual de todos no es efectivo ya que se aprecia una diferencia significativa entre todas las muestras presentadas.

Tabla 59Tabla de valores DUNCAN para las resistencias medias a la compresión por pila de los Tratamientos

Resiste	Resistencia a la Compresión por Pilas							
	Duncan a							
Tratamientos	N -	Su	bconjunto p	ara alfa = 0.	.05			
1 ratannentos	Ν -	1	2	3	4			
T3- 4% Bagazo de caña+ 7% de teja	3	61.56						
T2- 4% Bagazo de caña+ 5% de teja	3		62.29					
Patrón	3			63.21				
T1- 4% Bagazo de caña+ 3% de teja	3				65.80			
Sig.		1.000	1.000	1.000	1.000			
Se visualizan las medias para los grupos en los subconjuntos homogéneos.								
a Utiliza el tamaño de la muestra de la media armónica = 3.000.								

Según los datos expresados obtenidos de la prueba de DUNCAN se aprecia en los resultados que para el T1 el cual contiene adición de 3% de teja y 4% fibra de bagazo de caña reciclada, es el que mejor resultado presentó en cuanto a todos los tratamientos elaborados el cual destacó más en el ensayo a la resistencia mediante la compresión de los elementos por pila; presentando además como evidencia que existe una diferencia entre cada tratamiento de manera significativa T0, T1, T2 o T3.

3.4 Del objetivo específico 4

Analizar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima -2022.

Se desarrolla la prueba estándar para la resistencia a la compresión de murete de albañilería a los 28 días de elaborado el bloque de concreto de diseño de mezcla f'c=90 kg/cm² con adición de polvillo de teja reciclada y fibra de bagazo de caña reciclada mostrado en la tabla 70.

Según NTP 339.604 (2015) se procedió con el ensayo correspondiente de compresión al someter el elemento a una carga axial hasta conseguir la falla del mismo. El resultado de este ensayo se obtuvo calculando la división de la carga máxima entre el área transversal de toda la sección del elemento, estos datos utilizados se encuentran determinados según su tamaño, dosificación exacta de acuerdo al diseño, forma, temperatura, proceso de elaboración adecuada, condiciones de curado correctamente controlados según su edad correspondiente, y moldeo correcto.

Comportamiento de la resistencia a la compresión de un concreto f´c=90 kg/cm² del tratamiento control.

En las tablas 60 y 61 se detallan los resultados obtenidos de la prueba de resistencia a la compresión por murete.

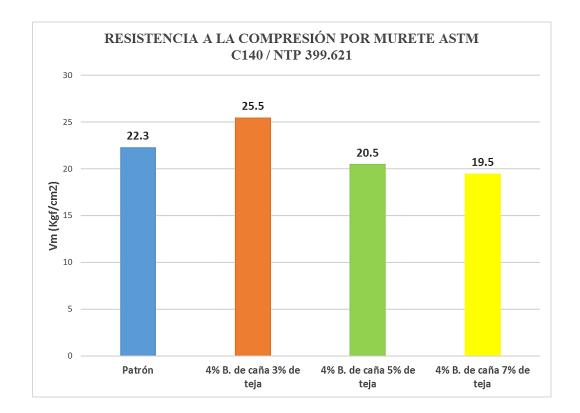
Tabla 60

Resumen de promedios de la resistencia a la compresión por murete del tratamiento control a los días de rotura

RESISTENCIA A LA COMPRESIÓN POR MURETE ASTM C140 / NTP 399.621

IDENTIFICACIÓN	EDAD (días)	LARGO (mm)	ANCHO (mm)	ESPESOR (mm)	CARGA MAX. (kgf)	Vm (kgf/cm²)
Patrón	28	500	500	100	15650	22.10
Patrón	28	500	500	100	15741	22.30
Patrón	28	500	500	100	15932	22.50
4% B. de caña 3% de teja	28	500	500	100	17858	25.30
4% B. de caña 3% de teja	28	500	500	100	18100	25.60
4% B. de caña 3% de teja	28	500	500	100	18230	25.80
4% B. de caña 5% de teja	28	500	500	100	14255	20.20
4% B. de caña 5% de teja	28	500	500	100	14456	20.40
4% B. de caña 5% de teja	28	500	500	100	14741	20.80
4% B. de caña 7% de teja	28	500	500	100	13636	19.30
4% B. de caña 7% de teja	28	500	500	100	13755	19.50
4% B. de caña 7% de teja	28	500	500	100	13922	19.70

Tabla 61Resumen de promedios de % de resistencia a la compresión por murete


RESISTENCIA A LA COMPRESIÓN POR MURETE ASTM C140 / NTP 399.621

IDENTIFICACIÓN	EDAD (días)	LARGO (mm)	ANCHO (mm)	ESPESOR (mm)	CARGA MAX. (kgf)	Vm (kgf/cm²)
Patrón	28	500	500	100	15774	22.30
4% B. de caña 3% de teja	28	500	500	100	18063	25.50
4% B. de caña 5% de teja	28	500	500	100	14484	20.50
4% B. de caña 7% de teja	28	500	500	100	13771	19.50

Figura 88.

Resumen de promedios de resistencia a la compresión por murete.

En la figura 88, se observa el comportamiento en el ensayo de resistencia a la compresión por murete a los 28 días de secado, de los resultados obtenidos, el único superior al diseño patrón es el diseño con 4% de bagazo de caña + 3% de teja con 25.5 kg/cm², también se puede observar que a mayor adición de bagazo de caña y polvo de teja la resistencia a la compresión por murete disminuye.

Análisis inferencial del específico 4

Analizar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima -2022.

Hipótesis Específica 4

La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima -2022.

• Planteamiento de la prueba de hipótesis general:

- ✓ Hipótesis nula (H0): La adición de fibra de bagazo de caña al 4% y de teja al 3%, 5% y 7% no mejorará significativamente la resistencia a la compresión por murete, Lima - 2022.
- ✓ Hipótesis alterna (Ha): La adición de fibra de bagazo de caña al 4% y de teja al 3%, 5% y 7% mejorará significativamente la resistencia a la compresión por murete, Lima - 2022.

Para realizar la prueba de los análisis de las hipótesis, se inicia analizandolos resultados descriptivamente obtenidos de la compresión según la edad de 7, 14 y 28 días de curado en el especimen endurecido, a los cuales se le realizará posteriormente las pruebas de homogenización y normalidad. Se define su nivel a un α =0.05 de significancia, el cual hace referencia al valor del margen de error que se asume en los resultados obtenidos de las pruebas.

Se llevó a cabo la realización de la prueba conocida como ANOVA la cual nos permitirá realizar una comparación de todos los diseños elaborados y poder determinar si estos tienen alguna comparación o diferencia significativa según sus diseños, finalmente se pretende encontrar el diseño más factible.

Análisis descriptivo de los ensayos a compresión en función al tiempo de madurez

Tabla 62Tabla de análisis descriptivo de los resultados de la resistencia a la compresión por murete a los 28 días de madurez

	Resistencia de concreto a la compresión a los 28 días							
	ľO	Descripción	Recuento	Media	Mediana	Máx.	Mín.	Desv. estándar
DE	IIENTO	T0 - Patrón	3.00	22.30	22.30	22.50	22.10	0.20
IIPO	TIPO DE TAMIEN	T1-4% Bagazo de caña+3% de teja	3.00	25.57	25.60	25.80	25.30	0.25
T TRA	T2- 4% Bagazo de caña+ 5% de teja	3.00	20.47	20.40	20.80	20.20	0.31	
		T3-4% Bagazo de caña+7% de teja	3.00	19.50	19.50	19.70	19.30	0.20

Según los resultados obtenidos del análisis descriptivo se aprecia que el diseño T1 a los 7, 14 y 28 días es el único superior al tratamiento patrón, la forma de los tratamientos T2 y T3 a los 7, 14 y 28 días de madurez son inferiores al tratamiento del diseño inicial; se pueden apreciar que los resultados a primera vista muestran valores diferentes, pero esto se definirá mediante la prueba que se realizará según las hipótesis para comprobar si existe o no diferencias.

 Pruebas de normalidad de los resultados de la resistencia a la compresión por murete en función al tiempo de madurez.

Se se quiere comprobar los supuestos de normalidad, se pueden aplicar distintos metodos, uno de ellos es Shapiro Wilk el cual se emplea si se tiene pequeñas muestras menores a 50 datos y la de Kolmogorov-Smirnov utilizada en casos de que la muestra sea mayor a 50 datos, para este proyecto contamos con una muestra menor a 50 datos, por ello optamos utilizar y aplicar los resultados que se obtienen de Shapiro Wilk, partiendo del siguiente plantemiento de hipótesis:

✓ Planteamiento de las hipótesis

Ho: Los datos provienen de una distribución normal

Ha: Los datos no provienen de una distribución normal

✓ Criterio para determinar la normalidad

Si p-valor de la prueba $< \alpha = 0.05$ entonces se rechaza la hipótesis nula Ho.

Si p-valor de la prueba $\geq \alpha = 0.05$ entonces se acepta la hipótesis nula Ho.

Tabla 63Resultados de la prueba de normalidad de los ensayos a compresión por murete a los 28 días de rotura.

Pruebas de normalidad								
Días de Rotura		Kolmogórov	-Smi	rnov	Shapi	iro-W	ilk	
Compresión Muretes		Estadístico	gl	Sig.	Estadístico	gl	Sig.	
T0 patrón	28	0.333	3		0.861	3	0.270	
T1- 4% Bagazo de caña+3% de teja	28	0.327	3		0.872	3	0.301	
T2- 4% Bagazo de caña+ 5% de teja	28	0.365	3		0.798	3	0.110	
T3- 4% Bagazo de caña+ 7% de teja	28	0.241	3		0.974	3	0.688	
a. Corrección de significación de Lilliefors								

• Corrección de la significación de Lilliefors

Se pueden apreciar los valores según la prueba de Shapiro – Wilk tanto del T0 (diseño patrón) y de los demás diseños elaborados los cuales presentan un valor superior de 0.05; aceptando de esta forma que la hipótesis nula determina que la distribución proveniente es normal, teniendo una distribución normal.

• Prueba de ANOVA

Se aplica con la finalidad de encontrar la diferencia entre la resistencias a la compresión de cada diseño según a la edad de 28 días de endurecimiento y curado, esto se determina según los siguientes planteamiento y criterios propuestos:

✓ Planteamiento de las hipótesis

Ho:
$$T0 = T1 = T2 = T3$$

Ha: $Ti \neq Tj$

✓ Criterio para determinar la prueba de ANOVA

Si p-valor de la prueba de ANOVA para determinar la igualdad viene siendo menor a α=0.05 entonces se puede rechazar el planteamiento de la hipótesis.

Si p-valor Si p-valor de la prueba de ANOVA para determinar la igualdad viene siendo mayor a α =0.05 entonces se puede aceptar el planteamiento de la hipótesis.

✓ Cálculos estadísticos de la prueba de ANOVA

1. Factor de corrección (FC)

2. Suma de cuadrados (SC)

SC Total
$$1 = 35.039$$

3. Suma cuadrado de tratamientos (SCT)

$$SCT = 20.497$$

4. Suma de cuadrado error (SCE)

$$SCE = 1.818$$

5. Cálculo de cuadrados medios (CM)

Cuadrado medio de tratamientos (CMT)

CMT = 6.832

6. Cuadrado medio del error (CME)

CME = 1.818

7. F calculado (Fc)

Fc = 3.759

Finalmente se obtiene la siguiente tabla :

Tabla 64Resultados de la prueba de ANOVA a los tratamientos T0, T1, T2 y T3 para los resultados de la resistencia a la compresión por murete.

	ANOVA de un factor								
Resistenc	Resistencia a la Compresión por Muretes								
	Suma de cuadrados	gl	Media cuadrática	F	Sig.				
Tratamientos	20.497	3	6.832	3.759	.000				
Error	14.542	8	1.818						
Total	35.039	11							

Como se observa el p-valor es menor que 0.05 (0.000 < 0.005), lo cual nos permite dar un rechazo a la hipótesis que dábamos como nula HO el cual nos indica que los tratamientos presentados tienen una igualdad pero al aceptar la hipótesis alternativa nos dice que estos tratamientos presentan una diferencia, lo cual demuestra que estos datos se ven alterados por medio de las diferentes dosificaciones; mediante la realización de la prueba de DUNCAN O T modificado se procederá a verificar cual de todos los tratamientos presentan un parecido entre si mismas o cual de todos no es efectivo ya que se aprecia una diferencia significativa entre todas las muestras presentadas.

Tabla 65 *Tabla de valores DUNCAN para las resistencias medias a la compresión por murete de los Tratamientos.*

Resistencia a la Compresión por Muretes								
Dunca	Duncan a							
Tuotomiontos	N	Subconjunto p	ara alfa = 0.05					
Tratamientos	IN	1	2					
T3-4% Bagazo de caña+7% de teja	3	19.500						
T2-4% Bagazo de caña+ 5% de teja	3	20.467						
Patrón	3		22.300					
T1-4% Bagazo de caña+3% de teja	3		25.567					
Sig.		0.079	0.316					
Se visualizan las medias para los grupos en los subconjuntos homogéneos.								
a Utiliza el tamaño de la muestra de la media armónica = 3.000.								

Según los datos expresados obtenidos de la prueba de DUNCAN se aprecia en los resultados que para el T1 el cual contiene adición de 3% de teja y 4% fibra de bagazo de caña reciclada, es el que mejor resultado presentó en cuanto a todos los tratamientos elaborados el cual destacó más en el ensayo a la resistencia mediante la compresión de los elementos por pila; presentando además como evidencia que existe una diferencia entre cada tratamiento de manera significativa T0, T1, T2 o T3.

CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES

Discusiones

Basándose en la bibliografía de Morales, (2017) en su tesis "Ladrillos de concretos ligeros con adición de plástico reciclado en diferentes porcentajes en la construcción de edificaciones", tuvo como objetivo general determinar la eficiencia económica y estructural de ladrillo de concreto ligero. La metodología consistió en obtener un concreto liviano que pueda ser aplicado a ladrillos de concreto f´c=80 kg/cm², adicionando diferentes porcentajes de plástico en 10%, 15% y 20% y ladrillos patrón, se evaluaron los ladrillos de concreto a los 28 días en la prueba de resistencia a la compresión, se obtuvo una resistencia a compresión por unidad promedio de 78.82 kg/cm², por otro lado, el concreto con porcentajes de plástico que presentó reducciones, con el 10% de adición se obtuvo una resistencia a compresión promedio de 39.19 kg/cm², con el 15% de adición se obtuvo una resistencia a compresión promedio de 22.63 kg/cm², y con el 20% de adición se obtuvo una resistencia a compresión promedio de 12.04 kg/cm².

En la presente investigación se tuvo como objetivo evaluar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima - 2022, se obtuvieron como resultados promedios a los 28 días de secado; del diseño patrón se obtuvo 85 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 88 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 84 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 83 kg/cm². A partir de nuestros resultados obtenidos podemos corroborar que nuestras resistencias son mayores debido a que nuestros materiales no convencionales no son para alivianar el peso sino para mejorar la resistencia a la compresión por unidad.

Ríos & Rojas, (2019) en su tesis "Ladrillo de concreto ligero utilizando como agregado grueso piedra pómez para muros de tabiquería en viviendas multifamiliares", se

propone el reemplazo del agregado grueso en porcentajes de 5%, 10% y 15% de piedra pómez optimizando el porcentaje de aplicación de este material en el diseño de ladrillos de concreto ligero. Basados en el objetivo se obtuvieron los resultados en el ensayo de resistencia a la compresión por pilas de ladrillo de concreto ligero de lo cual se puede apreciar que con respecto al promedio de compresión por pilas del diseño patrón es de 94.70 kg/cm², por diseño de 5% de piedra pómez es de 104.32 kg/cm², por diseño de 10% de piedra pómez es de 102.25 kg/cm² y por diseño de 15% de piedra pómez es de 96.78 kg/cm².

En la presente investigación se tuvo como objetivo demostrar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima - 2022, se obtuvieron como resultados promedios a los 28 días de secado; del diseño patrón se obtuvo 63 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 66 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 62 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 62 kg/cm². A partir de nuestros resultados obtenidos podemos corroborar que nuestras resistencias son similares por tener un mismo f´c de diseño, también podemos observar que en la comparación de investigaciones son contrarios en nuestro caso al aumentar el agregado no convencional al diseño del concreto disminuyó la resistencia a la compresión por pilas y en el caso de la investigación en estudio al aumentar el agregado no convencional al diseño del concreto aumenta la resistencia a la compresión por pilas.

Castillo & Evangelista, (2019) en su tesis "Mejoras de las propiedades de ladrillos de concreto con el uso de limalla en nuevo Chimbote -2019", tuvo como objetivo general determinar las propiedades del ladrillo de concreto incorporando el uso de limalla con adición de 0%, 25%, 35% y 50% de residuos metálicos de la siderúrgica Sider Perú

(limalla) .Se obtuvo como principales resultados en las propiedades a la resistencia a la compresión diagonal "muretes", de la muestra patrón limalla al 0% es 12.40 kg/cm², limalla al 25% es 15.00 kg/cm², limalla al 35% es 17.96 kg/cm², y limalla al 50% es 19.90 kg/cm². Asimismo, la incorporación de limalla sería un gran aliado, debido a que la absorción es similar en todas las unidades, cumpliendo con los parámetros establecidos por la norma. Finalmente, para las tres muestras empleadas, se encontró que las de albañilería con el 50% de limalla presentaron un mejor comportamiento mecánico, pero su costo de elaboración sería muy elevado.

En la presente investigación se tuvo como objetivo analizar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima - 2022, se obtuvieron como resultados promedios a los 28 días de secado; del diseño patrón se obtuvo 22.30 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 25.50 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 20.50 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 19.50 kg/cm². A partir de nuestros resultados obtenidos podemos corroborar que nuestras resistencias son similares por tener un mismo f´c de diseño, también podemos observar que en la comparación de investigaciones son contrarios en nuestro caso al aumentar el agregado no convencional al diseño del concreto disminuyó la resistencia a la compresión por murete y en el caso de la investigación en estudio al aumentar el agregado no convencional al diseño del concreto aumenta la resistencia a la compresión por murete.

Conclusiones

De acuerdo al primer objetivo "Obtener los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima – 2022" se obtuvo que el tamaño máximo nominal del agregado grueso es 3/8" y su tamaño máximo es 1/2". El tamaño máximo nominal se utilizó para identificar el límite superior e inferior definidas en la tabla de usos de la NTP 400.037. Se determina que el agregado cumple con el máximo de 0.25% de partículas de arcilla. En la figura 64 se muestra la curva granulométrica del agregado fino y las curvas del límite superior e inferior definidas con el tamaño máximo nominal en la tabla de husos de la NTP 400.037. También mencionaremos el diseño adecuado para los ensayos de resistencia a la compresión por unidad, pila y murete dicho diseño fue el que tuvo una adición del 4% de bagazo de caña + 3% de teja, el volumen de tanda fue de 0.03 m³, cemento Sol Tipo I con 7.96 kg, agua 5.67 litros, agregado grueso 24.74 kg, agregado fino 30.39 kg, teja reciclada 0.24 kg, fibra de bagazo de caña 0.32 kg y con un Slump de 1 1/2".

En función al objetivo dos "Evaluar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima – 2022", se obtuvieron como resultados promedios a los 7 días de secado; del diseño patrón se obtuvo 59 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 62 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 58 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 57 kg/cm².

A los 14 días de secado; del diseño patrón se obtuvo 74 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 77 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 74 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 72 kg/cm².

A los 28 días de secado; del diseño patrón se obtuvo 85 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 88 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 84 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 83 kg/cm².

De los resultados obtenidos se pueden observar que el de mejor comportamiento sobre el ensayo de la resistencia a la compresión por unidad fue el diseño con 4% de bagazo de caña + 3% de teja a todas las edades de secado, por lo tanto, concluimos que al aumentar porcentaje de bagazo de caña y o de teja la resistencia a la compresión por unidad disminuye. De acuerdo al análisis inferencial basado en las medias de resistencias a la compresión de la prueba de Duncan se puede observar que el diseño 4% de bagazo de caña + 3% de teja, es el que logro una mayor resistencia a la compresión por unidad, ya que tuvo una mejora significativa; además se evidencia que existen diferencias significativas entre el diseño patrón y los diseño con 4% de bagazo de caña y 3, 5 y 7% de teja.

Continuando con el desarrollo en función al objetivo tres "Demostrar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima – 2022", se obtuvieron como resultados promedios a los 7 días de secado; del diseño patrón se obtuvo 37 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 37 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 34 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 33 kg/cm².

A los 14 días de secado; del diseño patrón se obtuvo 47 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 50 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 46 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 45 kg/cm².

A los 28 días de secado; del diseño patrón se obtuvo 63 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 66 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 62 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 62 kg/cm².

De los resultados obtenidos se pueden observar que el de mejor comportamiento sobre el ensayo de la resistencia a la compresión por pilas fue el diseño con 4% de bagazo de caña + 3% de teja a todas las edades de secado, por lo tanto, concluimos que al aumentar porcentaje de bagazo de caña y de teja la resistencia a la compresión por pilas disminuye. De acuerdo al análisis inferencial basado en las medias de resistencias a la compresión por pilas de la prueba de Duncan se puede observar que el diseño 4% de bagazo de caña + 3% de teja, es el que logro una mayor resistencia a la compresión por pilas, ya que tuvo una mejora significativa; además se evidencia que existen diferencias significativas entre el diseño patrón y los diseño con 4% de bagazo de caña y 3, 5 y 7% de teja.

Continuando con el desarrollo en función al objetivo cuatro "Analizar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima – 2022", se obtuvieron como resultados promedios a los 28 días de secado; del diseño patrón se obtuvo 22.30 kg/cm², del diseño con 4% de bagazo de caña + 3% de teja se obtuvo 25.50 kg/cm², del diseño con 4% de bagazo de caña + 5% de teja obtuvo 20.50 kg/cm² y del diseño con 4% de bagazo de caña + 7% de teja obtuvo 19.50 kg/cm².

De los resultados obtenidos se pueden observar que el de mejor comportamiento sobre el ensayo de la resistencia a la compresión por muretes fue el diseño con 4% de bagazo de caña + 3% de teja con 25.50 kg/cm² fue el único superior al concreto patrón, por lo tanto, concluimos que al aumentar el porcentaje bagazo de caña y de teja la resistencia a

la compresión por murete disminuye. De acuerdo al análisis inferencial basado en las medias de resistencias a la compresión de la prueba de Duncan se puede observar que el diseño de 4% de bagazo de caña + 3% de teja, es el que logro una mayor resistencia a la compresión por murete, ya que tuvo una mejora significativa; además se evidencia que existen diferencias significativas entre el diseño patrón y los diseño con 4% de bagazo de caña y 3, 5 y 7% de teja.

REFERENCIAS

Afá, Y. Loyola, M. (2016). Influencia del porcentaje en peso de fibra de vidrio AR y aditivo plastificante CoprePlast 102, sobre la resistencia a la flexión en paneles de concreto reforzado con fibra de vidrio (GRC). (Tesis para optar el grado de Ingeniero de Materiales) en la Universidad Nacional de Trujillo, Perú. Recuperado de:

http://dspace.unitru.edu.pe/bitstream/handle/UNITRU/9558/AF%C3%81%20SALD
A%C3%91A%20Yahaira%20Stephanie%3B%20LOYOLA%20CARRASCAL%20
Maria%20Fernanda.pdf?sequence=1&isAllowed=y

- Actualización tecnológica. Prueba de revenimiento del concreto. Extraído el 6 abril del 2011 desde http://www.basf-cc.com.mx/SiteCollectionDocuments/Boletines/
 ActualTec-PruebadeRevenimientoConcreto.pdf
- ASOCEM Asociación de Productores de Cemento. Cuadros estadísticos de producción de cemento y despacho de concreto a nivel nacional. Recuperado de:

 http://www.asocem.org.pe/archivo/files/Reporte%20Estad%C3%ADstico%20Set2019.pdf
- Bernal, D. (2017). Optimización de la resistencia a compresión del concreto, elaborado con cementos tipo I y aditivos Súper Plastificantes. (Tesis para optar el grado de Maestría en Ingeniería Civil). Universidad Nacional de Cajamarca, Perú. Recuperado de:

http://repositorio.unc.edu.pe/bitstream/handle/UNC/1233/TESIS%20EPG%20DBD.pdf?sequence=1&isAllowed=y

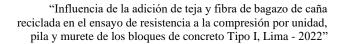
Cano, J. Cruz, C. (2017). Análisis de mezclas de concreto con proporciones de vidrio molido, tamizado y granular como aditivo, a fin de aumentar la resistencia a la compresión del hormigón. (Tesis para optar el grado de Ingeniero Civil) en la

Universidad Nacional de Pereira, Pereira, Perú. Recuperado de:

http://repositorio.unilibrepereira.edu.co:8080/pereira/bitstream/handle/123456789/87

6/ANÁLISIS%20DE%20MEZCLAS%20DE%20CONCRETO.pdf?sequence=1

- Costa del Pozo, A. (2012). Estudio de hormigones y morteros aligerados con agregados de plástico reciclado como árido y carga en la mezcla. (Disertación de grado, Universidad Politécnica de Cataluña España). Obtenido de https://upcommons.upc.edu/handle/2099.1/16661
- El concreto en la práctica ¿qué, por qué y cómo? Cip-35: Prueba de resistencia a la compresión del concreto. Extraído el 6 abril del 2011 de la web de NRMCA: http://www.nrmca.org/aboutconcrete/cips/CIP35es. pdf
- García, M. (2007). Factibilidad de sustitución del agregado fino del concreto por fibras de termoplásticos y elastómeros reciclados. (Disertación de grado, Universidad Simón Bolívar Perú). Obtenido de https://docplayer.es/88044967-Universidad-simon-bolivar-decanato-de-estudios-de-postgrado-maestria-en-ingenieria-mecanica.html
- Instituto Geofísico del Perú. Sismos en el Perú. Consultado el 12 de marzo del 2018.


