

FACULTAD DE INGENIERÍA Carrera de INGENIERÍA INDUSTRIAL

"LA MEJORA DE PROCESOS DE PRODUCCIÓN Y LA PRODUCTIVIDAD EN EMPRESAS DE CALZADO DE LA PROVINCIA DE TRUJILLO, CAJAMARCA, 2022"

Tesis para optar al título profesional de:

Ingeniero Industrial

Autor:

Delmer Ayay Chuquimango Asesor:

Mg. Ing. Elmer Aguilar Briones https://orcid.org/0000-0003-2228-0026 Cajamarca - Perú

JURADO EVALUADOR

Jurado 1	KATHERINE DEL PILAR ARANA ARANA	46288832	
Presidente(a)	Nombre y Apellidos	Nº DNI	

Jurado 2	WILSON ALCIDES GONZALES ABANTO	173458
Julado 2	Nombre y Apellidos	Nº DNI

	ROGER SAMUEL SILVA ABANTO	26600012
Jurado 3	Nombre y Apellidos	Nº DNI

INFORME DE SIMILITUD

"LA MEJORA DE PROCESOS DE PRODUCCIÓN Y LA PRODUCTIVIDAD EN EMPRESAS DE CALZADO DE LA PROVINCIA DE TRUJILLO, CAJAMARCA, 2022"

1	2 % DE SIMILITUD	12%	3% PUBLICACIONES	6% TRABAJOS DEL	
INDICE	DESIMILITOD	FOENTES DE INTERNET	PUBLICACIONES	ESTUDIANTE	
FUENTES	PRIMARIAS				
1	repositor Fuente de Inte	rio.upn.edu.pe			69
2	repositor Fuente de Inte	rio.ucv.edu.pe			29
3	docplaye				29
4	hdl.hand Fuente de Inte				1,
5	repositor	rio.uss.edu.pe			1,
Excluir	citas bibliografía	Activo Activo	Excluir coincidencias	< 1%	

DEDICATORIA

Dedico este proyecto a mis padres ya que en cada trayecto de mi vida me dieron su apoyo incondicional. Son ustedes que me ayudaron a cumplir mis sueños y ser mejor persona, jamás habría logrado conseguirlas sin su paciencia, amor y protección. Dedico a mi hermana por su optimismo y enseñarme a confiar en esa fortaleza interior que me ayudó a lograr grandes metas, y seguir sumando muchos más, sin importar cual sea la circunstancia.

AGRADECIMIENTO

Agradezco a Dios, nunca me ha desamparado, es quien me dio vida y las fuerzas necesarias para culminar el presente estudio con éxito.

A mis padres y a mi hermana por motivarme y dar sentido a mi vida, son muchos los momentos lindos que pasamos y agradezco infinitamente.

Agradezco al Ing. Elmer Aguilar y a la Ing. Karla Sisniegas, por su paciencia y apoyo en cada una de las etapas del presente estudio.

Agradezco a los docentes de la carrera de Ingeniería Industrial por haber compartido sus experiencias en cada materia, esto permitió llenarme de muchos conocimientos para ser un excelente profesional y que a través de sus consejos me han dado el impulso para superar obstáculos a lo largo de mi carrera.

Tabla de contenidos

JURADO EVALUADOR	2
INFORME DE SIMILITUD	3
DEDICATORIA	4
AGRADECIMIENTO	5
ÍNDICE DE TABLAS	8
ÍNDICE DE FIGURAS	9
ÍNDICE DE ECUACIONES	10
RESUMEN	11
CAPÍTULO I. INTRODUCCIÓN	12
1.1. Realidad problemática	12
1.2. Formulación del problema	19
1.3. Objetivos	19
1.4. Hipótesis	19
CAPÍTULO II. METODOLOGÍA	20
2.1. Tipo de investigación	20
2.2. Población y muestra	21
2.3. Métodos, Técnicas e instrumentos de recolección y análisis de datos	21
2.4. Procedimiento	22
2.5. Validez y confiabilidad de información	24
2.6. Para analizar la información	25
2.7. Aspectos éticos de la investigación	25
2.8. Matriz de consistencia	25
2.9. Matriz de operacionalización de variables	27
CAPÍTULO III. RESULTADOS	28
3.1. Descripción situacional de las empresas de calzado en la provincia de Trujillo, en los últimos 5 años	28
3.2. Descripción de la variable procesos	36
3.2.1. Descripción de la dimensión producción	36

3.2.2. Descripción de la dimensión eficiencia operativa	46
3.2.3. Descripción de la dimensión estudio de tiempos	47
3.3. Descripción de la variable productividad	
3.3.2. Descripción de la dimensión productividad de materia prima	58
3.4. Matriz de operacionalización de variables con resultados previa descripción	61
3.5. Descripción de la mejora de variable procesos	
3.5.2. Descripción de la mejora de la dimensión eficiencia operativa	86
3.5.3. Diseño de mejora de la dimensión estudio de tiempos	94
3.6. Descripción del resultado final en la variable productividad	
3.6.2. Descripción de la mejora en la dimensión productividad de materia prima	106
3.7. Matriz de operacionalización de variables con resultados descriptivos y finales previa aplicación de mejora de autores	108
CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES	109
4.1. Discusión	109
4.2. Conclusiones	114
REFERENCIAS	116
ANEXOS	119

ÍNDICE DE TABLAS

Tabla 1. Técnicas e instrumentos de recolección de datos	22
Tabla 2. Matriz de consistencia	
Tabla 3. Matriz de operacionalización	27
Tabla 4. Ubicación geográfica de las empresas en estudio	
Tabla 5. Descripción del área de producción de calzados Trujillo	35
Tabla 6. Cuadro resumen de la dimensión Producción	
Tabla 7. Cuadro resumen de actividades productivas e improductivas	47
Tabla 8. Tiempo normal y tiempo estándar	48
Tabla 9. Tiempo normal y tiempo estándar	
Tabla 10. Tiempo normal y tiempo estándar	50
Tabla 11. Tiempo normal y tiempo estándar	
Tabla 12. Cuadro resumen de la dimensión estudio de tiempos	53
Tabla 13. Cuadro resumen de la dimensión productividad de mano de obra	
Tabla 14. Cuadro resumen de la dimensión productividad de materia prima	
Tabla 15. Matriz de operacionalización con resultados actuales	61
Tabla 16. Herramientas y metodologías planteadas	62
Tabla 17. Herramientas y metodologías planteadas	64
Tabla 18. Herramientas y metodologías planteadas	65
Tabla 19. Herramientas y metodologías planteadas	67
Tabla 20. Herramientas y metodologías planteadas	69
Tabla 21. Herramientas y metodologías planteadas	71
Tabla 22. Herramientas y metodologías planteadas	74
Tabla 23. Herramientas y metodologías planteadas	78
Tabla 24. Herramientas y metodologías planteadas	83
Tabla 25. Cuadro resumen de la dimensión Producción	86
Tabla 26. Actividades productivas e improductivas	87
Tabla 27. Actividades productivas e improductivas	88
Tabla 28. Actividades productivas e improductivas	88
Tabla 29. Actividades productivas e improductivas	89
Tabla 30. Actividades productivas e improductivas	90
Tabla 31. Actividades productivas e improductivas	90
Tabla 32. Actividades productivas e improductivas	
Tabla 33. Actividades productivas e improductivas mejorado	
Tabla 34. Actividades productivas e improductivas	
Tabla 35. Cuadro resumen de promedio de actividades productivas e improductivas	
Tabla 36. Cálculo del tiempo normal y estándar	
Tabla 37. Cuadro resumen de tiempo normal y estándar	
Tabla 38. Tiempo normal y tiempo estándar	
Tabla 39. Tiempo normal y tiempo estándar	
Tabla 40. Cuadro resumen de tiempo normal y estándar	
Tabla 41. Tiempo normal y tiempo estándar	
Tabla 42. Cuadro resumen de tiempo normal y estándar	
Tabla 43. Cuadro resumen de tiempo normal y estándar	
Tabla 44. Tiempo normal y tiempo estándar	
Tabla 45. Cuadro resumen de tiempo normal y estándar	
Tabla 46. Cuadro resumen de la dimensión estudio de tiempos	
Tabla 47. Cuadro resumen de la dimensión productividad de mano de obra	
Tabla 48. Cuadro resumen de la dimensión productividad de materia prima	
Tabla 49. Matriz de operacionalización con resultados finales	
-	

ÍNDICE DE FIGURAS

Figura	1. Diagrama de bloques para recopilación de datos	23
Figura	2. Diagrama de bloques para el análisis documental	24
Figura	3. Concentración de la producción nacional de calzados	28
Figura	4. Principal concentración del mercado de las empresas en estudio	30
Figura	5. Competidores de calzados por ciudad	31
Figura	6. Maquinarias para el proceso y sus funciones	32
Figura	7. Maquinaria y equipos necesarios para la elaboración de calzado	32
Figura	8. Estructura de las empresas y la forma de trabajo	33
Figura	9. Concentración de los proveedores clave de las empresas en estudio	34
Figura	10. Porcentaje promedio de actividades productivas e improductivas	47
	11. Tiempo normal y tiempo estándar	48
Figura	12. Tiempo normal y tiempo estándar	50
Figura	13. Tiempo normal y tiempo estándar	51
Figura	14. Tiempo promedio y tiempo estándar	51
Figura	15. Estudio de tiempos promedio y estándar	52
Figura	16. Tarjetas Kardex	63
	17. Distribución de áreas sin mejora y después de la mejora.	67
Figura	18. Área de armado y alistado	67
Figura	19. Diagrama de relación de actividades	69
Figura	20. Determinación de áreas y dimensiones	70
Figura	21. Comparación de distancias de recorrido	70
Figura	22. Lanzamiento de órdenes	72
Figura	23. Incumplimiento de pedidos actual vs mejorado	72
Figura	24. Producción actual vs mejorado	73
Figura	25. Comparación de Layout actual y propuesto	74
Figura	26. Fases de la implementación de las 5'S	75
Figura	27. Área de desbaste antes y después de la mejora	76
Figura	28. Clasificación ABC de la materia prima	76
Figura	29. Numero de operarios, tiempo de ciclo y Takt time	77
Figura	30. Medidas de las máquinas	79
Figura	31. Guía para orden de compra de materiales	80
	32. Formato para el despacho e internamiento de materiales e insumos	80
Figura	33. Formato para el despacho e internamiento de materiales e insumos	81
_	34. Ficha de control de mantenimiento autónomo	81
_	35. VSM futuro	83
	36. Tiempo de ciclo y nuevos indicadores	84
	37. Ahorro anual proyectado con el EOQ	84
Figura	38. Diagrama de bloques de las herramientas usadas	87
	39. Actividades que generaron valor al proceso después de la mejora	89
Figura	40. Diagrama de flujo del proceso	93
	41. Eficiencia operativa de las 9 investigaciones	94
	42. Tiempos mejorados en el proceso	95
	43. Cuadro comparativo estudio de tiempos antes y después de la mejora	97
	44. Tabla del tiempo normal por operación	98
	45. Tabla del tiempo estándar por operación	98
	46. Ahorro de tiempos después de la implementación de cada una de las herramientas de mejora	99
	47. Tiempo estándar después de la implementación del plan de mejora	99
Figura	48. Nuevo tiempo estándar	101

ÍNDICE DE ECUACIONES

(1)	
(2)	54
(3)	54
(4)	55
(5)	55
(6)	56
(7)	56
(8)	56
(9)	57
(10)	58
(11)	58
(12)	59
(13)	63
(14)	65
(15)	66
(16)	68
(17)	70
(18)	
` /	77
(20)	82
(21)	85
` /	
` /	
` /	
` /	
` /	104
` /	104
` /	104
` /	
` /	
` /	106
` /	
(22)	107

RESUMEN

La investigación es realizada en empresas del rubro manufactura de calzado, en específico en el área de producción, en donde se identificó problemas como los desperdicios de material, mala estandarización y control de tiempos, métodos de trabajo deficientes, inadecuada distribución de planta, inadecuado ambiente laboral, cuellos de botella y por ende baja productividad. Por lo cual, se busca describir la mejora de procesos de producción y la productividad de empresas de este rubro. De ese modo, se ha identificado la propuesta de implementación a través de herramientas de ingeniería industrial como: MRP, Método de Richard Muther y Guerchet, gestión de almacén e inventarios, balance de línea, metodología 5s, manual de funciones, rediseños del proceso, estudio de tiempos, capacitación al personal y programas de mantenimiento. Al aplicar estas herramientas, se lograría tener un proceso estandarizado y un incremento de productividad de mano de obra en 0.021 docenas/hh y productividad de materia prima en 0.01 docenas/pie2. En ese contexto, se recomienda que las empresas implementen las metodologías propuestas y otras que consideren eficientes previa supervisión de sus procesos, a su vez deben hacer frente a la demanda administrando los recursos e incrementando la productividad.

Palabras clave: Mejora de procesos, manufactura de calzados, cartillas de piezaje, productividad, estandarización.

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

En la actualidad muchas de las empresas no son capaces de adaptarse a los cambios en el mercado competitivo y globalizado. China, uno de los mayores productores de calzado viene liderando el mercado con una producción de 12016 millones de pares anuales (De Mena, 2022). Sin embargo, ha ido ralentizando el crecimiento de la productividad ya que han agotado sus recursos baratos de mano de obra, hay existencia de procesos complejos que requieren de mano de obra especializada, por ende, la innovación es clave para tener procesos de producción más eficientes (Tong, 2019)

En la industria de Brasil hubo entrada de competidores asiáticos, haciendo que exista variabilidad en sus modelos generando un cuello de botella en la etapa de costura. Además, problemas como falta de interés, de aprendizaje, falta de estandarización en procesos, lo que contribuyen a que la empresa no alcance la meta de producción afectando la productividad (Pacheco, Dos Reis, & Jung, 2020). En el centro del Ecuador donde la mayoría de las empresas se dedican a la producción de calzado, casi ninguna cuenta con algún tipo de control de tiempos mucho menos de estandarización de estos, lo cual es un problema que afecta a sus procesos y a la productividad del trabajador (Gómez Coello, 2021)

En la industria peruana, Perú es el cuarto mayor productor de calzados de américa del sur, siendo los principales en Lima, Trujillo y Arequipa. Actualmente los procesos que llevan a cabo no son ideales para superar a grandes jugadores en el rubro, como china, esto debido a que no existe un pilar clave de mejora en sus procesos, la cadena de valor necesita ser fortalecida para mejorar su productividad (ComexPerú, 2021). El 50% de empresas peruanas utiliza, de manera predominante, herramientas manuales en su proceso de producción que generan baja eficiencia y productividad (Ministerio de la

Producción, 2016). Del total de las grandes y medianas empresas el 28,5% cuentan con alguna certificación para sus procesos y un 71,5% que no cuentan con ella (INEI, 2017)

Está claro que la industria de calzados en Trujillo no terminó de recuperarse después de los problemas por pandemia, las ventas cayeron en 50% debido a la competencia de importaciones de China. A pesar de la falta de apoyo del estado, no hubo productividad que genere la mayor producción a través del uso mínimo de recursos con la finalidad de competir con el calzado importado (Rebaza Benítez, 2023). Existen en especial manufactureras de calzados que carecen de eficiencia en la línea de producción, los tiempos en los procesos, gestión de la cadena de suministros y productividad de mano de obra. Es así como conlleva a las industrias ser más competitivas, por lo cual, muchas de ellas se ven en la necesidad de mejorar sus procesos, así pues, implementan metodologías Lean que permite identificar y eliminar los 8 tipos de desperdicio para generar cambios que incrementen la productividad (Krajewski, Larry, & Manoj, 2013)

El presente trabajo de investigación parte del análisis de estudios en empresas del rubro manufactura de calzado de la ciudad de Trujillo, la cual se ha podido ver que existen problemas en la productividad porque sus procesos no fueron desarrollados de la mejor manera. Entre ellos, las principales deficiencias se centran en problemas como los desperdicios de material por métodos de trabajo deficientes, en donde hacía falta de capacitación al personal. Los tiempos no eran asignados de manera especifica para cada estación de trabajo, por ende se generaba altos tiempos improductivos y pérdida de control. Los trabajadores no tenían conocimiento de manuales de organización y funciones, había movimientos innnecesarios, lo cual generaba cuellos de botella en armado y perfilado. Del mismo modo, la planta no era distribuido de manera adecuada, generando desorden en los procesos y ambiente poco agradable para los operarios.

Además, al contar con procedimientos inadecuados se generó mayor nivel de mermas y reprocesos. La logística que manejaban era deficiente porque no se tenía en consideración un plan de producción y todo los pedidos de materia prima eran gestionados en almacén de manera ilógica, por ende se tuvo pérdidas de tiempo y dinero. En ocasiones, no tomaron en cuenta indicadores de mantenimiento las cuales fueron causa de las paradas de máquina afectando a la producción. Es así, que afectan directamente en la productividad, a su vez el volumen de producción para hacer frente a la demanda que exige el mercado (Avalos & Gonzales, 2013; Avila, 2017; Bazan, 2019; Chávez & Rodriguez, 2019; Cruz, 2018; Garcia & Quipuscoa, 2020; López, 2018; Paisig, 2020; Vereau Tafur, 2020)

Es importante manifestar el concepto de procesos, en síntesis se dice que consta de una serie de operaciones llevadas a cabo de manera ordenada para completar una tarea, además es aplicable a muchos ámbitos, a la empresa, a la química, a la informática, a la ingenieria, entre otros. En la microeconomía, se refiere al proceso productivo por el cual la materias primas se convierten en productos intermedios y finales. Asimismo, se dice que la cadena de suministro es un proceso que parte desde el proveedor, luego pasa a la fábrica hasta llegar al consumidor (Westreicher, 2020). Por otro lado, se dice que no todos los procesos son óptimos para todas las empresas ya que son distintos productos que se fabrican. Es por ello que las empresas deben estudiar detalladamente el tipo de bien que producen y establecer qué proceso industrial es ideal para éste o mejorarla a partir de un análisis inicial con el objetivo de satisfacer la demanda (EDS Robotics, 2020)

Otra variable a analizar es la productividad. De acuerdo a Arias (2020), " la productividad es una medida económica que calcula cuantos bienes y servicios se han producido por cada recurso utilizado (trabajador, capital, tiempo, tierra, etc) durante un periodo determinado". El objetivo de ésta es, es medir la eficiencia de producción por

cada recurso utilizado y medir la eficacia comparando el resultado logrado con el posible (Fernandez, 2009). Cuanto mejor sea productividad mejor será la calidad de vida de una sociedad, repercutiendo en los sueldos y fomentando mayor inversión y empleo. Además existe un crecimiento económico a través de la reducción de costos y tiempos. Por otro lado, es necesario evaluar factores que afectan la productividad como: organzación empresarial, el capital, la mano de obra, el nivel tecnologico y otros con el fin de ejecutar el trabajo de manera eficiente (Arias, 2020)

Por un lado, en la investigación realizada por Andrade, Del Río, & Alvear (2019) tuvo como objetivo mejorar productividad y eficiencia en procesos. Para lo cual realizó un diagrama de Ishikawa y el método de las 6M para determinar la causa de la baja productividad que hace referencia a los métodos de trabajo, ya que se presentó un cuello de botella en el área de costura. Luego, han estandarizado las tareas utilizando un diagrama de proceso de operaciones, diagramas bimanuales, el tiempo de producción aplicando un estudio de tiempos por cronómetro. Por último, evidenciaron en la hoja de verificación que existe un incremento de la producción del 5,49%, del mismo modo la productividad y la eficiencia en los procesos de producción.

Por otro lado, en la investigación realizada por Santander Costavalo (2019) han buscado analizar y mejorar el proceso productivo de calzado. Para lo cual, se han identificado problemas en la mala distribución de planta y maquinas ya que usan el 75% de su capacidad diseñada, la eficiencia del proceso es del 86% debido a un desorden en el mismo. Se determina que el producto recorre 60 metros lineales, siendo ésta el cuello de botella. Previo análisis procedió con el uso del diagrama de Ishikawa y el diagrama de Pareto. Se usaron métodos de cálculo de superficies para determinar el espacio adecuado, así como también métodos de distribución en forma de U. De esta manera llegaron a disminuir la distancia de recorrido del material a 33,5 metros, aumentando la

producción de 14 a 19 pares de sandalias por hora y el incremento de la productividad en un 26,3 %.

Por otra parte, se tiene la investigación realizada por Alburqueque Vegas (2018) con el objetivo de elaborar un plan de mejora de procesos. Por lo cual, utilizó el diagrama de Ishikawa y la curva de Pareto, identificando problemas, así como no estandarizar procesos, no definir línea de producción, áreas de trabajo sucias, costos de producción variables, sin tiempos estándar, entre otros. Las herramientas lean fueron el mapa de flujo de valor, las 5′S, el balance de líneas y otras. Por tanto, definieron tiempos estándares en donde una docena no requería de 780 minutos sino de 645 minutos, con lo cual se ahorró 135 minutos. Del mismo modo el balance de líneas contribuyó con la administración de recursos, mejorando el nivel de producción de 16 docenas a 90 docenas por semana, reduciendo el tiempo perdido de 480 minutos por docena a 31,50 minutos.

Seguidamente, la investigación realizada por Cruz Chacon (2018) con el objetivo de implementar la mejora de procesos en el área de producción. Para lo cual, se han identificado problemas en el área de producción, así como los métodos de trabajo inadecuados, los procesos no estandarizados, movimientos innecesarios por parte de los operarios, afectando de esta manera la producción diaria ya que existe demoras en la producción y retrasa los pedidos de los clientes. Se empleó la observación directa, ficha de registro de producción, hoja de registro de toma de tiempos, el estudio de métodos en donde se usaron diversas técnicas, así como la adecuada distribución de planta en el área de producción. Obteniendo a través de las mejoras implementadas un incremento del 35% en la productividad de MO.

A continuación, la investigación realizada por Avila Ponce (2017) con el objetivo de mejorar procesos. Para lo cual, realizó un análisis del área de producción en donde los problemas hacen referencia a pérdida de cortes, piezas malogradas, y falta de gestión del

tiempo en los procesos. Se identificó cuellos de botella enfocado en las maquinarias, así como la falta de registros de stock e inventarios. Se aplicó la metodología de gestión y rediseño de procesos generando mejoras posteriores en eficiencia y eficacia. Se rediseñaron el 83.33% de procesos productivos siendo estos: Corte, Desbastado, Perfilado, Armado y Alistado. Finalmente hay un ahorro de S/. 960 soles mensuales (el 5.54%) en el costo total de producción al mes y existe el efecto asociado directamente en la productividad.

Luego, en la investigación realizada por Núñez Salinas (2018) con el objetivo de mejorar procesos y reducir fallas. Se han identificado problemas respecto a la producción artesanal generando grandes niveles de reproceso por producto defectuoso, del mismo modo otros defectos analizados y sus causas. Se han utilizado metodologías como Six Sigma, proponiendo soluciones de mejora y otorgando grandes beneficios en la reducción de costos y tiempo de reproceso, método Poka Yoke, metodología 5'S y plan de capacitación, mantenimiento y ergonomía. Obteniendo a través de las mejoras implementadas la reducción de calzado defectuoso de 50.9%, contando con una producción conforme de 75.04%, además de una reducción de costos de mano de obra por reproceso de S/ 15915.96 soles anuales y el incremento de la productividad.

Además, en la investigación realizada por Requejo Becerra (2018) con el objetivo de mejorar procesos. Han identificado problemas respecto a tiempos excesivos, tiempos de ciclo, reprocesos en el área, falta de orden y limpieza en las áreas de trabajo, ineficiente distribución de planta, inadecuadas condiciones de trabajo, incorrectas posturas y no cuentan con instructivos de trabajo. Posterior a ello, utilizaron herramientas de ingeniería industrial tales como: Métodos de trabajo, Estudio de tiempo, 5S's, Ergonomía y Distribución de planta. Como conclusión, llegaron a disminuir los tiempos estándar, la producción aumentó: Quick de 19 a 25, Ligero de 9 a 13, Mediano de 2 a 3, Pesado de 1

a 2, la productividad horas – hombre aumentó de 0,022 a 0,031 vehículos, la productividad en MO de 4,43 unidades a 6,12 unidades, eficiencia económica de 2,03 a 2,32.

Asimismo, en la investigación realizada por Cabanillas Cabanillas & Gutiérrez Camacho (2019) con el objetivo de mejorar procesos de producción. Han identificado problemas en la producción, en más de dos estaciones, lo que provocaba que todos sus productos de un día de producción, en su totalidad sean considerados defectuosos. Posterior a ello, han implementado herramientas 5s, Poka Yoke, herramientas de metodología de trabajo, entre otras, llegando a minimizar defectos y que todos sean aceptables dentro de su parámetro de pesos establecidos. Del mismo modo, lograron disminuir un 11.78% en actividades improductivas, así como también disminuyeron un 10.14 min/lote en el tiempo promedio del ciclo de producción.

La presente investigación se justifica ya que se analiza la teoría referente a los procesos y la importancia de realizar ordenadamente las operaciones, lo cual es esencial en un proceso de producción. Es necesario para alcanzar la productividad de empresas del rubro manufactura de calzado, ya que a nivel del Perú no todas son capaces de administrar adecuadamente los recursos. Por otro lado, la importancia del uso de las herramientas de ingeniería que servirán de base para empresas de manufactura de calzado en estudio que presenten problemas similares. Del mismo modo, por medio de la reducción de los desperdicios, producto de un mal proceso ejecutado se contribuye al medio ambiente.

Finalmente se busca describir la mejora de procesos y la productividad de las empresas del rubro calzado de la provincia de Trujillo.

1.2. Formulación del problema

¿Cómo la mejora de procesos de producción determina la productividad en empresas del rubro calzado de la provincia de Trujillo?

1.3. Objetivos

1.3.1. Objetivo general

Describir la mejora de procesos de producción y la productividad de las empresas del rubro calzado de la provincia de Trujillo.

1.3.2. Objetivos específicos

- Identificar y describir el diagnóstico de los procesos de producción recopilados por autores en empresas del rubro de calzado en Trujillo.
- Identificar y describir el diagnóstico de la productividad recopilados por autores en empresas del rubro de calzado en Trujillo.
- Identificar que mejoras en los procesos de fabricación de calzado usaron los autores en empresas del rubro calzado.
- Determinar los resultados finales en las dimensiones de procesos y productividad en empresas del rubro calzado de la provincia de Trujillo.

1.4. Hipótesis

No se cuenta con hipótesis debido a que solamente se analizan y describen investigaciones que ya han sido desarrolladas, por ende, no hay nada que comprobar empíricamente ni pronosticar un hecho o dato.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

2.1.1. Tipo de investigación

Según el propósito: La investigación es aplicada, pues se hace uso de conocimiento y teorías de mejora de procesos manteniendo siempre la objetividad y la mente abierta que sirven de base para dar solución a la realidad problemática y tomar decisiones adecuadas (Hernández Sampieri, 2014)

Según el enfoque: La investigación es cuantitativo, ya que, según Hernández Sampieri (2014) afirma que es aquella que permite recabar y analizar datos que pueden servir para probar hipótesis y analizar datos previos de estudios con base en la medición numérica y el análisis estadístico, con el fin establecer pautas de comportamiento y probar teorías en relación con unas determinadas variables que han sido previamente establecidas.

Según el alcance: La investigación es de tipo descriptivo puesto que, según Hernández Sampieri (2014) nos menciona que una investigación descriptiva consiste en ubicar propiedades o características de un grupo de personas, objetos, situaciones, contextos, fenómenos, comunidades, etc., así proporcionar su descripción e incidencia.

Por lo tanto, esta investigación es descriptiva por que trabaja sobre realidades y características fundamentales a través de una interpretación correcta de las variables relacionadas a procesos y productividad.

Diseño de investigación

La presente investigación no hace variar intencionalmente la variable independiente para ver el efecto en otra variable, por lo que es de diseño no experimental, puesto que, según (Kerlinger & Lee, 2002, pág. 418) señala que este tipo de estudios se realizan sin la manipulación deliberada de variables debido a que sus manifestaciones ya han ocurrido, en tanto en el presente estudio solamente se observa investigaciones

experimentales en su contexto natural para luego ser analizados.

De lo anterior, esta investigación es de diseño transversal descriptivo, debido a que su objetivo es conocer la incidencia de niveles de una o más variables en una población, tal es el caso del presente estudio de ubicar el área de producción en variables como procesos y productividad para proporcionar netamente su descripción. (Hernández, Fernández, & Baptista, 2014, pág. 155). Se realiza la investigación y se analiza la mejora de sus procesos y la productividad de las empresas de Trujillo entre los últimos 5 años.

2.2. Población y muestra

Población: 11 estudios delimitados por el área de producción en empresas del rubro calzado de la provincia de Trujillo, de los últimos 5 años.

Muestra: 9 estudios delimitados por información completa de las cuales se obtuvo la información de producción de calzados en la provincia de Trujillo, de los últimos 5 años.

2.3. Métodos, Técnicas e instrumentos de recolección y análisis de datos

2.3.1. Técnicas

Tesis de Investigacion (2014) señala que las técnicas son aquellos recursos o procedimientos de los que se vale el investigador para acercarse a los hechos y acceder a su conocimiento y se apoyan en instrumentos para guardar la información.

Por lo tanto, la técnica que emplearemos para la recolección de datos en esta investigación destaca el análisis documental.

2.3.2. Instrumentos

Hernández, Fernández, & Baptista (2010) señalan que un instrumento de medición es el recurso que utiliza el investigador para registrar información o datos sobre las variables que tiene en mente. Algunos de los instrumentos para recabar información son, el cuestionario, la guía entrevista, las pruebas objetivas,

hoja de encuesta y ficha resumen previo análisis documental.

Para el recojo de la información en el presente estudio se utilizó ficha bibliográfica, luego la ficha resumen y un registro estructurado, los cuales se detallan en la Tabla 1.

