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A B S T R A C T   

Getting the best performance from a thermal system requires two fundamental analyses, energy 
and entropy generation. An ideal mechanism has the highest Nu and the lowest entropy Sgen. As 
part of this research, a large dataset of fluid flow via tubes has been collected experimentally. As 
well as the inclusion of nanoparticles, analyses are included as well. By using deep learning al-
gorithms, the Nusselt number and total entropy generation are predicted. In both models, the 
mean absolute error was lower than 5%. To determine the most accurate model, hyperparameter 
tuning is performed. That is adjusting all the settings in the neural network to attain the best 
results. The results of the predictive models are compared against experimental and benchmark 
results. The study incorporates a massive optimization strategy to fine-tune the predictive ca-
pabilities of the models. Furthermore, the model’s predictive abilities are evaluated through the 
use of the coefficient of determination R2. For water and nanofluids flowing through circular, 
square, and rectangular cross-sections, the proposed models can predict Nu and Sgen. The results 
showed remarkable agreement with the experimental results. The models showed an MAE of not 
higher than 1.33%, which is a great achievement. Also, empirical correlations are proposed for 
both parameters, and double factorial optimization is implemented. The results showed that to 
achieve the best results, the Re should be higher than 1600, and the nanoparticle concentration 
should be 3%. A thorough justification of selected cases is presented as well.   

1. Introduction 

Increasing heat transfer and efficiency in industries has always been the focus of engineers. Fluids such as water, oil, and ethylene 
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glycol have an important impact on heating and cooling various processes. One of the biggest downsides of such fluids is their low 
thermal properties, which hinder heat exchangers from being more efficient. On the other hand, the thermal conductivity of some 
solids, such as metals, is several hundred times that of common energy-carrying liquids. Therefore, one approach to increase the 
thermal potential of common fluids is to spread metallic or non-metallic particles in the base fluid. This idea was first expressed by 
Maxwell [1], but the particles that Maxwell used were large and caused problems such as a very large increase in pressure drop, 
blockage, and clogging of pipes. With the progress in nanotechnology, Choi [2] proposed the use of nanoparticles for suspension in the 
fluid, which is called a nanofluid, and did not have the problems that had occurred before. Based on this, nanofluids are defined as 
common fluids that have suspended particles in nanometer size. The thermal conductivity of nanofluid with alumina nanoparticles in 
water was investigated in Ref. [3]. The obtained results indicate an increase in thermal conductivity by using a relatively small volume 
percentage of nanoparticles. The study of increasing heat transfer was also started by Pak and Cho [4]. The almost 30% increase in the 
heat transfer coefficient of nanofluids made other researchers show interest in this issue. The experimental results confirm that the 
increase in the concentration of carbon nanotubes is accompanied by an increase in HTC [5]. Many studies have been dedicated to 
investigating heat transfer [6–9]. 

Nanofluids are homogeneous compounds made by uniformly distributing a nanoparticle in a base fluid. The used nanoparticles 
have a diameter of less than 100 nm and can be a metal, metal oxide, or non-metal type. Since the thermal conductivity of the 
nanoparticles used is far greater than the thermal conductivity of the base fluid, the thermal conductivity of the nanofluid is greater 
than that of the pure base fluid. The increase in thermal conductivity of the nanofluid depends on various factors such as nanoparticle 
concentration, temperature, nanoparticle size, type of nanoparticle and base fluid, and pH. 

