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AN INEXACT PROXIMAL DECOMPOSITION METHOD FOR VARIATIONAL
INEQUALITIES WITH SEPARABLE STRUCTURE

Erik A. Papa Quiroz1,2,∗, Orlando Sarmiento3 and Paulo Roberto Oliveira3

Abstract. This paper presents an inexact proximal method for solving monotone variational in-
equality problems with a given separable structure. The proposed algorithm is a natural extension of
the Proximal Multiplier Algorithm with Proximal Distances (PMAPD) proposed by Sarmiento et al.
[Optimization 65 (2016) 501–537], which unified the works of Chen and Teboulle (PCPM method), and
Kyono and Fukushima (NPCPMM) developed for solving convex programs with a particular separable
structure. The resulting method combines the recent proximal distances theory introduced by Auslen-
der and Teboulle [SIAM J. Optim. 16 (2006) 697–725] with a decomposition method given by Chen and
Teboulle for convex problems and extends the results of the Entropic Proximal Decomposition Method
proposed by Auslender and Teboulle, which used to Logarithmic Quadratic proximal distances. Under
some mild assumptions on the problem we prove a global convergence of the primal–dual sequences
produced by the algorithm.
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1. Introduction

Let T : IRn × IRp ⇒ IRn × IRp be a maximal monotone operator and let

Ω := {(x, z) ∈ C̄× K̄ : Ax+Bz = b} (1.1)

where C ⊂ IRn and K ⊂ IRp are nonempty open convex sets, C̄ and K̄ denote the closure (in the Euclidean
topology) of C and K respectively, A ∈ IRm×n, B ∈ IRm×p and b ∈ IRm. This paper is interested for solving the
following variational inequality problem with separate structure, denoted from now on as VI(Ω, T ) problem: to
find a pair (x∗, z∗) ∈ Ω and g∗ := (g∗1 , g

∗
2) ∈ T (x∗, z∗) such that

〈x− x∗, g∗1〉+ 〈z − z∗, g∗2〉 ≥ 0, ∀(x, z) ∈ Ω, (1.2)

where 〈·, ·〉 denotes the inner product in the appropriate Euclidean space.
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Some papers devoted to solve the above problem and several applications in networks economics, transporta-
tion equilibrium problems, etc., can be found for example in [1, 2, 6, 11,13,15,17,23] and references therein.

Throughout, we assume that the VI(T,Ω) problem has a solution and dom(T ) ∩ (C× K) 6= ∅.
Then, it can be easily verified that (x∗, z∗) solves the VI(T,Ω) problem, if and only if, there exists y∗ ∈ IRm,

playing the role of a dual multiplier for the constraint (1.1), such that (x∗, z∗, y∗) solves the following primal–dual
formulation: find (x∗, z∗, y∗) ∈ C̄× K̄× IRm and g∗ := (g∗1 , g

∗
2) ∈ T (x∗, z∗) such that〈

x− x∗, g∗1 +AT y∗
〉

+
〈
z − z∗, g∗2 +BT y∗

〉
≥ 0, ∀(x, z) ∈ C̄× K̄, (1.3)

Ax∗ +Bz∗ = b. (1.4)

For solving the VI(T,Ω) problem, we propose an inexact proximal decomposition algorithm using proximal
distances, which combine the recent proximal distances theory introduced by Auslender and Teboulle [3] with
the Entropic Proximal Decomposition Method proposed in [1]. This scheme is in fact an extension of Chen and
Teboulle’s method [9] (which was developed for solving convex programs with a particular separable structure)
and the Entropic Proximal Decomposition Method.

The extension is in two directions. Firstly we consider the more general framework of variational inequalities
with convex constraints and secondly we use here the recent proximal distance theory introduced by Auslender
and Teboulle [3] in place of the usual quadratic proximal theory (for the case of the Chen and Teboulle method)
and Logarithmic Quadratic proximal theory (for the case of the Entropic Proximal Decomposition Method).

Our aim is to provide a convergence analysis for an inexact proximal decomposition algorithm using proximal
distances, which includes (i) Bregman distances induced by the class of kernels with open domain, (ii) φ-
divergence distances, and (iii) log-quadratic distances. Our analysis considers summable errors, which means
that infinite sum of all erros is finite.

The rest of the paper is organized as follows. In Section 2 we recall basic notions and properties on set-
valued maps, proximal distances, and induced proximal distances. An inexact proximal decomposition method
for variational inequalities is presented in Section 3. Then, global convergence of the proposed method is proved
in Section 4. Finally, some conclusions are made in Section 5.