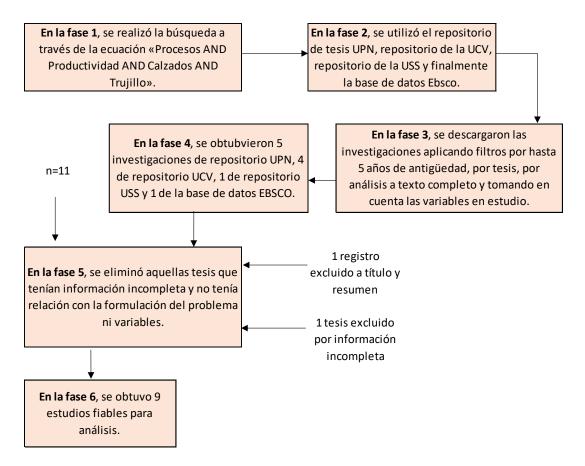
Tabla 1. *Técnicas e instrumentos de recolección de datos*

Técnica	Justificación	Instrumentos	Aplicado en	
Análisis	Para obtener	-Formato de	-Historial de	
documental	información de los	balance de línea	investigaciones	
	procesos de	-Ficha de	y base de datos.	
	producción en	registro de		
	estudios	datos.		
	analizados.			

2.4. Procedimiento

2.4.1. Análisis documental

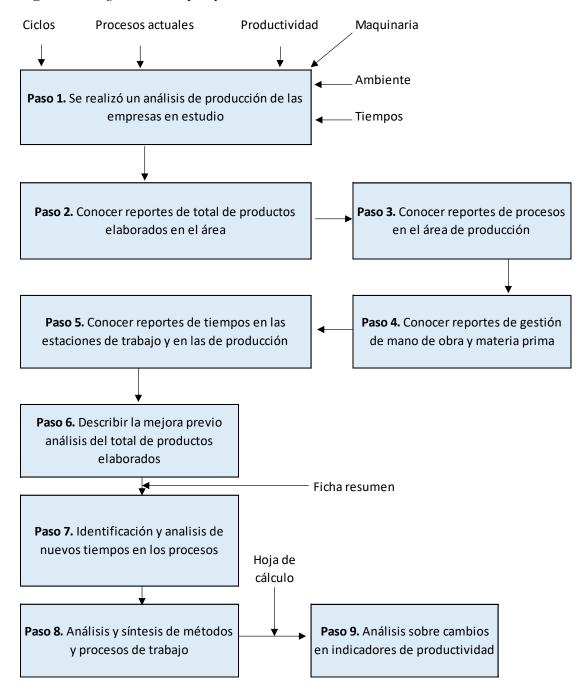
Objetivo:


Realizar un proceso de búsqueda y análisis de la información de los estudios y luego sintetizar los aspectos relevantes como la producción de calzados, procesos principales, tiempos de trabajo y productividad en los informes de investigación sobre empresas de calzado en Trujillo.

Procedimiento:

Para recopilar los datos se utilizaron una secuencia de pasos como se aprecia en la Figura 1.

Figura 1. Diagrama de bloques para recopilación de datos



Análisis de información

Para realizar el análisis detallado de las 9 investigaciones se ha considerado una secuencia de pasos como se aprecia en la Figura 2.

Figura 2. Diagrama de bloques para el análisis documental

Materiales:

- Lapicero
- Calculadora

2.5. Validez y confiabilidad de información

Para determinar la validez y confiabilidad de los instrumentos considerando que

es una investigación descriptiva, se usó la opinión y la validación de los últimos 5 años por expertos en el tema de la carrera profesional de ingeniería. Al recopilar datos de fuentes secundarias y analizarlas como si fueran primarias se usaron los mismos instrumentos como ficha de estudio de tiempos, formatos de medición de horas hombre y formatos para balance de línea por lo que no se consideró redundar en las mismas validaciones usadas de investigaciones en estudio.

2.6. Para analizar la información

Después de haber aplicado el instrumento, se procedió a organizar la información en Excel, Word y Minitab, lo cual permitió elaborar las tablas que describen los resultados finales de las variables y dimensiones, para la redacción del informe se utilizó el paquete office 2019.

2.7. Aspectos éticos de la investigación

Se está citando a todas las fuentes que han sido consultadas y consideradas en esta investigación de tipo descriptiva, por ende, se han tomado estudios para recolectar la información necesaria, dicha información será usada solo con fines académicos, basados en el método científico y sin dejar de lado valores que un investigador debe observar; todos los resultados se presentan sin alterar datos reales de las investigaciones.

2.8. Matriz de consistencia

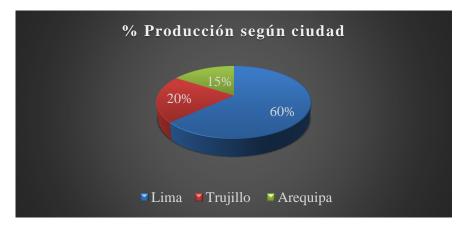
Tabla 2. Matriz de consistencia

Formulación del problema	Objetivos	Hipótesis	Variables	Metodología	Población
¿Cómo la mejora de los procesos	1. General Describir la mejora de procesos de producción y la	No se busca probar hipótesis,	Variable independiente	Tipo de investigación: Según propósito	Población
determina la productividad en empresas del	productividad de las empresas del rubro calzado de la provincia de Trujillo.	solo se analiza estudios que ya han sido	Procesos	aplicada, según enfoque cuantitativo y según alcance descriptivo	11 estudios delimitados por el área de
rubro calzado de la provincia de	2. Específicos	realizados.		Diseño de Investigación:	producción en empresas del
Trujillo?	Identificar y describir el diagnóstico de los procesos de producción recopilados por autores en empresas del rubro de calzado en Trujillo.			No experimental, Transversal descriptivo, debido a que describe las variables tal cual	rubro calzado de la provincia de Trujillo, de los últimos 5
	Identificar y describir el diagnóstico de la productividad recopilados por autores en empresas		X7	ocurrieron.	años.
	del rubro de calzado en Trujillo.		Variable dependiente	Técnicas: Análisis documental	Muestra
	Identificar que mejoras en los procesos de fabricación de calzado usaron los autores en empresas del rubro calzado.		Productividad	Instrumentos: Formato de balance de línea	9 estudios delimitados por información completa de las cuales se
	Determinar los resultados finales en las dimensiones de procesos y productividad en empresas del rubro calzado de la provincia de Trujillo.			Ficha de registro de datos	obtuvo la información de producción de calzados en la provincia de Trujillo, de los últimos 5 años.

2.9. Matriz de operacionalización de variables

Tabla 3. Matriz de operacionalización

Variables	Definición conceptual	Dimensiones	Indicadores
		Producción	Número de unidades producidas(docenas/mes)
	Un proceso es cualquier actividad o		Tiempo de ciclo
Variable	grupo de actividades en las que se	;	Tiempo de ocio
Variable Independents	transforman uno o más insumos		Eficiencia de línea
Independiente:	para obtener uno o más productos	Eficiencia Operativa	% Actividades productivas
Procesos	para los clientes (Krajewski,		% Actividades improductivas
	Ritzman, & Malhotra, 2008)	Estudio de tiempos	Tiempo normal(min)
			Tiempo estándar (min)
	"La productividad es una medida económica que calcula cuántos		Producción/ Horas hombre empleadas
Variable dependiente: Productividad	bienes y servicios se han producido por cada factor utilizado durante un periodo determinado" (Sevilla Arias, 2016)	Productividad de materia prima	Producción/ MP empleada



CAPÍTULO III. RESULTADOS

3.1. Descripción situacional de las empresas de calzado en la provincia de Trujillo, en los últimos 5 años.

Las empresas en estudio contaron con un nivel de producción promedio de 22.7 docenas semanales, 91.08 docenas mensuales y 1093 docenas de calzados anuales. Sin embargo, no es era ideal ya que gracias a los datos recopilados por los autores se tiene que la capacidad de producción para aumentar esta cifra era positiva, es decir, habría un aumento considerable de este nivel. Dado la problemática del no aprovechamiento de esta capacidad productiva, por causas como falta de capacitación y ausencia de planificación no hay momento en que Perú pueda superar la meta. Por lo tanto, se mantiene siendo el cuarto mayor productor de calzado de América del Sur, ya que le siguen países productores del mismo, como Brasil, Argentina y Colombia (Posada Ugaz, 2022). Hasta octubre de 2020 hubo 5600 empresas dedicadas a la fabricación de calzado. En este contexto, se tiene que el 93% de ellas son microempresas y está mayormente concentrada en tres ciudades (Posada Ugaz, 2020). A continuación, se muestra en la figura N°3:

Figura 3. Concentración de la producción nacional de calzados

Se ha realizado el diagnóstico de las 9 investigaciones en empresas de calzados de la provincia de Trujillo, siendo esta ciudad es el segundo productor de calzados en

Perú. Se dedican a la producción y comercialización de variedad de calzados para dama, niños y caballeros. La ubicación de las empresas en estudio se detalla en la Tabla 4.

Tabla 4. Ubicación geográfica de las empresas en estudio

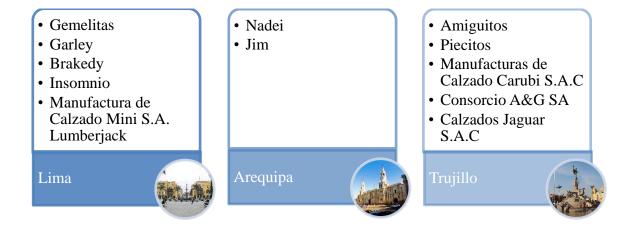
Empresa	Ubicación
Bambini Shoes	
Calzados Johana	Distrito de Trujillo
Calzados Joy's E.I.R.L.	
Empresas Chang S.R. L	
Calzados Lantana	
Calzado Paredes S.A.C	Distrito El Porvenir
Calzado Emily`S	
Crismely Calzados	
Calzados Adriano S. A	Distrito La Esperanza

Existen diversas actividades que se desarrollaron para la producción de calzado, dentro de ellas el diseño, fabricación, distribución, comercialización, y venta de todo tipo de calzado. En este caso todos los estudios que se ha analizado no solamente fabrican un tipo de calzado, más bien existen un segmento de productos tales como zapatos para dama en diferentes modelos: casual, elegante, ballerinas (Avila, 2017; Bazan, 2019; Chávez & Rodriguez, 2019; Garcia & Quipuscoa, 2020; Vereau, 2020). Además, zapato para niños, toperol, mocasín y sandalias para damas en diversos modelos (Avalos & Gonzales, 2013; Cruz, 2018; López, 2018). Finalmente hay una única diferencia debido a que una empresa fabrica y distribuye calzado masculino (Vereau, 2020)

Su mercado fue concentrado en ciudades importantes, dentro de ello se encuentra el mercado interno y externo. Dentro del mercado interno se especifican los trabajadores

de estas empresas de Porvenir y en el externo están los clientes de varias ciudades como se aprecia en la Figura 4.

Figura 4. Principal concentración del mercado de las empresas en estudio


En la Figura 4, se aprecia que el 56% de las empresas cuentan con clientes principales de calzados en la ciudad de Trujillo, seguidamente el 33% está concentrada en Lima y Chiclayo y finalmente el 11% está concentrado en mercados principales en Tumbes, Iquitos, Arequipa y Huancayo. El mercado en trujillo se ubica exactamente en el distrito El Porvenir y en el distrito de Trujillo. Una información importante sobre el calzado de Trujillo da a conocer que tuvo una caída del 44 % en su producción y su participación en el mercado interno fue superada por el calzado importado (Instituto Nacional de Estadística e Informática, 2020). De las investigaciones estudiadas se tiene que las empresas no han medido su capacidad en el futuro, debido a la poca innovación, falta de conocimiento y el uso de la tecnología en sus procesos (Avalos & Gonzales, 2013; Chávez & Rodriguez, 2019; Cruz, 2018; López, 2018; Paisig, 2020; Vereau Tafur, 2020)

Se tiene información de las 9 empresas donde se ha identificado que se está afectando el crecimiento del capital del calzado peruano, varios factores como sus limitaciones es la mano de obra especializada, que generan mayor competencia entre los

fabricantes. De lo anterior, se tiene los principales competidores de estas empresas en estudio como se aprecia en la Figura 5.

Figura 5. Competidores de calzados por ciudad

Además, se pudo encontrar que existían 2 empresas en estudio de las cuales los autores no han sacado información sobre las maquinarias con las que ejecutan la operación, sin embargo, las 7 empresas restantes ejecutaron sus procesos con maquinarias específicas para un correcto procesamiento de la materia prima. Existió desorden e inadecuada distribución de planta, falta de indicadores de producción y mantenimiento de maquinarias (Avalos & Gonzales, 2013; Avila, 2017; Chávez & Rodriguez, 2019; Garcia & Quipuscoa, 2020). De este modo, no garantizan la producción de calzados ya que las paradas de máquina son consecuencia de altos costos y tiempos perdidos para las empresas. En la Figura 6 y 7 se puede apreciar las maquinarias y equipos con las que contaron las empresas en estudio.

Figura 6. Maquinarias para el proceso y sus funciones

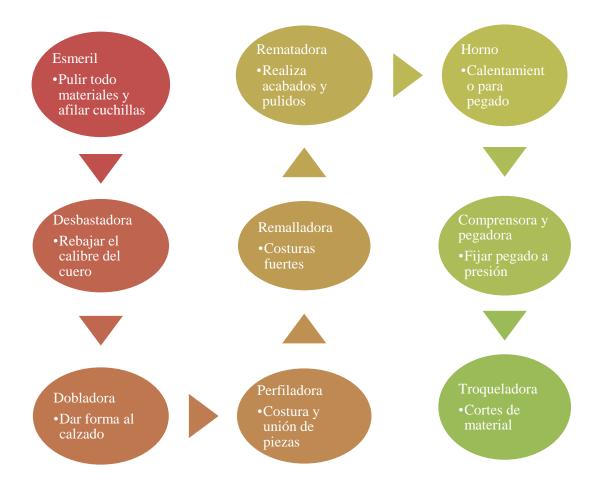
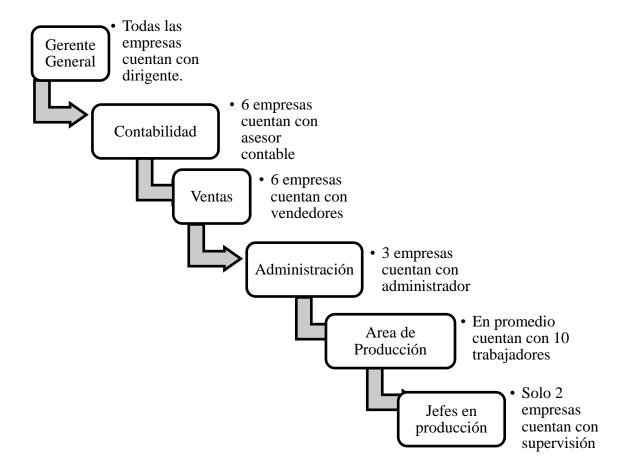


Figura 7. Maquinaria y equipos necesarios para la elaboración de calzado


Fuente: Recuperado de Avalos & Gonzales, (2013)

La estructura de estas empresas ha sido poco eficiente, en el sentido de que los

roles y las funciones no se ejecutaban como tenían previsto, existiendo métodos de trabajo deficientes y empíricos (Avalos & Gonzales, 2013; Avila, 2017; Bazan, 2019; Chávez & Rodriguez, 2019; Cruz, 2018; Garcia & Quipuscoa, 2020; López, 2018; Paisig, 2020). Por consiguiente, la deficiente organización en las estaciones de trabajo que llevaban a cabo afectaron la productividad (Avalos & Gonzales, 2013; Bazan, 2019; Chávez & Rodriguez, 2019; López, 2018; Paisig, 2020). A continuación se detalla en la Figura 8, la cantidad de operarios promedio en el área de producción en las empresas en estudio y los roles de manera jerárquica que manejaban estas empresas con el único fin de cumplir las metas mediante el trabajo en equipo.

Figura 8. Estructura de las empresas y la forma de trabajo

De la Figura 8, se tiene que en cuanto a la estructura y forma de trabajo ha sido deficiente, los problemas importantes fueron altos tiempos improductivos, desorden en

los procesos y logística deficiente (Avalos & Gonzales, 2013; Avila, 2017; Chávez & Rodriguez, 2019; Garcia & Quipuscoa, 2020; López, 2018; Paisig, 2020; Vereau, 2020).

Asimismo, al llevar a cabo el análisis de los procesos se identificó la mala estandarización tanto de materiales como procedimientos y sus respectivos tiempos (Avalos & Gonzales, 2013; Avila, 2017; Bazan, 2019; Chávez & Rodriguez, 2019; Cruz, 2018; Paisig, 2020; Vereau, 2020). Es así que no solamente se centró en problemas como mano de obra y maquinaria, sino también problemas de desabastecimiento. A continuación, se detalla de manera específica toda una variedad de materiales necesarios para producción como: el cuero, plantas fabricadas en diversos materiales, plantillas, taco, badana, horma, pegamento, cemento, disolvente, hebillas, tintes, forros, bolsa, cinta y cajas. La única diferencia es que la empresa Calzados Lantana usa el cuero sintético en ves del natural. En consecuencia, estas empresas contaron con proveedores de materiales y equipos según la indagación de los autores de investigaciones. Se puede apreciar en la Figura 9 la ubicación de los proveedores de materia prima y equipos.

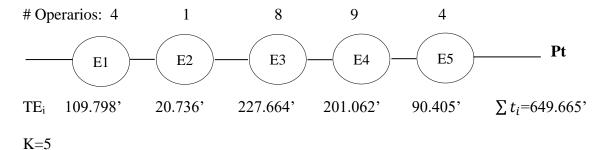
Figura 9. Concentración de los proveedores clave de las empresas en estudio

El trabajo de aplicación se realizó en el área de producción de las 9 empresas de calzados de la ciudad de Trujillo, en donde se ha identificado diversos procesos que llevaron a cabo. A continuación, en la Tabla 5, se tiene los problemas diagnosticados de

manera general a partir de un diagnóstico específico detallado en el Anexo 1.

Tabla 5. Descripción del área de producción de calzados Trujillo

mvesugaeiones	Autores	Procesos	Descripción general			
2, 3, 4, 5 y 8	Avila Ponce	Corte,	Se tiene el procesamiento de la			
	(2017);	perfilado,	materia prima, algunas de las			
	Bazan	armado y	empresas llevan a cabo el mismo			
	(2019);	alistado.	proceso y otras similares, sin			
	Chávez &		embargo, no hay un estándar en los			
	Rodriguez		procesos, no existe organización,			
	(2019); Cruz		traslados innecesarios de operarios,			
	(2018);		deficiente asignación de tiempo a			
	Paisig (2020)		cada estación de trabajo, insuficiente			
6 y 9	Garcia &	Cortado-	apoyo del personal a los demás			
	Quipuscoa	Desbastado,	procesos, falta de material y			
	(2020);	perfilado,	herramientas, ambiente desordenado			
	Vereau	Centrado-	que impide ejecutar una operación			
	(2020)	Cardado,	con el fin de obtener el calzado			
		remate,	terminado con el mínimo recurso			
		empavonado,	posible.			
		habilitado y	De las investigaciones se determina			
		alistado.	que el trabajo del operario es			
1 y 7	López	Cortado,	empírico, es decir no hay			
	Sánchez	desbastado,	conocimiento exacto de cómo llevar			
	(2018);	perfilado,	a cabo el proceso, cuando y en qué			


 Avalos &	cocido de	cantidad	se	debe	producir	con	la
Gonzales	vena,	finalidad		de	alcanzar	•	la
(2013)	armado y	productiv	ida	d.			
	alistado.						

3.2. Descripción de la variable procesos

3.2.1. Descripción de la dimensión producción

Para determinar el número de unidades producidas, tiempo de ocio, tiempo de ciclo y eficiencia de línea se han analizado las investigaciones tomando en cuenta la agrupación de actividades que sigue una secuencia de trabajo. De esta forma, se puede apreciar las actividades que se llevaron a cabo y su diagnóstico respectivo.

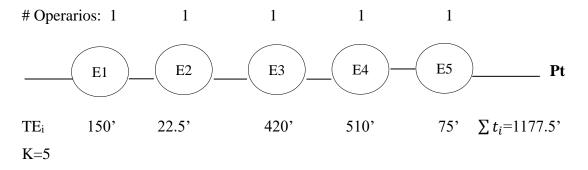
Según Avalos & Gonzales (2013) se ha identificado la producción del calzado para niños que parte de la adquisición de la materia prima y posterior a ello pasa por varios procesos como son: Cortado, perfilado, desbastado, armado y alistado-empaquetado. Tomaron en cuenta un turno de 10 horas al día con 5.5 días de trabajo a la semana. Además de contar con 15 máquinas para su producción y 26 operarios.

C=227.664 min/docena

To=K(c)- $\sum t_i$

=5(227.664)-649.665

= 488.665 min/docena


$$E = \frac{\sum t_i}{n(c)} = \frac{649.665'}{26(227.664)} \times 100 = 10.97\%$$

$$P = \frac{tb}{c} = \frac{10*60*5.5*8 \, min/semana}{227.664 \, min/doc} = 116 \, docenas/semana$$

De lo anterior, se dice que las actividades no se distribuyeron de manera adecuada. y métodos de trabajo inadecuado, mala gestión en almacén tanto para materiales como para las estaciones en donde se llevaban a cabo las tareas y por ende generaban desperdicios de material, era muy complejo entender los diferentes modelos a perfilar, no había un ayudante para labores ni de espacio adicional a la mesa de perfilado, por la cantidad de materiales que se usan en el proceso de producción, generando un ciclo extenso de 227.664 min/docena y demoras en todas las estaciones.

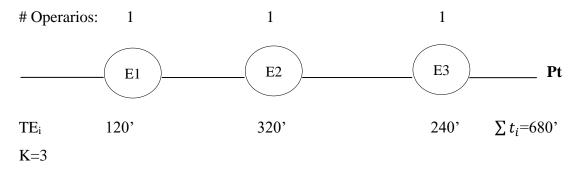
La producción real de la empresa fue de 83 docenas/semana, siendo inadecuada puesto que no hay capacidad para llegar a producir 116 docenas/semana porque no usaban adecuadamente el tiempo, había movimientos innecesarios ante la inexistencia de operarios que le suministren el material, el método de trabajo no era el adecuado y no existía condiciones adecuadas de trabajo ante la falta de mobiliarios. En ocasiones había desabastecimiento de materiales por ende no se cumplía con los pedidos.

Según Avila (2017) se ha identificado la producción del calzado de vestir que parte de la adquisición de la materia prima y posterior a ello pasa por varios procesos como son: Corte, desbastado, perfilado, armado y alistado. Se ha tomado en cuenta el turno de 8 horas al día con 6 días de trabajo a la semana.

C=510 min/docena

To=K(c)-
$$\sum t_i$$

= 1372.5 min/docena


$$E = \frac{\sum t_i}{n(c)} = \frac{1177.5'}{4(510)} \times 100 = 57.72\%$$

$$P = \frac{tb}{c} = \frac{8*60*6 \ min/semana}{510 \ min/doc} = 5.65 \ docenas/semana$$

De lo anterior, existe actividades sin un control de producción generando así piezas mal cortadas, extravíos de piezas de cuero y badana por parte de los perfiladores, y piezas mal cocidas. Finalmente, a causa de no limpiar y ordenar tanto las hormas como las plantas se generaron demoras que todo sumó al ciclo extenso en el armado de aproximadamente 510 min/doc.

La producción real fue de 32 docenas/mes, cumplen con la producción teórica puesto que existe capacidad y tiempos suficientes para los operarios. Sin embargo, no optimizan bien estos recursos como es el tiempo, además no hay una planificación de la producción.

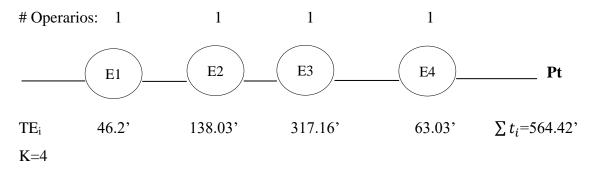
Según Bazan (2019) se ha identificado la producción del calzado de vestir que parte de la adquisición de la materia prima y posterior a ello pasa por varios procesos como son: corte (480/4=120 min/docena), perfilado (480/1.5=320 min/docena) y armado (480/2=240 min/docena). Se trabajaron 8 horas y 5.5 días/semana.

C=320 min/docena

To=K(c)-
$$\sum t_i$$

$$=3(320)-680$$

= 280 min/docena


$$E = \frac{\sum t_i}{n(c)} = \frac{680'}{3(320)} \times 100 = 70.83\%$$

$$P = \frac{tb}{c} = \frac{8*60*5.5 \text{ min/semana}}{320 \text{ min/doc}} = 8.25 \text{ docens/semana}$$

De lo anterior, hay ausencia de capacitación al personal, sobre todo al nuevo operario ya que por desconocimiento de la metodología de trabajo generaba pérdidas de horas de trabajo. Finalmente, a causa de ello y por ejecutar subprocesos y reprocesos en el desbastado, perfilado y armado, se generaron un ciclo extenso de 320 min/docena.

La producción real fue de 6.5 docenas/semana y 26 docenas/mes, es inadecuada, puesto que hay capacidad para cumplir con lo programado de 7 docenas/semana, ni con la producción teórica. En consecuencia, se dice que no tuvo ningún proceso documentado, modelado o estandarizado con sus adecuados tiempos.

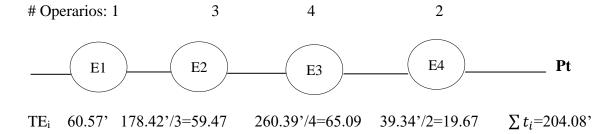
Según Chávez & Rodriguez (2019) se ha identificado la producción de sandalias de dama que parte de la adquisición de la materia prima y posterior a ello pasa por varios procesos como son: corte, perfilado, armado y alistado. Se trabajan 9 horas con 41 minutos en una jornada laboral.

C=317.16 min/docena

To=
$$K(c)$$
- $\sum t_i$

=4(317.16)-564.42

= 704.22 min/docena


$$E = \frac{\sum t_i}{n(c)} = \frac{564.427}{4(317.16)} \times 100 = 44.49\%$$

$$P = \frac{tb}{c} = \frac{581*6.5*4 \, min/mes}{317.16 \, min/doc} = 48 \, docenas/mes$$

En lo anterior, se tiene las actividades desarrolladas sin ningún control ni capacitación respecto a los métodos de trabajo. Se evidencia también que existían movimientos innecesarios debido a que tenían espacios reducidos que perjudicada el proceso generando pérdidas de horas de trabajo y el ciclo extenso en el área de armado de 317.16 min/doc.

La producción real de la empresa fue de 45 docenas/mes, no hubo capacidad de mano de obra ni gestión en sus procesos.

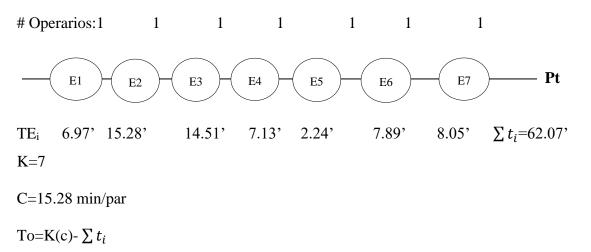
Según Cruz (2018) se ha identificado la producción de sandalias de dama que parte de la adquisición de la materia prima y posterior a ello pasa por varios procesos como son: corte, perfilado, armado y alistado. Se han calculado en base a 18 días laborables con trabajo de 6 días a la semana.

C=65.09 min/docena

K=4

To=K(c)-
$$\sum t_i$$

=4(65.09)-204.08


= 56.28 min/docena

$$E = \frac{\sum t_i}{n(c)} = \frac{204.08t}{10(65.09)} \times 100 = 31.35\%$$

$$P = \frac{tb}{c} = \frac{8*60*18 \, min/mes}{65.09 \, min/doc} = 132.8 \, docenas/mes$$

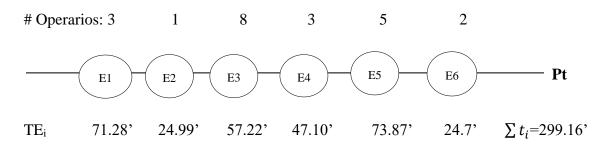
En lo anterior, se evidencia que no había una asignación correcta de tiempos debido a movimientos innecesarios y extensos, demoras y falta de coordinación entre áreas. Finalmente, siendo ésta la causa, se generó el ciclo extenso en el área de armado de 260.39 min/docena que dividido entre los 4 operarios se obtiene 65.09 min/docena. La producción de la empresa fue de 90 docenas/mes, siendo esta inadecuada, puesto que, no hay estandarización de las actividades y métodos de trabajo adecuados, así no llegan a producir las 32 docenas/semana, algo que usualmente llega a fabricar. Además, tenía 25 actividades improductivas que no daban valor al proceso de producción y por ello existían tiempos extensos en desarrollar las actividades.

Según Garcia & Quipuscoa (2020) se ha identificado la producción de zapatos de tacón cerrado Reyna para dama pasando por estaciones como: cortado-desbastado, perfilado, centrado-cardado, rematado, empavonado, habilitado y alistado. Hay 9 operaciones existentes, sin embargo, hay 7 operarios, los cuales, dos operarios están realizando dos operaciones.

=7(15.28)-62.07

= 44.89 min/par

=538.68 min/docena


$$E = \frac{\sum t_i}{n(c)} = \frac{62.07'}{7(15.28)} \times 100 = 58.03\%$$

$$P = \frac{tb}{c} = \frac{8580 \text{ } min/mes}{15.28 \text{ } min/par} = 561.5 \text{ pares/mes} = 46.8 \text{ docenas/mes}$$

En lo anterior, se evidencia la línea de producción, se ha visto que es poco eficiente, tiene cuello de botella extenso en comparación a los demás ciclos porque no hubo un conocimiento total del desarrollo de funciones por realizar, no estuvo estandarizado los tiempos, además no existía un análisis de indicadores de producción que le permita conocer como está su situación. A causa de la anterior, se generó incumplimiento de pedidos y un ciclo mayor en el área de perfilado de 15.28 min/par.

La producción real de la empresa fue de 316 pares/mes y 26,3 docenas/mes, la cual no eran capaces de producir y cumplir con el promedio de la demanda de 333 pares/mes porque no se planificaba la producción.

Según López (2018) se ha identificado la producción de zapatos para dama modelo 300-301, éste inicia por la adquisición de la materia prima y posterior a ello pasa por varios procesos como son: Cortado (213.85'/3=71.28'), desbastado (24.99'), perfilado (457.72'/8=57.22), cocido de vena (141.31'/3=47.10), armado (369.35'/5=73.87 y alistado (49.4'/2=24.7). Los autores han calculado en base a 5.5 días laborables a la semana.

