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Effects of a Uniform Magnetic Field on Twisted Graphene
Nanoribbons

Camila C. Soares, Angel E. Obispo,* Andrés G. Jirón Vicente, and Luis B. Castro

In the present work, the relativistic quantum motion of massless fermions in
a helicoidal graphene nanoribbon under the influence of a uniform magnetic
field is investigated. Considering a uniform magnetic field (B) aligned along
the axis of helicoid, this problem is explored in the context of Dirac
equation in a curved space-time. As this system does not support exact
solutions due to considered background, the bound-state solutions and local
density of states (LDOS) are obtained numerically by means of the Numerov
method. The combined effects of width of the nanoribbon (D), length of
ribbon (L), twist parameter (𝝎), and B on the equations of motion and LDOS
are analyzed and discussed. It is verified that the presence of B produces a
constant minimum value of local density of state on the axis of helicoid,
which is possible only for values large enough of 𝝎, in contrast to the case for
B = 0 already studied in the literature.

1. Introduction

In the last 3 decades, there has been a great deal of inter-
est in the implementation of models of general relativity in
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systems typically related to experimen-
tal areas, such as relativistic cosmology,[1]

orbital dynamics,[2,3] and most recently,
condensed matter physics.[4–7] Particu-
larly, the latter has become the sub-
ject of a large number of experimen-
tal and theoretical works[4] that employ
gravitational models to attempt to de-
scribe nanostructures with novel and
complicated geometries. Some relevant
examples include cosmic strings, which
have been compared to disclinations
in liquid crystals,[8,9] black-hole space-
times in ion rings,[10] curved Lorentzian
(pseudo-Riemannian) geometry to study
the acoustic propagation in classical
fluids,[11] 2D Weitzenbock geometry to
represent variations of the hopping pa-
rameters in graphene,[12,13] an effective

torsion and magnetic field induced by dislocations in strain-
graphene,[14] and de Sitter space-time for Bose–Einstein
condensates.[15] Here, we will focus our attention on another
special type of surface, the so-called helicoidal nanoribbon.
The helicoidal surface is one of the simplest periodic curved

surfaces in one direction[16] and that has vanished mean curva-
ture (minimal surfaces). Helicoidal microstructures occur often
in biology, for example, in macro-molecules as DNA[17–19] and in
the animal and plant kingdoms.[20] On the other hand, condensed
matter examples include screw dislocations in liquid crystals[21,22]

and certain ferroelectric crystals,[23] where the effects of curvature
led to the emergence of unusual behavior of charge carriers in
strong external electric and magnetic fields.
In the context of graphene, some theoretical investigations has

shown that the dynamics of low-energy free electrons on heli-
coidal surfaces is affected by an effective potential induced by
curvature effects in (2 + 1)-dimensional curved space-time, in
Schrödinger[24] and Dirac[7,25] descriptions. In addition, we can
also mention some important examples related to the combined
effects of the helicoidal geometry and external background fields,
for example, particles confined on a helicoidal graphene ribbon
interacting with da Costa potential,[6] the emergency of pseudo-
Landau levels due to a strain-induced pseudomagnetic field,[26]

or helicoidal graphene in the presence of two specific magnetic
field configurations.[27]

Inspired by these works, our work proposes to explore via nu-
merical calculations the dynamics in (2 + 1)-dimensional mass-
less Dirac particles on a helicoidal surface in the presence of a
uniform magnetic field aligned along the axis of helicoid. We
analyze the behavior of the effective potentials for some values
of the magnetic field (B) and the twist parameter (𝜔). Also, we
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calculate the local density of states (LDOS) as a point of conver-
gence between general relativity and condensed matter physics,
similar to that performed by Watanabe et al. in ref. [25], where a
partial LDOS was built in the context of a graphene lattice. From
this study, an unexpected and counterintuitive behavior of LDOS
is found. Finally, we conclude that this novel result is a conse-
quence of the choice in the configuration of the magnetic field
and a possible connection with condensedmatter physics is qual-
itatively discussed.

