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Abstract In this work, we investigate the influence of the
phase transition and a stiffer fluid in neutron stars’ cores on
the static equilibrium configuration, dynamical stability, and
tidal deformability. For this aim, it is taken into account that
the fluid in the core and the envelope follow the relativistic
polytropic equation of state. We find that the phase transition
and a stiffer fluid in the core will reflect in the total mass,
radius, speed of sound, core radius, radial stability with a slow
and rapid conversion at the interface, and tidal deformability.
We also investigate the dimensionless tidal deformability A
and A; for a binary neutron stars system with chirp mass
equal to GW170817. Finally, we contrast our results with
observational data to show the role that phase transition and
a stiffer core fluid could play in the study of neutron stars.

1 Introduction

The direct multimessenger detection from binary black holes
merger carried out by the LIGO-Virgo scientific network
[1-5] has marked the starting of the era of Gravitational
Waves (GWs) astronomy. The detection of GWs has opened
a new window to explore the cosmos and supplied some
astrophysics and fundamental physics implications (check,
e.g., [6-8]). Another important event of GWs comes from a
merger of a pair of neutron stars (NSs) [9], known as event
GW170817, which was also reported by the LIGO-Virgo
scientific network. This new signal opened the GWs multi-
messenger astronomy, being the first detection with electro-
magnetic counterpart [10], and providing a set of valuable
information about the properties of NSs and their equation
of state (EOS). After the first detection of GWs from the NSs
binary system, many important efforts have been realized
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to constrain, e.g., their radii and EOS [11-15]. Additional
constraints are feasible because of the implication of tidal
deformation [16-18].

It is known that the matter density that makes up NSs
reach densities up to a few times the nuclear saturation den-
sity, however, until these days, detailed information about the
characteristics and nature of their deep interiors is still lack-
ing. Future multi-messenger signatures hold the promise of
identifying the specific internal aspect of NSs. Theoretically,
asteroseismology is widely employed to analyze the internal
structure of compact stars -the name used for white dwarfs,
neutron stars, hybrid stars, or strange quark stars- to inves-
tigate the thermodynamic properties inside these objects.
Through this diagnostic technique, analyzing the frequency
modes can obtain a solid way to learn more about the physics
inside compact stars. For example, if inside these stars a sin-
gle component fluid is present [19-32] or the existence of
a phase transition between layers with different mechanical
properties [33—46].

In literature, unlike the study of one-phase static compact
stars, two-phase stars and the impact of the phase transition
on the properties of these stars were not widely investigated.
There are studies analyzing how density jumps affect the
static stellar equilibrium configuration and radial frequency
of oscillations [34—45], as well as the possibility of arising of
the so-called gravitational pulsation mode (g-mode) [33-35].

As regards the radial perturbations of compact stars with a
sharp interface, the set of equations must be solved by taking
into account the additional boundary conditions at the phase-
splitting interface. Around this point, there are two types of
physical behavior due to radial perturbations: the slow and
rapid phase conversion [35,36]. In the case of slow conver-
sion, there is no change of matter over the pulsating interface.
On the contrary, the rapid conversion case involves a flow of
mass from one phase to the other, and vice-versa, through
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the moving phase boundary. In recent years, the impact of the
phase transition on the radial oscillations of compact stars has
been reported in different articles. In the case of slow tran-
sition, for example, the authors concentrate on investigating
the effects of the core formation [34], a sharp phase transi-
tion [37,38], the mixed-phase [39-43], and electric charge
[44]. On the other hand, among those reported considering
both phase transitions in compact stars, we find: the ones
that analyze the fast and slow conversion in the context of
general relativity [36], how these are affected in the face of a
magnetic field [45], and their influences on non-radial oscil-
lations [35]. In the rapid phase transition case, unlike the slow
phase transition, in a sequence of equilibrium configuration,
the maximum mass peak marks the beginning of radial insta-
bility. Indeed, in slow transitions, after this turning point, it is
possible to find additional stable equilibrium configurations.
Therefore, in a sequence of equilibrium configurations with
increasing central energy density, some stars with the same
mass but different radii are obtained. These stars are known
as twin stars.