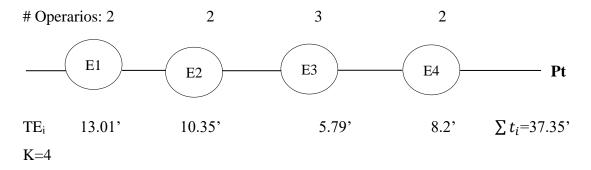
K=6

C=73.87 min/docena

To=K(c)-
$$\sum t_i$$

$$=6(73.87)-299.16$$

= 144.06 min/docena


$$E = \frac{\sum t_i}{n(c)} = \frac{299.16'}{22(73.87)} \times 100 = 18.4\%$$

$$P = \frac{tb}{c} = \frac{570*5.5*4 \, min/mes}{73.87 \, min/doc} = 169.75 \, docenas/mes$$

Se aprecia un ciclo mayor en el área de armado de 73.87 min/docena, esto debido a que solo existen 5 trabajadores para ejecutar el calzado armado y por ende generaron inventarios de producto en proceso y tiempos ociosos en algunas estaciones.

De acuerdo con el estudio, se tiene que la producción fue de 8 docenas/día, 44 docenas/semana y 176 docenas/mes, esto resulta inadecuado, porque los operarios ejecutaban operaciones que no le fueron asignados, además porque se generaban esperas, movimientos innecesarios y desorden en todo el proceso. Se dice que producían en exceso y sin gestionar adecuadamente los inventarios.

Según Paisig (2020) se ha identificado la producción de calzados en la línea de damas y las estaciones son: Cortado (26.02'/2=13.01'), perfilado (20.69'/2=10.35), armado (17.37'/3=5.79) y alistado (16.4'/2=8.2'). Los datos se han calculado en base a 25 días laborables al mes y 8 horas de trabajo al día con 9 operarios.

C=13.01 min/par

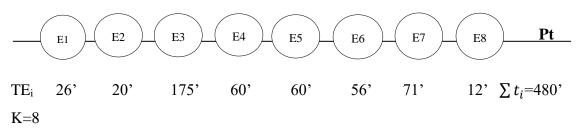
To=
$$K(c)$$
- $\sum t_i$

=4(13.01)-37.35

= 14.69 min/par

=176.28 min/docena

$$E = \frac{\sum t_i}{n(c)} = \frac{37.35'}{9(13.01)} \times 100 = 31.9\%$$


$$P = \frac{tb}{c} = \frac{8*60*25 \, min/mes}{13.01 \, min/par} = 922.37 \, par/mes = 76.86 \, docenas/mes$$

En lo anterior se evidencia el desorden en las estaciones y la mala distribución de las áreas debido a que dentro de éstas existen subprocesos la cual generan pérdidas de tiempo por esperas. Finalmente se generó un ciclo mayor en el área de cortado de 13.01 min/par o 156.12 min/docena.

La producción real fue de 700 pares/mes y 58doc/mes, siendo ésta inadecuada porque no había una secuencia estructurada de las actividades a realizar.

Según Vereau (2020) se ha identificado la producción de calzados masculino modelo 909, éste inicia por la adquisición de la materia prima y posterior a ello pasa por varios procesos como son: Diseño, corte, habilitado y perfilado, prefinito, armado/engomado, alistado, limpieza y pulida, encajado. El autor ha calculado en base a 26 días laborables al mes y 8 horas de trabajo al día.

Operarios: 1 1 1 1 1

C=175 min/par

To=K(c)-
$$\sum t_i$$

=8(175)-480

 $= 920 \min/par$

=11040 min/docenas

$$E = \frac{\sum t_i}{n(c)} = \frac{480'}{5(175)} \times 100 = 54.86\%$$

$$P = \frac{tb}{c} = \frac{26*8*60*4 \, min/mes}{175 \, min/par} = 286 \, \text{pares/mes} = 23.83 \, \text{docenas/mes}$$

En lo anterior, se evidencia un ciclo extenso en el área de habilitado y perfilado de 175 min/par. Esto se ha dado por la falta de delimitación de las zonas de trabajo, por la ausencia de indicadores de producción y falta de capacitación al personal en cuanto a las funciones a desarrollar en cada proceso.

La producción real fue de 10.2 pares/turno, 265.2 par/mes y 22.1 docenas/mes, la producción es inadecuada, puesto que si hay capacidad de mano de obra e históricos que demuestran que han llegado a producir 12 pares/día y 26 docenas/mes, sin embargo, no se cumplió en la producción reciente porque no había una planificación de la producción, no había control de inventarios y había reprocesos en el área.

Cuadro resumen de producción de calzados de Trujillo

Finalizado el análisis se ha procedido a calcular el promedio de producción mensual, tiempo de ciclo, tiempo de ocio y eficiencia de línea que se tiene en el rubro manufactura de calzados respecto a las 9 investigaciones como se aprecia en la Tabla 6.

Tabla 6. Cuadro resumen de la dimensión Producción

Investigación	Producción	Tiempo de ciclo	Tiempo de ocio	Eficiencia
	(docenas/mes)	(minutos/docenas)	(minutos/docenas)	de línea
1	332	227.664	488.665	10.97%

LA MEJORA DE PROCESOS DE PRODUCCIÓN Y LA PRODUCTIVIDAD EN EMPRESAS DE CALZADO DE LA PROVINCIA DE TRUJILLO, CAJAMARCA 2022

DEL NORTE		1 1	TOVINGIA DE TROSIELO, CA	NOAIVIAINOA 2022
2	32	510	1372.5	57.72%
3	26	320	280	70.83%
4	45	317.16	704.22	44.49%
5	90	65.09	56.28	31.35%
6	26.3	183.36	538.68	58.03%
7	176	73.87	144.06	18.40%
8	58.3	156.12	176.28	31.90%
9	22.1	2100	11040	54.86%
Promedi	o 89.74	439.25	1644.52	42.06%
	docenas/m	nes minutos/doc	cenas minutos/doc	

3.2.2. Descripción de la dimensión eficiencia operativa

De las investigaciones se tiene que dentro de los diversos procesos que llevaban a cabo existían actividades que no eran productivas, muchas de ellas no eran necesarias realizar como los traslados innecesarios y demoras debido a que los operarios esperaban que llegue la materia prima a su área para que puedan procesarla. En estas empresas estudiadas los autores coinciden en que los recursos como materia prima, mano de obra y equipos necesarios para procesar y ofrecer un producto de calidad eran usados de manera inadecuada, sin trabajo colaborativo entre operarios y jefes en donde el operario desconocía las funciones necesarias a ejecutar y el jefe no supervisaba ni guiaba en el proceso, así como también la mala asignación de operarios a las estaciones en donde no tenían capacidad ni experiencia. Lo anterior, conllevaba a las empresas en estudio a extender sus actividades inadecuadamente y al incumplimiento de la demanda.

En la Figura 10 se tiene la evidencia de las actividades productivas e improductivas que determinan el valor de sus operaciones. Además, el cálculo detallado de cada proceso se aprecia en el Anexo 2,3,4,5,6,7,8, 9 y 10.

Figura 10. Porcentaje promedio de actividades productivas e improductivas

Tabla 7. Cuadro resumen de actividades productivas e improductivas

	Total
Actividad productiva	72%
Actividad improductiva	28%

3.2.3. Descripción de la dimensión estudio de tiempos

De las investigaciones se obtiene el estudio de tiempos de cada una de las estaciones del proceso productivo que actualmente llevan a cabo. En el cual se ha identificado que hay pérdidas de tiempo en actividades que no generan valor al proceso, como es el caso de búsqueda de molde, transporte hacia las otras áreas que están distanciadas producto de la ausencia de maquinaria en la estación respectiva. Se ha identificado los tiempos normal y estándar de procesos de cada estación respecto a las 9 investigaciones.

Los autores Avalos & Gonzales (2013) han calculado el tiempo estándar de acuerdo con el tiempo en min/docena para cada una de las actividades y procesos, producto de las 6 observaciones que realizaron. Se aprecia en la figura 11.

Figura 11. Tiempo normal y tiempo estándar

	CÁLCULO DEL TIEMPO ESTÁNDAR										
Estación	Tiempo Total(hr/doc)	le: Aproximado (min/doc	Unidades	FC	% Tol	Tiempos productivos	TN (min/doc)	TE (min/doc)			
CORTADO	01:46:30	107	min/doc	1.03	30%	82	84	109.798			
DESBASTADO	00:22:32	23	min/doc	1.08	20%	16	17	20.736			
PERFILADO	03:44:49	181	min/doc	1.02	20%	186	189.7	227.664			
ARMADO	02:54:28	174	min/doc	1.02	28%	154	157	201.0624			
ALISTADO	01:39:26	84	min/doc	1.05	23%	70	74	90.405			

Fuente. Recuperado de Avalos Velásquez & Gonzales Vidal, (2013)

Se apreció mayor tiempo en perfilado puesto que el operario se traslada por varios pisos de la planta en varias ocasiones de manera innecesaria. Había tiempos improductivos que se dan por transportes y demoras. Es necesario mencionar que los autores en el cálculo del tiempo normal han usado el tiempo productivo multiplicado por el factor de calificación.

Del mismo modo Avila (2017) presenta los cálculos del tiempo normal en minutos/docena para cada una de las actividades y procesos, producto de las observaciones que realizaron. Se aprecia en la tabla 8.

Tabla 8. Tiempo normal y tiempo estándar

Estación	TN (minutos/docena)	TE (minutos/docena)
Corte	150	150
Desbastado	22.5	22.5
Perfilado	420	420
Armado	510	510
Alistado	75	75
Total	1177.5	1177.5

En la tabla anterior, se tiene un tiempo normal promedio por actividad y el tiempo estándar no tiene calculado. No se tomó en cuenta el tiempo suplementario que usualmente se asigna de un 20% adicional al tiempo normal según el autor Reyes, (2020).

El mayor problema radicó en el perfilado y armado, en donde no hubo un control, no hubo un orden que le permita trabajar sin dificultades, trabajaron de manera apresurada cometiendo errores.

En la investigación de Bazan Araujo (2019) no se tiene un registro exacto del tiempo normal y estándar en minutos/docena para cada una de las actividades y procesos. Sin embargo, se ha deducido conociendo su tiempo base y su producción en cada proceso como se aprecia en la Tabla 9.

Tabla 9. Tiempo normal y tiempo estándar

Estación	TN (minutos/docena)	TE (minutos/docena)
Corte	120	120
Perfilado	320	320
Armado	240	240
Total	680	680

En la tabla, se muestra un tiempo normal promedio por actividad y el tiempo estándar que no tiene calculado. El mayor problema radicó en el perfilado y armado, en donde el perfilador tenía que desbastar antes de cocer, el armador tenía muchas actividades pendientes ya que preparaba plantas, la cual eran subprocesos en las que ellos no tenían conocimiento.

Los autores Chávez & Rodriguez (2019) especifica el cálculo del tiempo estándar de acuerdo con el tiempo en min/docena para cada una de las actividades y procesos, producto de las observaciones. Se aprecia en la Figura 12 y en el Anexo 11.

Figura 12. Tiempo normal y tiempo estándar

AREA	T. PROMEDIO	W	esting	HOUSE		TOLERANCIA	TOLERANCIA	TOLERANCIA	TOLERANCIA	TIEMPO	SUPLEMEN	TOS	TIEMPO ESTÁNDAR (min)	tiempo Estándar
		=	Е	Θ	CS		NORMAL TRABAJADOR VALOR	E) IANUAK (MIN)	(horas)					
CORTE	42.387	0.03	-0.04	0	0.01	0.00	42.39	HOMBRE	0.09	46.20	0.77			
PERFILADO	121.760	0.06	-0.04	0.02	0.00	0.04	126.63	HOMBRE	0.09	138.03	2.30			
ARMADO	257.497	0.06	0.05	0.02	0.00	0.13	290.97	HOMBRE	0.09	317.16	5.29			
AUSTADO	51.621	0.03	0.02	0.04	0.01	0.10	56.78	MUJER	0.11	63.03	1.05			
	TIEMPO TOTAL PARA 1 DOCENA DE SANDALIAS PARA DAMA								564.42	9.41				

Fuente. Recuperado de Chávez Boudri & Rodriguez García (2019)

En la Figura 12, se muestra el tiempo normal promedio por actividad y el tiempo estándar. El mayor problema radicó en el armado, en donde hacía falta de una metodología establecida y estandarizada, la cual genraban demoras y mermas en producción.

Según Cruz (2018) evidencia que han calculado el tiempo estándar de acuerdo con el tiempo en min/docena para cada una de las actividades y procesos, producto de las 10 pre-observaciones por docena. Se aprecia en la Tabla 10 y en el Anexo 12.

Tabla 10. Tiempo normal y tiempo estándar

Estación	TN (min/docena)	TE (min/docena)
Corte	52.09	60.57
Perfilado	153.44	178.42
Armado	221.33	260.39
Alistado	33.44	39.34
Total	460.3	538.72

Han aplicado un estudio de tiempos para conocer el tiempo estándar actual del proceso productivo de sandalias. Se han elegido a 4 trabajadores uno por cada área, debido a que tienen más experiencia y conocimiento en cada una de sus actividades.

Según Garcia & Quipuscoa (2020) se evidencia que han calculado el tiempo normal de acuerdo con el tiempo en min/docena para cada una de las actividades y

procesos, producto de las observaciones. Se aprecia en la Figura 13 y Anexo 13.

Figura 13. Tiempo normal y tiempo estándar

ESTACIONES	Tiempos (min/par)
ESTACION 1: CORTADO Y DESBASTADO	6.97
ESTACION 2: PERFILADO 1	15.28
ESTACION 3: CENTRADO Y CARDADO	14.51
ESTACION 4: REMATADO	7.13
ESTACION 5: EMPAVONADO	2.24
ESTACION 6: HABILITADO	7.89
ESTACION 7: ALISTADO	8.05

Fuente. Recuperado de Garcia Guevara & Quipuscoa Guzman (2020)

Se aprecia la toma de tiempos que han desarrollado, considerando cinco (5) premuestreos para la fabricación de un par de zapatos de tacón cerrado Reyna. El problema está dado en la falta de estandarización de tiempos y por ende no hay control.

Según López (2018) evidencia que han calculado el tiempo normal en min/docena para cada una de las actividades y procesos, producto de las observaciones. La empresa no tuvo estandarizado los tiempos es por lo que hay dificultades. Del mismo modo, hay demoras, no solo por el ambiente, más bien por los movimientos innecesarios. Se aprecia en la Figura 14 y en el Anexo 14.

Figura 14. Tiempo promedio y tiempo estándar

Operación	Tiempo promedio seg. / doc.	Tiempo promedio min. / doc.	Tiempo promedio Hora / doc.	Tiempo estándar antes (hr)
Cortado	9,969.71	166.16	2.77	3.56
Desbastado	1042.53	17.37	0.29	0.42
Perfilado	23371.45	389.52	6.50	7.63
Cosido de vena	9093.42	151.55	2.53	2.36
Armado	17907.60	298.45	4.98	6.16
Alistado	2383.73	39.72	0.67	0.82
Total	63,768.44	1,062.87	17.74	20.94

Fuente. Recuperado de López Sánchez (2018)

En la investigación de Paisig (2020), se evidencia que han calculado el tiempo estándar en min/par y se ha convertido a min/docenas que es la unidad con la que se está trabajando para cada una de las actividades y procesos. Producto de las observaciones que hicieron se vio que los operarios no eran capacitados ni controlados en sus funciones

a realizar, imprecisión por trabajo artesanal y ambiente inadecuado. Además, no tenían un tiempo estándar como se aprecia en la Tabla 11.

Tabla 11. Tiempo normal y tiempo estándar

Proceso	TN (min/docena)	TE (min/docena)
Corte	156.12	156.12
Perfilado	124.2	124.2
Armado	69.48	69.48
Alistado	98.4	98.4
Total	448.2	448.2

En la investigación de Vereau (2020) se evidencia el tiempo normal y estándar en min/docena para cada una de las actividades y procesos, producto de las observaciones. No se optimizaba el tiempo porque no había capacitación en sus funciones a realizar, imprecisión por trabajo artesanal y ambiente inadecuado. Ver Figura 15.

Figura 15. Estudio de tiempos promedio y estándar

N°	Elemento -	Tiempos Observados (min)			ТО	F.V	T.	SUPLEM.	T.
N	Liemento	1	2	3	(PROM)	r.v	NORMAL	SUFLEM.	ESTÁNDAR
Etapa 1	Diseño	23'	21'	26'	23'	0%	23'	11%	26'
Etapa 2	Corte	18'	18'	18'	18'	0%	18'	11%	20'
Etapa 3	Habilitado + Perfilado	149'	150'	175'	158'	0%	158'	11%	175'
Etapa 4	Prefinito	51'	58'	53'	54'	0%	54'	11%	60'
Etapa 5	Armado / Engomado	54'	55'	53'	54'	0%	54'	11%	60'
Etapa 6	Alistado	45'	51'	55'	50'	0%	50'	11%	56'
Etapa 7	Limpieza y pulida	65'	61'	66'	64'	0%	64'	11%	71'
Etapa 8	Encajado	11'	9'	12'	11'	0%	11'	11%	12'
				Total	432'	0%	432'	11%	480'

Fuente. Recuperado de Vereau Tafur (2020)

Cuadro resumen del estudio de tiempos

Finalizado el análisis se ha procedido a calcular el promedio del tiempo normal y estándar en empresas de producción de calzados respecto a las 9 investigaciones como se aprecia en la Tabla 12.

Tabla 12. Cuadro resumen de la dimensión estudio de tiempos

Investigación	Tiempo normal	Tiempo estándar
	(minutos/docena)	(minutos/docena)
1	521.7	649.67
2	1177.5	1177.5
3	680	680
4	516.77	564.42
5	460.3	538.72
6	62.07	62.07
7	1099.69	1256.62
8	448.2	448.2
9	5184	5760
Promedio	1127.8 min/docena	1237.47 min/docena

3.3. Descripción de la variable productividad

3.3.1. Descripción de la dimensión productividad de mano de obra

Para determinar la productividad de mano de obra, se han analizado lo siguiente: Según Avalos & Gonzales (2013) se ha identificado la producción de 332 docenas/mes del calzado para niños. La cantidad de 26 operarios distribuidos en estación y un turno de 10 horas al día con 5.5 días de trabajo a la semana. De acuerdo con el tiempo asignado, la cantidad de operarios y la producción real se aprecia la productividad de mano de obra en la Ecuación 1.

$$poducctividad\ MO = \frac{P}{Q} = \frac{332}{10*5.5*4*20.8} = 0.073\ docenas/hh \tag{1}$$

Interpretación. La productividad es poco aceptable, no optimizaron el recurso empleado, así como también había desmotivación del personal por problemas ergonómicos ya que

no estaban asignados de una manera adecuada a sus tareas específicas, no contaban con un buen ambiente laboral y no eran capacitados, generando trabajos ineficientes. Podemos observar que, por cada hora hombre utilizada, se produce 0.073 docenas de calzados.

De acuerdo con Avila (2017) se ha identificado la producción de 32 docenas/mes de calzado de vestir. Los autores tomaron en cuenta a 4 operarios que intervienen en el proceso con turno de 8 horas (usan solo usan 6.5 horas) con 6 días de trabajo a la semana. De acuerdo con el tiempo asignado, la cantidad de operarios y la producción real se aprecia la productividad de mano de obra en la Ecuación 2.

$$productividad\ MO = \frac{P}{Q} = \frac{32}{6.5*6*4*4} = 0.051\ docenas/hh$$
 (2)

Interpretación. La productividad es poco aceptable, ya que no optimizaron todos los recursos empleados, se efectúan muchos traslados innecesarios por ende no le permitieron alcanzar mayor productividad. Podemos observar que, por cada hora hombre utilizada, se produce 0.051 docenas de calzados.

De acuerdo con Bazan Araujo (2019) se ha identificado la producción 38 docenas/mes del calzado de vestir con 3 operarios. El turno de trabajo fue de 8 horas y 5.5 días/semana. De acuerdo con el tiempo asignado, la cantidad de operarios y la producción real se aprecia la productividad de mano de obra en la Ecuación 3.

$$productividad\ MO = \frac{P}{Q} = \frac{38}{8*5.5*4*3} = 0.072\ docenas/hh \tag{3}$$

Interpretación. La productividad es poco aceptable, ya que no optimizaron todos los recursos empleados como las horas asignadas para cumplir con la demanda. Podemos observar que, por cada hora hombre utilizada, se produce 0.072 docenas de calzados.

De acuerdo con Chávez & Rodriguez (2019) se ha identificado la producción 45 docenas/mes del calzado de vestir. Se trabajan 9 horas con 41 minutos en una jornada

laboral. De acuerdo con el tiempo asignado, la cantidad de operarios y la producción real se aprecia la productividad de mano de obra en la Ecuación 4.

$$productividad\ MO = \frac{P}{Q} = \frac{45}{416.15} = 0.11 docenas/hh \tag{4}$$

Interpretación. La productividad es aceptable, sin embargo, no optimizaron todos los recursos empleados y la condición en la que trabajaba los operarios no era el adecuado. Podemos observar que, por cada hora hombre utilizada, se produce 0.11 docenas de sandalias.

De acuerdo con Cruz (2018) se ha identificado la producción de 90 docenas/mes de sandalias de dama. Se han calculado en base a 18 días laborables con trabajo de 6 días a la semana. De acuerdo con el tiempo asignado, la cantidad de operarios y la producción real se aprecia la productividad de mano de obra en la Ecuación 5.

$$producctividad\ MO = \frac{P}{O} = \frac{90}{1173} = 0.077\ docenas/hh \tag{5}$$

Interpretación. La productividad es poco favorable, puesto que no optimizaron los recursos empleados de 1173 horas, así como también las 90 sandalias que se produjeron, pese a métodos de trabajo inadecuados y sin control alguno. Se observa que la productividad de mano de obra promedio por día es de 0,077 docenas de sandalias/horas-hombre. Ver anexo 13.

De acuerdo con Garcia & Quipuscoa (2020) se ha identificado la producción de 26.3 docenas/mes de zapatos de tacón cerrado Reyna para dama. Hay 9 operaciones existentes, sin embargo, hay 7 operarios. Hay ausencia del tiempo de jornada laboral. Sin embargo, nos dan un resultado tomando en consideración el tiempo asignado, la cantidad de operarios, la producción real y de ello se aprecia la productividad de mano de obra en la Ecuación 6.

$$productividad\ MO = \frac{P}{Q} = 4\ pares/hh = 0.33\ doc/hh \tag{6}$$

Interpretación. La productividad es aceptable, sin embargo, no optimizaron todos los recursos empleados, se dice que la planta no era adecuada para que ejecuten sus actividades. Podemos observar que, por cada hora hombre utilizada, se produce 0.33 docenas de zapatos.

De acuerdo con López (2018) se ha identificado la producción de 176 docenas/mes de zapatos para dama modelo 300-301. Los autores han calculado en base a 5.5 días laborables a la semana. De acuerdo con el tiempo asignado, la cantidad de operarios y la producción real se aprecia la productividad de mano de obra en la Ecuación 7.

$$productividad\ MO = \frac{P}{Q} = \frac{176}{3685.44} = 0.048\ docenas/hh \tag{7}$$

Interpretación. La productividad es poco favorable, puesto que no optimizaron los recursos empleados, tal es el caso de los operarios al ejecutar actividades que no le eran asignados y la ausencia de planificación. Podemos observar que, por cada hora hombre utilizada, se produce 0.048 docenas de zapatos.

De acuerdo con Paisig (2020) se ha identificado la producción de 58.3 docenas/mes de calzados en la línea de damas. Los autores han calculado en base a 25 días laborables al mes y 8 horas de trabajo al día con 9 operarios. De acuerdo con el tiempo asignado, la cantidad de operarios y la producción real se aprecia la productividad de mano de obra en la Ecuación 8.

$$productividad\ MO = \frac{P}{Q} = \frac{58.3}{2200} = 0.03\ docenas/hh \tag{8}$$

Interpretación. La productividad es inadecuada, puesto que no optimizaron los recursos empleados de la mejor manera, tal es el caso de la mano de obra calificada. Podemos observar que, por cada hora hombre utilizada, se produce 0.03 docenas de zapatos.

De acuerdo con Vereau (2020) se ha identificado la producción de 22.1 docenas/mes de calzados masculino modelo 909. Los autores han calculado en base a 26 días laborables al mes y 8 horas de trabajo al día. De acuerdo con el tiempo asignado, la cantidad de operarios y la producción real se aprecia la productividad de mano de obra en la Ecuación 9.

$$productividad\ MO = \frac{P}{Q} = \frac{22.1}{8*26*5} = 0.021\ docenas/hh \tag{9}$$

Interpretación. La productividad es poco favorable, puesto que no optimizaron todos los recursos empleados de la mejor manera, tal es el caso de la falta de capacitación al personal y falta de planificación de la producción. Podemos observar que, por cada hora hombre utilizada, se produce 0.021 docenas de zapatos.

Cuadro resumen de la productividad de calzados de Trujillo

Finalizado el análisis se ha procedido a calcular el promedio de la productividad de la mano de obra de manera mensual que se tiene en empresas de producción de calzado respecto a las 9 investigaciones como se aprecia en la Tabla 13.

Tabla 13. Cuadro resumen de la dimensión productividad de mano de obra

Investigación	Productividad de mano de obra			
	(docenas/hora-hombre)			
1	0.073			
2	0.051			
3	0.072			
4	0.11			
5	0.077			
6	0.33			
7	0.048			

8	0.03
9	0.021
Promedio	0.090 docenas/hora-hombre

3.3.2. Descripción de la dimensión productividad de materia prima

Para determinar la productividad de materia prima, se han analizado lo siguiente: Los autores Avalos & Gonzales (2013) ha identificado la producción de 332 docenas/mes del calzado para niños. De la producción real y el uso determinado del material necesario se aprecia la productividad de materia prima en la Ecuación 10.

$$productividad MP = \frac{P}{Q} = \frac{332 \ doc/mes}{1245(4) \ pies2/mes}$$

$$= 0.0667 \ docenas/pies2$$
(10)

Interpretación. La productividad es aceptable, sin embargo, no optimizaron la materia prima, esto se dio porque no había datos exactos sobre la problemática del desperdicio generado, no había una gestión ni organización adecuada en almacén tanto para los materiales como para las estaciones en donde se llevaban a cabo las tareas y por ende generaban desperdicios de material, también no había espacio para mantener los materiales en buen estado. Podemos observar que, por cada pie2 utilizado, se produjo 0.0667 docenas de calzados.

En la investigación de Bazan (2019) se ha identificado la producción 38 docenas/mes del calzado de vestir. De la producción real y el uso determinado del material (60 pies2/docena) se aprecia la productividad de materia prima en la Ecuación 11.

$$prod. de MP = \frac{P}{Q} = \frac{38 doc}{2280 pies2} = 0.0167 docenas/pies2$$
 (11)

Interpretación. La productividad es poco favorable, no optimizaron la materia prima. Esto se dio porque no hacen cortes adecuados ni costuras precisas conllevando a eliminar

materiales malogrados. Podemos observar que, por cada pie2 utilizado, se produjo 0.01167 docenas de calzados.

En la investigación de Paisig (2020) se ha identificado la producción de 58.3 docenas/mes de calzados en la línea de damas. Se han usado 150 m2 que es lo mismo a 150*10.764=1614.6 pies2. De la producción real y el uso determinado del material necesario se aprecia la productividad de materia prima en la Ecuación 12.

$$prod. de MP = \frac{P}{Q} = \frac{700 \ pares}{1614.6 \ pies2} = 0.43 \ par/pies2$$

$$= 0.036 \ docenas/pies2$$
(12)

Interpretación. La productividad es aceptable, sin embargo, no optimizaron la materia prima en su totalidad, no existía capacitación en función a cada etapa del proceso por lo que había deficiencias generando errores, por ende, desperdicios. Podemos observar que, por cada pie2 utilizado, se produjo 0.036 docenas de calzados.

De acuerdo con varios estudios se ha identificado la cantidad de pares producidos, sin embargo, no han registrado la cantidad específica de las materias primas a usar. Se recomienda para futuras investigaciones considerarlo ya que permitirá realizar el cálculo de la productividad de materia prima (Avila, 2017; Chávez & Rodriguez, 2019; Cruz, 2018; Garcia & Quipuscoa, 2020; López, 2018; Vereau, 2020)

Cuadro resumen de la productividad de calzados de Trujillo

Finalizado el análisis se ha procedido a calcular el promedio de la productividad de la materia prima de manera mensual que se tiene en empresas de producción de calzado respecto a las 9 investigaciones como se aprecia en la Tabla 14.

Tabla 14. Cuadro resumen de la dimensión productividad de materia prima

Investigación	Productividad de materia prima
	(docenas/pies2)
1	0.0667
2	-
3	0.0167
4	-
5	-
6	-
7	-
8	0.036
9	-
Promedio	0.040 docenas/pies2

3.4. Matriz de operacionalización de variables con resultados previa descripción

Tabla 15. Matriz de operacionalización con resultados actuales

Variables	Dimensiones	Indicadores	Resultados actuales
		Número de unidades producidas	89.74 docenas/mes
		Tiempo de ciclo	439.25 min/docena
5 7 • 11		Tiempo de ocio	1644.52 min/docena
Variable	Producción	Eficiencia de línea	42.06%
Independiente:		% Actividades productivas	72%
Procesos	Eficiencia Operativa	% Actividades improductivas	28%
	Estudio de tiempos	Tiempo normal(min/docena)	1127.80 min/docena
		Tiempo estándar (min/docena)	1237.47 min/docena
Variable dependiente:	Productividad de mano de obra	Producción/ Horas hombre empleadas	0.090 docenas/HH
Productividad	Productividad de materia prima	Producción/ MP empleada	0.040 docenas/pies2

3.5. Descripción de la mejora de variable procesos

3.5.1. Descripción de la mejora de la dimensión producción

Para describir la mejora, se presenta la adecuada administración de los recursos a través del uso de herramientas y metodologías usadas por los autores en estudio y los resultados obtenidos materia de inserción del plan de mejora. El indicador ha sido número de unidades producidas, tiempo de ciclo, tiempo de ocio y eficiencia de línea. La descripción de acuerdo con Avalos & Gonzales (2013) se aprecia en la Tabla 16.