2. Massless Dirac Fermions in a Helicoidal
Graphene Nanoribbon

It is widely known that low-energy electronic excitations in a
clean flat graphene are well described bymassless 2DDirac equa-
tion. Nevertheless, if we want to include non-trivial intrinsic cur-
vature effects, it is necessary to extend this Dirac formulation
for graphene to its curved space version. For this purpose, we
consider the helicoidal graphene nanoribbon as a continuous
structure without any distortion or strain, where the discrete-
ness of the hexagonal lattice or the variations of the hopping pa-
rameters are not taken into account. Based on these considera-
tions, we have that low-energy electronic excitations in the he-
licoidal graphene nanoribbon can be performed by the follow-
ing bidimensional Dirac equation in a curved Riemann space[7,25]

(ℏ = c = 1)

i𝛾𝜇∇𝜇Ψ = 0 , (𝜇 = 0, 1, 2) (1)

where the covariant derivative

∇𝜇 = 𝜕𝜇 + Γ𝜇 (2)

andΨ represents a two-component spinor. The affine connection
is defined by

Γ𝜇 = 1
8
𝜔𝜇(a)(b)[𝛾

(a), 𝛾 (b)] (3)

The curved-space gamma matrices are

𝛾𝜇 = e𝜇 (a) 𝛾
(a) (4)

and satisfy the algebra {𝛾𝜇 , 𝛾𝜈} = 2g𝜇𝜈I2×2 , where g
𝜇𝜈 is themetric

tensor. The tetrads e𝜇
(a)(x) satisfy the relations

𝜂(a)(b) = e𝜇
(a) e𝜈

(b) g𝜇𝜈 (5)

g𝜇𝜈 = e𝜇
(a) e𝜈

(b) 𝜂(a)(b) (6)

and

e𝜇
(a) e𝜇 (b) = 𝛿

(a)
(b) (7)

the Latin indexes being raised and lowered by the Minkowski
metric tensor 𝜂(a)(b) with signature (+,−,−) and the Greek ones
by the metric tensor g𝜇𝜈 .

Figure 1. Helicoidal graphene nanoribbon profiles for a) 𝜔 = 0.01, b) 𝜔 =
0.5, and c) 𝜔 = 1.5, considering L = 10𝜋.

The spin connection 𝜔𝜇(a)(b) is given by

𝜔𝜇
(a)(b) = e𝛼

(a) e𝜈(b) Γ𝛼
𝜇𝜈

− e𝜈(b)𝜕𝜇e𝜈
(a) (8)

with 𝜔𝜇
(a)(b) = −𝜔𝜇

(b)(a) and Γ𝛼
𝜇𝜈
are the Christoffel symbols given

by

Γ𝛼
𝜇𝜈

=
g𝛼𝛽

2

(
𝜕𝜇g𝛽𝜈 + 𝜕𝜈g𝛽𝜇 − 𝜕𝛽g𝜇𝜈

)
(9)

3. Geometric Setup of Helicoidal Surfaces

The helicoidal background geometry is described using the fol-
lowing parametrization

x = v,

y = u cos (𝜔v), (10)

z = u sin (𝜔v)

where v ∈ [− L
2
, L
2
] and u ∈ [−D

2
, D
2
]. Here D is the width of the

nanoribbon and L is the total length of the ribbon which is
aligned around the x-axis. The constant 𝜔 = 2𝜋m

L
is a real num-

ber that determines the chirality of the surface (twist parame-
ter), and m is the number of 2𝜋 twists. In Figure 1, the heli-
coidal graphene nanoribbon profiles for 𝜔 = 0.01, 𝜔 = 0.5, and
𝜔 = 1.5 are shown. One can see that the twist of the nanorib-
bon increases with the value of 𝜔. Also is verified that as 𝜔 → 0,
the flat graphene is reproduced. With this parameterization, the
helicoidal surface can be mapped into the (2 + 1) -dimensional
space-time by the following line element,

ds2 = dt2 − du2 − f (u)dv2 (11)

where f (u) = 1 + 𝜔2u2, and the temporal coordinate t was pro-
jected trivially from flat (3 + 1) -dimensional space-time where
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the helicoidal ribbon lives. This allows us read the metric com-
ponents on the helicoidal surface directly from Equation (11) as

g𝛼𝛽 =
⎛⎜⎜⎜⎝
1 0 0

0 −1 0

0 0 −f (u)

⎞⎟⎟⎟⎠ (12)

The basis tetrad e𝜇 (a) from the line element Equation (11) is
chosen to be

e𝜇 (a) =
⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1√

f (u)

⎞⎟⎟⎠ (13)

For the specific basis tetrad Equation (13) the curved-space
gamma matrices read

𝛾 t = 𝛾 (0) (14)

𝛾u = 𝛾 (1) (15)