In the aforementioned articles, different models of equa-
tions of state are studied from the perspective of observa-
tional deformability data from the event GW170917. Some
of these works study this phenomenon against the possibility
of the existence of phase transitions inside the compact star,
some taking the aspect of an analysis of the stability of these
stars, and calculating radial oscillations. However, these same
articles often make these calculations assuming only slow
transitions, which allow the appearance of stable regions, in
the mass—radius diagram, after the maximum mass. In this
work, we present a detailed study of the influence of the phase
transition and a stiffer fluid in NSs core on the equilibrium
configuration, radial stability, and tidal deformability. In this
sense, we analyze how the radius, mass, speed of sound, core
radius, radial frequency of oscillation, and tidal deformation
change when a phase transition and stiffer fluid in NSs core
are considered. In the analysis of the radial stability of NSs,
we will focus on the slow and rapid phase conversions. We
also contrast our results with observational data to see the
role that phase transition and a stiffer core fluid could play
in the study of NSs.

The present article is arranged as follows: Sect. 2 presents
the equilibrium equations and radial stability equations;
moreover, this section is also devoted to presenting the junc-
tion conditions at the interface of the two-phase, which are
required to investigate the slow and rapid phase conversions.
Section 3 presents the EOSs employed for NSs, as well as the
numerical method used to solve the complete set of equations
required to investigate the equilibrium and radial stability. In
Sect. 4 we show the numerical results for equilibrium config-
urations, radial stability, and tidal deformability of NSs with
two-phase. Finally, we conclude in Sect.5. Throughout the
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paper, we work with geometric units, i.e., c = 1 = G, and
the metric signature + 2.

2 General relativistic formulations
2.1 Equilibrium equations

We take into account that the unperturbed neutron star is
made up of layers of effective perfect fluids, whose energy-
momentum tensors can be expressed as

Ty = (o +p) uguy+ pguv, (D

with p, p, and u,, representing respectively the energy den-
sity, the fluid pressure, and the four-velocity.

To analyze the effect of phase transition in the dense matter
on the equilibrium and radial stability of neutron stars, we
set the space-time metric, in Schwarzschild coordinates, as

ds®> = —e"dt* + ePdr?® + r?do® + r*sin® 0 do>. )
The potential metric functions v = v(r) and 8 = B(r)
depend on the radial coordinate r only.

For the energy-momentum tensor (Eq. (1)) and line ele-
ment (Eq. (2)) adopted, with the potential metric e P =

(1 —2m/r), we derive the set of stellar structure equations

dm

— = d4mpr?, 3)
dp my g
L= —(p+p) (s7rp+35) e, @)
dv 2 d

- P (5)

dr (p+p)dr’

where the parameter m represents the mass inside the sphere
of radius r. Equation (4) is known as the hydrostatic equilib-
rium equation for a spherically symmetric static astrophysi-
cal object, also called as Tolman-Oppenheimer- Volkoff equa-
tion [47,48].

The stellar structure equations (3)—(5) are integrated from
the center toward the star’s surface. At the center (r = 0) the

integration starts
m(0) =0, p@) = p, and v(0) = v.

(6)

p0) = pe,

The surface of the star (r = R) is determined by
p(R) =0. )

At this point, the interior solution connects smoothly with the
exterior Schwarzschild vacuum solution. This indicates that
at the star’s surface the interior and exterior potential metrics
are related through of the form:

2M

X ®)

PR — BB _
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with M being the total mass of the star.
2.2 Radial oscillations equations

The radial pulsation equation is obtained by Chandrasekhar
[49] making perturbation in the fluid and space-time vari-
ables. The perturbed quantities are placed into Einstein’s field
equation and in the linearized form of the conservation of
stress-energy tensor.

The solution of the radial oscillation equation provides
information about the eigenfrequency of oscillations w.
Intending to set this equation in a more appropriate form for
numerical integration, we place it into two first-order equa-
tions for the variables Ar/r and Ap [24]; with Ar and Ap
representing respectively the relative radial displacement and
Lagrangian perturbations of pressure. Thus, the system of
equations is, § = Ar/r:

s _sdv 1 Ap

dr ~ 2dr r(3$+p1“)’ ©)
dap _ 2 pov g (AP L (P _&r
yp =(p+pwére 4§<dr>+<dr> P tp

1dv
—8np(p+ ,O)éreﬁ - (55 + 4nre’3(p + ,0)) Ap,
(10)

where I’ = (1 + %) Z—g. The variables & and Ap have a
time dependence of the form ¢!’
quency.