 Obtenido de: http://portal.igp.gob.pe/sismos-reportados-anualmente.
- INV-E-410-13, I. N. (2013). Resistencia a la compresión de cilindros de concreto. Bogotá: INVIAS.
- Jiménez Bohórquez, Johnny; Uso de materiales alternativos para mejorar las propiedades mecánicas del concreto (fibra de fique); Bogotá D.C 2011. [En línea] [Citado el: 4 de febrero de 2017.] https://es.scribd.com/document/142003529/Uso-de-materiales-alternativos-para-mejorar-las-propiedades-mecA-nicas-del-concreto-Fibra-de-Fique
- Macedo, M C; Compuesto de yeso e Icopor para la construcción de casas populares; Natal Brasil (2011) [En línea] [Citado el: 2 de mayo de 2017.]

http://search.proquest.com/cv_791920/docview/1115566732/13DE70EE2263F2AD4 9/46?accountid=46889.

- Martínez-Molina, W., Torres-Acosta, A. A., Alonso-Guzmán, E. M., Chávez-García, H.
 L., Hernández-Barrios, H., Lara-Gómez, C., Martínez-Alonso, W., Pérez-Quiroz, J.
 T., Bedolla-Arroyo, J. A., & González-Valdéz, F. M. (2015).
- Mondragón, K. (2016). Comparación entre el concreto convencional y el concreto con barita en polvo como sustituyente del agregado fino. (Disertación de grado, Universidad Señor de Sipán Perú). Obtenido de http://www.pead.uss.edu.pe/handle/uss/2254
- Mora, W. (2016) Concreto Ecológico a Partir de Material PET, Vidrio y Tapas de Bebidas Refrescantes y Alcohólicas (Paper. Revista Ambiental del Instituto de Estudios Ambientales. Manizales. Colombia). Obtenido de http://bdigital.unal.edu.co/54103/1/concretoecologicoapartirdematerialpetvidrioytapa sdebebidasrefrescantesyalcoholicas.pdf
- Muñoz Cebrián, F. (2011). Comportamiento mecánico del hormigón reforzado con fibras de polipropileno multifilamento: Influencia del porcentaje de fibra adicionado.

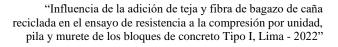
 Universidad Politécnica de Valencia, España.
- Petit V., Marvin (2012). El concreto como material constructivo del instituto universitario politécnico Santiago Mariño de Caracas. Venezuela.
- Rueda Pillajo, E. Z. (2015). Análisis comparativo del hormigón simple sin y con fibra de vidrio reciclada. (Tesis de licenciatura). Ecuador: Universidad de las Fuerzas Armadas, Sangolquí.
- Quintero García, Sandra & Gonzales Salcedo, Luis; Uso de fibra de estopa de coco para mejorar las propiedades mecánicas del concreto; Cali Colombia 2006. [En línea].

[Citado el: 3 de febrero de 2017.]

 $http://ciruelo.uninorte.edu.co/pdf/ingenieria_desarrollo/20/uso_de_la_fibra_de_coco.pdf$

ANEXOS

Anexo N° 1: Matriz de Operacionalización de Variables


Variables	Definición conceptual	Indicadores	Ítems
Resistencia a la compresión por unidad	La resistencia a compresión unitaria f'b se determinó dividiendo la carga de rotura entre el área bruta (unidades sólidas) o entre el área neta (unidades huecas)	Fuerza máxima. Esfuerzo f'b. Longitud del bloque. Ancho del bloque. Espesor del bloque.	Máquina de ensayo a la compresión por unidad Formatos basados en la Norma ASTM C140 / NTP 399.034 Esfuerzo en kg/cm². Dimensiones en cm % f´c
Resistencia a la compresión por pilas	La resistencia de la albañilería a compresión axial o pilas se determinó dividiendo la carga máxima entre el área de contacto utilizando la fórmula f´m=Pmax/A	Fuerza máxima. Esfuerzo f´m. Longitud de la pila. Ancho de la pila. Espesor de la pila. Área Bruta	Máquina de ensayo a la compresión por pilas Formatos basados en la Norma ASTM C67 / NTP 399.604 Esfuerzo en kg/cm². Dimensiones en cm % f´c
Resistencia a la compresión por murete	La resistencia al corte de los muretes de albañilería se determinó midiendo la carga máxima entre el área bruta del espécimen. Los especímenes deben cumplir 28 días, por lo que no se necesitó ningún tipo de corrección por edad.	Carga máxima. Esfuerzo Vm. Largo del murete. Ancho del murete. Espesor del murete. Descripción de la falla	Máquina de ensayo a la compresión por murete Formatos basados en la Norma NTP 399.621 Esfuerzo en kg/cm². Dimensiones en mm
Adición de teja y fibra de bagazo de caña reciclada	Las tejas son piezas obtenidas mediante el proceso de prensado, secado y cocción de un material arcilloso. El bagazo de caña es un residuo lignocelulósico proveniente a partir de la extracción del jugo que se le realiza a la caña, este posee gran cantidad de fibras y constituye el 28% del peso total de la caña.	Dosificación. Diseño de mezcla Moldeo. Fraguado. Curado.	Formatos ensayos de laboratorio de agregados kilogramos y litros. Adecuado llenado de moldes y desmolde Horas. Días.

Anexo N° 2: Matriz de Consistencia

TÍTULO: "INFLUENCIA DE LA ADICIÓN DE TEJA Y FIBRA DE BAGAZO DE CAÑA RECICLADA EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN POR UNIDAD, PILA Y MURETE DE BLOQUES DE CONCRETO TIPO I, LIMA – 2022."

FORMULACIÓN DEL PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES	INDICADORES	DISEÑO DE LA INVESTIGACIÓN
Problema General: ¿Cuál será la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de los bloques de concreto Tipo I, Lima - 2022?	Objetivo General: Determinar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad, pila y murete de los bloques de concreto Tipo I, Lima – 2022.	Hipótesis General: La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por unidad, pila y murete de los bloques de concreto Tipo I, Lima - 2022.	Adición de teja y fibra de bagazo de caña reciclada	Dosificación. Diseño de mezcla Moldeo. Fraguado. Curado.	Tipo aplicada Diseño cuasi experimental Cuantitativo y cualitativo
Problemas específicos Problema específico 1 ¿De qué manera se obtuvieron los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima – 2022?	Objetivos específicos Objetivo específico 1 Obtener los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima - 2022.	Hipótesis específicas Hipótesis específica 1 Se logró obtener los materiales no convencionales y las cantidades adecuadas para el diseño de mezcla de los bloques de concreto Tipo I con adición de teja y fibra de bagazo de caña reciclada, Lima - 2022.	Resistencia a la compresión por unidad	Fuerza máxima. Esfuerzo f'b. Longitud del bloque. Ancho del bloque. Espesor del bloque.	Instrumentos: Fichas de observación Documentación, base datos en laboratorio.

Problema específico 2 ¿Cómo evaluar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima - 2022?

Problema específico 3 ¿De qué manera desmostar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima - 2022?

Problema específico 4 ¿En qué medida influye la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima -2022? Objetivo específico 2 Evaluar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima - 2022.

Objetivo específico 3 Demostrar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I. Lima -2022.

Objetivo específico 4 Analizar la influencia de la adición de teja y fibra de bagazo de caña reciclada en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima -2022. Hipótesis específica 2 La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por unidad de los bloques de concreto Tipo I, Lima -2022.

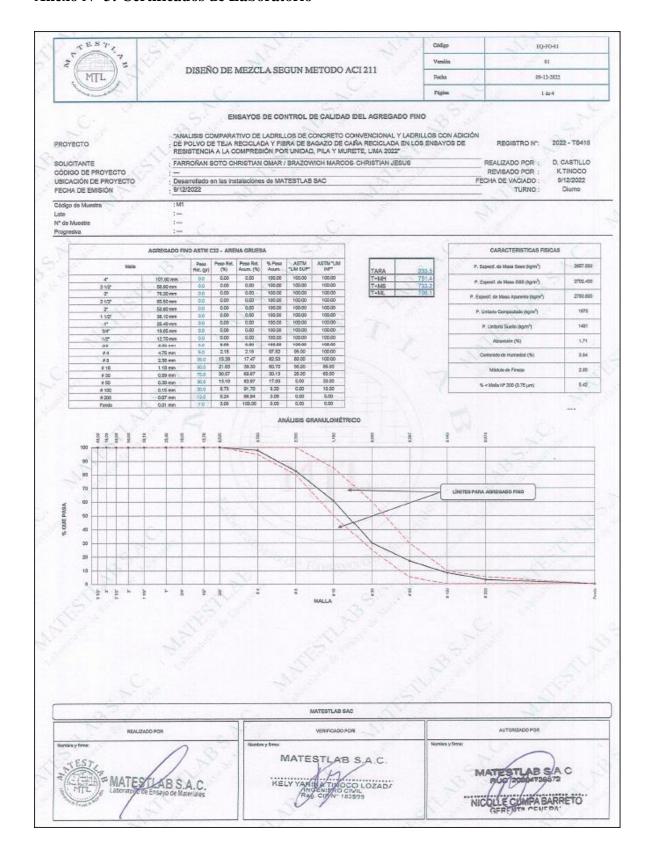
Hipótesis específica 3 La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por pila de los bloques de concreto Tipo I, Lima -2022.

Hipótesis específica 4 La adición de teja y fibra de bagazo de caña reciclada influye positivamente en el ensayo de resistencia a la compresión por murete de los bloques de concreto Tipo I, Lima -2022. Resistencia a la compresión por pilas

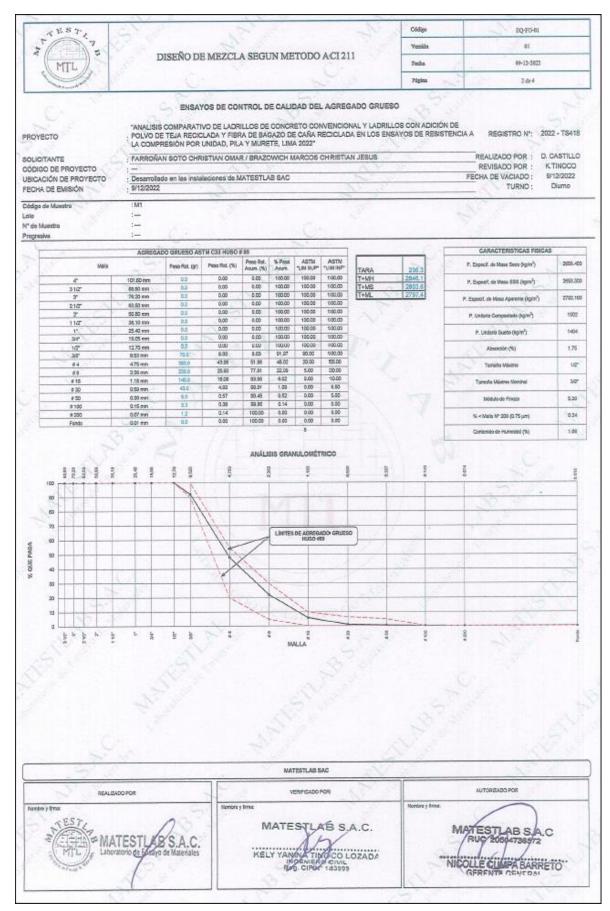
Resistencia a la compresión por murete

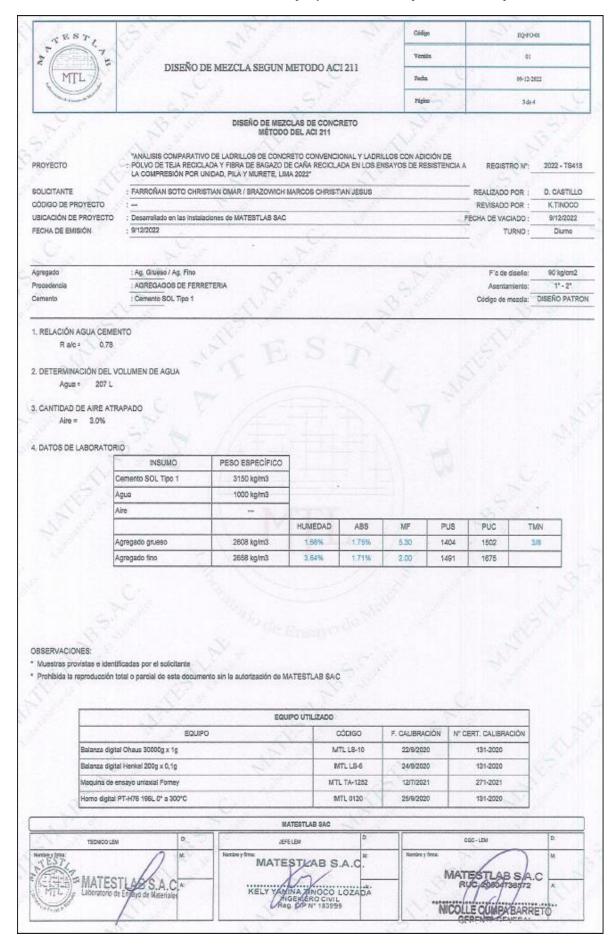
Fuerza máxima. Esfuerzo f'm. Longitud de la pila. Ancho de la pila. Espesor de la pila. Área Bruta

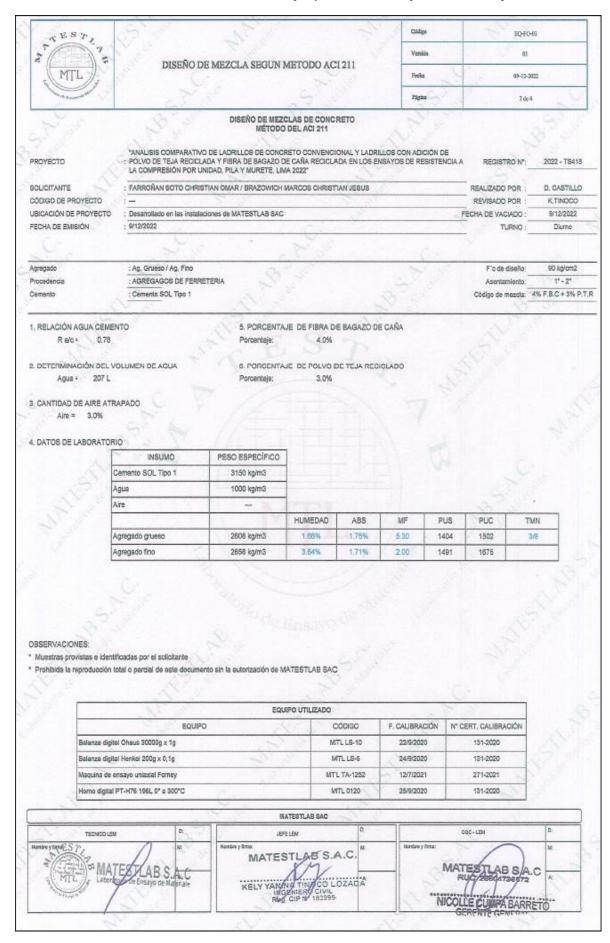
Carga máxima.
Esfuerzo Vm.
Largo del murete.
Ancho del murete.
Espesor del murete.
Descripción de la falla


Técnicas: La observación directa. Análisis de materiales. Fórmulas Diseño de mezclas Ensayos de las propiedades físicas