Numerous studies have studied nanofluids [10–14]. In the following, some of the novel research is presented. Sheikholeslami [15] 
investigated the effect of nanomaterial on phase change materials. He modeled porous foam with Wiremesh packed approach to 
examine the impact of porosity on freezing. For the solution of the temperature equation with two sources of radiation and phase 
change, he used the Galerkin method. In another study, Sheikholeslami [16] studied the effects of nanoparticles in a solar system. His 
paper combined perforated tape with horseshoe-shaped fins and used hybrid nanoparticles to enhance the thermal properties of the 
operating fluid. As a result of the addition of θ, the convective coefficient reduced to around 12.02%. Approximately 6.43% more 
mixing of hybrid nanofluid occurred as PR decreased. Thermal performance increased by approximately 0.18% with increasing Q. 
Sheikholeslami [17] also studied the effects of nanoparticles on energy storage systems. They presented an air conditioning system in 
their study, and the effects of nanoparticles were studied. As a result of mixing nanoparticles with paraffin, better conduction resulted 
in a reduction in the required time for full melting by about 5.22% when Re = 7000, γ = 0.95. The time needed for full melting was 
decreased by 37.15% when Re = 7000, φ = 0.035. The minimum time for full melting in tests was 7985 s, achieved with γ = 0.95, 
φ = 0.035, and Re = 7000. In another study, Sheikholeslami and Ebrahimpour [18] used multi-way twisted tape to ameliorate the 
thermal performance of the Linear Frensel Reflector (LFR) unit. They concluded that as turbulent intensity increases, thermal irre-
versibility decreases while the friction component increases. They also observed that nanopowders could increase heat output by about 
0.153%. In a study by Esfahani and Shahabi [19], the impact of heat fluxes on the wall of a pipe containing a laminar and 
fully-developed flow was studied, and the entropy generation (Sgen) was measured numerically. In this study, the operating fluid 
Prandtl number is 13400, and the Reynolds number is 0.5. The results of this study show that the highest Sgen is in the case of 
descending heat flux, and there is very little difference in Sgen in the cases of constant heat flux and ascending heat flux. A study by 
Noghrehabadi et al. [20] investigated the Sgen of a nanofluid flowing on a tension sheet. In the vicinity of the sheet, heat generation 
parameters and Brownian motion parameters were increased to reduce Sgen. Wang et al. [21] investigated the Sgen in a square cavity. 
With respect to the irreversibility rate in general and the Richardsons number in particular, the Bejan number also decreased. Ac-
cording to Zhou et al. [22], Sgen is minimized when optimizing heat exchangers. With a decreasing optimal heat transfer distribution 
ratio, the lowest Sgen occurs. Falahat et al. [23] studied the Sgen in a circular channel. By decreasing the power law index and channel 
length parameters in this study while maintaining a constant Re number, the overall Sgen was reduced. With rising wall temperature 
and nanoparticle concentration, the total Sgen both rose and fell. Abdollahi et al. [24] numerically investigated the flow of a nanofluid 
in a microchannel using porous media. They concluded that a smaller volume of heat is transferred with a slower Nusselt number when 
hybrid mixtures are added to water. Porosity values and Brownian movement of nanoparticles cause higher thermal conductivity, 
causing heat to transfer to the environment. Jalili et al. [25,26] investigated a micro-polar nanofluid in a rotating system. They have 
shown that it is very effective and practical for solving these types of coupled equations. The obtained results show a 6% difference 
between the obtained values and the previous ones. Jalili et al. [26] also used a magnetic field to investigate a cylindrical polar system. 
They proposed a novel approach to solve the governing equations, and the results were promising. In another study [27], they per-
formed a semi-analytical method to solve Williamson nanofluid flow. The results using the Akbari-Ganji method proved to be more 
accurate than their previous studies. They also investigated the results of adding nanoparticles in various cases [28–32]. 

One of the very important variables in equipment that uses nanofluid flow for heat transfer is the HTC of nanofluid. Since both the 
amount of thermal conductivity and convective heat transfer is effective in the flow temperature distribution, the changes in the Nu, 
which is the dimensionless ratio of these two values, are investigated in the articles. In recent years, many studies have been conducted 
on convective heat transfer in laminar flow [33,34] and turbulent flow [35–38]. 

Some researchers have also studied the mathematical modeling of nanofluid convective heat transfer [39]. Some of them have 
considered the nanofluid as a single phase. They have considered an average of the physical properties of the nanoparticle and the base 
fluid as the properties of the nanofluid [40,41], and another group of researchers has modeled the nanofluid as a two-phase flow [42, 
43]. Since, in industrial applications, the fluid or nanofluid used for heat transfer is usually modeled as a laminar flow in tubes of 
various cross-sections, several articles have investigated this flow type. For example, Mansour [44], Nambro [45], and Maiga [46] 
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modeled the turbulent flow inside a circular tube by assuming that the nanofluid is single-phase, and Behzadmehr [47] considered the 
nanofluid as two-phase and modeled it. 

In abundant studies, artificial intelligence is widely used to optimize and predict objective functions. An alternative method for 
studying and proposing models on these phenomena is deep learning methods such as artificial neural networks (ANN). This method, 
which has been widely used to model nanofluid properties [48,49], models existing experimental data by combining complex 
mathematical relationships and can predict the behavior of the problem in new conditions. Some examples of such models are pre-
sented in the following. 

Alimoradi et al. [50] investigated subcooled flow boiling of nanofluid in a tube with a circular cross-section and simulated it 
numerically. Deep learning models with surprising results were presented using simulation data. Heat transfer and bubble dynamics 
were investigated in the boiling process. Also, the model showed the ability to extrapolate. Alimoradi and Shams [51] investigated 
subcooled flow boiling and presented an optimization model using the genetic algorithm to study the critical heat flux. They examined 
the most optimal mode in terms of heat transfer. 