To solve the differential equations (9) and (10), boundary
conditions in the center and on the star’s surface are required.
Moreover, to find regular solutions in the center of the star,
the second term of the right-hand side of Eq. (9) must vanish
in r — 0. In this way, it is considered

-3 (Srp)center' (11)

Atthis point, for normalized eigenfunctions, we regard £ (r =
0) = 1. On the other hand, as established above, the surface
of the star is determined when p(R) = 0. It implies

(AP surface = 0. (12)

, with w being the eigenfre-

(AP ) center —

2.3 Tidal deformability

Tidal effects are very common in the context of NSs binary
systems. In fact, the gravitational field generated by one star
in a binary system can result in deformation in its companion.
The parameter of tidal deformability is the measure of the
deformation in compact stars due to an external field. From a
mathematical point of view, this parameter can be expressed
in terms of the fraction,

a=-20, (13)

€ij

where Q;; is the quadrupole moment perturbed by an external
tidal field €;; [16—18]. The tidal deformability parameter A1 is
connected with the Love number k; through the relation k, =
%)\.1 R 5. Moreover, the dimensionless tidal deformability A
can be written in terms of the Love number k; as
2 ko

A= 35 (14)
with C = M /R being the compactness parameter. k; can be
expressed in terms of parameter yg = y(r = R) as follows

8C? 5
ky=——(1-2012+COr = 1) — ¥zl

x{2C[6 — 3yr + 3C(5yr — 8)] +4C>[13 — 11yg

+CGyr =2 +2C% (1 + yp)] +3(1 = 2C?)

X[2 — yg +2(yg — D1In(1 —20)} " (15)
The parameter y(r) is calculated along the whole of the star

— from the center to the surface of the star- integrating the
equation

d
Py £ yF 4170 =0, (16)

together with the set of equations (3)—(5), considering at the
center of the star y(r = 0) = 2. The functions F = F(r)
and Q = Q(r) are represented by the relations:

r—4mr3
F=b=r=— 4
p+p 6ef dv\?
=4mef (50 +9 -———-{=) .
O =dre <p+ erdp/a’p> r? (dr
(18)

2.4 Junction conditions at the interface

In the last years, compact stars with two different phases have
been considered a real possibility. However, there are still a
bunch of open questions such as, for instance, the density
at which a hadron-quark phase transition occurs and some
discussions about the kind of phase transition depending on
the surface tension between the phases [35,36,45,50,51]. In
our case, a first-order phase transition is considered, which
results in the presence of a finite energy density discontinuity.
Moreover, some approaches are regarded to investigate the
radial stability and deformability of stars.

2.4.1 Radial oscillations

The phase transitions can be classified as slow or rapid
depending of the time scale of the reaction of the matter
in the neighborhood of the hadron-quark interface [36,52].
A scenario of slow phase transition appears when the rate of
reaction transforming one phase into another is much greater
than those of the radial perturbations. In such circumstances,
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there is no flow of matter across the surface splitting the two
phases. Such a condition implies that & must always be con-
tinuous at the interface across the interface, i.e.,

Sinn = Sout' (19)

Moreover, this also leads to a continuity pressure at the inter-
face of the two phases. At this point, it assures that

(AP)inn = (AP)ou -

In the case of a rapid phase transition, the rate of reaction
transforming one phase into another is much lower than those
of the radial perturbations. In this scenario, a change of mass
flow through the interface occurs. The diminution of mass
on one side should be equal to the increase of mass on the
other side. This condition, together with the demand for the
continuity of pressure, lead to

A A
2)-2),
P Jinn TP/ out

where the prime stands the operation with respect to the radial
derivative, and

(Ap)inn = (AP) oyt -

(20)

21

(22)
2.4.2 Tidal deformability

At the interface of the two layers, we can clearly note that
exists a singularity in Eq. (18) due to the speed of sound
(dp/dp) since, at this point, we have the same value of the
fluid pressure for two different energy densities. In Ref. [17],
the authors discussed this problem in the context of the sur-
face vacuum discontinuity for incompressible stars. After in
Refs. [53-55], this approach was extended for the case of
first-order transitions inside hybrid-stars, where authors con-
cluded that at this point the function y(r) must follow the next
condition:

_Axr [y + = p(riy — €]
m(ry) +4mwr)p

Yy +€) =y, —€) s
(23)

with ;- and € being the radial position where phase-transition
occurs inside of the star and € an infinitesimal parameter,
respectively. Obviously, the region r < r; represents the
core of the star, and the region r > r; depicts the envelope
of the star.

