

FACULTAD DE INGENIERÍA CARRERA DE Ingeniería Civil

"IMPACTO DE CARGAS MONOTÓNICAS EN EL DESEMPEÑO SÍSMICO DE UN EDIFICIO DE CONCRETO ARMADO DE 10 NIVELES EN EL DISTRITO DE MIRAFLORES, LIMA - 2023"

Tesis para optar el título profesional de:

INGENIERO CIVIL

Autores:

Hebert Pillaca Cisneros Christian Orlando Vivanco Salvatierra

Asesor:

Mg. Lic. Gonzalo Hugo Diaz García https://orcid.org/0000-0002-3441-8005

Lima - Perú

2023

JURADO EVALUADOR

	German Sagastegui Vásquez	45373822
Jurado 1 Prosidente(a)		
r residente(a)	Nombre y Apellidos	Nº DNI

Jurado 2	José Alexander Ordoñez Guevara	40501603
	Nombre y Apellidos	Nº DNI

	Gerson Elías Vega Rivera	10390118
Jurado 3		
	Nombre y Apellidos	Nº DNI

INFORME DE SIMILITUD

Excluir citas	Apagado	Excluir coincidencias	< 1%	
Excluir bibliografía	Activo			

DEDICATORIA

Dedico a todos aquellos que han dejado una marca duradera en mi vida y han sido un componente esencial en mi camino hacia el conocimiento y el crecimiento personal. A mis maestros y maestros, por su dedicación y por compartir su pasión por el aprendizaje conmigo. Su influencia ha tenido un impacto significativo en mi formación y ha servido como un faro de sabiduría en mi camino.

Hebert Pillaca Cisneros.

Gracias a mis padres por apoyarme en aquellos momentos difíciles de mi vida y por haberme formado, gracias a ellos, puedo completar esta investigación. Sin embargo, también a mis tres hermanos, quienes me inspiraron a completar la carrera.

Christian Vivanco Salvatierra

AGRADECIMIENTO

Mi más sincero agradecimiento a todos los individuos, organizaciones e instituciones mencionadas anteriormente. El logro de este importante hito académico en mi vida fue posible gracias a su apoyo y colaboración.

Hebert Pillaca Cisneros

Familia, amigos, ingenieros y profesores que nos formaron durante todo el tiempo de preparación fueron la razón de esta investigación. Por otro lado, debemos agradecer a la empresa donde realizamos nuestras prácticas profesionales porque nos brindó toda la información y enseñanza que necesitamos para llevar a cabo esta investigación. A mi querida Madre que me acompaña desde el cielo y a mi familia por haberme forjado lo que soy en la actualidad, muchos de mis incluida logros, esta investigación, se lo debo a ellos. Me dieron reglas y algunas libertades, pero en última instancia, siempre me inspiraron a perseguir mis metas.

Christian Vivanco Salvatierra

TABLA DE CONTENIDO

JURADO EVALUADOR	2
INFORME DE SIMILITUD	3
DEDICATORIA	4
AGRADECIMIENTO	5
ÍNDICE DE TABLAS	7
ÍNDICE DE FIGURAS	9
ÍNDICE DE ECUACIONES	12
RESUMEN	13
ABSTRACT	14
CAPÍTULO I. INTRODUCCIÓN	15
1.1 Realidad problemática.	15
1.2 Formulación de problema	71
1.3. Objetivos	72
1.4. Hipótesis	73
CAPÍTULO II. METODOLOGÍA	74
2.1. Tipo de Investigación:	74
2.2. Población y muestra:	74
2.3. Técnica e instrumentos de recopilación y análisis de datos:	79
2.4. Procedimiento:	81
2.5. Aspectos éticos:	82
CAPÍTULO III. RESULTADOS	84
CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES	170
4.1. Limitaciones.	170
4.2. Interpretación comparativa	
4.3. Implicancias	
4.4. Conclusiones	175
REFERENCIAS	178
ANEXOS	181

ÍNDICE DE TABLAS

Tabla 1: Cuadro de materiales en concreto y acero	84
Tabla 2: Cuadro elaborado para el metrado de cargas vivas y muertas	84
Tabla 3: Dimensiones de elementos estructurales.	84
Tabla 4: Periodo fundamental	85
Tabla 5: Centro de rigidez y centro de masa.	85
Tabla 6: Peso sísmico.	86
Tabla 7: Fuerzas estáticas en dirección X.	87
Tabla 8: Fuerzas estáticas en dirección Y.	88
Tabla 9: Análisis del Sistema Estructural.	89
Tabla 10: Comprobación en dirección X desviación de Rigidez.	90
Tabla 11:Comprobación en dirección Y desviación de Rigidez.	90
Tabla 12: Comprobación en dirección X desviación de Resistencia	91
Tabla 13: Comprobación en dirección Y desviación de Resistencia	91
Tabla 14: Comprobación de desviación de masa o peso.	92
Tabla 15: Comprobación en dirección X desviación torsional	92
Tabla 16: Comprobación en dirección X desviación torsional	93
Tabla 17: Recopilación de todas las irregularidades.	93
Tabla 18: Derivas en dirección X-Y	94
Tabla 19: Desplazamiento máximo inelásticos por nivel	95
Tabla 20: Distribución de Fuerzas laterales mediante el modo fundamental	95
Tabla 21: Distribución de Cargas laterales mediante el Patrón Especial.	96
Tabla 22: Curva de Capacidad en dirección X mediante modos fundamentales	98
Tabla 23: Curva de Capacidad en dirección Y mediante modos fundamentales	99
Tabla 24: Curva de Capacidad en dirección X mediante Patrón Especial.	.100
Tabla 25: Curva de Capacidad en dirección Y mediante Patrón Especial	.101
Tabla 26: Desempeño efectiva mediante aplicación de modos fundamentales	.106
Tabla 27: Desempeño efectiva mediante aplicación de patrón especial.	.106
Tabla 28: Coeficiente de R.	.106
Tabla 29: Resumen de Desempeño sísmico de la curva de capacidad formada por mo	odos
fundamentales.	.139
Tabla 30: Resumen de Desempeño sísmico de la curva de capacidad formada por Pa	trón
Especial	.139
Tabla 31: Sectorizada de la curva de capacidad formada por modos fundamentales	
según SEAOC	.140
Tabla 32: Objetivos aceptados por el SEAOC según ASCE 41-17.	.140
Tabla 33: Objetivos aceptados por el SEAOC según FEMA 440	.141
Tabla 34: Sectorizada de la curva de capacidad formada por Patrón especial según	
SEAOC.	.146
Tabla 35: Objetivos aceptados por el SEAOC según ASCE 41-17.	.146
Tabla 36: Objetivos aceptados por el SEAOC según FEMA 440	.147
Tabla 37: Sectorizada de la curva de capacidad formada por modos fundamentales	-
según ATC-40.	.152
Tabla 38: Objetivos aceptados por el ATC-40 según ASCE 41-17.	.152
Tabla 39: Objetivos aceptados por el ATC-40 según FEMA 440	.153
Tabla 40: Sectorizada de la curva de capacidad formada por patrón especial según A	TC-
40	.158
Tabla 41: Objetivos aceptados por el ATC-40 según ASCE 41-17.	.158

Tabla 42: Objetivos aceptados por el ATC-40 según FEMA 440	159
Tabla 43:Prueba de Normalidad Shapiro Wilk Test hipótesis 2	164
Tabla 44: Estadística de muestra relacionadas Test hipótesis 2	165
Tabla 45: Prueba T student Test hipótesis 2	165
Tabla 46: Prueba de Normalidad Shapiro Wilk Test hipótesis 3	166
Tabla 47: Estadísticos de muestras relacionadas Test hipótesis 3	167
Tabla 48: Prueba T student Test hipótesis 3	167
Tabla 49: Prueba de Normalidad Shapiro Wilk Test hipótesis 4	168
Tabla 50: Estadística de muestra relacionadas Test hipótesis 4	169
Tabla 51: Prueba T student Test hipótesis 4	169

ÍNDICE DE FIGURAS

Figura	1: Secuencia del proceso del pushover.	21
Figura	2: Factor de zona	.23
Figura	3: Factor de Suelo "S"	.23
Figura	4: Periodos Tp y Tl	24
Figura	5: Factor U y Categoría de edificación	25
Figura	6: Sistema Estructural	26
Figura	7: Irregularidades estructurales de Altura (La).	27
Figura	8: Irregularidades estructurales en Planta (Ip).	28
Figura	9: Espectro de Pseudoaceleraciones.	29
Figura	10: Curva de esfuerzo-deformación de acero estructural simple.	31
Figura	11: Modelo para concreto no confinado.	33
Figura	12: Modelo para concreto no confinado	34
Figura	13: Comparación de los modelos esfuerzo deformación para un concreto simple y uno))
confina	do	35
Figura	14 [.] Modelo para concreto confinado	36
Figura	15: Curvas idealizadas de fuerza-desplazamiento	37
Figura	16: Comportamiento del acero y el concreto en situaciones de cedencia	38
Figura	17: Comportamiento del acero y concreto en condición de fluencia	38
Figura	18: Diagrama Momento-Curvatura	39
Figura	19: Diagrama Fuerza axial - Curvatura y Ductilidad de sección en Elevo - Compresión	י ז
i iguia	17. Diagrama i uciza axiai - Curvatura y Ductifidad de sección en riexo - Compresión	40
Figura	20: Curvatura y Rotación de un elemento	40 //1
Figura	21: Diagrama Momento-Rotación simplificado	41 41
Figura	22: Enración de Rótulas plásticas en vigas	⁴¹
Figura	22: 1 Ormación de Roturas plasticas en vigas.	13
Figura	24: Momento Curvatura en columnas	43 //3
Figura	25: Clasificación de falla en muros de corte	$\frac{43}{44}$
Figura	26: Niveles de desempeño para las estructuras	46
Figura	20. Niveres de desempeno para las estructuras	4 0 50
Figura	28: Nivel de desempeño de la estructura por el SEAOC	53
Figura	20: Desempeño relacionado con los parámetros de demanda	54
Figura	30: Características del nivel de desempeño	54
Figura	31: Objetivos de desempeño de seguridad básico para estructuras convencionales	55
Figura	31. Objetivos de desempeno de segundad básica para estructuras convencionales	55
Figura	32. Conversión de la Curra de Consoided a formate ADRS	57
Figura	35. Conversioni de la Curva de Capacidad a formación de capacidad	50
Figura	34: Representación difinear del espectito de capacidad.	30 50
Figura	35: Espectro de demanda reducido.	39
Figura	so: Cada famina de espectro representado su niver diferente de amortiguamento	50
median	27. Equilizzado concertas aparecento de concienta di concerti accontinuato ana di con	39
Figura	37: Familias de espectros representado su nivel diferente de amortiguamiento mediant	
un forn	1ato ADKS.	60 50
Figura	38: Determinación del punto de desempeno de prueba	59
Figura	39: Espectro de respuesta modificado MARDS para uso con Teff.	61
Figura	40: El espectro de respuesta MARDS modificado para Tsec.	62
Figura	41: Modelos inelasticos de componentes estructurales	63
Figura	42: Desarrollo y empalmes de refuerzo.	64
Figura	43: Valores de Co.	66
Figura	44: Valores de Cm.	67
Figura	45: Valores de C1 C2.	68
Figura	46: Curva Sectorizada por el ATC-40.	69

Figura	47: Curva Sectorizada por la SEAOC	. 71
Figura	48: Planos arquitectónicos.	. 77
Figura	49: Corte A-A de la Edificación.	. 78
Figura	50: Ubicación y localización de la Edificación	. 79
Figura	51: Cortante basal en Dirección X.	. 86
Figura	52: Distribución de Fuerzas Laterales por Piso en Dirección X.	. 87
Figura	53: Análisis Símico Estático en Dirección Y	. 88
Figura	54: Distribución de Fuerzas Laterales por Piso en Dirección Y.	. 89
Figura	55: Derivas en Dirección X y Y	. 94
Figura :	56: Desempeño efectiva para ANLE X+	102
Figura :	57: Desempeño efectiva para ANLE X	102
Figura	58: Desempeño efectiva para ANLE Y+.	103
Figura	59: Desempeño efectiva para ANLE Y	103
Figura	60: Desempeño efectiva para ANLE X+.	104
Figura	61: Desempeño efectiva para ANLE X-	104
Figura	62: Desempeño efectiva para ANLE Y+	105
Figura	63: Desempeño efectiva para ANLE Y	105
Figura	64: Desempeño sismo frecuente X+ según ASCE 41-17.	107
Figura	65: Desempeño sismo frecuente X- según ASCE 41-17.	107
Figura	66: Desempeño sismo frecuente Y+ según ASCE 41-17	108
Figura	67: Desempeño sismo frecuente Y- según ASCE 41-17.	108
Figura	68: Desempeño sismo ocasional X+ según ASCE 41-17	109
Figura	69: Desempeño sismo ocasional X- según ASCE 41-17.	109
Figura	70: Desempeño sismo ocasional Y+ según ASCE 41-17.	110
Figura	71: Desempeño sismo ocasional Y- según ASCE 41-17.	110
Figura	72: Desempeño sismo raro X+ según ASCE 41-17	111
Figura	73: Desempeño sismo raro X- según ASCE 41-17	111
Figura	74: Desempeño sismo raro Y+ según ASCE 41-17	112
Figura	75: Desempeño sismo raro Y- según ASCE 41-17	112
Figura	76: Desempeño sismo muy raro X+ según ASCE 41-17	113
Figura	77: Desempeño sismo muy raro X- según ASCE 41-17.	113
Figura	78: Desempeño sismo muy raro Y+ según ASCE 41-17	114
Figura	79: Desempeño sismo muy raro Y- según ASCE 41-17.	114
Figura	80: Desempeño sismo frecuente X+ según ASCE 41-17.	115
Figura	81: Desempeño sismo frecuente X- según ASCE 41-17	115
Figura	82: Desempeño sismo frecuente Y+ según ASCE 41-17	116
Figura	83: Desempeño sismo frecuente Y- según ASCE 41-17	116
Figura	84: Desempeño sismo ocasional X+ según ASCE 41-17	117
Figura	85: Desempeño sismo ocasional X- según ASCE 41-17	117
Figura	86: Desempeño sismo ocasional Y+ según ASCE 41-17	118
Figura	87: Desempeño sismo ocasional Y- según ASCE 41-17	118
Figura	88: Desempeño sismo raro X_{\pm} según ASCE 41-17	110
Figura	89: Desempeño sismo raro X- según ASCE 41-17	110
Figura	90: Desempeño sismo raro Y_{\pm} según ASCE 41-17	120
Figura	90. Desempeño sismo raro V ₋ según ASCE 41-17.	120
Figura	97: Desempeño sismo nuv raro X_{\perp} según ASCE 41-17.	120
Figure	92. Desempeño sismo muy raro X_{-} según ASCE 41-17	121
Figure	1.5. Desempeño sismo muy rato A- seguit ASCE 41-17	121
Figure	7 ± 0 Desempeño sismo muy raro V según ASCE 41-17	122
Figure	06: Desempeño sismo ocasional V + sagún EEMA 440	172
Figura	70. Desempeño sismo ocasional X según ΕΕΜΑ 440.	123
Figure	97. Desempeño sismo ocasional V - sagún EEMA 440	123
Figura	70. Desempeño sismo ocasional V sagún EEMA 440	124 134
rigura	77. Desempeno sisino ocasional 1 - segun FEIVIA 440	124

Figura	100: Desempeño sismo frecuente X+ según FEMA 440	125
Figura	101: Desempeño sismo frecuente X- según FEMA 440	125
Figura	102: Desempeño sismo frecuente Y+ según FEMA 440	126
Figura	103: Desempeño sismo frecuente Y- según FEMA 440	126
Figura	104: Desempeño sismo raro X+ según FEMA 440.	127
Figura	105: Desempeño sismo raro X- según FEMA 440.	127
Figura	106: Desempeño sismo raro Y+ según FEMA 440.	128
Figura	107: Desempeño sismo raro Y- según FEMA 440.	128
Figura	108: Desempeño sismo muy raro X+ según FEMA 440.	129
Figura	109: Desempeño sismo muy raro X- según FEMA 440.	129
Figura	110: Desempeño sismo muy raro Y+ según FEMA 440.	130
Figura	111: Desempeño sismo muy raro Y- según FEMA 440.	130
Figura	112: Desempeño sismo ocasional X+ según FEMA 440	131
Figura	113: Desempeño sismo ocasional X- según FEMA 440	131
Figura	114: Desempeño sismo ocasional Y- según FEMA 440	132
Figura	115: Desempeño sismo ocasional Y- según FEMA 440	132
Figura	116: Desempeño sismo frecuente X+ según FEMA 440	133
Figura	117: Desempeño sismo frecuente X- según FEMA 440	133
Figura	118: Desempeño sismo frecuente Y+ según FEMA 440	134
Figura	119: Desempeño sismo frecuente Y- según FEMA 440	134
Figura	120: Desempeño sismo raro X+ según FEMA 440.	135
Figura	121: Desempeño sismo raro X- según FEMA 440.	135
Figura	122: Desempeño sismo raro Y+ según FEMA 440.	136
Figura	123: Desempeño sismo raro Y- según FEMA 440.	136
Figura	124: Desempeño sismo muy raro X+ según FEMA 440.	137
Figura	125: Desempeño sismo muy raro X- según FEMA 440.	137
Figura	126: Desempeño sismo muy raro Y+ según FEMA 440.	138
Figura	127: Desempeño sismo muy raro Y- según FEMA 440.	138
Figura	128: Sectores propuesto por SEAOC en dirección X+	142
Figura	129: Sectores propuesto por SEAOC en dirección X	143
Figura	130: Sectores propuesto por SEAOC en dirección Y+	144
Figura	131: Sectores propuesto por SEAOC en dirección Y	145
Figura	132: Sectores propuesto por SEAOC en dirección X+	148
Figura	133: Sectores propuesto por SEAOC en dirección X	149
Figura	134: Sectores propuesto por SEAOC en dirección Y+	150
Figura	135: Sectores propuesto por SEAOC en dirección Y	151
Figura	136: Sectores propuesto por ATC-40 en dirección X+	154
Figura	137: Sectores propuesto por ATC-40 en dirección X	155
Figura	138: Sectores propuesto por ATC-40 en dirección Y+	156
Figura	139: Sectores propuesto por ATC-40 en dirección Y	157
Figura	140: Sectores propuesto por ATC-40 en dirección X+	160
Figura	141: Sectores propuesto por ATC-40 en dirección X	161
Figura	142: Sectores propuesto por ATC-40 en dirección Y+	162
Figura	143: Sectores propuesto por ATC-40 en dirección Y	163

ÍNDICE DE ECUACIONES

Ecuación 1. Periodo fundamental de vibración	22
Ecuación 2. Cálculo de la variación del factor C.	24
Ecuación 3. Coeficiente reductor R	26
Ecuación 4. Cálculo para la cortante estático	28
Ecuación 5. Cálculo para las fuerzas sísmicas.	29
Ecuación 6. Calculo el análisis dinámico espectral modal	29
Ecuación 7. Cálculo para decretar el desplazamiento absoluto inelástico	30
Ecuación 8. Cálculo para determinar las derivas.	30
Ecuación 9. Cálculo para determinar la torsión en planta	30
Ecuación 10. Área de endurecimiento	32
Ecuación 11. Cálculo de aceleración espectral.	56
Ecuación 12. Desplazamiento espectral	56
Ecuación 13. Cálculo del Periodo	58
Ecuación 14. El cálculo del factor de modificación se realiza con:	62
Ecuación 15. El factor de modificación.	62
Ecuación 16. Reducción Espectral para Amortiguamiento Efectivo	63
Ecuación 17. Cálculo para determinar la carga de gravedad no lineal	64
Ecuación 18. Cálculo del periodo fundamental efectivo	65
Ecuación 19. Cálculo para determinar el desplazamiento	65
Ecuación 20. Cálculo del factor de modificación	66
Ecuación 21. Cálculo factor a relación de resistencia	67
Ecuación 22. Cálculo la relación de resistencia.	68
Ecuación 23. Cálculo de relación de pendiente	68

RESUMEN

El propósito de esta investigación es analizar el impacto de las cargas monotónicas en el desempeño sísmico de un edificio de concreto armado de 10 niveles situado en Miraflores. El enfoque es cuantitativo, tipo aplicado, nivel explicativo y un diseño cuasi experimental, la muestra no probabilística, para la recolección de datos se utiliza observación experimental mediante las fichas de recopilación de datos de normativas que están validadas que son instrumento, la prueba estadística se obtuvo para analizar los datos. El análisis sísmico (E.030), curva de capacidad (ASCE 41-17), desempeño sísmico (ASCE 41-17 y FEMA 440) y sectorización de la curva de capacidad (SEOACE y ATC-40), se procesa utilizando el software ETABS 19.0.0. Como resultado la estructura cumple con los requisitos de seguridad y estabilidad establecidos en la norma N.P.T E.030, luego al aplicar cargas monotónicas de un patrón especial en comparación con las cargas monotónicas de los modos fundamentales, se produce una variación no tan significativa en el punto de colapso, punto de rendimiento y en la sectorización. En conclusión, las cargas monotónicas analizadas por un patrón especial representativos del comportamiento dinámico en comparación a cargas monotónicas del modo fundamental tienen un impacto significativo en el desempeño sísmico del edificio.