This research aims to use the results of [52] on the convective heat transfer of fluid flow inside a tube with various cross-sections. 
Using the experimental data, predictive models are proposed for predicting Nu and Sgen. The mentioned output parameters are pre-
dicted locally and on average. We have utilized hyperparameter tuning to look for the best predictive models. Finally, the artificial 
neural network models’ predictive capabilities are evaluated, and the data’s clear visualization is presented. In the present study, a 
novel method of results prediction based on machine learning algorithms is applied to the experimental results of our previous study 
[52]. In order to carry out the procedure, a method called hyperparameter tuning is applied. In this method, we use a single factorial 
optimization process to adjust the key parameters in the predicting algorithm. This way, we were able to achieve predictive models 
with very low errors and high predictive capabilities. Finally, a double factorial optimization method is utilized, and correlations for 
the studied parameters are proposed. 

2. Experimental setup and its components 

2.1. Experimental setup 

In the present study, we have utilized the experimental results obtained from our previous research, and all the methodology and 
governing equations are presented in Ref. [52]. The results are completely validated, and the variety of data helps build inclusive 
models for different flow patterns in various cross-sections. Fig. 1 presents the experimental setup of our previous study [52]. The 
properties of these cases are given in Table 1, and the hydraulic diameters of all cases are identical. 

The analyses of the experimental data and whether the results are valid are thoroughly discussed in Ref. [52]. In the present study, 
the mentioned results are gathered to propose new models using artificial neural networks (ANNs). The codes for this model are 
written in Python. The procedure carried out on the data is presented in the following. A complete uncertainty analysis is presented in 
our previous research [52], and the uncertainty is not more than 2%. 

3. Artificial neural networks 

The multilayer perceptron (MLP) network is a shared and widely used network for neural network design [53] in this research. In 

Fig. 1. The experimental setup of [52].  

Table 1 
The properties of different cases.  

Cross section 2a 2b 2b/2a Dh 

Square 0.0154 0.0154 1 0.0154 
Rectangular 0.0231 0.01155 0.5 0.0154  
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MLP networks, each neuron is connected with several other neurons in its neighborhood, and by changing the weight coefficients, the 
influence of each input neuron is adjusted relative to other input neurons. After the inputs are multiplied by the resulting weight 
coefficients, they are added together, and the result is transferred to the neurons of the next hidden layer employing an activation 
function. This work continues until the last layer, which is the network’s output [54]. 

γij =Fk

(
∑Nk− 1

i=1
wijγi(k− 1) + βjk

)

(1)  

In equation (1), γ is the value of neurons, k shows the number of layers, w is the weight coefficients, β is the bias value, and F represents 
the activation function. After being multiplied by the weight coefficients and added with the bias value, the values of the neurons of the 
previous layer are added together and placed in the activation function to obtain the value of the neuron of the next layer. The user 
selects the activation function, and the values of the weighting coefficients are determined in the training phase of the neural network 
by trial and error in such a way that the output of the neural network has the least error compared to the outputs obtained from the 
experimental data. 

In this modeling, 67 experimental data were extracted by experimenting on flow through tubes of different cross-sections. The 
number of local data is 667. Python is used to construct the ANN models in the present study. In this modeling, 70% of this data was 
used for training and 30% for testing. To construct the ANN model, a hyperparameter tuning process is done. In this procedure, all the 
user-defined functions of the ANN model are investigated, and the best model is finally selected for the output parameter. 

In order to get the best results from the ANN models, all the contributing factors have to be adjusted. This process is called 
hyperparameter tuning. In the following, all the contributing factors have been refined to identify the optimum model [55]. It should 
be emphasized that building the widest and deepest network possible may not always be the best option. On the other side, the model 
would encounter the overfitting issue if the hidden layers were increased excessively. 

The improved ANN’s hyperparameters employed in the current investigation are as follows. The rate of learning is set at 0.001. 
Naturally, greater values might be selected to reach convergence more quickly, but this could also result in disruption close to the 
optimal point. The gradient descent solution in this investigation is the Adam optimizer [56]. 

The loss function of the present models is the MSE. This function is responsible for updating the weights and biases in the back-
propagation process. The MSE is calculated as follows: 

Em =
1
n
∑n

i=1
(Yi − Ŷ i)

2 (2)  

When the training process is carried out, the models require to be evaluated. In the present study two parameters are chosen for this. 
The first is the MAE. The MAE is formulated as: 

MAE=
1
n

∑n

i=1

|Yi − Ŷ i|

Yi
× 100% (3)  

In Equations (2) and (3), n is the number of cases, Yi is the experimental value, and Ŷ i is the predicted value of the model. 
The second metric for the evaluation is the R-squared or R2. This parameter shows the capability of the predictive model to predict 

the output parameter. R2 is formulated as: 

R2 = 1 −

∑
(Yi − Ŷ i)

2

∑
(Yi − Y)

(4)  

In equation (4), Y is the mean of the data. 