𝛾v = 𝛾 (2)√
f (u)

(16)

The non-zero components of the Christoffel symbols are given
by

Γu
vv = −u𝜔2 (17)

Γv
uv = Γv

vu =
u𝜔2

f (u)
(18)

The non-zero spin connection is given by

𝜔v(1)(2) = −𝜔v(2)(1) =
𝜔2u√
f (u)

(19)

and the non-zero affine connection is

Γv =
1
4

𝜔2u√
f (u)

[𝛾 (1), 𝛾 (2)] (20)

We consider the following representation,

𝛾 (0) = 𝜎(3) =
(
1 0
0 −1

)
(21)

𝛾 (1) = i𝜎(2) =
(
0 1
−1 0

)
(22)

and

𝛾 (2) = −i𝜎(1) =
(
0 −i
−i 0

)
(23)

Thereby, in this representation the covariant derivative gets

∇t = 𝜕0 (24)

∇u = 𝜕u (25)

∇v = 𝜕v −
𝜔2u√
f (u)

i𝜎(3)

2
(26)

Having set up the Dirac equation in a curved space-time, we are
now in a position to use the machinery developed above in order
to solve the Dirac equation in this background with some specific
forms for external interactions.

4. Massless Fermions in a Helicoidal Graphene
Nanoribbon in the Presence of an Electromagnetic
Field

In this section, we concentrate our efforts in the study of the elec-
tromagnetic interaction embedded in the background of a heli-
coidal nanoribbon. For this external interaction we use the min-
imal coupling (e = 1)

𝜕𝜇 → 𝜕𝜇 + iA𝜇 (27)

Considering only the v-component A𝜇 = (0, 0, Av(u)), the Dirac
equation (Equation (1)) becomes(
i𝛾𝜇∇𝜇 − 𝛾vAv

)
Ψ = 0 (28)

As the interaction is time-independent one can write

Ψ(u, v) = e−iEt
(
Ψ+(u, v)

Ψ−(u, v)

)
(29)

where E is the energy of the fermion, Ψ+ and Ψ− are the upper
and lower components, respectively. Inserting Equations (14),
(15), (16), (24), (25), (26), and (29) in Equation (28), we obtain
two coupled first-order equations for the upper (Ψ+) and lower
(Ψ−) components(
i𝜕u +

i𝜔2u
2f (u)

+ 1√
f (u)

𝜕v − iAv

)
Ψ− = −EΨ+ (30)

(
i𝜕u +

i𝜔2u
2f (u)

− 1√
f (u)

𝜕v + iAv

)
Ψ+ = −EΨ− (31)

Since v is a cyclic coordinate, we can consider 𝜔v and Lv = − i
𝜔

𝜕

𝜕v
as the azimuthal angle and the angular momentum operator
around the axis of the helicoid (cylindrical symmetry), respec-
tively. The operator Lv satisfies LvΨ(u, v) = lΨ(u, v), with l 𝜖 ℤ and
it commutes with the Hamiltonian

H = 𝛾 (0)𝛾 i
(
p̂i + Ai

)
(32)
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therefore, both have simultaneous eigenfunctions. It is impor-
tant to mention that the value of l determines the direction the
fermions takes along the axis, that is, when l > 0 the fermions go
up and when l < 0, they go down. Using the following ansatz

Ψ±(u, v) =
𝜙±(u)
4
√
f (u)

ei𝜔lv (33)

the Equations (30) and (31) can be reduced to

i

(
𝜕u +

l𝜔√
f (u)

− Av

)
𝜙− = −E𝜙+ (34)

i

(
𝜕u −

l𝜔√
f (u)

+ Av

)
𝜙+ = −E𝜙− (35)

These two coupled first-order equations can be decoupled for E ≠

0. By using the expression for 𝜙+ obtained from Equation (34)
and inserting it in Equation (35) one obtains a second-order dif-
ferential equation for 𝜙−. In a similar way, using the expression
for 𝜙− obtained from Equation (35) and inserting it in Equa-
tion (34) one obtains a second-order differential equation for 𝜙+.
It is possible to write both expressions as two supersymmetric
Schrödinger-like equations

−d
2
𝜙±

du2
+ V±

l (u)𝜙
± = E2𝜙± (36)

where the corresponding effective potentials are

V±
l (u) = W2

l ±
dWl

du
(37)

with the superpotential given by

Wl(u) =
l𝜔√
f (u)

− Av (38)

These last results show that the solution for this class of prob-
lem consists in searching for bound-state solutions for two
Schrödinger-like equations. It should not be forgotten, though,
that the equations for 𝜙+ or 𝜙− are not indeed independent be-
cause E appears in both equations. Therefore, one has to search
for bound-state solutions for both signals in Equation (36) with a
common energy.