PALABRAS CLAVES: Cargas Monotónicas, Pushover, Desempeño Sísmico y Concreto Armado.

ABSTRACT

The purpose of this research is to analyze the impact of monotonic loads on the seismic performance of a 10-story reinforced concrete building located in Miraflores. The approach is quantitative, applied type, explanatory level and a quasi-experimental design, the non-probabilistic sample, experimental observation is used for data collection through normative data collection sheets that are validated as an instrument, the statistical test is obtained to analyze the data. The seismic analysis (E.030), capacity curve (ASCE 41-17), seismic performance (ASCE 41-17 and FEMA 440) and sectorization of the capacity curve (SEOACE and ATC-40), are processed using the software ETABS 19.0.0. As a result, the structure meets the safety and stability requirements established in the N.P.T E.030 standard, then when applying monotonic loads of a special pattern compared to the monotonic loads of the fundamental modes, a not so significant variation is produced in the collapse point, performance point and in sectorization. In conclusion, the monotonic loads analyzed by a special pattern representative of the dynamic behavior in comparison to monotonic loads of the fundamental mode have a significant impact on the seismic performance of the building.

KEYWORDS: Monotonic Loads, Pushover, Seismic Performance and Reinforced Concrete.

CAPÍTULO I. INTRODUCCIÓN

1.1 Realidad problemática.

En áreas sísmicamente activas como el distrito de Miraflores, el comportamiento sísmico de los edificios es crucial. Existen preocupaciones acerca de la capacidad de los edificios de 10 niveles para resistir eventos sísmicos de magnitudes significativas y asegurar la seguridad de los ocupantes.

Estudios realizados en otros continentes como el europeo, asiático y americano han dejado notar visualmente unas deficiencias a diferencia del sistema habitual de diseño estructural que se exhiben. Aun así, ante la presencia de un sismo de gran magnitud siempre será prioridad tener una cultura de diseño para cuidar la vida de millones de personas. Hoy en día gracias al avance tecnológico se hace posible analizar todo tipo de estructuras mediante los softwares ETABS y el SAP 2000. Estas herramientas son muy útiles porque permiten optimizar los diseños, realizar una variedad de combinaciones de cargas para análisis estáticos no lineales y evaluar el funcionamiento de la edificación. (Sarrazín, 2012).

Tanto en Perú como en todo el mundo, los sismos han causado pérdidas importantes en términos de personas y propiedades. Los movimientos violentos de la superficie provocados por la actividad sísmica en la litosfera causan ondas en el suelo, que destruyen las estructuras civiles directa e indirectamente. La posición del epicentro, los tipos de fallas y las características geológicas de la falla juegan un papel en esto. Es fundamental contar con los más recientes desarrollos tecnológicos en ingeniería sísmica ya que el Perú tiene un riesgo sísmico importante, garantizando nuestra seguridad y vida. (Calcina, 2017).

Hoy en día en las oficinas de los ingenieros estructurales se diseña tomando un

criterio descriptivo muy común realizando el diseño pegado a la normativa peruana E-030 y E-060, pero existe el problema que no lleguemos a conocer realmente la conducta del armazón cuando haya una actividad sísmica de gran magnitud. Como resultado, nuestra investigación propone realizar un análisis no lineal estático y dinámico con el sistema pushover para detectar el comportamiento sísmico (Ojeda y López, 2021).

La necesidad de investigar y comprender cómo aplicar de manera efectiva este análisis con el objetivo de asegurar la seguridad y la capacidad de resistencia estructural ante eventos sísmicos, considerando los parámetros y criterios de diseño sísmico establecido, radica en la realidad problemática del tema del impacto de las cargas monotónicas en el desempeño sísmico de una estructura de hormigón armado de 10 niveles en el distrito de Miraflores, Lima - 2023.

La evaluación del rendimiento sísmico del armado de concreto debe ser priorizada a nivel mundial en las investigaciones posteriores.

Duarte, Martínez y Santamaria (2018), el objetivo es determinar el desempeño y la vulnerabilidad del inmueble de la escuela de medicina de la universidad de El Salvador. Se adquirió el software Sap2000 para llevar a cabo la evaluación. Comenzó con el escenario de la estructura utilizando cargas monótonas y creando materiales en no linealidad para los elementos de la estructura. También se tomó en cuenta la rotulación plástica en vigas y columnas utilizando el sistema de normas FEMA 356, ATC 40 y ASCE 41-13. Se obtuvo un desplazamiento de 15,89 cm, el cual cumplió con el nivel de seguridad establecido para el desempeño estructural.

Salcedo (2017), el objetivo es analizar el rendimiento sísmico de una estructura situada en Barranquilla, siguiendo las especificaciones del código NSR-10. Se implementaron conexiones de tipo rótula plástica en los componentes estructurales y se

adoptó la metodología propuesta por las normas FEMA 273 y ATC 40, para modelar el edificio en la categoría inelástica utilizando el software ETABS. En total, 39 rótulas plásticas alcanzaron los dos sentidos, lo que ocasionó un evento sísmico de gran magnitud con una deriva esperada del 2,59% y un nivel de comportamiento consecuente que resultó en una ocupación inmediata.

Fajardo (2020), el análisis estático lineal y no lineal del edificio Ícaro de la ciudad de Manizales su objetivo, utilizando el programa Estabs para modelar. Se aplicó cargas por gravedad no lineal y cargas horizontales mediante la relación de a las cargas estática en ambos sentidos. Se descarta que el edificio estaba en riesgo de colapsar con una capacidad máximo de 65 cm. Por lo tanto, se determina que el edificio es apropiado ya que el punto de desempeño de un sismo de diseño se encuentra en ocupación inmediata.

Se tiene como precedente a nivel nacional la evaluación del comportamiento sísmico de hormigón armado en las siguientes investigaciones.

Calcina (2017), el propósito es aprender sobre el comportamiento sísmico de una estructura compuesta por diez plantas. El software ETABS 2016, se logró realizar un estudio detallado de una edificación de concreto armado. Se empleó el método sugerido por las normas FEMA y ATC-40, que consistía en examinar primero los edificios dentro del rango elástico antes de pasar al rango inelástico. El análisis pushover encontró una capacidad mayor de 26,84 cm entre los ejes X y Y. Concluyendo, el edificio genera una categoría de ocupación inmediata con un daño posterior menor en los componentes no estructurales.

Samillán (2019), el propósito es obtener información sobre el desempeño sísmico de una edificación de 8 niveles en Chiclayo-Lambayeque. Se completó el modelado y análisis estructural del edificio de acuerdo con los requisitos E-020, E-0.30 y E-060

utilizando el programa ETABS. Después de una evaluación en el rango elástico, se realizó el pushover siguiendo los consejos de ASCE/SEI 41-13 y el enfoque de espectro de capacidad (ATC-40, FEMA). El resultado fue una capacidad máxima de 18,8 cm en los ejes X e Y. Por último, pero no menos importante, la estructura está en condiciones de uso y cumple con la norma ATC-40.

Fuentes (2018), el propósito es determinar el comportamiento sísmico de una edificación de 5 pisos construida en hormigón armado. El modelamiento se realizó utilizando la aplicación de Etabs. Primero se evalúa la categoría elástica utilizando la norma peruana y luego se analizó la categoría inelástica utilizando el ATC-40. Se arroja que, si la edificación supera los 15,62 cm de desplazamiento, alcanza su capacidad máxima. Concluyendo, el edificio sobresale un buen desempeño en términos de seguridad de vida y estabilidad estructural, cumpliendo con los requisitos de la norma ATC-40 (1996), protegiendo la supervivencia humana.

A nivel local, se toman en cuenta las siguientes investigaciones que han evaluado el desempeño sísmico de estructuras de concreto armado como precedente.

Valle (2019), el propósito es analizar el desempeño sismorresistente de una edificación de hormigón armado de ocho plantas en comas. Para determinar el comportamiento frente a la demanda, se ejecutó el modelado utilizando el software ETABS 2017. La capacidad de la curva se convirtió en un espectro de capacidad. Como resultado, se produjo una capacidad máxima de 46,36 cm en la dirección X con una fuerza cortante de 1132,04 tn, mientras que en la dirección Y se produjo un desplazamiento máximo de 17,62 cm con una fuerza cortante de 970,07 tn. Luego se llegó a la conclusión de que el análisis de la dirección X satisface con la capacidad propuesta por FEMA, que afirma que las estructuras típicas de eventos sísmicos ocasionales tienen un nivel de

desempeño estructural operacional, ocupación inmediata, seguridad de vida y prevención de colapso de la estructura. Sin embargo, el eje Y no cumple con los requisitos de la norma ATC-40.

Ojeda y López (2021), la finalidad es analizar el rendimiento sísmico de una edificación construida de concreto armado. Una estructura dentro del rango de prevención de colapso en los ejes X y Y, que protege la supervivencia de los habitantes, se obtiene mediante modelamiento y análisis lineal con el código E0.30 y no lineal mediante la metodología de pushover ATC-40. Con un desplazamiento lineal mayor con rigidez efectiva de 15,90 cm y sin considerar la rigidez efectiva de 9,80 cm. Concluyendo que la conducta de la edificación pertenece a una zona de resguardo de vida, la prevención del colapso se aplica al eje "X" y al eje "Y".

Chavetas (2019), evaluó el desempeño sísmico de la estructura aporticada de 5 niveles mediante el análisis no lineal estático de ciudad de Lima, usando el software ETABS, SAP 2000 y PERFORM-3D, Se aplicó cargas por gravedad no lineal y patrón de cargas estático tipo triangular en horizontales en su centro de masa en ambos sentidos, se realizaron la aplicación de las diferentes magnitudes de sismos sugeridos por Visión 2000 y mediante FEMA 440 se obtuvieron los puntos de desempeño. Resultados: la curva de capacidad mediante el programa Etabs llega 21 cm, mientras con SAP 2000 llega 23 cm y con PERFORM-3D llega 22 cm. Se concluyó que la estructura mediante ambos programas el punto de desempeño para un sismo raro se encuentra en seguridad de vida.

DEFINICIONES CONCEPTUALES:

Análisis Sísmico

La metodología de análisis utilizada evalúa las fuerzas en el epicentro de masas de cada planta del inmueble. Además, permite calcular los desplazamientos y derivas en

ambas direcciones de la edificación, así como las fuerzas de reacción. Estos cálculos se realizan según los requerimientos de cargas establecidos en las Normas Técnicas Peruanas (E0.30, 2020).

Cargas Monotónicas

La "carga monotónica" se refiere a una carga gradual y constante aplicada a una estructura o componentes sin cambios abruptos o fluctuaciones significativas. Esta carga se aplica de forma continua, sin ciclos de carga y descarga repetitivos, y se utiliza para evaluar y diseñar estructuras existentes ante acciones sísmicas. Permite simular condiciones de carga estática, en contraste con las cargas cíclicas que implican ciclos de carga y descarga repetitivos. La aplicación de cargas monotónicas evalúa la capacidad y el comportamiento de estructuras bajo condiciones estáticas, determinando si cumplen con los criterios de seguridad y rendimiento establecidos en el código. Es información esencial para el diseño sísmico adecuado de estructuras existentes (ASCE 41-17, 2017).

Norma ASCE-41-17

El código americano mencionado es una guía que se utiliza para evaluar y acondicionar edificios existentes, a fin de hacerlos más resistentes a los efectos de los terremotos. Este código aborda temas como la cimentación y el riesgo geológico asociado con la ubicación del edificio y establece reglas y procedimientos para el análisis y la aceptación. Publicado por la Sociedad Estadounidense de Ingenieros Civiles en 2017, este código proporciona especificaciones detalladas para fortalecer la infraestructura y mejorar su capacidad de resistencia ante eventos sísmicos. Su aplicación contribuye a garantizar la seguridad y la durabilidad de los edificios existentes en áreas propensas a los terremotos. (Sociedad Estadounidense de Ingenieros Civiles, 2017).

Norma FEMA 440

La Norma Americana FEMA 440 es una guía que evalúa procedimientos estáticos no lineales y realiza análisis sísmicos en estructuras existentes. Esta norma no solo cumple con su propósito de evaluar estructuras, sino que también ofrece sugerencias sobre cómo mejorar su diseño. Es importante mencionar que el trabajo realizado en el marco de esta norma ha sido evaluado y probado por especialistas, lo que permite mejorar el diseño en el futuro. El objetivo de esta norma es la optimización para realizar el pushover, para mejorar la seguridad y la resistencia sísmica de las estructuras existentes (FEMA 440, 2005).

Desempeño sísmico

El grado de capacidad se refiere al límite de daño que un inmueble puede experimentar durante y después de un sismo. Este concepto establece los niveles de daño físico tolerables en el edificio y evalúa el riesgo para la seguridad de sus habitantes debido a los posibles daños inducidos por el sismo. Además, considera la funcionalidad de la edificación en términos de su capacidad para cumplir con su propósito después del evento sísmico. (ATC-40, 1996).

Figura 1

Nota: Recopilado de la norma ASCE/SEI 41-17, 2017.

1.1.2. BASES TEÓRICAS:

1.1.2.1. Análisis Lineal.

La N.T.E.030 SENCICO (2020) establece porcentajes específicos para la carga

viva en diferentes categorías de edificaciones, a saber:

- Se permite el 50% de carga viva para edificios "tipo A" y "tipo B".
- Se permite un 25 % de carga viva para edificios "tipo C".
- Con respecto al peso global que se puede acumular en depósitos, se
- considera el 80% del peso total.
- Se permite un 25 % de carga viva para techos y azoteas.
- En estructuras como silos y tanques, se utiliza el 25 % de la carga viva.

Periodo fundamental de vibración.

La N.T.P E.030 SENCICO (2020) enfatiza la importancia de determinar el modo de fundamental de un edificio, tanto en dirección horizontal como en vertical. Para llevar a cabo este cálculo, se utiliza la siguiente ecuación, que permite determinar el periodo fundamental.

Ecuación 1. Periodo fundamental de vibración.

$$T = 2\pi * \sqrt{\mathbf{M}/\mathbf{K}}$$

Donde:

M = Masa total de la estructura

K = Rigidez estructural

Modos de vibración y masas participativas.

De acuerdo con la Norma E.030 SENCICO (2020), se establece que por cada piso del edificio considerando tres grados de libertad. Esta normativa también exige que los modos fundamentales de masa alcancen al menos un 90% de participación. Sin embargo,

es importante destacar que los tres primeros modos fundamentales son los más predominantes.

Análisis sísmico según la Norma E.030.

Según la N.T.P E.030 SENCICO (2020), el Perú está dividido en cuatro áreas según cómo han reaccionado estas áreas durante varios sismos, como se muestra en la Figura 2. Estas áreas tienen un factor "Z" distinto.

Figura 2

Categoría de zona

ZONA	Z
4	0,45
3	0,35
2	0,25
1	0,10

Nota: Recopilado de la NTP E.030, 2020.

Según la Norma E.030 SENCICO (2020), hay cinco perfiles de suelo diferentes para las condiciones del suelo, y su distribución depende de las características y el tipo de suelo.

Figura 3 Factor de Suelo "S"				
SUELO	S.	S	S.	S.
ZONA	-0	-1	-2	-3
Z4	0,80	1,00	1,05	1,10
Z ₃	0,80	1,00	1,15	1,20
Ζ,	0,80	1,00	1,20	1,40
Z,	0,80	1,00	1,60	2,00

Nota: Recopilado de la N.T.P E.030, 2020.

Figura 4

Periodos Tp y Tl

		Perfil de suelo		
	S0	S1	S2	S3
$T_{\rho}(s)$	0,3	0,4	0,6	1,0
T_{L} (s)	3,0	2,5	2,0	1,6

Nota: Recopilado de la N.T.P E.030, 2020.

Según la N.T.P E.030 SENCICO (2020), la variedad de prolongación sísmica que amplía la energía del sismo depende de las propiedades del sitio, por lo que este factor da forma el espectro, el factor tiene una variación "C" en función del periodo.

Ecuación 2. Cálculo de la variación del factor C.

$$C = 2.5 T < TP$$

$$C = 2.5 \left(\frac{Tp}{Tp}\right) Tp < T < TL$$

$$C = 2.5 \left(\frac{Tp}{Tl}\right) T^{2} > Tl$$

Según N.T.P E.030 SENCICO (2020), define que para diferentes estructuras tienen un distinto desempeño ante un sismo, por ello, que las estructuras se clasifican dependiendo del tipo de uso de la siguiente manera categoría A, B, C y D, como muestra la Figura 5.

Figura 5

Factor U y categoría de edificación

CATEGORÍA	DESCRIPCIÓN	FACTOR U
	A1: Establecimientos del sector salud (públicos y privados) del segundo y tercer nivel, según lo normado por el Ministerio de Salud.	Ver nota 1
A Edificaciones Esenciales	 A2: Edificaciones esenciales para el manejo de las emergencias, el funcionamiento del gobierno y en general aquellas edificaciones que puedan servir de refugio después de un desastre. Se incluyen las siguientes edificaciones: Establecimientos de salud no comprendidos en la categoría A1. Puertos, aeropuertos, estaciones ferroviarias de pasajeros, sistemas masivos de transporte, locales municipales, centrales de comunicaciones. Estaciones de bomberos, cuarteles de las fuerzas armadas y policía. Instalaciones de generación y transformación de electricidad, reservorios y plantas de tratamiento de agua. Instituciones educativas, institutos superiores tecnológicos y universidades. Edificaciones cuyo colapso puede representar un riesgo adicional, tales como grandes homos, fábricas y depósitos de materiales inflamables o tóxicos. Edificios que almacenen archivos e información esencial del Estado. 	1,5
B Edificaciones Importantes	Edificaciones donde se reúnen gran cantidad de personas tales como cines, teatros, estadios, coliseos, centros comerciales, terminales de buses de pasajeros, establecimientos penitenciarios, o que guardan patrimonios valiosos como museos y bibliotecas. También se consideran depósitos de granos y otros almacenes importantes para el abastecimiento.	1,3
C Edificaciones Comunes	Edificaciones comunes tales como: viviendas, oficinas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no acarree peligros adicionales de incendios o fugas de contaminantes.	1,0
D Edificaciones Temporales	Construcciones provisionales para depósitos, casetas y otras similares.	Ver nota 2

Nota: Recopilado de la NTP E.030, 2020.

Según la Norma E.030 SENCICO (2020), los tipos de estructuras se agrupan de acuerdo con el material que se va a utilizar y también en su configuración estructural y redimensionamiento, definiendo un coeficiente de disminución de fuerza sísmica "Ro", define la ductilidad del sistema estructural, incluyendo los diferentes amortiguamientos y la deformación del edificio en el rango observar en la Figura 6.

Figura 6 Sistema Estructural

Sistema Estructural	Coeficiente Básico de Reducción R ₀ (*)	
Acero:		
Pórticos Especiales Resistentes a Momentos (SMF)	8	
Pórticos Intermedios Resistentes a Momentos (IMF)	5	
Pórticos Ordinarios Resistentes a Momentos (OMF)	4	
Pórticos Especiales Concéntricamente Arriostrados (SCBF)	7	
Pórticos Ordinarios Concéntricamente Arriostrados (OCBF)	4	
Pórticos Excéntricamente Arriostrados (EBF)	8	
Concreto Armado: Pórticos Dual De muros estructurales Muros de ductilidad limitada.	8 7 6 4	
Albañilería Armada o Confinada	3	
Madera	7(**)	

Nota: Recuperado de la NTP E.030, 2020.

Según la Norma E.030 SENCICO (2020), Considere que es muy posible que existan irregularidades en la planta y en la altura, lo que dificulta predecir el comportamiento ante un sismo. Por lo tanto, las estructuras pueden presentar varios tipos de irregularidades que deben ser identificadas mediante análisis sísmico para usar sus coeficientes que incrementan la cortante de diseño. El coeficiente de reducción "R" se calcula utilizando la ecuación 3 a continuación.

Ecuación 3. Coeficiente reductor R.

$$R = Ro x Ia x Ip$$

Ro: Sistema estructural Ia: Irregularidad en altura Ia: Irregularidad en planta.