Ensayos de resistencia a la compresión por unidad, pila y murete


de los agregados


Anexo N° 3: Certificados de Laboratorio



								39048	
TESTE					Civilgo		FE	NO.000	
2 2	DISEÑO DE MEZCLA SEGUN METODO ACI 211					7	et et		
MIL	Feda				6	69-13-3023			
No. of Control of Cont	Triple Co.					2.	4dc4		
6.	6700	DISEÑO DE MEZO MÉTODO	LAS DE CONCRE DEL ACI 211	ETO					
	"ANALISIS COMPARATIV	VO DE LADRILLOS DE CONCRET	TO CONVENCIONA	L Y LADRILLOS CO	N ADIGIÓN DE			- B	
ROYECTO		LADA Y FIBRA DE BAGAZO DE C R UNIDAO, PILA Y MURETE, LIM	R	REGISTRO Nº: 2022 - TS41					
OLICITANTE CÓDIGO DE PROYECTO	FARRORAN SOTO CHRISTIAN OMAR / BRAZONICH MARCOS CHRISTIAN JESUS						REALIZADO POR : D. CASTIL REVISADO POR : K.TINOO		
IBICACIÓN DE PROYECTO	: Cessanolado en las instalaciones de MATESTLAS SAC						FECHA DE VACIADO: 9/12/2022		
FECHA DE EMISIÓN	IISIÓN : 9022022						TURNO: Diumo		
Agregado	: Ag. Grueso / Ag. Fino						F'c de diseño:	90 lig/om2	
rocedencia cemento	: AGREGAGOS DE FERRETERIA : Cemento SOL Tipo 1						Asentamiento: go de mezcla:	1"-2" DISEÑO PATR	
		-	2 8		-		DESKRIPTION OF THE		
RESISTENCIA A LA COMPRESIÓ	N REQUERIDA				LA CANTIDAD DE	CEMENTO			
F'er= 160				Cement	n = 255 kg				
RELACIÓN AGUA CEMENTO				6. FACTOR CEN	THE STATE OF THE PARTY OF				
R a/c = 0.78				Bolsas	cm3 = 6.2 Bols	ad			
DETERMINACIÓN DEL VOLUMEN	DE AGUA								
Agua = 207 L									
CANTIDAD DE AIRE ATRAPADO									
Aire = 3.0%									
	50.00	7/			- W				
CÁLCULO DEL VOLUMEN DE AS	RESADOS PESO ESPECÍFICO	VOLUMEN ABSOLUTO			T X				
INSUMO Cemento SOL Tipo 1	PESO ESPECÍFICO 3150 kg/m3	0.0842 m3			N.	5			
INSUMO	PESO ESPECÍFICO	The second secon				5)			
INSUMO Cemento SOL Tipo 1 Agual Aire	PESO ESPECÍFICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3 0.0800 m3	HUMEDAD	ABSORCIÓN	MOD. FINEZA	P.U. SUELTO		м _	
INSUMO Cemento SOL Tipo 1 Aguil Aire Agregado grueso	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3	0.0942 m3 0.2070 m3 0.0300 m3	1.66%	1.75%	5.30	1404		M	
INSUMO Cemento SOL Tipo 1 Agual Airo	PESO ESPECÍFICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3 0.0300 m3		The second second					
INSUMO Cemento SOL Tipo 1 Agrat Aire Agragado grueso	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3	0.0842 m3 0.2070 m3 0.0300 m3	1.66%	1.75%	5.30	1404			
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de agregados	0.0842 m3 0.2070 m3 0.0300 m3	1.66%	1.75%	5.30 2.00	1404	3		
INSUMO Cemento SOL Tipe 1 Agiril Anne Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de agregados	0.0842 m3 0.2070 m3 0.0300 m3	1.66%	1.75%	5.30 2.00	1404	3		
INSUMO Cemento SOL Tipo 1 Agret Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso ###################################	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 1000 kg/m3 2508 kg/m3 2508 kg/m3 Volumen de pasta Volumen de agregados 8ECOS 0.3109 m3 = 811 kg	0.0842 m3 0.2070 m3 0.0300 m3	1.66%	1.75% 1.71% 11. VOLUMEN C Cemento SOL TI Agua	5.30 2.00 2.00 DE TANDA DE PRU po 1	1404 1491 MEBA 0.03 7.96 kg 5.67 L	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3 0.0300 m3	1.66%	1.75% 1.71% 1.71% 11. VOLUMEN Comento SOL Ti Agua Agregado grueso	5.30 2.00 2.00 DE TANDA DE PRU po 1	1404 1491 1491 16BA 0.03 7.96 kg 5.67 L 24.74 kg	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino **	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3 0.0300 m3 0.03212 m3 0.3212 m3	1.66%	1.75% 1.71% 11. VOLUMEN C Cemento SOL TI Agua	5.30 2.00 2.00 DE TANDA DE PRU po 1	1404 1491 MEBA 0.03 7.96 kg 5.67 L	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino ** **PESO HÚMEDO DE LOS AGREGA Agregado grueso ** **Agregado grueso ** **Agregado fino **	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de sgregades Volumen de sgregades 88006 0.3109 m3 = 811 kg 0.3678 m3 = 978 kg	0.0842 m3 0.2070 m3 0.0300 m3 0.03212 m3 0.3212 m3	1.66%	1.75% 1.71% 11. VOLUMEN C Cemento SOL Ti Agus Agregado grusos Agregado fino	5.30 2.00 2.00 DE TANDA DE PRU po 1	1404 1491 1491 16BA 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino ** **Agregado fino ** **Agregado fino ** **Agregado fino ** ** **Agregado fino ** **Agregado fino ** **Agregado fino ** ** **Agregado fino ** **Agregado fino ** **Agregado fino **	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3 0.0300 m3 0.03212 m3 0.3212 m3	1.66%	1.75% 1.71% 11. VOLUMEN C Cemento SOL Ti Agus Agregado grusos Agregado fino	5.30 2.00 2.00 DE TANDA DE PRU po 1	1404 1491 1491 16BA 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg	3		
INSUMO Cemento SOL Tipe 1 Aguil Aire Agregado grusso Agregado fino PROPORCIÓN DE AGREGADOS Agregado fino ** **PEBO HÚMEDO DE LOS AGREGA Agregado fino Agregado fino ** **PEBO HÚMEDO DE LOS AGREGA Agregado fino	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2508 kg/m3 Volumen de agregados Volumen de agregados \$2508 kg/m3 Volumen de agregados \$2508 kg/m3 Volumen de agregados \$2508 kg/m3 \$2508 kg	0.0842 m3 0.2070 m3 0.0300 m3 	1.66%	1.75% 1.71% 1. VOLUMEN C Comento SOL Ti Agus Agregado gruco Agregado fino Siump Obtenido	5.30 2.00 2.00 DE TANDA DE PRU po 1	1404 1491 1491 7,96 kg 5,97 L 24,74 kg 30,39 kg 1 1,12*	3		
INSUMO Cemento SOL Tipe 1 Agrill Anno Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS : Agregado grueso Agregado fino ** PESO HÚMEDO DE LOS AGREGA Agregado fino Agregado fino	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2508 kg/m3 Volumen de agregados Volumen de agregados \$2508 kg/m3 Volumen de agregados \$2508 kg/m3 Volumen de agregados \$2508 kg/m3 \$2508 kg	0.0842 m3 0.2070 m3 0.0300 m3 	1.66%	1.75% 1.71% 11. VOLUMEN C Cemente SOL Ti Agua Agregado gruca: Agregado fino Siump Obtenido 12. PROPORCIK CEM A.F.	5.00 2.00 2.00 DE TANDA DE PRU PO 1 ON EN VOLUMENT A.G. AGUA	1404 1491 1491 1491 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg 1 192*	3		
INSUMO Cemento SOL Tipo 1 Agua Atro Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado fino ** **Agregado fino ** **Agregado fino ** **Agregado fino ** **Agregado fino ** **DESO HÚMEDO DE LOS AGREGA Agregado fino ** **Agregado fino ** **DESO HÚMEDO DE LOS AGREGA **AGREGADA FINO ** **AGREGAD	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de pasta Volumen de agregados 8ECOS 0.3109 m3 = \$11 kg 0.3678 m3 = \$78 kg ADG6 - CORRECCIÓN POR \$25 kg 1013 kg FOR ABSORCIÓN Y HUMET	0.0842 m3 0.2070 m3 0.0300 m3 	1.66%	1.75% 1.71% 11. VOLUMEN C Cemente SOL Ti Agua Agregado gruca: Agregado fino Siump Obtenido 12. PROPORCIK CEM A.F.	5.00 2.00 2.00 DE TANDA DE PRU po 1	1404 1491 1491 1491 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg 1 192*	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS: Agregado grueso Agregado grueso Agregado grueso Agregado fino PESO HÚMEDO DE LOS AGREGA Agregado fino D. AGUA EFECTIVA CORREGIDA F Agua	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de pasta Volumen de agregados 8ECOS 0.3109 m3 = \$11 kg 0.3678 m3 = \$78 kg ADG6 - CORRECCIÓN POR \$25 kg 1013 kg POR ABSORCIÓN Y HUMET	0.0842 m3 0.2070 m3 0.0300 m3 	1.66%	1.75% 1.71% 11. VOLUMEN C Cemente SOL Ti Agua Agregado gruca: Agregado fino Siump Obtenido 12. PROPORCIK CEM A.F.	5.00 2.00 2.00 DE TANDA DE PRU PO 1 ON EN VOLUMENT A.G. AGUA	1404 1491 1491 1491 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg 1 192*	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino PESO HÚMEDO DE LOS AGREGA Agregado fino D. AGUA EFECTIVA CORREGIDA F Agua BISSERVACIONES: Muestras provistas e identificadas i	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de paste Volumen de spregados 8ECOS 0.3109 m3 = 811 kg 0.3678 m3 = 978 kg 1013 kg FOR ABSORCIÓN POR 189 L	0.0842 m3 0.2070 m3 0.0000 m3 0.0300 m3 0.3212 m3 0.5788 m3	1.00%	1.75% 1.71% 11. VOLUMEN C Cemente SOL Ti Agua Agregado gruca: Agregado fino Siump Obtenido 12. PROPORCIK CEM A.F.	5.00 2.00 2.00 DE TANDA DE PRU PO 1 ON EN VOLUMENT A.G. AGUA	1404 1491 1491 1491 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg 1 192*	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grusso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grusso Agregado fino PESO HÚMEDO DE LOS AGREGA Agregado fino D. AGUA EFECTIVA CORREGIDA F Agua BSERVACIONES: Muestras provistas e identificadas i	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de paste Volumen de spregados 8ECOS 0.3109 m3 = 811 kg 0.3678 m3 = 978 kg 1013 kg FOR ABSORCIÓN POR 189 L	0.0842 m3 0.2070 m3 0.0000 m3 0.0300 m3 0.3212 m3 0.5788 m3	1.00%	1.75% 1.71% 11. VOLUMEN C Cemente SOL Ti Agua Agregado gruca: Agregado fino Siump Obtenido 12. PROPORCIK CEM A.F.	5.00 2.00 2.00 DE TANDA DE PRU PO 1 ON EN VOLUMENT A.G. AGUA	1404 1491 1491 1491 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg 1 192*	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grusso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grusso Agregado fino PESO HÚMEDO DE LOS AGREGA Agregado fino D. AGUA EFECTIVA CORREGIDA F Agua BSERVACIONES: Muestras provistas e identificadas i	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de paste Volumen de spregados 8ECOS 0.3109 m3 = 811 kg 0.3678 m3 = 978 kg 1013 kg FOR ABSORCIÓN POR 189 L	0.0842 m3 0.2070 m3 0.0000 m3 0.0300 m3 0.3212 m3 0.5788 m3	1.00%	1.75% 1.71% 11. VOLUMEN C Cemente SOL Ti Agua Agregado gruca: Agregado fino Siump Obtenido 12. PROPORCIK CEM A.F.	5.00 2.00 2.00 DE TANDA DE PRU PO 1 ON EN VOLUMENT A.G. AGUA	1404 1491 1491 1491 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg 1 192*	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grusso Agregado fine PROPORCIÓN DE AGREGADOS Agregado grusso Agregado fine PESO HÚMEDO DE LOS AGREGA Agregado fine D. AGUA EFECTIVA CORREGIDA F Agua BSERVACIONES: Muestras provistas e identificadas i	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de paste Volumen de spregados 8ECOS 0.3109 m3 = 811 kg 0.3678 m3 = 978 kg 1013 kg FOR ABSORCIÓN POR 189 L	0.0842 m3 0.2070 m3 0.0000 m3 0.0300 m3 0.3212 m3 0.5788 m3	1.00%	1.75% 1.71% 11. VOLUMEN C Cemente SOL Ti Agua Agregado gruca: Agregado fino Siump Obtenido 12. PROPORCIK CEM A.F.	5.00 2.00 2.00 DE TANDA DE PRU PO 1 ON EN VOLUMENT A.G. AGUA	1404 1491 1491 1491 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg 1 192*	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino PESO HÚMEDO DE LOS AGREGA Agregado fino D. AGUA EFECTIVA CORREGIDA F Agua BISSERVACIONES: Muestras provistas e identificadas i	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de paste Volumen de spregados 8ECOS 0.3109 m3 = 811 kg 0.3678 m3 = 978 kg 1013 kg FOR ABSORCIÓN POR 189 L	0.0842 m3 0.2070 m3 0.0000 m3	1.00%	1.75% 1.71% 11. VOLUMEN C Cemente SOL Ti Agua Agregado gruca: Agregado fino Siump Obtenido 12. PROPORCIK CEM A.F.	5.00 2.00 2.00 DE TANDA DE PRU PO 1 ON EN VOLUMENT A.G. AGUA	1404 1491 1491 1491 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg 1 192*	3		
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino PESO HÚMEDO DE LOS AGREGA Agregado fino D. AGUA EFECTIVA CORREGIDA F Agua BISSERVACIONES: Muestras provistas e identificadas i	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 2508 kg/m3 2658 kg/m3 Volumen de paste Volumen de spregados 8ECOS 0.3109 m3 = 811 kg 0.3678 m3 = 978 kg 1013 kg FOR ABSORCIÓN POR 189 L	0.0842 m3 0.2070 m3 0.0300 m3	1.00% 3.84%	1.75% 1.71% 11. VOLUMEN C Cemente SOL Ti Agua Agregado gruca: Agregado fino Siump Obtenido 12. PROPORCIK CEM A.F.	5.00 2.00 2.00 DE TANDA DE PRU PO 1 ON EN VOLUMENT A.G. AGUA	1404 1491 1491 1491 0.03 7.96 kg 5.67 L 24.74 kg 30.39 kg 1 192*	m3		
INSUMO Cemento SOL Tipo 1 Agris Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS : Agregado grueso : Agregado fino :: PESO HÚMEDO DE LOS AGREGA Agregado fino :: DESE AGREGADOS : Agregado fino :: PESO HÚMEDO DE LOS AGREGA Agregado fino :: PESO HÚMEDO DE LOS AGREGA Agregado fino :: D. AGUA EFECTIVA CORREGIDA F Agua DESERVACIONES: Muestras provistas e identificadas y Prohibida la reproducción total o pa	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 1000 kg/m3 2908 kg/m3 2958 kg/m3 Volumen de pasta Volumen de agregados 8ECOS 0.3109 m3 = 978 kg 1006 - CORRECCIÓN POR 525 kg 1013 kg POR ABSORCIÓN Y HUMET 189 L	0.0842 m3 0.2070 m3 0.0300 m3	1.60% 3.84%	1.75% 1.71% 1. VOLUMEN C Cemento SOL Ti Agus Agregado grues Agregado fino Silump Obtenido 12. PROPORCIÓ CEM A.F. 1 : 3.8	5.00 2.00 2.00 DE TANDA DE PRU PO 1 ON EN VOLUMENT A.G. AGUA	1404 1491 1491 169A 0.03 7.96 kg 5.97 L 24.74 kg 30.39 kg 1 112**	m3	VS	
Gemento SOL Tipo 1 Agret Alire Agregado grueso Agregado fino 8. PROPORCIÓN DE AGREGADOS: Agregado grueso ———————————————————————————————————	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 1000 kg/m3 2508 kg/m3 Volumen de pasta Volumen de pasta Volumen de agregados 8ECOS 0.3109 m3 = 811 kg 0.3678 m3 = 978 kg 1013 kg 1013 kg POR ABSORCIÓN Y HUMET 189 L	0.0842 m3 0.2070 m3 0.0300 m3	1.60% 3.84%	1.75% 1.71% 1. VOLUMEN C Cemento SOL Ti Agus Agregado grues Agregado fino Silump Obtenido 12. PROPORCIÓ CEM A.F. 1 : 3.8	5.30 2.00 2.00 E TANDA DE PRU po 1 ON EN VOLUMENT A.G. AGUA : 3.11 : 30.2 L	1404 1491 1491 7,96 kg 5,97 L 24,74 kg 30,39 kg 1 1,12*	ma	D: 14	
INSUMO Cemento SOL Tipo 1 Agrid Atre Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS : Agregado grueso Agregado fino PEBO HÚMEDO DE LOS AGREGA Agregado fino D. AGUA EFECTIVA CORREGIDA F Agua DESERVACIONES: Muestras provietas e identificadas y Prohibida la reproducción total o pa	PESC ESPECÍFICO 3150 kg/m3 1000 kg/m3 1000 kg/m3 2508 kg/m3 2508 kg/m3 Volumen de passa Volumen de agregados 8ECOS 0.3109 m3 = 811 kg 0.3678 m3 = 978 kg 1013	0.0842 m3 0.2070 m3 0.0000 m3 0.0000 m3 0.03212 m3 0.5788 m3 0.6788 m3	1.60% 3.64% 3.64% STLAB SAC	1.75% 1.71% 1. VOLUMEN D Comento SOL Ti Agus Agregado gruco Agregado fino Silump Obtenido 12. PROPORCIÓ CEM A.F. 1 : 3.8	5.30 2.00 2.00 E TANDA DE PRU po 1 ON EN VOLUMENT A.G. AGUA : 3.11 : 30.2 L	1404 1491 1491 7,96 kg 5,97 L 24,74 kg 30,39 kg 1 1,12*	m3	D: 14	

KEST,	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		The.	Código		EQ-	10-01
27	games -	prenono i or ac		Venide				
MIL	DISENO D	ETODO ACI 211		Feebn	U.	09-1	0-2002	
		C. T.		Elgini	Elgini		161	
200	873		LAS DE CONCRETO DEL AGI 211	il.	10	37		51
ROYECTO	POLVO DE TEJA RECICLA	DE LADRILLOS DE CONCRETO DA Y FIBRA DE BAGAZO DE CA	AÑA RECICLADA EN I	LADRILLOS CO LOS ENSAYOS I	N ADICIÓN DE DE RESISTENCIA	R	EGISTRO N°:	2022 - TS418
OLICITANTE		NDAD, PLAY MURETE, LIMA IAN OMAR / BRAZOWICH MAR		us	S .	REAL	IZADO POR :	D. CASTILLO
ÓDIGO DE PROYECTO						REVISADO POR : K.TINOCO		
BICACIÓN DE PROYECTO ECHA DE EMISIÓN	: Desarrollado en las instalacio - 9/12/2502	- 2	67, 19,			FECHA DE VACIADO: 9/12/2022 TURNO: Díumo		
EOFF DE EINGION	*	W.		6,		-	10.0.0	Dietire
gregado	: Ag. Grueso / Ag. Fino	U				F'c de diseño:	90 kg/cm2	
rocedencia emento	: AGREGAGOS DE FERRETERIA : Cemento SOL Tipo 1						Asentamiento: no de mezcla:	1" - 2" 1% F.B.C + 3% P
		20			-	.810		
RESISTENCIA A LA COMPRESIÓ	N REQUERIDA	Par.	6.	CÁLCULO DE	LA CANTIDAD DE	CEMENTO		
F'cr= 160				Cemento	285 kg			
RELACIÓN AGUA CEMENTO			6	FACTOR CEM	ENTO			
R a/c = 0.78			CT	Boises x		85		
DETERMINACIÓN DEL VOLUMEN Agua = 207 L	I DE AGUA		7.		FIBRA DE BAGAZ kg x m3 ≈ 4.0% /			
CANTIDAD DE AIRE ATRAPADO Aire = 3.0%			8.		POLVO DE TEJA 19 x m3 = 3.0%			
Ale- SUN	D	1/2		1,80 1	gxaa -s.sa.			14
CÁLCULO DEL VOLUMEN DE AG	REGADOS							
INSUMO	PESO ESPECÍFICO	VOLUMEN ABSOLUTO						
Cemento SOL Tipo 1	3150 kg/m3	0.0842 m3						
Agus	1000 kg/m3	0.2070 m3 0.0300 m3						
Aire	-	0.0300 m3	HUMEDAD /	ABSORCIÓN T	MÓD, FINEZA	P.U. SUELTO	TM	
Agregado grueso	2608 kg/m3	-	1,66%	1.75%	5,30	1404	3.0	-
Agregado fino	2658 kg/m3		3,64%	1.71%	2.00	1491	130	
	Volumen de pasta Volumen de agregados	0.3212 m3 0.6788 m3		11	-			
PROPORCIÓN DE AGREGADOS :	S. D. S. Carrier and				E TANDA DE PRU		m3	
Agregado grusso	0.3109 m3 = 811 kg			emento SOL Tip gua	00 1	7.98 kg 5.67 L		
	0.3678 m3 = 978 kg		///	gregado grueso		24.74 kg		
Agregado fino ==	areara me - are ng							
Agregado fino =	discretific - storing		A	gregado lino		30.39 kg		
PESO HÚMEDO DE LOS AGREGA	ADOS - CORRECCIÓN POR H	UWEDAD	81	lump Obtenido		1 1/2"		
PESO HÚMEDO DE LOS AGREGA Agregado grasso	ADOS - CORRECCIÓN POR H 826 kg	UMEDAD	SI FI	lump Obtenido bra de bagazo o		1 1/2" 0.32 kg		
PESO HÚMEDO DE LOS AGREGA	ADOS - CORRECCIÓN POR H	UWEDAD	SI FI	lump Obtenido		1 1/2"		
PESO HÚMEDO DE LOS AGREGA Agregado grueso Agregado fino	ADOS - CORRECCIÓN POR H 828 kg 1013 kg		SI FI Pr	ump Obtenido bra de bagazo o olvo de teja reci		1 1/2" 0.32 kg 0.24 kg		
PESO HÚMEDO DE LOS AGREGA Agregado grasso	ADOS - CORRECCIÓN POR H 828 kg 1013 kg		SI FI Pr	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg DE OBRA		
PESO HÚMEDO DE LOS AGREGA Agregado grasso Agregado fino O, AGUA EFECTIVA CORREGIDA P	NDOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABSORCIÓN Y HUMEDAI		SI FI Pr	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	clade N EN VOLUMEN I	1 1/2" 0.32 kg 0.24 kg DE OBRA		
PESO HÚMEDO DE LOS AGREGA Agregado grueso Agregado fino A AGUA EFECTIVA CORREGIDA P Agua	NDOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABSORCIÓN Y HUMEDAI		SI FI Pr	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg DE OBRA		
PESO HÚMEDO DE LOS AGREGA Agregado grueso Agregado fino AGUA EFECTIVA CORREGIDA P Agua BSERVACIONES:	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABSORCIÓN Y HUMEDAI 189 L		SI FI Pr	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg DE OBRA		
PESO HÚMEDO DE LOS AGREGA Agregado grueso Agregado fino AGUA EFECTIVA CORREGIDA P Agua BSERVACIONES: Muestras provistas e identificadas p	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABSORCIÓN Y HUMEDAI 189 L		SI FI	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg DE OBRA		
PESO HÚMEDO DE LOS AGREGA Agregado fino Agregado fino AGUA EFECTIVA CORREGIDA P Agua BSERVACIONES: Muestras provistas e identificadas p	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABSORCIÓN Y HUMEDAI 189 L		SI FI	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg DE OBRA		
PESO HÚMEDO DE LOS AGREGA Agregado grueso Agregado fino AGUA EFECTIVA CORREGIDA P Agua SSERVACIONES: Muestras provistas e identificadas p	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABSORCIÓN Y HUMEDAI 189 L		SI FI	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg DE OBRA		
PESO HÚMEDO DE LOS AGREGA Agregado grueso Agregado fino AGUA EFECTIVA CORREGIDA P Agua SSERVACIONES: Muestras provistas e identificadas p	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABSORCIÓN Y HUMEDAI 189 L		SI FI	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg DE OBRA		
PESO HÚMEDO DE LOS AGREGA Agregado grueso Agregado fino AGUA EFECTIVA CORREGIDA P Agua SSERVACIONES: Muestras provistas e identificadas p	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABSORCIÓN Y HUMEDAI 189 L	D sutorización de MATESTLAB (SI FI	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg DE OBRA		
PESO HÚMEDO DE LOS AGREGA Agragado grueso Agragado fino AGUA EFECTIVA CORREGIDA P Agua BSERVACIONES: Musotras provistas e identificadas p Prahábida la reproducción total o par	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABSORCIÓN Y HUMEDAI 189 L	sutorización de MATESTLAS :	SI Fi 12 SAC	ump Obtenido bra de bagazo o olvo de teja reci c. PROPORCIÓ CEM A.F.	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg DE OBRA	.DH	0
PESO HÚMEDO DE LOS AGRESA Agragado fino Agua EFECTIVA CORREGIDA P Agua BSERVACIONES: Muestras provistas e identificadas p Prohibida la reproducción total o pai	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABBORCIÓN Y HUMEDAI 188 L por el solicitante rotal de este documento sin la	sutorización de MATESTLAS :	SI FI 12 SAC ATESTLAS SAC	ump Obtenido bra de bagazo e alvo de teja reci 2. PROPORCIÓ CEM A.F. 1 : 3.8	ciado N EN VOLUMEN I A.G. AGUA	1 1/2" 0.32 kg 0.24 kg 0.24 kg DE OBRA / boltsa	1	14
PESO HÚMEDO DE LOS AGREGA Agregado grueso Agregado fino AGUA EFECTIVA CORREGIDA P Agua BSERVACIONES: Muscitas provistas e identificadas p Prahábida la reproducción total o par	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABBORCIÓN Y HUMEDAI 189 L POR EL SELECTOR DE LA COMPANION DE L PORTE DE L POR	Butorización de MATESTLAB : W JETE Nombrey Gener	SI FI 12 SAC ATESTLAS SAC	ump Obtenido bra de bagazo d alvo de teja reci c. PROPORCIÓ CEM A.F. 1 : 3.5	clado N EN VOLUMENT A.G. AGUA : 3.11 : 30.2 L	1 1/2" 0.32 kg 0.24 kg 0.24 kg 0.60 GBRA / bolss	STLARS	A C "
PESO HÚMEDO DE LOS AGREGA Agregado grueso Agregado sino D. AGUA EFECTIVA CORREGIDA P Agua BSERVACIONES: Muestras provistas e identificadas p Prohibida la reproducción total o par	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABBORCIÓN Y HUMEDAI 188 L POR EL SOLICITATE POR EL SOLICITA	eutorización de MATESTLAS : Wcrc Yourbay Great MATEST	SAC	ump Obtenido bis de bagazo do olivo de teja reci c. PROPORCIÓ CEM A.F. 1 : 3.8	clado N EN VOLUMENT A.G. AGUA : 3.11 : 30.2 L	1 1/2" 0.32 kg 0.24 kg 0.24 kg 0.60 GBRA / bolss	1	A C "
PESO HÚMEDO DE LOS AGRESA Agregado grueso Agregado fino AGUA EFECTIVA CORRESIDA P Agua BSERVACIONES: Muestras provistas e identificadas p Prohibida la reproducción total o par Viconousia Viconousia MATE	ADOS - CORRECCIÓN POR H 828 kg 1013 kg POR ABBORCIÓN Y HUMEDAI 188 L POR EL SOLICITATE POR EL SOLICITA	eutorización de MATESTLAS : Wcrc Yourbay Great MATEST	SI FI 12 SAC ATESTLAS SAC	ump Obtenido bis de bagazo do olivo de teja reci c. PROPORCIÓ CEM A.F. 1 : 3.8	clado N EN VOLUMENT A.G. AGUA : 3.11 : 30.2 L	1 1/2" 0.32 kg 0.24 kg 0.24 kg DE OBRA / bolisa	STLARS	A.C

KEST								
	19.8				CASigo	1	10-00-01	
	2 Diengo	DE MEZON A ARCHRA	ropo co	(217	Vessión.		aí	
MTL	DISENO	DE MEZCLA SEGUN ME	TODO AC	211	Pedha	W.	09-12-2022	
The same of the sa	1				Mgka	3 35	3 de 4	L
A Paragraph	*ANALISIS COMPARATI	DISEÑO DE MEZCLA: MÉTODO DE	L ACI 211		LLOS CON ADICIÓN D	DE DE	. 8	51
OYECTO	: POLVO DE TEJA RECK	CLADA Y FIBRA DE BAGAZO DE CA UNIDAD, PILA Y MURETE, LIMA 20	AÑA RECICLA				RO Nº: 20	022 - T841
JCITANTE	A STATE OF THE STA	NISTIAN OMAR / BRAZOWICH MAR	cos christi	AN JESUS		REALIZADO	1500	CASTILL
DIGO DE PROYE CACIÓN DE PRO	No. of the second	ladones de MATESTLAB SAC				REVISADO FECHA DE VAC		K.TINOCC 9/12/2022
HA DE EMISIÓN	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1000/150 00 11/1/120 12/12/12/12				- AND STATE OF THE PARTY OF THE	IRNO:	Diumo
			V 10					
7 =		5 100	N. O.					
egado sedencia	: Ag. Grueso / Ag. Fino : AGREGAGOS DE FER	DETERM				F'c de d	SYR -	90 kg/cm2 1" - 2"
nemio	: Cemento SOL Tipo 1	KELENIA				500 VUIDORNIC 2	nezda: 4% F.	
	AV-3"						20	
R e/c + DETERMINACIÓ Agus =	0.78 N DEL VOLUMEN DE AGUA 207 L	Porcentaje: 6. PORCENTAJE Porcentaje:	4.0% DE POLVO D 5.0%	E TEJA REC	ICLADO			
ANTIDAD DE A	IRE ATRAPADO 3,0%							
ATOS DE LABO	INSUMO	PESO ESPECÍFICO						
	Cemento SOL Tipo 1	3150 kg/m3						
	Agua	1000 kg/m3						
	Aire	- 1						
			HUMEDAD	ABS	MF P	us Puc	TMN	7
	Agregado grueso	2608 kg/m3	1.88%	1.75%	5.30	404 1502	3/8	
	Agregado fino	2658 kg/m3	3,54%	1.71%	2,00 1	491 1675		
uestras provista	s e identificadas por el solicitante ducción total o percial de este docum	hento sin le autorización de MATE	ESTLAS SAC					
uestras provista	s e identificadas por el solicitante	hanto ain la autorización de MATE	ESTLAB SAC	35 m				
uestras provista	s e identificadas por el solicitante		ESTLAB SAC	SP SP				
uestras provista	s e identificadas por el solicitante	EQUIPO	UTILIZADO	ÓDIGO	F. CALIBRACIÓN.	N° CERT, CALIBRA	CIÓN	
uestras provista ohibida la reprov	s e identificadas por el solicitante ducción total o parcial de este docum	EQUIPO	UTILIZADO C		F. CALIBRACIÓN 22/8/2020	131-2020	CIÓN	
uestras provista ohibida la repro-	s e identificadas por el solicitante ducción total o parcial de este docur EQUI	EQUIPO	UTILIZADO C	ÓDIGO			CIÓN	
uestras provista oblibida la reprov Bala Bala	s e identificadas por el solicitante ducción total o parcial de este docun EQUI arza digital Onaus 30000g x 1g	EQUIPO	UTILIZADO C	ÓDIGO TL LS-10	22/9/2020	131-2020 131-2020 271-2021	CIÓN	
uestras provista ohibida la reprov Bala Bala	s e identificadas por el solicitante ducción total o percial de este docun EQUI serva digital Ohaus 30000g x 1g anza digital Henkel 200g x 0,1g	EQUIPO	UTILIZADO C MT	ÓDIGO FL LS-10 TL LS-6	22/9/2020 24/9/2020	131-2020 131-2020	CIÓN	
uestras provista rohibida la reprov Bala Bala	s e identificadas por el solicitante ducción total o percial de este docum EQUI irrea digital Onsua 30000g x 1g area digital Henkel 200g x 0,1g quina de ensayo unlaxial Forney	EQUIPO	UTILIZADO C MT	ÓDIGO FL LS-10 TL LS-6 . TA-1252	22/9/2020 24/9/2020 12/7/2021	131-2020 131-2020 271-2021	CIÓN	
uestras provistas provista	s e identificadas por el solicitante ducción total o percial de este docum EQUI irrea digital Onsua 30000g x 1g area digital Henkel 200g x 0,1g quina de ensayo unlaxial Forney	EQUIPO	UTILIZADO C M1 M1 M1 M1 M1 M1 STLAB SAC	ÓDIGO FL LS-10 TL LS-6 . TA-1252	22/9/2020 24/9/2020 12/7/2021	131-2020 131-2020 271-2021		D.
Bala Maq Hen	s e identificadas por el solicitante ducción total o parcial de este docur EQUI irrea digital Ohaus 30000g x 1g area digital Henkel 200g x 0,1g quina de ensayo unlaxial Forney no digital PT-H78 196L 0° a 300°C	EQUIPO PO MATER	UTILIZADO C MT MT MT MT MT MT MT	ÓDIGO TL L8-10 TL L8-6 TA-1252 TL 0120	22/8/2020 24/9/2020 12/7/2021 25/9/2020	131-2020 131-2020 271-2021 131-2020		Dr.