2. Basic definitions

Given a subset C ⊂ IRn, we denote by int(C) its interior and C̄ its closure. A point-to-set mapping (or
multifunction) T : IRn ⇒ IRn is an operator which associates with each point x ∈ IRn a set (possibly empty)
T (x) ⊆ IRn. The domain and the graph of a point-to-set valued map T are defined as

D(T ) := {x ∈ IRn : T (x) 6= ∅},

Gr(A) := {(x, y) ∈ IRn × IRn : x ∈ D(T ), y ∈ T (x)}.

A point-to-set operator T is said to be monotone if

〈y′ − y, x′ − x〉 ≥ 0, ∀y′ ∈ T (x′), ∀y ∈ T (x), ∀x, x′ ∈ D(T ).

T is said strictly monotone if the inequality above is strict for all x, x′ ∈ D(T ) with x 6= x′. A monotone operator
is said to be maximal when its graph is not properly contained in the graph of any other monotone operator.

We shall now present a variant of the definition of the proximal distance and induced proximal distance,
introduced by Auslender and Teboulle [3] (see Def. 2.1).

Definition 2.1. A function d : IRn × IRn → IR+ ∪ {+∞} is called proximal distance with respect to an open
nonempty convex set C ⊂ IRn if for each y ∈ C it satisfies the following properties:

(i) d(·, y) is proper, closed, convex and continuously differentiable on C;
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(ii) dom d(·, y) ⊂ C̄ and dom ∂1d(·, y) = C, where ∂1d(·, y) denotes the classical subgradient map of the function
d(·, y) with respect to the first variable;

(iii) d(·, y) is coercive on IRn (i.e., lim‖u‖→∞ d(u, y) = +∞);
(iv) d(y, y) = 0, wich clearly implies ∇1d(y, y) = 0.

We denote by D(C) the family of functions satisfying the above definition.

Associated to a proximal distance is an induced proximal distance which we define as follows:

Definition 2.2. Given d ∈ D(C), a function H : IRn × IRn → IR+ ∪ {+∞} is called the induced proximal
distance to d if there exists γ ∈ (0, 1] with H a finite valued on C× C and such that for each a, b ∈ C, we have

(Ii) H(a, a) = 0;
(Iii) 〈c− b,∇1d(b, a)〉 ≤ H(c, a)−H(c, b)− γH(b, a), ∀ c ∈ C.

The motivation of the above definition is explained in detail by Auslender and Teboulle (see [2], Def. 2.2).
Note that, when C = IRn and d(x, y) = 2−1 ‖x− y‖2, with d = H and γ = 1, then the inequality (Iii) becomes
the usual Pythagoras identity.

We write (d,H) ∈ F(C) to the proximal and induced proximal distance that satisfies the premises of Defini-
tion 2.2.

We also denote (d,H) ∈ F(C̄) if there exists H such that:

(Iiii) H is finite valued on C̄× C satisfying (Ii) and (Iii), for each c ∈ C̄.
(Iiv) For each c ∈ C̄, H(c, ·) has level bounded sets on C.

Finally, we write (d,H) ∈ F+(C̄) if

(Iv) (d,H) ∈ F(C̄).
(Ivi) ∀ y ∈ C̄ and ∀ {yk} ⊂ C bounded with limk→+∞H(y, yk) = 0, we have limk→+∞ yk = y.
(Ivii) ∀ y ∈ C̄ and ∀ {yk} ⊂ C such that limk→+∞ yk = y, we obtain limk→+∞H(y, yk) = 0.

Several examples of proximal distances which satisfy the above definitions, for example Bregman distances,
proximal distances based on ϕ-divergences, self-proximal distances, and distances based on second order homo-
geneous proximal distances, were given by Auslender and Teboulle [3].

The following additional conditions on H will be useful to prove the convergence of the proposed algorithm.
Given (d,H) ∈ F+(C̄), H satisfies the following condition:

(Iviii) ∀ c ∈ C̄ and ∀ {yk} ⊂ C such that limk→+∞ yk = y, we obtain limk→+∞H(c, yk) = H(c, y).

Some examples of proximal distances which satisfy this condition, were shown by Sarmiento et al. [21],
Section 7. The main result of the method will be when (d,H) ∈ F+(C̄) and the condition (Iviii) is satisfied.

3. The proximal decomposition algorithm with proximal distances (PDAPD)

We are interested in solving the following primal–dual formulation of the VI(T,Ω) problem: find (x∗, z∗, y∗) ∈
C̄× K̄× IRm and g∗ := (g∗1 , g

∗
2) ∈ T (x∗, z∗) such that〈

x− x∗, g∗1 +AT y∗
〉

+
〈
z − z∗, g∗2 +BT y∗

〉
≥ 0, ∀(x, z) ∈ C̄× K̄, (3.1)

Ax∗ +Bz∗ = b. (3.2)

where C ⊂ IRn and K ⊂ IRp are nonempty open convex sets, C̄ and K̄ denote the closure of C and K respectively,
A ∈ IRm×n, B ∈ IRm×p and b ∈ IRm.