4.1. Free Massless Fermions

At this stage, we are interested in a vector potential A𝜇 = 0
(B = 0). In this case, the two supersymmetric Schrödinger-like
Equations (36) and the corresponding effective potentials Equa-
tion (37) keep their mathematical structure intact with the super-
potential given by

Wl(u) =
l𝜔√
f (u)

(39)

Figure 2. The panels show the effective potentials V±
l
(u) for a) 𝜔 = 1.5

and b) 𝜔 = 3.0, considering l = 1 and B = 0 T.

Substituting Equation (39) into Equation (37), we obtain

V±
l (u) =

(
l𝜔√
f (u)

)2

∓
⎛⎜⎜⎝ u𝜔3l√

f (u)
3

⎞⎟⎟⎠ (40)

It is important to highlight that this effective potential is
caused by purely geometrical effects induced by the helicoidal
parametrization. Note that fromEquation (40) the effective poten-
tials satisfy the relation V+

l (u) = V−
l (−u). This result means that

the change of chirality 𝜔 → −𝜔 interchanges the effective poten-
tials, thus V+

l (u) turns into V
−
l (u), and viceversa. In Figure 2, we

illustrate the behavior of the effective potential for l = 1 and two
different values of 𝜔, which emerges as the only control param-
eter of the system. In both cases, the profiles are composed by a
barrier potential tending to zero as u → ±∞ and there are only
scattering states. Fixing l = 1 in Equation (40), one can show that
the peak of the barrier increases as 𝜔 increases. In this particular
case, the maximum value of V±

1 is 1.19𝜔2.

Ann. Phys. (Berlin) 2023, 535, 2200258 2200258 (4 of 9) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH

 15213889, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202200258 by C

ochrane Peru, W
iley O

nline L
ibrary on [24/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 3. Geometric structure of a helicoidal surface in presence of a uni-
form magnetic B in the direction of its axis.

4.2. Uniform Magnetic Field

At this stage, we are interested in a vector potential A𝜇 which
provides a uniform magnetic field aligned along the axis of he-
licoid, B⃗ = B̂i (see Figure 3), with B > 0. This is obtained con-
sidering the following configuration for the vector potential (see
Appendix A)

Av(u) =
B
2𝜔

√
f (u) (41)

Substituting Equation (41) into Equation (37), we have the follow-
ing expression for the effective potentials

V±
l (u) =

(
l𝜔√
f (u)

− B
2𝜔

√
f (u)

)2

∓
⎛⎜⎜⎝ u𝜔3l√

f (u)
3
+ u𝜔B

2
√
f (u)

⎞⎟⎟⎠
(42)

From Equation (42), we can see that the effective potentials sat-
isfy the relation V+

l (u) = V−
l (−u). This last result means that the

change of chirality 𝜔 → −𝜔 interchanges the effective potentials,
thus V+

l (u) turns into V
−
l (u), and viceversa. The behavior of the

effective potentials V±
l is plotted in Figure 4 for l = 2, B = 0.8 T,

and 𝜔 = 1.5, where the value of the parameters related to the ge-

Figure 4. Effective potentials for the helicoidal nanoribbon for l = 2, w =
1.5, and B = 0.8 T.

ometry of the nanoribbonwere conveniently fixed atD = 12.0 nm
and L = 10𝜋. Figure 4 shows that the profiles of effective poten-
tials V±

l are formed for two potential wells of different depth and
a potential barrier between the wells. The presence of well struc-
ture is necessary for the existence of bound-state solutions and
this is a consequence of the presence of the uniform magnetic
field. Note that the two supersymmetric Schrödinger-like Equa-
tion (36) with the effective potentials (Equation (42)) do not sup-
port exact solutions due to the chosen background geometry, so
our results for the bound-state solutions and local density of state
must be obtained numerically. This issue will be addressed in the
following subsection.

4.3. An Application: Local Density of States

In this subsection, our goal is to analyze the way in which the
states are distributed on the helicoidal surface by the effect of the
uniformmagnetic field. To achieve our goal, we need to calculate
the LDOS of the system, which is defined by

𝜌(u) = 1
2

∑
n,l

[|||Ψ+
n,l(u)

|||2 + |||Ψ−
n,l(u)

|||2
]

(43)

where n is the principal quantum number.