Figura 7

Irregularidades estructurales de Altura (La)

Irregularidad de Rigidez – Piso Blando Existe irregularidad de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 70% de la rigidez lateral del entrepiso inmediato superior, o es menor que 80% de la rigidez lateral promedio de los tres niveles superiores adyacentes. Las rigideces laterales pueden calcularse como la razón entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.	0,75
Irregularidades de Resistencia – Piso Débil Existe irregularidad de resistencia cuando, en cualquiera de las direcciones de análisis, la resistencia de un entrepiso frente a fuerzas cortantes es inferior a 80% de la resistencia del entrepiso inmediato superíor.	
Irregularidad Extrema de Rigidez (Ver Tabla N° 10) Existe irregularidad extrema de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 60% de la rigidez lateral del entrepiso inmediato superior, o es menor que 70% de la rigidez lateral promedio de los tres niveles superiores adyacentes. Las rigideces laterales pueden calcularse como la razón entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga. Irregularidad Extrema de Resistencia (Ver Tabla N° 10) Existe irregularidad extrema de resistencia de un entrepiso frente a fuerzas cortantes es inferior a 65% de la resistencia del entrepiso inmediato superior.	0,50
Irregularidad de Masa o Peso Se tiene irregularidad de masa (o peso) cuando el peso de un piso, determinado según el artículo 26, es mayor que 1,5 veces el peso de un piso adyacente. Este criterio no se aplica en azoteas ni en sótanos.	0,90
Irregularidad Geométrica Vertical La configuración es irregular cuando, en cualquiera de las direcciones de análisis, la dimensión en planta de la estructura resistente a cargas laterales es mayor que 1,3 veces la correspondiente dimensión en un piso adyacente. Este criterio no se aplica en azoteas ni en sótanos.	0,90
Discontinuidad en los Sistemas Resistentes Se califica a la estructura como irregular cuando en cualquier elemento que resista más de 10% de la fuerza cortante se tiene un desalineamiento vertical, tanto por un cambio de orientación, como por un desplazamiento del eje de magnitud mayor que 25% de la correspondiente dimensión del elemento.	0,80
Discontinuidad extrema de los Sistemas Resistentes (Ver Tabla N° 10) Existe discontinuidad extrema cuando la fuerza cortante que resisten los elementos discontinuos según se describen en el item anterior, supere el 25% de la fuerza cortante total.	0,60

Nota: Recuperado de la NTP E.030, 2020.

Figura 8

Irregularidades estructurales en Planta (Ip)

Irregularidad Torsional Extrema (Ver Tabla N° 10) Existe irregularidad torsional extrema cuando, en cualquiera de las direcciones de análisis, el máximo desplazamiento relativo de entrepiso en un extremo del edificio (Δ_{max}) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,5 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso para la misma condición de carga (Δ_{prom}). Este criterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N° 11.	0,60	
Esquinas Entrantes La estructura se califica como irregular cuando tiene esquinas entrantes cuyas dimensiones en ambas direcciones son mayores que 20% de la correspondiente dimensión total en planta.	0,90	
Discontinuidad del Diafragma La estructura se califica como irregular cuando los diafragmas tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma. También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta.	0,85	
Sistemas no Paralelos Se considera que existe irregularidad cuando en cualquiera de las direcciones de análisis los elementos resistentes a fuerzas laterales no son paralelos. No se aplica si los ejes de los pórticos o muros forman ángulos menores que 30° ni cuando los elementos no paralelos resisten menos que 10% de la fuerza cortante del piso.	0,90	

Nota: Recuperado de la NTP E.030, 2020.

Según el Código E.030 SENCICO (2020), se procede al Análisis Estático Lineal.

La ecuación 4 se utiliza para calcular el cortante estático "V".

Ecuación 4. Cálculo para la cortante estático.

$$V = \left(\frac{Z * U * C * S}{R}\right) * P$$

Donde:

Z = Zonificación.

- U = Categoría del edificio.
- C = Factor que amplifica el sísmico.
- S = Categoría de Suelo.
- R = Factor para la disminución de carga.
- $P = Masa \ del \ edificio.$

Además, deberá cumplir con los siguientes requisitos:

 $C/R \ge 0.11$.

Para hallar las fuerzas sísmicas por piso, se realiza mediante la siguiente fórmula.

Ecuación 5. Cálculo para las fuerzas sísmicas.

 $Fi = \alpha i \star V$

 $\alpha i = Pi(hi)k / \Sigma Pj(hj)$

El coeficiente "k" depende del intervalo:

$$T \le 0.5s, k = 1.0$$

$$T > 0.5s, k = (0.75 + 0.5T)$$

Según el código peruano E.030 SENCICO (2020), Para realizar el Análisis Dinámico, primero se establece el espectro de pseudoaceleración, que se muestra en la ecuación 6.

Ecuación 6. Cálculo el análisis dinámico espectral modal.

$$Sa = \left(\frac{Z * U * C * S}{R}\right) * g$$

Figura 9 Espectro de Pseudoaceleraciones.

La N.T.P E.030 SENCICO (2020), establece que los resultados de los desplazamientos de análisis lineal-elástico se multiplicarán por 0.75R para edificaciones regulares y por 0.85R para estructuras irregulares para pasar de un desplazamiento absoluto elástico y un desplazamiento absoluto inelástico. Esto se representa en la ecuación 7, que muestra los resultados de estos análisis.

Ecuación 7. Cálculo para decretar el desplazamiento absoluto inelástico

 $\Delta inelastico = \Delta elastico * 0.75 * R$

De acuerdo con el código peruano E.030 SENCICO (2020), la ecuación 8 calcula las derivaciones de entrepiso y establece que el desplazamiento máximo de referencia de entrepiso no debe superar la fracción de la altura de nivel. El máximo desplazamiento también depende del material utilizado en la estructura.

Ecuación 8. Cálculo para determinar las derivas.

Deriva – entrepiso 1 = $\Delta 1 h 1$ Deriva – entrepiso 2 = $\Delta 2 - \Delta 1/h 2$

De acuerdo con el código peruano E.030 SENCICO (2020), para verificar el sistema estructural tienen parámetros sísmicos definidos para los muros deben prevalecer como elementos de resistencia sísmica y llevándose al menos el 70% de la cortante basal.

De acuerdo con el código peruano E.030 SENCICO (2020), el efecto de irregularidad en planta que debe ser verificada por la ecuación 9.

Ecuación 9. Cálculo para determinar la torsión en planta.

$\Delta \max > 1.3 * \Delta promedio$

Nota: Si el mayor desplazamiento relativo entre pisos Δ máximo es mayor que 1.3 veces el desplazamiento relativo promedio entre los extremos de un solo piso, habrá torsión en la estructura, según la ecuación: La ratio es igual al máximo/al promedio.

1.1.2.2. Análisis Pushover

Modelos Esfuerzo-Deformación para el Acero de Refuerzo.

Modelo de curva completa.

Según Holzer et al. (1975), esta muestra proporciona una descripción más realista del comportamiento real del acero. La figura 10 ilustra las cuatro zonas separadas que componen la representación gráfica de la conexión entre tensión y deformación: una zona elástica, de plasticidad perfecta, de endurecimiento por deformación y de ablandamiento.

Figura 10

Curva de esfuerzo-deformación de acero estructural simple

Nota: Recuperado de Holzer et al, 1975.

Como lo sugirieron Richart et al. (1929), Se supone que la resistencia ilimitada del hormigón y la deformación asociada son iguales a f'co y eco, y se considera que (zco = 0,002).

Donde:

$$\mathcal{E} = \text{Distorsión del acero.}$$

- f = Tensión en el acero.
- E = Módulo elástico.
- $f_y = L$ ímite elástico de acero.
- fu = Carga máxima del acero.

 \mathcal{E}_{sh} = Distorsión al inicio del endurecimiento por deformación.

 $\mathcal{E}_u = deformación asociada con la tensión máxima del acero.$

 $\mathcal{E}_{r} = Distorsión a la rotura del acero.$

La distorsión elástica del acero se puede calcular calculando Ey = fy / E.

Las siguientes ecuaciones definen la curva de tensión-deformación

paramétrica simple del acero estructural:

Para $\mathcal{E} \leq \mathcal{E}$ y (área elástica),

 $f = E\epsilon$

Para $\mathcal{E}_y < \mathcal{E} \leq \mathcal{E}_{sh}$ (área admirablemente plástica),

$$f = f_y$$

Según Holzer et al. (1975). Para $\mathcal{E}_{sh} < \mathcal{E} \leq$

Er (área de endurecimiento y ablandamiento por deformación).

Ecuación 10. Área de endurecimiento.

$$f = fy(1 + r\left(\frac{fu}{fy} - 1\right)e^{(1-r)})$$

Donde,

$$r = \frac{\varepsilon - \varepsilon sh}{\varepsilon u - \varepsilon sh}$$

Modelo de esfuerzo y deformación del concreto

Esquemas para concreto no confinado – Confinado.

• Modelo de Whitne

La sugerencia de (S.C. Whitney, 1987) implica sustituir la forma rectangular del bloque de tensión original por una más simple en concreto que ha sido sometido a compresión (Ottazzi, 2003), ha mencionado anteriormente esta simplificación

Figura 11

Modelo para concreto no confinado.

Nota: Recuperado de Whitney, 1987.

Nota: β es 0.85 de concreto cuyo f'c es menor a 280 kg/cm2.

En donde:

fC: Esfuerzo del concreto.

f'C: Resistencia del concreto.

εc: Distorsión unitaria del concreto.

εcu: La última distorsión unitaria del concreto fue de 0.003.

• Modelo de Hognestad

Según Hognestad (1951), está dividido en 2 partes, la primera parte en forma parabólico de segundo grado y termina en f'c con su deformación unitaria $\mathcal{E}o$; y la otra parte de forma lineal, La deformación comienza en el punto más alto de la curva parabólica y termina cuando se alcanza una deformación unitaria de aproximadamente $\varepsilon cu \approx 0.0038$, con un esfuerzo de 0.85f'.

Figura 12

Modelo para concreto no confinado

Nota: Recuperado de Hognestad, 1951.

Se clasifica:

- f'C: Resistencia a la compresión del hormigón.
- Ec: Módulo de elasticidad del hormigón.
- εCU: Distorsión inherente máxima del concreto aproximadamente igual a 0.0038.
- ϵ 0: Distorsión inherente para f ' c igual a 2f c/Ec.

Modelo de Mander

De acuerdo con la investigación de Mander (1988), se ha propuesto una ecuación fundamental para la carga de compresión monótona que proporciona una visión unificada del comportamiento tensión-deformación del hormigón confinado, aplicable a elementos de forma tanto circular como rectangular y con refuerzo transversal. Esto ha permitido el descubrimiento de diversas variedades de curvas de deformación por tensión. La Figura 13 muestra una comparación entre las curvas de concreto confinado y no confinado.

Figura 13

Comparación de los modelos esfuerzo deformación para un concreto simple y uno confinado.

Nota: Recuperado Mander et al., 1988.

Se clasifica:

f'c: Resistencia máxima del concreto.

f'cc: Resistencia máxima del concreto confinado.

 \sum cc: Deformación unitaria en el punto de carga máxima a compresión

f'I: Esfuerzo de confinamiento efectivo lateral.

ECC: Deformación unitaria máxima del concreto confinado.

• Modelo de Kent y Park Modificado

Según Park et al. (1982), el hormigón se describe en tres secciones diferentes. La región parabólica de tensión máxima es la primera zona conectada a f'c y se alcanza con una deformación unitaria de o, lo que equivale aproximadamente a 0,002. La resistencia del pilar de hormigón, la cantidad de refuerzo horizontal (apoyos) y el espacio entre los apoyos determina la pendiente de este segmento. Una línea descendente que desciende hasta 0,20 de f'c forma la segunda zona. No se cree que la tercera zona sea el punto exacto de ruptura porque muestra deformación, pero no puede absorber la tensión.

Figura 14

Nota: Recuperado de Park, Priestley y Gill, 1988.

En donde:

f'C: El concreto debe tener una resistencia específica a la compresión.

 ε 0: La deformación unitaria relacionada con la resistencia máxima a compresión (f'c) del concreto es de alrededor de 0.002.

bC: Longitud de la sección.

εCU: La deformación unitaria máxima en el concreto es

aproximadamente 0.0038.

S: Separación de los estribos.

 ρS : La proporción de volumen del acero confinado en comparación con el concreto confinado.

1.1.2.3. Curva de capacidad:

De acuerdo con las recomendaciones ASCE/SEI 41-17 (2017), la curva de fuerzadesplazamiento teórico para sistemas no estructurales (NSP) reemplazará la relación no lineal entre el desplazamiento del nodo de control y el cortante base por una relación perfecta. La figura 15 muestra la conexión ideal utilizada para determinar la rigidez de la estructura (Ke), la resistencia lateral efectiva y el límite elástico efectivo de acuerdo con las pautas.

Figura 15

Nota: Recuperado de ASCE/SEI 41-17, 2017.

1.1.2.4. Diagrama Momento-Curvatura:

Para evaluar las características y la capacidad de deformación de cualquier

componente de hormigón cuando se somete a flexión, es fundamental considerar factores como el agrietamiento, la elasticidad y el agotamiento teniendo en cuenta los momentos a los que está expuesto. Según Whitney (1978), el gráfico M- (Momento-Curvatura) muestra estos elementos. Para garantizar una ductilidad aceptable, es fundamental mantener un control preciso de la cantidad de refuerzo en las áreas de tracción y compresión.

Figura 16

Nota: Recuperado de Whitney, 1987.

Figura 17

Comportamiento del acero y concreto en condición de fluencia

Nota: Recuperado de Whitney, 1987

Existe una relación lineal entre el momento y la curvatura cuando los momentos aplicados a una dovela de hormigón armado son menores que el momento de fisuración

(MA). Una vez que la sección se divide, esta relación permanece aproximadamente lineal, aunque con una pendiente alterada, hasta que se logre el límite elástico del acero (My) o el agotamiento del hormigón (Mu). La sección puede continuar distorsionando hasta que el hormigón alcance la tensión máxima (Mu) si el acero llega primero a su límite (Ottazzi, 2011).

Figura 18

Diagrama Momento-Curvatura

Nota: Recuperado de Ottazzi, 2011.

- Condición de agrietamiento (ØA, MA).
- Condición de fluencia (Øy, My).
- Condición de agotamiento o ultimo (Øu, Mu).

Diagrama Momento-Rotación:

Se deben examinar las características elásticas y de rotura de una sección de concreto expuesta a flexión y compresión para determinar su suficiencia de reacción y distorsión. Las características elásticas y de rotura de una sección de concreto están afectadas por la carga axial presente El diagrama de interacción muestra la relación entre la carga y el momento en el eje PM y la curvatura en el eje P. Incluso dentro del rango

de falla regulada por tensión, la sección demuestra ductilidad cuando la fuerza normal

es menor que el punto de falla de equilibrio en flexión-compresión (Ottazzi, 2010).

Figura 19

Diagrama Fuerza axial - Curvatura y Ductilidad de sección en Flexo - Compresión

Nota: Recuperado de Ottazzi, 2011.

El diagrama M se puede utilizar como guía para calcular la rotación inelástica entre dos puntos a lo largo del elemento en la vecindad de la rótula plástica. La longitud equivalente, también conocida como Lp, es la longitud de fluencia equivalente. Sin embargo, es importante recordar que esta longitud también tiene en cuenta las grietas de corte diagonales que no se consideraron al crear el diagrama M. Además, el deslizamiento y la deformación del acero cerca de las fracturas no se tienen en cuenta. debido al concreto sin grietas. Ottazzi (2011) señaló que, como resultado, la rotación inelástica proyectada suele ser más alta de lo que realmente ocurre.

Un diagrama M – θ simplificado y normalizado está autorizado por los códigos ASCE/SEI 41-17 y ATC-40.

Curvatura y Rotación de un elemento

Nota: Recuperado Ottazzi, 2011.

Diagrama Simplificado Momento-Rotación:

De acuerdo con ASCE/SEI 41-17 (2017), la noción de Momento-Rotación (M-R) se emplea en la construcción de un solo elemento donde el número de secciones en la estructura requiere el uso de diagramas aerodinámicos que unen los puntos evaluados por líneas rectas. Es vital tener en cuenta que estos diagramas aproximados solo pretenden representar una parte de la complejidad de la actividad real de los elementos.

Figura 21

1.1.2.5. Rótulas Plásticas:

Normalmente, todas las deformaciones inelásticas se concentran en una región de equivalencia de caída, lo que da la impresión de que la caída y la curvatura son constantes. Por este motivo, se denomina rótula plástica, siendo apropiada la longitud en forma de "L". Otro método para determinar la longitud L en columna y vigas típicas es multiplicarla por 0,5 veces la altura del elemento (L = 0,5h). Según Burgos Namuche en 2007, para lograr un correcto refuerzo de la rotación inelástica, el refuerzo del rotor en forma de L debe colocarse a una distancia constante dentro de la zona de ductilidad, donde son necesarios ciertos parámetros de refuerzo particulares.

Figura 22

Nota: Recuperado de Aguilar, 2008.

Es necesario caracterizar el diseño y comportamiento de las rótulas plásticas para realizar un método pushover. Los estándares ASCE 41-17 proporcionan una variedad de parámetros relacionados con estas uniones.

a = Distorsión inelástica estable.

- b = Distorsión total hasta el punto de colapso.
- c = Resistencia residual.

Vigas.

Las tensiones, la curvatura, la rotación y la longitud de esta curva son representaciones directas de sus tensiones. Es crucial enfatizar que estas deformaciones pueden presentarse de muchas maneras dependiendo de la situación y las características únicas del sistema que se está estudiando.

Figura 23

Momento Curvatura en vigas

Nota: Recuperado de ASCE/SEI 41-17, 2017.

Columnas.

La cortante y la relación de desplazamiento relativo entrepiso representan las

deformidades de esta curva.

Figura 24

Momento Curvatura en columnas

Nota: Recuperado de ASCE/SEI 41-17, 2017.

Muros.

Figura 25

Clasificación de falla en muros de corte.

1.1.2.6. Desempeño sísmico propuesta del ATC - 40.

Esta es una de las muchas combinaciones de niveles que se han creado para elementos estructurales, así como sus niveles equivalentes para elementos no estructurales, que se han creado de forma independiente. Es importante enfatizar que cada nivel se crea y selecciona por sí solo, teniendo en cuenta las características y necesidades distintivas de cada tipo de elemento.

Niveles de desempeño para Elementos Estructurales: SP= Structural Performance.

- SP-1. Inmediata ocupación: Es posible que se hayan producido muy pocos daños estructurales, pero no hubo víctimas y el edificio funcionaba con normalidad.
 - SP-2. Daño contralo: La estructura se encuentra en un estado de deterioro que se encuentra entre la ocupación urgente y la seguridad. Si bien la vida de los ocupantes no está en riesgo, pueden sufrir algunas consecuencias negativas.
 - SP-3. Seguridad: Después de un sismo, los daños no exceden los límites de

seguridad establecidos para evitar el colapso parcial o total de la estructura. Sin embargo, los daños parciales tanto internos como externos a la estructura pueden ser lo suficientemente débiles como para causar lesiones. Después del sismo, el estado se encuentra en un estado de daño que está entre los niveles de ocupación inmediata y seguridad. Aunque la vida de los residentes no se ve afectada, directamente pueden sufrir cierta afectación.

- **SP-4. Seguridad limitada:** Es posible que sea necesario reforzar algunas partes específicas para proporcionar un grado adecuado de seguridad. Se refiere al nivel de daño que se produce entre los límites de seguridad y estabilidad del edificio.
- SP-5. Estabilidad estructural: Esta clasificación muestra el nivel de daño causado durante un terremoto, cuando el sistema estructural está a punto de colapsar por completo o parcialmente. Los componentes estructurales han sufrido daños significativos, perdiendo resistencia y rigidez.
- SP-6. No Considerado: A pesar de que no es una categoría de desempeño, puede ser útil en situaciones en las que se debe evaluar el daño causado por un terremoto y elementos no estructurales. El nivel de desempeño para los componentes no estructurales es: El desempeño del NP no es estructural.
- NP-A. Operacional: Los componentes no estructurales, como equipos y sistemas de construcción, quedaron ilesos y continuaron funcionando normalmente después del terremoto.
- NP-B. Inmediata ocupación: A pesar de la posibilidad de que ocurran ciertas anomalías mientras la maquinaria y el equipo están en uso, los componentes del sistema no estructurales aún están en su lugar.

- NP-C. Seguridad de Vida: A pesar de que no colapsa ni pone en peligro la seguridad humana, daña gravemente una serie de elementos no estructurales tanto dentro como fuera de la estructura. La maquinaria y el equipo pueden dañarse, pero también se pueden reemplazar.
- NP-D. Amenaza: Sí causan daños significativos a los materiales, contenidos y sistemas no estructurales, pero no causan el colapso o la degradación de piezas grandes como barandas y paredes exteriores de mampostería, entre otras cosas. Pero pueden dañar a personas, no solo a grupos.
- NP-E. No Considerado: La ausencia de un nivel de desempeño correspondiente a las partes no estructurales indica que no se ha llevado a cabo una evaluación de estas partes.

Niveles de desempeño para las estructuras.

Niveles de		Niveles de desempeño estructural							
desempeño no estructural	SP1	SP2	SP3	SP4	SP5	SP6			
NP-A	1-A Operacional	2-A	NR	NR	NR	NR			
NP-B	1 - B Ocupación Inmediata	2-B	3-B	NR	NR	NR			
NP-C	1-C	2-C	3-C Seguridad	4-C	5-C	6-C			
NP-D	NR	2-D	3-D	4-D	5-D	6-D			
NP-E	NR	NR	3-E	4-E	5-E Estabilidad structural	No Aplicable			

Nota: Recuperado de ATC-40, 1996.