Throughout this section we impose the following assumptions for the VI(T,Ω) problem.



S876 E.A. PAPA QUIROZ ET AL.

Assumptions A.

(A1) The VI(T,Ω) problem has a solution.
(A2) D(T ) ∩ (C× K) 6= ∅.

Remark 3.1. These assumptions were proposed by Auslender and Teboulle (see [1], p. 35), to derive well-
definition of the Entropic Proximal Decomposition Method and also will be used here to ensure that the
iterations given by the proposed method are well-defined. The above assumptions are classical conditions given
in proximal algorithms for variational inequality problems, see [1, 4, 7, 8].

We will also used the following notations. Let M = C̄ × K̄ and set T̄ := T +NM where NM is the normal cone
for the set M, i.e.,

NM(w) =
{
{v : 〈v, q − w〉 ≤ 0, ∀q ∈ M} if w ∈ M
∅ otherwise,

where 〈·, ·〉 is the inner product in the product space IRn × IRp. It is well known [19] that the normal cone
operator NM : IRn × IRp ⇒ IRn × IRp is maximal monotone, with dom NM = M. Thus, thanks to Assumption
(A2), one has dom T ∩ int dom NM = dom T ∩ (C× K) 6= ∅ and therefore the operator T̄ = T +NM remains also
maximal monotone [20].

Now, we propose an algorithm to solve the problems (3.1) and (3.2). This algorithm is a natural generalization
of the Entropic Proximal Decomposition Method (EPDM) proposed by Auslende and Teboulle [1]. Here, we
use the generalized proximal distance instead of the logarithmic quadratic proximal distance. It is shown in
[3], Section 3, that the logarithmic quadratic proximal distance is a particular case of the generalized proximal
distances.

In the proposed algorithm we use the class of proximal distances (d0, H0) ∈ F+(C̄), (d′0, H
′
0) ∈ F+(K̄),

satisfying the condition (Iviii) and given µ > 0, µ′ > 0 we define the following functions:

d(x, y) = d0(x, y) + (µ/2) ‖x− y‖2 , (3.3)
H(x, y) = H0(x, y) + (µ/2) ‖x− y‖2 , (3.4)
d′(x, y) = d′0(x, y) + (µ′/2) ‖x− y‖2 , (3.5)
H ′(x, y) = H ′0(x, y) + (µ′/2) ‖x− y‖2 . (3.6)

It is easy to check that (d,H) ∈ F+(C̄) and (d′, H ′) ∈ F+(K̄) (for the same value of γ and γ′ respectively) and
both satisfy the condition (Iviii).

The algorithm, which will be called Proximal Decomposition Algorithm with Proximal Distances (PDAPD)
is as follows:

(PDAPD) Algorithm

Step 0. Choose two pairs (d0, H0) ∈ F+(C̄), (d′0, H
′
0) ∈ F+(K̄) satisfying the condition (Iviii) and define (d,H),

(d′, H ′) given by (3.3), (3.4) and (3.5), (3.6) respectively.
Take {λk} a sequence of positive scalars to be specified latter. Start with an arbitrary point (x0, z0, y0) ∈

C× K× IRm and generate the sequences {xk, zk, yk} ⊂ C× K× IRm and (ek1 , e
k
2) ∈ IRn × IRp as follows:

Step 1. For k = 0, 1, 2, . . ., calculate pk+1 ∈ IRm by

pk+1 = yk + λk(Axk +Bzk − b). (3.7)

Step 2. Find (xk+1, zk+1) ∈ C×K, (ek+1
1 , ek+1

2 ) ∈ IRn× IRp and gk+1 := (gk+1
1 , gk+1

2 ) ∈ T (xk+1, zk+1) such that

gk+1
1 +AT pk+1 + λ−1

k ∇1d(xk+1, xk) = ek+1
1 , (3.8)

gk+1
2 +BT pk+1 + λ−1

k ∇1d
′(zk+1, zk) = ek+1

2 , (3.9)

where (ek+1
1 , ek+1

2 ) is an approximation error which satisfies some conditions to be specific later.
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Step 3. Compute

yk+1 = yk + λk(Axk+1 +Bzk+1 − b). (3.10)

Stopping criterion. If xk+1 = xk, zk+1 = zk and yk+1 = yk then stop. Otherwise do k := k + 1, and go to
Step 1.