4.3.1. Free Massless Fermions

Figure 5 illustrates the behavior of the partial LDOS (PLDOS)
𝜌l(u) for l = 1, B = 0 T, E =

√
2.5, with 𝜔 = 1.5 (Figure 5a) and

𝜔 = 10.0 (Figure 5b). As discussed in Section 4.1, the profiles of
the effective potentials are composed by a barrier potential tend-
ing to zero as u → ±∞. This profile implies that there are only
scattering states. The maximum value of V±

1 = 1.19𝜔2, that is,
the peak of the barrier increases as 𝜔 increases. It is important to
highlight that 𝜔 is also related to twist around to axis of helicoid
(twist parameter), namely,𝜔 = 2𝜋m∕L, wherem is the number of
2𝜋 twists. In our case, 𝜔 = 1.5 and 𝜔 = 10.0 are equivalent to 7.5
and 50 twisted, respectively. This means that when the nanorib-
bon is twisted more times (large values of 𝜔), the states tend to

Ann. Phys. (Berlin) 2023, 535, 2200258 2200258 (5 of 9) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 5. The panels show the partial local density of states 𝜌l(u) for a)
𝜔 = 1.5 and b) 𝜔 = 10.0 , considering l = 1, B = 0 T, and E =

√
2.5.

shift for regions away from the axis of the helicoid. This behavior
occurs due to increase in the intensity of the barrier (a more re-
pulsive potential), whichmaintains its peak close to the axis of the
helicoid. This analysis is in accordance with the results shown in
the panels of Figure 5, where we see that for 𝜔 = 1.5 (Figure 5a),
the PLDOS is concentrated mainly in regions close to the axis of
the helicoid. However, when 𝜔 increases to 10.0 (Figure 5b), we
see that the PLDOS tends to zero in the axis of the helicoid, while
the concentration of states increase in regions away from it. In
ref. [25], the authors have investigated massless Dirac particles
on a helicoid via the massless Dirac equation on curved space-
time. They have showed that bound-states solutions are absent,
and thus they have studied the scattering probabilities and the
phase shifts. By means of numerical calculations, they have ex-
amined the LDOS around the axis of the helicoid. In ref. [25], the
authors do not consider a uniform magnetic field aligned along
the axis of helicoid, nor the effects of the twist parameter on the
effective potential profile, nor the effects of the twist parameter
on the LDOS. Our results represent an extension to those shown
in ref. [25], where another parametrization is used.

Figure 6. The panels show the local density of states 𝜌(u) for a) B = 0.5 T
and b) B = 0.8 T, considering D = 12.0 nm, 𝜔 = 0.5 (black line), 𝜔 = 3.5
(blue line), and 𝜔 = 10.0 (red line).

4.3.2. Uniform Magnetic Field

The results for B ≠ 0 T are shown in the Figure 6, where we
illustrate the profiles of LDOS 𝜌(u) for two values of magnetic
field, B = 0.5 T (Figure 6a) and B = 0.8 T (Figure 6b). All bound
states involved in the construction of 𝜌(u) given by Equation (43)
were computed numerically using the Numerov method. From
Equation (42) we see that the height of the barrier between the
wells increases as 𝜔 increases, while its width decreases as B in-
creases. From Figure 6, we observe the same behavior as in the
case B = 0 T, that is, as 𝜔 increases, the tendency of the states
is to concentrate on regions away from the axis of the helicoid.
However, surprisingly, we see that for large enough values of 𝜔,
as for instance 𝜔 = 10, the LDOS on the axis is fixed at a single
constant value. This point of minimum density of states is ap-
proximately 𝜌min ≈ 0.5 for B = 0.5 T and 𝜌min ≈ 0.71 for B = 0.8
T. In this sense, we can infer that this peculiar behavior of the
system is an effect of the confinement produced by the configura-
tion of the uniform magnetic field, which maintains some states
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of particles captured to axis of the helicoid, no matter how many
times it twists.
This is a surprising and highly counterintuitive result, which