3 Equation of state and numerical method
3.1 Equation of state

To describe the matter that makes up the compact object,
in the two-phase configurations, the relativistic polytropic
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Fig. 1 Some equations of state for two density jump parameters A. The
fluid pressure p and energy density p are normalized by the nuclear
density ppuclear = 2.68 X 107 [kg/m3]. On the top and bottom panel
are respectively adopted pdis = 7 x 1017 [kg/m3] and 8 x 10'7 [kg/m?]

inn

equation of state [56] is adopted. Then, the energy density
and fluid pressure of each phase are respectively connected
through the relations:

l/nnn
(-2 [ Y o
P (Kinn> +Finn—1’ Pion = P = De» (24)
p 1/r‘oul p '
- — 2 0<p<pds, 25
g (Kout) + Towe — 1 =P = Pout (25)

These two relations bear parameters from the inner and outer
regions denoted by the sub-indexes “inn” and “out”, respec-
tively; namely, Kinn and Koy are the polytropic constants,
I''nn and Iy being the polytropic exponents, and pidrffl and
pgilst represent the phase transition pressure. Following [27],

we set the inner polytropic constant value:
Kinn = 0.0195 x (1.67 x 10'7 kg/m?)~13%, (26)

Since the fluid pressure should be continuous along the star,
at the phase transition point, where the inner and outer phase
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dis dis

transition pressures meet the condition pgy, = pi,», the outer
polytropic constant takes the form:
dis dis Finn
Pl — s/ (im = 1)
Kout = Kinn ( inn pmn/ nn ) (27)

i i Tout ™
('Oglllst - pglllst/ (Fout — 1)) l

At this point, the inner and outer phase transition energy
densities are related by:

Pout = Pinn- (28)
where A is known as the density jump parameter. Some exam-
ples of the EOS with a sharp density jump are presented in
Fig. 1.

In the next section, we consider the value of I},, = 2.4,
I'nn = 2.6 and 5y = 2.4 and the phase transition param-
eter A between the values 0.5 and 1.0, in order to analyze
both the role of a stiffer core fluid and the effects of a more
abrupt phase transition in the star equilibrium configuration,
respectively. The values of Iy, Iy and A chosen allow
us to obtain comparable results with the data found through

observation, which are reported by the LIGO-Virgo network
in [57] and by NICER in [58-64].

3.2 Numerical method

The effects of the phase transition on the equilibrium con-
figurations and tidal deformations are investigated through
the numerical solution of the system of equations, boundary
conditions, and junction conditions established in the Sect.
2, for each pidnirsl, A, inn, and oy This system of equations
is integrated from the center toward the star’s surface.

The analysis of the radial stability starts by solving the
stellar structure equations by using the Runge—Kutta fourth-
order method in order to determine the radial pulsation coef-
ficients. After, we begin at the star’s core with the solution
of Egs. (9), (10) for a test value of w?. These equations are
numerically integrated outwards until the interface is found,
where the junction conditions are employed (for the slow
case Egs. (19) and (20) and for the rapid case Egs. (21) and
(22)) to find the values of & and Ap at the other side of the
interface. Then, the numerical integration continues towards
the surface of the stars attempting to reach the conditions (7)
and (12). Whether, after each integration, the equality (12)
is not fulfilled, w? is corrected until satisfying this equal-
ity in the next integration. The parameters w> which satisfy
the oscillation are called eigenvalues of the radial pulsation
equation and w of eigenfrequencies (review [36]).

We are interested in analyzing the radial stability of stars,
we only analyze the lowest eigenvalue, i.e., a)g When a)(z) >
0, the star is stable against small radial perturbations. wq is
known as the eigenfrequency of the fundamental mode.

M/Mg,

1 1 1
18.0 185 19.0 19.5 20.0
Log(p[kg/m?])

Fig. 2 Mass against the central energy density for different values of
A pdis = 8 x 107 [kg/m3], oy = 2.4, and two different values of

inn

Finn

4 Results
4.1 Equilibrium configuration of neutron stars

The compact star total mass sequence, normalized to the
Sun’s mass M, as a function of the central energy density is
plotted in Fig. 2 for two values of I3y, four different values
of A, ,oidnirs1 =8 x 107 [kg/m3], and I,y = 2.4. The central
energy density goes from 108 to 10?° [kg/m>]. On the panel,
the total mass increases with the central energy density until
reaches the maximum mass of the sequence, after this point,
M /M decreases monotonically with the increment of p,.