4. Results and discussion 

The experimental results are later compared with the ANN model predictions, and more discussion is devoted to the results. 
However, deep learning-based predictive models are proposed to avoid further experiments. Interestingly, the results of the predictive 
models are so accurate that it seems like this is the logical path to save more time and resources. 

4.1. Artificial neural networks 

The desired parameters are predicted using a synthetic neural network. As was already indicated, the best model has to be tuned, 
and it is a time-consuming process which needs to be conducted with great care. Thus, for each objective function, we do a hyper-
parameters tuning process. The process connected with the local Nu for circular cross-section is illustrated in the next section. The 
exact process is used in this investigation for all goal quantities. 

Finding out how many hidden layers there are is the first step. The number of hidden layers is determined using the famous 
doubling sequence, starting with 32 neurons. Since neurons and hidden layers are the main parts of the neural network, it is necessary 
to look at their numbers at the beginning of the procedure. Table 2 indicates the study of the number of neurons and the structure of 
hidden layers on the final predictive capabilities of the models. 

Based on Table 2, the number of hidden layers plays a considerable role in the predictive results. In other words, the accuracy 
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increases as the number of layers augments, but this increase is up until the overfitting. When this problem happens, the accuracy drops 
considerably, and the model loses its potential to generalize its predictive results. This is because the model trains exclusively for the 
training dataset in overfitting, but it loses its ability to capture data points other than the training dataset. Therefore, the best model is 
selected in Table 2. The next parameter that needs careful attention is the activation functions in the output layer. The results are 
presented in Table 3. 

The number of data points in every feed-forward process is called batch size. This parameter is also effective in the results of the 
models. Therefore, the batch size is investigated in Table 4. It is observed that overfitting occurs in this parameter. By decreasing the 
batch size, the model is more likely to overfit. By comparing the results, 32 is the best case. 

Also, the number of iterations for adjusting the weights and biases, i.e., epochs, is presented in Table 5. The best model is chosen 
based on the epochs. The results show that the increase in epochs does not necessarily improve the predictions, so this parameter must 
be selected to achieve the best result. 

As was mentioned, it is important to adjust the hyperparameters in the ANN model, and the results are highly dependent on how 

Table 2 
Different structures for hidden layers (HL).  

Model Inlet HL MAE R2 

1 x/D,Re,Ac,φ (32) 2.42% 0.95 
2  (32,64) 2.09% 0.96 
3  (32,64,32) 1.98% 0.96 
4  (32,64,64,32) 1.73% 0.97 
5  (32,64,128,64,32) 1.68% 0.97 
6*  (32,64,128,128,64,32) 1.45% 0.98 
7  (32,64,128,256,128,64,32) 1.56% 0.97 
8  (32,64,128,256,256,128,64,32) 1.48% 0.97 
9  (32,64,128,256,512,256,128,64,32) 1.52% 0.97    

* Selected model. 

Table 3 
Investigation of activation function of output layer.  

Model HL Output Activation Function MAE R2 

1 (32,64,128,128,64,32) Linear 1.51% 0.97 
2*  ReLU 1.41% 0.98 
3  Sigmoid 1.87% 0.96  
* Selected model. 

Table 4 
Investigation of batch size.  

Model HL Batch size MAE R2 

1 (32,64,128,128,64,32) 2 1.89% 0.96 
2  4 1.61% 0.96 
3  8 1.52% 0.97 
4  16 1.40% 0.98 
5a  32 1.39% 0.98 
6  64 1.45% 0.97  
a Selected model. 

Table 5 
Investigation of epochs.  

Model HL Epochs MAE R2 

1 (32,64,128,128,64,32) 1000 2.58% 0.95 
2  2000 2.42% 0.95 
3  5000 1.94% 0.96 
4  10,000 1.68% 0.97 
5a  20,000 1.37% 0.98 
6  30,000 1.39% 0.98 
7  40,000 1.40% 0.98 
8  50,000 1.39% 0.98  
a Selected model. 
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well these parameters are set. The mentioned procedure proved that the importance of hyperparameter tuning could be significant. 
The best results are attained by carrying out this process for all the output parameters, which are presented in Table 6. 

4.2. Model evaluation and performance 

We have selected Re,Ac,φ and x/D,Re,Ac,φ for the average and local input parameters. These parameters are able to predict the 
output parameter because they have all the physical definitions of the flow. Therefore, the models have high accuracies. When the 
training process ends, we have to evaluate the models using unseen data points. Consequently, the testing data points are utilized for 
this purpose. The data predictions are visualized and compared with the best case in the following sections. 