Remark 3.2. As we are interested in the asymptotic convergence of the method, we assume in each iteration
that (xk+1, zk+1, yk+1) 6= (xk, zk, yk) for each k = 1, 2, . . .. Indeed, if (xk+1, zk+1, yk+1) = (xk, zk, yk) for some
k, then ∇1d(xk+1, xk) = 0 and ∇1d

′(zk+1, zk) = 0 and from (3.8) to (3.9) we have that (3.1) and (3.2) hold
approximately, that is, (xk, zk, yk) is an approximate solution of primal–dual formulation of VI(T,Ω).

Before we prove the existence of the sequences {xk, zk, yk} and {ek1 , ek2} generated by the (PDAPD), we
show a more general result of independent interest. For that consider a class of funtions h : IRp → IR ∪ {+∞}
satisfying the following properties:

(i) h is a closed proper convex function with domh open,
(ii) h is differentiable on domh,
(iii) h∞(s) = +∞, ∀s 6= 0.

Here h∞ denotes the recession function of h, see [19] for definition. We denote by ϑ the class of functions
satisfying (i)–(iii).

Remark 3.3. Note that for fixed (xk, zk) ∈ C×K, the functions d(·, xk) and d′(·, zk), defined by (3.3) and (3.5)
respectively, clearly satisfies properties (i)–(iv).

The existence of the sequences {xk, zk, yk} and {ek1 , ek2} will be a consequence of the following general result
whose proof is similar to the proof given by Auslender et al. [4], Proposition 2.

Lemma 3.4. Let h ∈ ϑ. Then,

(1) The gradient mapping ∇h is onto.
(2) Let T be a maximal monotone map such that domT ∩ domh 6= ∅ and set

U(x) =
{
T (x) +∇h(x), ∀x ∈ domT ∩ dom∇h
∅ otherwise.

Then, there exists at least a solution x of the generalized equation

0 ∈ U(x). (3.11)

If in addition, h is supposed to be strictly convex on its domain, then the solution x is unique.

Proof. (1) Let y ∈ IRp and set ν(x) = h(x)− 〈y, x〉. Since ν∞(s) = h∞(s)− 〈y, s〉 (see [19], Thm. 9.3), we have

ν∞(s) = +∞ ∀s 6= 0. (3.12)

As a consequence of (3.12), if we minimize ν on IRp, the optimal set is nonempty and since domν is open,
each optimal solution x satisfies ∇h(x) = y, so that ∇h is onto.

(2) Let ∂g be the subdifferential of a closed proper function g : IRp → IR∪{+∞} such that domT∩int domg 6= ∅.
It has been proved by [8], Proposition 3, that if ∂g is onto then T + ∂g is onto. From part (1), we have that
∇h is onto. Then using this result it follows that the generalized equation (3.11) admits at least a solution.
If in addition h is strictly convex on its effective domain, then T +∇h is strictly monotone which implies
uniqueness.

�
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Due to Remark 3.3 we have to make the following assumption:

(A3) The proximal distances d and d′ have open domains.

Remark 3.5. A large class of proximal distances satisfy the above assumptions. For example

– Separable Bregman distances

dh(x, y) := h(x)− (h(y) + 〈∇h(y), x− y〉)

induced by h(x) =
∑n
j=1 θ(xj) where θ can be defined by θ(t) = − log t or θ(t) = t−1. It is clear that, in

both cases, domdh is open.
– Proximal distances based on ϕ-divergences defined by

dϕ(x, y) =
n∑
i=1

yriϕ

(
xi
yi

)
with r = 1, 2.

When r = 1, dϕ is called ϕ-divergence proximal distance and domdϕ is open for ϕ(t) = − log t + t − 1.
When r = 2 and ϕ(t) = µp(t) + ν

2 (t − 1)2 with ν > µ > 0, p(t) = − log t + t − 1, dϕ is called second order
homogeneous proximal distance (also known as log-quadratic proximal distance) and clearly domdϕ is open.

Proposition 3.6. Assuming the assumptions (A1)− (A3). For any λk > 0, (xk, zk, yk) ∈ C× K× IRm, ∀k ≥ 0,
there exists a unique point (xk+1, zk+1) ∈ C× K satisfying (3.8) and (3.9) with gk+1 ∈ T (xk+1, zk+1).