In the panel, it is noted the diminution of the total mass
with the density jump parameter. This is associated with the
fact that the fluid pressure decays abruptly due to the presence
of a phase transition, being this declines greater for lower
A (see Fig. 1). The change of the mass with [y, is also
observed in Fig. 2. For a fixed p. and A, for a greater [iny,
a larger total mass is derived. This point can be understood
since for larger interior polytropic exponents larger central
pressures are obtained. Thus, larger central pressure supports
more mass against gravitational collapse. In addition, it is
important to say that, for larger [}, neutron stars with more
compact cores are obtained (review, e.g., [65,66]).

Figure 3 shows the mass as a function of the total radius for
two values of [i,, for ,oidnif; =8 x 10 [kg/m3], few values
of A, and Iy = 2.4. As in the case of Fig. 2, in this figure
is considered p. between 10'® and 10%° [kg/m?]. The panel
shows an increment of M / M with the diminution of R until
to find a Mmax/Mg. After this point, the curves turn anti-
clockwise, to M (R) starts to decrease with R until to reach
Rmin. From here on, the mass decays with the increment of
the total radius.
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MM

0.8 1 1 1 1

R [km]

Fig. 3 Total mass as a function of the radius for four values of A,
P — 8 % 1017 [kg/m3], Toue = 2.4, and two different values of Ty
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Fig. 4 Total mass against the speed of sound for four values of A,
ods — 8 x 10" [kg/m?], Fou = 2.4, and two different values of Ilnn

In Fig. 3, for some range of central energy density, we also
find an increment of the total radius with the diminution of the
density jump parameter. This is due to the fact that in these
compact stars, the pressure of the fluid decays slower with the
increase of the radial coordinate, thus obtaining larger radii.
In addition, for some range of p. and A, we can also observe
decrements of the total radius with the increment of Iipy.
Despite having an increase of the central pressure with I}y, it
decays faster with the growth of the radial coordinate. In this
way, compact objects have a smaller total radius. Finally, in
Fig. 3, we also see that the radius of the stars with maximum
mass decreases with the jump in phase transition density.
This is due to the fact that the central pressure of the star
decreases with A, thus, the pressure decays faster with the
radial coordinate.

The total mass versus the speed of sound is plotted in
Fig.4, for pd = 8 x 10'7 [kg/m?], some values of 4, and

inn
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I'oue = 2.4. In this figure, we only present equilibrium con-
figurations with the speed of sound lower than the speed of
light cs2 = 1.0. As can be seen, in particular, at stars that
present first-order phase transition with low central energy
densities (stars with low total masses), the speed of sound
never exceeds the conformal limit cs2 = 1/3. However, in
stars with larger total masses, the speed of sound exceeds the
conformal limit value but is far to attain the speed of light.
These results are in concordance with those reported in the
article [32].

4.2 Radial stability of neutron stars

Figure 5 shows the behavior of the slow and rapid eigenfre-
quency of the fundamental oscillations as a function of the
total mass and against the central energy density for some
different values of 2, pdi = 8 x 10'7 [kg/m?], o = 2.4,
and [inn = 2.4 on the left panels, and I3, = 2.6 on the
right panels. From the figure, for A = 1, it can be noted
that the maximum total mass is found at the zero eigenfre-
quencies of oscillation. This case represents the usual study
of radial oscillation of neutron stars in the absence of phase
transition. In turn, for A < 1, as well as in [36], we note
that the total mass at the null eigenfrequency of oscillation
depends on the type of the phase transition. At this point,
when Iy, = Tou = 2.4, the difference of the mass attained
in the rapid and slow case is almost 0.246% for A = 0.9,
0.470% for > = 0.8, 0.397% for A = 0.7, 0.299% for
A = 0.6,and 0.164% for A = 0.5. In the case I}, = 2.6 and
I'oye = 2.4, the difference of the mass is around 0.197% for
A =0.9,0.358% for . = 0.8, 0.330% for A = 0.7, 0.161%
for A = 0.6, and 0.0371% for A = 0.5 (review Table 1).

In Fig. 5, in the slow case, the total mass at the zero eigen-
frequencies of oscillation is derived at p. larger than the one
employed to obtain the maximum mass value; i.e., twins stars
are derived, stable stars with the same total mass but with both
different central energy densities and total radii. However,
in the rapid case, the maximum mass and the null eigenfre-
quency of oscillation are obtained by using the same value of
pc- Itindicates that in a sequence of static equilibrium config-
urations, the maximum mass point marks the beginning of the
instability against small radial perturbations. This character-
istic in each phase transition could be useful to differentiate
them.