4.2.1. Nu for circular cross-section 
The average and local Nu of the circular cross-sections are presented in Fig. 2a and b. For the average Nu, 20 data points are 

employed for evaluating the predictive model. However, in the local Nu, 200 testing data points are utilized. Fig. 2a shows the pre-
dicted average Nu of circular cross-sections against the experimental results. The MAE of this model is 2.42%. Also, this model was able 
to attain an R_squared of 0.96. The hidden layers’ structure is 32,64,128,64,32. The local Nu dataset has 200 testing data points. Fig. 2b 
indicates the model prediction of the local Nu for circular cross-sections. It is clear that the model was able to accurately model the 
flow, so both metrics are favorable. Also, the results of the local case are more accurate than the average ones. As seen in Fig. 2, the blue 
line is the ideal case (y = x), and two parallel lines of 10% errors are drawn to help better visualize the results and their deviation from 
the ideal case. 

4.2.2. Nu for square channels 
The square channel is the following case for the predictive models. The average and local Nu of this geometry is indicated in Fig. 2c 

and d. Similar to the circular case, the number of data points on which the proposed models are tested is 20 on average and 200 for 
local cases. The ANN model is structured in a 128,64,32 pattern. The results of the proposed model for the average Nu are an MAE of 
2.03% and an R2 of 0.97. The local Nu presented in Fig. 2d indicates the model prediction for square cross-sections. The results of the 
proposed model demonstrate that it is able to get the MAE of 1.25% and the R2 of 0.99. 

4.2.3. Nu for rectangular channels 
The rectangular cross-section is also investigated in the present study. The proposed models for average and local Nu are illustrated. 

Fig. 2e shows the proposed model’s result for the average Nu of rectangular cross-sections. The model is evaluated with 20 data points. 
The model’s accuracy in prediction is measured by MAE and R2 which are 1.39% and 0.98, respectively. The local Nu is tested on 200 
data points. Fig. 2f shows the results of the proposed model for this parameter. It is observed that the accuracy of this model is more 
than the circular case. The deviations from the ideal case are less than the circular one. The MAE of this model is 1.46%, and the R2 is 
0.98. This shows the high capabilities of the proposed models. The hidden layer structure of the proposed model is 32,64,64,32. 

4.2.4. Sgen for circular tubes 
Similar to the Nu, the Sgen of the present study is investigated locally and on average. The results of the average Sgen are presented in 

Fig. 3a. It is observed that the proposed model for the average Sgen has an MAE of 1.29%, and its R2 is 0.98. Also, the ANN model 
structure is as simple as 32,64,32. Thus, the runtime of the model is extremely low. However, the local Sgen model utilizes a more 
complicated ANN model structure based on Fig. 3b. Therefore, the runtime is three times the average model. This is also because the 
number of training data points varies in both models. The local model is trained on 467 data points and tested on 200 data points. 
However, the average case is trained on 47 data points and evaluated on 20 data points. The model for local Sgen in circular cross- 
section achieved the MAE of 3.67% and R2 of 0.94. Given the variety of cases studied in the present work, it is acceptable to ach-
ieve such accuracies. 

Table 6 
The settings for final models.  

Objective function Cross-section Inputs Hidden layers Epochs Batch size Activation Function 

Nusselt average Circular Re,Ac,φ (32,64,128,64,32) 40,000 32 ReLU 
Nusselt average Square Re,Ac,φ (128,64,32) 30,000 8 ReLU 
Nusselt average Rectangular Re,Ac,φ (512,256,128,64,32) 30,000 16 ReLU 
Nusselt local Circular x/D,Re,Ac,φ (32,64,128,128,64,32) 20,000 32 ReLU 
Nusselt local Square x/D,Re,Ac,φ (128,128,64,64,32,32) 10,000 8 Linear 
Nusselt local Rectangular x/D,Re,Ac,φ (32,64,128,64,32) 20,000 4 ReLU 
Sgen,ave Circular Re,Ac,φ (32,64,32) 10,000 16 ReLU 
Sgen,ave Square Re,Ac,φ (64,64,32,32) 10,000 32 Linear 
Sgen,ave Rectangular Re,Ac,φ (256,128,64,32) 8000 64 ReLU 
Sgen,loc Circular x/D,Re,Ac,φ (128,128,64,64,32,32) 40,000 32 ReLU 
Sgen,loc Square x/D,Re,Ac,φ (512,256,128,64,32) 10,000 64 Sigmoid 
Sgen,loc Rectangular x/D,Re,Ac,φ (128,64,32) 30,000 16 ReLU 
Nusselt average All Re,Ac,φ (32,64,128,64,32) 20,000 16 Linear 
Nusselt local All x/D,Re,Ac,φ (32,64,128,256,256,128,64,32) 40,000 32 ReLU 
Sgen,ave All Re,Ac,φ (256,256,128,128,64,64,32,32) 30,000 16 ReLU 
Sgen,loc All x/D,Re,Ac,φ (256,256,128,128,64,64,32,32) 50,000 8 Sigmoid  
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4.2.5. Sgen for square channels 
The average case shown in Fig. 3c has the ANN model of 64,64,32,32. The model for the average Sgen was able to achieve the MAE of 