Proof. Let Pk(·) := λ−1
k ∇1d(·, xk) and Qk(·) := λ−1

k ∇1d
′(·, zk). Then Pk and Qk are strictly monotone operators

because d and d′ are strictly convex functions (see Defs. 2.1(i) and (3.3)). This implies strict monotonocity of
Tk := T + (AT pk+1, BT pk+1) + (Pk, Qk). Since T + (AT pk+1, BT pk+1) is maximal monotone and d, d′ ∈ ϑ, by
Lemma 3.4(2) we have that Tk has a zero in D(Tk), which is unique by strict monotonicity. We call this zero
(xk+1, zk+1). Thus, it is clear that (3.8) and (3.9) hold. Now, we have to show that (xk+1, zk+1) belongs to C×K.
By Definition 2.1(ii), D(Tk) = D(T ) ∩ (C × K), and since (xk+1, zk+1) ∈ D(Tk) we obtain that (xk+1, zk+1) ∈
C× K. �

4. Global convergence

In this section, under appropriate assumptions, we establish the global convergence of the PDAPD.

Assumptions B.

(B1) Given the parameters µ > 0, µ′ > 0, defined in (3.3) and (3.5) respectively, the sequence {λk} satisfies

η < λk < c̄− η (4.1)

where η ∈ (0, c̄/2) with c̄ := min{
√
γµ

2‖A‖ ,
√
γ′µ′

2‖B‖ } and γ, γ′ are positive constants related to d and d′, respectively,
in Definition 2.2(Iii).

(B2) Given the sequence {(xk, zk)} generated by (PDAPD) algorithm, we assume the following additional
conditions on the sequences of errors {ek1}, {ek2} :

∞∑
k=0

〈xk, ek1〉 < +∞,
∞∑
k=0

〈zk, ek2〉 < +∞, (4.2)

∞∑
k=0

‖ek1‖ < +∞,
∞∑
k=0

‖ek2‖ < +∞. (4.3)
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Remark 4.1. Assumption (B1) will be used to ensure the convergence of the method. Observe that the interval
(η, c̄− η) depends of µ and µ′ which are arbitrary.

The condition (B2) is a kind of condition for the error sequences that were given in [10, 14, 22] and similar
forms can be found for example in [16]. Condition (4.2) might appear somewhat unnatural since it involves
the iterates xk and zk which are a priori unknown. However, it was noticed in [1], p. 10, that (4.2) is easily
enforcable in practice, and also implied by the more easily verified condition

∞∑
k=0

‖ek1‖‖xk‖ < +∞,
∞∑
k=0

‖ek2‖‖zk‖ < +∞ (4.4)

which is satisfied in particular when ek1 = 0, ek2 = 0 for each k or when C and K or dom T is bounded (in addition,
with (4.3)).

The subsequent convergence analysis follows a line of argument similar to that given in [1]. The first result
is a classical property in proximal point algorithms.

Lemma 4.2 ([9], Lem. 3.1). Let F : IRm → (−∞,+∞] be a closed proper convex function, τ > 0 and define:

uk+1 = argmin
u∈IRm

{
F (u) + (1/(2τ))‖u− uk‖2

}
.

Then for any integer k ≥ 0,

2τ [F (uk+1)− F (u)] ≤ ‖uk − u‖2 − ‖uk+1 − u‖2 − ‖uk+1 − uk‖2, ∀u ∈ IRm.

The next Proposition will play an important role in the analysis of the proposed algorithm. We will use the
following useful notation

∆k(x, z) = H(x, xk)−H(x, xk+1)− γH(xk+1, xk) +H ′(z, zk)−H ′(z, zk+1)− γ′H ′(zk+1, zk). (4.5)

Proposition 4.3. Let (d0, H0) ∈ F(C̄), (d′0, H
′
0) ∈ F(K̄) be proximal and induced proximal distances. Suppose

that the assumptions (A1)− (A3) are satisfied. Then, for any (x, z, y) ∈ C̄× K̄× IRm and g = (g1, g2) ∈ T (x, z)
the following inequalities hold:

(i) λk(〈g1 +AT pk+1, xk+1 − x〉+ 〈g2 +BT pk+1, zk+1 − z〉)
≤ ∆k(x, z) + λk(〈xk+1 − x, ek+1

1 〉+ 〈zk+1 − z, ek+1
2 〉)

(ii) 2λk〈yk+1 − pk+1, Axk +Bzk − b〉 ≤ ‖yk − yk+1‖2 − ‖pk+1 − yk+1‖2 − ‖pk+1 − yk‖2

(iii) 2λk〈y − yk+1, Axk +Bzk − b〉 ≤ ‖yk − y‖2 − ‖yk+1 − y‖2 − ‖yk+1 − yk‖2.