Tabla 16. Herramientas y metodologías planteadas

Autor	Herramientas y Metodologías	Descripción de la mejora
Avalos Velásquez & Gonzales Vidal (2013)	MRP, Distribución de planta	En base a la evidencia del diagnóstico, han elaborado el plan de requerimiento de materiales, partiendo del pronóstico estacional, sus componentes y SKU de ese mes. De tal modo, obtuvieron el plan de producción y plan de compras para saber qué materiales solicitar, en qué cantidad y en qué momento solicitarlos; y así conocer el punto de reposición para no tener lugar al desabastecimiento. También, han modificado la ubicación de las estaciones, en primer lugar, la ubicación de la estación de armado la cual se encontraba en el primer nivel, junto con la estación de perfilado que se encontraba en el segundo nivel; así reducir los tiempos de traslado. Por otro lado, se planteó modificar la posición del esmeril colocando cerca del área de cortado; ya que, los cortadores lo usaban a menudo. Además, han propuesto el método de clasificación ABC, con el fin de lograr localizar los materiales y herramientas dentro del almacén de acuerdo con su frecuencia de utilización y al costo de estos. Finalmente,

iniciaron con un control y gestión de inventarios para un periodo mensual; con el cual se lograría tener un registro de las entradas y salidas de los materiales a través de Kardex como se aprecia en la Figura 16.

Figura 16. Tarjetas Kardex


			Product	0			Can	tidad Maxim	a	Cantid	ad Minima		Unidad	es
		Cuero grabado azul				70 pies 2		30 pies 2		pies 2				
		DETA	LLE		E	NTRAD	4S		SALIDAS		SALDOS			
#	FECHA	CONCEPTO	FRA NO.	INVENTARIO INICIAL	CANTID AD	TOTAL	VR. UNITARIO	VR. TOTAL	CANTI DAD	VR. UNITARI O	VR. TOTAL	CANT IDAD	VR. UNITARIO	TOTAL
1	20-sep-13	compras	001-00298	10	40	50	\$1,52,50	\$1.2.625,00	25	\$1,52,50	S/. 1.312,50	25	\$1,52,50	\$1.1.312,50
2	01-oct-13	compras	001-002990	25	100	125	\$1,52,50	\$1.6.562,50	60	\$1,52,50	\$1.3.150,00	65	\$7, 52,50	\$1,3,412,50
3														
4														
5														
6														
7												_		
8														
9														
10												_		
11												_		\Box
12												_		
13														
		Costos						S/. 9.187,50			S/. 4.462,50			

Fuente. Recuperado de Avalos Velásquez & Gonzales Vidal (2013)

Por lo expuesto anteriormente se muestra la ecuación 13 donde las propuestas de mejora se ven reflejadas en incremento de producción. Los autores han optimizado el tiempo en el turno de 10 horas al día con 5.5 días de trabajo a la semana. Además de contar con 15 máquinas para su producción y 27 operarios.

$$Producción = \frac{Tb}{C} = \frac{98 \ docenas}{semana} = \frac{392 \ docenas}{mes}$$
 (13)

De lo anterior, se tiene la secuencia de actividades posterior a las mejoras en tiempos de cortado, perfilado y alistado que han servido para disminuir el tiempo de ciclo, tiempo de ocio y mejorar la eficiencia de línea.

K=5

C=198.67 min/docenas

To=
$$K(c)$$
- $\sum t_i$

=5(198.67)-539.61

= 453.74 min/docenas

$$E = \frac{\sum t_i}{n(c)} = \frac{539.61'}{27(198.6)} \times 100 = 10.06\%$$

La descripción de la propuesta de mejora de acuerdo con Avila (2017), se aprecia en la Tabla 17.

Tabla 17. Herramientas y metodologías planteadas

Autor	Herramientas y	Descripción de la mejora
	metodologías	
Avila Ponce	Rediseño de procesos,	En base al diagnóstico, han rediseñado los
(2017)	implementación de	procesos de corte, en donde tomaron en
	cartillas de piezaje y	consideración una cartilla de piezaje que
	guía de trabajo	indique de manera específica la cantidad de
		cuero a usar. Además, para los procesos de
		perfilado, desbastado, armado y alistado
		implementaron una guía de trabajo a fin de
		controlar las funciones, así como también
		asignar al jefe de taller para el control de la
		calidad.

Por lo expuesto anteriormente se muestra la Ecuación 14 donde las propuestas de mejora se ven reflejadas en incremento de producción. Los autores han optimizado el tiempo (Incluye piezas extraviadas, dañadas o deterioradas de cuero, badana, hebillas) en

el turno de 8 horas al día con 6 días de trabajo a la semana.

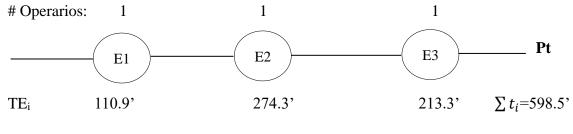
$$Producción = \frac{Tb}{C} = \frac{10 \ docenas}{semana} = \frac{40 \ docenas}{mes}$$
 (14)

Se recomienda para futuras investigaciones que, no solo basta con rediseñar un proceso si no se tiene una adecuada planificación de la producción, ya que no se sabrá cuanto producir, cuanta cantidad de material a usar y mucho menos el método de trabajo a desarrollar en función a la demanda. En base a esta evidencia, hay sencillas mejoras, mas no se pudo ver los nuevos tiempos de ciclo, tiempo de ocio ni mejora de la eficiencia de línea, manteniéndose las mismas cifras.

La descripción de la propuesta de mejora de acuerdo con Bazan Araujo (2019), se aprecia en la Tabla 18.

Tabla 18. Herramientas y metodologías planteadas

Autor	Herramientas y	Descripción de la mejora
	metodologías	
Bazan	Mapa de procesos,	En base al diagnóstico, han realizado un mapa
Araujo	Manual de	de procesos identificando los procesos
(2019)	organización y	estratégicos, claves y de apoyo. Han elaborado
	funciones, ficha	un manual de organizaciones y funciones para
	técnica y DAP	contrarrestar reprocesos. Asimismo, han
		propuesto también su ficha técnica y diagrama
		de actividades mejorados para cada proceso a
		fin de que se disminuyan los errores con la
		ejecución de tareas del personal.


Por lo expuesto anteriormente se muestra la Ecuación 15 donde las propuestas de mejora se ven reflejadas en incremento de producción. Los autores han optimizado el

tiempo en el turno de 8 horas al día con 5.5 días de trabajo a la semana.

$$Producción = \frac{Tb}{C} = \frac{11.5 \, doc}{semana} = \frac{46 \, doc}{mes} \tag{15}$$

Además, los autores no han desarrollado un diseño de mejora para el balance de línea del proceso, las actividades se detallan, pero no hay un registro de los tiempos. Sin embargo, a continuación se tiene la mejora de los indicadorescon previa asigación de un manual de organización y funciones junto con una guía de producción que han realizado. En el corte (480/4.33=110.9 min/docena), perfilado (480/1.75=274.3 min/docena) y armado (480/2.25=213.3 min/docena).

K=3

C=274.3 min/docena

To=K(c)-
$$\sum t_i$$

=3(274.3)-598.5

= 224.4 min/docena

$$E = \frac{\sum t_i}{n(c)} = \frac{598.57}{3(274.3)} \times 100 = 72.73\%$$

$$P = \frac{tb}{c} = \frac{8*60*5.5 \text{ min/semana}}{274.3 \text{ min/doc}} = 9.62 \text{ docenas/semana}$$

De lo anterior, es necesario equilibrar la línea de producción. Se recomienda efectuar el balance teniendo en cuenta la cantidad a producir como en el Anexo 14.

La descripción de la propuesta de mejora de acuerdo con Chávez & Rodriguez (2019), se aprecia en la Tabla 19.

DESPACHO

ALMACÉN

Tabla 19. Herramientas y metodologías planteadas

Autor	Herramientas y	Descripción de la mejora
	metodologías	
Chávez	Diagrama de	En base al diagnóstico, han desarrollado un diagrama
Boudri &	recorrido,	de recorrido tanto para el operario como para el
Rodriguez	Diagrama	material con la finalidad de optimizar la distancia que
García	relacional.	recorre el operario durante el tiempo de duración de
(2019)		las actividades. Asimismo, un diagrama relacional
		con el cual han realizado la proximidad entre áreas,
		sobre todo en el traslado de armado a alistado según
		Richard Muther. También aplicaron el método
		Guerchet, con el cual han calculado las superficies
		físicas requeridas para el área del proceso de
		producción. Ver Figura 17 y 18.

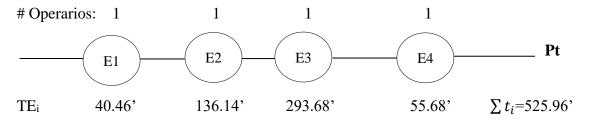
Figura 17. Distribución de áreas sin mejora y después de la mejora.

2° PISO	CORTE	PERFILADO	DESPACHO	ALISTADO y	2° PISO	CORTE	PERFILA
1° PISO	ARMADO			ALMACÉN	1° PISO	ARMADO	ALISTAD

Fuente. Recuperado de Chávez Boudri & Rodriguez García (2019)

Figura 18. Área de armado y alistado

ÁREAS	ÁREA TÉCNICA (m2)	ÁREA REAL (m2)	ÁREA PROPUESTA (m2)
ARMADO	32.92	58.74	43.35
ALISTADO	4.77	6.08	7.89


Fuente. Recuperado de Chávez Boudri & Rodriguez García (2019)

Por lo expuesto anteriormente se muestra la Ecuación 16 donde las propuestas de mejora se ven reflejadas en incremento de producción. Los autores han optimizado el tiempo dentro de una jornada de 9 horas con 41 minutos al día.

$$Producción = \frac{Tb}{C} = \frac{66 \ doc}{mes} \tag{16}$$

Los autores han desarrollado un diseño de mejora, no para el balance de línea como tal, sin embargo, a través de la propuesta de distribución adecuada de las áreas y del estudio de tiempos elaborado en el punto 3.5.3 se ha logrado determinar su línea de producción mejorado. Se basa en la disminución del tiempo de ciclo, tiempo de ocio y mejora de la eficiencia de línea.

K=4

C=293.68 min/docena

To=K(c)-
$$\sum t_i$$

=4(293.68)-525.96

= 648.76 min/docena

$$E = \frac{\sum t_i}{n(c)} = \frac{525.96'}{4(293.68)} \times 100 = 44.77\%$$

$$P = \frac{tb}{c} = \frac{581*6.5*4 \, min/mes}{293.68 \, min/doc} = 51.4 \, docenas/mes$$

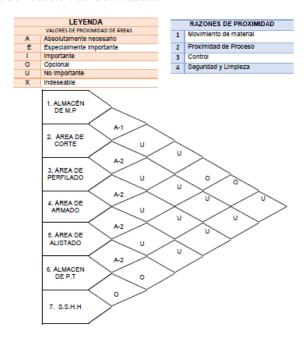

La descripción de la propuesta de mejora de acuerdo con Cruz (2018), se aprecia en la Tabla 20.

Tabla 20. Herramientas y metodologías planteadas

Autor	Herramientas y	Descripción de la mejora
	metodologías	
Cruz	Redistribución	En base al diagnóstico, han aplicado el método de
Chacon	de planta,	Richard Muther y Método de Guerchet, con el
(2018)	Implementación	objetivo de que haya una mejor distribución tomando
	con materiales y	como relación los principios de proximidad entre
	capacitación al	áreas y un análisis de requerimientos y necesidades
	personal.	de las áreas para su mejor distribución, la cantidad de
		maquinarias, elementos y trabajadores capacitados
		metodológicamente. Ver Figura 19, 20 y 21.

Figura 19. Diagrama de relación de actividades

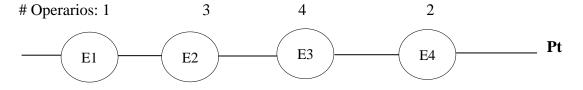
Fuente. Recuperado de Cruz Chacon (2018)

Figura 20. Determinación de áreas y dimensiones

ÅREA	ELEMENTO	TIPO	n	L(m.)	A(m.)	H(m.)	N	K	Ss	Sg	Se	St	A.t
CORTE	Mesa de corte	FIIO	1	1,20	0,65	1,15	1	0,54	0,78	0,78	0,85	2,41	2,41
	Andamio	MÓVIL	3	2,10	0,28	1,10	2	0,54	0,59	1,18	0,96	2,73	8,18
	Troqueladora	FUO	1	1,20	1,00	0,80	1	0,54	1,20	1,20	1,31	3,71	3,71
PERFILADO	Máquina de coser	FUO	3	1,15	0,55	0,45	1	0,54	0,63	0,63	0,69	1,95	5,86
	Andamios	FUO	3	1,30	0,28	1,15	2	0,54	0,36	0,73	0,59	1,69	5,06
ARMADO	Pegadora boca de sapo	FIIO	1	1,45	0,82	0,57	1	0,54	1,19	1,19	1,30	3,67	3,67
	Maquina rematadora	FIIO	1	1,45	0,65	0,70	1	0,54	0,94	0,94	1,03	2,91	2,91
	Andamios	MOVIL	8	2,10	0,26	2,10	2	0,54	0,55	1,09	0,89	2,53	20,24
	Mesa de trabajo	MÓVIL	4	1,15	0,25	1,10	4	0,54	0,29	1,15	0,78	2,22	8,88
	Mesa de Trazado	MOVIL	1	1,35	0,70	1,30	4	0,54	0,95	3,78	2,57	7,30	7,30
ALISTADO	Mesa de alistado	MOVIL	2	1,10	0,50	1.20	2	0,54	0,55	1,10	0,90	2,55	5,10
	Andamio	MOVIL	2	2,10	0,57	1,20	2	0,54	1,20	2,39	1,96	5,55	11,09
ALMACÉN DE P.T	Andamio	MÓVIL	5	2,10	1,15	0,50	2	0,54	2,42	4,83	3,95	11,19	55,96
								TOTAL	11,64	20,99	17,78	50,41	140,4

Fuente. Recuperado de Cruz Chacon (2018)

Figura 21. Comparación de distancias de recorrido


	DISTANCIA DE RECORRIDOS					
ÁREAS						
CORTE	17,22	m	5,68	1		
PERFILADO	7,57	m	6,84	1		
ARMADO	12,80	m	9,44	1		
ALISTADO	11,26	m	6,53	1		
ALMACÈN DE P.T	7,96	m	5,17	1		
TOTAL						
	PERFILADO ARMADO ALISTADO	CORTE 17,22 PERFILADO 7,57 ARMADO 12,80 ALISTADO 11,26 ALMACEN DE P.T 7,96 56,81	PERFILADO 7,57 m ARMADO 12,80 m ALISTADO 11,26 m ALMACÉN DE P.T 7,96 m 56,81 m	CORTE 17,22 m 5,68 PERFILADO 7,57 m 6,84 ARMADO 12,80 m 9,44 ALISTADO 11,26 m 6,53 ALMACÉN DE P.T 7,96 m 5,17 56,81 m 33,66		

Fuente. Recuperado de Cruz Chacon (2018)

Por lo expuesto anteriormente se muestra la Ecuación 17 donde las propuestas de mejora se ven reflejadas en incremento de producción en un 26%. Los autores han optimizado el tiempo en base a 18 días laborables con trabajo de 6 días a la semana.

$$Producción = \frac{Tb}{C} = \frac{113 \ doc}{mes} \tag{17}$$

Previa mejora, han obtenido una disminución del tiempo de ciclo, tiempo de ocio y mejora de la eficiencia de línea. A continuación se tiene la mejora de los indicadores en función al diseño que han realizado y tomando en cuenta los nuevos tiempos estándar del punto 3.5.3.

LA MEJORA DE PROCESOS DE PRODUCCIÓN Y LA PRODUCTIVIDAD EN EMPRESAS DE CALZADO DE LA PROVINCIA DE TRUJILLO, CAJAMARCA 2022

$$\sum t_i = 195.59$$

K=4

C=60.15 min/docena

To=K(c)-
$$\sum t_i$$

$$=4(60.15)-195.59$$

= 45.01 min/docena

$$E = \frac{\sum t_i}{n(c)} = \frac{195.59'}{10(60.15)} \times 100 = 32.52\%$$

$$P = \frac{tb}{c} = \frac{8*60*18 \, min/mes}{60.15 \, min/doc} = 143.64 \, docenas/mes$$

La descripción de la propuesta de mejora de acuerdo con Garcia & Quipuscoa, (2020), se aprecia en la Tabla 21.

Tabla 21. Herramientas y metodologías planteadas

Autor	Herramientas y	Descripción de la mejora
	metodologías	
Garcia	Planificación	En base al diagnóstico, han diseñado un MRP, con la
Guevara &	de	cual planificaron la producción llegando a conocer
Quipuscoa	requerimiento	cuándo y cuánto producir. Del mismo modo,
Guzman	de materiales.	cumplieron a tiempo con la entrega de pedidos y
(2020)		evitando rotura de stock de materiales. Ver Figura 22
		y 23.

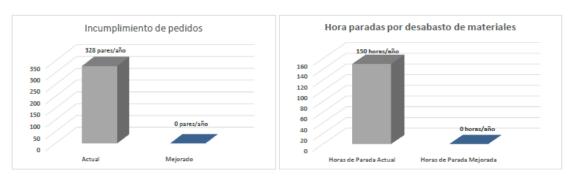


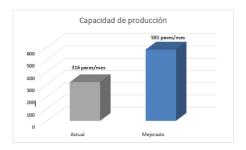
Figura 22. Lanzamiento de órdenes

Cádina da matanial	UM				9	Seman	a					
Código de material	UM	0	1	2	3	4	5	6	7	8	1	
ZR104	par	0	0	1	3	3	4	4	4	4	١.	
ZR105	par	0	0	8	8	8	13	13	13	13	11	
ZR106	par	0	2	14	14	14	22	22	22	23	11.	Duamama da Duaduación
ZR107	par	0	10	14	14	14	22	22	22	23	11	Programa de Producción
ZR108	par	0	0	8	11	11	18	18	18	18	1 1 '	
ZR109	par	0	2	5	5	5	9	9	9	10	1)	
COMP1	und	0	28	100	110	110	176	176	176	182	١	
COMP2	und	0	28	100	110	110	176	176	176	182	11	
COMP3	und	0	28	100	110	110	176	176	176	182	11	
COMP4	und	0	28	100	110	110	176	176	176	182	11	
MAT1	pies2	0	0	80	96	144	144	144	160	0	11	
MAT2	pies2	0	60	120	100	200	180	180	180	0] 	
MAT3	cono	0	0	0	0	0	0	0	0	0	11	
MAT4	gln	0	0	0	5	0	0	5	0	0] [
MAT5	cono	0	0	0	0	0	5	0	0	0	11	
MAT6	pl	0	0	0	0	0	1	2	2	2	1 I	
MAT7	gln	0	0	0	0	5	5	0	5	5	Ţ	
MAT8	und	0	0	100	100	100	200	100	200	200] [Programa de Compra de
MAT9	m2	0	0	0	0	0	0	0	0	0] 	Materiales
MAT10	und	0	0	0	0	200	400	300	400	400] [
MAT11	kg	0	3	10	13	18	20	18	20	0] [
MAT12	Lt	0	0	0	0	0	0	0	0	0] [
MAT13	Lt	0	0	0	4	0	0	0	0	4	11	
MAT14	Lt	0	0	4	0	0	4	0	0	4] [
MAT15	ml	0	0	0	140	175	245	280	245	280] [
MAT16	und	0	0	0	0	100	200	200	200	200] [
MAT17	und	0	100	0	100	100	0	100	100	0] [
MAT18	und	0	200	300	200	300	400	300	400	0	J .	

Fuente. Recuperado de Garcia Guevara & Quipuscoa Guzman (2020)

Figura 23. Incumplimiento de pedidos actual vs mejorado

Fuente. Recuperado de Garcia Guevara & Quipuscoa Guzman (2020)


De lo anterior, se tiene la mejora significativa en cuanto al incumplimiento de pedidos, reduciendo a 0. Asimismo, las horas por desabasto de materiales.

Por lo expuesto anteriormente se muestra la Ecuación 18 y la figura 24 donde las propuestas de mejora se ven reflejadas en incremento de producción.

$$Producción = \frac{Tb}{C} = \frac{581 \ pares}{mes} = \frac{48.42 \ doc}{mes}$$
 (18)

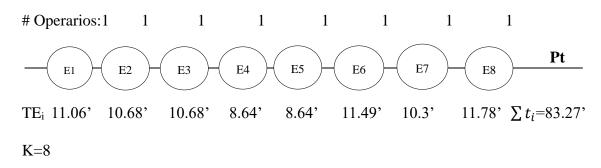


Figura 24. Producción actual vs mejorado

Fuente. Recuperado de Garcia Guevara & Quipuscoa Guzman (2020)

Los autores han desarrollado un diseño de mejora tomando en consideración los datos del estudio de tiempos del punto 3.5.3, por lo cual, diseñaron un balance de línea en base a 8 estaciones, con la finalidad de reducir el tiempo de ciclo y equilibrar los tiempos entre cada una de las estaciones.

C=11.78 min/par

To=K(c)-
$$\sum t_i$$

=8(11.78)-83.27

= 10.97 min/par

=131.64 min/docena

$$E = \frac{\sum t_i}{n(c)} = \frac{83.27'}{8(11.78)} \times 100 = 88.36\%$$

$$P = \frac{tb}{c} = \frac{8580 \text{ min/mes}}{11.78 \text{ min/par}} = 728.35 \text{ pares/mes} = 60.1 \text{ docenas/mes}$$

La descripción de la propuesta de mejora de acuerdo con López (2018), se aprecia en la Tabla 22.

Tabla 22. Herramientas y metodologías planteadas

Autor	Herramientas y	Descripción de la mejora
	metodologías	
López	Layout,	En base al diagnóstico, han propuesto implementar
Sánchez	Metodología	Layout mediante el diagrama de recorrido a fin de
(2018)	5S, Gestión de	minimizar distancias y ordenar las áreas como se
	inventarios.	aprecia en la Figura 25. Además, han implementado
		la metodología 5s, generando eficiencia en el operario
		teniendo un ambiente de trabajo organizado y limpio.
		Han colocado líderes responsables en cada área de
		trabajo, donde cada uno puede detectar y eliminar
		desperdicios ayudándose en equipo. Ver Figura 26 y
		27. En cuanto a su inventario, han planteado clasificar
		la materia prima a través de un análisis ABC, con el
		fin de identificar aquellos que tienen mayor
		incidencia en los costos y necesitan contar con un
		mayor seguimiento porque en caso exista sobre stock
		o desabastecimiento podría ocasionar pérdidas.

Figura 25. Comparación de Layout actual y propuesto

PISOS	LAYOUT ACTUAL	LAYOUT PROPUESTO
	Área de almacén	Área de alistado
	Área de cortado	Área de cosido de vena
Segundo piso	Área de	
	desbastado	
	Área de alistado	
	Área de armado	Área de almacén
	Área de perfilado	Área de cortado
Tercer piso		Área de perfilado
		Área de armado
		Área de desbastado

Fuente. Recuperado de López Sánchez (2018)

Figura 26. Fases de la implementación de las 5'S

	Fases	de la implementac	ión 5'S
5'S	Limpiar	Optimizar	Mantener
	1ra fase	2da fase	3ra fase
Clasificar	Separar lo que es necesario de lo innecesario.	Clasificar las cosas necesarias.	
Ordenar	Apartar lo que es innecesario.	Definir la manera de dar un orden a los objetos necesarios.	Estabilizar, mejorar
Limpiar	Limpiar las distintas áreas de trabajo.	Localizar los lugares difíciles de limpiar y buscar una solución.	
Estandarizar	Eliminar los desechos.	Determinar las zonas sucias.	Evaluar auditorias 5's.
Disciplina	Acostumbrarse procedimientos e	a aplicar 5's n el lugar de trabajo	y respetar los

Fuente. Recuperado de López Sánchez, (2018)

Tomando en consideración las fases de la figura 26 y la asignación del líder de área, han desarrollado la evaluación de la implementación de las 5's en el segundo piso (área de alistado y cosido de vena) y en el tercer piso (áreas de almacén, cortado, desbastado, perfilado, armado). Esta evaluación se hizo a través de la hoja de evaluación que se aprecia en el Anexo 16 y la evidencia se aprecia en la Figura 27.

Figura 27. Área de desbaste antes y después de la mejora

Fuente. Recuperado de López Sánchez (2018)

En la Figura 28, determinaron que la materia prima de tipo A son los que deben de controlarse de manera eficiente ya que fueron de mayores costos para la empresa.

Figura 28. Clasificación ABC de la materia prima

Producto	Valor S/.	Valor %	% Acumulado	Clasificación
Cuero	130.00	45.34%	45.34%	Α
Badana	61.20	21.34%	66.68%	Α
Planta	50.00	17.44%	84.12%	Α
Cajas	10.00	3.49%	87.60%	Α
Pegamento	9.00	3.14%	90.74%	В
Cemento	4.95	1.73%	92.47%	В
Hebillas	4.50	1.57%	94.04%	В
Brillo	2.67	0.93%	94.97%	В
Hilo naylo (vena)	2.50	0.87%	95.84%	В
Cartón	1.67	0.58%	96.42%	В
Terry	1.50	0.52%	96.94%	В
Halogen	1.10	0.38%	97.33%	С
Espuma	1.10	0.38%	97.71%	С
Hilo naylo (perfilar)	1.08	0.38%	98.09%	С
Etiquetas	0.96	0.33%	98.42%	С
Bolsas	0.84	0.29%	98.72%	С
Tinte	0.72	0.25%	98.97%	С
Punti	0.71	0.25%	99.22%	С
Lona	0.50	0.17%	99.39%	С
Añilina pardo	0.50	0.17%	99.56%	С
Mutilo	0.50	0.17%	99.74%	С
Chinches	0.38	0.13%	99.87%	С
Laca	0.38	0.13%	100.00%	С

Fuente. Recuperado de López Sánchez (2018)

Posterior a la clasificación, han calculado el inventario inicial, luego una política de inventarios con cantidad fija de pedido denominada lote económico (Q*), que permite afrontar la demanda durante el plazo de entrega (TS) del próximo lote (Q*). El control de las entradas y salidas también registraron en un formato de control propuesto como se aprecia en el Anexo 17.

Por lo expuesto anteriormente se muestra la Ecuación 19 donde las propuestas de mejora se ven reflejadas en incremento de producción.

$$Producción = \frac{Tb}{C} = \frac{68 \ doc}{semana} = \frac{272 \ doc}{mes}$$
 (19)

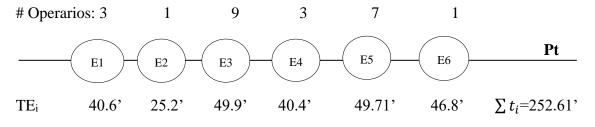

Los autores han desarrollado un diseño de mejora con la finalidad de reducir el tiempo de ciclo, tiempo de ocio y eficiencia de línea a través del Takt time. Es decir, han dividido el tiempo que dispone entre la cantidad de docenas solicitadas. El Takt Time calculado es de 47 minutos y 8 segundos por docena.

Figura 29. Numero de operarios, tiempo de ciclo y Takt time

Operación principal	Tiempo estándar (horas)	Operarios	Tiempo ciclo (horas)	Takt time (horas)
Cortado	2.03	3.00	0.68	0.79
Desbastado	0.42	1.00	0.42	0.79
Perfilado	7.49	9.00	0.83	0.79
Cosido de vena	2.02	3.00	0.67	0.79
Armado	5.80	7.00	0.83	0.79
Alistado	0.78	1.00	0.78	0.79
Total	18.54	24.00		

Fuente. Recuperado de Garcia Guevara & Quipuscoa Guzman, (2020)

En la figura 29, se puede ver los tiempos de ciclo en cada una de las estaciones y de ello se aprecia la mejora en cuanto al indicador de tiempo de ocio y eficiencia de línea.

K=6

C=49.9 min/docena

To=K(c)- $\sum t_i$

=6(49.9)-252.61

= 46.71 min/docena

$$E = \frac{\sum t_i}{n(c)} = \frac{252.61'}{24(49.9)} \times 100 = 21.1\%$$

$$P = \frac{tb}{c} = \frac{(53*60+30)*4 \ min/mes}{49.9 \ min/doc} = 257.3 \ docenas/mes$$

La programación semanal de producción para cumplir con la demanda fue de 12 docenas de lunes a viernes y 8 docenas el sábado.

La descripción de la propuesta de mejora de acuerdo con Paisig (2020) se aprecia en la Tabla 23.

Tabla 23. Herramientas y metodologías planteadas

Autor	Herramientas y	Descripción de la mejora
	metodologías	
Paisig	Mejora del diagrama de	En base al diagnóstico, han mejorado los
Sánchez de	actividades,	tiempos y métodos de trabajo de cada una de
Zevallos	Metodología 5s,	las actividades ejecutadas. Dentro de ésta, la
(2020)	Reestructura del área de	supervisión, inspección y función específica
	producción, gestión de	a cada operario, con lo que se logró reducir
	inventario y	el desorden y generar un patrón establecido
	mantenimiento de	para optimizar su trabajo. La propuesta se
	maquinaria.	hizo en una producción de 32 pares diarios
		con un promedio de 4 pares por hora.
		Posterior a ello, han minimizado los tiempos
		a través de las 5S, para acceder a los
		insumos, materiales y herramientas con
		fluidez. Del mismo modo, han determinado
		el espacio físico adecuado a través del

método Guerchet, también controlaron adecuadamente los inventarios hasta finalizar con el adecuado plan de mantenimiento de maquinaria.

Han hallado el área total de la sumatoria de las tres superficies multiplicándolo con la cantidad (n), teniendo un resultado de 60 m2.