AGUA CALCULO DE FERRA DE BAGAZO DE CAÑA 10.62 kg x m3 = 4.0% / Cto	PROYECTO POC. A LA SOLICITANTE : FARI CÓDIGO DE PROYECTO : — UBICACIÓN DE PROYECTO : Desa FECHA DE EMISIÓN : 3912 Agragado : Ag Procedencia : AG	ALISIS COMPARATIVO DE VO DE TEJA RICICILADA COMPRESIÓN POR UNIX REGULAN SOTO CHRISTIAN arrollada en las instalaciones 12022 Q. Grueso / Ag. Fino SPEGAGOS DE FERR emerito SOL Tipo 1	DISEÑO DE MEZCL MÉTODO DI E LADRILLOS DE CONCRETO Y PIBRA DE BAGAZO DE CA DIAO, PILA Y MURETE, LIMA 3 N OMAR / BRAZDWICH MARI BI de MATESTIAB SAC	AS DE CONCRE EL ACI 211 D CONVENCIONA AA RECICLADA M22"	ETO L Y LADRILLOS COMA EN LOS ENSAYOS DE JESUS 5. CÁLCULO DE LA	Pede Pages ADIGIÓN DE RESISTENCIA	REALIZADX REVISADX FECHA DE VA 1 F'ode Agent	140-1-3003 140-1 TRO N*: 2022 D POR : D. CA D POR : K.TII CIADO : 8/12 URNO : Di clasefic: 80 k amiento; 1**	STILLO NOCO 2/2022 tumo g/cm2 '-2'
Profes	PROYECTO : PAC SOLICITANTE : FARI CÓDIGO DE PROYECTO : Includión UBICACIÓN DE PROYECTO : Desa FECHA DE EMISIÓN : 3912 Agragado : Ag Procedencia : AG Cemento : Ca 1. RESISTENCIA A LA COMPRESIÓN REQUI For ≈ 100 2. RELACIÓN AGUA GEMENTO R aic = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGA	ALISIS COMPARATIVO DE VO DE TEJA RICICILADA COMPRESIÓN POR UNIX REGULAN SOTO CHRISTIAN arrollada en las instalaciones 12022 Q. Grueso / Ag. Fino SPEGAGOS DE FERR emerito SOL Tipo 1	DISEÑO DE MEZCL MÉTODO DI E LADRILLOS DE CONCRETO Y PIBRA DE BAGAZO DE CA DIAO, PILA Y MURETE, LIMA 3 N OMAR / BRAZDWICH MARI BI de MATESTIAB SAC	AS DE CONCRE EL ACI 211 D CONVENCIONA AA RECICLADA M22"	ETO L Y LADRILLOS COMA EN LOS ENSAYOS DE JESUS 5. CÁLCULO DE LA	Pigins ADICIÓN DE RESISTENCIA	REALIZADX REVISADX FECHA DE VA 1 F'ode Asert	4do4 TRO N*: 2022 D POR : D. CA D POR : KTIII CIADO : 9/12 TURNO : Di clasefic: 80 k amiento: 1**	STILLO NOCO 2/2022 tumo g/cm2 '-2'
DISEÑO DE MEZCUAS DE DONORETO MÉTODO CEL ACI 211 **ANMLISIS COMPARATIVO DE LADRA DE ORDORDETO CONVENIDAMA Y LADRILLOS COM ADICIÓN DE POLAVO DE TELA MICICIA DA Y PIBRA DE BERRATO DE CARRA MECICIADA EN LOS ENBANCES DE RESISTENCIA A LA CONPRESIÓN POR UNIDAO, PILA Y MUNETE, LIMA 2022* **FARRORDAN SOTO CHRISTIAN GMAR / BRAZZUMICH MARCOS CHRISTIAN JESUS **FERNANDAN SOTO CHRISTIAN GMAR / BRAZZUMICH MARCOS CHRISTIAN JESUS **FERNANDAN SOTO CHRISTIAN GMAR / BRAZZUMICH MARCOS CHRISTIAN JESUS **FECHA DE VACADO: 8/12/2022 **FECHA DE VACADO: 8/12/2	PROYECTO : POC. SOLICITANTE : FARI CÓDIGO DE PROYECTO : DISSIDIA USICACIÓN DE PROYECTO : DISSI FECHA DE EMISIÓN : 3/12/ Agragado : Ag Procedencia : AG Cemento : Ce 1. RESISTENCIA A LA COMPRESIÓN REQUI FOR 190 2. RELACIÓN AGUA GEMENTO R 20/C = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGA 3. DETERMINACIÓN DEL VOLUMEN DE AGA	VO DE TEJA RICICICADA COMPRESIÓN POR UNE IROÑAN SOTO CHRISTIAN ameliado en las instalacione 1/2022 Grueso / Ag. Fino SPEGAGOS DE FERR ementio SOL, Tipo 1	MÉTODO DE CARRETO Y PIBRA DE BAGAZO DE CA DAO, PLA Y MURETE, LIMA I N OMAR I BRAZZOWICH MARI BI de MATESTLAB SAC	EL ACI 211 CONVENCIONA RA RECICLADA 2022*	L Y LADRILLOS COMA EN LOS ENSAYOS DE JESUS 5. CÁLCULO DE LA	ADICIÓN DE RESISTENCIA	REALIZADX REVISADX FECHA DE VA 1 F'ode Asert	TRO N*: 2022 D POR : D. CA D POR : KTI CIADO : 9/12 TURNO : Di clasefic: 80 k amiento; 1**	STILLO NOCO 2/2022 umo g/cm2 '-2'
MÉTODO DEL ACI LACI LA PRIVADO DE CANTELO DE VACIADO DE POLA DE PARA PROCULADA Y PIBRA DE BAGAZO DE CAÑA RECICLADA EN LOS ENSAYOS DE RESISTENCIA A LA COMPRESIÓN POR UNIDAD, PLAY PUMERTE, LIMA, 2022* FARROÑAN SOTO CHRISTIAN CAMAR / PRAZOWICH MARCOS CHRISTIAN JESUS FARROÑAN SOTO CHRISTIAN CAMAR / PRAZOWICH MARCOS CHRISTIAN JESUS REVISADO POR : K.TINOCO DESERVISÃO POR : K.TINOCO PECHA DE VACIADO : \$1/2/2022 TURNO : DILUMO **AGREGAÇÃO DE FERRETERIA* **AGREGAÇÃO DE FERRETERIA* **AGREGAÇÃO DE FERRETERIA* **AGREGAÇÃO DE FERRETERIA* **CALCULO DE LA CANTIDAD DE CEMBENTO Comerto SOL Tipo 1 **BOSTISA PLAY DE SAGRAZO DE CAÑA **10,62 kg xm xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	PROYECTO : PAC SOLICITANTE : FARI CÓDIGO DE PROYECTO : Includión UBICACIÓN DE PROYECTO : Desa FECHA DE EMISIÓN : 3912 Agragado : Ag Procedencia : AG Cemento : Ca 1. RESISTENCIA A LA COMPRESIÓN REQUI For ≈ 100 2. RELACIÓN AGUA GEMENTO R aic = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGA	VO DE TEJA RICICICADA COMPRESIÓN POR UNE IROÑAN SOTO CHRISTIAN ameliado en las instalacione 1/2022 Grueso / Ag. Fino SPEGAGOS DE FERR ementio SOL, Tipo 1	MÉTODO DE CARRETO Y PIBRA DE BAGAZO DE CA DAO, PLA Y MURETE, LIMA I N OMAR I BRAZZOWICH MARI BI de MATESTLAB SAC	EL ACI 211 CONVENCIONA RA RECICLADA 2022*	L Y LADRILLOS COMA EN LOS ENSAYOS DE JESUS 5. CÁLCULO DE LA	RESISTENCIA	REALIZADX REVISADX FECHA DE VA 1 F'ode Asert	D POR : D. CA D POR : K.TII CIADO : 8/12 TURNO : Di diseño: 80 k amiento: 1°	STILLO NOCO 2/2022 tumo g/cm2 '-2'
VANUERS COMPARATIVO DE LADRILUGE DE CONCRETO CONVENCIONAL Y LADRILLOS COM ADICIÓN DE PROXIVO DE TEJA RECICLADA Y PERA DE BACAZO DE CARA RECICLADA EN LOS ENSAYOS DE RESISTENCIA (ALA COMPRESIÓN POR UNIDAD, PLA Y MUNETE, LIMA 2022** FARRORAN SOTO CHRISTIAN CRARA PERAZONICA MARCOS CHRISTIAN JESUS REAL ZADO POR : K. TINOCO PECHA DE VACADO : 91/2/2/2/2 TURNO DISTANO CRARA PERAZONICA MARCOS CHRISTIAN JESUS REAL ZADO POR : K. TINOCO PECHA DE VACADO : 91/2/2/2/2 TURNO DISTANO CRARA PERAZONICA MARCOS CHRISTIAN JESUS REAL ZADO POR : K. TINOCO PECHA DE VACADO : 91/2/2/2/2 TURNO DISTANO CRARA DE VACADO DE CRARA DE VACADO DE CRARA DE VACADO : 91/2/2/2 TURNO DE CARA DE VACADO DE CRARA DE VACADO : 91/2/2/2 TURNO DE VACADO DE CRARA DE VACADO : 91/2/2/2 TURNO DE VALVA DE VACADO DE CARA DE VACADO : 91/2/2/2 TURNO DE VALVA DE VACADO DE VACADO : 91/2/2/2 TURNO DE VALVA DE VACADO DE VACADO : 91/2/2/2 TURNO DE VALVA DE VALVA DE VACADO : 91/2/2/2 TURNO DE VALVA DE	PROYECTO : PAC SOLICITANTE : FARI CÓDIGO DE PROYECTO : Includión UBICACIÓN DE PROYECTO : Desa FECHA DE EMISIÓN : 3912 Agragado : Ag Procedencia : AG Cemento : Ca 1. RESISTENCIA A LA COMPRESIÓN REQUI For ≈ 100 2. RELACIÓN AGUA GEMENTO R aic = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGA	VO DE TEJA RICICICADA COMPRESIÓN POR UNE IROÑAN SOTO CHRISTIAN ameliado en las instalacione 1/2022 Grueso / Ag. Fino SPEGAGOS DE FERR ementio SOL, Tipo 1	E LADRILIOS DE CONCRETO A Y PIBRA DE BAGAZO DE CA DIAO, PILA Y MURETE, LIMA 2 IN OMAR / BRAZDIVICH MARI IN OMAR / BRAZDIVICH MARI IN OMAR / BRAZDIVICH MARI IN OMAR / BRAZDIVICH MARI	CONVENCIONA NA RECICLADA 2022"	EN LOS ENSAYOS DE JESUS 5. CÁLCULO DE LA	RESISTENCIA	REALIZADX REVISADX FECHA DE VA 1 F'ode Asert	D POR : D. CA D POR : K.TII CIADO : 8/12 TURNO : Di diseño: 80 k amiento: 1°	STILLO NOCO 2/2022 tumo g/cm2 '-2'
POLY DE TEAR RECICIAND AY FIRENCE AND PROMISED BY THE PROMIS	PROYECTO : PAC SOLICITANTE : FARI CÓDIGO DE PROYECTO : Inc. UBICACIÓN DE PROYECTO : Desa FECHA DE EMISIÓN : 3912 Agragado : Ag Procedencia : AG Cemento : Ca 1. RESISTENCIA A LA COMPRESIÓN REQUI For ≈ 1 90 2. RELACIÓN AGUA GEMENTO R aic = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGA	VO DE TEJA RICICICADA COMPRESIÓN POR UNE IROÑAN SOTO CHRISTIAN ameliado en las instalacione 1/2022 Grueso / Ag. Fino SPEGAGOS DE FERR ementio SOL, Tipo 1	Y PIBRA DE BAGAZO DE CA DAO, PILA Y MURETE, LIMA I N OMAR I BRAZDWICH IMARI IBI de MATESTLAB SAC	ÑA RECICLADA 2022"	EN LOS ENSAYOS DE JESUS 5. CÁLCULO DE LA	RESISTENCIA	REALIZADX REVISADX FECHA DE VA 1 F'ode Asert	D POR : D. CA D POR : K.TII CIADO : 8/12 TURNO : Di diseño: 80 k amiento: 1°	STILLO NOCO 2/2022 tumo g/cm2 '-2'
REVISADO POR: KTINOCO Desarrellada en las instalacionies de MATESTILAB SAC PECHA DE VACADO: 9/12/2022 TURNO: Diumo Ag. Grueso / Ag. Fino Agentamiento: 1"-2" Agentamiento: 1"-2" Codigo de mezde: 4% F.B.C + 5% P. REGUERIDA 5. CALCULO DE LA CANTIDAD DE CEMENTO Comento = 266 kg 6. FACTOR CEMENTO Bolssas k m3 = 6.2 Bolssas 7. CALCULO DE FIBRA DE BAGAZO DE CAÑA 10.62 kg xm3 = 4.0% / Clo 8. CALCULO DE TERRA DE BAGAZO DE CAÑA 10.62 kg xm3 = 5.0% / Clo 8. CALCULO DE TERRA DE BAGAZO DE CAÑA 10.62 kg xm3 = 5.0% / Clo 8. CALCULO DE TERRA DE BAGAZO DE CAÑA 10.62 kg xm3 = 5.0% / Clo 13.27 kg xm3 = 5.0% / Clo 3150 kg/m3 0.6842 m3 1000 kg/m3 0.2070 m3	CÓDIGO DE PROYECTO : — UBICACIÓN DE PROYECTO : Desa FECHA DE EMISIÓN : 8121 Agragado : Ag Procedencia : AG Cemento : Ce 1. RESISTENCIA A LA COMPRESIÓN REQUI For = 199 2. RELACIÓN AGUA GEMENTO R a/c = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGA	arrollado en las instalaciones 2022 g. Gruesco / Ag. Fino GREGAGOS DE FERR emerito SOL Tipo 1	m de MATESTLAB SAC	COS CHRISTIAN	5. CALCULO DE LA	C	REVISADO FECHA DE VA T F'o de Asent	DPOR: K.TII CIADO: 9/12 TURNO: Di o diseño: 90 k amiento: 1º	NOCO 2/2022 iumo ig/cm2 '=2"
Desarrollade on las instalacionismo de IMATESTILAB SAC FECHA DE VACIADO : \$1/2/2022 TURNO : Diumo	UBICACIÓN DE PROYECTO : Desa FECHA DE EMISIÓN : 8/12/ Agragado : Ag Procedencia : AG Cemento : Ce 1. RESISTENCIA A LA COMPRESIÓN REQUI For = 180 2. RELACIÓN AGUA GEMENTO R a/c = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGA	p. Grueso / Ag. Fino DREGAGOS DE FERR Emento SOL Tipo 1				AMPO IN A	FECHA DE VA F'o de Asert	CIADO: 9/12 TURNO: Di diseño: 90 k amiento: 1°	2/2022 iumo ig/om2 '=2"
Agueso / Ag. Fino Agreco / Agreco / Ag. Fino Agreco / Agreco / Ag. Fino Agreco / Agreco / Ag. Fino Codigo de mezcis: 4% F.B.C + 5% P. REQUERDA 5. CÁLCULO DE LA CANTIDAD DE CEMENTO Comento = 265 kg 8. FACTOR CEMENTO Bohas x m3 = 6.2 Bolas E AGUA 7. CÁLCULO DE FIRRA DE BAGAZO DE CAÑA 10.62 kg x m3 = 4.0% / Cho 8. CÁLCULO DE FIRRA DE BAGAZO DE CAÑA 10.62 kg x m3 = 4.0% / Cho 13.27 kg x m3 = 5.0% / Cho 13.27 kg x m3 = 5.0% / Cho Agreco / Cho 13.27 kg x m3 = 5.0% / Cho 13.27 k	Agregado : Ag Procedencia : AG Cemento : Ce 1. RESISTENCIA A LA COMPRESIÓN REQUI F'or = 190 2. RELACIÓN AGUA GEMENTO R a/c = 0.73 3. DETERMINACIÓN DEL VOLUMEN DE AGA	g. Grueso / Ag. Fino GREGAGOS DE FERR emento SOL Tipo 1	RETERIA	P. 30		CANTON	F'c de Asert	o diseño: 90 k amiento; 1°	g/cm2 '-2"
Agentamiento 1" - 2" Codigo de mezcis: 4% F.B.C + 5% P.	Procedencia : AG Cemento : Ce 1, RESISTENCIA A LA COMPRESIÓN REQUI For ≈ 190 190 2, RELACIÓN AGUA GEMENTO R aic ≈ 0,78 3. DETERMINACIÓN DEL VOLUMEN DE AGA	REGAGOS DE FERR	RETERIA			CAMPOUNCE	Asent	amiento; 1°	-2"
Agentamiento 1" - 2" Codigo de mezcia: 4% F.B.C + 5% P.	Procedencia : AG Cemento : Ce 1, RESISTENCIA A LA COMPRESIÓN REQUI For ≈ For ≈ 190 2, RELACIÓN AGUA GEMENTO Re/c ≈ 0,73 Re/c ≈ 3, DETERMINACIÓN DEL VOLUMEN DE AGA	REGAGOS DE FERR	RETERIA			CAMPOLOGO	Asent	amiento; 1°	-2"
### SCALCULO DE LA CANTIDAD DE CEMENTO Comento	1, RESISTENCIA A LA COMPRESIÓN REQUI F'or = 199 2, RELACIÓN AGUA GEMENTO R a/c = 0.78 3, DETERMINACIÓN DEL VOLUMEN DE AGA		51100			CAMPBURGE	Código de	mezda: 4% F.B.C	to the second
AGUA T. CÁLCULO DE FIBRA DE BAGAZO DE CAÑA 10.62 kg x m3 = 4.0% / Cio	F'or = 190 2. RELACIÓN AGUA CEMENTO R aic = 0.73 3. DETERMINACIÓN DEL VOLUMEN DE AGU	ERICA	STA			CANTONNA			+5% P
AGUA CALCULO DE FIBRA DE BAGAZO DE CAÑA 10.52 kg x m3 = 4.0% / Cio	E. RELACIÓN AGUA CEMENTO R aic = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGU					CHERTIFICAD DE	CEMENTO		35
### AGUA 7. CÁLCULO DE FIBRA DE BAGAZO DE CAÑA 10.82 kg x m3 = 4.0% / Oto 8. CÁLCULO DE POLVO DE TEJIA RECICLADO 13.27 kg x m3 = 5.0% / Cto 13.27 kg x m3 = 5.0% / Cto 4. CÁLCULO DE POLVO DE TEJIA RECICLADO 13.27 kg x m3 = 5.0% / Cto 13.27 kg x m3 = 5.0% / Cto 4. CÁLCULO DE POLVO DE TEJIA RECICLADO 13.27 kg x m3 = 5.0% / Cto 14.04 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8	R a/c = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGU				Cemento =				
### AGUA 7. CÁLCULO DE FIBRA DE BAGAZO DE CAÑA 10.82 kg x m3 = 4.0% / Oto 8. CÁLCULO DE POLVO DE TEJIA RECICLADO 13.27 kg x m3 = 5.0% / Cto 13.27 kg x m3 = 5.0% / Cto 4. CÁLCULO DE POLVO DE TEJIA RECICLADO 13.27 kg x m3 = 5.0% / Cto 13.27 kg x m3 = 5.0% / Cto 4. CÁLCULO DE POLVO DE TEJIA RECICLADO 13.27 kg x m3 = 5.0% / Cto 14.04 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8	R a/c = 0.78 3. DETERMINACIÓN DEL VOLUMEN DE AGU				A SACTOR ATTIC	TO.			
### AGUA	3. DETERMINACIÓN DEL VOLUMEN DE AGL					The State of the S	в 76		
### 10.62 kg x m3 = 4.0% / Clo 8. CÁLCULO DE POLVO DE TELIA RECICLADO 13.27 kg x m3 = 5.0% / Cto 10.82 kg x m3						150000	(4)		
8. CÁLCULO DE POLVO DE TEJA RECICLADO 13.27 kg x m3 = 5.0% / Cto 10.00 kg/m3	collect market pe	UA .							
T3.27 kg x m3 = 5.0% / Ctb	100000000000000000000000000000000000000				10.02 10	A (100 - 4,070)	ATT		
GADOS PESO ESPECÍFICO VOLUMEN ABSOLUTO 3150 kg/m3	4. CANTIDAD DE AIRE ATRAPADO				8. CÁLCULO DE PO	LVO DE TEJA	RECICLADO		
PBSO ESPECÍFICO VOLUMEN ABSOLUTO 3160 kg/m3 0.0842 m3 1000 kg/m3 0.2070 m3	Aire = 3.0%				13.27 kg:	x m3 = 5.0% /	Cio		
PBSO ESPECÍFICO VOLUMEN ABSOLUTO 3160 kg/m3 0.0842 m3 1000 kg/m3 0.2070 m3	7. CÁLCULO DEL VOLUMEN DE AGREGADO	ne A	//		BEST			5	10
3150 kg/m3			VOLUMEN ABSOLUTO	1					
0.0300 m3	Cemento SOL Tipo 1								
HUMEDAD ABSORCIÓN MÓD. FINEZA P.U. SUELTO TM	Agus	1000 kg/m3	0.2070 m3						
2608 kg/m3 — 1.69% 1.79% 5.30 1404 3/8 2658 kg/m3 — 3.64% 1.71% 2.00 1491 Volumen de pasta 0.3212 m3 Volumen de agregados 0.6788 m3 COS 11. VOLUMEN DE TANDA DE PRUEBA 0.03 m3 109 m3 = 811 kg Cemento SQL Tipo 1 7.66 kg	Aire	-	0.0300 m3						
2658 kg/m3 3.64% 1.71% 2.00 1491 Volumen de pasta 0.3212 m3 Volumen de agregados 0.6788 m3 11. VOLUMEN DE TANDA DE PRUEBA 0.03 m3 109 m3 = 811 kg Cemento SQL Tipo 1 7.66 kg	Accounts annes	2000 kn/m²		-		Section Control of			
Volumen de pasta 0.3212 m3 Volumen de agregados 0.6788 m3 208 11. VOLUMEN DE TANDA DE PRUEBA 0.03 m3 109 m3 = 811 kg Cementa SOL Tipo 1 7.46 kg	Agregado gruese Agregado fino			and the same of th		1777		2/6	
Volumen de agregados 0.9788 m3 COS 11. VOLUMEN DE TANDA DE PRUEBA 0.03 m3 109 m3 = 811 kg Cemento SOL Tipo 1 7.96 kg				0.04.0	10.10	2.00			1
109 m3 = 811 kg Cemento SOL Tipo 1 7.66 kg	Volu								
109 m3 = 811 kg Cemento SOL Tipo 1 7.66 kg	DOODOONAL OF LODGE CO.								
		n3 = 811 kp							
Anua C.C.7	Agrapado grass - 0.3103 si	- uring					70,635		
678 m3 × 978 kg Agregado grueso 24.74 kg	Agregado fino = 0.3678 m	13 × 978 kg			CONTRACTOR OF THE PARTY OF THE				
		ro (Persital)			Agregado fino		30.39 kg		
Agregado nno 30.38 kg			MEDAD		Slump Oblanido		1"		
OS - CORRECCIÓN POR HUMEDAD Siump Obienido 1*							0.32 kg		
25 - CORRECCIÓN POR HUMEDAD Siump Oblanido 1" 825 kg Fibra de bagazo de caria 0.32 kg	Agregado fino 1013	NJ			Polvo de teja recicia	do	0.40 kg		
25 - CORRECCIÓN POR HUMEDAD Siuma Chianido 1" 825 kg Fibra de bagazo de caria 0.32 kg		ORCIÓN Y HUMEDAD			12. PROPORCIÓN II	IN VOLUMEN D	E CERA		
DS - CORRECCIÓN POR HUMEDAD Stamp Cotanido 1" 825 kg Fibre de begazo de caria 0.32 kg 1013 kg Potvo de teja reciciado 0.40 kg	O. AGUA EFECTIVA CORREGIDA POR ARRI						20020		
DS - CORRECCIÓN POR HUMEDAD Saumo Colenido 1º 825 kg Fibre de begazo de carla 0.32 kg 1013 kg Potvo de teja reciciado 0.40 kg					CEM A.F. A.	G. AGUA			
25 - CORRECCIÓN POR HUMEDAD Sump Oblavido 1* 825 kg Fibre de begazo de caria 0.32 kg 1013 kg Potvo de teja reciciado 0.40 kg 8 ABSORCIÓN Y HUMEDAD 12. PROPORCIÓN EN VOLUMEN DE CERA	10, AGUA EFECTIVA CORREGIDA POR ABSI Agua 189 L						bolsa		
25 - CORRECCIÓN POR HUMEDAD Sump Chlenido 1* 825 kg Fibre de begazo de caria 0.32 kg 1013 kg Retvo de teja reciciado 0.40 kg 8 ABSORCIÓN Y HUMEDAD 12 PROPORCIÓN EN VOLUMEN DE CERA 189 L CEM A.F. A.G. AGUA	Agua 189 L						bolsa		
678 m3 = 978 kg Agresado grueso 24.74 kg	PROPORCIÓN DE AGREGADOS SECOS Agregado grueso = 0.3109 m Agregado fino = 0.3678 m PESO HÚMEDO DE LOS AGREGADOS - O Agregado grueso 825 k	n3 = 811 kg n3 = 978 kg corrección por Hum kg kg			Cemerio SOL Tipo 1 Agua Agregado grueso Agregado fino Siump Obtenido Fibra de bagazo de e Potvo de toja recicia 12. PROPORCIÓN S	safia do EN VOLUMEN D	7.96 kg 5.67 L 24.74 kg 30.39 kg 4" 0.32 kg 0.40 kg		
Account for					Agregado fino		30.39 kg		
			JEDAD						
DS - CORRECCIÓN POR HUMEDAD 8/m Chlanido 1*									
25 - CORRECCIÓN POR HUMEDAD Siump Oblanido 1" 825 kg Fibra de bagazo de caria 0.32 kg	Agregada Ilito 1013	1			Hotvo de teja redicia	00	U.40 ag		
25 - CORRECCIÓN POR HUMEDAD Siump Oblanido 1** 825 kg Fibra de bagazo de caris 0.32 kg		ORCIÓN Y HI IVEDAD			12. PROPORCIÓN E	IN VOLUMEN D	E CERA		
OS - CORRECCIÓN POR HUMEDAD Sarmp Obtanido 4º 825 kg Fibra de bagazo de carla 0.32 kg 1013 kg Potvo de teja reciclado 0.40 kg	O. AGUA EFECTIVA CORREGIDA POR ABS	DESCRIPTION OF THE PERSON OF					MIN (007)		
25 - CORRECCIÓN POR HUMEDAD Sump Oblando 1* 825 kg Fibra de bagazzo de caria 0.32 kg 1013 kg Polvo de teja reciclado 0.40 kg 8 ABSORCIÓN Y HUMEDAD 12. PROPORCIÓN EN VOLUMEN DE CERA 189 L CEM A.F. A.G. AGUA									
25 - CORRECCIÓN POR HUMEDAD Sump Oblando 1* 825 kg Fibra de bagazzo de caria 0.32 kg 1013 kg Polvo de teja reciclado 0.40 kg 8 ABSORCIÓN Y HUMEDAD 12. PROPORCIÓN EN VOLUMEN DE CERA 189 L CEM A.F. A.G. AGUA							bolsa		
25 - CORRECCIÓN POR HUMEDAD Sump Cotenido 1" 825 kg Fibre de begazzo de caria 0.32 kg 1013 kg Retvo de teja recidiado 0.40 kg 8 ABSORCIÓN Y HUMEDAD 12. PROPORCIÓN EN VOLUMEN DE CERA 189 L CEM A.F. A.G. AGUA							boles		