occurs from 𝜔 ≈ 3.5 onward, according to Figure 6. From a qual-
itative perspective, we believe that this particular value of 𝜔 could
be related to the so-called “critical angle,” which determines the
breaking point or fracture of the flat elastic nanoribbon subject to
twist.[28,29] Assuming that this fracture of the helicoidal nanorib-
bon occurs at points on its axis (the lattice constant is approxi-
mated locally to be zero),[29] it is reasonable to assume that the
density of states at u = 0 is minimized. According to this, the
critical angle for the free case (B = 0 T) would occur for 𝜔c ≈ 10,
when the states leave the axis of the helicoid (𝜌l → 0) due to a pos-
sible fracture on the axis. However, when a uniform magnetic
field is introduced into the system, this critical angle decreases
to 𝜔c ≈ 3.5, that is, the magnetic field accelerates the process of
breaking the graphene, but keeping some states trapped on the
axis (𝜌 → cte). On the other hand, ref. [29] showed (via DFT cal-
culations) that an isolated graphene lattice reconstructs itself af-
ter twisting beyond a critical angle. This behavior is typically as-
sociated with some kind of phase transition observed in a twist
energy diagram, where the discontinuity in the transition zone
occurs exactly at the critical angle. Although the methods used
in this work do not allow us to analyze such phase transitions, it
is possible to appreciate some indications of such discontinuities
for large values of 𝜔 (strongly twisted nanoribbon), specifically,
in our effective potentials, which becomes

V+
l (u) =

(Bu − 2l)2

4u2
, V−

l (u) =
Bu2 + 2l
2u2

(44)

Note that the above expressions are singular in u = 0, and, fur-
thermore, their solutions will also be singular at the same point.
In this sense, we can say that for values of 𝜔 < 𝜔c, the system re-
mains in one stable ordered phase, where the predominant con-
centration of states occurs in the region near to the axis of the
nanoribbon. However, as we approach the critical value 𝜔c, the
LDOS adopts a constant value at the axis, which is an effect pro-
duced by those states trapped by themagnetic field. Finally, when
𝜔 = 𝜔c, the LDOS becomes discontinuous due to the singular
states, which means that a phase transition is about to occur. In
ref. [27], the authors have considered the quantum mechanics
of a charged particle on a helicoid in an external magnetic field
via the Schrödinger equation on a 2D curved surface. Choosing
two simple magnetic field configurations, they have examined
the behavior of the effective potentials for different values of an-
gular momentum and the applied magnetic field strength. They
also have obtained approximate expressions for the energy levels,
which are valid when the particle is near a minimum and these
are similar to the energy levels of a particle in a harmonic oscilla-
tor potential. In ref. [27], the authors do not consider themassless
Dirac equation on curved space-time, nor the effects of twist pa-
rameter on the effective potential profile, nor the construction of
the LDOS, nor a uniform magnetic field aligned along the axis
of their infinite helicoid. With respect to this last point, it is im-
portant to mention that an infinite helicoidal graphene (D and
L → ∞) represents non-realizable scenario in the context of our
parametrization. This is because the twist parameter 𝜔 = 2𝜋m∕L
tends to zero as L → ∞, which transforms the helicoidal geome-

Figure 7. The panels show the local density of states 𝜌(u) for a) D =
20.0 nm and b) D = 30.0 nm, considering B = 0.5 T, 𝜔 = 0.5 (black line),
𝜔 = 3.5 (blue line), and 𝜔 = 10.0 (red line).

try of graphene to its flat version (see Figure 1). By the other hand,
a semi-infinite helicoidal graphene (fixed L andD → ∞) provides
a more realistic scenario, nevertheless, we have 𝜌min → ∞, due
to the infinite states confined within the infinite potential well.
This means that it is not possible to determine a break point of
the material (there will be no phase transition), and any control
parameters related to the twist of helicoidal graphene will be ir-
relevant. These statements are verified from the Figure 7, which
shows the behavior of the LDOS for different values of D, where
it can be seen that 𝜌min increases with increasing D. In this way,
when D → ∞, we have 𝜌min → ∞.