Proof. By Proposition 3.6, one has (xk+1, zk+1) ∈ C × K, and (gk+1
1 , gk+2

2 ) ∈ T (xk+1, zk+1). Then, using the
monotonicity of T , we obtain that for any (x, z) ∈ C̄× K̄ and (g1, g2) ∈ T (x, z):

0 ≤ 〈x− xk+1, g1 − gk+1
1 〉+ 〈z − zk+1, g2 − gk+1

2 〉,

then using (3.8) and (3.9), we obtain

λk(〈g1 +AT pk+1, xk+1 − x〉+ 〈g2 +BT pk+1, zk+1 − z〉)
≤ 〈x− xk+1,∇1d(xk+1, xk)〉 − λk〈x− xk+1, ek+1

1 〉
+ 〈z − zk+1,∇1d

′(zk+1, zk)〉 − λk〈z − zk+1, ek+1
2 〉.

Using Defintion 2.2(Iii), with c = x, b = xk+1, a = xk and c′ = z, b′ = zk+1, a′ = zk, after adding the inequalities
and considering the notation (4.5), we obtain (i).
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To prove (ii) and (iii) note that Steps 1 and 3 can be written equivalently as:

pk+1 = argmin
v∈IRm

{
−〈v,Axk +Bzk − b〉+ (1/2λk)‖v − yk‖2

}
,

yk+1 = argmin
v∈IRm

{
−〈v,Axk+1 +Bzk+1 − b〉+ (1/2λk)‖y − yk‖2

}
.

Then, using Lemma 4.2 twice with τ = λk, F (u) = −〈u,Axk +Bzk − b〉 and F (u) = −〈u,Axk+1 +Bzk+1 − b〉
respectively, the first and second equations above respectively yield the desired inequalities (ii) and (iii). �

Before proving our main convergence result, we will also need the following technical result.

Lemma 4.4 ([18], Lem. 2). Let {αk} and {βk} be nonnegative sequences of real numbers such that αk+1 ≤
αk + βk, for all k and

∑∞
k=0 βk < +∞. Then, the sequence {αk} converges.

Remark 4.5. Throughout the rest of this paper, we denote wk = (xk, zk, yk), w∗ = (x∗, z∗, y∗), w = (x, z, y),
s = (l, q, r) ∈ IRn × IRp × IRm and we define the function Ĥ : X ×X → IR+ ∪ {+∞} by

Ĥ(w, s) = Ĥ((x, z, y), (l, q, r)) = H(x, l) +H ′(z, q) + (1/2)‖y − r‖2, (4.6)

where X = IRn × IRp × IRm, H and H ′ are defined in (3.4) and (3.6) respectively.

We can now state and prove our main convergence result for PDAPD.

Theorem 4.6. Consider the variational inequality problem VI(T,Ω) and suppose that assumptions (A1) to (A3)
and (B1), (B2) hold. Let (d0, H0) ∈ F+(C̄), (d′0, H

′
0) ∈ F+(K̄) be proximal and induced proximal distances

satisfying the condition (Iviii), and let {(xk, zk, yk)} be the sequence generated by PDAPD, then the sequence
{(xk, zk, yk)} globally converges to (x∗, z∗, y∗), with (x∗, z∗) solution of VI(T,Ω).

Proof. Let w∗ := (x∗, z∗, y∗) ∈ C × K × IRm with g∗ = (g∗1 , g
∗
2) ∈ T (x∗, z∗) be a solution of (3.1) and (3.2) and

let {(xk, zk, yk)} be the sequence produced by PDAPD. Then from (3.1) it follows that

〈xk+1 − x∗, g∗1 +AT y∗〉+ 〈zk+1 − z∗, g∗2 +BT y∗〉 ≥ 0. (4.7)

Using Proposition 4.3(i) at (x, z, y) := (x∗, z∗, y∗) and (4.5) we have:

λk
(
〈g∗1 +AT pk+1, xk+1 − x∗〉 + 〈g∗2 +BT pk+1, zk+1 − z∗〉

)
(4.8)

≤ ∆k(x∗, z∗) + λk
(
〈xk+1 − x∗, ek+1

1 〉+ 〈zk+1 − z∗, ek+1
2 〉

)
.