CLICITANTE ÓCIGO DE PROYECTO BICACIÓN DE PROYECTO ECHA DE EMISIÓN gregado rocidencia emento	"ANALISIS COMPARATIVI "POLVO DE TEJA RECICL LA COMPRESIÓN POR U "FARROÑAN SOTO CHRIS "- "DESATOllado en las instala "SH12/2022 "Ag, Grusso / Ag, Fino "AGREGAGOS DE FERRE "Camento SOL Tipo 1	D DE LADRILLOS DE CONCR ADA Y PIBRA DE BAGAZO D NIDAD, PILA Y MURETE, LIM ITIAN OMAR / BRAZOWICH II Ciones de MATESTLAB SAC	CLAS DE CONCI DEL ACI 211 RETO CONVENCIO E CAÑA RECICLA NA 2022"	RETO DNAL Y LADRI DA EN LOS EI		REALIZAD REVISAD FECHA DE VI	DO POR : DO POR : AGIADO : TURNO : le diseño: tamiento	D. CASTII K.TINOC 9/12/200 Diumo 90 kg/on
CUCITANTE OCIGO DE PROYECTO BICACIÓN DE PROYECTO ECHA DE EMISIÓN gregado rocidencia emento RELACIÓN AGUA CEMENT	"ANALISIS COMPARATIVI " POLVO DE TEJA RECICI. LA COMPRESIÓN POR U : FARROÑAN SOTO CHRIS " — : Desarrollado en las instala : \$112/2022 : Ag. Grueso / Ag. Fino : AGREGAGOS DE FERRE : Cemente SOL Tipo 1	DISEÑO DE MEZO MÉTODO DI DE LADRILLOS DE CONCE ADA Y PIERA DE BAGAZO DI NIDAD, PILA Y MURETE, LIM ITTAN OMAR / BRAZOWICH IN CIONES DE MATESTLAB SAC ETERIA 5. PORCENTA.	CLAS DE CONCI DEL ACI 211 NETO CONVENCI LE CARA RECICLA IA 2022'	RETO DNAL Y LADRI DA EN LOS EI	Págita	REALIZAD REVISAD FECHA DE VI	3 de 4 STRO Nº: : DO POR : DO POR : TURNO : TURNO : Le diseño: tamiento:	D. CASTI K.TINOC 9/12/20 Diumo
CUCITANTE OCIGO DE PROYECTO BICACIÓN DE PROYECTO ECHA DE EMISIÓN gregado rocidencia emento RELACIÓN AGUA CEMENT	POLVO DE TEJA RECICL LA COMPRESIÓN POR U FARROÑAN SOTO CHRIS - Desarrollado en las installa SY12/2022 Ag. Grueso / Ag. Pino AGREGAGOS DE FERRO Cemento SOL Tipo 1	MÉTODO D DE LADRILLOS DE CONCR ADA Y PIERA DE BAGAZO DI NIDAD, PILA Y MURETE, LIM STIAN OMAR / BRAZOWICH IS CIONES DE MATESTLAB SAC ETERIA 5. PORCENTA.	DEL ACI 211 RETO CONVENCI E CARA RECICLI A 2022* MARCOS CHRIST	DNAL Y LADRI DA EN LOS EI	ILLOS CON ADICIÓN	REALIZAD REVISAD FECHA DE VI	STRO N°: : DO POR : DO POR : AGIADO : TURNO : Ile diseño: tamiento.	D. CASTII K.TINOC 9/12/200 Diumo 90 kg/on
CLICITANTE CÓCIGO DE PROYECTO BICACIÓN DE PROYECTO ECHA DE EMISIÓN gregado recedencia recedencia RELACIÓN AGUA CEMENT	POLVO DE TEJA RECICL LA COMPRESIÓN POR U FARROÑAN SOTO CHRIS - Desarrollado en las installa SY12/2022 Ag. Grueso / Ag. Pino AGREGAGOS DE FERRO Cemento SOL Tipo 1	MÉTODO D DE LADRILLOS DE CONCR ADA Y PIERA DE BAGAZO DI NIDAD, PILA Y MURETE, LIM STIAN OMAR / BRAZOWICH IS CIONES DE MATESTLAB SAC ETERIA 5. PORCENTA.	DEL ACI 211 RETO CONVENCI E CARA RECICLI A 2022* MARCOS CHRIST	DNAL Y LADRI DA EN LOS EI		REALIZAD REVISAD FECHA DE VI	DO POR : DO POR : AGIADO : TURNO : le diseño: tamiento	D. CASTIL K.TINOC 9/12/202 Diumo
CUCITANTE OCIGO DE PROYECTO BICACIÓN DE PROYECTO ECHA DE EMISIÓN gregado rocidencia emento RELACIÓN AGUA CEMENT	POLVO DE TEJA RECICL LA COMPRESIÓN POR U FARROÑAN SOTO CHRIS - Desarrollado en las installa SY12/2022 Ag. Grueso / Ag. Pino AGREGAGOS DE FERRO Cemento SOL Tipo 1	D DE LADRILLOS DE CONCR ADA Y PIBRA DE BAGAZO D NIDAD, PILA Y MURETE, LIM ITIAN OMAR / BRAZOWICH N Giones de MATESTLAB SAC ETERIA 5. PORCENTA.	RETO CONVENCIO E CAÑA RECICLA IA 2022" MARCOS CHRIST	DA EN LOS EI		REALIZAD REVISAD FECHA DE VI	DO POR : DO POR : AGIADO : TURNO : le diseño: tamiento	D. CASTIL K.TINOC 9/12/202 Diumo 90 kg/cm
CUCITANTE OCIGO DE PROYECTO BICACIÓN DE PROYECTO ECHA DE EMISIÓN gregado rocidencia emento RELACIÓN AGUA CEMENT	POLVO DE TEJA RECICL LA COMPRESIÓN POR U FARROÑAN SOTO CHRIS - Desarrollado en las installa SY12/2022 Ag. Grueso / Ag. Pino AGREGAGOS DE FERRO Cemento SOL Tipo 1	ADA Y PIBRA DE BAGAZO DI NIDAD, PILA Y MURETE, LIMITIAN OMAR / BRAZOWICH II CICINES de MATESTLAB SAC ETERIA 5. PORCENTA.	IE CARA RECICLA IA 2022" MARCOS CHRIST	DA EN LOS EI		REALIZAD REVISAD FECHA DE VI	DO POR : DO POR : AGIADO : TURNO : le diseño: tamiento	K.TINOC 9/12/202 Diumo
OCIGO DE PROYECTO BICACIÓN DE PROYECTO ECHA DE EMISIÓN gregado rocadencia emento RELACIÓN AGUA CEMENT	: Desarrollado en las instala : 9/12/2022 : Ag. Grueso / Ag. Fino : AGREGAGOS DE FERRE : Camento SOL Tipo 1	ciones de MATESTLAB SAC . ETERIA 5. PORCENTA.	P. 35	IAN JESUS	55.8	REVISAD FECHA DE VI	DO POR : ACIADO : TURNO : le diseño: tamiento	D. GASTIL K.TINOC 9/12/202 Diumo 90 kg/cm 1* - 2*
BICACIÓN DE PROYECTO ECHA DE EMISIÓN gregado rocadencia emento RELACIÓN AGUA CEMENT	: Desarrollado en las instala: : 9/12/2022 : Ag. Grueso / Ag. Fino : AGREGAGOS DE FERRE : Camento SOL Tipo 1	ETERIA 5. PORCENTA.	JE DE FIBRA DI		S 100	FECHA DE V	ACIADO : TURNO : le diseño: tamiento:	9/12/202 Diumo 90 kg/cm
echa de emisión gregado ocadencia emento RELACIÓN AGUA CEMENT	: 9/12/2022 : Ag. Grusso / Ag. Fino : AgREGAGOS DE FERRE : Camento SOL Tipo 1	ETERIA 5. PORCENTA.	JE DE FIBRA DI		S.N.	Fed	TURNO :	Diumo 90 kg/cm
rocidencia emento RELACIÓN AGUA CEMENT	: AGREGAGOS DE FERRE : Cemente SOL Tipo 1	5. PORCENTA.	JE DE FIBRA DI		39.7		famiento:	1000
rocidencia emento RELACIÓN AGUA CEMENT	: AGREGAGOS DE FERRE : Cemente SOL Tipo 1	5. PORCENTA.	JE DE FIBRA DE		35.7		famiento:	1000
rocidencia emento RELACIÓN AGUA CEMENT	: AGREGAGOS DE FERRE : Cemente SOL Tipo 1	5. PORCENTA.	JE DE FIBRA D				famiento:	1000
RELACIÓN AGUA CEMENT	: Cemento SOL Tipo 1	5. PORCENTA.	JE DE FIBRA D			Magra Magra		
RELACIÓN AGUA CEMENT			JE DE FIBRA D			Código de	e mazen. 439 c	F.B.C + 7%
			JE DE FIBRA DE		N 0	550	10	35
Agus • 207 L CANTIDAD DE AIRE ATRA Aire = 3.0%	PADO	Porcentaje:	7,0%					
	5. 64							
DATOS DE LABORATORIO	INSUMO	PESO ESPECÍFICO	1					
Ce	mento SOL Tipo 1	3150 kg/m3						
Ag		1000 kg/m3						
Air	6	- 2	(2000)					
71, 4,		EMAN NEW YORK	HUMEDAD	ABS	MF I	PUS PUC	TMN	
Ag	regado grueso	2806 kg/m3	1.88%	1.75%	5.30	1404 1502	3/8	
Ag	regado fino	2658 kg/m3	3.64%	1.71%	2.00	1491 1678		
BSERVACIONES: Muestras provistas e identific Prohibida la reproducción tot		nto sin la autorización de M	IATESTLAB SAC	de de				
300	11 11	EQUI	IPO UTILIZADO			25		
	EQUIPO	3	- 0	ÓDIGO	F. CALIBRACIÓN	N° CERT, CALIBR	RACIÓN	
Balanza digital	Ohaus 30000g x 1g		M	TL LS-10	22/9/2020	131-2020		
Balanza digital	Henkel 200g x 0,1g	63	M	TL LS-6	24/9/2020	131-2020		
100000	sayo untaxtal Forney			TA-1252	12/7/2021	271-2021		
Homo digital P1	r-H76 196L 0° a 300°C	-	M	TL 0120	25/9/2020	131-2020	0	
		MA MA	ATESTLAS SAC	D. 3			No.	
TECNICOLEM	0:	JEFE	ELEM	D:		CC-LEV	19-16-34	Ot .
MATE STATE Laboration	SZLAB S. Aat Toe Ensayo de Materia	1	STLAB S.		2.	ATEST AB RUC 2080473 COLLE CUMPA GERRATT GEN	36572	M:

V2 D	CVC	20.00						
KEST,	9 6	12 36		10	Codies		R	51041
27.	a second	4,45			Venile		- 680	aı
MTL	DISEÑO D	E MEZCLA SEGUN MI	ETODO ACI 21	1	Feele	Q.	t0	-13-3022
And Assessed to	- N				Pigina		9	4 de 4
	0,15	DISBÑO DE MEZOL	LAS DE CONCRET	то	70	25		E.
	A THE STATE OF THE	DE LADRILLOS DE CONCRETO		VIARRILOSCO	N ADICION OF			
ROYECTO	- POLVO DE TEJA RECICLA	DA Y FIBRA DE BAGAZO DE CI INIDAD, PILA Y MURETE, LIMA	AÑA RECICLADA, EI	N LOS ENSAYOS	DE RESISTENCIA	RE	GISTRO N°:	2022 - TS41
DUCITANTE	: FARROÑAN SOTO CHRIST	TAN OMAR / BRAZOWICH MAR	COS CHRISTIANI JE	EBU8			ZADO POR :	D. CASTILL
ÓDIGO DE PROYECTO BICACIÓN DE PROYECTO	: Desarrollado en las instalacio	roes de MATERTI AR RAC		75.00			SADO POR : E VACIADO :	K.TINOCO 9/12/2022
ECHA DE EMISIÓN	: B/12/2022						TURNO:	Diumo
gregado	: Ag. Grueso / Ag. Fino					F	"c de diseño:	90 kg/cm2
ropadencia	: AGREGAGOS DE FEI	AND					sentamiento:	
emento	: Cemento SOL Tipo 1					Códig	p de mezcla:	4% F.B.C + 7%
RESISTENCIA A LA COMPRESIÓ	ON REQUERIDA	20	2	S. CÁLCULO DE	LA CANTIDAD DE	E CEMENTO		C 24.3
F'er = 160				Cement	p = 255 kg			
		251,8		6. FACTOR CEN	MENTO			
RELACIÓN AGUA CEMENTO R afc = 0.78				Bolsas		505		
0.10		1						
DETERMINACIÓN DEL VOLUME	N DE AGUA				FIBRA DE BAGA			
Agua = 207 L				10.62	kg x m3 = 4,0%	r Gia		
CANTIDAD DE AIRE ATRAPADO				8. CÁLCULO DE	POLVO DE TEJA	RECICLADO		
Aire = 3.0%				18.58	kg x m3 = 7.0%	179-		
					Ng x ma - 1.030	7 610		
ON OUR OPEN VIOLENCE M	PRECADOS	7/4			Ng X ma - 1.000	r Cita	16-1	40
CÁLCULO DEL VOLUMEN DE AG	REGADOS PESO ESPECÍFICO	VOLUMEN ABSOLUTO			NEXTES -1.02	7 010		42
		0.0842 m3			KC X 113 - 1132	SA SA		4
INSUMO Cemento SOL Tipo 1 Agus	PESO ESPECÍFICO	0.0842 m3 0.2070 m3			NS X 110 -1.00	700	3	
INSUMO Camento SOL Tipo 1	PESO ESPECÍFICO 3150 kg/m3	0.0842 m3	HIMEDAD			Ď.	1	TM
INSUMO Cemento SOL Tipo 1 Agus Aire	PESO ESPECÍFICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3	HUMEDAD	ABSORCIÓN	MÓD, FNEZA 5,30	P.U. SUELTO 1404		TM
INSUMO Cemento SOL Tipo 1 Agus	PESO ESPECÍFICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3 0.0300 m3		ABSORCIÓN	MÓD, FINEZA	P.U. SUELTO		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2858 kg/m3 Volumen de pasta	0.0842 m3 0.2070 m3 0.0300 m3	1,66%	ABSORCIÓN 1.75%	MÓD, FINEZA 5.30	P.U. SUELTO		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2658 kg/m3	0.0842 m5 0.2070 m3 0.0300 m3	1,66%	ABSORCIÓN 1.75%	MÓD, FINEZA 5.30	P.U. SUELTO		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2658 kg/m3 Volumen de pasta Volumen de agregados	0.0842 m3 0.2070 m3 0.0300 m3	1,66%	ABSORCIÓN 1.75% 1.71%	MÓD, FINEZA 5.30	P.U. SUELTO 3604 1491		100
INSUMO Camento SOL Tipo 1 Agua Are Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2658 kg/m3 Volumen de pasta Volumen de agregados	0.0842 m3 0.2070 m3 0.0300 m3	1,66%	ABSORCIÓN 1.75% 1.71%	MÓD, FINEZA 5,30 2,00 DE TANDA DE PRI	P.U. SUELTO 1604 1491 UEBA 0.03 7,98 kg		100
INSUMO Camento SOL Tipo 1 Agua Arre Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2808 kg/m3 Volumen de pasta Volumen de agregados SECOS -0.3109 m3 = 811 kg	0.0842 m3 0.2070 m3 0.0300 m3	1,66%	ABSORCIÓN 1.75% 1.71% 11, VOLUMENT Cemento SCL T Agus	MÓD, FINEZA 5.30 2.00 DE TANDA DE PRU	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L		100
INSUMO Camento SOL Tipo 1 Agua Are Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3 0.0300 m3	1,66%	ABSORCIÓN 1.75% 1.71% 11. VOLUMEN 0 Cemento SCL T Agua Agregado gress	MÓD, FINEZA 5.30 2.00 DE TANDA DE PRU	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24,74 kg		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3 0.0300 m3 	1,66%	ABSORCIÓN 1.75% 1.71% 11, VOLUMENT Cemento SCL T Agus	MÓD, FINEZA 5:30 2:00 2:00 DE TANDA DE PRU ipo 1	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3	0.0842 m3 0.2070 m3 0.0300 m3 	1,66%	ABSORCIÓN 1.75% 1.71% 11. VOLUMEN 6 Cemento SOL T Agus Agregado grues Agregado fino	MÓD, PINEZA 5.30 2.00 DE TANDA DE PRI Iga 1	P.U. SUELTO 1404 1491 UEBA 0.03 7,95 kg 5.67 L 24,74 kg 30.39 kg		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado fino PESO HÚMEDO DE LOS AGREGADOS DESO HÚMEDO DE LOS AGREGADOS	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2858 kg/m3 Volumen de pasta Volumen de agregados SECOS = 0.3109 m3 = 811 kg = 0.3678 m3 = 978 kg	0.0842 m3 0.2070 m3 0.0300 m3 	1,66%	ABSORCIÓN 1.75% 1.71% 11. VOLUMEN 0 Cemento SCL T Agus Agregado grues Agregado fino Stump Obtenido	MÓD, PINEZA 5.30 2.00 DE TANDA DE PRI	P.U. SUELTO 1404 1491 UEBA 0.03 7,95 kg 5.67 L 24,74 kg 30,39 kg 1 1/2"		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino PESO HÚMEDO DE LOS AGREGA Agregado fino Agregado fino	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2858 kg/m3 Volumen de pasta Volumen de agregados SECOS =0.3109 m3 = 811 kg =0.3678 m3 = 978 kg SADOS - CORRECCIÓN POR H S25 kg 1013 kg	0.0842 m3 0.2979 m3 0.0300 m3 0.3212 m3 0.6786 m3	1,66%	ABSORCIÓN 1.75% 1.71% 11. VOLUMEN 0 Cemento SCL T Agua Agregado grues Agregado fino Stump Obtenido Fibra de bagazo Polvo de teja re	MÓD. FINEZA 5,30 2,00 DE TANDA DE PRU ipa 1 o de caria: ciciado	P.U. SUELTO 1404 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 1 1/2" 0.32 kg 0.56 kg		100
INSUMO Camento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado grueso Agregado grueso Agregado fino PESO HÚMEDO DE LOS AGREG Agregado fino III. AGUA EFECTIVA CORREGIDA	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2858 kg/m3 Volumen de pasta Volumen de agregados SECOS =0.3109 m3 = 811 kg =0.3678 m3 = 978 kg 1013 kg POR ABSORCIÓN Y HUMEDA	0.0842 m3 0.2979 m3 0.0300 m3 0.3212 m3 0.6786 m3	1,66%	ABSORCIÓN 1.75% 1.71% 11. VOLUMEN 0 Cemento SCL T Agus Agregado fino Stump Obtentido Fibra de bagazo Polyo de teja re 12. PROPORCI	MÓD, FINEZA 5.30 2.00 DE TANDA DE PRU ipo 1 o de cafita ciclado ÓN EN VOLUMEN	P.U. SUELTO 1404 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 1 1/2" 0.32 kg 0.56 kg		100
INSUMO Camento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino PESO HÚMEDO DE LOS AGREGA Agregado fino Agregado fino	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2858 kg/m3 Volumen de pasta Volumen de agregados SECOS =0.3109 m3 = 811 kg =0.3678 m3 = 978 kg SADOS - CORRECCIÓN POR H S25 kg 1013 kg	0.0842 m3 0.2979 m3 0.0300 m3 0.3212 m3 0.6786 m3	1,66%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agus Agregado grues Agregado fino Stump Obtentido Fibra de bagaco Polvo de teje ro 12. PROPORCI CEM A.F.	MÓD. FINEZA 5,30 2,00 DE TANDA DE PRU ipa 1 o de caria: ciciado	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 11/2" 0.32 kg 0.55 kg		100
INSUMO Camento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado grueso Agregado grueso Agregado fino PESO HÚMEDO DE LOS AGREG Agregado fino III. AGUA EFECTIVA CORREGIDA	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2858 kg/m3 Volumen de pasta Volumen de agregados SECOS =0.3109 m3 = 811 kg =0.3678 m3 = 978 kg 1013 kg POR ABSORCIÓN Y HUMEDA	0.0842 m3 0.2979 m3 0.0300 m3 0.3212 m3 0.6786 m3	1,66%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agus Agregado grues Agregado fino Stump Obtentido Fibra de bagaco Polvo de teje ro 12. PROPORCI CEM A.F.	MÓD, FINEZA 5:30 2:00 DE TANDA DE PRI lipe 1 de carial ciciado ÓN EN VOLUMEN A.G. AGUA	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 11/2" 0.32 kg 0.55 kg		100
INSUMO Camento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado grueso Agregado grueso Agregado fino II. PESO HUMEDO DE LOS AGREGA Agregado fino III. AGUA EFECTIVA CORREGIDA Agua DESERVACIONES:	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2656 kg/m3 Volumen de pasta Volumen de agregados SECCS -0.3109 m3 = 811 kg =0.3678 m3 = 978 kg SADOS - CORRECCIÓN POR N 825 kg 1013 kg POR ABSORCIÓN Y HUMEDA 189 L	0.0842 m3 0.2979 m3 0.0300 m3 0.3212 m3 0.6786 m3	1,66%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agus Agregado grues Agregado fino Stump Obtentido Fibra de bagaco Polvo de teje ro 12. PROPORCI CEM A.F.	MÓD, FINEZA 5:30 2:00 DE TANDA DE PRI lipe 1 de carial ciciado ÓN EN VOLUMEN A.G. AGUA	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 11/2" 0.32 kg 0.55 kg		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Ag	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2808 kg/m3 Volumen de pasta Volumen de pasta Volumen de agregados SECOS = 0.3109 m3 = 811 kg = 0.3678 m3 = 978 kg \$ADOS - CORRECCIÓN POR N 825 kg 1013 kg POR ABBORCIÓN Y HUMEDA 189 L	0.0842 m3 0.2070 m3 0.0300 m3 0.3212 m3 0.6788 m3	1.88%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agus Agregado grues Agregado fino Stump Obtentido Fibra de bagaco Polvo de teje ro 12. PROPORCI CEM A.F.	MÓD, FINEZA 5:30 2:00 DE TANDA DE PRI lipe 1 de carial ciciado ÓN EN VOLUMEN A.G. AGUA	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 11/2" 0.32 kg 0.55 kg		100
INSUMO Camento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Ag	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2808 kg/m3 Volumen de pasta Volumen de pasta Volumen de agregados SECOS = 0.3109 m3 = 811 kg = 0.3678 m3 = 978 kg \$ADOS - CORRECCIÓN POR N 825 kg 1013 kg POR ABBORCIÓN Y HUMEDA 189 L	0.0842 m3 0.2070 m3 0.0300 m3 0.3212 m3 0.6788 m3	1.88%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agus Agregado grues Agregado fino Stump Obtentido Fibra de bagaco Polvo de teje ro 12. PROPORCI CEM A.F.	MÓD, FINEZA 5:30 2:00 DE TANDA DE PRI lipe 1 de carial ciciado ÓN EN VOLUMEN A.G. AGUA	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 11/2" 0.32 kg 0.55 kg		100
INSUMO Camento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Ag	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2808 kg/m3 Volumen de pasta Volumen de pasta Volumen de agregados SECOS = 0.3109 m3 = 811 kg = 0.3678 m3 = 978 kg \$ADOS - CORRECCIÓN POR N 825 kg 1013 kg POR ABBORCIÓN Y HUMEDA 189 L	0.0842 m3 0.2070 m3 0.0300 m3 0.3212 m3 0.6788 m3	1.88%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agus Agregado grues Agregado fino Stump Obtentido Fibra de bagaco Polvo de teje ro 12. PROPORCI CEM A.F.	MÓD, FINEZA 5:30 2:00 DE TANDA DE PRI lipe 1 de carial ciciado ÓN EN VOLUMEN A.G. AGUA	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 11/2" 0.32 kg 0.55 kg		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Ag	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2808 kg/m3 Volumen de pasta Volumen de pasta Volumen de agregados SECOS = 0.3109 m3 = 811 kg = 0.3678 m3 = 978 kg \$ADOS - CORRECCIÓN POR N 825 kg 1013 kg POR ABBORCIÓN Y HUMEDA 189 L	0.0842 m3 0.2070 m3 0.0300 m3 0.3212 m3 0.6788 m3	1.88%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agus Agregado grues Agregado fino Stump Obtentido Fibra de bagaco Polvo de teje ro 12. PROPORCI CEM A.F.	MÓD, FINEZA 5:30 2:00 DE TANDA DE PRI lipe 1 de carial ciciado ÓN EN VOLUMEN A.G. AGUA	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 11/2" 0.32 kg 0.55 kg		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Ag	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2808 kg/m3 Volumen de pasta Volumen de pasta Volumen de agregados SECOS = 0.3109 m3 = 811 kg = 0.3678 m3 = 978 kg \$ADOS - CORRECCIÓN POR N 825 kg 1013 kg POR ABBORCIÓN Y HUMEDA 189 L	0.0842 m3 0.2070 m3 0.0300 m3 0.3212 m3 0.6786 m3	1.95% 3.54%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agus Agregado grues Agregado fino Stump Obtentido Fibra de bagaco Polvo de teje ro 12. PROPORCI CEM A.F.	MÓD, FINEZA 5:30 2:00 DE TANDA DE PRI lipe 1 de carial ciciado ÓN EN VOLUMEN A.G. AGUA	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 11/2" 0.32 kg 0.55 kg		100
INSUMO Cemento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado fino Agregado grueso Agregado grueso Agregado grueso Agregado fino 0. AGUA EFECTIVA CORREGIDA Agua DESERVACIONES: Muestras provistas e identificadas Prohibida la reproducción fotal o p	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2808 kg/m3 Volumen de pasta Volumen de pasta Volumen de agregados SECOS = 0.3109 m3 = 811 kg = 0.3678 m3 = 978 kg \$ADOS - CORRECCIÓN POR N 825 kg 1013 kg POR ABBORCIÓN Y HUMEDA 189 L	0.0842 m3 0.2070 m3 0.0300 m3 0.3212 m3 0.6788 m3 HUWEDAD	1.95% 3.54% 3.54%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agus Agregado grues Agregado fino Stump Obtentido Fibra de bagaco Polvo de teje ro 12. PROPORCI CEM A.F.	MÓD, FINEZA 5:30 2:00 DE TANDA DE PRI lipe 1 de carial ciciado ÓN EN VOLUMEN A.G. AGUA	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5.67 L 24.74 kg 30.39 kg 11/2" 0.32 kg 0.55 kg	n3	100
INSUMO Camento SOL Tipo 1 Agea Are Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado fino PESO HÚMEDO DE LOS AGREG Agregado grueso Agregado grueso Agregado grueso Agregado fino IO, AGUA EFECTIVA CORREGIDA Agua DESERVACIONES: Muestras provistas e identificadas Prohibida la reproducción total o g	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2658 kg/m3 Volumen de pasta Volumen de pasta Volumen de agregados SECCS = 0,3109 m3 = 978 kg 3ADOS - CORRECCIÓN POR F 828 kg 1013 kg POR ABSORCIÓN Y HUMEDA 189 L	0.0842 m3 0.2070 m3 0.0300 m3 0.3212 m3 0.6788 m3 HUWEDAD	1.95% 3.54%	ABSORCIÓN 1.75% 1.71% 11. VOLUMEN 0 Cemento SCL T Agua Agregado srues Agregado fino Stump Obtentido Fibra de bagazo Polvo de teje re 12. PROPORCI CEM A.F. 1 : 3.8	MÓD, FINEZA 5:30 2:00 DE TANDA DE PRI lipe 1 de carial ciciado ÓN EN VOLUMEN A.G. AGUA	P.U. SUELTO 1404 1491 UEBA 0.03 7,98 kg 5,67 L 24,74 kg 30.39 kg 1 1/2" 0.35 kg DE OBRA L/ bolts	n3	98
INSUMO Camento SOL Tipo 1 Agua Aire Agregado grueso Agregado fino PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino ID. AGUA EFECTIVA CORREGIDA Agua DESERVACIONES: Muestras provistas e identificadas Prohibida la reproducción fotal o s	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2658 kg/m3 Volumen de pasta Volumen d	0.0842 m3 0.2070 m3 0.0300 m3 0.3212 m3 0.3212 m3 0.6788 m3	1.95% 3.54% 3.54%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agua Agregado fino Stump Obtentido Fibra de bagazo Polvo de teja ro 12. PROPORCI CEM A.F. 1 : 3.8	MÓD, FINEZA 5.30 2.00 DE TANDA DE PRU ipo 1 o de cafita ciclado ÓN EN VOLUMEN A.G. AGUA : 3.11 : 30.21	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5,67 L 24,74 kg 30.39 kg 1 1/2" 0.35 kg DE OBRA L./ bolta	m3	9/8 P.
Cemento SOL Tipo 1 Agua Are Agregado grueso Agregado fino I. PROPORCIÓN DE AGREGADOS Agregado grueso Agregado grueso Agregado grueso Agregado grueso Agregado grueso Agregado grueso Agregado fino III. AJUA EFECTIVA CORREGIDA Agua DESERVACIONES: Muestras provistas e identificada: Prohibida la reproducción fotal o s	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2658 kg/m3 Volumen de pasta Volumen d	0.0842 m3 0.2070 m3 0.0300 m3 0.3212 m3 0.3212 m3 0.6788 m3	1.95% 3.54% 3.54%	ABSORCIÓN 1.75% 1.71% 11. VOLUMENT Cemento SCL T Agua Agregado fino Stump Obtentido Fibra de bagazo Polvo de teja ro 12. PROPORCI CEM A.F. 1 : 3.8	MÓD, FINEZA 5.30 2.00 DE TANDA DE PRU ipo 1 o de cafita ciclado ÓN EN VOLUMEN A.G. AGUA : 3.11 : 30.21	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5,67 L 24,74 kg 30,39 kg 1 1/2" 0.32 kg 0.55 kg DE OBRA L/ bolta	m3	28
INSUMO Camento SOL Tipo 1 Agua Are Agregado grueso Agregado fino I. PROPORCIÓN DE AGREGADOS Agregado grueso Agregado fino III. AGUA EFECTIVA CORREGIDA Agua DESERVACIONES: Muestras provistas e identificadas Prontibida la reproducción total o g	PESO ESPECIPICO 3150 kg/m3 1000 kg/m3 2808 kg/m3 2658 kg/m3 Volumen de pasta Volumen de pasta Volumen de agregados SECCS = 0.3109 m3 = 811 kg = 0.9678 m3 = 978 kg SADOS - CORRECCIÓN POR N 326 kg 1013 kg POR ABSORCIÓN Y HUMEDA 159 L Spor el solicitante sarcial de este documento sin la	0.0842 m3 0.2070 m3 0.0300 m3 0.0300 m3 0.3212 m3 0.5786 m3 HUMEDAD AD MATESTAS KELLYANISA	1.95% 3.54% S SAC MATESTLAS SAC PE USS	ABSORCIÓN 1.75% 1.71% 11. VOLUMEN 0 Cemento SCL T Agua Agregado grues Agregado fino Stump Obtentido Fibra de bagazo Polvo de teja ro 12. PROPORCI CEM A.F. 1 : 3.8	MÓD, FINEZA 5.30 2.00 DE TANDA DE PRU ipo 1 o de cafita ciclado ÓN EN VOLUMEN A.G. AGUA : 3.11 : 30.21	P.U. SUELTO 1604 1491 UEBA 0.03 7,95 kg 5,67 L 24,74 kg 30,39 kg 1 1/2" 0.32 kg 0.55 kg DE OBRA L/ bolta	TAB S	A.C

	4			. 0	IGEOCONTROL	SAC	ŠŸ.			N	
BSERVACIONES: Muestras realizadas en el labor Los insumos para la elsboració Prohibide la reproducción total	n de los bloques	fueron provisto					CONTROL				
- SIVE		200	200			350			1		
PATRON + 4% F.B.C + 7%	P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	9.00	11422.0	200.0	57 kg/cm2	63.5%
PATRON + 4% F.B.C + 7%		11/11/2022	18/11/2022	7	10.00	20.00	9.00	11325.0	200.0	57 kg/cm2	62.9%
PATRON + 4% F.B.C + 7%	P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	9.00	11474.0	200.0	57 kg/cm2	63.79
PATRON + 4% F.B.C + 5%	P.T.R	11/11/2022	18/11/2022	7	10,00	20.00	9.00	11696.0	200.0	58 kg/sm2	66.05
PATRON + 4% F.B.C + 5%		11/11/2022	18/11/2022	7	10.00	20.00	9.00	11652.0	200.0	58 kg/cm2	64.7
PATRON + 4% F,B,C + 5%	P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	9.00	11741.0	200.0	59 kg/cm2	65.2
1	18 1							J.			
PATRON + 4% F.B.C + 3%	P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	9.00	12456.0	200.0	62 kg/cm2	69.2
PATRON + 4% F.B.C + 3%	P.T.R	11/11/2022	18/11/2022	7	10,00	20.00	9.00	12411.0	200.0	62 kg/cm2	69.0
PATRON + 4% F.B.C + 3%	P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	9.00	12338.0	200.0	62 kg/cm2	68.5
474 34		-	1						200		
DISEÑO PATRON		11/11/2022	18/11/2022	7_	10.00	20.00	9.00	11882.0	200,0	59 kg/cm2	65.0
DISEÑO PATRON	Charles of the Charle	11/11/2022	18/11/2022	7	10.00	20.00	9.00	11863.0	200.0	59 kg/cm2	65.9
DISEÑO PATRON	130	11/11/2022	18/11/2022	7	10.00	20.00	9.00	11845.0	200.0	59 kg/cm2	85.8
IDENTIFICACIÓN		FECHA DE ABORACIÓN	FECHA DE ROTURA	EDAD (dias)	ANCHO (cm)	LONGITUD (am)	ALTURA (cm)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm2)	ESFUERZO Fb	% F
					NCIA A LA C	OMPRESIÓN 399.604					
po de muestra resentación esistencia de diseño (Fm)	: Ladrillos (: 20 x 10 x : 90 kg/cm		4/1			47.11			37	200	
OLICITANTE ÓDIGO DE PROYECTO BICACIÓN DE PROYECTO ECHA DE EMISIÓN	Desarrolli : 9/12/2022	ado en las ins				ARCOS CHRISTI	AN JESUS		R	EALIZADO POR: EVISADO POR: IA DE ENSAYO: TURNO:	D. Cas K.TINC
ROYECTO	CON ADIO	JIÓN DE POL	VO DE TEJA	RECICLA	DAY FIBRA	ETO CONVENCIO DE BAGAZO DE N POR UNIDAD,	CAÑA RE	CICLADA		REGISTRO N°:	2022 - T
							Pit	date.		1 dc 1	
MIL) s		CONCRET					JS In	100	1	09-13-2022	
SEST!	MÉTODO	or police	A DE FAIC	AVOV	DDUEDA	DE LADRILLO		ligo sila		10-to-01	

Pág.

LABS.A.C

MÉTODO DE PRUEBA DE ENSAYO Y PRUEBA DE LADRILLOS DE CONCRETO ESTRUCTURALES - ASTM C 67

(Mile	104048
Vasića	Ol .
Facin	09-12-2022
Pigina	141

PROYECTO

: "ANALISIS COMPARATIVO DE LADRILLOS DE CONCRETO CONVENCIONAL Y LADRILLOS CON ADICIÓN DE POLVO DE TEJA RECICLADA Y FIBRA DIE BAGAZO DE CAÑA RECICLADA EN LOS ENSAYOS DE RESISTENCIA A LA COMPRESIÓN POR UNIDAD, PILA Y MURETE, LIMA

REGISTRO Nº: 2022 - TS418

SOLICITANTE CÓDIGO DE PROYECTO

: FARRONAN SOTO CHRISTIAN OMAR / BRAZOWICH MARICOS CHRISTIAN JESUS

REALIZADO POR: D. Castillo REVISADO POR: K.TINOCO 9/12/2022 FECHA DE ENSAYO:

UBICACIÓN DE PROYECTO FECHA DE EMISIÓN

: Desarrollado en las instalaciones de MATESTLAB SAC 9/12/2022

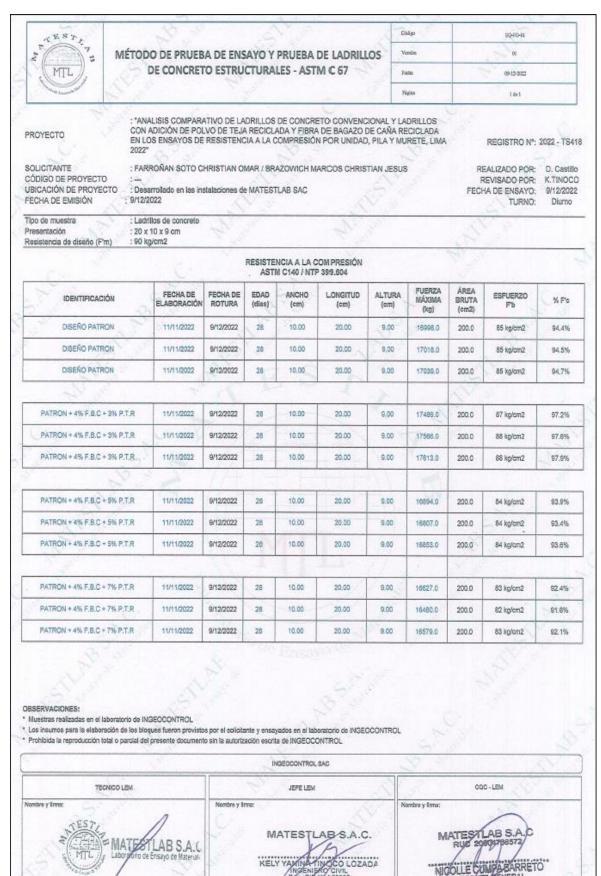
Tipo de muestra

: Ladrillos de concreto : 20 x 10 x 9 cm : 90 kg/cm2

TURNO: Diumo

Presentación Resistencia de diseño (F'm)

RESISTENCIA A LA COMPRESIÓN ASTM C140 / NTP 399.604


IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (dias)	ANCHO (cm)	LONGITUD (cm)	ALTURA (cm)	FUERZA MÁXIMA (kg)	ÁREA BRUTA (cm2)	ESFUERZO F'b	% F'e
DISEÑO PATRON	11/11/2022	25/11/2022	14	10.00	20,00	9.00	14878.0	200.0	74 kg/cm2	82.7%
DISEÑO PATRON	11/11/2022	25/11/2022	14	10.00	20,00	9.00	14898.0	200.0	74 kg/cm2	82.8%
DISEÑO PATRON	11/11/2022	25/11/2022	14	10.00	20.00	9.00	14919.0	200.0	75 kg/cm2	82,9%
-N 18	7	1			3	7		1	25	CB
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	25/11/2022	14	10.00	20,00	9,00	15369.0	200.0	77 kg/an2	85,4%
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	9.00	15448,0	200.0	77 kg/cm2	85,89
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	9.00	15493.0	200.0	77 kg/cm2	88,19
18, 18	R	77				31	04			
PATRON + 4% F.B.C + 5% P.T.R	11/11/2022	25/11/2022	14	10,00	20.00	9.00	14774.0	200.0	74 kg/cm2	82.19
PATRON + 4% F.B.C + 5% P.T.R	11/11/2022	25/11/2022	14	10.00	20:00	9.00	14687.0	200,0	73 kg/cm²	81,69
PATRON + 4% F.B.C + 5% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	9.00	14733.0	200.0	74 kg/cm2	81.99
W I I I I I	1	773			1	1 3		100		
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	9,00	14507.0	200.0	73 kg/am2	80.69
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	9.00	14380.0	200.0	72 kg/cm2	79.89
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	9.00	14459.0	200.0	72 kg/cm2	80.39

OBSERVACIONES:

- Muestras realizadas en el laboratorio de INGEOCONTROL.
- Los insumos para la elaboración de los bloques fueron provistos por el solicitante y ensayados en el laboratorio de INGEOCONTROL
- Prohibida la reproducción total o parolal del presente documento sin la autorización escrita de INGEOCONTROL.

	INGECOCNTROL SAC	N. Sterrie
TECNICO LEM	JEFE LEM	CQC - LEM
Acmitore y firmes:	Nembre y firma:	Nombre y Sma: MATESTAB S.A.¢
MATES AB S.A.C. Laboratorio de Ensayo de Materiali.	MATESTLAB S.A.C. KELYYANKA 7500 CO LOZADA INGERIERO CIVIL AGO, CO N° 18399	NICOLE CUMPA BARRETO GERENTE GENERAL

TESTE	100		2	INFORME		N	10.1		Código	16	EQ-F0-0	И
2 6 6 6		File							Versión	7 3	01	
MIL					R PARA LA R LADRILLO DE				Fechs		09-12-202	2
					100	-		?	Página		1 de 1	
ROYECTO RECIC PILA Y GUCITANTE : FARF XÓDIGO DE PROYECTO :—	LISIS COMPARATIVO DI LADA Y PIBRA DE BAG MURETE, LIMA 2022 IOÑAN SOTO CHRISTIA NLACIONES DEL LABOR 1722	NZO DE CAÑA RI	ECICLADA OWICH MA	EN LOS ENS ROOS CHRIS	AYOS DE RESIS	LOS CON AD TENCIA A LA C	ICIÓN DE COMPRES	POLVO DE TEJA	ic,	ENBAYAD REVISAD FECHA DE B	O POR KT	NSTILLO NOCO 1/12/22 Jumo
po de muestra : Piles	de ladrillos de concreto	- 5	10			14	-			-	- T	- 12
resentación : 20 x : existencia de diseño (Fin) : 90 kg	0 x 9 cm /cm2											
A. 14.	-	DE RESISTE	NCIA A LA	COMPRES	IÓN EN PILAS I	DE LADRILLO	DE CO	NCRETO CS7	18	135		
IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (dlas)	ANCHO (cm)	LONGITUD (cm)	ALTURA (cm)	h/c ^A	Factor de Corrección	FUERZA MÁXIMA	ÁREA BRUTA	ESFUERZO Pm	%P
DISEÑO PATRON	11/11/2022	18/11/2022	7	10.00	20.00	30,00	3.00	1.25	(Rg) 5820	(em2) 200.0	36 kg/cm2	40.4
DISEÑO PATRON	11/11/2022	18/11/2022	7	10,00	20.00	30.00	3.00	1.25	5805	200.0	36 kg/cm2	40.9
DISEÑO PATRON	11/11/2022	18/11/2022	2	10.00	20.00	30.00	3.00	1.25	5863	200.0	37 kg/sm2	40.7
The second		41	-15		Q -					1	3	
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	30.00	3.00	1.25	5020	200.0	37 kg/cm2	41.1
PATRON + 4% F B,C + 3% P,T,R	11/11/2022	18/11/2022	7	.10.00	20.00	30.00	2.00	1,25	5944	200.0	37 kg/cm2	41.2
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	30.00	3.00	1.25	5997	200.0	37 kg/cm2	41.75
0,5	- 8Y	11									1 3	N
PATRON + 4% FEIG + 5% P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	30.00	3.00	1.25	5371	200.0	34 kglon2	37.3
PATRON + 4% F.B.C + 5% P.T.R	11/11/2022	18/11/2022	7	10.00	20,00	30.00	3.00	1.25	5395	200.0	34 kg/cm2	37.5
PATRON + 4% F.Q.O + 5% P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	30.00	1.00	1.25	5410	200.0	34 kg/on2	37,65
										27		
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	20.00	3.00	1.25	5255	200.0	33 kg/on2	38.5%
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	90.00	3.00	1.25	5278	200.0	33 kg/cm2	36.79
PATRON + 4% P.B.C + 7% P.T.R	11/11/2022	18/11/2022	7	10.00	20.00	30.00	3.00	1.25	5293	200.0	23 kg/cm2	35.81
BBERVACIONES: Nuestras realizadas en el laboratorio de li co insurros pira la elaboración de los bi- Prohibida la reproducción istal o panalal di	ques fueron provistos po	or el policitanie y n la autorización	ensayados eserta de l	en el laborato MATESTLAB 8	rio de MATESTLA BAC	B SAC						
	100			NATES	STLAB SAC			20	30			
TECHICO LEM			N	Æ	FE LEW		A	Y	(ogs - LEW	3	
EST MATE LIBORATION	STLAB S.A.	Nambre)	MA		AB SA	<u></u>		Nordre y femo	MATE		8 S.A.C 36572	