Figura 30. Medidas de las máquinas

	2m	3m	5m	2m	
3m	MÁQUINA DE	DESVASTADORA DOBLADORA		ESMERIL	
	BROCHES				
2m	PERF	ILADORA	ESMERIL	HORNO	
		бm	3m	3m	

Fuente. Recuperado de Paisig Sánchez de Zevallos, (2020)

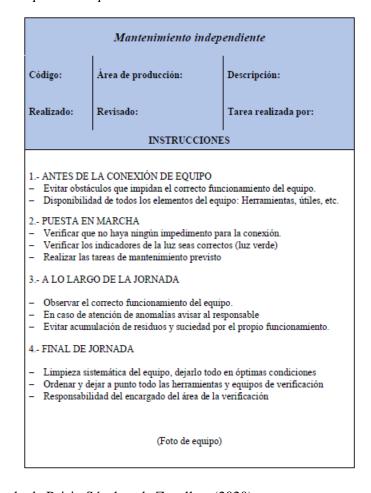
Han determinado que la capacidad instalada de la planta será de 32 pares en siete horas con 36 minutos. Propusieron usar un formato o guía de recepción de materiales e inventariaron los materiales e insumos requeridos al inicio y al final de la jornada laboral. Asimismo, el uso del software Kardex para controlar las cantidades, costos de las entradas y salidas de los materiales, y productos terminados, así como el saldo de estos en una determinada fecha.

Figura 31. Guía para orden de compra de materiales

Proveedor: Fecha: / /		Responsable		
Ítem	Materia y/o insumo	Cantidad	Precio Unitario	Precio total
			Costo Total S/.	

Fuente. Recuperado de Paisig Sánchez de Zevallos (2020)

Figura 32. Formato para el despacho e internamiento de materiales e insumos


Crismely Calzado Área solicitante Pedido №: Fecha: _/_ Responsable:											
	Materia y/o insumo	Despacho (Unid.)	Retorno (Unid.)	Observación							
	_	Firma									

Fuente. Recuperado de Paisig Sánchez de Zevallos (2020)

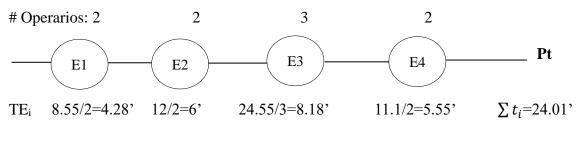
En cuanto al mantenimiento fue de manera preventiva y poder garantizar la producción. Realizaron el plan por áreas, asimismo indicaron a los operarios que el mantenimiento autónomo se deberá realizar siguiendo las instrucciones indicadas en la Figura 33 y 34.

Figura 33. Formato para el despacho e internamiento de materiales e insumos

Fuente. Recuperado de Paisig Sánchez de Zevallos, (2020)

Figura 34. Ficha de control de mantenimiento autónomo

Código de equipo:												Descripción:																		
Área de producción:														M	es	:														
Realizado:				R	evi	isa	do	p	or:								Ta	re	a 1	rea	liz	ad	a	por	r:					
Actividades	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	3
Activatines										0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0
Desconectar el equipo de la corriente																											П	Τ	Ι	
Limpiar ranuras de equipo																												Т	Τ	
Limpiar zonas de trabajo												Γ															Т	Т	Τ	
Verificar el estado de herramientas																											T	Т	T	Ξ
Detectar desperfecto superficial	П						П	Г		Г	Г	Γ	Г	П	П				П					П	П	\Box	T	Т	T	Ξ
Guardar herramientas que no son del equipo																												Т	T	_
Al finalizar proteger el equipo (Guardapolvo)												L																	_	_
Frecuencia de revisión quincenal	Г									_							_						_							_
Actividades		1	era	3 Q	ui	no	en	ıa			E	st	ad	lo 2da quincena										E	ta	do	,			
Verificar estado de motor	Г																										Ξ			
Verificar el engrasado	Г									Г						Г									П					_
Verificar estado de piezas externas	Г																													
Verificar tensión de la corriente																														
Realizar limpieza exhaustiva	Г									Г						Г									П					_


Fuente. Recuperado de Paisig Sánchez de Zevallos (2020)

Por lo expuesto anteriormente se muestra la ecuación 20 donde las propuestas de mejora se ven reflejadas en incremento de producción.

$$Producción = \frac{Tb}{C} = \frac{800 \ pares}{mes} = \frac{66.6 \ docenas}{mes}$$
 (20)

Previa aplicación de mejora, se evidencia los indicadores de tiempo de ciclo, tiempo de ocio y mejora de la eficiencia de línea en función al diseño que han realizado básicamente medido por la mejora de DAP y tomando en cuenta los nuevos tiempos estándar del punto 3.5.3.

K=4

C=8.18 min/par

To=K(c)-
$$\sum t_i$$

$$=4(8.18)-24.01$$

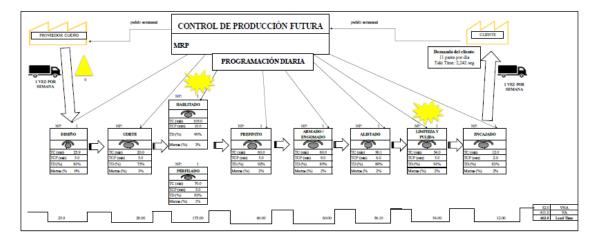
= 8.71 min/par

=104.52 min/docena

$$E = \frac{\sum t_i}{n(c)} = \frac{24.017}{9(8.18)} \times 100 = 32.61\%$$

$$P = \frac{tb}{c} = \frac{8*60*25 \, min/mes}{8.18 \, min/par} = 1466.99 \, par/mes = 122.25 \, docenas/mes$$

Es importante medir la influencia que tiene en el balance, no solo la mejora del DAP, más bien evaluar por ejemplo el aumento del tiempo previo mantenimiento propuesto. Además, se recomienda balancear la línea de producción con la finalidad de tener equilibrado las funciones y poder cumplir con la producción.



La descripción de la propuesta de mejora de acuerdo con Vereau (2020), se aprecia en la Tabla 24.

Tabla 24. Herramientas y metodologías planteadas

Autor	Herramientas y	Descripción de la mejora
	metodologías	
Vereau	Mapa de Flujo de Valor	En base al diagnóstico, han eliminado el
Tafur (2020)	Futuro	desperdicio producto de un reproceso por
		limpieza y pulida de 17' a los zapatos
		fabricados en el día anterior debido que se
		encontraban con presencia de polvo, y
		manifiestan que esta operación siempre la
		realizaban un día después de su fabricación.
		La propuesta se aprecia en la Figura 35 y 36.
		Asimismo, han propuesto usar el MRP como
		estrategia de reducción de costos como se
		aprecia en la Figura 37.

Figura 35. VSM futuro

Fuente. Recuperado de Vereau Tafur, (2020)

Figura 36. Tiempo de ciclo y nuevos indicadores

N°	PROCESO	TC	TCP	TC-TCP	NUEVO % PCE	ACTUAL % TU
Etapa 1	Diseño	26'	5'	21'	81%	81%
Etapa 2	Corte	20'	5'	15'	75%	75%
Etapa 3	Habilitado + Perfilado	175'	15'	160'	91%	91%
Etapa 4	Prefinito	60'	5'	55'	92%	92%
Etapa 5	Armado / Engomado	60'	9'	51'	85%	85%
Etapa 6	Alistado	56'	6'	50'	89%	89%
Etapa 7	Limpieza y pulida	54'	5'	49'	91%	69%
Etapa 8	Encajado	12'	2'	10'	83%	83%
	TOTAL	463	52	411	89%	86%

Fuente. Recuperado de Vereau Tafur, (2020)

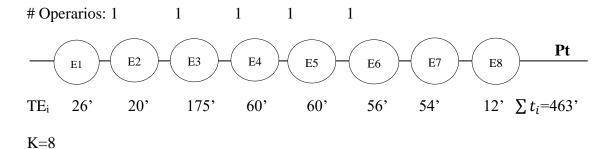
Han reducido el nuevo tiempo de ciclo individual de la estación # 7, lo cual es 17' menos del reproceso llegando a ser solamente 54'. Entonces se tiene 463 minutos para fabricar el par de calzado. De la mejora se tiene que han logrado producir la misma cantidad de 10.2 par/turno, sin embargo, en solamente en 663 minutos (7.7 horas). Posteriormente se tiene el nuevo lote de pedido EQQ de 40 unidades del Sku 1, Lead Time de materiales de 1 semana y sin inventario de seguridad por falta de capital. El ahorro anual proyectado, variando el tipo de Lote de Pedido, es de S/. 4,151 soles según

Figura 37. Ahorro anual proyectado con el EOQ

muestra la Figura 37.

NTO	Decemberation	U.M	Actual	Actual	Nuevo	Nuevo	Diferencia
IN	Descripción	U.M	Lote	Costo S/.	Lote	Costo S/.	(S/.)
1	Suela	UN	50-100	S/. 24,739	101-200	S/. 23,502	S/. 1,237
2	Falsa	UN	50-100	S/. 6,185	101-200	S/. 5,875	S/. 309
3	Plantilla	UN	50-100	S/. 9,277	101-200	S/. 8,813	S/. 464
4	Cuero	MT	24-36	S/. 16,537	37-72	S/. 15,710	S/. 827
5	Pegamento	LT	3-6	S/. 6,494	7-12	S/. 6,169	S/. 325
6	Hilo	ROLL	3-6	S/. 1,855	7-12	S/. 1,763	S/. 93
7	Cemento	LT	3-6	S/. 3,896	7-12	S/. 3,702	S/. 195
8	Caja	UN	24-50	S/. 3,092	51-100	S/. 2,938	S/. 155
9	Puntiflex	LT	5-10	S/. 4,639	11-20	S/. 4,407	S/. 232
10	Esponja	MT	3-6	S/. 541	7-12	S/. 514	S/. 27
11	Forro	MT	5-10	S/. 3,445	11-20	S/. 3,273	S/. 172
12	Tinte	UN	3-6	S/. 2,319	7-12	S/. 2,203	S/. 116
	•	Total	, in the second second	S/. 83,019		S/. 78,868	S/. 4,151

Fuente. Recuperado de Vereau Tafur, (2020)


Por lo expuesto anteriormente se muestra la ecuación 21 donde la propuesta de mejora se ven reflejadas en incremento de producción.

LA MEJORA DE PROCESOS DE PRODUCCIÓN Y LA PRODUCTIVIDAD EN EMPRESAS DE CALZADO DE LA PROVINCIA DE TRUJILLO, CAJAMARCA 2022

$$Producción = \frac{Tb}{C} = \frac{10.2 * 26 \ par}{mes} = \frac{22.1 \ doc}{mes}$$
(21)

Además, los autores evidencian que hay una pequeña mejora de los indicadores en función al diseño que han realizado, básicamente disminuyendo el tiempo en limpieza y pulida.

C=175 min/par

To=
$$K(c)$$
- $\sum t_i$

$$=8(175)-463$$

$$= 937 \min/par$$

=11244 min/docena

$$E = \frac{\sum t_i}{n(c)} = \frac{463'}{5(175)} \times 100 = 52.91\%$$

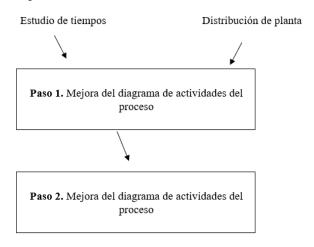
$$P = \frac{tb}{c} = \frac{26*8*60*4 \ min/mes}{175 \ min/par} = 286 \ pares/mes = 23.83 \ docenas/mes$$

En lo anterior, se evidencia el incremento del tiempo de ocio, la disminución de la eficiencia de línea y el ciclo se ha mantenido tal cual era en un inicio y no han propuesto una mejora para disminuirla. Se recomienda balancear la línea de producción tomando en consideración la meta de producción de 12 pares/día y 26 docenas/mes.

Tabla 25. Cuadro resumen de la dimensión Producción

Investigación	Producción	Tiempo de ciclo	Tiempo de ocio	Eficiencia
	(docenas/mes)	(minutos/docena)	(minutos/docena)	de línea
1	392	198.67	453.74	10.06%
2	40	510	1372.5	57.72%
3	46	275.3	224.4	72.73%
4	66	293.68	648.76	44.77%
5	113	60.15	45.01	32.52%
6	48.42	142.36	131.64	88.36%
7	272	49.9	46.71	21.10%
8	66.6	98.16	104.52	32.61%
9	22.1	2100	11244	52.91%
Promedio	118.46	414.02	1585.7	45 960/
	docenas/mes	min/docena	min/docena	45.86%

3.5.2. Descripción de la mejora de la dimensión eficiencia operativa


Para determinar el diseño, se ha evidenciado la eficiencia operativa en función a los DAP y DOP para las 9 investigaciones, el indicador ha sido % de actividades productivas e improductivas.

Como se ha evidenciado en el diagnóstico de las 9 investigaciones, se ha visto que en algunos procesos que llevaban a cabo existían actividades que no eran productivas, muchas de ellas no eran necesarias realizar como los traslados innecesarios y demoras debido a que los operarios esperaban que llegue la materia prima a su área para que puedan procesarla. Hay coincidencia en estas investigaciones respecto al mal uso de los recursos como materia prima, mano de obra y equipos necesarios para procesar

y ofrecer un producto de calidad, sin trabajo colaborativo entre operarios y jefes en donde el operario desconocía las funciones necesarias a ejecutar y el jefe no supervisaba ni guiaba en el proceso, así como también la mala asignación de operarios a las estaciones en donde no tenían capacidad ni experiencia. En base a esta evidencia, los autores han desarrollado el diseño para optimizar actividades productivas y minimizar actividades improductivas sin valor para en el proceso, para lo cual Avalos & Gonzales (2013), realizaron lo siguiente.

Figura 38. Diagrama de bloques de las herramientas usadas

En la tabla 26, se tiene el resultado de las actividades productivas e improductivas que determinan el valor de sus operaciones previo diseño desarrollado.

Tabla 26. Actividades productivas e improductivas

Actividad Improductiva
33%

En la Tabla 27, se tiene el resultado de las actividades productivas e improductivas que determinan el valor de sus operaciones de acuerdo con Avila (2017), previo rediseño basado en el uso de una guía de trabajo.

Tabla 27. Actividades productivas e improductivas

Actividad Productiva	Actividad Improductiva
89%	11%

En la Tabla 28, se tiene el resultado de las actividades productivas e improductivas que determinan el valor de sus operaciones de acuerdo con Bazan (2019), previo rediseño basado en la implementación de una guía de producción en cada una de las estaciones y también dividir el subproceso de corte de plantillas asignándole como función al cortador y ya no al armador. De igual manera se eliminaron demoras en cuanto a inspeccionar las piezas reiteradamente, haciendo que ésta se ejecute por el supervisor.

Tabla 28. *Actividades productivas e improductivas*

Actividad Productiva	Actividad Improductiva
94%	6%
<i>J</i> 170	070

En la figura 39, se tiene el resultado de las actividades productivas e improductivas que determinan el valor de sus operaciones de acuerdo con Chávez & Rodriguez (2019), previo diseño basado en el estudio de tiempos y la distribución adecuada de las áreas.

Figura 39. Actividades que generaron valor al proceso después de la mejora

	RESUMEN TOTAL DE LAS ACTIVIDADES										
		COR	TE	PERFIL	ADO	ARM	ADO	ALISTADO TI		TOTA	AL.
Actividad	Símbolo	CANTIDAD	Tiempo (horas)	CANTIDAD	Tiempo (horas)	CANTIDAD	Tiempo (horas)	CANTIDAD	Tiempo (horas)	CANTIDAD	Tiempo total (horas)
Almacén	•	1	0.02	1	0.05	1	0.01	2	0.00	5	0.08
Operación		7	0.61	13	2.22	14	4.80	6	0.92	40	8.55
Inspección		3	0.04	0	0.00	1	0.03	0	0.00	4	0.07
Transporte	1	1	0.01	1	0.004	2	0.05	1	0.00	5	0.07
TOTA	L (horas)		0.67		2.27		4.89		0.93		8.77
% ACTIVIDADES QUE GENERAN VALOR		96.3	8%	97.7	3%	98.6	57%	99.6	3%	98.3	5%

Fuente: Recuperado de Chávez & Rodriguez (2019)

Es necesario aclarar que no han eliminado ni agregado actividades, solamente han disminuido los tiempos de actividades improductivas como se aprecia en la tabla29.

Tabla 29. Actividades productivas e improductivas

	Corte 1	Perfilado	Armado	Alistado	Actividad productiva	Actividad improductiva
Operación	7	13	14	6		
Inspección operación- Inspección	3	0	1	0	80%	20%
Almacenaje	1	1	1	2		
Transporte	1	1	2	1		
Demora						
Total Actividad	12	15	18	9		
productiva Actividad	83%	87%	83%	67%		
improductiva	17%	13%	17%	33%		

De acuerdo con Cruz (2018), han propuesto la redistribución de planta y el suministro adecuado de materia prima a fin de eliminar demoras. Básicamente se han centrado en el proceso de armado. Del diagrama de actividades propuesto, se determina que de 10 transportes y 15 demoras han logrado mejorar a solamente 6 transportes y 1 demora, esto debido al diseño de implementación de los materiales cerca al trabajador y la eliminación de largas distancias de recorrido y demoras que realizaba el trabajador por ausencia del material. En la Tabla 30, se muestra el % de las actividades productivas e improductivas previo diseño realizado.

Tabla 30. *Actividades productivas e improductivas*

	N°		
Operación	41	Actividad productiva	Actividad improductiva
Inspección operación-	5	<u> </u>	
Inspección	7		
Almacenaje	0	83%	17%
Transporte	9		
Demora	2		
Total	64		
Actividad			
productiva	83%		
Actividad			
improductiva	17%_		

En la tabla 31, se tiene el resultado de las actividades productivas e improductivas que determinan el valor de sus operaciones de acuerdo con Garcia & Quipuscoa (2020), previo diseño basado en el estudio de tiempos.

Tabla 31. *Actividades productivas e improductivas*

	N°
Operación	2
Inspección	0
operación-Inspección	7
Almacenaje	2
Transporte	10
Demora	1
Total	22
Actividad productiva	41%
Actividad improductiva	59%

De la Tabla 31, se recomienda eliminar las actividades sin valor, como es el caso de transportarse al área de almacén solo para conseguir una falsa. Debieron plantear una distribución de planta en donde las estaciones estén ordenados en forma de U.

En la tabla 32, se tiene el resultado de las actividades productivas e improductivas

que determinan el valor de sus operaciones de acuerdo con López (2018), previo diseño basado en disminuir los tiempos respecto a los transportes, aprovisionamiento y demoras generadas a través del diseño de distribución de planta, implementación de 5s y gestión de inventarios propuesto en el punto 3.5.1.

Tabla 32. Actividades productivas e improductivas

	N°	
Operación	101	
Inspección	8	
operación-Inspección	11	
Almacenaje	5	
Transporte	34	
Demora	16	
Total	175	
Actividad productiva	69%	
Actividad improductiva	31%	

Se recomienda asignar los procesos a lado de las maquinarias con el fin de eliminar el transporte que se realiza hasta el esmeril en un tiempo de 48 segundos entre ida y vuelta. Asimismo, es necesario que los productos semielaborados continúen de manera ordenada por los procesos, asignando un operario que inspeccione los mismos y no generar actividades improductivas como la espera al almacenero que suministre esa pieza, ni almacenar la pieza cuando realmente tiene que pasar a la otra área a tiempo y de manera urgente.

En la Tabla 33, se tiene el resultado de las actividades productivas e improductivas que determinan el valor de sus operaciones de acuerdo con Paisig (2020), la cual, se ha enfocado en proponer una mejora en el diagrama de actividades del proceso

como se aprecia en el punto 3.5.1 y se tiene actividades productivas que disminuirán demoras y desperdicios de material que en un inicio se generaba por mal manejo.

Tabla 33. Actividades productivas e improductivas mejorado

	N°
Operación	23
Inspección	8
operación-Inspección	0
Almacenaje	0
Transporte	1
Demora	1
Total	33
Actividad productiva	94%
Actividad improductiva	6%

De acuerdo con Vereau (2020), se ha visto que no había un diagnóstico detallado de las actividades y esto ha sido identificado ya en la comparación de lo actual con la propuesta. En base a esta evidencia, se tiene la única propuesta de mejora a través de una nueva cadena de valor planteado en el punto 3.5.1, sin embargo, éste solo se basó en disminuir el tiempo en limpieza y pulida de un reproceso de 13', más no en modificar o asignar nuevas actividades, por lo cual se deduce la importancia de estas manteniendo el mismo porcentaje como se aprecia en la Figura 40.

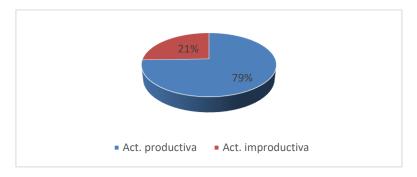
Figura 40. Diagrama de flujo del proceso

Ubicación	Calzados Adriano S.A.	Evento	Simbolo		Propuesta (min)	Ahorro (min)	Disminución
Actividad	Fabricación de zapatos modelo 909	Operación	0	456.0	439.0	17.0'	3.7%
Fecha:	10/05/2020	Inspección		22.0	22.0	.0'	0.0%
Método:	Actual	Almacenamiento	∇	2.0'	2.0'	.0'	0.0%
Muestra	11 pares de zapatos modelo 909	Tiempo (min)		480.0'	463.0'	17.0'	3.5%
		Costo de produco	ión (S/.)	S/. 561	S/. 541	S/. 20	3.5%
Etapa	Descripción	Ö		∇	Tiempo (min)	Propuesto (min)	Recomendaciones
	Ingreso de cuero		X		2.0'	2.0'	
Diseño	Diagramado	X			9.0'	9.0'	
Diseno	Plamilado	X			7.0	7.0'	
Г	Seriado	X			7.9'	7.9'	
	Etapa 1				25.9'	25.9'	
Corte	Trazo de dibujo	X			10.0	10.0'	
Cone	Corte sobre el cuero	X			10.0	10.0'	
	Etapa 2				20.0'	20.0'	
	Desbastado	X			60.0	60.0'	
Habilitado	Pintado	X			45.0	45.0'	
+ Perfilado	Inspección		X		3.0'	3.0'	
+ remado	Unir piezas	X			10.0	10.0'	
Г	Perfilado	X			57.0	57.0'	
	Etapa 3				175.0	175.0'	
Prefinito	Corte de falsas y contrafnertes	X			60.0	60.0'	
	Etapa 4				60.0'	60.0'	
Armado	Engonado	X			60.0	60.0'	
	Etapa 5				60.0'	60.0'	
	Lijado	X			41.1'	41.1'	
Alistado	Inspección		X		15.0	15.0'	
	Etapa 6				56.1'	56.1'	
Limpieza y	Secado	X			6.0'	6.0'	
Pulida	Limpieza y pulida	X			65.0	48.0'	Reproceso de 13'
	Etapa 7				71.0'	54.0'	•
	Inspección		X		2.0'	2.0'	
Encajado	Encajado	X			8.0'	8.0'	
· 1	Almacén de PT			X	2.0'	2.0'	
	Etapa 8				12.0'	12.0'	
	•	•			480.0'	463.0'	1

Fuente. Recuperado de Vereau Tafur, (2020)

En la Tabla 34, se tiene el resultado de las actividades productivas e improductivas que determinan el valor de sus operaciones.

Tabla 34. Actividades productivas e improductivas

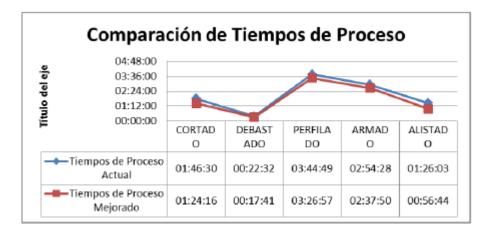

	N°
Operación	15
Inspección	4
operación-Inspección	0
Almacenaje	1
Transporte	0
Demora	0
Total	20
Actividad productiva	95%
Actividad improductiva	5%

De lo anterior, se recomienda analizar la distribución de las estaciones, con la finalidad mantener 0 transportes y demoras como se evidencia. Finalmente, en la Figura

41, se tiene el porcentaje promedio de actividades productivas e improductivas previo diseño de mejora en las 9 investigaciones.

Figura 41. Eficiencia operativa de las 9 investigaciones

Tabla 35.Cuadro resumen de promedio de actividades productivas e improductivas


	Total
Actividad productiva	79%
Actividad improductiva	21%

3.5.3. Diseño de mejora de la dimensión estudio de tiempos

Para determinar el diseño, se ha evidenciado el estudio de tiempos de cada una de las estaciones del proceso productivo que actualmente llevan a cabo del análisis de las 9 investigaciones, el indicador ha sido tiempo normal y tiempo estándar.

De acuerdo con Avalos & Gonzales (2013), se han enfocado en disminución de tiempos, en las estaciones: Cortado, perfilado y alistado-empaquetado, se mejoraría la asignación de tiempos y métodos de trabajo en estas tres estaciones; en las cuales aplicaron actividades simultáneas con el fin de eliminar tiempos improductivos, con el apoyo de un ayudante. En el perfilado han optado por contratar a un ayudante, adicional a los 8 operarios que tenían, la cual se encargó de apoyar también al área de cortado y alistado ejerciendo funciones como: colocar pegamento, unir piezas de manera correcta, afilar chavetas, entre otras. En base al diseño de mejora se aprecia los resultados en la Figura 42 y Tabla 36.

Figura 42. Tiempos mejorados en el proceso

Fuente: Recuperado de Avalos Velásquez & Gonzales Vidal, (2013)

Finalmente se ha tenido el registro del tiempo normal y estándar. Se ha reducido la tolerancia anterior en 16%, ya que tomando en cuenta el resultado del tiempo de ciclo después de la mejora ha sido 198.67 min/docena según manifiestan autores.

Tabla 36. Cálculo del tiempo normal y estándar

		Cálculo	del tier	npo está	ándar		
	Tiempo						
	total	Tiempo					
	(hr/docena	(min/docena		% de	Tiempo	TN	TE
Estación))	FC	Tol	prod.	(min/doc.)	(min/doc.)
Cortado	01:24:16	84.16	1.03	14%	71.22	73.36	83.63
Desbastad							
0	00:17:41	17.41	1.08	4%	16	17.28	17.97
Perfilado	03:26:57	206.57	1.02	4%	188.19	191.95	198.67
Armado	02:37:50	157.5	1.02	12%	154	157.08	175.93
Alistado	00:56:44	56.44	1.05	7%	56.44	59.26	63.41

Tabla 37. Cuadro resumen de tiempo normal y estándar

	Total
Tiempo normal	498.93 min/docena
Tiempo estándar	539.43 min/docena

De acuerdo con Avila (2017), se diagnosticó el problema en perfilado y armado, en donde no hubo un control, una orden que le permita trabajar sin dificultades, trabajaron de manera apresurada cometiendo errores. De la evidencia, solo han realizado un rediseño de sus procesos, más era recomendable realizar un estudio de tiempos y especificar la cifra de cuanto ha sido la disminución o incremento en cada estación.

Tabla 38. Tiempo normal y tiempo estándar

E-4i4-	TN (min/docena)	TE (min/docena)		
Estación	Previa mejora	Previa mejora		
Corte	150	150		
Desbastado	22.5	22.5		
Perfilado	420	420		
Armado	510	510		
Alistado	75	75		
Total	1177.5 min/docena	1177.5 min/docena		

De acuerdo con Bazan (2019), ha propuesto realizar un manual de funciones y se evitó errores en desbaste y costura, por ende, recuperación del tiempo perdido gracias al control del supervisor. Del mismo modo, tomando en consideración lo diseñado en el punto 3.5.1 se aprecia el resultado mejorado del tiempo normal y tiempo estándar en la Tabla 39.

Tabla 39. Tiempo normal y tiempo estándar

Estación	TN (min/docena)	TE (min/docena)
Corte	110.9	110.9
Perfilado	274.3	274.3
Armado	213.3	213.3
Total	598.5 min/docena	598.5 min/docena

De acuerdo con Chávez & Rodriguez (2019), han propuesto realizar un diseño para el estudio de tiempos, diagrama relacional y de recorrido, de ese modo se evitó errores en armado por falta de metodología y áreas específicas. Finalmente, tomando en consideración la disminución áreas distanciadas y los tiempos, se aprecia el resultado mejorado del tiempo normal y tiempo estándar en la Figura 43.

Figura 43. Cuadro comparativo estudio de tiempos antes y después de la mejora

		Al	NTES	DESPUÉS				
AREA	T. PROMEDIO	TIEMPO NORMAL	TIEMPO ESTÁNDAR (min)	TIEMPO ESTÁNDAR (horas)	T. PROMEDIO	TIEMPO NORMAL	TIEMPO ESTÁNDAR (min)	TIEMPO ESTÁNDAR (horas)
CORTE	42.387	42.39	46.20	0.77	42.387	42.39	40.46	0.67
PERFILADO	121.760	126.63	138.03	2.30	121.760	126.63	136.14	2.27
ARMADO	257.497	290.97	317.16	5.29	257.497	290.97	293.68	4.89
AUSTADO	51.621	56.78	63.03	1.05	51.621	56.78	55.68	0.93
TIEMPO PARA 1	TIEMPO PARA 1 DOCENA DE SANDALIAS			9.41			525.96	8.77

Fuente. Recuperado de Chávez Boudri & Rodriguez García, (2019)

Tabla 40. Cuadro resumen de tiempo normal y estándar

	Total
Tiempo normal	516.77 min/docena
Tiempo estándar	525.96 min/docena

De acuerdo con Cruz Chacon (2018), han propuesto realizar un estudio de tiempos, y se evitó demoras en fabricación. Además, han propuesto la redistribución de

planta, implementación de materiales y capacitación al personal. De ese modo, se ha disminuido áreas distanciadas y el impacto en los tiempos normales y estándar como se aprecia en la Tabla 41.

Tabla 41. Tiempo normal y tiempo estándar

Estación	TN (min/docena)	TE (min/docena)
Corte	52.89	59.2
Perfilado	147.14	171.1
Armado	204.52	240.61
Alistado	32.66	38.42
Total	437.21 min/docena	509.33 min/docena

De acuerdo con Garcia & Quipuscoa (2020), han establecido estándares de tiempo para un mejor control de la producción, y no trabajar bajo incertidumbres en la jornada laboral. Del mismo modo, estandarizaron las actividades y el impacto en los tiempos normales y estándar como se aprecia en la Figura 44 y 45.