Table 1 presents the central energy densities and total
masses where the zero eigenfrequencies of oscillations for
the slow and the rapid phase transition. These parameters
are derived for pidnif] = 8 x 10V [kg/rn3], Touwe = 2.4 and
some values of I},, and A. In the table, for a fixed Iy, at
the null eigenfrequency of oscillation for the slow and rapid
case, we note that the total mass, the total radius, and the
core radius decrease with the density jump parameter. This
could be understood since p. decays with A, in this way, the
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total pressure diminishes faster with the growth of the radial
coordinate. On the other hand, when I;,, is increased, i.e.,
when a stiffer core fluid is considered, stars with a core radius
Reore closer to the total radius R are found.

4.3 Tidal deformability in the light of GW 170817

Tidal deformability against the total mass of stable NS is
plotted at the top panel of Fig. 6 for pdis = 8 x 10!7 [kg/m?],
I'oye = 2.4, different values of A and I}p,. On the panel, it
is also presented the tidal deformability constrained by the
event GW170817 for a star of 1.4M¢ to be 70 < Ay 4pm, <
580 [57], at 90% confidence level, for low-spin priors.

For a fixed A and masses range, at the top of Fig.6, we
note an increment of the tidal deformability when a stiffer

fluid is considered in the core. On the other hand, by setting
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w 12r . ) Tjp= 2.47
L ‘ | TS\ =26
e [GIN '
r SO \ )
8l ’ AP e I \(rr
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4 ' I | !
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L (b) 4
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A, and two values of I}p,. On the left panels, it is used I}, = 2.4 and
on the right panels, it is employed I3y, = 2.6

the parameter [j,, for different values of the phase transi-
tion parameter A, we can notice that the importance of the
parameter A changes in a more relevant way. The lower the
value of A, the less the pressure of transition (see Fig. 1) and
the smaller the value of the deformability for the same mass.
From these results, the effect of phase transition and stiffer
fluid in the core are noticeable in the tidal deformability.
Nonetheless, between these two factors, the phase transition
parameter affects the NS properties more.

At the bottom panel of Fig. 6, the curves A} — A; are
presented for a binary NS system with chirp mass equal
to GW170817. Since the total mass is associated with the
dimensionless tidal deformability (top panel of Fig.6), the
curves Ay — A, are obtained once chosen a value of m
and calculating m, for the fixed value of the chirp mass
M = 1.188 Mg [9], which is theoretically calculated by
the relation:

@ Springer



211 Page 8 of 12

Eur. Phys. J. C (2023) 83:211

Table 1 The central energy density p., the total mass M /M, the total
radius R, and the core radius Rcore Where the null eigenfrequency of
oscillation of the slow case wy s and rapid case wo , are derived. These

parameter are found for pdis = 8 x 10'7 [kg/m?], Iow = 2.4 and
different values of Ij,, and A

wps =0 wor =0
Finn A pe [kg/m?] M /Mg R [km] Reore [km] pe [kg/m?] M/Mo R [km] Reore [km]
2.4 1.0 1.9776 x 10'8 2.2391 12.254 12.254 1.9776 x 10'8 2.2391 12.254 12.254
0.9 2.5095 x 1018 2.0689 11.525 7.8405 2.1462 x 10'8 2.0753 11.949 7.8218
0.8 3.0423 x 10'8 1.8742 10.800 7.5842 2.5079 x 10'8 1.8830 11.339 7.6380
0.7 3.8103 x 10'8 1.6619 9.8790 7.1888 3.1426 x 10'8 1.6685 10.403 7.3066
0.6 5.1074 x 10'8 1.4405 8.7010 6.6230 4.3246 x 10'8 1.4448 9.1068 6.7657
0.5 7.0873 x 10'8 1.2207 7.4132 5.9219 6.3371 x 10'8 1.2227 7.6410 6.0283
2.6 1.0 2.0514 x 10'8 2.2966 12.050 12.050 2.0514 x 10'8 2.2966 12.050 12.050
0.9 2.5269 x 10'8 2.1368 11.375 8.0505 2.2691 x 10'8 2.1410 11.661 8.0615
0.8 3.0803 x 10'8 1.9542 10.623 7.7841 2.6228 x 1018 1.9612 11.054 7.8585
0.7 3.8087 x 10'8 1.7576 9.7431 7.3940 3.2424 x 10'8 1.7634 10.155 7.5138
0.6 4.7597 x 10'8 1.5543 8.7586 6.8949 4.2734 x 10'8 1.5568 9.0081 6.9936
0.5 6.1448 x 10'8 1.3472 7.6503 6.2731 5.8217 x 10'8 1.3477 7.7576 6.3259
W= (m1my)3/3 (29) constraints obtained from the pulsars PSR J0030 4 0451
(my 4+ my)l/5° [58,59] and PSR J0740 + 6620 [60,61]. The correspond-