- **Operacional (1-A):** Si bien el sistema y partes no estructurales muestran daños que impiden que funcione correctamente la estructura después del terremoto, el daño sufrido por la estructura es limitado y no tiene impacto en su integridad estructural.
- Ocupación Inmediata (1-B): El nivel de desempeño generalmente aceptado para infraestructura crucial es Clase A. A pesar del daño potencial a su funcionamiento, se anticipa que muchos de los hábitats y sistemas de la estructura pueden continuar usándose después de un terremoto. Sin embargo, la seguridad de los ciudadanos todavía está garantizada.
- Seguridad de Vida (3-C): Las posibilidades de lesiones humanas son extremadamente baja ya que el edificio se comporta como se esperaba al cumplir con los criterios de resistencia. Tanto las características estructurales como las no estructurales, tales como acabados y fachadas, presentan algunos signos de degradación que pueden provocar fallas y poner en peligro la seguridad del edificio y sus ocupantes.
- Estabilidad estructural (5-E): El sistema sometido a esfuerzos laterales genuinos ha llegado al límite de su margen de seguridad, y la probabilidad de colapso en caso de posibles duplicados es significativa. Sin embargo, el sistema sometido a cargas puntuales sigue funcionando eficazmente para mantener la estabilidad del edificio. Debido a que los componentes estructurales han sufrido grandes daños, los daños no estructurales no requieren investigación. Se recomiendan las evacuaciones y, en ciertas situaciones, la destrucción de estructuras, ya que no se puede asegurar que los residentes o transeúntes sean honestos.

1.1.2.7. Desempeño sísmico propuesta del ASCE/SEI 41-17.

La creación de un sistema alfanumérico de niveles de desempeño que integre el desempeño estructural y no estructural es el objetivo principal. La siguiente es una descripción de cada nivel:

- Ocupación Inmediata (S-1): Cuando una estructura mantiene su rigidez y resistencia después de un terremoto, significa que es segura para ocupar.
- Control de daños (S-2): Los daños de un terremoto se clasifican como niveles S-1 o S-3 de daños de ocupación inmediata.
- Seguridad de vida (S-3): El grado de daño determina la capacidad del edificio para resistir el colapso parcial o total.
- Seguridad Limitada (S-4): Se clasifica por su nivel de daño, que se encuentra entre los niveles de seguridad de vida (S-3) y prevención de colapso (S-5).
- **Prevención de Colapso (S-5):** Indica el grado de daño en el que la estructura ha perdido su resistencia y rigidez, pero todavía puede soportar cargas graves sin un margen de seguridad contra el colapso.
- No Considerado (S-6): Esto indica que no se ha considerado la supervisión o refuerzo de la estructura.
- **Rango Seguridad Mejorado:** Describe los niveles de daño entre el nivel de ocupación inmediata (S-1) y el nivel de seguridad de la vida (S-3).
- Rango Seguridad Reducida: Hay un espectro continuo de daño entre los niveles de seguridad de vida (S-3) y prevención de colapso (S-5).

Rangos y Niveles de Desempeño No Estructural

Se elegirá el nivel de desempeño no estructural de los cinco niveles de seguridad de desempeño no estructural. Los siguientes niveles se describen:

- **Operacional (N-A):** Nivel de deterioro luego de un sismo en el que las partes no estructurales pueden permanecer funcionales.
- Conservación de calidad (N-B): El nivel dañado posterior de un sismo en las partes no estructurales quedan dañadas, por el cual pueden dejar de ser funcionales, sin embargo, se queda en su lugar, manteniéndose segura.
- Seguridad de vida (N-C): Refleja la magnitud del efecto de un terremoto en el que los materiales no estructurales pueden sufrir daños, pero no ponen en peligro la vida humana. Es crucial recordar que estos daños pueden comprometer la operación y el uso adecuado de los componentes no estructurales.
- **Riesgos reducidos (N-D):** No se realiza supervisión ni refuerzan todos los elementos no estructurales en uno de los rangos indicados.
- No considerado (N-E): No considera el armazón.

Identificar los niveles de desempeño de la estructura evaluada. Un número que representa la resistencia estructural, un rango y una letra indican el rango de fatiga de la estructura de su objetivo.

Estados de daño esperado posterior a un sismo

Nota: Recuperado de ASCE/SEI 41-17, 2017.

1.1.2.8. Niveles de Amenaza Sísmica propuesta del ATC-40.

El ATC-40 indica tres niveles diferentes de peligro sísmico para la construcción de estructuras:

Sismo de Servicio (SS): Describe un terremoto que es de tamaño bajo a moderado, ocurre con más frecuencia del 50% del tiempo durante un período de 50 años y regresa en promedio después de alrededor de 72 años. La

magnitud del terremoto en este nivel es aproximadamente la mitad del terremoto relacionado con el terremoto de diseño. Esto es así porque hay menos rigidez y un movimiento más frecuente.

- Sismo de Diseño (SD): Es comparable a un sismo de moderado a fuerte que tiene una probabilidad del 10% de ocurrir, una duración de más de 50 años y se espera que se repita en promedio cada 75 años. Es probable que se produzca al menos un terremoto de esta magnitud durante la vida útil de la estructura.
- Sismo Máximo (SM): El tiempo de retorno promedio es de alrededor de 975 años y tiene una probabilidad de ocurrencias del 5% durante 50 años. Un movimiento de gran tamaño o muy severo lo caracteriza. Este nivel sísmico representa un rango de movimiento establecido en el código de diseño que es alrededor de 1,25 a 1,50 veces la magnitud del terremoto relacionado con el terremoto de diseño.

1.1.2.9. Niveles de Amenaza Sísmica propuesta del ASCE/SEI 41-17.

Sismo con un periodo de retorno medio de 72 años y una probabilidad de excedencia del 50% en 50 años.

- BSE-1E: Tiene una probabilidad de ocurrencia del 5% durante 50 años y un tiempo de retorno típico de alrededor de 975 años. Un movimiento de un tamaño severo o muy severo lo distingue. Este nivel sísmico representa un rango de movimiento especificado en el código de diseño que es alrededor de 1,25 a 1,50 veces la magnitud del terremoto relacionado con el terremoto de diseño.
- **BSE-2E:** Es un terremoto con un 5% de posibilidades de ocurrir más de una vez cada cincuenta años y un tiempo de regreso promediando unos novecientos setenta y cinco años. No debería superar la magnitud del terremoto BSE-2N.-2N.

- BSE-1N: Se compone de aproximadamente dos tercios de la BSE-EN. Es el terremoto de diseño de ASCE 7. Se destaca por tener un tiempo de retorno promedio de alrededor de 475 años y una probabilidad de retorno de alrededor del 10% en 50 años.
- BSE-2N: El Máximo Riesgo de Movimiento (CEFR), que es 1.5 veces el sismo de diseño descrito en la sección 11.4 de ASCE 7-16 del código, se menciona específicamente. Se puede comparar un sismo con este MCER del 2 % en 50 años y un periodo de retorno medio de unos 2475 años.

1.1.2.10. Objetivos del Diseño por Desempeño.

Propuesta del Comité VISION 2000

El comité VISION 2000 usa el intervalo de recurrencia medio y la probabilidad de excedencia para describir los movimientos sísmicos de diseño. El intervalo de recurrencia medio representa el promedio de tiempo entre sismos que causan daños significativos. Por ejemplo, 475 años indica el tiempo promedio entre un sismo de cierta severidad. La probabilidad de excedencia, como un 10% en 50 años, muestra la posibilidad estadística de que prevenga un sismo con mayor severidad en un período específico. El período de retorno (intervalo de recurrencia) TR se relaciona directamente con la probabilidad de excedencia pe para un número de años específicos mediante una fórmula.

$$TR = -\frac{t}{\ln\left(1 - pe\right)}$$

Donde:

R: Periodo de Retorno (años)

- t: Tiempo de exposición (años)
- pe: Probabilidad de Excedencia.

Con el propósito de diseñar edificios, VISION 2000 (1995), divide los terremotos en cuatro categorías: Frecuentes (Recurrencia 43 años; Probabilidad de excedencia 50% en 30 años), Ocasional (Recurrencia 72 años; Probabilidad de excedencia 50% en 50 años), Raros (Recurrencia 475 años; Probabilidad de excedencia 10% en 50 años) y Muy Raros (Recurrencia 950 años; Probabilidad de excedencia 10% en 100 años).

Se puede calcular el valor de conversión entre dos niveles de sismo distintos tomando en cuenta sus períodos de recurrencia, usando la siguiente fórmula:

$$FC = (\frac{T1}{T2})^k$$

Donde:

T1: Recurrencia del sismo de diseño

T2: Recurrencia del sismo objetivo

k: Factor que varía entre 0.3 y 0.4.

Figura 28								
Nivel de desemper	ño de	la e	esti	ructu	ra p	or el	SEA	OC
					-			

	Nivel de d	esempeño sís	mico de la e	structura
Movimiento sísmico de diseño	Totalmente Operacional	Operacional	Seguridad de vida	Prevención de colapso
Frecuente (43 años)	1	0	0	0
Ocasional (72 año)	2	1	0	0
Raro (475 años)	3	2	1	0
Muy raro (950 años)		3	2	1
0. Desempeño inace	ptable			

1. Estructuras básicas o Comunes

- 2. Estructuras esenciales / riesgosas
- 3. Estructuras de seguridad critica

Nota: Recuperado de SEAOC Visión 2000, Committé, 1995.

Desempeño relacionado con los parámetros de demanda.

Nota: Recuperado de SEAOC Visión 2000, Committé, 1995.

Figura 30

Características del nivel de desempeño

Estado de Daño	Nivel de Desempeño	Características principales
Despreciable	Totalmente operacional	Daño estructural y no estructural despreciable o nulo. Las instalaciones continúan prestando sus servicios y funciones después del sismo.
Ligero	Operacional	Daños ligeros. Las instalaciones esenciales continúan en servicios y las no esenciales pueden sufrir interrupciones de inmediata recuperación
Moderado	Seguridad	Daños moderados. La estructura sufre daños, pero permanece estable. Seguridad de ocupantes. Algunos elementos no estructurales pueden dañarse
Severo	Pre-Colapso	Daño estructural severo, en la proximidad del colapso estructural. Falla de elementos no estructurales. Seguridad de ocupantes comprometida
Completo	Colapso	Colapso estructural

Nota: Recuperado de SEAOC Visión 2000, Committé, 1995.

Propuesta del ATC-40:

El ATC-40 se utiliza para diseñar estructuras en tres niveles de movimiento sísmico: servicio, diseño y máximo. Las características principales de cada uno de estos tres tipos de terremotos se describen a continuación. Las letras S, D y M simbolizan los términos servicio, diseño y máximo (Villanueva, 2009).

Figura 31

Objetivos de desempeño de seguridad básica para estructuras convencionales

Movimiento	Niveles de Desempeño del Edificio						
sísmico de diseño	Operacional	Ocupación Inmediata	Seguridad	Estabilidad Estructural			
Sismo de Servicio, SE	-	÷	-	÷			
Sismo de Diseño, SD	-	-	~	÷			
Sismo Máximo, ME	-		2	1			

Nota: Recuperado de ATC-40,1996.

1.1.2.11. Métodos para estimar el punto de desempeño.

Método del Espectro Capacidad ATC - 40

Expresar la capacidad de una estructura para soportar cargas laterales en términos de aceleraciones y desplazamientos es parte del enfoque del espectro de capacidad propuesto por Freeman. Este método se utiliza para trazar la curva de capacidad y la demanda sísmica en todo el rango de aceleraciones. Se puede comparar estos dos espectros para evaluar el nivel de rendimiento del edificio. Para que los hallazgos sean más fáciles de comunicar y analizar, este método se utiliza con frecuencia en el formato espectral de aceleración-desplazamiento (ADRS).

Figura 32 Espectro de Capacidad-Demanda

Nota: Recuperado de ATC-40,1996.

Conversión de la curva de capacidad en espectro de capacidad:

La curva de potencia se presenta inicialmente como un corte basal frente a un desplazamiento máximo, por lo que es necesario transformarla al formato ADSR. El resultado de esta conversión es la creación de una curva de capacidad que se encuentra dentro del espectro de capacidad. Para realizar esta conversión, se utilizan las siguientes ecuaciones:

Ecuación 11. Cálculo de aceleración espectral.

$$Sa = \frac{V/W}{\propto 1}$$

Ecuación 12. Desplazamiento espectral.

$$Sd = \frac{\Delta tope}{PF1\emptyset tope.1}$$
$$\sum_{i=1}^{N} (wi\emptyset i1)/di$$

$$PF1 = \frac{\sum_{i=1}^{N} (wi \emptyset^{1})/g}{\sum_{i=1}^{N} (wi \emptyset^{2} i1)/g}$$

$$\propto 1 = \frac{(\sum_{i=1}^{N} (wi\emptyset i1)/g)^2}{(\sum_{i=1}^{N} \frac{wi}{g}) (\sum_{i=1}^{N} (wi\emptyset^2 i1)/g)}$$

Donde:

W: masa de la estructura.

V: Cortante basal

N: Nivel superior.

PF1: Modo fundamental natural 1.

 α 1: Masa modal del modo 1.

wi/g: Masa aplicada al nivel i.

Øi, 1: Desplazamiento del modo 1 en el nivel i del nivel por el modo 1.

 Δ tope: desplazamiento en el tope (techo) de la curva de capacidad (para cada

valor de corte basal V)

Esto se debe realizar punto a punto. Cálculo de Sai y Sdi.

Figura 33

Conversión de la Curva de Capacidad a formato ADRS.

Nota: Recuperado de ATC-40,1996.

La fórmula siguiente se puede usar para encontrar el período T en cada punto del espectro ADRS. Esta fórmula se puede usar después para convertir la curva de capacidad al formato ADRS (ATC-40, 1996).

Ecuación 13. Cálculo del Periodo.

$$T = 2\pi \sqrt{\frac{Sd}{Sa}}$$

Construcción de la representación bilineal del espectro de capacidad

Para realizar la representación bilineal, se crea una línea desde el principio con una pendiente igual a la rigidez inicial de la estructura. Se dibuja una segunda línea desde el punto de representación predicho api, dpi para cruzar la primera línea en los puntos ay, dy. El objetivo es hacer que el área A1 de la figura anterior, que se especifica, sea igual al área A2. Balanceando las áreas A1 y A2, podemos mostrar gráficamente la energía de igual amplitud asociada con cada porción.

Nota: Recuperado de ATC-40,1996.

Desarrollo del espectro de demanda:

Los factores SRA y SRV deben usarse para reducir los valores del espectro de respuesta para abscisas y ordenadas con un amortiguamiento inicial del 5%. Estos factores de reducción se multiplican para que los valores se ajusten correctamente.

Nota: Recuperado de ATC-40,1996.

La Figura 36 muestra la necesidad de múltiples espectros para que la familia pueda

representar diferentes niveles de amortiguamiento seguro. Como resultado, se representa

la amenaza de peligro sísmico para cada nivel.

Figura 36

Cada familia de espectro representa su nivel diferente de amortiguamiento mediante un formato tradicional.

Nota: Recuperado de ATC-40,1996.

Nota: Recuperado de ATC-40,1996.

Intersección de Espectro de Capacidad con el Espectro de demanda:

Para determinar dónde convergen la capacidad y la demanda en términos de tensión, se requiere un análisis iterativo. Este procedimiento determina el espectro de demanda y relaciona el espectro de capacidad con el espectro de respuesta elástica con un 5% de amortiguamiento. El factor de reducción utilizado para las modificaciones posteriores tendrá en cuenta constantemente la disipación o amortiguamiento eficiente de la energía histérica relacionada con el desplazamiento adquirido en cada paso.

Figura 38

Nota: Recuperado de ATC-40,1996.

1.3.9.2. Método del Espectro de Capacidad (Modificado) FEMA 440

En la estructura y evaluar, el espectro ATC-40 genera fuerza y desplazamiento. Esta técnica de amortiguamiento ayudará a determinar la curva de capacidad.

La resistencia y la rigidez de la estructura pueden verse afectadas si se aplican los máximos valores de amortiguamiento de la norma ATC-40.

El método de linealización equivalente mejorado descrito en el documento FEMA 440 tiene como objetivo determinar la respuesta de desplazamiento máximo del sistema lineal "equivalente" utilizando un período efectivo Teff y un amortiguamiento Beff.

La demanda resultará se modificará utilizando una técnica de espectro para concordar con el método ATC-40 y se realizará la curva de intersección, lo que da como resultado el punto de rendimiento.

Figura 39

Nota: Recuperado de ATC-40,1996.

Para realizar un análisis estadístico, se requieren parámetros lineales, que son el amortiguamiento efectivo Beff y el modo efectivo Teff. Estos parámetros deben usarse para reducir estrictamente los eventos extremos causados por la reacción de un sistema

inelástico genuino.

Espectro de Respuesta Aceleración-Desplazamiento Modificado (MADRS) para uso con periodos secantes.

El ATC-40 utiliza una capacidad tradicional que se basa en un período lineal del espectro. Sin embargo, se podría utilizar una táctica más compleja para mejorar el proceso de evaluación de la capacidad.

Figura 40 *El espectro de respuesta MARDS modificado para Tsec*

Nota: Recuperado de ATC-40, 1996.

Ecuación 14. El cálculo del factor de modificación se realiza con:

$$M = \frac{amax}{aeff}$$

Ecuación 15. El factor de modificación.

$$M = \left(\frac{Teff}{Tsec}\right)^2 = \left(\frac{Teff}{T0}\right)^2 \left(\frac{T0}{Tsec}\right)^2$$
$$Donde: \left(\frac{Teff}{Tsec}\right)^2 = \frac{1 + \alpha (\mu - 1)}{\mu} \quad \alpha = \frac{\left(\frac{api - ay}{dpi - dy}\right)}{\left(\frac{ay}{dy}\right)}$$

Ecuación 16. Reducción Espectral para Amortiguamiento Efectivo.

$$(Sa)\beta = \frac{(Sa)0}{B(\beta \text{eff})}$$

$$Donde: B = \frac{4}{5.6 - \ln\beta \text{eff(in\%)}}$$

Método de los Coeficientes de Desplazamientos modificado ASCE 41-17.

Modelos de idealización de vigas-columnas-muros.

Cinco tipos de modelos de idealización se proponen por Deierlein, Reinhorn y Willford (2010), para simular el comportamiento inelástico de los componentes estructurales como vigas, columnas y muros.

Figura 41

Modelos inelásticos de componentes estructurales

Desarrollo y empalmes de refuerzo.

Según ASCE 41-17 (2017), para el desarrollo inadecuado o empalme de barras rectas en vigas y columnas: para procedimientos no lineales debe ser permitido asumir que el refuerzo retiene el esfuerzo máximo, hasta los niveles de deformación definidos por la Figura 42.

Desarrollo y empalmes de refuerzo

				Modeling Paramete	A	cceptance Criteria	ť	
		Residual		Residual	Plastic	Rotation Angle (r	adians)	
			Plastic Rotation	Angle (radians)	Strength Ratio	P	erformance Leve	1
Conditions				b	c	ю	LS	CP
Condition i. B	eams controlled by flexure*	02. 1944 -						
Par	Transverse reinforcement ^e	$\frac{V^{e}}{D_{w}d\sqrt{t_{e0}}}$						
≤0.0	C	<3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05
≤0.0	C	≥6 (0.5)	0.02	0.04	0.2	0.005	0.02	0.04
≥0.5	C	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
≥0.5	C	≥6 (0.5)	0.015	0.02	0.2	0.005	0.015	0.02
≤0.0	NC	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03
≤0.0	NC	≥6 (0.5)	0.01	0.015	0.2	0.0015	0.01	0.015
≥0.5	NC	≤3 (0.25)	0.01	0.015	0.2	0.005	0.01	0.015
≥0.5	NC	≥6 (0.5)	0.005	0.01	0.2	0.0015	0.005	0.01
Condition ii. B	learns controlled by shear ⁰							
Stimup spacin	$q \le d^2$		0.0030	0.02	0.2	0.0015	0.01	0.02
Stimup spacin	g > d2		0.0030	0.01	0.2	0.0015	0.005	0.01
Condition III. E	Seams controlled by inadeq	uate developm	ent or splicing along	the span ^a				
Stimup spacin	$g \le d^2$		0.0030	0.02	0.0	0.0015	0.01	0.02
Stimup spacin	$g > d^2$		0.0030	0.01	0.0	0.0015	0.005	0.01
Condition iv.	Beams controlled by inadeq	uate embedme	nt into beam-colum	n joint ^o				
Berthald -		1651 (165 (165	0.015	0.03	0.2	0.01	0.02	0.03

Nota: Recuperado de ASCE/SEI, 41-17, 2017.

Cargas por gravedad de componentes y combinaciones de carga:

Para procedimientos lineales, se considerarán las siguientes acciones causadas por gravedad de carga (QG) junto con las acciones causadas por fuerzas sísmicas. Si hay una combinación de efectos o acciones de cargas gravitatorias y fuerzas sísmicas, la acción provocada por cargas de gravedad (QG), se calculará utilizando la siguiente fórmula.

Ecuación 17. Cálculo para determinar la carga de gravedad no lineal.

$$QG = 1.1(QD + QL + QS)$$

Donde:

QD = Acto provocada por cargas muertas;

QL = Acto causada por carga viva, igual al veinticinco por ciento de la no reducida carga viva.

QS = Acto provocado por una carga de nieve efectiva.

Determinación de fuerzas, desplazamiento y deformaciones: FEMA 440 y

ASCE 41-17.