2.19% and R2 of 0.96. The results of this case show a good agreement with the ideal case (y = x), which is the experimental data. The 
predictions for local Sgen in square cross-section are presented in Fig. 3d. It is concluded that the MAE increases to 3.98% in the local 
case. This shows that the predictive capabilities of this model are lower than the average case. Also, the R2 of the proposed model is 
equal to 0.93. Notably, the ANN model structure of the proposed model is more complicated than the average case with the following 
pattern 512,256,128,64,32. 

4.2.6. Sgen for rectangular channels 
Fig. 3e–f presents the results of Sgen for rectangular cross-sections. The average Sgen in this geometry is evaluated using 20 testing 

data points. The metrics used for measuring this parameter show that the MAE is 1.57%, and the R2 is equal to 0.97. The model is 
mounted on an ANN structure of 256,128,64,32. The results of this parameter have good agreement with the experimental results. The 

Fig. 2. The ANN models of for (a) circular cross-sections average Nu, (b) circular cross-sections local Nu, (c) square cross-sections average Nu, (d) square cross-sections 
local Nu, (e) rectangular cross-sections average Nu, and (f) rectangular cross-sections local Nu.. 
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predictions of local Sgen are presented in Fig. 3f. This model is tested with 200 testing data points. The MAE of this model is 2.31%, and 
the R2 of this model 0.96. Compared to other cross-sections, the predictive results of the Sgen in rectangular tubes are more accurate. 
Interestingly, the ANN model of this objective function is so simple (128,64,32). This is the logic behind the hyperparameter tuning. 
The more complicated models do not necessarily present better results. 

4.2.7. The final models for Nu 
Finally, to propose an applicable model for all cross-sections in all the mentioned cases, we present our models for both average and 

local Nu in Fig. 4. The overall models trained on the whole dataset show great results regardless of their cross-sections. The model for 
the average Nu shown in Fig. 4a shows that it has achieved the MAE of 2.98%. This is a little more than the others, but it should be 
noted that this model is accumulating the datasets; as a result, it is natural to observe a little increase in the MAE. The R2 of this model is 
0.95, which is very good in terms of prediction. The local Nu predictions are shown in Fig. 4b, and it has the ANN structure of 
32,64,128,256,256,128,64,32. As can be seen, this is the most complicated ANN structure in the present study. The reason for this is 

Fig. 3. The ANN models of for (a) circular cross-sections average Sgen, (b) circular cross-sections local Sgen, (c) square cross-sections average Sgen , (d) square cross- 
sections local Sgen , (e) rectangular cross-sections average Sgen and (f) rectangular cross-sections local Sgen . 
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the complicated interactions between the datasets, and to fully understand these connections, a more complicated ANN model is 
required. The run time of this model is far higher than the other counterparts. This model has achieved the MAE and R2 of 1.68% and 
0.97, respectively. 

4.2.8. The final models for Sgen 
Like the Nu, the Sgen of all cross sections is considered in one model. This model proposes a predictive ANN that applies to all cross- 

sections studied in the present work. These overall models’ accuracy is relatively lower than the exclusive ones, but these are more 
applicable in industries. Fig. 4c shows predictive results of the total average Sgen. This model is trained on 141 data points and 

Fig. 4. The ANN models capabilities evaluated on all datasets for (a) average Nu, (b) local Nu, (c) average Sgen, and (d) local Sgen .  

Fig. 5. The validation case of the present study [52].  
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evaluated with 60 testing data points. The results of the mentioned model show that the MAE is 1.33%, and the R2 is equal to 0.98. 
Surprisingly, the proposed model has outstanding accuracy in predicting Sgen. This would help avoid time-consuming experiments. The 
ANN model structure is 256,256,128,128,64,64,32,23. The model for local Sgen is shown in Fig. 4d. The proposed model was able to 
achieve the MAE of 5.79% and the R2 is 0.91. Clearly, the model is able to predict the local Sgen with great accuracy, so this could be 
applicable in the designing process of a thermal system. The model’s structure is also 256,256,128,128,64,64,32,32. In Fig. 4d, the 
predictions are so close to the experimental results, so the points are in the vicinity of the ideal case. 