The values considered for m| and m; run from 1.36 My <
my < 1.60Mg and 1.17Mg < m> < 1.36Mg, respectively.

At the bottom panel of Fig. 6, we investigate the effects
of the phase transition and a stiffer fluid in the core (for
pidni; = 8 x 10'7 [kg/m?]) of two neutron stars in a binary
system. In this case, we note that both the phase transition
and a stiffer equation of state could play an important role in
the detection of these compact objects. From the results, we
note that there is an interval for the density jump parameter
A, 0.7 < A < 0.8, which plays the compact stars inside of
50% and 90% regions. The compact stars with A > 0.9 are
outside the 90% region and do not appear in the panel. This
is realized with the aim that the curves shown inside 50%
and 90% can be seen clearly. Furthermore, we observe that
for smaller values of A the curve change to smaller values
of dimensionless deformability. On the other hand, it can be
noted that a stiffer fluid in the core produces larger values of
deformability.

4.4 Change of stellar physical parameters with phase
transition energy density and its comparison with
observational data

In Fig. 7, the mass—radius curves are compared with the
observational data considering I}, = Iow = 2.4, some
values of A and two pidni;. On the top and bottom panel are
employed pdi8 = 7.0 x 10'7 [kg/m?] and pd8 = 9.0 x
10'7 [kg/m?], respectively. In this figure is used 10'8 < p, <
10%° [kg/m?]. The observation data correspond to the NICER

@ Springer

ing bands of the pulsars PSR J0740 + 6620 [62], PSR
J0348 + 0432 [63] and PSR J1614 + 2230 [64] are also pre-
sented. From the figure, we observe that the change of pflni;
affects the stellar structure configuration; being this change
more noticeable in the range of low central energy densi-
ties. In this interval, for larger pidni;, greater total mass and
smaller total radius are found. From these results, we note
that the change of internal phase transition energy density
allows us to obtain some results more accurate and closer to
empirical evidence of the neutron stars PSR J0030 + 0451.
In addition, we see that with the increment of pi‘:lifl, grow
the possibility of having equilibrium solutions with sharper
phase transition (smaller density jump parameter 1) within
PSR J0030 + 0451. On the other hand, from Figs. 3 and 7,
we observe that in the range of larger total mass, a stiffer
fluid in the core could help to reach empirical evidence of
neutron stars PSR J0740 + 6620, PSR J0348 + 0432, and
PSR J1614 + 2230.

In Fig. 8, the top and bottom panels, respectively, present
the tidal deformability against the total mass and Aj-Aj
curves for a binary NS system with chirp mass equal to
GW170817 considering the relation (29) where m| and m,
goes from 1.36 Mg <m; < 1.60Mg and 1.17Mg < my <
1.36 M. The inner phase transition energy density consid-
ered on the left and right panels are 7.0 x 10'7 [kg/m?]
and 9.0 x 10!7 [kg/m?], respectively. In all panels of Fig. 8,
only stable equilibrium configurations for the rapid transi-
tion case, employing [jnn, = [ou = 2.4, are considered. As
stated above, the observation data correspond to the event
GW170817.
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Fig. 6 Top: dimensionless tidal deformability A as a function of the
total mass in solar masses. The vertical dash-dot-dot line marks the
tidal deformability of event GW 170817 estimated in [57]. Bottom: the
dimensionless tidal deformability A; and A, for a binary NS system
with masses m | and m7 and the same chirp mass as the event GW 170817
[9]. We only take into account the combination with m| > m». The
diagonal short dot line denotes the A} = A limit. The solid top yellow
line indicates the 90% credibility level and the bottom yellow solid line
is the 50% level established by LIGO-Virgo scientific network in the
low-spin prior scenario. Only stable equilibrium configurations with
slow conversions at the interface are shown