Adding (4.7) and (4.8), and using Ax∗ +Bz∗ = b we obtain

λk〈pk+1 − y∗, Axk+1 +Bzk+1 − b〉 ≤ ∆k(x∗, z∗) + λk
(
〈xk+1 − x∗, ek+1

1 〉+ 〈zk+1 − z∗, ek+1
2 〉

)
,

replacing the notation of ∆k(x∗, z∗) (see (4.5)) and after rearranging, we obtain

H
(
x∗, xk+1

)
+H ′

(
z∗, zk+1

)
≤ H

(
x∗, xk

)
+H ′

(
z∗, zk

)
− γH

(
xk+1, xk

)
− γ′H ′

(
zk+1, zk

)
+ λk〈y∗ − pk+1, Axk+1 +Bzk+1 − b〉
+ λk

(
〈xk+1 − x∗, ek+1

1 〉+ 〈zk+1 − z∗, ek+1
2 〉

)
. (4.9)

Now, adding the inequalities (ii) and (iii) of Proposition 4.3 for the point y = y∗ we get

(1/2)‖y∗ − yk+1‖2 ≤ (1/2)‖y∗ − yk‖2 − (1/2)‖pk+1 − yk+1‖2 − (1/2)‖pk+1 − yk‖2

+ λk〈pk+1 − yk+1, Axk +Bzk − b〉
+ λk〈yk+1 − y∗, Axk+1 +Bzk+1 − b〉. (4.10)
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For a vector w = (x, z, y), adding (4.9), (4.10) and considering (4.6), (see Remark 4.5), we obtain

Ĥ
(
w∗, wk+1

)
≤ Ĥ

(
w∗, wk

)
−
(
γH(xk+1, xk) + γ′H ′(zk+1, zk)

)
− (1/2)

(
‖pk+1 − yk+1‖2 + ‖pk+1 − yk‖2

)
+ ρk

+ λk
(
〈xk+1 − x∗, ek+1

1 〉+ 〈zk+1 − z∗, ek+1
2 〉

)
(4.11)

where,

ρk = λk〈yk+1 − pk+1, A
(
xk+1 − xk

)
+B(zk+1 − zk)〉.

Now, using (3.7) and (3.10) as given in Step 1 and Step 3 of (PDAPD), it follows that

ρk = λ2
k〈A

(
xk+1 − xk

)
+B

(
zk+1 − zk

)
, A
(
xk+1 − xk

)
+B

(
zk+1 − zk

)
〉.

= λ2
k‖A

(
xk+1 − xk

)
+B

(
zk+1 − zk

)
‖2

≤ 2λ2
k

(
‖A‖2‖xk+1 − xk‖2 + ‖B‖2‖zk+1 − zk‖2

)
.

Using this estimation for ρk in (4.11), and from definitions of H(·, ·) and H ′(·, ·) (see 3.4 and 3.6 respectively),
we obtain

Ĥ
(
w∗, wk+1

)
≤ Ĥ(w∗, wk)−

[
γH0

(
xk+1, xk

)
+ (1/2)

(
γµ− 4λ2

k‖A‖2
)
‖xk+1 − xk‖2

]
−
[
γ′H ′0

(
zk+1, zk

)
+ (1/2)

(
γ′µ′ − 4λ2

k‖B‖2
)
‖zk+1 − zk‖2

]
− (1/2)

(
‖pk+1 − yk+1‖2 + ‖pk+1 − yk‖2

)
+ λk

(
〈xk+1 − x∗, ek+1

1 〉+ 〈zk+1 − z∗, ek+1
2 〉

)
. (4.12)

By assumption (B1), we obtain

Ĥ(w∗, wk+1) ≤ Ĥ(w∗, wk) + (c̄− η)
(
〈xk+1 − x∗, ek+1

1 〉+ 〈zk+1 − z∗, ek+1
2 〉

)
, (4.13)

then using (4.13) and assumption (B2), we get

wk ∈ LĤ(w∗, ᾱ) := {w : Ĥ(w∗, w) ≤ ᾱ}, ∀k,

where

ᾱ = Ĥ
(
w∗, w0

)
+
∞∑
k=0

(c̄− η)
(
〈xk+1 − x∗, ek+1

1 〉+ 〈zk+1 − z∗, ek+1
2 〉

)
since H(x∗, ·) and H ′(z∗, ·) satisfy Definition 2.2(Iiv), we have that {wk} is bounded.

Moreover from (4.13), assumption (B2) and Lemma 4.4, we obtain that {Ĥ(w∗, wk)} converges, i.e., there
exists β ≥ 0 such that

lim
k→+∞

Ĥ(w∗, wk) = β. (4.14)

Therefore, taking limit in (4.9) when k → +∞, we obtain (since λk satisfies Assumption (B1))

H0(xk+1, xk)→ 0, ‖xk+1 − xk‖ → 0,
H ′(zk+1, zk)→ 0, ‖zk+1 − zk‖ → 0,
‖pk+1 − yk+1‖ → 0, ‖pk+1 − yk‖ → 0. (4.15)