4.3. Model visualization vs. experimental data 

Before the results are compared, the validation of the present results against the benchmark Shah-London results is presented. The 
results in Fig. 5 show that the results of the present study have good agreement with the benchmark results [52]. 

The visualization of the extracted results from the experiments is presented in the following to analyze the data in the current 
research. The influence of Re number and nanoparticle addition are investigated, and the optimum point in increasing the Re number 
and nanoparticles in the base fluid is studied. Finally, a comparative study of the unseen experimental data and the predictive models is 
carried out, which clearly determines the proposed models’ predictive capabilities. The predictive ANN model for the average Nu is 
presented here to predict unseen data in different cases. It is shown that the overall model results can capture the problem’s cross- 
section, and it has achieved phenomenal results. Fig. 6a shows the comparative results of the experimental data and the predictive 
results of the overall ANN model for the average Nu. It is clear that although there might be some minor differences between the 
experimental and the predictive results, the models can capture the trend on which the average Nu is changing. Moreover, the average 
Sgen is studied similarly to the Nu, and the results of the Sgen are in concordance with the analytical results. Fig. 6b shows Sgen in various 
geometry and their predictions. 

4.4. Empirical correlations and optimization 

In this section, high-accuracy empirical correlations for Nusselt number and entropy generation for various cross sections. These 
models are based on Reynolds number and nanoparticle concentration. The general polynomial equation of the models is presented as 
equation (5). 

Fig. 6. Comparative study of (a) average Nu and (b) average Sgen ANN results vs. the experimental results.  
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Output=A1 + A2x + A3y + A4x2 + A5xy + A6y2 (5)  

4.4.1. Nusselt number 
The optimized values of Nuave in different cross sections are presented in Fig. 7 based on the correlation of equation (5) and co-

efficients of Table 7. 
As can be seen in Fig. 7a, in order to achieve the highest NUave in circular tubes, Re should be higher than 1800, and nanoparticle 

concentrations higher than 3%. It should be noted that the correlation in equation (5) is based on dimensionless numbers, and it is easy 
to implement. A similar trend is observed for square channels, and the highest average Nu is achieved in the Re of higher than 1850. It 
should be noted that the amount of 3% and 4% nanoparticle concentration does not significantly affect the Nu, so it is logical to select 
the nanofluid with 3% concentration because it is more stable. 

Fig. 7. Average Nu of (a) circular, (b) square, and (c) rectangular cross-sections.  

Table 7 
The constant values for Nuave for different Re and φ and the evaluation of the correlations using RSME and R2.  

Cross-section A1 A2 A3 A4 A5 A6 RMSE R2 

Circular 4.791 0.001509 0.2683 − 6.121e-08 0.0001119 − 0.06984 0.09 0.99 
Square 3.993 0.001337 0.2173 − 1.406e-07 9.886e-05 − 0.05755 0.07 0.98 
Rectangular 4.207 0.001319 0.2275 − 1.378e-07 0.0001016 − 0.05956 0.07 0.98  
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A similar analysis is presented for Nuloc in Fig. 8. The coefficients of equation (5) for Nuloc are presented in Table 8. The x and y, for 
this case, are Graetz number and nanoparticle concentration. 

For Nuloc, we are also looking for the maximum value, so the places with the highest Nu is considered. For circular tubes, as in 
Fig. 8a, the highest Nuloc is observed from Gz of 800–1000. The best nanoparticle concentration for this case is from 3% to 4%. As 
presented in Fig. 8b, the optimum ranges for square channels are in GZ of 600–1000 and nanoparticle concentration of 3%–4%. In 
Fig. 8c, the figure for Nuloc of the rectangular channel is presented. In this case, the highest Nu is from Gz of 600–1000 and nanoparticle 
concentrations of 3% and 4%. These results reiterate the mentioned points about nanoparticle concentration. In other words, as the 
concentration increase, the Nu enhances. 

4.4.2. Entropy generation 
The empirical correlations for Sgen are also proposed, and the optimum points are determined. As was mentioned earlier, equation 

(5) is used for all cases, but the correlations of each case differ. The coefficients of equation (5) for Sgenave are presented in Table 9. 

Fig. 8. Local Nu of (a) circular, (b) square, and (c) rectangular cross-sections.  

Table 8 
The constant values for Nuloc for different Gz and φ and the evaluation of the correlations using RSME and R2.  