In Fig. 8, on the top panels, it can be seen that all curves
tidal deformability (A)-total mass (M /M) decay with the
increment of pSll; From this, we understand that this phe-
nomenon allows us to have equilibrium configurations with
a lower density jump parameter A (a sharper phase transi-
tion) within the observational data of the GW170817 event.
From the bottom panels, we note that some equilibrium solu-
tions located outside the range of observational data derived
from the GW 170817 event fall within this interval when we
increase the phase transition energy density pidnirsl. In addition,
from Figs. 8 and 6, we can also say that having a stiffer fluid
in neutron stars’ cores helps us to have static equilibrium
configurations within the range of observational data.
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Fig. 7 Comparison of mass-radius curves with observational data
using different values of A, Iy = Iouww = 2.4 and two different
values of pidnis. On the top and bottom panel are respectively used
pdis = 7.0 x 107 [kg/m3] and pI8 = 9.0 x 10'7 [kg/m?]

5 Conclusions

In this work, we investigated the influence of the phase tran-
sition on the equilibrium, radial stability, and tidal deforma-
bility of NSs with a stiffer fluid in the core. In the core and
the envelope of the star, the relativistic polytropic equation
of state is considered. The spherical equilibrium configura-
tions are connected smoothly with the Schwarzschild exte-
rior spacetime. We examined the change of the mass, radius,
speed of sound, core radius, the eigenfrequency of the fun-
damental mode of the star with a slow and rapid phase con-
version at the interface, and tidal deformability for different
density jump parameters A, phase transition energy densities
pidnirsl, interior polytropic exponents I}n,, and exterior poly-
tropic exponent [y = 2.4.

As well as in the study of NSs developed in [67], which
employs a non-relativistic polytropic equation of state, we

@ Springer
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Fig. 8 Top: Dimensionless tidal deformability A against the total mass
in Sun masses. The vertical line of the dash-dot-dot plots the tidal
deformability of the GW 170817 event measured at [57]. Bottom: The
dimensionless tidal deformability A; and A; for a binary NS sys-
tem with masses m and m, and a chirp mass of 1.4M¢ considering
the combination with m| > mj. The diagonal short dot line marks

note that some aspects of the static equilibrium configura-
tions -such as the mass and radius- are affected by the phase
transition, stiffer fluid in the core (which change with Iiyy),
and phase transition energy density.

For the values I'}p, and A employed, in the slow case, the
zero eigenfrequencies of the fundamental mode are attained
beyond the maximum mass points and, in the rapid case, the
maximum masses points mark the beginning of the radial
instability thus indicating that the regions constituted by sta-
ble and unstable stars can be recognized by the conditions
dM/dp. > 0 and dM /dp. < 0, respectively. These results
are in concordance with those one reported in the works
[35,36,45].

The change of the tidal deformability for a NS (A) and
a binary NS system (A; and Aj), with equal chirp mass

@ Springer
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A1 = A limit. The solid top and bottom yellow lines denote respec-
tively 90% and 50% level established by LIGO-Virgo scientific network
in the low-spin prior scenario. On the left and right panels are used
pidnifl = 7.0 x 10" [kg/m?] and p% = 9.0 x 10'7 [kg/m?], respec-

inn
tively. Only stable equilibrium configurations with rapid conversions at
the interface considering Ipy = oy = 2.4 are presented

as GW170817 event, as a function of I}, and X, has been
analyzed. We obtained a dependence of the dimensionless
tidal deformability with these two factors in the aforemen-
tioned frameworks. For NS configurations, for some interval
of masses, we noted that A grows and decreases with the
increment of I}, and diminution of A. In turn, for a binary
NS scenario, we showed that the phase transition and stiffer
fluid in the NS core could also play an important role in the
detection of NSs. These results are in agreement with those
ones published in [38].

We also investigated the dependence of some physical
parameters of NSs with the phase transition energy density.
At the interval of low central energy densities, we found that

o3 can also be important in the study of NSs since their



Eur. Phys. J. C (2023) 83:211

Page 11 of 12 211

physical parameters could be significantly affected by the
value of phase transition energy density.
Finally, we noted that a change in jump density parameter

A, phase transition energy density pi‘lnifl, and stiffer core fluid

Ihy could lead to the possibility that some equations of state
that are outside of the observational data, can be inside this

framework for accurate values of A, ,oidn‘g and [pp.
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