El período fundamental efectivo en la dirección en cuestión se calculará mediante la conexión de una curva específica entre la fuerza y el desplazamiento. Durante el análisis, el cálculo meticuloso del período fundamental efectivo (Te) debe ser considerado:

Ecuación 18. Cálculo del periodo fundamental efectivo.

$$Te = Ti \sqrt{\frac{Ki}{Ke}}$$

Dónde:

Ti = Modo fundamental elástico en la dirección (s), por análisis dinámico.

Ki = Rigidez lateral elástica del edificio en la dirección.

Ke = Rigidez lateral efectiva del edificio en la dirección bajo consideración.

La siguiente formación se ajusta para encontrar el objetivo en cada piso, t.

Ecuación 19. Cálculo para determinar el desplazamiento.

$$\delta 1 = CoC1C2Sa \frac{Te^2}{4\pi^2}g$$

Dónde:

Sa = La conexión de amortiguación de la estructura en la dirección y la velocidad del espectro de reacción durante el período efectivo fundamental.

g = Aceleración de la gravedad;

C0 = La deformación del techo en un sistema de múltiples grados de libertad (MDOF) se calcula utilizando un modelo análogo de un solo grado de libertad (SDOF). El del primer modo en el nodo de control se multiplica por la densidad de masa del primer modo y el factor de masa integrado se multiplican por las coordenadas de un vector de forma que representa la forma deformada del edificio

en el nodo de control. traslado de destino. El factor de transformación C1, que se utiliza para correlacionar las deformaciones inelásticas más altas encontradas para

una respuesta elástica lineal, se incluye en la siguiente ecuación.

Para modos inferiores a 0,2s,

No se requiere tomar C1 como mayor el valor en T = 0.2s.

Para modos superiores a 1,0 s, C1 = 1,0s.

Ecuación 20. Cálculo del factor de modificación.

$$C1 = 1 + \frac{Ustrengh - 1}{aTe^2}$$

Dónde:

a = Coeficiente de clase de sitio:

= 130 para las clases A o B;

= 90 para Sitio Clase C;

Figura 43

Valores de Co

	Shear B	uildings ^a	Other Buildings
Number of Stories	Triangular Load Pattern (1.1, 1.2, 1.3)	Uniform Load Pattern (2.1)	Any Load Pattern
1	1.0	1.0	1.0
2	1.2	1.15	1.2
3	1.2	1.2	1.3
5	1.3	1.2	1.4
10+	1.3	1.2	1.5

Nota: Recuperado de ASCE/SEI, 41-17, 2017.

La ecuación 14 muestra la relación entre la demanda de resistencia elástica y el coeficiente de límite elástico. Cuando la fuerza supera la máxima no se puede usar NSP. C2 = factor de modificación para representar el efecto de histéresis, degradación cíclica de la rigidez y deterioro de la resistencia en el máximo desplazamiento. La ecuación 21 calcula la respuesta. C2 = 1,0 para periodos superiores a 0,7 s.

Ecuación 21. Cálculo factor a relación de resistencia.

$$C2 = 1 + \frac{1}{800} \left(\frac{Ustrengh - 1}{Te}\right)^{2}$$

Vy = Se establece el límite elástico del edificio en la dirección estudiada utilizando los resultados del análisis no lineal de la respuesta sísmica. Estas investigaciones se utilizan para crear una curva fuerza-desplazamiento idealizada para reflejar el comportamiento no lineal del edificio.

W = Peso sísmico efectivo.

Cm = El factor de masa efectivo de la estructura puede calcularse utilizando la tabla. El factor modal efectivo de participación masiva, o Cm, se puede obtener utilizando el análisis de valor propio para el modo fundamental. Si el período fundamental, T, es mayor que 1, 1.0 será el valor de Cm.

Valores de Cm.

No. of Stories	Concrete Moment Frame	Concrete Shear Wall	Concrete Pier-Spandrel	Steel Moment Frame	Steel Concentrically Braced Frame	Steel Eccentrically Braced Frame	Other
1-2	1.0	1.0	1.0	1.0	1.0	1.0	1.0
3 or more	0.9	0.8	0.8	0.9	0.9	0.9	1.0

Nota: Recuperado de ASCE/SEI, 41-17, 2017.

Nota: Si el período fundamental del edificio es mayor que 1,0 segundo, el factor Cm tendrá un valor de 1,0. En el caso de estructuras con rigidez pos flujo negativo, la ecuación 22 se consolidó para encontrar el valor máximo de la relación de resistencia, también conocido como Max.

Ecuación 22. Cálculo la relación de resistencia.

$$Umax = \frac{\Delta d}{\Delta y} + \frac{I\alpha eI^{-h}}{4}$$

Dónde

 Δd : Menos del desplazamiento objetivo, $\delta t,$ o del correspondiente desplazamiento al

cortante base máximo.

Figura 45

 Δy = Desplazar al límite elástico efectivo de la Tabla 12; h = 1 b 0,15 ln Te.

 $\alpha e = La$ relación de pendiente después del rendimiento efectivamente negativo.

Valores de C1 C2							
Fundamental Period	<i>m</i> _{max} < 2	2 ≤ <i>m</i> _{max} < 6	$m_{\max} \ge 6$				
$T \le 0.3$ 0.3 < $T \le 1.0$ T > 1.0	1.1 1.0 1.0	1.4 1.1 1.0	1.8 1.2 1.1				

Nota: Recuperado de ASCE/SEI, 41-17, 2017.

La ecuación 21 se utiliza para calcular la relación de pendiente efectiva negativa

posterior al rendimiento, αe .

Ecuación 23. Cálculo de relación de pendiente.

$$\alpha e = \alpha p - \Delta + \lambda(\alpha 2 - \alpha p - \Delta)$$

Dónde

 $\alpha 2$ = La tabla 12 muestra la razón de pendiente posterior al desempeño negativo.

Los efectos P- Δ , la degradación en ciclo y la degradación cíclica están incluidos en la relación.

 $\alpha P - \Delta$ = La razón de la pendiente negativa es el resultado de los efectos P- Δ

 $\lambda = \text{factor de efecto de campo cercano.}$

= 0,8 si SX1 \ge 0,6 para BSE-2N.

= 0,2 si SX1 \leq 0,6 para BSE-2N.

1.1.2.12. Criterios de aceptación:

La ATC-40 (1996) es el criterio de aceptación para el punto de desempeño por niveles, que establece las máximas desviaciones permitidas para limitar los desplazamientos de los componentes estructurales.

Figura 46

Curva Sectorizada por el ATC-40

Nota: Recuperado de ATC-40, 1996.

Curva Sectorizada por la SEAOC.

Nota: Recuperado de SEAOC Visión 2000 Committe, 1999.

1.2 Formulación de problema

1.2.1. Problema general

¿Cuál es el impacto de cargas monotónicas en el desempeño sísmico de un edificio de concreto armado de 10 niveles en el distrito de Miraflores, Lima - 2023?

1.2.2. Problemas específicos

¿Cuál es el comportamiento del modelo estructural al considerar los planos estructurales y aplicar el análisis sísmico estático y dinámico de acuerdo con los requisitos establecidos en la norma E.030?

¿En qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en la curva de capacidad mediante la ASCE 41-17?

¿En qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en los puntos de desempeños de los diferentes niveles de sismos propuesto por Visión 2000 mediante la ASCE 41-17 y FEMA 440?

¿En qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en la sectorización de la curva de capacidad mediante la SEAOC y ATC-40?

1.3. Objetivos

1.3.1. Objetivo general

Analizar el impacto de cargas monotónicas en el desempeño sísmico de un edificio de concreto armado de 10 niveles en el distrito de Miraflores, Lima - 2023.

1.3.2. Objetivos específicos

Analizar y determinar el comportamiento del modelo estructural al considerar los planos estructurales y aplicar el análisis sísmico estático y dinámico de acuerdo con los requisitos establecidos en la norma E.030.

Determinar en qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en la curva de capacidad mediante la ASCE 41-17.

Determinar en qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en los puntos de desempeños de los diferentes niveles de sismos propuesto por Visión 2000 mediante la ASCE 41-17 y FEMA 440.

Determinar en qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en la sectorización de la curva de capacidad mediante la SEAOC y ATC-40.

1.4. Hipótesis

1.4.1 Hipótesis general

Las cargas monotónicas tienen un impacto significativo en el desempeño sísmico de un edificio de concreto armado de 10 niveles en el distrito de Miraflores, Lima - 2023.

1.4.2 Hipótesis específicos

Mediante el análisis sísmico estático y dinámico de acuerdo con los requisitos establecidos en la norma E.030, se espera que el comportamiento del modelo estructural demuestre una mayor resistencia y capacidad de respuesta frente a cargas sísmicas, garantizando la seguridad y estabilidad de la estructura.

La curva de capacidad mediante la aplicación de cargas monotónicas según el patrón especial tendrá un cambio considerable en comparación de la curva de capacidad aplicada mediante el modo fundamental mediante la ASCE 41-17.

Los puntos de desempeños de los diferentes niveles de sismos propuesto por Visión 2000 mediante la aplicación de cargas monotónicas de patrón especial tendrán un cambio significado mediante la aplicación de modo fundamental mediante la ASCE 41-17 y FEMA 440.

Mediante la aplicación de cargas monotónicas según el patrón especial tendrá un cambio considerable en la sectorización de curva de capacidad a comparación de la aplicación del modo fundamental mediante la SEAOC y ATC-40.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de Investigación:

Enfoque cuantitativo

Se mide y analiza los fenómenos causales del impacto de cargas monotónicas en el desempeño sísmico, mediante la recopilación de datos numéricos y se utilizan medidas estadísticas como la prueba de hipótesis para analizar los datos numéricos.

Tipo aplicada

Se enfoca en un problema práctico y específico relacionado con la seguridad sísmica de edificios en una ubicación concreta. Los resultados obtenidos tendrán una relevancia directa en la toma de decisiones y podrán ser aplicados en el diseño y construcción de edificaciones similares en esa área.

Nivel explicativo

Se busca explicar cómo las cargas monotónicas afectan al desempeño sísmico de la estructura, analizando las posibles relaciones de causa y efecto. Usará métodos de recolección y análisis de datos para examinar y explicar la relación entre estas variables.

Diseño cuasi experimental:

Se manipula la variable independiente que viene hacer las cargas monotónicas, pero no en su totalidad, debido a que tiene limitaciones inherentes, como el factor de suelo, que podrían afectar el desempeño sísmico.

2.2. Población y muestra:

2.2.1 Población.

Todas las edificaciones que se encuentran conformados por concreto armado y tengan una estructuración de muros estructurales de 10 niveles y se encuentran localizados en el distrito de Miraflores, Lima, Perú. Están diseñados siguiendo los

parámetros establecidos en las Normas Técnicas E.030-2020 y E.060-2020 del RNE en la ciudad de Lima.

2.2.2 Muestra.

Para nuestra investigación aplicamos la herramienta de muestreo no probabilístico, por juicio de investigador, por lo que el edificio a evaluar está diseñado bajo las normativas E-030 y E-060 del año 2020 del RNE. La muestra es un edificio con sistema estructural de muros estructurales ubicado en el distrito de Miraflores, Lima Perú.

Descripción de la muestra:

El edificio de 10 pisos, construido con muros de concreto armado, tiene una altura de planta de 21 por 28 metros y un área total de 462 metros cuadrados y está destinada Oficinas con una altura de entrepiso de 3.3 metros y una altura total de 33 metros, considerando un suelo tipo S1.

Primer nivel:

Se disponen de estacionamientos públicos, con espacio para 4 automóviles y 1 espacio adicional destinado específicamente a discapacitados. Estos estacionamientos se encuentran ubicados frente a la avenida principal. Por otro lado, se encuentran los estacionamientos personales, con capacidad para 2 autos, situados frente a la avenida secundaria. El ingreso peatonal puede realizarse de dos maneras: a través de la puerta principal, que se encuentra frente a la avenida principal, o mediante una entrada secundaria, ubicada frente a la avenida secundaria. En el ingreso principal, se encontrará una mesa de partes destinada a la atención al cliente. Además, desde este punto se tendrá acceso tanto a la escalera principal como al ascensor, los cuales permiten acceder a los pisos superiores.

Nivel típico:

Además de varias oficinas, tiene una sala de usos múltiples y un comedor. Cada edificio de oficinas cuenta con servicios higiénicos. Además, tiene la escalera principal y se encuentra en la parte trasera. Cada edificio de oficinas cuenta con servicios higiénicos. En cada nivel, hay públicos diferenciados para hombres y baños mujeres, ubicados frente al corredor principal.

"IMPACTO DE CARGAS MONOTÓNICAS EN EL DESEMPEÑO SISMICO DE UN EDIFICIO DE CONCRETO ARMADO DE 10 NIVELES EN EL DISTRITO DE MIRAFLORES, LIMA - 2023"

Figura 48

Planos arquitectónicos

Figura 49

Corte A-A de la Edificación

CORTE A-A ESC:1/75

Figura 50

Ubicación y localización de la Edificación

Nota: Recuperado de Google Maps.

2.3. Técnica e instrumentos de recopilación y análisis de datos:

2.3.1. Técnicas de recolección de datos:

La técnica de procesamiento de datos ocurre en la observación experimental en condiciones que son manejadas por el investigador, quien tiene la facultad de cambiar una o más variables. Se emplean métodos sistematizados y procesos operativos para abordar los problemas.

El llenado de "Fichas de Registro" para capturar los datos, la evaluación manual de los datos, la identificación de números conflictivos, el análisis de datos y la construcción de gráficos comparativos son algunos de los enfoques que se utilizarán.

2.3.2. Instrumentos de Recolección de datos:

Se utilizarán "Fichas de recopilación", que se solidifica junto con el programa ETABS V19, se solidifica para recopilar los datos (Anexo N.º 8.1). Este proceso nos proporciona datos importantes como los desplazamientos entre pisos, la presencia de rótulas plásticas, las derivas máximas, la capacidad y el punto de desempeño de cada

elemento o planta del edificio frente a amenazas sísmicas. Para analizar y determinar nuestros objetivos de manera efectiva, este enfoque integral nos permitirá obtener una base de datos confiable.

2.3.3. Validación

Para adquirir datos confiables las **"Fichas de recopilación"** son extraídas de normas E.030, E.060, ASCE 41-17, FEMA 440, SEAOCE Y ATC-40 ya validadas, por otro lado, se debe verificar la calidad de la información. También se menciona la capacidad de una prueba para representar, caracterizar o anticipar el atributo importante para el evaluador (Universidad Católica de los Ángeles de Chimbote, s.f.). Esto se conoce como la precisión con la que un instrumento mide lo que está diseñado para evaluar.

Esto se puede realizar mediante:

• **Revisión manual:** se revisa la información de forma independiente con hojas de Excel de la información proporcionada del software ETABS.

2.3.4. Análisis de datos:

Mediante la prueba de hipótesis se realiza el análisis de datos con el programa **SPSS V-21**. Ahora como instrumentos "Fichas de recopilación" de análisis se utilizaron tablas, gráficos y pruebas estadísticos los cuales nos servirán para analizar los resultados obtenidos del impacto de cargas monotónicas en el desempeño sísmico. Se analizan los desplazamientos máximos, las derivas máximas entre pisos mediante la norma E.030, por otro lado, las rótulas plásticas en elementos estructurales, la curva de capacidad y el desempeño frente a diferentes niveles de sismos (Frecuentes, Ocasional, Raro y Muy Raro) serán revisados de acuerdo con los estándares establecidos por los coeficientes ASCE 41-17 y FEMA 440. Adicionalmente, se cumplirán las metas establecidas para la sectorización de la curva de capacidad y se examinarán los efectos de las cargas

monotónicas en el desempeño sismo de acuerdo con los estándares establecidos por ATC

40 y SEAOC.

2.4. Procedimiento:

2.4.1. Análisis Sísmico de acuerdo con N.T.P E.030.

- Modelado estructural de acuerdo con los planos en Etabs 19.
- Asignaciones de metrados de cargas de acuerdo con la Norma E.020.
- Modos de vibración y masas participativas E.030.
- Análisis estático de acuerdo con la Norma E.030.
- Análisis dinámico de acuerdo con la Norma E.030.
- Verificación de las irregularidades en planta, altura y derivas inelásticas de acuerdo con la norma E.030.

2.4.2. Pushover de acuerdo con la norma ASCE 41-17 (Art. 7 NSP).

- No lineales de los materiales (Concreto Mander y Acero Simple) y definición de los refuerzos en columnas, vigas y muros estructurales (Plano estructurales)
- Modelo Plasticidad y Rigidez para elementos estructurales (Columnas y Placas tipo fibra (NIST y Vigas tipo Rotulas concentradas) (Tabla 10.7).
- Asignación de carga gravitacional no lineal (Art. 7.2.2).
- Definición del modo de control (centro del diafragma) (Art. 7.4.3.2.2).
- Creación de Caso de cargas monotónicas (Mediante el modo fundamental (Art. 7.4.3.2.3) y Mediante el Patrón especial (Análisis Dinámico E.030)
- Desplazamiento general del nudo de control.
- Verificación, Análisis y Comparación de la curva de capacidad formada por las cargas monotónicas mediante el modo fundamental y mediante el patrón

especial.

2.4.3. Evaluación de desempeño sísmico.

- Demanda sísmica propuesto por Visión 2000 (Frecuente, Ocasional, Raro y Muy Raro).
- Establecer el punto de desempeño de las dos curvas de capacidad formada por el modo fundamental y el patrón especial para cada nivel de amenazas sísmicas de acuerdo con ASCE 41-17 (Art. 7.4.3.3.2) y FEMA 440 (Art 6.3)
- Establecer la sectorización de las dos curvas de capacidad por la SEAOC y del ATC-40.
- Verificación, Análisis y Comparación del desempeño sísmico formada por las cargas monotónicas mediante el modo fundamental y mediante el patrón especial.

2.5. Aspectos éticos:

En la realización de esta investigación, es fundamental abordar aspectos éticos para garantizar el respeto y la integridad de todas las partes involucradas. Se deben obtener consentimientos informados de los participantes y respetar su privacidad y confidencialidad. Además, se debe garantizar la integridad científica evitando el plagio, citando adecuadamente las fuentes y respaldando las afirmaciones con pruebas sólidas. Es importante utilizar los recursos de manera responsable y considerar el impacto ambiental. En conclusión, esta tesis se desarrollará siguiendo los principios éticos para asegurar la calidad y el respeto en la investigación.

MATRIZ OPERACIONALIZACIÓN-TRAZABILIDAD.

VARIABLES	DEFINICIÓN CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	SUBDIMENSIONES	INDICADORES
					Secciones del concreto
				Planos Estructurales	Área de acero
		El coffinione Etcho	Modelo estructural		Resistencia del concreto
	Una carga monotónica	El soltware Etabs		Análisis sísmico	Estático
	es aquella que se anlica	obtener datos confiables		Analisis sistilico.	Dinámico
	gradualmente v sin	sobre el		Comportamiento no lineal	Concreto (Mander)
V. Independiente	interrupciones.	comportamiento de		del material.	Acero (simple)
(Cargas Monotónicas)	manteniendo una dirección y magnitud	materiales y estructuras	Curra da conscidada		Centro masa y rigidez
	constantes (ASCE 41- 17, 2017).	en pruebas de ingeniería, asegurando la consistencia y reproducibilidad de los resultados.	Curva de capacidad: Modo Fundamental. Patrón especial.	Modelos de idealización de vigas-columnas-muros	Rótulas Plásticas (Tipo fibra y rotula)
				Carga sísmica no lineales.	Carga por gravedad no lineal.
					Frecuente.
	Evaluación del comportamiento y		Punto de Desempeño.	Espectro de demanda Sísmica (FEMA 440 EL)	Ocasional.
					Raro
					Muy raro.
					Frecuente.
				Espectro de demanda	Ocasional.
		evaluación del		Sísmica (ASCE 41-13)	Raro
V. Dependiente		edificio durante un			Muy raro.
(Desempeño	durante un evento	evento sísmico			Totalmente Operacional
Sísmico)	sísmico (ATC-40	mediante el software		Propuesto por $\Delta TC_{-}/0$	Operacional
	1996)	Etabs 19.0.0		Tiopuesto por ATC-40.	Seguridad de vida.
	1770).	Liu05 17.0.0.	Sectorización de la		Prevención de Colapso.
			curva de capacidad		Ocupacional.
			eur va de capacidad.		Funcional.
				Propuesto por SEAOC.	Seguridad de vida.
					Prevención al Colapso.
					Colapso

-

"IMPACTO DE CARGAS MONOTÓNICAS EN EL DESEMPEÑO SISMICO DE UN EDIFICIO DE CONCRETO ARMADO DE 10 NIVELES EN EL DISTRITO DE MIRAFLORES, LIMA - 2023"

	MEDICION
	Ancho, largo, alto
	cm2
]	kg/cm2
	Norma E0.30
	Resistencia. Criterio de
	aceptación de esfuerzo,
	Curva de esfuerzo v
	deformación.
-	Registro de las deformaciones y desplazamientos durante el análisis.
	Peso, desplazamiento,
	aceleraciones, fuerzas.
 	Desplazamiento espectral - Aceleración espectral
	Desplazamiento - Fuerza en la base
	Medición de porcentaje de desplazamientos R. Inelásticos de la curva de capacidad

CAPÍTULO III. RESULTADOS

3.1. Análisis sísmico según la norma E.030.

3.1.1 Consideración del plano estructural.

Tabla 1

Cuadro de materiales en concreto y acero

ncreto	Acero		
f'c=210 kg/cm2	Esfuerzo de fluencia.	Fy = 4200 kg/cm2.	
EC=15000√ <i>f</i> ′ <i>c</i> =	Esfuerzo de fluencia	Fu = 6300 kg/cm2.	
217,370.651 kg/cm2	último.		
$\mu c = 0.15$	Módulo de	Es=2000000 kg/cm2.	
	elasticidad		
$GC = EC/2(\mu c + 1)) =$	= 90,571.105 kg/cm2		
	ncreto f'c=210 kg/cm2 EC=15000 $\sqrt{f'c}$ = 217,370.651 kg/cm2 μ c= 0.15 GC=EC/2(μ c +1)) =	ncretoAcf'c=210 kg/cm2Esfuerzo de fluencia.EC=15000 $\sqrt{f'c}$ =Esfuerzo de fluencia217,370.651 kg/cm2último. μc = 0.15Módulo de elasticidadGC=EC/2(μc +1)) = 90,571.105 kg/cm2	

Nota: Datos recopilados según el plano estructural.