KESTZ		1	×.	INFORME		1	10		Código	3	80404	19
2 0 0 0	36	10	1				1		Versión	14	01	
(MIL)					R PARA LA R LADRILLIO DI				Fecha		09-12-802	2
Contract of the Contract of th					7				Página		1 de 1	
RECEPPLATE PAR ODIGO DE PROYECTO —	ALISIS COMPARATIVO DI DIADA Y PIBRA DE BACI Y MURETE, LIMA 2022* ROÑAN SOTO CHRISTIA FALACIONES DEL LABOR 2722	VZO DE CAÑA RI N OMAR / BRAZI	BOICLADA OWICH MA	EN LOS ENS RCOS CHRIS	AYOS DE RESIS				0.	ENSAYAD REVISAD FECHA DE E	IO POR: D.C. IO POR: K.T NSAYO: DI	ASTILLO INOCO ICI2/22 Jume
po de muestra Pilas	de ladrillos de concreto	-				- C/3					10.000	-
	10 x 9 cm g/cm2	A				1			1 3			
	ENSAYO	DE RESISTE	NCIA A LA	COMPRES	IÓN EN PILAS I	DE LADRILLO	DE CO	NORETO C67				
IDENTIFICACIÓN	FECHA DE ELABORACIÓN	PECHA DE ROTURA	EDAD '(dlas)	ANCHO (cm)	LONGITUD (cm)	ALTURA (cm)	hH ^A	Factor de Corrección	FUERZA MÁXIMA (kg)	ÁREA BRUTA (om2)	ESFUERZO F'm	% F
DISEÑO PATRON	11/11/2022	25/11/2022	14	10.00	20.00-	30.00	3.00	1.25	7480	200.0	47 kg/ord2	62.0
DISIIÑO PATRON	1911/2022	25/11/2022	14	10.00	20.00	30.00	3.00	1.25	7505	200.0	47 lig/om2	52.1
DISEÑO PATRON	11/11/2022	25/11/2022	54	10.00	20.00	30,00	3.00	1.25	7543	200.0	47 kg/om2	52.4
0.00		2	1		5	F			. 6			
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	30.00	3.00	1.25	7880	200.0	49 legion2	54.7
PATRON + 4% F.B.C + 3% P.T.B	11/11/2022	25/11/2022	-14	10,00	20.00	20,00	3.00	1.26	7914	200.0	40 ligion2	66.0
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	30,00	3.00	1.25	7977	200.0	50 kg/cm2	\$5.4
30	1	/3		H		4-15		THE P				
PATRON+4% FAC+5% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	30.00	3.00	1.25	7591	200.0	46 kg/cm2	50.5
PATRON + 4% F.S.C + 5% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	30.00	3.00	1.25	7365	200.0	45+g/cm2	51.2
PATRON + 4% F.B.C + 5% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	30.00	3.00	1.25	7390	200.0	46 kg/cm2	51.3
Y 7 THE						11						
PATRON + 4% F,B,C + 7% P,T,R	11/11/2022	25/11/2022	14	10,00	20,00	30.00	3.00	1.25	7215	200.0	45 lig/cm2	50.1
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	25/11/2022	14	10.00	20.00	30.00	3.00	1.25	7248	200.0	45 kg/cm2	50.4
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	25/11/2022	14	10,00	20.00	30.00	3.00	1.25	7273	200.0	45 kg/cm2	50.6
BSERVACIONES: Wuestras realizadas en el laboratorio de Los insurros para la elaboración de los b ProNibida la reproducción total o pardial e	loques fueron provistos po	or el solistante y n la autorización	ensayados eserta de f	en el laborato MATESTLAB (rio de MATESTLI BAC	B SAC		3	Ch			
C			2	MATE	STLAB SAC		A	C.V			(9)	
TECHICO LEI				JE	FE LEW	40	2			00 - LEM	3	
EST MATE Laborate	STLAB S.A.	Namboo	M	YYANIN	TIABS.	OZADA		Hoedine y firms	NICOL	LE CUM	AB S.A.9	to

KESTE				INFORME		1	25		Código	1	EQ-F0-0	'n
2 0 0 0		H	all y						Versión		01	
MTL	M	ÉTODO DE P	PRUEBA SIÓN DE	ESTÁNDA PILAS DE	R PARA LA R LADRILLO DE	ESISTENCI	A		Pecha		09-12-202	2
	0					301101102			Página		1 de 1	
ROYECTO RECICL PILA Y CLICITANTE FARR COMO DE PROYECTO —	SIS COMPARATIVO DE ADA Y PIERA DE BACA MURETE, LIMA 2022* DRAN SOTO CHRISTIAI LACIONES DEL LABOR 12	UZO DE CAÑA RI N OMAR / BRAZ	BOICLADA OWICH MA	EN LOS ENS ACOS CHRIS	AYOS DE RESIS	LOS CON AD ISNOIA A LA C	ICIÓN DE COMPRES	POLVO DE TEJI BIÓN POR UNIO	AD,	ENSAYAD REVISAD FECHA DE B	DO POR: D.C/ DO POR: K.T NSAYO: :01	2-TS-41 ASTILL INOCO 9/12/22 Burno
po de muestra : Pitas d resentación : 20 x 10 esistencia de diseño (Fm) : 90 kg/l		N	188			100	37			8		
	ENSAYO	DE RESISTE	NCIA A LA	COMPRES	IÓN EN PILAS	DE LADRILLI	DE CO	NCRETO C67				
IDENTIFICACIÓN	PECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (dias)	ANCHO (cm)	LONGITUD (cm)	ALTURA (cm)	htta	Factor de Corrección	FUERZA MÁXIMA (Ng)	ÁREA BRUTA (cm2)	ESFUERZO Fm	56.5
DISEÑO PATRON	11/11/2022	9/12/2022	28	10.00	20.00	30.00	3.00	1.25	10080	200.0	63 kg/cm2	70.0
DISERO PATRON	11/11/2022	9/12/2022	28	10.00	20.00	30.00	3,00	1.25	10105	200.0	63 kg/cm2	70.
DISEÑO PATRON	11/11/2022	912/2022	29	10,00	30.00	30:00	3.00	1.25	10143	200.0	63 kg/sm2	70.
70,16	. +	1	1	d _a	9		K		1			
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	9/12/2022	28	10.00	20,00	30.00	3.00	1.25	10480	200.0	66 kg/cm2	72
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	9/12/2022	/20	10.00	20.00	30.00	3.00	1.25	10614	200.0	95 kg/cm2	73.
PATRON + 4% F.B.C + 3% P.T.R	11/11/2022	9/12/2022	28	10.00	20.00	30.00	3.00	1.25	10677	200.0	86 kg/cm2	73.
AV 8"	H	1/12						- V			Ğ:	
PATRON + 4% F.B.C + 5% P.T.R	11/11/2022	9/12/2022	28	10.00	20.00	30.00	3,00	1.26	8931	200.0	62 ligitant2	68
PATRON + 4% F.B.C + 5% P.T.R	11/11/2022	9/12/2022	28	10:00	20.00	30.00	3.00	1.25	9965	200.0	62 kg/am2	ea
PATRON + 4% P.O.C + 5% P.T.R	11/11/2022	9/12/2022	28	10.00	20.00	20.00	3.00	1.25	9990	200.0	62 kg/am2	69.
Car	-7.64	3 X				7	3.00					S
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	9/12/2022	28	10.00	20.00	30.00	3.00	1.25	9815	200.0	61 kg/arr2	68.3
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	9/12/2022	28	10.00	20.00	30.00	3.00	1.25	9848	200.0	62 kg/cm2	68.
PATRON + 4% F.B.C + 7% P.T.R	11/11/2022	9/12/2022	28	10.00	20.00	30.00	3,00	1.25	9873	200.0	62 kg/cm2	68.5
BSERVACIONES: Auestras realizades en el luboratorio de NV .es insumos para la elaboración de los plo Prohibida la reproducción total o parcial de	ques fueron provistos po	r el sollotante y n la autorización	ensayados escrita de li	KATESTLAB 6	BAG	B SAC		30	C.			
					TLAS SAC	-				200 151		
TECHNOLEM TECHNOLEM EST LEOPATORE LEOPATORE	TLABSAC	Northney	P.	IATES	TLABS A TINOCOL	/		hordes y farux	MATE		B S.A.C	Ö

1000	S. CAN							Código Revisión	MTL-2022 - NT
MTL	15	ENSA		RTIFICADO MPRESIÓN			TES	Aprobado	6
Marie Contract			A. S. S. S.					Fedia	MTL
	27 1		AROBATA	2010 05 7	ECHOLOG	JA DEL O	ONCRETO	rouse	9/12/2022
	180	- 10				3			0
JOITANTE	: "ANALISIS COMPARATIVO DE LADRILLOS D RESISTENCIA A LA COMPRESIÓN POR UNID : FARROÑAN BOTO CHRISTIAN OMAR (SIDA)	AU, PILA 1 WUKI	ITE, USBA 2022		DON ADICION D	E POLVO DE	TEJA REDICLADA Y RERA DE BAGAZO DE CAR	A RECIDIADA EN LOS	ENSAYOS DE
CAGIÓN DETRO Nº	Deservolado en las instaladones de MATESTL : 2022 - T9418		a CHRISTIAN A	1808					
tera ortal luestra	Muretir		8			V. P.			probado por: KT mayado por: D.C
	4	-	ENSAYO	DE COMPRE	ESIÓN DIAGO	NAL DE MU	RETES	100	a de ensayo: 9/12
	A) INFORMACIÓN GENERAL:				6-				
			001000000000000000000000000000000000000	ALBAÑILER	IA				
		racion do museto			1000				
		oturas de munete	3000 C 3000 C	1				WHAT RE	1
		raayo de murete Esnesos Mostero		54.8		1000	0.		
		Esposor Mortero	1.50%				8	-	1
	B) INFORMACIÓN DE MURETES:								
	A STATE OF THE PARTY OF THE PAR	0						3 V 5	
	Murete	Largo (mm)	Ancho (mm)	Espesor (mm)	Carga Máxima (kgf)	Vm (kgDund)	Descripción de Fatta	2 (1)	
	DISEÑO PATRON	500	500	100	15850	22.1	Falls on direction aproximaciamenta vertical se- manete.	el cuerpo del	
	DISEÑO PATRON	500	500	100	15741	22.3	Fella en dirección aproximadamente horizontal en munde.		
	DISEÑO PATRON	500	500	100	15932	22.5	Falla en dirección aproximadamente vertical en munda.	el duerpo del	
	PATRON+4% F.B.C+3% P.T.R	500	500	100	17858	25.3	Falla on dirección aproximadamente lateral en e	i cuerpo del	
	PATRON + 4% F.B.C + 3% P.T.R	500	500	100	18100	25.6	munets. Falla en dirección aproximadamente lateral en o	i cuarpo dal	
	PATRON + 4% F.B.C + 3% P.T.R	500	500	100	18230	25.8	Falla en dirección aproximadamente lateral en e mundo.	auerpo dial	
1	Communication of the communica				3.0		Refer on Amerika manaka da a	74.	
	PATRON +4% F.B.C +5% P.T.R	500	500	100	14255	20,2	Fella en disoción aproximadamente lateral en o reunda.	2000	
	PATRON +4% F.B.C +5% P.T.R	500	500	100	16456	29.4	Falla en dirección aproximadomento totarci en o munda		
	PATRON + 4% F.B.C + 5% P.T.R	800	500	100	14741	29.8	Falls en dirección aproximadamento internal en el mareta.	casrpo del	
	PATRON +4% F.S.C +7% P.T.R	500	500	100	13535	19,2	Fide en direction aproximadamente lateral en el munito.	синтро del	
	PATRON +4% F.B.C +7% P.T.R	500	500	100	13755	19,5	Falls en dirección aproximadamente lateral en el mundo.	cuerpo del	
	PATRON + 4% F.B.C + 7% P.T.R	500	500	100	13922	19.7	Falls en dirección aproximadamente leteral en el munito	cuerpo del	
	D) ALCANCES DEL ENSAYO:								
		na que retienar							
							s donde se le aplicarán las cargas.		
	El refrentado Las deformaci	es hacho de car ones se renistro	mento y arena an con dos co	tratando de g	penerar una su uno colorado	sperficie sin i	megularidades. sel horizontal y otra en la diagonal vertical,	an wan cate as	
	uer erennengu.					on no unique	was a series of the diagonal vertical,	en street bound CEES	
	-y qui qui ens	ayar como mini	nuo 4 muretes	50					
	500								
N	7 5	L		MATE	DAS GALTES	15		1 7 42	
W.	THOMOS LINE D	4		NO.C TON		7	coc	ote	D
eytina - C.C.S.	1) les	new y former				RedayStu		N:
TEST C	// //	25	MATE	STLAB	S.A.C			TLAB S.A	
(在提出)	MATESTEABS.A.			XX	2/			20004738572	Α.
(1116)	Lattoratologia Ensayo de Material	F	ELY YAN	SENERO P	SAULT.	DF "	seconsprehend.	UMPA BARRE	TO:
Tok S	/	.	Pto	LEIP Nº /	5299		CCDC	TR CENTER!	.10

Código 80-60-01 Versión MÉTODO DE PRUEBA DE ENSAYO DE ALABEO A LADRILLOS DE CONCRETO ESTRUCTURALES (NTP 339.613). Fochs 09-12-2022 Pigina : "AVALUSIS COMPARATIVO DE LADRILLOS DE CONCRETO CONVENCIONAL Y LADRILLOS CON ADICIÓN DE POLVO DE TEJA RISCICLADA Y PIBRA DE BAGAZO DE CAÑA RECICLADA EN LOS ENSAYOS DE RESISTENCIA A LA COMPRESIÓN POR UNIDAD, PILA Y MURETE, LIMA 2022" PROYECTO 2022 - 18418 REGISTRO Nº: SOLICITANTE : FARROÑAN SOTO CHRISTIAN OMAR / BRAZOWICH MARCOS CHRISTIAN JESUS REALIZADO POR-CÓDIGO DE PROYECTO UBICACIÓN DE PROYECTO REVISADO POR: : Desarrollado en las instalaciones de MATESTLAB SAC FECHA DE ENSAYO: : 09/12/2022 FECHA DE EMISIÓN 09/12/2022 Tipo de muestro : Ladrillos de concreto 20 x 10 x 9 cm Resistencia de diseño (Ptri) 90 kg/cm2 ENSAYO DE ALABEO PARA LADRILLOS DE CONCRETO LARGO (MIII) ANCHO (MN) ALTURA (MM) IDENTIFICACIÓN L-1 L-2 L-3 1.4 L-P A-1 A-2 A-P H-1 H-2 N.P DISEÑO PATRON 200,00 199,90 200.00 199.80 199.93 100.00 99.90 99.95 89.90 90.00 DISEÑO PATRON 199,90 199.90 199.80 199.80 199.85 99.80 99.50 99.65 89.74 89.65 DISERCI PATRON 199,50 199.90 199.70 199.00 199.78 99.70 99.00 00.05 00.00 00.00 05.0 PATRON + 4% F.B.C + 3% P.T.R 200.00 199,80 199.90 200.00 199.93 99.90 99.50 99.70 89.99 PATRON + 4% F.B.C + 3% P.T.R. 198.90 200.00 200,00 199.80 199.93 69.90 99.80 99,85 88.77 89,56 PATRON + 4% F.B.C + 3% P.T.R 199.80 199.90 200.00 199.90 199.95 98.90 99.00 98.95 88,99 89.35 PATRON + 4% F.B.C + 5% P.T.R 199.95 199.97 199.95 200,00 100.00 88.58 99.80 99.90 85.05 88,6025 PATRON + 4% F.B.C + 5% P.T.R 99.75 89.63 89.36 89.50 PATRON + 4% F.B.C + 5% P.T.R 199.90 200.00 199.98 200.00 199.97 100,00 99.90 99.95 89.36 90.00 89.68 PATRON = 4% F.S.C + 7% P.T.R. 199.98 199.96 199.90 199.97 199.99 99.80 100.00 99.90 90.00 88.97 29,485 PATRON + 4% F.B.C + 7% P.T.R 200.00 199.98 199.97 199.90 99.90 89,70 99,80 88.78 90.00 89.39 PATRON + 4% F.B.C + 7% P.T.R 199.90 200.00 100,00 99,96 89.00 09.5 OBSERVACIONES: Muestras elaboradas y curadas por el personal técnico de MATESTLAB SAC. * Las muestras cumplien con la relación altura / diámetro por lo que no fue necesaria la corrección de esfuer. AB S.A.C

Anexo Nº 4: Certificado de calibración

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033

CERTIFICADO DE CALIBRACIÓN Nº LM-418-2022

Expediente 131-2022 Fecha de Emisión 2022-09-29

 Solicitante MATESTLAB S.A.C.

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA Dirección

2. Instrumento de Medición : BALANZA

: OHAUS

Modelo : EB30

Número de Serie : 8031307548

Alcance de Indicación : 30 000 g

División de Escala de Verificación (e)

División de Escala Real (d)

: 19

Procedencia : CHINA

Identificación : LS-10

Tipo : ELECTRÓNICA

Ubicación : LABORATORIO

Fecha de Calibración : 2022-09-22 La incertidumbre reportada en presente certificado incertidumbre expandida medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y debe ser utilizado certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

Lugar de Calibración

LABORATORIO de MATESTLAB S.A.C.

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

PUNTO DE

PT-06.F06 / Diclembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

CERTIFICADO DE CALIBRACIÓN Nº LM-418-2022

Página, 2 de 3

5. Condiciones Ambientales

and the second s	Minima	Máxima
Temperatura	21,7	21,9
Humedad Relativa	61,1	61,1

6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (Si).

Trazabilidad	Patrón utilizado	Certificado de calibració		
	Juego de pesas (exactitud F1)	PE20-C0772-2021		
	Pesa (exactitud F1)	CCP-0340-007-2021		
INACAL - DM	Pesa (exactitud F1)	CCP-0340-006-2021		
INNONE - DM	Pesa (exactitud F2)	LM-114-2021		
	Pesa (exactitud F2)	LM-115-2021		
	Pesa (exactitud F2)	LM-116-2021		

7 Observaciones

(*) La balanza se calibró hasta una capacidad de 30 000 g

Antes del ajuste, la indicación de la balanza fue de 29 983 g para una carga de 30 000 g

El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C.

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

8. Resultados de Medición

	INSPECCIÓ	IN VISUAL	
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE
PLATAFORMA.	TIENE	SIST, DE TRABA	NO TENE
NIVELACIÓN	TIENE	the mark of the same	Della L

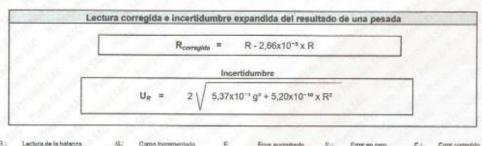
ENSAYO DE REPETIBILIDAD

Medición	Carga L1=	15 000 (Carga L2=	30 000	9
Na.	1 (g)	AL (g)	E (g)	1 (g)	ΔL (g)	E (g)
1	15 000	0,7	-0,3	30 000	0,6	-0,2
2	15 000	0,6	-0,2	30 000	0,5	-0,1
3	15 000	0,6	-0,2	30 000	0,8	-0,4
4	15 000	0.8	-0,4	30 000	0,8	-0,4
5	15 001	0,3	1.1	30 000	0,6	-0,2
6	15,000	0,9	-0,5	30 000	0,9	-0,5
7	15 000	0,6	-0,2	30 000	0,6	-0,2
8	15 000	0,5	-0.1	30 000	0,7	-0,3
9	15 000	0,8	-0,4	30 000	0,8	-0,4
10	15 000	0,7	-0,3	30 000	0,6	-0,2
erencia Máxima			1,6			0,4
or máximo permi	tido ±	2 (2	3 ()

Jefe de Jaboratorio Ing. Luis Loayza Çapcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

CERTIFICADO DE CALIBRACIÓN № LM-418-2022


Página: 3 de 3

ENSAYO DE PESAJE

			Temp. (°C)	21,8	21,9				
Carga L (g)	MG LES	CRECIEN	DECRECIENTES				± emp		
	1(9)	AL(g)	E (g)	Ec (g)	1(g)	ΔL (g)	E (g)	Ec (g)	(0)
10,0	10	0,6	-0,1					127	distant.
50,0	50	0,5	0.0	0,1	50	0,6	-0.1	0.0	- 1
500.0	500	0,6	-0,1	0,0	500	0,8	-0.3	-0,2	1
2 000,0	2 000	0,9	-0,4	-0.3	2 000	0,8	-0.1	0,0	1
5 000,0	5 000	0,6	-0,1	0,0	5 000	0,5	0,0	0,1	1
7 000,0	7 000	0,8	-0.3	-0,2	7 000	0,6	-0.1	0,0	2
10 000,0	10 000	0,6	-0,1	0,0	10 000	0,4	0,1	0,2	2
15 000,1	15 000	0,6	-0,2	-0,1	15 000	0,8	-0,4	-0.3	2
20 000,1	20 001	0.3	1,1	1.2	20 000	0.7	-0,3	-0,2	2
25 000,1	25 001	0,4	1,0	1.1	25 001	0,3	1,1	1,2	3
30 000,1	30 000	0,8	-0,4	-0,3	30 000	0.8	-0,4	-0.3	3

e.m.p.: error máximo permitido

en servicio a consenta

R: en

PUNTO DE PRECISIÓN SA C

PT-06.F06 / Diclembre 2016 / Rev 02

Jelle de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

CERTIFICADO DE CALIBRACIÓN Nº LM-417-2022

Página: 1 de 3

 Expediente
 131-2022

 Fecha de Emisión
 2022-09-29

1. Solicitante : MATESTLAB S.A.C.

Dirección : MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES : LIMA

2. Instrumento de Medición : BALANZA

Marca : NEW CLASSIC

Modelo : WT6002G

Número de Serie : 150921008

Alcance de Indicación : 600 g

División de Escala : 0,01 g

de Verificación (e)

División de Escala Real (d) : 0,01 g

Procedencia : NO INDICA

Identificación : LS-09

Tipo : ELECTRÓNICA

Ubicación : LABORATORIO

Fecha de Calibración : 2022-09-22

La incertidumbre reportada en el certificado presente es Incertidumbre expandida de medición que resulta de multiplicar la Incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guia para la Expresión de la incertidumbre en la medición", Generalmente, el valor de la magnitud està dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y no debe ser utilizado como certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce,

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

4. Lugar de Calibración

LABORATORIO de MATESTLAB S.A.C.

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

PT-06.F08 / Diciembre 2018 / Rev 02

Jete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

CERTIFICADO DE CALIBRACIÓN Nº LM-417-2022

Página: 2 de 3

5. Condiciones Ambientales

	Minima	Máxima
Temperatura	21,7	21,7
Humedad Relativa	60,1	60,1

6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración
INACAL - DM	Juego de pesas (exactitud F1)	PE20-C0772-2021

7. Observaciones

(*) La balanza se calibró hasta una capacidad de 600,00 g

Antes del ajuste, la indicación de la balanza fue de 599,70 g para una carga de 600,00 g

El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C.

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una efiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

8. Resultados de Medición

INSPECCIÓN VISUAL							
AJUSTE DE CERO	TENE	ESGALA	NO TIENE				
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE				
PLATAFORMA	TENE	SIST, DE TRABA	NO TIENE				
NIVELACIÓN	TIENE						

ENSAYO DE REPETIBILIDAD

nice Firel

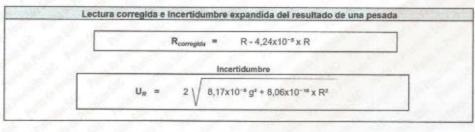
Medición	Carga L1=	300,00		Carga L2=	600,00	g
Mo	(g)	ΔL(g)	E (g)	I(g)	AL (g)	E(g)
. 1	299,99	0,003	-0,008	599,99	0,002	-0,007
2	299,99	0,004	-0,009	599,99	0,001	-0,006
3	299,96	0,002	-0,017	599,98	0,003	-0,018
4	299,99	0,004	-0,009	599,99	0,002	-0,007
5	299,99	0,001	-0,006	599,99	0,001	-0.006
6	299,99	0.002	-0,007	599,99	0,002	-0,007
7	299,98	0,001	-0,016	599,98	0,002	-0.017
8	299,99	0.002	-0,007	599,99	0,001	-0,006
9	299,99	0,003	-0,008	599,99	0,003	-0,008
10	299,99	0,004	-0,009	599,99	0,002	-0,007
encia Máxima			0,011			0,012
r máximo permi	tido ±	0,03 (1	±	0,03	Ci .