Figura 44. Tabla del tiempo normal por operación

	Cortado	Desbastado	Perfilado	Habilitado	Centrado	Cardado	Remate	Empavonado	Alistado
Promedio tiempo observado	4.99	1.98	15.28	7.89	12.35	2.16	7.13	2.24	8.05
Habilidad	0	0.08	0.08	0.03	0.08	0.03	0.08	-0.05	0.06
Esfuerzo	0.05	0.05	0.05	0.05	0.08	-0.04	-0.04	0	0.08
Condiciones	0	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Consistencia	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
TOTAL S.W	0.06	0.16	0.16	0.11	0.19	0.02	0.07	-0.02	0.17
TIEMPO NORMAL	5.29	2.29	17.73	8.75	14.69	2.21	7.63	2.19	9.42

Fuente. Recuperado de Garcia Guevara & Quipuscoa Guzman, (2020)

Figura 45. Tabla del tiempo estándar por operación

	Cortado	Desbastado	Perfilado	Habilitado	Centrado	Cardado	Remate	Empavonado	Alistado
Promedio tiempo observado	5.29	2.29	17.73	8.75	14.69	2.21	7.63	2.19	9.42
S. constantes	9	9	14	9	9	9	9	9	14
Monotonía mental	1	1	1	4	4	1	4	1	4
Monotonía física	2	2	2	2	2	2	2	0	2
TOTAL SUPLEMENTOS	12	12	17	15	15	12	15	10	20
TIEMPO ESTÁNDAR	6.01	2.61	21.36	10.30	17.28	2.51	8.98	2.44	11.78

Fuente. Recuperado de Garcia Guevara & Quipuscoa Guzman, (2020)

Después de estandarizar los tiempos, estos se han incrementado a comparación de los tiempos observados, ya que ahora contienen tolerancias para poder realizar la actividad.

Tabla 42. Cuadro resumen de tiempo normal y estándar

	Total
Tiempo normal	70.2 min/docena
Tiempo estándar	83.27 min/docena

De acuerdo con López (2018), ha desarrollado un nuevo estudio de tiempos que ha facilitado la eliminación de desperdicios de tiempo en transportes, traslados, movimientos innecesarios, y demoras. Asimismo, con la aplicación de 5s se logró reducir las demoras y esperas a causa del desorden, la suciedad, en las áreas de trabajo. Previa mejora, se ha determinado los tiempos normales y estándar en la Figura 46 y 47.

Figura 46. Ahorro de tiempos después de la implementación de cada una de las herramientas de mejora

Herramienta de	Tiempo ahorrado	% de tiempo	
mejora	(horas)	reducido	
Layout.	0.36	52.94%	
5's.	2.03	54.52%	
Balance de línea y gestión de inventarios.	0.53	72.00%	

Fuente. Recuperado de López Sánchez, (2018)

En la Figura 45, se puede observar el tiempo disminuido con cada una de las herramientas planteadas, asimismo en la Figura 46 se puede apreciar la mejora del tiempo estándar en cada una de las operaciones.

Figura 47. Tiempo estándar después de la implementación del plan de mejora

Operaciones	Tiempo estándar antes (hr)	Tiempo estándar después (hr)
Cortado	3.56	2.01
Desbastado	0.42	0.42
Perfilado	7.63	7.46
Cosido de vena	2.36	2.02
Armado	6.16	5.84
Alistado	0.82	0.78
Total	20.94	18.52

Fuente. Recuperado de López Sánchez, (2018)

Se recomienda tomar en consideración el proceso de facultar a los empleados brindando sobre todo conocimiento y experiencia. Lo anterior, con la finalidad de recopilar las mejores ideas, resolver los problemas creando siempre un sentido de entusiamo y capacidad dentro de los equipos de trabajo.

Tabla 43. Cuadro resumen de tiempo normal y estándar

	Total
Tiempo normal	1099.69 min/docenas
Tiempo estándar	1111.2 min/docenas

De acuerdo con Paisig (2020), ha desarrollado el diseño de mejora con el diagrama de actividades del proceso, en donde ha facilitado el control de las funciones a realizar, eliminando el desorden con 5s y ordenando los procedimientos de manera secuencial y lógica. Asimismo, ha eliminado los retrasos por piezas defectuosas implantando procesos de inspección. De acuerdo con el diseño, se ha determinado los tiempos normales y estándar en la Tabla 44.

Tabla 44. Tiempo normal y tiempo estándar

Proceso	TN (min/docena)	TE (min/docena)
Corte	51.36	51.36
Perfilado	72	72
Armado	98.16	98.16
Alistado	66.6	66.6
Total	288.12 min/docena	288.12 min/docena
Armado Alistado	98.16 66.6	98.16 66.6

Se recomienda para futuras investigaciones, tomar en consideración un estudio de tiempos acorde al diseño propuesto de control de almacén e inventarios, metodología 5s y mantenimiento de maquinaria.

De acuerdo con Vereau (2020), ha desarrollado la mejora del tiempo estándar con la propuesta de la nueva cadena de valor del punto 3.5.1, de ese modo se evitó los desperdicios en el reproceso de limpieza y pulida. De acuerdo con el diseño, se ha determinado los tiempos normales y estándar en la Figura 48 y Tabla 45.

Figura 48. Nuevo tiempo estándar

N°	PROCESO	TC	
Etapa 1	Diseño	26'	
Etapa 2	Corte	20'	
Etapa 3	Habilitado + Perfilado	175'	
Etapa 4	Prefinito	60'	
Etapa 5	Armado / Engomado	60'	
Etapa 6	Alistado	56'	
Etapa 7	Limpieza y pulida	54'	
Etapa 8	Encajado	12'	
-	TOTAL	463	

Fuente. Recuperado de Vereau Tafur, (2020)

Tabla 45. Cuadro resumen de tiempo normal y estándar

Proceso	TN (min/docena)	TE (min/docena)
Total	5184	5556

Se recomienda para futuras investigaciones, tomar en consideración un estudio de tiempos, es importante el tiempo normal en donde se califica el desempeño y/o valoración del personal y el tiempo estándar asignando un suplemento adecuado con el fin de no generar estrés laboral y tener un producto de calidad.

Cuadro resumen del estudio de tiempos

Finalizado el análisis de diseño se ha calculado el promedio del tiempo normal y estándar de la producción de calzados respecto a las 9 investigaciones como se aprecia en la Tabla 46.

Tabla 46. Cuadro resumen de la dimensión estudio de tiempos

Investigación	Tiempo normal	Tiempo estándar	
	(min/docena)	(min/docena)	
N°1	498.93	539.43	
N°2	1177.5	1177.5	
N°3	598.5	598.5	
N°4	516.77	525.96	
N°5	437.21	509.33	
N°6	70.2	83.27	
N°7	1099.69	1111.2	
N°8	288.12	288.12	
N°9	5184	5556	
Promedio	1096.77 min/docena	1154.37 min/docena	

En promedio el tiempo normal para desarrollar sus actividades fue de 1096.77 min/docena y el tiempo estándar fue de 1154.37 min/docena.

3.6. Descripción del resultado final en la variable productividad

3.6.1. Descripción de mejora de la dimensión productividad de mano de obra

De acuerdo con Avalos & Gonzales (2013), se ha visto que la producción era 332 docenas/mes, y la cantidad de hora hombre utilizado al mes era 4576. Por lo expuesto en el punto 3.5, se muestra la ecuación 22 donde las propuestas de mejora se ven reflejadas en incremento de productividad de mano de obra. Los autores han optimizado el tiempo en el turno de 10 horas al día con 5.5 días de trabajo a la semana. Es por lo que han producido 392 docenas/mes y han optimizado el recurso empleado a 1100*4=4400 hh.

$$productividad\ MO = \frac{P}{Q} = \frac{392}{4400} = 0.089\ docenas/HH \tag{22}$$

De acuerdo con Avila (2017), se ha visto que la producción es 32 docenas/mes y la cantidad de hora hombre utilizada al mes era de 624. Por lo expuesto en el punto 3.5, se muestra la ecuación 23 donde las propuestas de mejora se ven reflejadas en incremento de productividad de mano de obra. De tal manera, se ha optimizado el tiempo en el turno de 8 horas al día con 6 días de trabajo a la semana. Es por lo que han producido 40 docenas/mes y se espera que el recurso empleado se mantenga en 624 hh.

$$productividad\ MO = \frac{P}{Q} = \frac{40}{6.5 * 6 * 4 * 4} = 0.064\ doc/HH \tag{23}$$

De acuerdo con Bazan (2019), se ha visto que la producción es 26 docenas/semana y las horas hombre utilizada es 528. Por lo expuesto en el punto 3.5, se muestra la ecuación 24 donde las propuestas de mejora se ven reflejadas en incremento de productividad de mano de obra. De tal manera, se ha optimizado el tiempo en el turno de 8 horas al día con 5.5 días de trabajo a la semana. Es por lo que han producido 46 docenas/mes y se espera que el recurso empleado se mantenga en 528 hh.

$$productividad\ MO = \frac{P}{Q} = \frac{46}{8*5.5*4*3} = 0.087\ doc/HH \tag{24}$$

De acuerdo con Chávez & Rodriguez (2019), se ha visto que la producción era 45 docenas/mes y las horas hombre utilizada era 416.15. Por lo expuesto en el punto 3.5, se muestra la ecuación 34 donde las propuestas de mejora se ven reflejadas en incremento de productividad de mano de obra. De tal manera, se ha optimizado el tiempo en el turno de 9 horas y 41 minutos. Es por lo que han producido 66 docenas/mes y el recurso empleado fue 550 hh.

$$productividad\ MO = \frac{P}{Q} = \frac{66}{550} = 0.12\ docenas/HH \tag{25}$$

De acuerdo con Cruz (2018), se ha visto que la producción es 90 docenas/mes y

las horas hombre empleadas fue 1173. Por lo expuesto en el punto 3.5, se muestra la ecuación 26 donde las propuestas de mejora se ven reflejadas en incremento de productividad de mano de obra. De tal manera, se ha optimizado el tiempo respecto a 18 días laborables y 6 días de trabajo a la semana. Es por lo que han producido 113 docenas/mes y el recurso empleado fue 1086 hh.

$$productividad\ MO = \frac{P}{Q} = \frac{113}{1086} = 0.104\ doc/HH$$
 (26)

De acuerdo con Garcia & Quipuscoa (2020), se ha visto que la producción es 26.3 docenas/mes y las horas hombre empleadas no fue detallado. Por lo expuesto en el punto 3.5, se muestra la ecuación 27 donde las propuestas de mejora se ven reflejadas en incremento de productividad de mano de obra. Es por lo que han producido 48.42 docenas/mes y el recurso empleado no es visible.

$$productividad\ MO = \frac{P}{Q} = 5\ pares/hh = 0.42\ docenas/HH \tag{27}$$

De acuerdo con López (2018), se ha visto que la producción fue 176 docenas/mes y las horas hombre empleadas fue de 3685.44. Por lo expuesto en el punto 3.5, se muestra la ecuación 28 donde las propuestas de mejora se ven reflejadas en incremento de productividad de mano de obra. De tal manera, se ha optimizado el tiempo en el turno de 8 horas y 5.5 días a la semana. Por consiguiente, han producido 272 docenas/mes y el recurso empleado fue 5037.44 hh.

$$productividad\ MO = \frac{P}{Q} = \frac{272}{5037.44} = 0.054\ docenas/HH$$
 (28)

De acuerdo con Paisig (2020), se ha visto que la producción fue 58.3 docenas/mes y las horas hombre empleadas era 2200. Por lo expuesto en el punto 3.5, se muestra la ecuación 29 donde las propuestas de mejora se ven reflejadas en incremento de productividad de mano de obra. De tal manera, se ha optimizado el tiempo en el turno de 8 horas de trabajo al día y 25 días laborables. Por consiguiente, han producido 66.6

docenas/mes y el recurso empleado fue 1710 hh.

$$productividad\ MO = \frac{P}{Q} = \frac{66.6}{7.36 * 25 * 9} = 0.04\ docenas/HH$$
 (29)

De acuerdo con Vereau (2020), se ha visto que la producción fue 10.2 pares/turno (22.1 docenas/mes) y las horas hombre empleadas fue 1040. Por lo expuesto en el punto 3.5, se muestra la ecuación 30 donde las propuestas de mejora se ven reflejadas en incremento de productividad de mano de obra. De tal manera, se ha optimizado el tiempo a un turno de 7.7 horas de trabajo al día y 26 días laborables. Por consiguiente, han producido 22.1 docenas/mes y el recurso empleado fue 1001 hh.

$$productividad\ MO = \frac{P}{Q} = \frac{22.1}{7.7 * 26 * 5} = 0.022\ docenas/HH$$
 (30)

Cuadro resumen de la productividad de calzados de Trujillo

Finalizado el análisis, se ha procedido a calcular el promedio de la productividad de la mano de obra de manera mensual que se tiene en la producción de calzados respecto a las 9 investigaciones como se aprecia en la Tabla 47.

Tabla 47. Cuadro resumen de la dimensión productividad de mano de obra

Investigación	Productividad de mano de obra	
	(docenas/HH)	
1	0.089	
2	0.064	
3	0.087	
4	0.12	
5	0.104	
6	0.42	
7	0.054	

LA MEJORA DE PROCESOS DE PRODUCCIÓN Y LA PRODUCTIVIDAD EN EMPRESAS DE CALZADO DE LA PROVINCIA DE TRUJILLO, CAJAMARCA 2022

8	0.04
9	0.022
Promedio	0.111 docenas/HH

3.6.2. Descripción de la mejora en la dimensión productividad de materia prima

De acuerdo con Avalos & Gonzales (2013), se ha visto que la producción era 332 docenas/mes, y la cantidad de cuero utilizado al mes era 4980 pies. Por lo expuesto en el punto 3.5, se muestra la Ecuación 31 donde las propuestas de mejora se ven reflejadas en incremento de productividad de materia prima. Han optimizado la producción y el material. De tal manera, han producido 392 docenas/mes y la materia prima se ha mantenido en 4980 pies.

$$poducctividad MP = \frac{P}{Q} = \frac{392 \ doc/mes}{1245(4) \ pies2/mes} = 0.079 \ doc/pies2 \tag{31}$$

De acuerdo con Bazan (2019), se ha visto que la producción es 26 docenas/mes y el uso determinado del material (60 pies2/docena). Por lo expuesto en el punto 3.5, se muestra la ecuación 32 donde las propuestas de mejora se ven reflejadas en incremento de productividad de materia prima. Es por lo que han producido 46 docenas/mes y el uso determinado del material fue de 55.4 pies/doc.

$$productividad \ de \ MP = \frac{P}{Q} = \frac{46 \ doc}{(55.4 * 46) \ pies2} = 0.018 \ docenas/pies2 \tag{32}$$

De acuerdo con Paisig (2020), se ha visto que la producción fue 58.3 docenas/mes y la materia prima empleada fue 1614.6. Por lo expuesto en el punto 3.5, se muestra la Ecuación 33 donde las propuestas de mejora se ven reflejadas en incremento de productividad de materia prima. Por consiguiente, han producido 66.6 docenas/mes y se deduce que la materia prima empleada se mantuvo en 1614.6 pies/mes.

$$productividad \ de \ MP = \frac{P}{Q} = \frac{66.6 \ doc}{1614.6 \ pies2} = 0.041 doc/pies2 \tag{33}$$

Cuadro resumen de la productividad de calzados de Trujillo

Finalizado el análisis se ha calculado el promedio de la productividad de la materia prima de manera mensual que se tiene en la producción de calzados respecto a las 9 investigaciones como se aprecia en la Tabla 48.

Tabla 48. Cuadro resumen de la dimensión productividad de materia prima

Investigación	Productividad de materia prima		
	(docenas/pies2)		
N°1	0.079		
N°2	-		
N°3	0.018		
N°4	-		
N°5	-		
N°6	-		
N°7	-		
N°8	0.041		
N°9	-		
Promedio	0.05		

3.7. Matriz de operacionalización de variables con resultados descriptivos y finales previa aplicación de mejora de autores

Tabla 49. Matriz de operacionalización con resultados finales

Variables Dimensiones		T. 11. 1	Resultado Resulta)	
v artables	Dimensiones	Indicadores	diagnóstico	diseño	Diferencia	a Descripción
		Número unidades producidas(docenas/mes)	89.74	118.46	28.72	Ahorro de tiempo por planificación en producción.
		Tiempo de ciclo(min/docena)	439.25	414.02	25.23	Producto del equilibrio de actividades y tiempos que
		Tiempo de ocio(min/docena)	1644.52	1585.7	58.82	mejoró el ciclo, sobre todo en el armado. Menor reproceso y
Variable	Producción	Eficiencia de línea	42.06%	45.86%	3.8%	optimo desempeño en línea de producción.
Independiente:	1 TodaceTon	% Actividades productivas	72%	79%	7	Producto de mejora de métodos
Procesos	Eficiencia Operativa	% Actividades improductivas	28%	21%	7	de trabajo y eliminación de traslados innecesarios
	Estudio de tiempos	Tiempo normal(min/docena)	1122.97	1096.77	26.2	Producto del estudio de tiempos
	Estudio de tiempos	Tiempo estándar (min/docena)	1237.47	1154.37	83.1	y calificación de desempeño de trabajadores.
	Productividad de	Producción/ Horas hombre empleadas	0.090	0.111	0.021	En promedio, medio par de
Variable	mano de obra	(docenas/hora-hombre)				calzados más por hora-hombre
dependiente:			0.040	0.05	0.01	Antes era 0.48 pares/pies2 y se
Productividad	Productividad de	Producción/ MP empleada				mejoró a 0.6 pares/pies2
	materia prima	(docenas/pies2)				Pie2= 30.48cmx30.48cm

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1. Discusión

El presente estudio no fue ajeno a las limitaciones, las cuales han sido la ausencia de investigaciones en el área de producción de calzados en la provincia de Trujillo, analizando solamente 9 empresas que brindan la información necesaria y otras que no han sido analizadas a profundidad. Del mismo modo, otra limitación fue que una investigación del año 2013 sobrepasaba los 5 años de antigüedad, sin embargo, resultó importante analizarla por la información que ha tenido. Además, es importante mencionar que la presente investigación está alineada a las líneas de investigación de la carrera de ingeniería industrial. Finalmente, se concluye que las empresas de calzado deben analizar sus procesos como se ha propuesto en las investigaciones analizadas en estudio y seguir la recomendación realizada del autor de este estudio descriptivo para lograr aspectos de mejora positivos en la producción de calzados.

Partiendo de la dimensión producción, se ha evidenciado que su producción promedio ha sido 89.74 docenas mensuales, el tiempo promedio de ciclo ha sido 439.25 min/docena, tiempo de ocio de 1644.52 min/docena y eficiencia de línea de 42.1%, según Avalos & Gonzales (2013); Garcia & Quipuscoa (2020); Vereau (2020), había movimientos innecesarios, mala distribución de planta, desabastecimiento de material y falta de control del inventario, mientras que Avila (2017); Bazan (2019); Chávez & Rodriguez (2019); Cruz (2018); López (2018); Paisig (2020) confirman que no había una planificación de la producción y los procesos no eran organizados, documentados ni estandarizados. En cambio, López (2018); Paisig (2020); Vereau (2020) confirman cuellos de botella, ausencia de indicadores de producción y mala distribución de áreas. Por esta razón, los autores coinciden en proponer el diseño de un MRP (Avalos & Gonzales, 2013; Garcia & Quipuscoa, 2020; Vereau, 2020).

Del mismo modo, han diseñado una adecuada distribución de planta y layout (Avalos & Gonzales, 2013; Cruz, 2018; López, 2018; Paisig, 2020), mientras que Avalos & Gonzales,

(2013); Chávez & Rodriguez (2019); Cruz (2018), han propuesto el diagrama de recorrido y diagrama relacional. Además, han propuesto rediseñar los procesos e implementar un manual de funciones (Avila, 2017; Bazan, 2019). Por consiguiente, la propuesta del diseño de control de inventarios y VSM (Garcia & Quipuscoa, 2020; López, 2018; Paisig, 2020), incluso el diseño de metodología 5s (López, 2018; Paisig, 2020), y finalmente el balanceo de la línea de producción, la concientización al personal y la propuesta del diseño de estudio de tiempos (Avalos & Gonzales, 2013; Chávez & Rodriguez, 2019; Cruz, 2018; Garcia & Quipuscoa, 2020; López, 2018; Paisig, 2020), llegando a cumplir con la producción de 118.5 docenas mensuales, optimizando el tiempo de ciclo a 414.02 min/docena, el tiempo de ocio a 1585.7 min/docena y la eficiencia de línea a 45.9%.

Por otro lado, en el estudio realizado por Alburqueque Vegas (2018) afirma que es importante el uso de Lean Manufacturing, medio por el cual ha contrarrestado problemas de procesamiento empírico, desorden en los procesos, falta de supervición y estandarización, finalmente desconocimiento de tiempos en cada estación de trabajo. Por esta razón, reafirma la importancia de tomar en consideración un diagrama de operaciones, mapa de flujo de valor, metodología 5s, estudio de tiempos, balance de línea, estandarización de materiales y la planificación de compras. Es así que, llegó a optimizar los procesos y recursos ahorrando 135 minutos por cada docena de calzado, 43.20 soles por estandarizar materiales, además el incremento de la producción de 16 docenas a 90 docenas semanales y disminuyendo el tiempo perdido en 448.5 min/docena.

Para la dimensión eficiencia operativa, se ha evidenciado que el porcentaje de actividades productivas e improductivas promedio ha sido 72% y 28%, según Avalos & Gonzales (2013); Chávez & Rodriguez (2019); Cruz (2018); Garcia & Quipuscoa (2020), había traslados innecesarios y demoras en ejecutar las actividades, según Avila (2017); Bazan (2019), no había un control de producción en el desarrollo de actividades, ni orden y limpieza,

por ende actividades no necesarias para el proceso, mientras que López (2018); Paisig (2020); Vereau (2020), confirman aquellos traslados innecesarios, desorden y mala distribución de áreas. Por esta razón, los autores coinciden en proponer el diseño de nuevos mapas de proceso y diagramas de actividades del proceso (Avalos & Gonzales, 2013; Garcia & Quipuscoa, 2020; Vereau, 2020).

Del mismo modo, la adecuada distribución de planta y layout (Avalos & Gonzales, 2013; Cruz, 2018; López, 2018; Paisig, 2020), luego la implementación de un almacén óptimo y control de inventarios (López, 2018; Paisig, 2020), también han propuesto rediseñar los procesos y considerar nuevas actividades (Avila, 2017; Bazan, 2019), además la propuesta del diseño de estudio de tiempos (Avalos & Gonzales, 2013; Chávez & Rodriguez, 2019; Cruz, 2018; Garcia & Quipuscoa, 2020; López, 2018; Paisig, 2020), y finalmente el diseño de metodología 5s (López, 2018; Paisig, 2020), llegando a maximizar las actividades productivas a 79% y a minimizar las actividades improductivas a 21%.

Para la dimensión estudio de tiempos, se ha evidenciado que el tiempo normal y estándar promedio ha sido 1122.97 min/docena y 1237.47 min/docena, según Avalos & Gonzales (2013); Chávez & Rodriguez (2019); Cruz (2018); Garcia & Quipuscoa (2020), había traslados innecesarios en la planta y demoras innecesarias, actividades y tiempos no estandarizados, según Avila (2017); Bazan (2019), el trabajo se ejecutaba de forma apresurada, trabajaron solo con tiempos normales, falta de estandarización de tiempos, mientras que López (2018); Paisig (2020); Vereau (2020), confirman traslados innecesarios, ambiente inadecuado, desorden en estaciones e imprecisión por trabajos artesanales. Por lo tanto, los autores coinciden en proponer el diseño de un MRP (Avalos & Gonzales, 2013; Garcia & Quipuscoa, 2020; Vereau, 2020).

Del mismo modo, han diseñado implementar materiales necesarios y desarrollo de nuevas actividades (Cruz, 2018; Paisig, 2020), luego el diseño adecuado de distribución de

planta y layout (Avalos & Gonzales, 2013; Cruz, 2018; López, 2018; Paisig, 2020), también han propuesto rediseñar los procesos (Avila, 2017; Bazan, 2019), además la propuesta del diseño de estudio de tiempos detallado (Avalos & Gonzales, 2013; Chávez & Rodriguez, 2019; Cruz, 2018; Garcia & Quipuscoa, 2020; López, 2018; Paisig, 2020) y finalmente el diseño de metodología 5s (López, 2018; Paisig, 2020), llegando a minimizar el tiempo normal a 1096.77 min/docena y el tiempo estándar a 1154.37 min/docena.

Luego, en la dimensión productividad de mano de obra se ha evidenciado que la productividad promedio ha sido 0.090 docenas/HH y tenían deficiencias en la optimización de los recursos, según Avalos & Gonzales (2013); Chávez & Rodriguez (2019); Cruz (2018); Garcia & Quipuscoa (2020) había desmotivación de personal, mala asignación de tareas, inadecuado ambiente laboral y falta de capacitación, según Avila (2017); Bazan (2019), el trabajo se ejecutaba de forma apresurada, había traslados innecesarios y pérdidas de horas, mientras que López (2018); Paisig (2020); Vereau (2020), confirman la ejecución de actividades no asignadas y sin planificación. Por lo tanto, los autores coinciden en proponer el diseño de un MRP (Avalos & Gonzales, 2013; Garcia & Quipuscoa, 2020; Vereau, 2020).

Del mismo modo, han diseñado una capacitación y motivación al personal (Cruz, 2018; Paisig, 2020), luego el diseño adecuado distribución de planta y layout (Avalos & Gonzales, 2013; Cruz, 2018; López, 2018; Paisig, 2020), también han propuesto rediseñar los procesos (Avila, 2017; Bazan, 2019); confirman la importancia del diagrama de recorrido y relacional (Avalos & Gonzales, 2013; Chávez & Rodriguez, 2019; Cruz, 2018), también han rediseñado los procesos e implementado un manual de funciones (Avila, 2017; Bazan, 2019), además la propuesta del mantenimiento de maquinaria y VSM (Paisig, 2020; Vereau, 2020) y finalmente el diseño de metodología 5s (López, 2018; Paisig, 2020) llegando a cumplir con la productividad de mano de obra de 0.111 docenas/HH.

Para la dimensión productividad de materia prima, se ha evidenciado que la

productividad promedio ha sido 0.040 docenas/pies2, según Avalos & Gonzales (2013); López (2018), no había gestión ni organización en almacén y no había espacio para mantener materiales en buen estado, mientras que Avila (2017); Chávez & Rodriguez (2019); Cruz (2018); Garcia & Quipuscoa (2020); Vereau (2020) no han desarrollado ningún diagnóstico de los materiales y cantidades que usaron en el proceso, por otro lado, Bazan (2019); Paisig (2020), determinó que los cortes de material y costuras de piezas no eran precisas. Por esta razón, los autores coinciden en diseñar un control y gestión de inventarios, método ABC y tarjetas Kardex (Avalos & Gonzales, 2013; López, 2018).

Del mismo modo, el autor Bazan (2019), ha diseñado un mapa de procesos, un manual de organización de funciones, ficha técnica y mejora del DAP, finalmente el autor Paisig (2020), ha propuesto nuevos métodos de trabajo, reestructurar la producción e implementar un almacén y control de inventarios. Posterior a ello han diseñado la capacitación con el fin de mejorar el desempeño del trabajador llegando a cumplir con la productividad de materia prima de 0.05 docenas/pies2. Por otro lado, los autores Chase & F. (2018) indican que es necesario el control de inventarios para mantener la producción, estar organizados considerando mejoras de Lean Manufacturing en varias áreas del proceso de producción. Asimismo, mencionan que el personal debe de tener en consideración métodos de trabajo que faciliten la optimización del recurso principal denominado materia prima.

Por último, desde el punto de vista teórico se tuvo en cuenta la teoría de los procesos y la productividad, lo cual tuvo impacto en la eficiencia del proceso de producción. De manera práctica, mejoró el nivel de productividad de empresas de producción de calzado, ya que no todas fueron capaces de administrar adecuadamente los recursos. Por otro lado, mediante el uso de las herramientas de ingeniería se midieron las variables en estudio y se describieron soluciones para las fábricas de calzado, ya que en principio presentaron ciclos extensos en comparación a otras empresas industriales. Asimismo, el presente estudio permite

económicamente ser rentable ya que al mejorar la línea de producción y optimizar recursos se incrementa la productividad. Finalmente, por medio de la reducción de los desperdicios, producto de un mal proceso ejecutado se contribuye al medio ambiente.

4.2. Conclusiones

Se logró identificar y describir los procesos de producción de calzados, sus problemas en los mismos y se analizó que el promedio de la producción de las empresas representó 89.74 docenas de calzado al mes, también se identificó que el tiempo de ciclo fue de 439.25 min/docena, tiempo de ocio de 1644.52 min/docena y una eficiencia de línea de 42.1%. Además, la actividad productiva de estas empresas representó el 72% y la actividad improductiva el 28%, finalmente se identificó que el tiempo normal fue de 1122.97 min/docena y el tiempo estándar de 1237.47 min/doc.

Se logró identificar y describir la productividad de mano de obra proveniente del diagnóstico de los autores de los 9 estudios, la cual fue en promedio 0.090 docenas/hh y la productividad de materia prima fue de 0.040 docenas/pies2 en empresas del rubro calzado en la provincia de Trujillo.

Seguidamente, se logró identificar las mejoras en los procesos de fabricación de calzados respecto a las investigaciones analizadas, en donde han empleado herramientas de ingeniería industrial como MRP para planificar la producción, distribución de planta Richard Muther y determinación de superficies "Guerchet" para reducir distancias y tiempos, gestión de almacén e inventarios para el adecuado suministro y reposición de materia prima, DAP y DOP para identificar actividades y tiempos, balance de línea para optimizar la producción, metodología 5s para mejorar el orden y limpieza, manual de funciones y rediseños del proceso para eliminar actividades que no generaron valor, y finalmente la capacitación al personal para llevar a cabo las funciones.