5. Conclusions

We have studied the problem ofmassless Dirac fermionsmoving
in (2+1)-dimensional on a helicoidal surface in the presence of
a uniform magnetic field aligned along the axis of the helicoidal
nanoribbon. We have shown that the standard decomposition of
this Dirac equation into its upper and lower components pro-
duces a set of two supersymmetric Schrödinger-like equations.
The effective potential for each component (B ≠ 0 T) is formed
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by two potential wells separated by a finite barrier, which is com-
pletely confining due to the presence of magnetic field. Neverthe-
less, the number of bound states is finite because the dimensions
of the helicoidal nanoribbon are also finite. On the other hand, for
the free case (B = 0 T), where only scattering states are present,
the effective potential is a barrier potential, which, for small val-
ues of 𝜔 (slightly twisted nanoribbon), produces a LDOS whose
region of predominant concentration occurs at points near to the
axis of the nanoribbon. However, when𝜔 increases, the repulsive
intensity of the barrier also increases, making the concentration
of states to shift in regions away from the axis, where the partial
density of states tends to zero. It was observed that the behavior
of the LDOS for B ≠ 0 T is the same as in the free case B = 0 T
for similar values of 𝜔. Nevertheless, for large enough values of
𝜔 (strongly twisted nanoribbon), the LDOS on the axis reaches a
constant value of minimum density, that is, no matter howmany
times the helicoid is twisted, there will always be a concentration
of states on its axis. This novel result is produced by the configu-
ration of the uniform magnetic field.
As mentioned, a feasible experimental realization of our re-

sults can occur in the context of condensed matter physics, par-
ticularly, in the study of the phase transitions where the twist an-
gle (associated to our 𝜔), is used as a control parameter, which
determines the breaking point of a nanoribbon subject to twist.
Although this connection with the critical angle and the phase
transitions was carried out from a qualitative approach, we be-
lieve that the results found in this work will be useful to extend
those shown in refs. [28, 29]. In fact, this analysis is currently in
development and will be shown in our next work.

Appendix A: Derivation of the Electromagnetic
Potential

Using the following parametrization

⎛⎜⎜⎜⎝
x

y

z

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

v

u cos (𝜔v)

u sin (𝜔v)

⎞⎟⎟⎟⎠ (A1)

the position vector r⃗ is given by

r⃗ = vî + u cos (𝜔v)ĵ + u sin (𝜔v)k̂ (A2)

Performing the standard procedure, one can write the new bases as

êi =
𝜕i r⃗(u, v)|𝜕i r⃗(u, v)| , for i = u, v (A3)

From this last expression, we get

êu = cos (𝜔v)ĵ + sin (𝜔v)k̂ (A4a)

êv =
î − 𝜔u sin (𝜔v)ĵ + 𝜔u cos (𝜔v)k̂√

1 + u2𝜔2
(A4b)

where

𝜕u r⃗(u, v) = cos (𝜔v)ĵ + sin (𝜔v)k̂ (A5a)

𝜕v r⃗(u, v) = î − 𝜔u sin (𝜔v)ĵ + 𝜔u cos (𝜔v)k̂ (A5b)

was used. At this point, one can do the inverse procedure to write the
Cartesian partial derivates (𝜕x , 𝜕y, 𝜕z) as a function of the partial derivates
𝜕u and 𝜕v. In this way, we have

𝜕x =
𝜕

𝜕v
(A6a)

𝜕y = cos (𝜔v) 𝜕

𝜕u
−
sin (𝜔v)

𝜔u
𝜕

𝜕v
(A6b)

𝜕z = sin (𝜔v) 𝜕

𝜕u
+
cos (𝜔v)

𝜔u
𝜕

𝜕v
(A6c)

Then, using the bases êu and êv, one can find the spatial component of the
electromagnetic four-potential A𝛼 = (A0, A⃗), that is

A⃗ = Auêu + Avêv = Ax î + Ayĵ + Azk̂ (A7)

where

Ax =
Av√

1 + u2𝜔2
(A8a)

Ay = Au cos (𝜔v) − Av
𝜔u sin (𝜔v)√
1 + u2𝜔2

(A8b)

Az = Au sin (𝜔v) + Av
𝜔u cos (𝜔v)√
1 + u2𝜔2

(A8c)

A.1. Uniform Magnetic Field

One can calculate the magnetic field aligned along the axis of the helicoid
(B⃗ = Bî) from

B = 𝜕yAz − 𝜕zAy (A9)

Substituting the Equations (A6b), (A6c), (A8b), and (A8c), we get

B = 𝜕

𝜕u

(
𝜔uAv√
1 + u2𝜔2

)
+

𝜔Av√
1 + u2𝜔2

− 1
𝜔u

𝜕

𝜕v
Au (A10)

In order to obtain a uniform magnetic field (B = cte), one can properly
choose Au = 0 and

Av =
B
2𝜔

√
1 + u2𝜔2 (A11)
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