Tabla 2

Cuadro elaborado para el metrado de cargas vivas y muertas

Carga vi	va	Carga muerta				
Oficinas:	250 kg/ m2.	Tabiquería:	150 kg/ m2.			
Sala de archivos:	500 kg/ m2.	Acabado:	50 kg/ m2.			
Lugaras da asamblasi	400 kg/ m2.	Ladrillo de	72 kg/ m2			
Lugares de asambiea:	-	Techo :	-			
	400 kg/ m2.	Peso de	1350 kg/ m3.			
Corredores y escaleras:	_	tabiquería:	_			
Azotea :	100 kg/ m2					

Nota: Datos recopilados según la Norma Técnica E020.

Tabla 3

Dimensiones de elementos estructurales

Columnas	Vigas	Muros estructurales	Losas
(0.50 x 0.50 m)	(0.30 x 0.60 m)	e = 0.30 m	H= 0.25 m Loza A. 2 direcciones
(0.60 x 0.60 m)	(0.30 x 0.25 m)	e = 0.20 m	H= 0.20 m Losa Maciza
(0.30 x 0.60 m)	(0.30 x 0.35 m)		
	(0.25 x 0.60 m)		
	(0.20 x 0.50 m)		
	11 / 11	· · 1	

Nota: Datos recopilados según el plano estructural.

3.1.2 Análisis Estático

Periodo fundamental										
Modo	Period.sec	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ
1	1.08	0.00	0.72	0.00	0.00	0.72	0.30	0.00	0.00	0.30
2	0.96	0.73	0.00	0.00	0.73	0.72	0.00	0.29	0.01	0.00
3	0.75	0.00	0.00	0.00	0.73	0.72	0.00	0.01	0.72	0.00
4	0.28	0.00	0.16	0.00	0.73	0.88	0.39	0.00	0.00	0.39
5	0.26	0.13	0.00	0.00	0.87	0.88	0.00	0.38	0.01	0.00
6	0.19	0.02	0.00	0.00	0.88	0.88	0.00	0.03	0.15	0.00
7	0.12	0.00	0.06	0.00	0.89	0.94	0.13	0.00	0.00	0.13
8	0.12	0.05	0.00	0.00	0.93	0.94	0.00	0.10	0.01	0.00

Nota: Se obtuvieron los modos fundamentales con el software Etabs V19.

El primer periodo es de 1.08 s en dirección Y, el segundo periodo es de 0.96 s en dirección X y el tercer periodo es de 0.75 en dirección Z, como se muestra en la Tabla 04. Teniendo una sumatoria de más de 90% en el modal 8.

Centro de ri	Centro de rigidez y centro de masa								
Nivel	Mass X	Mass Y	XCM	YCM	XCR	YCR			
	tonf-s²/m	tonf-s²/m	(m)	(m)	(m)	(m)			
P10	47.48	47.48	10.20	10.12	10.58	13.28			
P9	45.83	45.83	10.19	10.12	10.61	13.37			
P8	45.83	45.83	10.19	10.12	10.59	12.95			
P7	45.83	45.83	10.19	10.12	10.56	12.45			
P6	45.67	45.67	10.17	10.14	10.51	11.96			
P5	45.34	45.34	10.19	10.12	10.46	11.50			
P4	45.34	45.34	10.19	10.12	10.40	11.06			
P3	45.34	45.34	10.19	10.12	10.35	10.65			
P2	45.34	45.34	10.19	10.12	10.29	10.29			
P1	37.20	37.20	10.10	10.00	10.25	9.99			

Tabla 5

Nota: Se obtuvieron los datos con el Software Etabs V19.

Como se muestra en la Tabla 05, el centro de masa del nivel 10 está a 10 m en dirección X y en dirección Y, mientras que el centro de rigidez está a 10 m en dirección X y en dirección Y.

Peso sísmico

Nivel	Caso	Combinacion	Ubicación	P (tonf)	P (tonf)
P10	Peso Sismico	Combinacion	Botton	409.93	409.93
P9	Peso Sismico	Combinacion	Botton	854.03	444.10
P8	Peso Sismico	Combinacion	Botton	1298.13	444.10
P7	Peso Sismico	Combinacion	Botton	1742.23	444.10
P6	Peso Sismico	Combinacion	Botton	2186.33	444.10
P5	Peso Sismico	Combinacion	Botton	2636.36	450.03
P4	Peso Sismico	Combinacion	Botton	3085.29	448.93
P3	Peso Sismico	Combinacion	Botton	3534.21	448.93
P2	Peso Sismico	Combinacion	Botton	3983.14	448.93
P1	Peso Sismico	Combinacion	Botton	4464.38	481.24
17 . 0	1. 1 1.	10.0	\mathbf{T}_{1} 1 \mathbf{V}_{10}		

Nota: Se obtuvieron los datos con el Software Etabs V19.

Como se observa en la Tabla 06 la edificación tiene un peso sísmico en la base de

4464.38 tn, por el cual se usará el peso para el análisis estático lineal.

Figura 51

Cortante basal en Dirección X

	ANÁLISIS SÍSMICO ESTÁTICO O DE FUERZAS ESTÁTICAS EQUIVALENTES					
	PARÁMETROS DE ANÁLISIS	DETERMINACIÓN	VALOR			
	Z: Factor de zona	Tabla 01 (E.030)	0.45			
	U: Factor de uso o importancia	Tabla 03 (E.030)	1.00			
	S: Factor de amplificación del suelo	Tabla 04 (E.030)	1.00			
	TP: Periodo que define la plataforma del factor C (s)	Tabla 04 (E.030)	0.40			
	TL: Periodo que define el inicio de la zona del factor C (s)	Tabla 05 (E.030)	2.50			
	P: Peso Total de la Edificación (Tonf)					
	TX: Periodo natural en la dirección X (s)		0.957			
X	CX: Factor de amplificación sísmica en X	Art. 14 (E.030)	1.045			
ŝ	Ro: Coeficiente básico de reducción de fuerzas sísmicas	Tabla 07 (E.030)	6.000			
SCI	ax: irregularidad en altura (Piso Blando, Piso débil) Tabla 08 (E.030)					
REC	₩ Ipx: irregularidad en planta (Torsión) Tabla 09 (E.030)					
	RX: Coeficiente de reducción sísmico en X Art. 22 (E.030)					
	Cx/Rx = 0.17 > 0.11		cumple			
	349.873					

Fuerzas estáticas en dirección X.

ANÁLISIS LATERAL LOAD USER LOADS DIRECCIÓN X

E0.30 – Art. 28.5. Para estructuras que tienen un diafragma fijo. (a) La excentricidad accidental en cada nivel (ei) 0.05 de la dimensión del edificio en dirección perpendicular a la dirección del análisis.

Nivel	Altura. Acom. (hi)	Peso por piso. (Pi)	Pi*(hi*K)	alfa	Fuerza actuante en el CM (Fi)
P10	33.60	409.93	29900.17	0.18	63.59
P9	30.35	444.10	28631.94	0.17	60.80
P8	27.10	444.10	24922.62	0.15	52.90
P7	23.85	444.10	21312.26	0.13	45.22
P6	20.60	444.10	17811.22	0.11	37.77
P5	17.35	450.03	14570.87	0.09	30.99
P4	14.10	448.93	11273.39	0.07	23.96
P3	10.85	448.93	8178.29	0.05	17.37
P2	7.60	448.93	5287.59	0.03	11.22
P1	4.35	481.24	2858.43	0.02	6.06
Base	0.00	0.00	0.00	0.00	0.00
Sumatoria		4464.38	169177.0	1.00	349.873

Nota: Distribución de la fuerza basal por nivel.

La Figura 51 muestra que hay 349.873 toneladas de cortante basal en dirección X,

y la Tabla 07 muestra la distribución de fuerza cortante en cada nivel.

Figura 52

Distribución de Fuerzas Laterales por Piso en Dirección X

Figura 53

Análisis Sísmico Estático en Dirección Y

	ANÁLISIS SÍSMICO ESTÁTICO O DE FUERZAS ESTÁTICAS EQUIVALENTES					
	PARÁMETROS DE ANÁLISIS	DETERMINACIÓN	VALOR			
	Z: Factor de zona	Tabla 01 (E.030)	0.45			
	U: Factor de uso o importancia	Tabla 03 (E.030)	1.00			
	S: Factor de amplificación del suelo	Tabla 04 (E.030)	1.00			
	TP: Periodo que define la plataforma del factor C (s)	Tabla 04 (E.030)	0.40			
	TL: Periodo que define el inicio de la zona del factor C (s)	Tabla 05 (E.030)	2.50			
	P: Peso Total de la Edificación (Tonf)					
	TY: Periodo natural en la dirección Y (s)		1.080			
<u>></u>	CY: Factor de amplificación sísmica en Y	Art. 14 (E.030)	0.926			
SN 1	Ro: Coeficiente básico de reducción de fuerzas sísmicas	Tabla 07 (E.030)	6.000			
Sold	lay: irregularidad en altura (Piso Blando, Piso débil)	Tabla 08 (E.030)	1.000			
REC	lpy: irregularidad en planta (Torsión)	Tabla 09 (E.030)	1.000			
ā	RY: Coeficiente de reducción sísmico en Y	Art. 22 (E.030)	6.000			
	CY/RY = 0.15 > 0.11		cumple			
	VY: Fuerza cortante en la base en la dirección Y - Y (Tonf)		310.026			

Tabla 8

Fuerzas estáticas en dirección Y

ANÁLISIS LATERAL LOAD USER LOADS DIRECCIÓN Y

E0.30 – Art. 28.5. Para estructuras que tienen un diafragma fijo. (a) La excentricidad accidental en cada nivel (ei) 0.05 de la dimensión del edificio en dirección perpendicular a la dirección del análisis.

Nivel	Altura. Acom. (hi)	Peso por piso. (Pi)	Pi*(hi*K)	alfa	Fuerza actuante en el CM (Fi)
P10	33.60	409.93	38166.94	0.19	57.75
P9	30.35	444.10	36263.15	0.18	54.87
P8	27.10	444.10	31333.66	0.15	47.41
P7	23.85	444.10	26573.01	0.13	40.21
P6	20.60	444.10	21997.31	0.11	33.28
P5	17.35	450.03	17862.32	0.09	27.03
P4	14.10	448.93	13635.51	0.07	20.63
P3	10.85	448.93	9724.85	0.05	14.71
P2	7.60	448.93	6143.67	0.03	9.30
P1	4.35	481.24	3206.36	0.02	4.85
Base	0.00	0.00	0.00	0.00	0.00
SUMATORIA		4464.38	204906.8	1.00	310.026

La Figura 53 muestra 310.026 toneladas de cortante basal en dirección Y, y la

Tabla 08 muestra la distribución de fuerza cortante en cada nivel.

Figura 54

3.1.3 Análisis Dinámico

Tabla 9

Análisis	del Sistema	Estructural	
	17/1	O ODV	

V(tonf) - SDX			V(tonf) - SDY			
Total	281.95	%	Total	266.69	%	
Columnas	11.25	4%	Columnas	18.13	7%	
Placas	270.70	96%	Placas	248.56	93%	

En la dirección X, se obtiene un cortante en la base de 281.95 tonf, mientras que en las columnas hay un cortante en la base de 11.25 tonf, que es 4%, y en las placas hay un cortante en la base de 270.70 tonf, que es 96%, lo que indica que es estructura de muros estructurales considerando un R0 = 6 según la Norma E.030. Luego, se observa que en la dirección Y hay un cortante en la base de 266.69 tonf, lo que representa un 7%, mientras que en las columnas hay un cortante en la base de 18.13 tonf, lo que representa un 7%, y en las placas hay un cortante en la base de 248.56 tonf, lo que representa un 93%, lo que indica que es estructura de muros estructurales considerando un R0=6 según la Norma

Irregularidades en elevación

Tabla 10

Comprobación en dirección X desviación de Rigidez

Nivel	Rigidez X	70%	80%	60%	70%	_		
	(tonf/m)	K(i+1)	(Kprom)	K(i+1)	(Kprom)		_	
P10	24706.77						<i>K</i> _{<i>i</i>+3}	Irregular: la=0.75
P9	41898.80	2.42		2.83			K 1+2	$K_i < 0.7 K_{i+1}$
P8	50881.01	1.73		2.02			K	$K < \frac{0.8}{0.8}(K + K + K)$
P7	55577.83	1.56	1.77	1.82	2.03		n (+1	$K_{i} < 3 (K_{i+1} + K_{i+2} + K_{i+3})$
P6	59608.41	1.53	1.51	1.79	1.72		Ki	Extreme: la=0.50
P5	65090.10	1.56	1.47	1.82	1.68		-	$K_i < 0.6K_{i+1}$
P4	73675.12	1.62	1.53	1.89	1.75			$V = \frac{0.7}{V} (V = V = V)$
P3	87737.90	1.70	1.66	1.98	1.90			$\kappa_i < \frac{1}{3} (\kappa_{i+1} + \kappa_{i+2} + \kappa_{i+3})$
P2	114781.88	1.87	1.90	2.18	2.17	_		
P1	193387.83	2.41	2.63	2.81	3.00	_		

Nota: Se obtuvo la irregularidad con el software Etabs V19.

La estructura no tiene irregularidad de rigidez en dirección X, ya que todos los

resultados son mayores que 1.

Tabla 11

Comprobación en dirección Y desviación de Rigidez

Nivel	Rigidez Y	70%	80%	60%	70%	-		
	(tonf/m)	K(i+1)	(Kprom)	K(i+1)	(Kprom)		_	
P10	20686.79						<i>K</i> _{<i>i</i>+3}	Irregular: la=0.75
P9	33629.93	2.32		2.71			Kin	$K_i < 0.7 K_{i+1}$
P8	40120.77	1.70		1.99				or
P7	44104.40	1.57	1.75	1.83	2.00		K <i>i</i> +1	$K_i < \frac{1}{3} (K_{i+1} + K_{i+2} + K_{i+3})$
P6	48237.33	1.56	1.53	1.82	1.75		K	Extreme: la=0.50
P5	54598.08	1.62	1.55	1.89	1.77		,	$K_i < 0.6 K_{i+1}$
P4	63726.33	1.67	1.63	1.95	1.86			or
P3	78352.31	1.76	1.76	2.05	2.02			$K_i < \frac{0.7}{3} (K_{i+1} + K_{i+2} + K_{i+3})$
P2	105073.34	1.92	2.00	2.24	2.29	_		
P1	174096.62	2.37	2.64	2.76	3.02	-		

Nota: Se obtuvo la irregularidad con el software Etabs V19.

La estructura no tiene irregularidad de rigidez en dirección Y, ya que todos los resultados son mayores que 1.

Nivel	Cortante	80%	65%
	Х	(K.prom)	K(+1)
P10	61.13		
P9	111.54	2.28	2.81
P8	146.59	1.64	2.02
P7	172.89	1.47	1.81
P6	195.09	1.41	1.74
P5	216.12	1.38	1.70
P4	237.07	1.37	1.69
P3	256.63	1.35	1.67
P2	272.38	1.33	1.63
P1	281.95	1.29	1.59

Comprobación en dirección X desviación de Resistencia

Nota: Se obtuvo la irregularidad con el software Etabs V19.

La estructura no tiene irregularidad de resistencia en dirección X, ya que todos los

resultados son mayores que 1.

Tabla 13

Nota: Se obtuvo la irregularidad con el software Etabs V19.

La estructura no tiene irregularidad de resistencia en dirección Y, ya que todos los resultados son mayores que 1.

Comprobación de desviación de masa o peso

						1
	P=100%CN	A+25%CV				
Nivel	Peso	Sup	Inf			1
P10	409.93					М.
P9	444.10	NO	NO			i+
P8	444.10	NO	NO			M_i
P7	444.10	NO	NO			
P6	444.10	NO	NO			<i>M</i> _{<i>i</i>} .
P5	450.03	NO	NO			
P4	448.93	NO	NO			
P3	448.93	NO	NO			<u> </u>
P2	448.93	NO	NO	Type 2	2. Weight (N	Mass)
P1	481.24	NO				
					-	

Nota: Se obtuvo la irregularidad con el software Etabs V19.

La estructura no presenta irregularidades de masa o peso porque todos los

resultados son menores de 1.5.

Irregularidades en planta

Tabla 15

Comprobación en dirección X desviación torsional

Nota: Se obtuvo la irregularidad con el software Etabs V19.

La estructura no tiene irregularidad de torsional en dirección X, ya que todos los resultados son menores de 1.3.

Comprobación en dirección X desviación torsional

Nivel	Max Drift	Avg Drift	Ratio	1.3	1.5	-
P10	0.004	0.004	1.025	NO	NO	×
P9	0.005	0.005	1.027	NO	NO	Δ_{max} $\int \Delta_{ave}$
P8	0.005	0.005	1.028	NO	NO	
P7	0.005	0.005	1.030	NO	NO	Irregular:
P6	0.005	0.005	1.032	NO	NO	$\Delta_{avg} = \frac{\Delta_{max} + \Delta_{min}}{2} \qquad (\frac{\Delta_{max}}{\Delta_{avg}} > 1.3)$
P5	0.005	0.005	1.034	NO	NO	la=0.75
P4	0.005	0.005	1.036	NO	NO	Extreme:
P3	0.004	0.004	1.037	NO	NO	$\Delta seismic = \frac{\Delta_{max}}{\Delta} > 1.5$
P2	0.003	0.003	1.038	NO	NO	force la=0.60
P1	0.002	0.002	1.038	NO	NO	14-0.00

Nota: Se obtuvo la irregularidad con el software Etabs V19.

La estructura no tiene irregularidad de torsional en dirección Y, ya que todos los

resultados son menores de 1.3.

Tabla 17

Recopilación de todas las irregularidades.

Irregularidad en Planta	Ipx	Іру
Irregularidad Torsional	1	1
Irregularidad Torsional	1	1
Discontinuidad en Diafragma	1	1
Sistema no Paralelos	1	1
Irregularidad en Altura	IaX	Iay
Masa o Peso	1	1
Geometría Vertical	1	1
Discontinuidad Sist. Resist	1	1
Discontinuidad Sist. Resist	1	1
Rigidez	1	1
Rigidez Extrema	1	1
Resistencia	1	1
Extrema Resistencia	1	1

La estructura es regular en ambas direcciones porque en planta y en altura no

tienen irregulares.

Caso	Nivel	Elevación	Locación	Drift	Drift	Verificación
		(m)		Х	Y	< 0.007
Deriva	P10	33.6	Тор	0.0037	0.0045	CUMPLE
Deriva	P9	30.35	Тор	0.0039	0.0047	CUMPLE
Deriva	P8	27.1	Тор	0.0042	0.0050	CUMPLE
Deriva	P7	23.85	Тор	0.0046	0.0052	CUMPLE
Deriva	P6	20.6	Тор	0.0049	0.0052	CUMPLE
Deriva	P5	17.35	Тор	0.0050	0.0051	CUMPLE
Deriva	P4	14.1	Тор	0.0050	0.0048	CUMPLE
Deriva	P3	10.85	Тор	0.0046	0.0043	CUMPLE
Deriva	P2	7.6	Тор	0.0039	0.0035	CUMPLE
Deriva	P1	4.35	Тор	0.0018	0.0016	CUMPLE
Deriva	Base	0	Тор	0.00	0.00	CUMPLE

Derivas en dirección X-Y.

Nota: Se obtuvo las distorsiones de los niveles con el software Etabs V19.

La estructura cumple con las especificaciones de la Norma E.030, lo que significa

que las derivas para concreto armado son menores de 0.007 en ambas direcciones.

Figura 55 Derivas en dirección X v V

La Tabla 19 muestra los desplazamientos máximos inelásticos por niveles, en

dirección X es de 13.13 cm y en dirección Y es de 14.08 cm.

Tabla 19

Desplazamiento máximo inelásticos por nivel.