Cross-section A1 A2 A3 A4 A5 A6 RMSE R2 

Circular 4.445 0.01501 0.4001 − 7.261e-06 0.0004499 − 0.06804 0.23 0.98 
Square 3.876 0.0117 0.3054 − 7.305e-06 0.0003069 − 0.04376 0.23 0.97 
Rectangular 4.135 0.01154 0.05513 − 7.256e-06 0.0003062 0.02029 0.27 0.95  
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In contrast to the Nusselt, the entropy generation should be minimized to achieve the best result, so in Fig. 9, we looked for the 
minimums. As can be seen in Fig. 9a, the entropy generation for circular tubes is minimized when Re is from 1600 to 2000, and the 
nanoparticle concentration is more than 2%. The best case is achieved when nanoparticle concentration is 3%. The entropy generation 

Table 9 
The constant values for Sgenave for different Re and φ and the evaluation of the correlations using RSME andR2.  

Cross-section A1 A2 A3 A4 A5 A6 RMSE R2 

Circular 2.662 − 0.0006345 − 0.1688 9.267e-08 8.615e-07 0.02064 0.02 0.99 
Square 4.029 − 0.0009397 − 0.2509 1.556e-07 − 5.871e-06 0.0313 0.03 0.99 
Rectangular 4.324 − 0.0009647 − 0.2722 1.578e-07 − 7.312e-06 0.03401 0.04 0.99  

Fig. 9. The average Sgen of (a) circular, (b) square, and (c) rectangular cross-sections.  

Table 10 
The constant values for Sgenloc for different Gz and φ and the evaluation of the correlations using RSME andR2.  

Cross-section A1 A2 A3 A4 A5 A6 A7 RMSE R2 

Circular 2.9 − 0.01635 − 0.1363 3.01e-05 0.000505 − 1.691e-08 − 5.127e-07 0.30 0.82 
Square 4.375 − 0.02466 − 0.2124 4.57e-05 0.000784 − 2.572e-08 − 7.967e-07 0.45 0.81 
Rectangular 4.785 − 0.02691 − 0.2321 4.98e-05 0.000863 − 2.801e-08 − 8.771e-07 0.49 0.81  
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of the square channel follows a similar trend with one difference that the value of Sgen is higher for this cross-section, as seen in Fig. 9b. 
The optimum values for square channels are the same as those of circular ones. Fig. 9c presents the Sgen values for rectangular channels. 
The optimum case for this cross-section is observed when nanoparticle concentration equals 3%, and the Re is from 1500 to 2000. 

The correlation for the local entropy generation differs from the others and is presented in equation (6). The alternative equation 
presents the trends more accurately than equation (5). The coefficients for this parameter are presented in Table 10. 

Sgenloc =A1 + A2x + A3y + A4x2 + A5xy + A6x3 + A7x2y (6) 

The minimum of local entropy generation is observed in Gz number higher than 900, and the nanoparticle concentration does not 
affect the entropy generation significantly, as seen in Fig. 10a. The local entropy generation for square channels is presented in 
Fig. 10b, and it shows the significance of Gz number on the entropy generation. Also, Fig. 10c depicts the results for rectangular 
channels. The results of square and rectangular channels are similar to circular tubes, and in the mentioned range, the entropy is 
minimized. 

5. Conclusions 

The experimental results of our previous study [52] have been used to provide predictive models for various parameters. Moreover, 
the Sgen of the flow is calculated using analytical relations. The results of water are then compared to nanofluids with various con-
centrations. To further increase the applicability of the previous study, the gathered results are used to create ANN models to predict 
the output parameters. These models could distinctively understand the flow dynamics and become a reliable source for predicting 
local and average Nu and Sgen. The models are tested against the experimental and the benchmark data, and the results showed how 

Fig. 10. The local Sgen of (a) circular, (b) square, and (c) rectangular cross-sections.  
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well ANN models were able to predict the output parameters. The uncertainty analysis showed a 2% error against the benchmark 
results, and the highest error against the experimental results was obtained at around 1.33%. The coefficient of determination is also 
used to show the predictive capabilities of the proposed models. Considering all the aspects of predictive models, the proposed models 
were able to satisfactorily predict the output parameters. Since the results’ accuracy was highly important to us, we utilized single 
models for each output parameter. This way, we were able to achieve higher accuracy in the predictions. Finally, empirical correlations 
are proposed and a double-factorial optimization of Nu and Sgen is presented. The result of double-factorial optimization proved that 
the best case for both Nu and Sgen is when Re is higher than 1600 and the nanoparticle concentration is about 3%. The reason for 
selecting this value is as the nanoparticle concentration increase, the stability becomes concerning, so the results of 4% and 3% 
nanofluids differ by 5%. Thus, it is logical to select the more stable case. Also, the Graetz number is used to compare the results of local 
Nu and Sgen. In future research, it is recommended to use other algorithms, such as random forest or support vector machine, to 
compare the performance of each model and select the best one. Also, other nanofluids could be tested to generalize the effect of 
nanoparticles. Another recommendation could be replicating the same study for turbulent flows, which has a lot of challenges. 
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