Let w̄ = (x̄, z̄, ȳ) be an arbitrary cluster point of the bounded sequence {wk} and let {wk}k∈K be a subsequence
convergent to w̄. We now show that w̄ solves (3.1) and (3.2). First, note that from (4.15) it follows that

lim
k→∞, k∈K

xk+1 = x̄, lim
k→∞, k∈K

zk+1 = z̄,

lim
k→∞, k∈K

pk+1 = ȳ, lim
k→∞, k∈K

yk+1 = ȳ. (4.16)
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Then, since λk > η > 0, passing limit on the subsequences in (i) of Proposition 4.3 it follows that

〈g1 +AT ȳ, x̄− x〉+ 〈g2 +BT ȳ, z̄ − z〉 ≤ 0, ∀x ∈ C̄, z ∈ K̄, (g1, g2) ∈ T (x, z). (4.17)

Likewise, passing limit on the subsequence in inequality (iii) of Proposition 4.3 we get

〈y − ȳ, Ax̄+Bz̄ − b〉 ≤ 0, ∀y ∈ IRm, (4.18)

and thus it also follows from (4.18) that Ax̄ + Bz̄ = b. Furthermore, since the sequence produced by PDAPD
satisfies (xk, zk) ∈ C × K, ∀ k, then due to convexity of C and K passing to the limit one has (x̄, z̄) ∈ C̄ × K̄ and
so w̄ ∈ C̄× K̄× IRm.

Let P be the multivalued map defined by P (x, z) := T̄ (x, z)+(AT ȳ, BT ȳ). Then, since T̄ is maximal monotone,
P is also maximal monotone. Due that for all (u, v) ∈ NM(x, z) one has

〈u, x̄− x〉+ 〈v, z̄ − z〉 ≤ 0,

then from (4.17) we obtain

〈(g1 +AT ȳ + u)− 0, x− x̄〉+ 〈(g2 +BT ȳ + v)− 0, z − z̄〉 ≥ 0,

which shows, by the maximal monotonicity of P, that (0, 0) ∈ P (x̄, z̄). As a consequence, there exists (ḡ1, ḡ2) ∈
T (x̄, z̄) and (ū, v̄) ∈ NM(x̄, z̄) such that

ḡ1 + ū+AT ȳ = 0, ḡ2 + v̄ +BT z̄ = 0,

and therefore we have ∀(x, z) ∈ M

〈ḡ1 +AT ȳ, x− x̄〉+ 〈ḡ2 +BT z̄, z − z̄〉 = −〈ū, x− x̄〉 − 〈v̄, z − z̄〉 ≥ 0,

and due that Ax̄ + Bz̄ = b, (x̄, z̄) ∈ C̄ × K̄, we can thus conclude that w̄ = (x̄, z̄, ȳ) is a solution of (3.1) and
(3.2).

Finally, we will prove that {wk} converges to w̄. Indeed, due to (4.16) holds, from Definition 2.2(Ivii), we obtain

lim
k→∞, k∈K

H(x̄, xk) = 0, lim
k→∞, k∈K

H ′(z̄, zk) = 0, lim
k→∞, k∈K

(1/2)‖yk − ȳ‖2 = 0,

thus, from (4.6) (see Rem. 4.5)
lim

k→∞, k∈K
Ĥ(w̄, wk) = 0,

by (4.14), substituting w∗ by w̄, we obtain that {Ĥ(w̄, wk)} converges and as there exists a subsequence which
converges to zero, it follows that the whole sequence converges, that is,

lim
k→+∞

Ĥ(w̄, wk) = 0.

Finally, from (4.6) and using Definition 2.2(Ivi), for H(x̄, ·) and H ′(z̄, ·), we obtain

lim
k→+∞

wk = w̄.
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Thus, we obtain the result. �

5. Concluding remarks

– Using the concept of proximal distances introduced by Auslender and Teboulle [3], we introduce an inexact
proximal decomposition algorithm to solve monotone variational inequality problems with a given separable
structure. The use of proximal distances in the (PDAPD) generalize the works of Chen and Teboulle and
the Entropic Proximal Decomposition Method proposed in [1].

– Assuming assumptions (A1)–(A3) and (B1), (B2) we prove that the sequence generated by the (PDAPD)
globally converges to the unique solution of the problem VI(T,Ω).

– The (PDAPD) was motivated from the previous work [21] where we introduced a Proximal Multiplier
Algorithm with Proximal Distances (PMAPD) to solve convex optimization problems with a given separable
structure. However, these algorithms are different in their inexact versions, so the (PDAPD), introduced in
this paper, may be applied to solve convex optimization problems with a given separable structure.

– It would be interesting for a future research prove the convergence and the rate of convergence of the proposed
method under weaker assumptions, specially the ones associated to other errors.

– Another future research may be investigate a similar algorithm in the spirit of the ADMM algorithm.
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