Nivel	Des,max (cm) X	Des, max (cm) Y
P10	13.13	14.08
P9	12.13	12.69
P8	10.99	11.23
P7	9.71	9.68
P6	8.29	8.07
P5	6.76	6.42
P4	5.16	4.80
P3	3.56	3.25
P2	2.06	1.85
P1	0.80	0.72
Base	0.00	0.00

Nota: Se obtuvieron los desplazamientos en los niveles con el software Etabs V19.

3.2. Curva de Capacidad mediante la norma ASCE 41-17.

En la Tabla 20 se observa la aplicación de cargas monotónicas de los modos

fundamentales como indica la norma ASCE-41-17.

Tabla 20

Distribución de Fuerzas laterales mediante el modo fundamental

Nivel	Modo 2 F.push X, X-	Modo 1 F.push Y, Y-
P10	22.22	23.42
P9	20.63	21.51
P8	18.12	18.76
P7	15.49	15.91
P6	12.75	13.00
P5	0.00	10.16
P4	10.04	7.41
P3	7.37	4.83
P2	7.46	2.63
P1	1.00	1.00

Nota: Se obtuvieron los desplazamientos en los niveles con el programa Etabs V19.

La Tabla 21 muestra cómo se aplican las cargas monotónicas mediante una distribución que relaciona la fuerza y la cortante basal dinámica con la masa total del edificio. Este método considera que cada fuerza que se aplica en un nivel dado es proporcional a la relación entre la masa de ese nivel y la masa total del edificio.

Nivel	VxD	VyD	Fx	Fy	F.push-X	F.push-Y
P10	61.13	64.92	61.13	64.92	6.4	5.6
P9	111.54	112.11	50.41	47.19	5.3	4.0
P8	146.59	140.68	35.05	28.57	3.7	2.5
P7	172.89	159.67	26.30	18.98	2.7	1.6
P6	195.09	175.81	22.20	16.15	2.3	1.4
P5	216.12	193.72	21.04	17.91	2.2	1.5
P4	237.07	214.60	20.94	20.88	2.2	1.8
P3	256.63	236.32	19.56	21.72	2.0	1.9
P2	272.38	255.03	15.75	18.71	1.6	1.6
P1	281.95	266.69	9.57	11.66	1	1

Tabla 21Distribución de Cargas laterales mediante el Patrón Especial

Nota: Se obtuvieron los desplazamientos en los niveles con el programa Etabs V19

La curva de capacidad, que se muestra en la siguiente relación (cortante en la base vs. desplazamiento), muestra la capacidad de la estructura para llegar al punto máximo, que es el colapso por las cargas monotónicas aplicadas. En este caso, la estructura permanece en el rango elástico hasta que se presentan las primeras fibras o rotulas, mientras que cuando se cruza la línea, se comporta en el rango inelástico.

La Tabla 22 y Tabla 23 muestran las curvas de capacidad utilizando cargas monotónicas para los modos fundamentales. En la dirección X+, el punto de colapso es cuando llega un desplazamiento de 0.416 m con una cortante de 764.502 tn , mientras que en la dirección X-, el punto de colapso es cuando llega un desplazamiento de -0.406 m con un cortante de 792.268 tn, mientras que el punto colapso en dirección Y+ ocurre cuando se alcanza un desplazamiento de 0.556 m con una cortante de 745.514 tn, mientras que el punto de colapso en dirección Y- ocurre cuando se alcanza un desplazamiento de 0.556 m con una cortante de 745.514 tn, mientras que el punto de colapso en dirección Y- ocurre cuando se alcanza un desplazamiento de

-0.522 m con una cortante de 724.967 tn.

La Tabla 24 y la Tabla 25 muestran las curvas de capacidad utilizando cargas monotónicas de un Patrón Especial. En la dirección X+, el punto de colapso es cuando llega un desplazamiento de 0.517 m con una cortante de 834.632 tn , mientras que en la dirección X-, el punto de colapso es cuando llega un desplazamiento de 0.497 m con una cortante de 889.207 tn, mientras que el punto de colapso en dirección Y+ ocurre cuando se alcanza un desplazamiento de 0.553 m con una cortante de 792.355 tn, mientras que el punto de colapso en dirección Y- ocurre cuando se alcanza un desplazamiento de 0.523 m con una cortante de 792.355 tn, mientras que el punto de colapso en dirección Y- ocurre cuando se alcanza un desplazamiento de -0.523 m con una cortante de 771.702 tn.

Dirección X+		Dirección X-		
Desp. (m)	F. basal (tonf)	Despl. (m)	F. basal (tonf)	
0.000	0.000	0.000	0.000	
0.015	74.940	-0.015	74.969	
0.030	150.228	-0.030	150.236	
0.045	222.885	-0.045	223.406	
0.060	288.203	-0.060	291.342	
0.075	345.471	-0.075	353.271	
0.090	393.718	-0.090	405.349	
0.105	430.047	-0.105	445.140	
0.120	461.770	-0.120	475.967	
0.135	490.671	-0.135	505.562	
0.150	518.159	-0.150	533.697	
0.165	542.874	-0.165	559.779	
0.180	566.222	-0.180	582.317	
0.195	586.692	-0.195	602.878	
0.210	605.861	-0.210	622.171	
0.225	624.128	-0.225	640.112	
0.240	641.116	-0.240	656.499	
0.255	656.496	-0.255	671.669	
0.270	670.992	-0.270	686.024	
0.285	684.092	-0.285	699.508	
0.300	696.052	-0.300	712.579	
0.315	706.800	-0.315	725.244	
0.330	716.975	-0.330	737.543	
0.345	726.621	-0.345	749.337	
0.360	735.735	-0.360	760.607	
0.375	744.398	-0.375	771.362	
0.390	753.032	-0.395	784.954	
0.405	761.367	-0.405	791.524	
0.415	764.744	-0.406	792.268	
0.416	764.502			

Curva de Capacidad en dirección X mediante modos fundamentales

Nota: Se obtuvieron los desplazamientos en los niveles con el software Etabs V19.

Curva de Capacidad en dirección Y m	nediante modos fundamentales
-------------------------------------	------------------------------

Dirección Y+		Dirección Y-		
Desp. (m)	F. basal (tonf)	Despl. (m)	F. basal (tonf)	
0.000	0.000	0.000	0.000	
0.015	64.991	-0.015	65.098	
0.030	130.089	-0.030	130.571	
0.045	194.258	-0.045	193.691	
0.060	251.434	-0.060	250.894	
0.075	300.200	-0.075	301.237	
0.090	340.695	-0.090	344.085	
0.105	376.146	-0.105	380.715	
0.120	407.692	-0.120	413.293	
0.135	437.538	-0.135	442.034	
0.150	466.164	-0.150	466.893	
0.165	493.047	-0.165	487.551	
0.180	515.271	-0.180	506.285	
0.195	534.485	-0.195	523.697	
0.210	552.182	-0.210	539.751	
0.225	568.609	-0.225	554.486	
0.240	582.989	-0.240	568.081	
0.255	595.603	-0.255	581.043	
0.270	607.221	-0.270	593.060	
0.285	618.158	-0.285	604.110	
0.300	628.394	-0.300	614.766	
0.315	638.182	-0.315	624.726	
0.330	647.382	-0.330	634.306	
0.345	655.968	-0.345	643.450	
0.360	663.967	-0.360	651.852	
0.375	671.527	-0.375	659.782	
0.390	678.666	-0.390	667.347	
0.405	685.374	-0.405	674.676	
0.420	691.851	-0.420	681.815	
0.435	698.156	-0.435	688.735	
0.450	704.378	-0.450	695.408	
0.465	710.446	-0.465	701.840	
0.480	716.370	-0.480	708.151	
0.495	722.173	-0.495	714.284	
0.510	727.958	-0.510	720.238	
0.525	733.733	-0.520	724.160	
0.540	739.469	-0.521	724.550	
0.555	745.177	-0.522	724.967	
0.556	745.514			

Nota: Se obtuvieron los desplazamientos en los niveles con el software Etabs V19.

-

Curva de Capacidad en dirección X mediante Patrón Especial

Dirección X+		Dirección X-		
Desp. (m)	F. basal (tonf)	Despl. (m)	F. basal (tonf)	
0.000	0.000	0.000	0.000	
0.015	80.172	-0.015	80.228	
0.030	161.068	-0.030	160.906	
0.045	237.711	-0.045	237.687	
0.060	304.087	-0.060	307.182	
0.075	360.701	-0.075	369.657	
0.090	409.782	-0.090	426.107	
0.105	455.307	-0.105	476.609	
0.120	496.368	-0.120	516.348	
0.135	530.106	-0.135	546.280	
0.150	558.092	-0.150	571.824	
0.165	581.926	-0.165	595.125	
0.180	604.118	-0.180	616.265	
0.195	625.578	-0.195	636.834	
0.210	644.935	-0.210	656.634	
0.225	662.140	-0.225	674.281	
0.240	677.177	-0.240	690.579	
0.255	691.150	-0.255	706.396	
0.270	704.486	-0.270	721.442	
0.285	717.134	-0.285	736.146	
0.300	729.176	-0.300	750.471	
0.315	740.458	-0.315	763.556	
0.330	750.735	-0.330	776.092	
0.345	760.689	-0.345	788.353	
0.360	770.151	-0.360	800.184	
0.375	779.327	-0.375	811.430	
0.390	788.418	-0.390	821.970	
0.405	797.276	-0.405	832.137	
0.415	803.086	-0.420	841.955	
0.43	811.675	-0.435	851.538	
0.445	820.051	-0.450	860.879	
0.46	828.415	-0.465	870.046	
0.475	836.615	-0.480	879.010	
0.49	844.71	-0.495	887.791	
0.505	852.731	-0.496	888.410	
0.517	834.632	-0.497	889.207	

Nota: Se obtuvieron los desplazamientos en los niveles con el software Etabs V19

Direcc	Dirección Y+		Dirección Y-		
Desp. (m)	F. basal (tonf)	Despl. (m)	F. basal (tonf)		
0.000	0.000	0.000	0.000		
0.015	68.878	-0.015	68.982		
0.030	137.836	-0.030	138.322		
0.045	206.103	-0.045	205.515		
0.060	266.455	-0.060	266.821		
0.075	318.813	-0.075	320.475		
0.090	361.554	-0.090	366.135		
0.105	399.092	-0.105	404.874		
0.120	432.954	-0.120	439.037		
0.135	464.442	-0.135	470.418		
0.150	494.842	-0.150	497.879		
0.165	523.332	-0.165	519.754		
0.180	546.788	-0.180	539.674		
0.195	567.002	-0.195	557.937		
0.210	586.092	-0.210	575.120		
0.225	603.739	-0.225	591.098		
0.240	618.914	-0.240	605.409		
0.255	632.186	-0.255	618.918		
0.270	644.472	-0.270	631.649		
0.285	655.955	-0.285	643.320		
0.300	666.829	-0.300	654.605		
0.315	677.269	-0.315	665.152		
0.330	687.289	-0.330	675.345		
0.345	696.809	-0.345	684.866		
0.360	705.926	-0.360	693.693		
0.375	714.519	-0.375	702.178		
0.390	722.286	-0.390	710.196		
0.405	729.466	-0.405	717.964		
0.420	736.321	-0.420	725.500		
0.435	742.995	-0.435	732.891		
0.450	749.606	-0.450	739.907		
0.465	756.066	-0.465	746.769		
0.480	762.327	-0.480	753.470		
0.495	768.533	-0.495	759.960		
0.510	774.731	-0.510	766.277		
0.525	780.875	-0.520	770.423		
0.540	786.964	-0.522	771.327		
0.553	792.355	-0.523	771.702		

Curva de Capacidad en dirección Y mediante Patrón Especial

Nota: Se obtuvieron los desplazamientos en los niveles con el software Etabs V19.

3.3. Puntos de desempeño mediante el ASCE 41-17 y FEMA 440.

Bilineal de la curva de Capacidad formada mediante aplicación de modos fundamentales.

Figura 56

Desempeño efectivo para ANLE X+

Figura 57

.

Desempeño efectivo para ANLE X-

Figura 58

Desempeño efectivo para ANLE Y+

Figura 59

Desempeño efectivo para ANLE Y-

Bilineal de la curva de Capacidad formada mediante aplicación del Patrón Especial

Figura 60

Figura 61

Desempeño efectivo para ANLE X-

Figura 62

Desempeño efectivo para ANLE Y+

Figura 63

Desempeño efectivo para ANLE Y-

	-			
Dir.	Desempeño Max.		Desempeño Efectiva	
	F. Basal (tn)	Despla. (m)	F. Basal (tn)	Despla. (m)
X	764.744	0.414	512.224	0.107
Х-	792.268	-0.405	514.249	-0.106
Y	745.514	0.555	518.975	0.131
Y-	725.232	-0.522	491.674	-0.121

Desempeño efectivo mediante la aplicación del modo fundamental.

Nota: Se tabuló en el software Etabs V19.

Tabla 27

Desempeño efectivo mediante la aplicación del patrón especial.

Dir.	Desempeño Max.		Desempeño Efectiva	
	F. Basal (tn)	Despla. (m)	F. Basal (tn)	Despla. (m)
Х	857.435	0.514	580.89	0.118
Х-	889.207	-0.496	582.124	-0.115
Y	792.354	0.552	549.219	0.137
Y-	771.702	-0.522	524.318	-0.121

Nota: Se tabulo en el software Etabs V19.

Diferentes niveles de sismo de acuerdo con Visión 2000.

Tabla 28

Coeficiente de R.			
Nivel del movimiento sísmico	Periodo medio de retorno	Probalidad de excedencia	Coeficiente de R
Frecuente	43 años	50% en 30 años	2.32
Ocasional	72 años	50% en 50 años	1.93
Raro	475 años	10% en 50 años	1.00
Muy Raro	950 años	10% en 100 años	0.78

Nota: Se consideró k intermedio de 0.35 para realizar el cálculo según visión 2000.

3.3.1. Punto de desempeño para cada nivel de sismo de acuerdo ASCE 41-17.

A continuación, el programa Etabs 19 tiene la norma de ASCE 41-13, sin embargo, es igual a la norma ASCE 41-17 ya que es una norma actual y no cambian los parámetros de coeficientes para realizar el punto de desempeño.

Punto de desempeño formado mediante la aplicación de modos fundamentales.

Para un sismo frecuente en dirección X+, la estructura tiene un desplazamiento de

9,52 cm y una cortante de 407.203 tn, como se muestra en la Figura 64.

La estructura tiene un desplazamiento de 9,38 cm y un cortante de 416.614 tn para

un sismo frecuente en dirección X, como se muestra en la Figura 65.

Figura 65

Desempeño sismo frecuente X- según ASCE 41-17

Para un sismo frecuente en dirección Y+, la Figura 66 muestra que la estructura tiene un desplazamiento de 10.00 cm y una cortante de 365.116 tn.

Figura 66

Desempeño sismo frecuente Y+ según ASCE 41-17.

Para un sismo frecuente en dirección Y, la estructura tiene un desplazamiento de

9.75 cm y una cortante de 363.629 tn, como se muestra en la Figura 67.

Figura 67 *Desempeño sismo frecuente Y- según ASCE 41-17.*

Para un sismo ocasional en dirección X+, la estructura tiene un desplazamiento de

11.31 cm y una cortante de 447.873 tn, como se muestra en la Figura 68.

4

Figura 68:

Desempeño sismo ocasional X+ según ASCE 41-17.

La estructura tiene un desplazamiento de 11,22 cm y un cortante de 460,623 tn para

un sismo ocasional en dirección X, como se muestra en la Figura 69.

Figura 69

Para un sismo ocasional en dirección Y+, la Figura 70 muestra que la estructura tiene un desplazamiento de 12.09 cm y una cortante de 408.685 tn.

Desempeño sismo ocasional Y+ según ASCE 41-17.

Para un sismo ocasional en dirección Y, la estructura tiene un desplazamiento de

11.68 cm y una cortante de 406.680 tn, como se muestra en la Figura 71.

Figura 71

Para un sismo raro en dirección X+, la estructura tiene un desplazamiento de 20.96

cm y una cortante de 605.492 tn, como se muestra en la Figura 72.

Desempeño sismo ocasional Y- según ASCE 41-17.

Desempeño sismo raro X+ según ASCE 41-17

La estructura tiene un desplazamiento de 21.875 cm y un cortante de 632.812 tn

para un sismo raro en dirección X, como se muestra en la Figura 73.

Para un sismo raro en dirección Y+, la estructura tiene un desplazamiento de 23.45

cm y una cortante de 578.054 tn, como se muestra en la Figura 74.

Figura 74 Desempeño sismo raro Y+ según ASCE 41-17.

La estructura tiene un desplazamiento de 22,81 cm y un cortante de 557.458 tn para

un sismo Raro en dirección Y, como se muestra en la Figura 75.

Figura 75 Desempeño sismo raro Y- según ASCE 41-17

Para un sismo Muy Raro en dirección X+, la Figura 76 muestra que la estructura

sufre un desplazamiento de 26.88 cm y una cortante de 669.906 tn.

.

Desempeño sismo muy raro X+ según ASCE 41-17

La estructura tiene un desplazamiento de 28.49 cm y un cortante de 699.449 tn para

un sismo Muy raro en dirección X, como se muestra en la Figura 77.


```
Desempeño sismo muy raro X- según ASCE 41-17
```


Para un sismo Muy Raro en dirección Y+, la Figura 78 muestra que la estructura tiene un desplazamiento de 30.37 cm y una cortante de 630.878 tn.

.

Desempeño sismo muy raro Y+ según ASCE 41-17

La estructura tiene un desplazamiento de 29,40 cm con un cortante de 610,597 tn

para un sismo Muy raro en dirección Y, como se muestra en la Figura 79.

Figura 79

4

Punto de desempeño de curva de capacidad formada mediante la aplicación

de un patrón especial.

Para un sismo frecuente en dirección X+, la estructura tiene un desplazamiento de

9,06 cm y una cortante de 411.706 tn, como se muestra en la Figura 80.

Figura 80

Desempeño sismo frecuente X+ según ASCE 41-17.

La estructura tiene un desplazamiento de 9,38 cm y un cortante de 416.614 tn para

un sismo frecuente en dirección X, como se muestra en la Figura 81.

Figura 81

Pillaca Cisneros, Hebert Vivanco Salvatierra, Christian Orlando

Para un sismo frecuente en dirección Y+, la estructura tiene un desplazamiento de

10.00 cm y una cortante de 365.116 tn, como se muestra en la Figura 82.

Para un sismo frecuente en dirección Y, la estructura tiene un desplazamiento de

9.75 cm y una cortante de 363.629 tn, como se muestra en la Figura 83.

Figura 83

Desempeño sismo frecuente Y- según ASCE 41-17.

Para un sismo ocasional en dirección X+, la estructura tiene un desplazamiento de

11.31 cm y una cortante de 447.873 tn, como se muestra en la Figura 84.

Figura 84

Desempeño sismo ocasional X+ según ASCE 41-17

La estructura tiene un desplazamiento de 11,22 cm y un cortante de 460,623 tn para un sismo ocasional en dirección X, como se muestra en la Figura 85.

Figura 85

Desempeño sismo ocasional X- según ASCE 41-17

Para un sismo ocasional en dirección Y+, la estructura tiene un desplazamiento de

12.09 cm con un cortante de 408.685 tn, como se muestra en la Figura 86.

Figura 86

Desempeño sismo ocasional Y+ según ASCE 41-17

La estructura tiene un desplazamiento de 11,68 cm y un cortante de 406,680 tn para

un sismo ocasional en dirección Y, como se muestra en la Figura 87.

Figura 87

Desempeño sismo ocasional Y- según ASCE 41-17

Para un sismo raro en dirección X+, la estructura tiene un desplazamiento de 20,96

cm y una cortante de 605.492 tn, como se muestra en la Figura 88.

La estructura tiene un desplazamiento de 21.875 cm y un cortante de 632.812 tn,

como se muestra en la Figura 89 para un sismo Raro en dirección X.

Figura 89

Desempeño sismo raro X- según ASCE 41-17

Para un sismo raro en dirección Y+, la Figura 90 muestra que la estructura tiene

un desplazamiento de 23.45 cm y una cortante de 578.054 tn.

Figura 90

Desempeño sismo raro Y+ según ASCE 41-17

La estructura tiene un desplazamiento de 22,81 cm y un cortante de 557.458 tn para un sismo raro en dirección Y, como se muestra en la Figura 91.

Figura 91

Desempeño sismo raro Y- según ASCE 41-17

La Figura 92 muestra un sismo Muy raro en dirección X+ en el que la estructura

sufre un desplazamiento de 26,88 cm y un cortante de 669.906 tn.

La estructura tiene un desplazamiento de 28.49 cm con un cortante de 699.449 tn para un sismo Muy raro en dirección X, como se muestra en la Figura 93.

Figura 93

Desempeño sismo muy raro X- según ASCE 41-17

Para un sismo Muy Raro en dirección Y+, la Figura 94 muestra que la estructura

tiene un desplazamiento de 30.37 cm y una cortante de 630.878 tn.

Figura 94

Desempeño sismo muy raro Y+ según ASCE 41-17

La estructura tiene un desplazamiento de 29,40 cm y un cortante de 610,597 tn para

un sismo Muy raro en dirección Y, como se muestra en la Figura 95.

Figura 95

Desempeño sismo muy raro Y- según ASCE 41-17

3.3.2. Punto de desempeño para cada nivel de sismo según Fema 440.

Punto de desempeño de la curva de capacidad formada mediante la aplicación de modos fundamentales.