PT-06.F06 / Diciembre 2016 / Rev 02

Jele de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

CERTIFICADO DE CALIBRACIÓN Nº LM-417-2022


Página: 3 de 3

1.5	3 4		EN	BAYO DE E	XCENTRICIDAD Final				
			Temp. (°C)	21,7	21,7				
Posición		Peterminac	ión de E _o			Determinació	n del Rrror co	rregido	
de la Carga	Carga minima (g)	1 (9)	ΔL (g)	Eo (g)	Cargo L (g)	1-(g)	ΔL (g)	E (g)	Ec (g
1		0,10	0,008	-0,001		199,99	0,003	-0,008	-0,00
2		0.10	0,005	0,000		199,99	0,002	-0,007	-0,00
3	0,10	0.10	0,005	0,000	200,00	199,99	0,004	-0,009	-0,009
4	100	0.10	0,004	0,001		199,98	0,003	-0,018	-0.019
		0.10	0,006	-0,001		200:00	0,006	-0,001	0.000

ENSAYO DE PESAJE

				110.20E	L Kriste				
		100	Temp. ("C)	21,7	21,7				
Carga L CRECIENTES				DECREC	ENTES		temp		
(g)	-1 (g)	AL(g)	E(9)	Ec (g)	1 (g)	AL (g)	E (g)	Ec (g)	(g)
0.100	0,10	0,006	-0,001	Lawrence .					4
0,200	0,20	0,008	-0,003	-0,002	0,20	0,009	-0,004	-0,003	0,01
5,000	5,00	0,007	-0,002	-0,001	5,00	0,006	-0.001	0,000	0,01
20,000	20,00	0,006	-0,001	0,000	20,02	800,0	0,017	0,018	0,01
50,000	49,99	0,003	-0,008	-0,007	49,99	0,005	-0,010	-0,009	0,01
100,000	100,02	0,009	0,016	0,017	100,03	0,008	0,027	0,028	0,02
150,000	150,01	0,004	0,011	0.012	150,00	0,006	-0,001	0,000	0,02
200,000	200,01	0.002	0,013	0,014	200,00	0.007	-0,002	-0,001	0,02
400,001	400,02	0,003	0,021	0,022	400,01	0,004	0,011	0,011	0.03
500,000	500,00	0,008	-0,003	-0.002	500,02	0,005	0,820	0,021	0,03
600,000	600,03	0,009	0,026	0,027	600,03	0,009	0,026	0.027	0,03

e.m.p.: error máximo parmitido

R: Lottura de la balanza dil: Carga incrementata E: Error en contrado E,: Error en caro E,: Error en c

FIN DEL DOCUMENTO

PUNTO DE PRECISIÓN S A C

Jale de/Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

CERTIFICADO DE CALIBRACIÓN Nº LM-420-2022

Página: 1 de 3

Expediente 131-2022 2022-09-29

1. Solicitante MATESTLAB S.A.C.

MZA, A LOTE, 24 INT, 2 URB, MAYORAZGO NARANJAL Dirección

2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : BALANZA

HENKEL Marca

Modelo FA2004

: GK109136 Número de Serie

Alcance de Indicación 200 g (*)

División de Escala

de Verificación (e)

: 1 mg División de Escala Real (d) : 0,1 mg

Procedencia : NO INDICA

Identificación : LS-06

: ELECTRÓNICA

: LABORATORIO

Fecha de Calibración 2022-09-24 La incertidumbre reportada en el presente certificado 88 incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y no debe ser utilizado como certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

le corresponde disponer en su momento la elecución de una recalibración. la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

4. Lugar de Calibración

LABORATORIO de MATESTLAB S.A.C.

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

BORATO PUNTO DE PRECISIÓN SAC mbre 2018 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

CERTIFICADO DE CALIBRACIÓN Nº LM-420-2022

Página: 2 de 3

5. Condiciones Ambientales

	Minima	Máxima
Temperatura	20,6	21,5
Humedad Relativa	56,8	62,6

6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración		
INACAL - DM	Juego de pesas (exactitud F1)	IP-296-2021		

7. Observaciones

(*) La balanza se calibró hasta una capacidad de 200,0004 g

Antes del ajuste, la indicación de la balanza fue de 199,9982 g para una carga de 200,0000 g

El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C.

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud I, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

8. Resultados de Medición

INSPECCIÓN VISUAL								
AJUSTE DE CERO	TENE	ESCALA	NO TIENE					
OSCILACIÓN LIBRE	TENE	CURSOR	NOTIENE					
PLATAFORMA	TIENE	SIST. DE TRABA	NOTENE					
NIVELACIÓN	TIENE		Salvania .					

ENSAYO DE REPETIBILIDAD

Medición	Carga L1=	100,0002		Carga L2=	200,0004 g		
Nº .	1 (g)	ΔL (mg)	E (mg)	1 (g)	ΔL (mg)	E (mg)	
1	100,0000	8,0	-0.2	200,0000	0,0	-0,4	
2	100,0000	0,0	-0,2	200,0000	0.0	-0,4	
3	100,0001	0,0	-0,1	200,0000	0,0	-0,4	
4	100,0000	0.0	-0,2	200,0000	0,0	-0,4	
5	100,0000	0,0	-0,2	200,0000	0,0	-0,4	
6	100,0000	0,0	-0,2	200,0001	0,0	-0,3	
7	100,0001	0,0	-0,1	200,0000	0,0	-0.4	
8	100,0000	0,0	-0,2	200,0000	0,0	-0,4	
9	100,0000	0,0	-0,2	200,0000	0,0	-0,4	
10	100,0000	0,0	-0,2	200,0000	0,0	-0.4	
rencia Máxima			0,1			0,1	
or máximo permi	tido ±	2 n	ng	t	3 (ng	

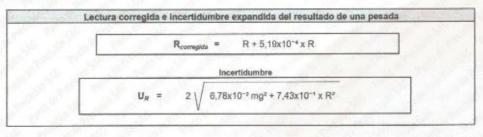
PT-05.F06 / Diclembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

CERTIFICADO DE CALIBRACIÓN Nº LM-420-2022

Página: 3 de 3



ENSAYO DE PESAJE

emp. (°C) 20,6 20,6

The state of the s					46.010				
Carga L	arga L CRECIENTES				DECRECIENTES				2 emp
(g)	T (gi).	AL (mg)	E (mg)	Ec (mg)	1 (g)	ΔL (mg)	E (mg)	Ec (mg)	(mg)
0.0	0,0010	0,0	0,0			1	MAN SALES	100	H. K
0,0	0,0100	0,0	0.0	0,0	0,0100	0,0	0,0	0,0	- 1
0.2	0,2000	0,0	0,0	0,0	0.2001	0,0	0,1	0.1	0
0,5	0,5001	0,0	0,1	0,1	0.5000	0,0	0,0	0,0	0
2.0	2,0002	0,0	0,1	0,1	2,0000	0,0	-0,1	-0.1	0
5.0	5,0000	0,0	-0,1	-0,1	5,0001	0,0	0,0	0,0	0
10,0	10,0001	0,0	0,0	0,1	10,0001	0,0	0,0	0,1	0
20,0	20,0002	0,0	0,2	0,2	20,0001	0,0	0,1	0,1	0
50,0	50,0001	0,0	0.0	0,0	50,0002	0,0	0,1	0,1	0
100,0	100,0002	0,0	0,0	0,0	100,0002	0,0	0,0	0,0	0
200,0	200,0000	0,0	-0,4	-0,4	200,0000	0,0	-0,4	-0,4	0

cump.; error máximo permitido

R: en mg

Error encontrado E_e: Error en o

E: Error corregido

FIN DEL DOCUMENTO

PUNTO DE PRECISIÓN S A C

Jele de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

CERTIFICADO DE CALIBRACIÓN Nº LFP - 345 - 2022

Página :1 de 2

Expediente : T 271-2022 Fecha de emisión : 2022--07-12

1. Solicitante : MATESTLAB S.A.C.

Dirección : MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL

2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Descripción del Equipo : MÁQUINA DE ENSAYO UNIAXIAL

Marca de Prensa : FORNEY
Capacidad de Prensa : 100 t

Marca de indicador : FORNEY
Modelo de Indicador : TA-1252
Serie de Indicador : NO INDICA

Marca de Transductor : FORNEY
Modelo de Transductor : NO INDICA
Serie de Transductor : 10450112

Bomba Hidraulica : ELÉCTRICA

El Equipo de medición con el modelo y número de serie abajo, Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL, y

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precision S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE PUNTO DE PRECISION S.A.C. 10 - JULIO - 2022

4. Método de Calibración

La Calibracion se realizó de acuerdo a la norma ASTM E4

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO O INFORME	TRAZABILIDAD		
CELDA DE CARGA	AEP TRANSDUCERS	INF-LE 106-2022	UNIVERSIDAD CATÓLICA		
INDICADOR	AEP TRANSDUCERS	INF-LE 100-2022	DEL PERÚ		

6. Condiciones Ambientales

7 Car 3 Car 12	INICIAL	FINAL	
Temperatura "C	20,8	20,6	
Humedad %	76	76	

7. Resultados de la Medición

Los errores de la prensa se encuentran en la página siguiente

8. Observaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde, con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

Jefe de Jaboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631 00

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

CERTIFICADO DE CALIBRACIÓN Nº LFP - 345 - 2022

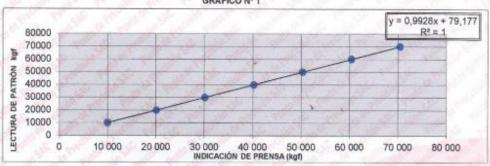
Página : 2 de 2

TABLA Nº

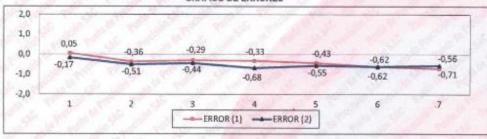
SISTEMA	SEDIES DE VEDIEICACIÓN /km²		PROMEDIO	ERROR	RPTBLD		
"A" kgf	SERIE 1 SERIE 2	"B" kgf	Ep %	Rp %			
10000	9995	10017	0,05	-0,17	10005,6	-0,06	-0.22
20000	20072	20102	-0,36	-0,51	20087,1	-0,43	-0,15
30000	30087	30131	-0,29	-0,44	30108,7	-0,36	-0,15
40000	40130	40270	-0,33	-0,68	40200,2	-0.50	-0,35
50000	50217	50277	-0,43	-0,55	50246,7	-0,49	-0,12
60000	60372	60369	-0,62	-0,62	60370,8	-0,61	0.01
70000	70496	70393	-0,71	-0.56	70444,3	-0,63	0.15

NOTAS SOBRE LA CALIBRACIÓN

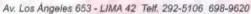
- Ep y Rp son el Error Porcentual y la Repetibilidad definidos en la citada Norma:
- Ep= ((A-B) / B)* 100 Rp = Error(2) Error(1)
- 2.- La norma exige que Ep y Rp no excedan el 1.0 %


Coeficiente Correlación : R² = 1

Ecuación de ajuste : y = 0,9928x + 79,177


Donde: x: Lectura de la pantalla

y : Fuerza promedio (kgf)


GRÁFICO DE ERRORES

FIN DEL DOCLINENTO

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACIÓN Nº LT - 369 - 2022

Página :1 de 4

Expediente : 131-2022 Fecha de emisión : 2022-09-25

Solicitante : MATESTLAB S.A.C.

Pirección : MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL

2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : ESTUFA

Indicación : DIGITAL

 Marca del Equipo
 : PERUTEST

 Modelo del Equipo
 : PT-H136

 Serie del Equipo
 : 0120

 Capacidad del Equipo
 : 134 L

 Código de Identificación
 : NO INDICA

Marca de Indicador : AUTOCOMP
Modelo de indicador : TCD
Serie de Indicador : NO INDICA
Temperatura calibrada : 110 °C

El instrumento de medición con el modelo y número de serie abajo indicados ha sido calibrado, probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condictones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mentenimiento del uso, transcripción de medición o a reglamentaciones vigentes.

Punto de Precision S.A.C no se responsabiliza de los perjucios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

MZA. A LOTE, 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA 24 - SETIEMBRE - 2022

4. Método de Calibración

La calibración se efectuó según el procedimiento de calibración PC-018 del Servicio Nacional de Metrología del INACAL - DM,

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
TERMOMETRO DIGITAL	APPLENT	150-CT-T-2022	INACAL - DM

Condiciones Ambientales

	INICIAL	FINAL
Temperatura "C	21,3	21,4
Humedad %	65	65

7. Conclusiones

La estufa se encuentra fuera de los rangos 110 °C ±5 °C para la realización de los ensayos de laboratorio según la norma ASTM.

8. Observaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

Jefe de Vaboratorio Ing. Luis Coayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

CERTIFICADO DE CALIBRACION Nº LT - 389 - 2022

Página : 2 de 4

Tiempo	Ind. (°C)		T	EMPERA	TURA EN	LAS PO	SICIONE	S DE ME	DICIÓN	(°C)		1	ΔTMax
600	Temporatura del		NIV	EL INFE	RIOR				EL SUPE			T. prom.	- TMin
(min.)	equipo	1	2	3	4	5	6	7	8	9	1 10	("C)	(°C)
0	110	108,9	109,1	113,7	108,3	118.8	109.4	107.1	106.7	110.2	111.6	110.4	12.1
2	110	108,6	109,6	113,2	108,5	118.6	109.6	107,5	106.6	110,2	111.2	110,4	12.0
4	109	108,5	109,3	113,2	108.6	118.5	109.3	107,2	108.5	110.3	111,3	110,4	
6	110	108,2	109,2	113,3	108,5	118.3	109.2	107,4	106.3	110.2	111.2	110,3	12,0
8	110	108,2	109,0	113,0	108,3	118.5	109.3	107,2	106.2	110.3	111.3	110,2	12,0
10	109	108,4	109,0	113,0	108,2	118.4	109.2	107,3	106.3	110,3	111.3	100000000000000000000000000000000000000	12,3
12	110	108,2	109,5	113.2	108.3	118.0	109.5	107,5	106,3	110,2	111.0	110,1	12.1
14	110	108,3	109,3	113.2	108.2	118.0	109.3	107.2	106,2	110,3	111,3	110,2	11,8
16	110	108,5	109,6	113,2	108.0	118,0	109.6	107,0	106,5	110,2	The state of the latest and the late	110,1	11.7
18	109	108,6	109,1	113,2	108.0	118.2	109.5	107,0	106,3	110.3	111,2	110,2	11,5
20	110	108,5	109.2	113,1	108.3	118,0	109.6	107.5	106.2	110,5		110,2	11,9
22	110	108,3	109,3	113.0	108.2	118.2	109.2	107.2	106.5	110,6	111,2	110,2	11,8
24	110	108,3	109,5	113.3	108,5	118.0	109.6	107,3	106,0	110,3	111,5	110,2	11,7
26	109	108,0	109,6	113.2	108.6	118.0	109.2	107,4	108.0	110,2	111,2	110,2	12,0
28	110	108,6	109,6	113.4	108,4	118.2	109,3	107.5	106,4	110.0	111,1	110,1	12,0
30	109	108,2	109,3	113,6	108.6	118.4	109,3	107,6	106.3	110.3	111,3	110,3	11,8
32	110	108,3	109,2	113,2	108,5	118,3	109.6	107.5	106.2	110,3	111,3	110,3	12,1
34	110	108,4	109,6	113.3	108.5	118.2	109.5	107.2	106.2		111,3	110,2	12,1
36	109	108,2	109,5	113.2	108.2	118.5	109,6	107.2	106,2	110,3	111,3	110,3	12.0
38	110	108.5	109,6	113.3	108.3	118.5	109,5	107,3	106,5	110,5	111,3	110,3	12,2
40	109	108.3	109.2	113.2	108.2	118.6	109,5	107,3		110,3	111,6	110,3	12,0
42	110	108,4	109.5	113,0	108.2	118,2	109,5	107,4	106,2	110,6	111,3	110,2	12,4
44	109	108.7	109,6	113.0	108.5	118.0	109.6	107,4	106,3	110.3	111,0	110,2	11,9
46	110	108,6	109.3	113.2	108.3	118.0	109,6	107,5	106,2	110,2	111,0	110,2	11,8
48	110	108.5	109.2	113.3	108.0	118,5	109,5	107,4	106,3	110,1	111,1	110,2	11,7
50	110	108.6	109.6	113.2	108.4	118,3	109.6	107.6	106,5	110,1	111,2	110,2	12,3
52	109	108,5	109.2	113,6	108.6	118,4	109,0	107,0	106,3	110,3	111,3	110,3	11,8
54	110	108.2	109,4	113.2	108.5	118.2	109.0	107.3	the second second second	110,3	111,2	110,3	12,1
56	110	108,3	109.6	113,5	108.8	118,5	109,0	107,4	106,2	110,2	111,3	110,2	-12,0
58	109	108,5	109,5	113.6	108.5	118,5	109,6	107,4	106,3	110,5	111,2	110,3	12,2
60	110	108,6	109,5	113.2	108.6	118.2	109.5	107,2	the second second	110,3	111,3	110,4	12,0
ROM	109,7	108.4	109.4	113,3	108,4	118,3	109,5	107,3	106,6	110,3	111,2	110,3	11,6
I XAM	110,0	108.9	109.6	113.7	196917	1.150/50	142/4	201.3	106.3	110.3	111.3	110,2	

Parámetro	Valor (°C)	Incertidumbre Expandida (°C)
Máxima Temperatura Medida	118,8	0.4
Minima Temperatura Medida	106,0	0,5
Desviación de Temperatura en el Tiempo	0.9	0.2
Desviación de Temperatura en el Espacio	12,0	
Estabilidad Media (±)	0,45	0,3
Uniformidad Media		0,02
	12,8	0,1

Para cada posición de medición su "desviación de temperatura en el tiampo" DTT esta dade por la diferencia entre la máxima y la mínima temperatura registradas en dicha posición

Entre dos posiciones de medición su "desviación de temperatura en el espacio" esta dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

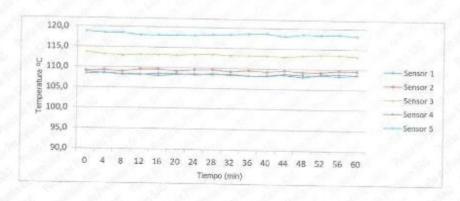
La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k =2 que, para una distribución normal corresponde a una probabilidad de cobertura de apróximadamente 95 %.

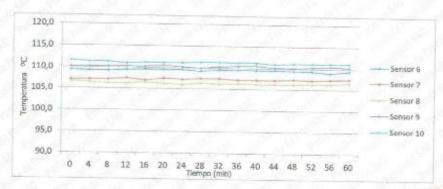
Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.





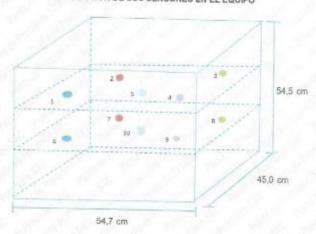
CERTIFICADO DE CALIBRACION Nº LT - 369 - 2022

Página : 3 de 4

TEMPERATURA DE TRABAJO 110 °C

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620
www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISION S.A.C.



CERTIFICADO DE CALIBRACION Nº LT - 389 - 2022

Página : 4 de 4

DISTRIBUCIÓN DE LOS SENSORES EN EL EQUIPO

- Los Sensores 5 y 10 se ubicaron sobre sus respectivos niveles.
- Los demas sensores se ubicaron a 8 cm de las paredes laterales y a 8 cm del fondo y del frante del equipo.
- Los Sensores del nivel superior se ubicaron a 1,5 cm por encima de la altura mas alta que emplea el usuario.
- Los Sensores del nivel inferior se ubicaron a 1,5 cm por debajo de la parrilla más baja.

PUNTO DE PRECISIÓN SA C

FIN DEL DOCUMENTO

Jefe de Laboratorio Ing. Luis Loayze Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISION S A.C.

Anexo N° 5: Panel Fotográfico

Figura 89.

Residuos de tejas artesanales

Figura 90.

Obtención del bagazo de caña

Figura 91.

Cuarteo y seleccionado de agregado grueso

Figura 92.

Cuarteo y seleccionado de agregado fino

Figura 93.

Llenado y tamizado del agregado grueso

Figura 94.

Peso del agregado grueso obtenido

Figura 95.

Llenado y tamizado del agregado fino

Figura 96.

Peso del agregado fino obtenido

Figura 97.

Llenado y enrasado del agregado fino suelto

Figura 98.

Pesado del agregado fino suelto

Figura 99.

Llenado y enrasado del agregado grueso suelto

Figura 100.

Pesado del agregado grueso suelto

Figura 101.

Llenado y compactado del agregado fino

Figura 102.

Enrasado y pesado del agregado fino compactado

Figura 103.

Llenado y compactado del agregado grueso

Figura 104.

Enrasado y pesado del agregado grueso compactado

Figura 105.

Llenado y compactado del agregado fino para determinar el peso específico y la absorción

Figura 106.

Estado del agregado fino y llenado en fiola para determinar el peso específico y la absorción

Figura 107.

Saturado y obtención del agregado fino para determinar el peso específico y la absorción

Figura 108.

Saturado y pesado del agregado grueso para determinar el peso específico y la absorción

Figura 109.

Medición de cantidad de agregados

Figura 110.

Preparación de la mezcla adición de agregado grueso y fino

Figura 111.

Preparación de la mezcla adición de agua y teja

Figura 112.

Preparación de la mezcla adición de bagazo de caña y concreto obtenido

Figura 113.

Llenado del cono de Abrams

Figura 114.

Compactado y enrasado del concreto en la prueba del Slump

Figura 115.

Medición del asentamiento del concreto en la prueba del Slump

Figura 116.

Llenado y vibrado del concreto en la elaboración del bloque

Figura 117.

Enrasado y desmoldado del concreto en la elaboración del bloque

Figura 118.

Proceso de almacenaje de los bloques elaborados

Figura 119.

Medición para el ensayo de alabeo del bloque diseñado con concreto patrón

Figura 120.

Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 3% de teja

Figura 121.

Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 5% de teja

Figura 122.

Medición para el ensayo de alabeo del bloque diseñado con 4% bagazo de caña y 7% de teja

Figura 123.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 3% de teja a los 7 y 14 días.

Figura 124.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 3% de teja a los 28 días.

Figura 125.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 5% de teja a los 7 y 14 días.

Figura 126.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 5% de teja a los 28 días.

Figura 127.

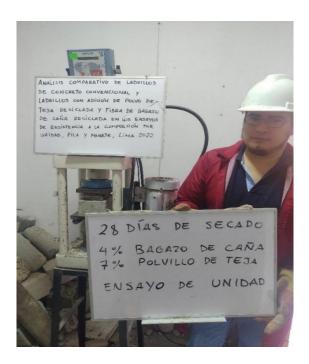

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 7% de teja a los 7 y 14 días.

Figura 128.

Resistencia a la compresión en unidad del diseño de 4% bagazo de caña y 7% de teja a los 28 días.

Figura 129.

Elaboración de las pilas con bloques de concreto

Figura 130.

Plomeado de la pila con bloques de concreto

Figura 131.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 3% de teja a los 7 y 14 días

Figura 132.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 3% de teja a los 28 días

Figura 133.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 5% de teja a los 7 y 14 días

Figura 134.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 5% de teja a los 28 días

Figura 135.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 7% de teja a los 7 y 14 días

Figura 136.

Resistencia a la compresión por pila del diseño de 4% bagazo de caña y 7% de teja a los 28 días

Figura 137.

Nivelado y plomeado del murete

Figura 138.

Instalación de bloques en el murete

Figura 139.

Fraguado y limpiado de bloques en el murete

Figura 140.

Resistencia a la compresión por murete del diseño de 4% bagazo de caña y 3% de teja a los 28 días

Figura 141.

Resistencia a la compresión por murete del diseño de 4% bagazo de caña y 5% de teja a los 28 días

Figura 142.

Resistencia a la compresión por murete del diseño de 4% bagazo de caña y 7% de teja a los 28 días