Finalmente, se logró determinar los resultados finales en las dimensiones de los

procesos en donde el incremento de producción promedio sería en 28.72 docenas de calzado adicionales por mes, también se evidencia que el tiempo de ciclo disminuiría en 25.23 min/docena, el tiempo de ocio disminuiría en 58.82 min/docena y la eficiencia de línea incrementaría en 3.8%, además la actividad productiva incrementaría en 7% y la actividad improductiva disminuiría en 7%, luego se identificó que el tiempo normal disminuiría en 26.2 min/docena y el tiempo estándar en 83.1 min/doc. Asimismo, se determinó los resultados de la productividad promedio de la mano de obra, lo cual mejora en 0.021 docenas/hh y la productividad de materia prima en 0.01 docenas/pies2.

REFERENCIAS

- Alburqueque Vegas, Z. D. (2018). Plan de mejora en el área de producción basado en lean manufacturing para incrementar la rentabilidad en la Fábrica de Calzado Prince S.R.L. Chiclayo 2018. Obtenido de repositorio.uss.edu:

 https://repositorio.uss.edu.pe/bitstream/handle/20.500.12802/4655/Alburqueque%20Vegas%20.pdf?sequence=1&isAllowed=y
- Andrade, A. M., Del Río, C. A., & Alvear, D. L. (2019). Estudio de Tiempos y Movimientos para Incrementar la Eficiencia en una Empresa de Producción de Calzado. *Scielo*, 3-8.
- Arias, A. S. (1 de 06 de 2020). *Productividad*. Obtenido de economipedia.com: https://economipedia.com/definiciones/productividad.html
- Aula fácil. (2021). *Células de producción*. Obtenido de aulafacil.com: https://www.aulafacil.com/cursos/estrategia/lean-manufacturing/celulas-de-produccion-120026
- Avalos Velásquez, S. L., & Gonzales Vidal, K. P. (2013). *Propuesta de mejora en el proceso productivo de la línea de calzado de niños para incrementar la productividad de la empresa BAMBINI SHOES-Trujillo*. Obtenido de tesis: https://repositorio.upn.edu.pe/handle/11537/6239
- Avila Ponce, J. A. (14 de 09 de 2017). *Rediseño de procesos en el área de producción en una empresa de calzado y su efecto en la productividad Trujillo 2017*. Obtenido de Ebsco: http://hdl.handle.net/11537/12535
- Bazan Araujo, R. S. (2019). *IMPLEMENTACIÓN DE GESTIÓN POR PROCESOS Y SU INFLUENCIA EN LA PRODUCTIVIDAD EN LA FÁBRICA DE CALZADO JOY'S E.I.R.L., EN LA CIUDAD DE TRUJILLO 2019*. Obtenido de https://repositorio.upn.edu.pe/handle/11537/26554
- Cabanillas Cabanillas, W. B., & Gutiérrez Camacho, M. d. (2019). DISEÑO DE MEJORA DE PROCESOS PARA DISMINUIR LOS PRODUCTOS DEFECTUOSOS EN EL ÁREA DE PASTELERÍA DE LA EMPRESA LA IDEAL CAJAMARCA, 2019. Obtenido de repositorio.upn:
- https://repositorio.upn.edu.pe/bitstream/handle/11537/25405/Cabanillas%20Cabanillas%2c% Chase, R. B., & F., R. J. (2018). *Administración de operaciones: Producción y cadena de*
- suministros(15a.ed.). México: McGraw-Hill Interamericana. Chávez Boudri, K. L., & Rodriguez García, M. d. (2019). Mejora de procesos en el área de producción para aumentar la productividad en la empresa de calzado empresas Chang S.R.L.,2019. Obtenido de https://repositorio.ucv.edu.pe/handle/20.500.12692/53218
- ComexPerú. (25 de 06 de 2021). EL SECTOR CALZADO PERUANO NO NECESITA DE PROTECCIÓN, SINO DE ACCIONES Y POLÍTICAS QUE PROMUEVAN SU COMPETITIVIDAD. Obtenido de Artículos Comex:

 https://www.comexperu.org.pe/articulo/el-sector-calzado-peruano-no-necesita-de-proteccion-sino-de-acciones-y-politicas-que-promuevan-su-competitividad
- Cruz Chacon, P. J. (2018). *Mejora de procesos en el área de producción para incrementar la productividad de la empresa Calzados Lantana, 2018*. Obtenido de repositorio.ucv: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/40968/Cruz_CPJ.pdf?sequence =1&isAllowed=y
- De Mena, L. A. (1 de 06 de 2022). *Revista del calzado*. Obtenido de revistadelcalzado.com: http://revistadelcalzado.com/zapatos-anuario-sector-mundial-calzado-2021/#:~:text=Aunque%20la%20pandemia%20de%20la,20%20500%20millones%20de%202020.
- EDS Robotics. (4 de 11 de 2020). ¿Qué es un proceso industrial? Obtenido de edsrobotics.com: https://www.edsrobotics.com/blog/proceso-industrial-que-es/
- Fernandez, J. C. (26 de 02 de 2009). *Productividad*. Obtenido de slideshare.net: https://www.slideshare.net/jcfdezmxproduct/productividad-1076279
- Galán Amador, M. (24 de 08 de 2009). Las hipótesis en la investigación. Obtenido de Metodología de

- la Investigación: http://manuelgalan.blogspot.com/2009/08/las-hipotesis-en-la-investigacion.html
- Garcia Guevara, R. B., & Quipuscoa Guzman, A. M. (2020). *IMPLEMENTACIÓN DE MEJORA PARA AUMENTAR LA PRODUCTIVIDAD EN LA LÍNEA DE PRODUCCIÓN DE ZAPATO DE TACÓN CERRADO REYNA DE LA EMPRESA CALZADO PAREDES S.A.C.* Obtenido de https://repositorio.upn.edu.pe/handle/11537/26479
- Gómez Coello, R. D. (2021). Mejora de la productividad en la producción de calzado en la empresa "Facalsa" de la ciudad de Ambato, mediante la estandarización de tiempos. *Ciencia latina Revista Multidiciplinar*, 1-8.
- Hernández Sampieri, R. (2014). *Metodología de la Investigación*. México: McGRAW-HILL / Interamericana Editores, S.A. DE C.V. Obtenido de https://www.uca.ac.cr/wp-content/uploads/2017/10/Investigacion.pdf
- Hernández, S. R., Fernández, C. C., & Baptista, L. P. (2014). *Metodología de la Investigación 6ta edición*. México: Mc Graw Hill.
- INEI. (11 de 02 de 2017). Principales Resultados de la Encuesta Nacional de Empresas, 2015.
 Obtenido de https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1430/pdfs/libro.pdf
- Instituto Nacional de Estadística e Informática. (9 de 11 de 2020). *El Zapato Trujillano Lucha Contra Dos Enemigos: El Coronavirus Y Las Importaciones*. Obtenido de Noticias de Trujillo Perú: https://sientetrujillo.com/el-zapato-trujillano-lucha-contra-dos-enemigos-el-coronavirus-y-las-importaciones/
- Kerlinger, F. N., & Lee, H. B. (2002). *Investigación del comportamiento. Métodos de investigación en ciencias sociales (4ª ed.)*. México: McGraw-Hill, p. 418.
- Krajewski, L. J., Larry, P. R., & Manoj, K. M. (2013). *Administración de operaciones: procesos y cadena de suministro (10a. ed.)*. Pearson Educación.
- Krajewski, L. J., Ritzman, L. P., & Malhotra, M. K. (2008). *Administración de Operaciones. Procesos y cadenas de valor*. México: PEARSON EDUCACIÓN.
- López Sánchez, M. (2018). *Implementación de plan de mejora del proceso productivo para incrementar la productividad en la empresa de calzado Emily'S, 2018*. Obtenido de https://repositorio.ucv.edu.pe/handle/20.500.12692/25261
- Ministerio de la Producción. (27 de 12 de 2016). *Estudio de la Situación Actual de las empresas peruanas*. Obtenido de https://cdn.www.gob.pe/uploads/document/file/299953/d29294_opt.pdf
- Molina Castillo, C. M. (25 de 04 de 2019). *Calzado en Perú*. Obtenido de ICEX: https://www.icex.es/icex/wcm/idc/groups/public/documents/documento/mde5/ode5/~edisp/doc2019819676
- Núñez Salinas, P. d. (2018). APLICACIÓN DE LA METODOLOGÍA SIX SIGMA PARA LA REDUCCIÓN DE FALLAS EN UNA EMPRESA DE CALZADO EN LA REGIÓN DE AREQUIPA. Obtenido de tesis.ucsm:

 http://tesis.ucsm.edu.pe/repositorio/bitstream/handle/UCSM/8500/44.0610.II.pdf?sequence=1 &isAllowed=y
- Pacheco, D. A., Dos Reis, C. E., & Jung, C. F. (2020). Método de estrategia de fabricación para calzado tercerizado orientado a Agile Manufacturing. *SCIELO*, 2-5.
- Paisig Sánchez de Zevallos, C. D. (2020). PLAN DE MEJORA PARA INCREMENTAR LA PRODUCTIVIDAD EN EL ÁREA DE PRODUCCIÓN DE LA EMPRESA CRISMELY CALZADOS-TRUJILLO. Obtenido de https://repositorio.uss.edu.pe/handle/20.500.12802/7663
- Posada Ugaz, C. (2020). *Nuevas oportunidades para el calzado peruano*. Obtenido de https://lacamara.pe/nuevas-oportunidades-para-el-calzado-peruano/
- Posada Ugaz, C. (2022). *Exportaciones de la industria del calzado se recuperan*. Obtenido de https://lacamara.pe/exportaciones-de-la-industria-del-calzado-se-recuperan/
- Quality Soft Argentina S.A. (s.f.). *Sistema Isis ERP Manager*. Obtenido de Orden de producción: https://erp.sistemaisis.com/manual-de-usuario/modificar_orden_de_produccion/
- Rebaza Benítez, V. (23 de 02 de 2023). En Perú caen las ventas de calzado de producción local por

- la importación de Asia. Obtenido de La República Cuero América:
- http://cueroamerica.info/wpnews/2023/02/en-peru-caen-las-ventas-de-calzado-de-produccion-local-por-la-importacion-de-asia/
- Requejo Becerra, L. G. (2018). *PROPUESTA DE MEJORA DEL PROCESO DE PLANCHADO Y PINTURA PARA INCREMENTAR LA PRODUCTIVIDAD EN LA EMPRESA AUTONORT CAJAMARCA S.A.C.* Obtenido de repositorio.upn: https://repositorio.upn.edu.pe/handle/11537/14208
- Reyes, E. (16 de 04 de 2020). *Tiempo Estándar*. Obtenido de Emprendedor inteligente: https://www.emprendedorinteligente.com/calcular-el-tiempo-estandar/#:~:text=Por%20ejemplo%2C%20si%20mediste%20el,promedio%20es%20de%205.5%20minutos.
- Santander Costavalo, Y. I. (04 de 2019). *ANÁLISIS DEL PROCESO PRODUCTIVO DE CALZADO Y PROPUESTA DE MEJORA PARA INCREMENTAR LA PRODUCTIVIDAD EN LA EMPRESA DICASSO*. Obtenido de repositorio.ug: http://repositorio.ug.edu.ec/bitstream/redug/41293/1/YSAIAS%20SANTANDER%20TESIS.pdf
- Sevilla Arias, A. (05 de 11 de 2016). *Economipedia.com*. Obtenido de Productividad: https://economipedia.com/definiciones/productividad.html
- Sociedad española de salud y seguridad en el trabajo. (06 de 10 de 2020). 10 REGLAS BÁSICAS EN SEGURIDAD. Obtenido de sesst.org: https://www.sesst.org/10-reglas-basicas-en-seguridad/
- Tesis de Investigacion. (30 de 06 de 2014). *Técnicas e instrumentos de investigación. Según autores*. Obtenido de blogspot: http://tesisdeinvestig.blogspot.com/2014/06/tecnicas-e-instrumentos-de.html#:~:text=Las%20t%C3%A9cnicas%20son%20de%20hecho,campo%2C%20los%20m apas%2C%20la%20c%C3%A1mara
- Tong, L. (07 de 08 de 2019). El impacto de la manufactura china en el panorama económico internacional. Obtenido de Repositorio académico UPC: https://repositorio.upct.es/xmlui/handle/10317/8136
- Vereau Tafur, G. T. (2020). PROPUESTA DE IMPLEMENTACIÓN DE UN SISTEMA DE CONTROL DE LA PRODUCCIÓN PARA INCREMENTAR LA PRODUCTIVIDAD DE LA EMPRESA CALZADOS ADRIANO S.A, TRUJILLO. Obtenido de https://repositorio.upn.edu.pe/handle/11537/24282
- Westreicher, G. (02 de 08 de 2020). *Proceso*. Obtenido de economipedia.com: https://economipedia.com/definiciones/proceso.html

ANEXOS

Anexo 1. Ficha de registro de datos de la descripción en el área de producción

Autores	Nombre del	Procesamiento de información
	proceso	
Avalos	Cortado	Existe una búsqueda del molde debido a la gran variabilidad. No
Velásquez		hay cuchillas en la mesa de trabajo para que no pierdan tiempo
&		en desplazarse. Falta de orden y verificación de los moldes. Para
Gonzales		el análisis del cuero tienen muy cerca la luz al rostro. No hay un
Vidal,		tiempo específico de acuerdo con la cantidad de piezas por
(2013)		docena de cada serie.
	Desbastado	Existen modelos en los cuales el desbastado es rápido, no hay un
		orden eficiente, evitarían volver a seleccionar por modelo de
		piezas, no hay un almacén de repuestos para evitar que la
		máquina pare su proceso, no se conoce con claridad las medidas
		(cosido, doblado, enrollado).
	Perfilado	El área de perfilado es el proceso que requiere de mayor tiempo;
		es decir, este es el considerado "Cuello de Botella", es muy
		complejo, no tienen en claro los diferentes modelos a perfilar,
		ausencia de espacio adicional a la mesa de perfilado, por la
		cantidad de materiales.
	Armado	En este proceso todos los zapatos tienen el mismo
		procedimiento, no tienen mesas auxiliares, no cuentan con
		estandarización de recipientes de materiales, ejecutan tiempos
		innecesario en búsqueda y reorden de hormas, ausencia de tienen
		un ayudante.
	Alistado y	No hay una adecuada inspección ya que en este proceso todos
	Empaquetado	los zapatos tienen el mismo procedimiento, no cuentan con
		mesas auxiliares que simplifiquen los errores humanos.

Avila Corte

Ponce,

(2017)

El cortador no tiene detallado cuantos pies de cuero como badana se necesitan para cortar el modelo, no tienen una fecha determinada para el proceso de corte, no existe un control de calidad de piezas, así como en la manta de cuero y badana. Trabajan de manera rápida lo que puede traer confusión y equivocación.

Desbastado

Los perfiladores que realizan este proceso de devastado no son muy cuidadosos ya que la mayoría de las veces terminan malogrando una a tres piezas por modelo generando cuellos de botella, tiempos muertos. Cuando se desbasta las piezas pequeñas no se percatan que borran los números el cual genera confusión haciendo que la pieza pequeña de corte no pertenezca al número que es. Esto por consecuencia regresa dos veces al proceso de perfilado. La máquina desbastadora no cuenta con un mantenimiento.

Perfilado

Cuando hay docenas pendientes el perfilador hace su trabajo de manera apresurada ocasionando costuras desviadas, mal cocidas, mal dobladas fuera de parámetro. El perfilador espera que termine todo su despacho (tres a cuatro docenas semanales) para recién entregar a armador. Hay desorden cuando lleva las docenas de cortes, extraviando piezas de cuero y badana.

Armado

Cuando hay docenas pendientes el armador hace su trabajo de manera apresurada ocasionando el calzado no esté al ras del filo de la planta dejando espacios vacíos. El uso de materiales en algunos casos es de manera excesiva por parte del trabajador. Cardan de manera incorrecta las plantas, malogrando y desperdiciando este material. No hay un control de calidad que supervisa si el calzado ya armado. El armador es desordenado, en la colocación de hormas ocasionando que retrasen este proceso, no tienen los cortes debidamente codificados. Las maquinarias no presentan mantenimiento previo

Alistado

El trabajo de la alistadora por lo general es de forma apresurada dejando residuos (pegamentos e hilos) sin ser borrados, dando una mala impresión al cliente. El uso excesivo de materiales por parte del trabajador. No hay un control de calidad que supervisa si el calzado ya alistado. No realiza un reporte de calzados terminados.

Bazan Corte Araujo,

(2019)

El cortador no posee un conocimiento de materiales, no tiene estandarizado una cantidad exacta de cuantos pies de cuero se utilizan por docena. Las piezas pequeñas son desechadas ya que ellos creen que ocasiona mayor demora de tiempo. No existe un control de calidad, sin embargo, es el cortador quien encarga de verificar si las piezas cortadas están aptas.

Perfilado

El perfilador, repite la verificación lo cual origina demoras en toda la cadena productiva, el perfilador acelera el proceso de perfilado y entonces aparecen problemas como errores en el cosido de las piezas y estos a veces salen defectuosos, de la misma manera ocurre con el subproceso de desbastado de las piezas cortadas, lo cual ocasiona perdida tanto de materia prima como de tiempo.

Armado

El armador verifica nuevamente las piezas y se vuelve a repetir lo cual origina demoras en toda la cadena productiva, el armador acelera el proceso de armado y entonces aparecen problemas como errores en la confección de falsas, por otro lado, también ocurren errores en el ensamblado de las piezas con las hormas. No existe un control de calidad, sin embargo, es el armador quien encarga de verificar si el calzado armado está apto.

Alistado

El trabajo en el Alistado es de forma apresurada dejando residuos (pegamentos e hilos) que pueden visualizarse cuando el cliente adquiera el producto. No existe un registro exacto de cuanto material usa en cada actividad y por ende no hay un control de

calidad ni supervisión.

Chávez	Corte	Las cuchillas no se encuentran adecuadamente rotuladas, no hay
Boudri &		limpieza y existe mucho desorden la cual hace que algunas
Rodriguez		piezas cortadas se pierdan. No hay un control de tiempo al
García,		efectuar el corte debido a que el operario pierde tiempo buscando
(2019)		moldes.
	Perfilado	Las piezas recepcionadas necesitan ser ordenadas, el forro en
		ocasiones falta y se tiene que preparar. Existen movimientos
		innecesarios por ende hay demoras. Falta de supervisión e
		inspección.
	Armado	No existe un orden de las hormas, por lo que se tiene que buscar
		para el modelo adecuado. El espacio es reducido por lo que hay
		mucho material que genera desorden. En el tiempo de
		enfriamiento del pegamento el operario no ejecuta la limpieza y
		orden de su área. Además, genera demoras y ciclos altos debido
		a que ejecuta otro subproceso de desbastado.
	Alistado	No existe inspección de los productos por terminar, asimismo no
		se optimiza el uso de los recursos para el acabado. Estos
		materiales son desperdiciados en ocasiones, así como en el
		armado de las cajas.
Cruz	Cortado	Método de trabajo inadecuado, no hay inspección del material.
Chacon,		Desperdicios de cortes e incluso demoras por falta de orden.
(2018)	Perfilado	El perfilador hace su trabajo de manera apresurada ocasionando
		costuras desviadas, mal cocidas, mal dobladas para la adecuada
		unión. Ejecutan un subproceso de desbastado la cual ocasiona
		demoras en cuanto a la entrega hacia el armador. Hay mucho
		desorden y no encuentra las piezas.

	Armado	El armador hace su trabajo de manera empírica, no hay un estándar de procesos. El uso de materiales en algunos casos es de manera excesiva por parte del trabajador, así como se dirige al almacén en busca de pegamento. Los pegamentos no están adecuadamente tapados. No hay un control de calidad que supervisa el calzado armado. No hay un orden de hormas, empiezan a sacar las hormas del saco ocasionando que retrasen este proceso.
	Alistado	El operario ejecuta movimientos innecesarios, no se inspecciona ni supervisa el producto terminado. En ocasiones las plantillas no se pegan de manera exacta quedando algunos defectos.
Garcia Guevara & Quipuscoa	Cortado	No hay un tiempo asignado para poder cumplir cada una de sus actividades. No hay un plan de aprovisionamiento de los materiales necesarios para cortar con el molde.
Guzman, (2020)	Desbastado	En el desbaste existieron demoras porque no tenían el conocimiento necesario de la función a realizar.
	Perfilado	No hay un tiempo asignado para poder cumplir cada una de sus actividades. El operario, une de manera manual las piezas, generando errores.
	Centrado	Uso inadecuado de la máquina, la cual genera mala activación del pegamento que coloca en un inicio el operario.
	Cardado	Transporte poco eficiente y con demoras
	Remate	No hay un tiempo asignado para poder cumplir cada una de sus actividades. Falta de concentración, no se realiza la actividad de acuerdo con lo requerido. Además, en el pulido no cuentan con un procedimiento estandarizado.
	Empavonado	No hay un orden adecuado y las piezas no se pintan conformes, de esta manera en ocasiones no se saca el brillo característico.
	Habilitado	El operario pega y clava los tacos a la pieza de acuerdo con su criterio, no hay un orden exacto para llevar a cabo la actividad de manera adecuada.

	Alistado	Existe tiempos innecesarios por traslados que no se deben
		realizar al omento de ejecutar una acción.
López	Cortado	Las bolsas que contienen los moldes no están codificadas, están
Sánchez,		en desorden. No sabe dónde están las chavetas y pierden el
(2018)		tiempo al desplazarse a esmeril. Gran cantidad de retazos de
		cuero, por exceso de las docenas. Gran cantidad de retazos de
		forro se produce sin una planificación. Pérdida de tiempo al ir a
		almacén entregar los cortes. Se acumula los cortes en los
		estantes, no se sigue un proceso.
	Desbastado	El encargado de almacén busca la docena a desbastar. Se
		producen docenas adicionales, es decir no son precavidos.
		Pérdida de tiempo al tener que trasladarse de almacén a área de
		desbastado. Esperan a que el almacenero nos atienda. Se acumula
		los cortes en los estantes.
	Perfilado	El encargado de almacén selecciona la docena y alista los
		materiales para el perfilador, inclusive sale a comprar los
		materiales faltantes. El perfilador camina hasta su puesto de
		trabajo que queda en el tercer piso, con los materiales de trabajo
		desde el segundo piso.
	Cocido de	El almacenero busca los materiales y entrega al operario. El
	vena	cosedor de vena traslada los cortes a almacén. Espera la atención
		del almacenero, generando pérdida de tiempo.
	Armado	Las hormas están en desorden. El operario camina llevando las
		hormas del almacén al área de armado. Se espera a que el
		almacenero seleccione la planta y posterior a ello llevar la planta
		hasta la maquina lijadora. El operario espera a que la pegadora
		termine su pegado y no ordena su área.
	Alistado	Existe un movimiento innecesario hasta almacén para traer
		badana, esto no lo ejecuta antes. Gran cantidad de retazos de
		badana, por exceso de las docenas. Hay un tiempo de espera
		hasta que el almacenero entregue las cajas.
Paisig	Cortador	El personal contaba con cierto grado de experiencia, sin
Sánchez		embargo, su labor era realizada en desorden y sin indicadores de

de		tiempo para su cumplimiento.
Zevallos,		
(2020)	Perfilador	En el conformado de puntas y talón solo se han realizado por cuenta propia e independiente del trabajador, situación que ha ocasionado demoras para el cumplimiento de la tarea y retraso en la producción, en reiteradas ocasiones se han devuelto las piezas al proceso de corte, originando perdidas de material y de horas hombre.
	Armador	Esta actividad se realiza en un solo espacio (3 operarios en secuencia), existía un desorden y no tenían una función específica; pues a pesar de su experiencia, cada uno tomaba por trabajo cualquier subactividad más fácil de realizar. Esta situación ha venido generando retrasos y productos defectuosos.
	Alistador	No ejecutaban su labor con una supervisión antes de embolsar y colocar en la caja, hechos que aumentaban la probabilidad de envíos defectuosos. Existían mermas siempre que se trabajaba en el mismo espacio generando desorden y una actividad innecesaria
Vereau	Diseño	En la investigación el principal problema radica en la baja
Tafur,	Corte	productividad, esto nos menciona que se debe a la fata de un
(2020)	Habilitado y	manual de funciones a cumplir en cada etapa. El operario no era
	perfilado	capacitado en cuanto al uso de los materiales y la importancia de
	Prefinito	no generar reprocesos, como es el de limpieza y pulida que se
	Armado/engo	realizaban los zapatos fabricados en el día anterior. Además, no
	mado	había una planificación de la producción de tal forma que la
	Alistado	producción era de manera empírica. Los procesos llevados a
	Limpieza y	cabo no eran estandarizados y finalmente los tiempos no eran
	pulida	asignados de manera adecuada por cada estación de trabajo. El
	Encajado	calzado no era de calidad debido a que el operario no llevaba un
		orden en su actividad y su rapidez generaba fallas y reprocesos.

Fuente: Elaboración propia a partir de datos de investigaciones de la provincia de Trujillo

Anexo 2. Actividades productivas e improductivas (Inv.1)

Cortado

Actividad	N°	Ac	Act. productiva Act.improductive			
Operación		6				
Inspección		1				
operación-Inspección Almacenaje		6	54%	46%		
		2	34%	40%		
Transporte		8				
Demora		1				
Total		24				

Desbastado

Actividad	N°	Act.	productiva	Act. improductiva
Operación		3		
Inspección		0		
operación-Inspección		2	50%	50%
Almacenaje		1	30%	30%
Transporte		3		
Demora		1		
Total		10		

Alistado

Actividad	N°	Act. productiva Act. improductiv		
Operación		15		
Inspección		0		
operación-Inspección		7	69%	31%
Almacenaje		1	09%	3170
Transporte		8		
Demora		1		
Total		32		

Perfilado

Actividad	N°	Act. productiva		Act. improductiva	
Operación		4			
Inspección		1			
operación-Inspección		14	51%	49%	
Almacenaje		0	51%	49%	
Transporte		12			
Demora		6			
Total		37			

Armado

Actividad	N°	Act. productiva		Act. improductiva	
Operación		21			
Inspección		0			
operación-Inspección		8	69%	31%	
Almacenaje		0	09%	31%	
Transporte		10			
Demora		3			
Total		42			

Cuadro resumen de inve. 1

Act. productiva	Act. improductiva		
59%	41%		

Anexo 3. Actividades productivas e improductivas (Inv.2)

Cortado

Actividad	N°	Ac	t. productiva	Act.improductiva
Operación		2		
Inspección		1		
operación-Inspección		1	80%	20%
Almacenaje		0	80%	20%
Transporte		1		
Demora		0		
Total		5		

Desbastado

Actividad	N°	Ac	t. productiva	Act. improductiva
Operación		2		
Inspección		0		
operación-Inspecci	ón	1	75%	25%
Almacenaje		0	75%	25%
Transporte		0		
Demora		1		
Total		4		

Alistado

Actividad	N°	Ac	Act. improductiva	
Operación		4		
Inspección		0		
operación-Inspección		1	83%	17%
Almacenaje			63%	1/70
Transporte				
Demora		1		
Total		6		

Perfilado

Actividad	N°	Act	. productiva	Act. improductiva	
Operación		2			
Inspección		1			
operación-Inspección		1	67%	33%	
Almacenaje		0	07%	33%	
Transporte		1			
Demora		1			
Total		6			

Armado

Actividad	N°	Act	. productiva	Act. improductiva	
Operación		4			
Inspección		2			
operación-Inspección		1	78%	22%	
Almacenaje		0	/670	2270	
Transporte		2			
Demora		0			
Total		9			

Cuadro resumen de inve. 2

Act. productiva	Act. improductiva
77%	23%

Anexo 4. Actividades productivas e improductivas (Inv.3)

Corte

Actividad	N°	Α	ct.Productiva	Act. Improductiva
Operación		5		
Inspección		5		
operación-Inspección		0	83%	17%
Almacenaje		0	6576	1//0
Transporte		1		
Demora		1		
Total		12		

Armado

Actividad	N°	Act	.Productiva	Act. Improductiva
Operación	1	10		
Inspección		6		
operación-Inspección		2	75%	25%
Almacenaje		0	/3/0	23/0
Transporte		0		
Demora		6		
Total	2	24		•

Perfilado

Actividad	N°	Act.Productiva		Act. Improductiva	
Operación		7			
Inspección		3			
operación-Inspección		0	77%	23%	
Almacenaje		0	///0	23%	
Transporte		0			
Demora		3			
Total		13			

Cuadro resumen de inv.3

Act.Productiva	Act. Improductiva		
78%	22%		
7070	22/0		

Anexo 5. Actividades productivas e improductivas (Inv.4)

	RESUMEN TOTAL DE LAS ACTIVIDADES										
			TE	PERFIL	PERFILADO		ARMADO		ADO	TOT	AL
Actividad	Símbolo	CANTIDAD	Tiempo (horas)	CANTIDAD	Tiempo (horas)	CANTIDAD	Tiempo (horas)	CANTIDAD	Tiempo (horas)	CANTIDAD	Tiempo total (horas)
Almacén	_	1	0.02	1	0.05	1	0.02	2	0.01	5	0.11
Operación		7	0.69	13	2.25	14	5.15	6	1.03	40	9.11
Inspección		3	0.06	0	0.00	1	0.04	0	0.00	4	0.09
Transporte	1	1	0.01	1	0.007	2	0.07	1	0.01	5	0.10
TOTAL (horas)		0.77		2.30		5.29		1.05		9.41
% ACTIVIDADES (96.3	8%	97.6	2%	98.1	18%	97.8	7%	97.8	6%

Investigación N°4

	Corte	Perfilado	Armado	Alistado	Act. productiva	Act. Improducti
Operación	7	13	14	6		
Inspección	3	0	1	0		
operación-inspección					80%	20%
Almacenaje	1	1	1	2	8076	2076
Transporte	1	1	2	1		
Demora						
Total	12	15	18	9		
Actividad productiva	83%	87%	83%	67%		
Actividad improductiva	17%	13%	17%	33%		

Fuente: Adaptado de Chávez & Rodriguez, (2019)

Anexo 6. Actividades productivas e improductivas (Inv.5)

	Corte	Perfilado	Armado	Alistado
Operación	8	9	20	6
Inspección	2	1	4	0
operación-Inspección	1	1	4	2
Almacenaje	0	0	0	0
Transporte	1	1	10	1
Demora	1	0	15	0
Total	13	12	53	9
Actividad productiva	85%	92%	53%	89%
Actividad improductiv	15%	8%	47%	7 11%

	N°
Operación	43
Inspección	7
operación-Inspección	8
Almacenaje	0
Transporte	13
Demora	16
Total	87
Actividad productiva	67%
Actividad improductiva	33%

Anexo 7. Actividades productivas e improductivas (Inv.6)

	N°
Operación	2
Inspección	0
operación-Inspección	7
Almacenaje	2
Transporte	10
Demora	1
Total	22
Actividad productiva	41%
Actividad improductiva	59%

Anexo 8. Actividades productivas e improductivas (Inv.7)

	N°
Operación	101
Inspección	8
operación-Inspección	11
Almacenaje	5
Transporte	34
Demora	16
Total	175
Actividad productiva	69%
Actividad improductiva	31%

Anexo 9. Actividades productivas e improductivas (Inv.8)

	N°
Operación	5
Inspección	1
operación-Inspección	
Almacenaje	
Transporte	1
Demora	
Total	7
Actividad productiva	86%
Actividad improductiva	14%

Anexo 10. Actividades productivas e improductivas (Inv.9)

	N°	
Operación	15	
Inspección	4	
operación-Inspección		
Almacenaje	1	
Transporte		
Demora		
Total	20	
Actividad productiva	95%	
Actividad improductiva	5%	

Anexo 11. Formato de estudio de tiempos (Inv.4)

ÁMEA	ACTIVEADES		TEMPOS DESERVADOS(Minutes)									T. PROMEDIO	T. Normal	Lötinär
		Ted.	162	Total	To4	16	Total	167	166	Total	Total			
	Recepción de materia prima	1.100	1.094	1.05	1078	1.081	1097	1.096	1.122	1.029	1002	1.002	1.002	1.180
	Impeción de material	0.548	0.630	0.608	0.598	0.558	0.586	0.564	0.508	0.510	0.902	0.996	0.596	0.549
CORTE	Doblar quero sintético	3.000	3.134	3.438	3.237	3.356	3813	3.510	3.360	3.302	3.129	3.334	3.314	3.612
	Contair piezas de cuero	10.480	10.679	10.983	10.472	10.287	10.662	10.819	10277	10.714	10.754	10.958	10.998	11.502
	Doblar forro	3.282	3.172	3.345	3.248	3.297	3.102	3.373	3.265	3.227	3.280	3.340	3.240	350
	Cortar piezas de forro	9.245	9.324	9.140	9.112	9.127	9.150	9,210	9.113	9.308	9.294	9.182	9.182	10,000
	Inspeción de forro cortado	1.348	1,308	1.330	1.399	1.398	1302	1.321	1.393	1.990	1320	1.340	1349	1.470
	Cortar piecas de plantillas	10.306	10.307	10.528	10.310	10.292	10.349	10.270	10,290	10.384	10.294	10.295	10.295	11.221
	Inspección de plantillas cortadas	1.111	1.007	1.114	1.089	1.108	1079	1.077	1.098	1.104	1.109	1.000	1.099	1.197
	Colocarmanta de tallas por modelo y talla	0.954	0.650	0.651	0.549	0.558	0.653	0.656	0.560	0.648	0.50	0.658	0.933	0.711
	Embolsado de corte de piezas	0.568	0.579	0.575	0.554	0.576	0582	0.559	0.590	0.515	0.554	0.565	0.565	0.616
	Traslado al area de despacho	0.458	0.452	0.440	0.455	0.453	0450	0.449	0.62	0.454	0.402	0.450	0.450	0.481
	TIEMPO TOTAL DE CONTE	42.098	42,422	42.21	42.155	42.290	41.715	42.908	42.165	42.388	42.407	42.387	42.387	46.201
	Recepción e Inspección de plesas cortadas	2.505	2517	2.495	2.522	2.516	2487	2.481	2.65	2.489	2.899	2.542	2.544	2.882
	Ordena las piesas cortadas	1.752	1.638	1.348	1.567	1.796	1765	1.665	15%	1.785	1.965	1.712	1.781	1.941
	Echar Jebe a las piezas cortadas para doblar	13.011	13.989	13.012	13.962	13.990	13.906	13.006	13,899	13.996	13.999	13.690	14.305	15.484
	Doblado de piezas	17.949	17.948	17.948	17.967	17981	17,949	17:941	1794	17.951	17:953	17.990	18.668	20.348
	Pegado de forno	15.597	15.634	15.607	15.880	15.916	15.690	15.845	15.790	15.758	15.800	15.3M	15.373	17.847
	Preparado de máquina para contura	1.463	1.448	1.492	1.455	1552	1525	1.536	145	1.953	1.456	1.45	156	1.684
	Costura	16.778	15.831	15.750	15.718	16.930	16,855	16.994	16.894	15,748	16.745	15.794	17.465	29.038
PERFLACO	Corte de costura	1.956	1.948	1.981	1.953	1962	1968	1.955	198	1.964	1.957	1.9%	2.05	2.218
	Unión de forroy cuero	14.531	14.538	14.762	14.837	14.728	14.773	14.721	14.810	14.758	14.93	34,708	15.296	16.673
	COCIDO	14.991	14.812	14.874	14.925	14.927	14987	14.907	14.960	14.908	14.859	14.925	15.512	16,908
	Recorte de piezas cocidas	10 504	10.500	10.512	10.501	10.487	10525	10.497	10506	10.485	10.487	10.502	10.928	11.906
	Ordenar piesas capelladas perfiladas	2.394	2.387	2.361	2.380	2.255	2,988	2.373	2.285	2.394	2.963	2.540	2.48	2.663
	Ordenar piesas forro perfilladas	2.340	2,396	2.402	2.252	2.430	2363	2.401	2.360	2.279	2.329	2.390	2.454	2.674
	Emparados	4.996	4.993	4.290	4.591	4.578	4.480	4.872	4.971	4.583	4.901	4.730	4.520	5.362
	Transporte de plezas perfiladas a despacho	0.365	0.953	0.360	0.350	0.359	0380	0.344	0.348	0.343	0.354	0.358	0.367	0.401
	TIEMPOTOTAL DE PERFEADO	121.129	121824	121.124	121.988	122.294	122.011	121.245	121,951	121.938	122,090	121.750	135.61	138.027
	Recepción de plantas	1125	1.128	1.129	1.120	1.124	1125	1.104	1.124	1.128	1.128	1.128	1.269	1.384
	Inspeción de plantas	1.870	1,877	1.888	1.866	1.886	1858	1.871	1.868	1.873	180	1.85	2.107	2.297
	Dejar los materiales al puesto de trabajo	1.951	1.992	1.964	1.918	1988	1950	1.920	1.85	1.953	1.951	1.948	2.201	2.400
	Preparación de la plantilla	55.635	55.619	55,665	95.771	55.580	55.765	55.853	55.828	55.458	58.907	56.000	68.291	90,907
	Orden de las hormas deacuerdo al modelo y la talla	1.245	1275	1.25	1.230	1249	1256	1.295	1.256	1.271	138	1348	1.411	1.537
	Fijado de la plantilla de armado en la horma	3.049	3.057	3.058	3.053	3.047	3,027	3.065	3.054	3.043	3.043	3.048	3.444	3.754
	Centrado del corte sobre la horma	6.132	6.142	6.128	6.112	6142	6121	6.141	6.133	6.140	6.131	6.131	6.938	7.581
	Montado de los lados del corte sobre la horma	70.190	70.182	70.144	70.344	70.505	70373	70.264	70.385	70.387	70.455	70.321	79.463	86.614
*******	Devastado de las partes sobrantes	9.084	9.075	9.075	9.068	9071	5072	9.067	9.064	9.082	9.002	9.072	10.251	11.174
ARMADO	Retiro de las tadruelas	11.999	11.993	11.902	11.967	11.981	11984	11.953	11.952	11.992	11.946	11.975	13.538	14.751
	Pegado de las suelas	28.763	28,923	28.804	38.757	28.870	28,941	26.598	28.711	38,754	28,994	28.779	32.521	35.448
	Cementado de los cortes armados y plantas	9.987	9.995	9.989	9.985	5.984	9.997	9.998	9.901	9.989	9.985	9.989	11.388	12.308
	Reactivado del corte armado y plantas	10.781	10.798	10.792	10.770	10.762	10.795	10.784	10.776	10.782	10.764	10.780	12.182	13.278
	Presado en la máquina boxa de sapo	9.818	9.957	9.934	9.048	9.136	9.001	9.825	9.998	9.829	9.805	9.641	10.895	11.875
	Enfriado	26.999	25.572	25.005	25.057	26.985	25,899	26.988	26.007	25.967	25.030	26.902	30.040	32.753
	Deshormado	6.287	5.197	6.211	6.107	6.196	6293	5.295	6.123	5.295	6.483	6340	7.061	7.696
	Ordenado por modelo y tallas	1.084	1.096	1.112	1.097	1076	1133	1.098	1102	1.085	1.087	1.008	1241	1.952
	Transporte al área de alistado	1.639	1.688	1.620	1.623	1823	160	1.626	197	1.627	183	1.627	1899	2.004
	TIEMPO TOTALDE ARMADO	257.636	257,902	256.678	255.880	257.305	257.163	257.963	255.884	257.566	260,298	257.407	290.972	317.160
	Recepción de plezas armadas	0.494	0.752	0.7%	0.743	0.751	0.758	0.750	0.763	0.758	0.765	0.727	0.800	0.888
	Retiro de restos del pegante	5.444	5.444	6.457	6.462	6463	640	6.452	6.67	5.436	6.469	6.450	7.095	7.876
	Limpieza de sandalias	14.905	14515	14.912	14.905	14.920	14,909	14.901	14903	14.899	14.904	14.907	15.998	18.202
***************************************	Colocado de etiquetas	2.154	2.150	2.1%	2.146	2.154	2155	2.156	2.156	2.156	2.156	2.1%	2.370	2.631
ALISTADO	Colocado de tina	12:152	12.152	12.146	12.156	12:151	12.174	12:137	12:156	12.148	12.145	12.192	13.367	14.837
	Armado de calas	10.490	10.488	10.405	10.4%	1050	10531	10.497	10484	10.519	10 521	10.506	11.997	12.838
	Encajado	4.365	4.339	4.380	4.351	4342	4.354	4.355	436	4.366	4.355	4.39	4.767	5.304
	Transporte al almacén de PT	0.389	0.361	0.990	0.366	0.364	0,377	0.379	0.368	0.958	0.961	0.371	0.439	0.454
	TIEMPO TOTAL DE ALISTADO	51.382	51,610	51.665	51.628	51.567	51,689	51.637	51.540	51.641	51.996	51.621	56,783	63.029
	TOTALI minutosi)	472,346	473,758	471.788	471.647	473.556	473.588	473.448	472.540	479.532	475,471	473.265	515,772	564.418
	TOTAL (Horse)	7.871	7.896	7.883	7.861	7.293	7.893	7.891	7.07	7.892	7.941	7.88	8.53	9.407
TUTAL (Pone)			1.000	1.000				11000	-					2.00

Fuente. Recuperado de Chávez & Rodriguez, (2019)

Anexo 12. Toma de tiempos (Inv.5)

TOMADE	TIEMPOS PRE-TEST - PROCESO PRODUCTIVO ABRIL2018	DE SAI	ID/ALEJ/AR	- GA	LZAUC	/o LA	ITANA	·-	METODO: PRE-TEST			
	TIEMPO OBSERVADO EN SEGUNE	OS - TON	ADO EL	TIEMP	POR	DOCEN	Α					
PROCESO	ACTIVIDAD	T01	TO2	T03	TO4	T05	TO6	T07	TO8	T09	TO	
	Recepción de material	120	132	130	134	126	135	125	130	118	12	
	Inspección de material	175	167	158	153	168	173	168	160	163	16	
CORTE	Alistar el material	160	167	155	178	178	165	172	168	156	16	
	Marcado de moldes en el cartón	180	183	175	176	180	172	170	174	176	18	
	Recorte de molde	345	360	355	374	368	369	365	357	369	35	
	Colocar el molde sobre el cuero	168	180	180	175	184	171	165	170	165	18	
	Afilado de cuchilla	50	47	52	40	45	49	51	44	47	4	
	Corte del cuero (forro para los cortes y falsas)	825	830	827	780	835	820	824	958	810	83	
	Trazado de las plantillas	350	370	378	378	372	370	380	365	342	37	
	Corte de las plantillas	150	142	136	140	148	140	137	139	146	15	
	Verificar los cortes	112	110	114	119	110	118	110	120	120	11	
	Enumerar y ordenar los cortes por talla	130	125	122	127	130	130	128	125	124	13	
	Piezas cortadas llevado al área de perfilado	120	120	120	132	125	126	126	122	120	11	
	Recepción de piezas cortadas	90	92	86	84	86	96	90	86	96	8	
EDELL ADO	Revisar los cortes	124	120	121	124	120	130	127	120	126	12	
ERFILADO	Desbaste del cuero	415	360	374	370	360	380	367	381	402	36	
	Echar pegamento a los bordes	900	855	760	755	820	760	850	856	720	88	
	Doblar los bordes	1440	1500	1560	1590	1458	1482	1494	1524	1452	14	
	Empastar (cortes y forros)	1200	1220	1350	1200	1280	1320	1300	1340	1210	13	
	Unión el forro con el cuero	1080	1140	1164	1200	1122	1065	1058	1146	1092	10	
	Cocido de los bordes	2100	2046	2118	2124	1848	1854	1932	2052	2070	21	
	Cortar los hilos sobrantes	257	240	248	242	260	262	255	250	242	2	
	Poner las hebillas	540	564	552	650	642	545	628	645	550	6:	
	Ordenar por tallas las piezas	120	135	140	128	133	128	127	135	140	1:	
	Piezas perfiladas llevado al área de armado	150	168	150	152	168	171	160	156	155	1-	
	Recepción de piezas perfiladas	72	84	82	72	70	68	71	80	72	7	
	Inspección de las piezas	150	165	153	160	147	147	166	159	166	1	
	Trazado de falsas sobre el molde	180	182	194	192	168	174	186	192	180	2	
		720	726	732	720	660	672	684	660	672	6	
	Recorte de las falsas										+	
	Lijar las falsas	300	330 182	282 194	192	294	306 186	312 180	318	306	3	
	Ordenar los forros y falsas por talla	180				210			198	210	17	
	Armado en hormas (lados del corte sobre la h.)	2100	2110	2040	2052	2030	2060	2115	2038	2180	21	
ARMADO	Pasar pegamento a los forros y falsas sobre la horma	780	810	870	900	828	822	834	786	792	7	
	Enfriar	240	270	255	246	265	270	282	284	246	2	
	Doblar los bordes (uso del martillo para sellar el forro)	1520	1440	1500	1518	1548	1422	1482	1488	1506	15	
	Cementado sobre la horma (forro y falsa)	1200	1260	1272	1230	1242	1310	1280	1222	1360	12	
	Enfriar	340	330	324	401	340	350	334	355	403	3	
	Recepción de plantas	240	252	264	270	252	277	264	245	250	2	
	Inspección de plantas	108	110	122	121	118	116	120	121	120	1	
	Limpiar las plantas	420	426	444	456	480	482	436	478	427	4	
	Cementado de la planta	360	402	408	426	438	450	432	438	444	4	
	Enfriar	360	372	384	355	350	371	300	360	365	3	
	Unión de la planta y horma	984	900	905	960	990	960	912	966	984	9	
	Pegado en la maquina Bocadesapo	120	120	120	125	120	125	127	128	122	1	
	Descalzado	720	750	762	786	840	729	725	730	750	7	
	Clavado de pernos (accesorios)	600	620	630	648	590	620	534	530	632	6	
	Ordenar por talla	180	185	174	172	210	180	179	186	168	1	
	Piezas armadas llevado al área de alistado	160	172	180	180	165	175	165	182	180	1	
	recepción de piezas armadas	120	130	124	130	124	122	135	128	126	1	
	Corte de Plantillas	170	181	186	168	172	176	188	186	172	1	
		250	262	265	288	245	264	280	294	300	3	
ALIOTADO	Pasar pegamento a las plantillas			_			_	_			+	
	Pegar las plantillas al zapato	300	312	324	348	354	360	366	320	350	3	
ALISTADO	Ordenar por talla	165	180	170	182	157	165	180	164	160	1	
	Colocar etiqueta	182	173	175	170	168	165	185	175	180	1	
	Limpiar los zapatos (restos de pegamento)	360	390	408	450	420	442	424	452	426	4	
	Poner en bolsas	180	190	172	196	176	183	175	169	182	1	
		174	150	181								

Fuente. Recuperado de Cruz Chacon, (2018)

Anexo 13. Toma de tiempos (Inv.6)

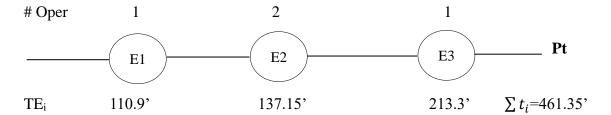
	HOLAD	ГТОМА	DE TIE	MDOS						
HOJA DE TOMA DE TIEMPOS										
EMPRESA:	Calzados	Paredes S.A	.C.	FECHA		21/07/2018				
AREA:	Producció	n		TURNO		Mañana				
PRODUCTO:	Zapato de	tacón cerrad	lo Reyna	HORAINIC	Ю	08:10				
OBSERVADO POR	Bryan Gard	da / Ana Qui		13:30						
ESTACIÓN				O (MIN/PAR)		PROMEDIO TIEMPO				
ESTACION	1	2	3	4	5	OBSERVADO				
CORTADO	5.07	5.21	4.42	5.39	4.77	4.97				
DESBASTADO	1.8	1.95	2.18	1.93	1.87	1.95				
PERFILADO	15.06	15.38	15.94	15.78	14.25	15.28				
HABILITADO	7.45	8.76	8.41	7.25	7.28	7.83				
CENTRADO	12.71	12.28	12.26	11.84	12.64	12.35				
CARDADO	2.03	1.89	2.17	2.23	2.34	2.13				
REMATE	7.18	7.33	6.92	6.43	7.63	7.10				
EMPAVONADO	2.21	2.15	2.06	2.25	2.4	2.21				
ALISTADO	7.91	7.04	8.43	8.38	8.24	8.00				

Fuente. Recuperado de Garcia & Quipuscoa, (2020)

Anexo 14. Pasos clave para el balance de línea de producción

$$C = \frac{8 * 5.5 * 60}{11} = 240 min/doc$$

$$n = \frac{\sum t_i}{E(c)} = \frac{598.57}{90\%(240)} = 2.77 \rightarrow 3 \text{ operarios}$$


Se considera el tiempo estándar que se ha calculado y se determina la cantidad de operarios necesarios para llevar a cabo la producción.

$$E1 = \frac{110.9}{(0.90 * 240)} = 0.51 \rightarrow 1 \ operario$$

$$E2 = \frac{274.3}{(0.90 * 240)} = 1.26 \rightarrow 2 \ operario$$

$$E3 = \frac{213.3}{(0.90 * 240)} = 0.99 \rightarrow 1 \ operatio$$

de operarios= 4

K=3

C=213.3 min/doc

$$\sum t_i = 461.35$$

n=4

To=K(c)-
$$\sum t_i$$

= 178.55 min/doc

$$P = \frac{tb}{c} = \frac{8*60*5.5 \text{ min/semana}}{213.3 \text{ min/doc}} = 12.4 \text{ doc/semana}$$

Anexo 14. Tiempo normal y tiempo estándar (Inv.7)

			ESTU	DIO DE TIEM	IPOS							
FECHA:	01 AL 25 DE ENERO DEL 2018											
EMPRESA:	CALZADO EMILY'S											
A CARGO:	MARTIN LOPEZ SANCHEZ											
Operario	Actividades del proceso de producción	Calificación	Promedio	Tiempo normal	Suplement os	Tiempo estándar (seg)	Tiempo estándar (min)	Tiempo estándar (hr)				
Oscar	Cortado de cuero y forro	1.10	9969.71	10,966.68	1.17	12,831.02	213.85	3.56				
Ubi	Desbastado de los cortes de cuero por pieza	1.24	1042.53	1,292.74	1.16	1,499.57	24.99	0.42				
Flor	Formar el cuerpo del calzado	1.01	14063.35	14,203.99	1.16	16,476.62	274.61	4.58				
Eder	Formar la capellada del zapato	1.31	1585.22	2,076.64	1.14	2,367.37	39.46	0.66				
Pedro	Picar el plato	0.91	2880.61	2,621.36	1.14	2,988.34	49.81	0.83				
Alexander	Unir la capellada y el cuerpo del calzado	1.02	4842.27	4,939.11	1.14	5,630.59	93.84	1.56				
Fidencia	Cosido de vena	0.84	9093.42	7,638.48	1.11	8,478.71	141.31	2.36				
Ronal	Empastado de cortes de calzado	1.26	2403.96	3,028.99	1.15	3,483.34	58.06	0.97				
José	Enfalsado de las hormas	1.06	2918.64	3,093.76	1.09	3,372.19	56.20	0.94				
Nicolás	Armado de calzado	0.81	3177.44	2,573.73	1.14	2,934.05	48.90	0.82				
Leonor	Preparación de la planta del calzado	1.13	1723.53	1,947.59	1.17	2,278.68	37.98	0.63				
Marino	Rematado de calzado antes de pegar	1.25	1959.57	2,449.46	1.11	2,718.90	45.31	0.76				
Juan	Pegado de planta a la horma de calzado	1.14	5724.46	6,525.89	1.13	7,374.25	122.90	2.05				
Martin	Alistado y acabado del calzado	1.11	1849.70	2,053.16	1.13	2,320.08	38.67	0.64				
Daniel	Encajado de calzado	1.06	402.47	426.62	1.13	482.08	8.03	0.13				
Fidel	Almacenar producto terminado	1.09	131.57	143.41	1.13	162.05	2.70	0.05				
	Tien	npo estándar i	total del proce	eso producti	vo			20.94				

Fuente. Recuperado de López Sánchez, (2018)

Anexo 15. Productividad Mano de Obra, Calzados Lantana, abril 2018 (Inv.5)

PROD	PRODUCTIVIDAD MANO DE OBRA - CALZADOS LANTANA- MES DE ABRIL											
DÍA	PRODUCCIÓN (DOC. SANDALIAS)	H-H (HORAS -HOMBRE)	PRODUCTIVIDAD MANO DE OBRA (DOC \$AND./H- H)									
1	4	63,81	0,063									
2	5	74,99	0,067									
3	5	63,83	0,078									
4	4	65,74	0,061									
5	5	68,42	0,073									
6	5	72,32	0,069									
7	4	58,58	0,068									
8	6	62,62	0,096									
9	5	68,46	0,073									
10	5	56,89	0,088									
11	5	65,48	0,076									
12	5	64,32	0,078									
13	5	61,24	0,082									
14	5	65,07	0,077									
15	5	63,10	0,079									
16	6	65,68	0,091									
17	5	68,60	0,073									
18	6	64,26	0,093									
	PROMEDIO		0,077									
	TOTAL DOCENA	S	90									
	TOTAL HORAS 1173											

Fuente. Recuperado de Cruz Chacón, (2018)

Anexo 16. Evaluación de la implementación de las 5's en el segundo piso (área de alistado y cosido de vena (inv.7)

HOJA DE EVALUACION DE LAS 5°S						¿Están las herramientas en]			Algunas de las			
Fecha:	12/03/2018	Area: 2do pis vena)	o(Alistado, Cos	sido de	Rango:		8	el lugar que les corresponde?	1			herramientas están en su lugar.	
Hora:	5:00 PM	A cargo de: 1	Martin López S	ánchez.	4= Excele	4= Excelente Implementación		¿Después que se emplean]		No, son dejadas sobre el caballete, sobre la mesa	
Turno:	1				3= Buena	Implementación	9	las herramientas son	0			encima de los cortes.	
	 				2= Regula	r Implementación		llevadas a su lugar?				menos en su sitio.	
					1= Escasa	Implementación		¿Están los pasillos, las		1		menos en sa sao.	
					0= Ningun	a Implementación		máquinas, equipo, con					
	Pregunt	as para la	Rango			Observaciones del	10	alguna identificación y	0			No.	
5'S	revisión	del área	0-4	Suma	Puntaje	Lugar		señalización?					
Clasificar		Eliminar el	desorden, cla	sificar lo	que no es	necesario	Limpiar	Lin	npie todo lo qu	ue está d	dentro y fue	era	
	/ Existen cos					Existen baldes pequeños sin uso, tinas sin uso, hav	11	¿Se pone en práctica la limpieza a diario?	1			Pocas de las veces.	
1	herramientas equipos, mad	, cajas,	0			pinceles sin uso, nay pinceles sin uso, la vestimenta de los operarios, botellas de tintes vacías, sacos de hormas.	12	¿Existe basura en el área de trabajo?	0	2	40%	Si en las áreas de alistado y cosido de vena hay retazos de cuero, badana, hilos, bolsas, cajas viejas, restos de comida.	
2	¿Existen artíc pasillos, esqu		0	1	1 1	Retazos de cuero y		13	¿Existe contenedores de basura en el área?	1			Solo usan costales.
	escaleras, et	c.?		2	8%	No existe un lugar	14	¿Están las mesas, cosas, materiales o áreas limpias?	0			No.	
3	¿Los artículo tienen un lug eliminados?	s innecesarios ar o fueron	1			adecuado para los artículos innecesario, ni se ha eliminado.	15	¿Se encuentran los pasillos libres de obstáculos?	0			Existen cajas sin uso, tablas que no deberían estar.	
	L			1		se na eliminado.	Estandarizar	Mantener listas de c	hequeo y está	indares	para mante	ner las primeras 3'S	
4		identificarlos	0			No tienen una lista.	16	¿Se lleva a diario el programa de limpieza?	1			No se hace diario, solo los fines de semana.	
	¿Existe inven			-			17	¿Están clasificados las herramientas y materiales?	0			No.	
5	exceso provis materiales en		1			Si hay calzado sin alistar en el suelo en espera.		¿El área de trabajo tiene		3	12%	Si, cada quien tiene su fluorescente, además de eso tiene el techo unos	
Ordenar			para cada co	sa y cad	a cosa en s	u lugar	18	buena iluminación o	2		12.70	20 centimetros de	
6	¿Los objetos encuentran e		0			No.		ventilación?				espacio por donde entra el aire.	
7	¿Existen un l asignación pa objeto o cosa	ara cada	1	2	8%	Si, pero los operarios no dejan las cosas en su lugar.	19	¿El personal tiene alguna credencial para su identificación?	0			No.	
								1					

Disciplina	Mantener la disciplina a través de todo el sistema y una cultura a favor (Atarse a las reglas)								
21	¿Operarios en el área no han sido entrenados en 5'S?	1			Se les da la primera charla a los operarios.				
22	¿El trabajo diario de 5'S no fue realizado esta semana?	1			Regularmente.				
23	¿Pertenencias personales no pueden ser fácilmente guardadas?	1	5	20%	No, debido a que no hay un lugar adecuado para ello.				
24	¿Los operarios muestran empeño de cumplir con el programa de auditoria 5'S?	2			Si se mostraron empeñosos todos.				
25	¿Las auditorias de 5's no han sido efectuadas esta semana?	0			No fueron efectuadas.				
	Puntos evaluados	100	14						
		Rango:			% de auditoria 5'S				
		Excelente Imple							
		uena Implemer egular Impleme	14%						
		25 - 50% = Escasa Implementación. 0 - 25% = Ninguna Implementación.							

Fuente. Recuperado de Garcia & Quipuscoa, (2020)

Anexo 17. Resultados del control de inventarios de materia prima clase A (inv.7)

				CONTROL DE INVENTARIO								
RESPONSABLE:	OSCAR CRUZ B		Q:	2067.52	PIES	LOTE OPTIMO						
GERENTE:	MARIA FLORES		TR:	7	DIAS	TIEMPO DE REAPROVISIONAMIENTO						
PRODUCTO:	CLASE A				TS:	2	DIAS	TIEMPO DE SUMINISTRO				
MATERIA PRIMA:	CUERO			Pp:	590.72	PIES	PUNTO DE PEDIDO					
	Entradas						Salidas	Saldos				
Fecha	Inventario inicial	Cantidad	Total	Costo unitario	Costo total	Cantidad	Costo unitario	Costo total	Cantidad	Costo unitario	Costo total	
01/05/2018	208.00	2067.52	2275.52	5.00	11377.6	312	5.00	1560	1963.52	5.00	9817.6	
02/05/2018	1963.52	0	1963.52	5.00	9817.6	312	5.00	1560	1651.52	5.00	8257.6	
03/05/2018	1651.52	0	1651.52	5.00	8257.6	312	5.00	1560	1339.52	5.00	6697.6	
04/05/2018	1339.52	0	1339.52	5.00	6697.6	312	5.00	1560	1027.52	5.00	5137.6	
05/05/2018	1027.52	0	1027.52	5.00	5137.6	208	5.00	1040	819.52	5.00	4097.6	
07/05/2018	819.52	0	819.52	5.00	4097.6	312	5.00	1560	507.52	5.00	2537.6	
08/05/2018	507.52	0	507.52	5.00	2537.6	312	5.00	1560	195.52	5.00	977.6	
09/05/2018	195.52	2067.52	2263.04	5.00	11315.2	312	5.00	1560	1951.04	5.00	9755.2	
10/05/2018	1951.04	0	1951.04	5.00	9755.2	312	5.00	1560	1639.04	5.00	8195.2	
11/05/2018	1639.04	0	1639.04	5.00	8195.2	312	5.00	1560	1327.04	5.00	6635.2	
12/05/2018	1327.04	0	1327.04	5.00	6635.2	208	5.00	1040	1119.04	5.00	5595.2	
14/05/2018	1119.04	0	1119.04	5.00	5595.2	312	5.00	1560	807.04	5.00	4035.2	
15/05/2018	807.04	0	807.04	5.00	4035.2	312	5.00	1560	495.04	5.00	2475.2	
16/05/2018	495.04	0	495.04	5.00	2475.2	312	5.00	1560	183.04	5.00	915.2	
17/05/2018	183.04	2067.52	2250.56	5.00	11252.8	312	5.00	1560	1938.56	5.00	9692.8	

Fuente. Recuperado de García Guevara & Quipuscoa Guzmán, (2020)