Para un sismo ocasional en dirección X+, la Figura 96 muestra que la estructura

tiene un desplazamiento de 9,5 cm y una cortante de 406.666 tn.

Figura 96

Desempeño sismo ocasional X+ según FEMA 440

La estructura tiene un desplazamiento de 9,47 cm y un cortante de 419.128 tn para

un sismo ocasional en dirección X, como se muestra en la Figura 97.

Figura 97

Desempeño sismo ocasional X- según FEMA 440

Pillaca Cisneros, Hebert Vivanco Salvatierra, Christian Orlando

Para un sismo ocasional en dirección Y+, la Figura 98 muestra que la estructura

tiene un desplazamiento de 9,71 cm y una cortante de 358.165 tn.

Figura 98

Desempeño sismo ocasional Y+ según FEMA 440

Para un sismo ocasional en dirección Y, la estructura tiene un desplazamiento de

9,76 cm y una cortante de 363.955 tn, como se muestra en la Figura 99.

Figura 99

Desempeño sismo ocasional Y- según FEMA 440

Para un sismo frecuente en dirección X+, la estructura sufrió un desplazamiento de

11.46 cm y una cortante de 451.104 tn, como se muestra en la Figura 100.

Figura 100

Desempeño sismo frecuente X+ según FEMA 440

La estructura tiene un desplazamiento de 11.09 cm y un cortante de 457.886 tn para un sismo frecuente en dirección X, como se muestra en la Figura 101.

Figura 101

Desempeño sismo frecuente X- según FEMA 440

Pillaca Cisneros, Hebert Vivanco Salvatierra, Christian Orlando

Para un sismo frecuente en dirección Y+, la Figura 102 muestra que la estructura

tiene un desplazamiento de 11.77 cm y una cortante de 403.051 tn.

Figura 102

Desempeño sismo frecuente Y+ según FEMA 440

La estructura tiene un desplazamiento de 11.73 cm y un cortante de 407.648 tn para

un sismo frecuente en dirección Y, como se muestra en la Figura 103.

Figura 103

Desempeño sismo frecuente Y- según FEMA 440

Para un sismo raro en dirección X+, la estructura tiene un desplazamiento de 27.66

cm y una cortante de 676.956 tn, como se muestra en la Figura 104.

<complex-block>

La estructura tiene un desplazamiento de 23,37 cm y un cortante de 649,883 tn para

un sismo raro en dirección X, como se muestra en la Figura 105.

Production Name Image: State Production Name

Figura 105

Desempeño sismo raro X- según FEMA 440

La Figura 106 muestra un sismo Raro en dirección Y+ en el que la estructura sufre

un desplazamiento de 28.23 cm y una cortante de 616.261 tn.

Figura 106

Como se muestra en la Figura 107, en un sismo Raro en dirección Y, la estructura sufre un desplazamiento de 26.04 cm y una cortante de 585.559 tn.

Figura 107

Desempeño sismo raro Y- según FEMA 440

Para un sismo Muy raro en dirección X+, la estructura tiene un desplazamiento de

35.20 cm y una cortante de 730.982 tn, como se muestra en la Figura 108.

La estructura tiene un desplazamiento de 32,70 cm y un cortante de 735,183 tn para

un sismo Muy raro en dirección X, como se muestra en la Figura 109.

Figura 109

Desempeño sismo muy raro X- según FEMA 440

Para un sismo Muy raro en dirección Y+, la estructura tiene un desplazamiento de

37.33 cm y una cortante de 670.701 tn, como se muestra en la Figura 110.

Figura 110 Desempeño sismo muy raro Y+ según FEMA 440 FEMA 440 Equ Name Name Plot Defini Plot Type FEMA 440 EL ANLE Y-Y + Integrated Load Case Legend Type Plot Setting: Plot Axis Type Single D Sa - Sd Yes Defined Function Esp.Demanda Trs 975 9.81 0.05 Default Value n, a res 670.7014 0.373319 0.195313 0.253916 2.288 2.465 4.001941 0.1958 1.16154 Spectral Acceler 0.36 0.24 Spectral Displacement, m Plot De

Para un sismo Muy raro en dirección Y, la estructura tiene un desplazamiento de

37.56 cm y una cortante de 660.134 tn, como se muestra en la Figura 111.

Figura 111

Desempeño sismo muy raro Y- según FEMA 440

3.3.3.2 Punto de desempeño de la curva de capacidad formada mediante la aplicación de un patrón especial.

La estructura tiene un desplazamiento de 9,5 cm y un cortante de 406.666 tn para

un sismo ocasional en dirección X+, como se muestra en la Figura 112.

Figura 112

Desempeño sismo ocasional X+ según FEMA 440

La estructura tiene un desplazamiento de 9,47 cm y un cortante de 419.128 tn para

un sismo ocasional en dirección X, como se muestra en la Figura 113.

Figura 113

Para un sismo ocasional en dirección Y+, la estructura tiene un desplazamiento de

9,71 cm y una cortante de 358.165 tn, como se muestra en la Figura 114.

Figura 114 Desempeño sismo ocasional Y- según FEMA 440 Name Name Plot Definitio E-3 800 -FEMA 440 EL ANLE Y-Y + Integrated Legend Type Plot Setting Plot Axis Type Sa - Sd Yes Defined Function Esp.Demanda Trs 43 9.81 0.05 Default Value Default Val tion, g Tes 374.2098 0.094737 0.114891 0.064147 1.499 1.469 1.650588 0.0677 0.959921 Acceler 400 Spectral 320 Load Case The load case for which the response is displayed. Spectral Displacement, tio, Beff - (

Para un sismo ocasional en dirección Y, la estructura tiene un desplazamiento de

9,76 cm y una cortante de 363.955 tn, como se muestra en la Figura 115.

Figura 115

Desempeño sismo ocasional Y- según FEMA 440

Para un sismo frecuente en dirección X+, la estructura sufrió un desplazamiento de

11.46 cm y una cortante de 451.104 tn, como se muestra en la Figura 116.

La estructura tiene un desplazamiento de 11.09 cm y un cortante de 457.886 tn

para un sismo frecuente en dirección X, como se muestra en la Figura 117.

Figura 117

Desempeño sismo frecuente X- según FEMA 440

Para un sismo frecuente en dirección Y+, la Figura 118 muestra que la estructura

tiene un desplazamiento de 11.77 cm y una cortante de 403.051 tn.

Para un sismo frecuente en dirección Y, la estructura tiene un desplazamiento de

11.73 cm y una cortante de 407.648 tn, como se muestra en la Figura 119.

Figura 119

Desempeño sismo frecuente Y- según FEMA 440

Para un sismo raro en dirección X+, la Figura 120 muestra que la estructura tiene

un desplazamiento de 27.66 cm y una cortante de 676.956 tn.

La estructura tiene un desplazamiento de 23,37 cm y un cortante de 649,883 tn para

un sismo raro en dirección X, como se muestra en la Figura 121

Figura 121

Desempeño sismo raro X- según FEMA 440

Para un sismo raro en dirección Y+, la Figura 122 muestra que la estructura sufre

un desplazamiento de 28.23 cm y una cortante de 616.261 tn..

Figura 122

Desempeño sismo raro Y+ según FEMA 440

Como se muestra en la Figura 123, para un sismo Raro en dirección Y, la estructura

tiene un desplazamiento de 26.04 cm y una cortante de 585.559 tn.

Figura 123

Desempeño sismo raro Y- según FEMA 440

Para un sismo Muy raro en dirección X+, la estructura tiene un desplazamiento de

35.20 cm y una cortante de 730.982 tn, como se muestra en la Figura 124.

Figura 124

Desempeño sismo muy raro X+ según FEMA 440

Para un sismo Muy raro en dirección X, la estructura tiene un desplazamiento de

32.70 cm y una cortante de 735.183 tn, como se muestra en la Figura 125.

Figura 125

Desempeño sismo muy raro X- según FEMA 440

Para un sismo Muy raro en dirección Y+, la estructura tiene un desplazamiento de

37.33 cm y una cortante de 670.701 tn, como se muestra en la Figura 126.

Figura 126

Desempeño sismo muy raro Y+ según FEMA 440

La estructura tiene un desplazamiento de 37,56 cm y un cortante de 660,134 tn para

un sismo Muy raro en dirección Y, como se muestra en la Figura 127.

Figura 127

Desempeño sismo muy raro Y- según FEMA 440

En la siguiente Tabla 29 y Tabla 30 se muestra el resumen de todo el punto de

desempeño sísmico de la estructura mediante el ASCE 41-17 y FEMA 440.

Tabla 29

Resumen de Desempeño sísmico de la curva de capacidad formada por modos fundamentales

Mátada	Sismo	Dirección X		Dirección Y	
Metodo		Desp. (cm)	Cortante (tn)	Desp. (cm)	Cortante (tn)
	Frecuente	9.52	407.203	10	365.116
ASCE	Ocasional	11.31	447.873	12.09	408.685
41-17 (+)	Raro	20.96	605.492	23.45	578.054
	Muy Raro	26.88	669.906	30.37	630.878
	Frecuente	-9.38	416.614	-9.75	363.629
ASCE	Ocasional	-11.22	460.623	-11.68	406.680
ASCE 41-17 (-)	Raro	-21.875	623.812	-22.81	557.458
	Muy Raro	-28.49	699.449	-29.40	610.597
FEMA 440 (+)	Frecuente	9.50	406.666	9.71	358.165
	Ocasional	11.46	451.104	11.77	403.051
	Raro	27.66	676.956	28.23	616.261
	Muy Raro	35.20	730.982	37.33	670.701
FEMA 440 (-)	Frecuente	-9.47	419.128	-9.76	363.955
	Ocasional	-11.09	457.886	-11.73	407.648
	Raro	-23.37	649.883	-26.04	585.559
	Muy Raro	-32.70	735.183	-37.56	660.134

Tabla 30

Resumen de Desempeño sísmico de la curva de capacidad formada por Patrón Especial

Mátada	Sismo	Dirección X		Dirección Y	
Metodo		Desp. (cm)	Cortante (tn)	Desp. (cm)	Cortante (tn)
	Frecuente	9.06	411.706	9.79	382.411
ASCE	Ocasional	10.87	466.203	11.79	428.506
41-17 (+)	Raro	20.97	644.662	22.95	608.540
	Muy Raro	27.09	705.268	29.64	664.299
	Frecuente	-9.07	428.909	-9.57	382.081
ASCE 41-17 (-)	Ocasional	-10.90	488.716	-11.52	428.422
	Raro	-21.12	658.253	-22.33	589.464
	Muy Raro	-27.18	723.305	-28.76	645.338
	Frecuente	9.05	411.409	9.47	374.209
FEMA 440 (+)	Ocasional	11.31	478.957	11.48	421.604
	Raro	25.51	691.241	27.18	645.905
	Muy Raro	34.11	758.138	37.31	713.477
FEMA 440 (-)	Frecuente	-9.33	439.741	-9.53	381.034
	Ocasional	-11.36	501.124	-11.38	425.243
	Raro	-23.91	689.641	-25.19	616.224
	Muy Raro	-34.61	789.281	-36.37	695.876

3.4. Sectorización de la curva de capacidad mediante la SEAOC y ATC-40.

3.4.1. Sectorizada de la curva de capacidad formada por modos fundamentales

según SEAOC.

Tabla 31

Sectorizada de la curva de capacidad formada por modos fundamentales según SEAOC

Dirección	TO (m)	IO (m)	SL(m)	CP (m)	C(m)
X+	0.107	0.199	0.291	0.353	0.414
Х-	-0.106	-0.1957	-0.2854	-0.3452	-0.405
Y+	0.131	0.258	0.385	0.470	0.555
Y-	-0.121	-0.2413	-0.3616	-0.4418	-0.522

Tabla 32

Objetivos aceptados por el SEAOC según ASCE 41-17

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy
				Raro
X +	0.0952	0.1131	0.2096	0.2688
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Х-	-0.0938	-0.1122	-0.2187	-0.2849
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y+	0.10	0.1209	0.2345	0.3037
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y-	-0.0975	-0.1168	-0.2281	-0.2940
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple

Tabla 33

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy Raro
X +	0.0950	0.1146	0.2766	0.352
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Х-	-0.0947	-0.1109	-0.2337	-0.327
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y +	0.0971	0.1177	0.2823	0.3733
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y-	-0.0976	-0.1173	-0.2604	-0.3756
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple

Objetivos aceptados por el SEAOC según FEMA 440

La Figura 128 muestra los sectores de la curva de capacidad en dirección X+ propuesta por la SEAOC, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

.

Interpretación, el punto de desempeño para un sismo Frecuente para el ASCE 41-13 y FEMA 440 se encuentra en Total Operacional, después el punto de desempeño para un sismo Ocasional se ubica en Operacional, luego para un sismo Raro se encuentra en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro según ASCE 41-13 se encuentra en Seguridad de Vida y para FEMA 440 se encuentra en Prevención al Colapso.

La Figura 129 muestra los sectores de la curva de capacidad en dirección Xpropuesta por la SEAOC, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Interpretación, el punto de desempeño para un sismo Frecuente para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, después el punto de desempeño para un sismo Ocasional se ubica en Operacional, luego para un sismo Raro se encuentra en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro según ASCE 41-17 se encuentra en Seguridad de Vida y para FEMA 440 se encuentra en Prevención al Colapso.

La Figura 130 muestra los sectores de la curva de capacidad en dirección Y+ propuesta por la SEAOC, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por SEAOC en dirección Y+

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro según ASCE 41-17 se encuentra en Operacional y según FEMA 440 en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro se encuentra en Seguridad de Vida.

La Figura 130 muestra los sectores de la curva de capacidad en dirección Ypropuesta por la SEAOC, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por SEAOC en dirección Y-

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro según ASCE 41-17 se encuentra en Operacional y según FEMA 440 en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro según ASCE 41-17 se encuentra en Seguridad de Vida y para FEMA 440 se encuentra en Prevención al Colapso.

3.4.2. Sectorizada de la curva de capacidad formada por Patrón especial según

SEAOC.

Tabla 34

Sectorizada de la curva de capacidad formada por Patrón especial según SEAOC

Dirección	TO (m)	IO (m)	SL(m)	CP(m)	C(m)
X+	0.118	0.237	0.356	0.435	0.514
Х-	-0.115	-0.2293	-0.3436	-0.4198	-0.496
Y+	0.137	0.262	0.386	0.469	0.552
Y-	-0.121	-0.2413	-0.3616	-0.4418	-0.522

Tabla 35

Objetivos aceptados por el SEAOC según ASCE 41-17

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy
				Raro
X +	0.906	0.1087	0.2097	0.2709
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Х-	-0.0907	-0.1090	-0.2112	-0.2718
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y+	0.0979	0.1179	0.2295	0.2964
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y+	-0.0957	-0.1152	-0.2233	-0.2876
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso			_	Cumple

.

Tabla 36

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy
×+	0 0905	0 1131	0 2551	<u>Karo</u> 0 3411
Totalmanta Onanativa	Cumple	0.1131	0.2001	0.3411
	Cumple	C I		
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
X-	-0.0933	-0.1136	-0.2391	-0.3461
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida		-	Cumple	
Prevención de Colapso				Cumple
Y+	0.0947	0.1148	0.2718	0.3731
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y-	-0.0953	-0.1138	-0.2519	-0.3637
Totalmente Operativo	Cumple			
Operacional		Cumple		
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple

Objetivos aceptados por el SEAOC según FEMA 440

La Figura 132 muestra los sectores de la curva de capacidad en dirección X+ propuesta por la SEAOC, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

.

Sectores propuestos por SEAOC en dirección X+

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro según ASCE 41-17 se encuentra en Operacional y para el FEMA 440 se encuentra en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro se encuentra en Seguridad de Vida.

La Figura 133 muestra los sectores de la curva de capacidad en dirección Xpropuesta por la SEAOC, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por SEAOC en dirección X-

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro el punto de desempeño según ASCE 41-17 se encuentra en Operacional y para FEMA 440 se encuentra en Seguridad de vida, por último, el punto de desempeño para un sismo Muy Raro según ASCE 41-17 se encuentra en Seguridad de Vida y para FEMA 440 se encuentra en Prevención al Colapso.

La Figura 134 muestra los sectores de la curva de capacidad en dirección Y+ propuesta por la SEAOC, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por SEAOC en dirección Y+

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro según ASCE 41-17 se encuentra en Operacional y según FEMA 440 en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro se encuentra en Seguridad de Vida.

La Figura 135 muestra los sectores de la curva de capacidad en dirección Ypropuesta por la SEAOC, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por SEAOC en dirección Y-

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro según ASCE 41-17 se encuentra en Operacional y según FEMA 440 en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro según ASCE 41-17 se encuentra en Seguridad de Vida y para FEMA 440 se encuentra en Prevención al Colapso.

3.4.3. Sectorizada de la curva de capacidad formada por modos fundamentales

según ATC-40.

Tabla 37

Sectorizada de la curva de capacidad formada por modos fundamentales según ATC-40

Dirección	TO (m)	IO (m)	SL(m)	CP (m)
X+	0.107	0.199	0.353	0.414
X-	-0.106	-0.196	-0.345	-0.405
Y+	0.131	0.258	0.470	0.555
Y-	-0.121	-0.2413	-0.4418	-0.522

Tabla 38

Objetivos aceptados por el ATC-40 según ASCE 41-17

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy
				Raro
X +	0.0952	0.1131	0.2096	0.2688
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Х-	-0.093	-0.112	-0.218	-0.284
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y+	0.10	0.1209	0.2345	0.3037
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y+	-0.0975	-0.1168	-0.2281	-0.2940
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple

.

Tabla 39

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy Raro
X +	0.0950	0.1146	0.2766	0.3520
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso			_	Cumple
Х-	-0.094	-0.110	-0.233	-0.327
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y+	0.0971	0.1177	0.2823	0.3733
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y-	-0.0976	-0.1173	-0.2604	-0.3756
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso			_	Cumple

La Figura 136 muestra los sectores de la curva de capacidad en dirección X+ propuesta por la ATC-40, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

.

Sectores propuestos por ATC-40 en dirección X+

Interpretación, el punto de desempeño para un sismo Frecuente para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, después el punto de desempeño para un sismo Ocasional se ubica en Operacional, luego para un sismo Raro y Muy Raro se encuentra en Seguridad de Vida.

La Figura 137 muestra los sectores de la curva de capacidad en dirección Xpropuesta por la ATC-40, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por ATC-40 en dirección X-.

Interpretación, el punto de desempeño para un sismo Frecuente para el ASCE-41-17 y FEMA 440 se encuentra en Total Operacional, después el punto de desempeño para un sismo Ocasional se ubica en Operacional, luego para un sismo Raro y Muy Raro se encuentra en Seguridad de Vida.

La Figura 138 muestra los sectores de la curva de capacidad en dirección Y+ propuesta por la ATC-40, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por ATC-40 en dirección Y+

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro el punto desempeño según ASCE 41-17 se encuentra en se encuentra en Operacional y según FEMA 440 se encuentra en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro se encuentra en Seguridad de Vida.

La Figura 139 muestra los sectores de la curva de capacidad en dirección Ypropuesta por la ATC-40, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por ATC-40 en dirección Y-

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro el punto desempeño según ASCE 41-17 se encuentra en se encuentra en Operacional y según FEMA 440 se encuentra en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro se encuentra en Seguridad de Vida.

3.4.4. Sectorizada de la curva de capacidad formada por patrón especial

según ATC-40.

Tabla 40

Sectorizada de la curva de capacidad formada por patrón especial según ATC-40

Dirección	TO (m)	IO (m)	SL(m)	CP(m)
X+	0.107	0.226	0.424	0.514
Х-	-0.115	-0.2293	-0.4198	-0.496
Y+	0.137	0.262	0.469	0.552
Y-	-0.121	-0.2413	-0.4418	-0.522

Tabla 41

Objetivos aceptados por el ATC-40 según ASCE 41-17

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy
				Raro
X +	0.0906	0.1087	0.2097	0.2709
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Х-	-0.0907	-0.1090	-0.2112	-0.2718
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y+	0.979	0.1179	0.2295	0.2964
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso			_	Cumple
Y+	-0.0975	-0.1152	-0.2233	-0.2876
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple

4

•

.

Tabla 42

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy Raro
X +	0.0950	0.1131	0.2551	0.3411
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso			-	Cumple
X-	-0.0933	-0.1136	-0.2391	-0.3461
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso				Cumple
Y +	0.0947	0.1148	0.2718	0.3731
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso			-	Cumple
Y-	-0.0953	-0.1138	-0.2519	-0.3637
Totalmente Operativo				
Operacional				
Seguridad de Vida			Cumple	
Prevención de Colapso			-	Cumple

La Figura 140 muestra los sectores de la curva de capacidad en dirección X+ propuesta por la ATC-40, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por ATC-40 en dirección X+

Interpretación, el punto de desempeño para un sismo Frecuente para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, después el punto de desempeño para un sismo Ocasional se ubica en Operacional, luego para un sismo Raro el punto desempeño según ASCE 41-17 se encuentra en Operacional y para el FEMA 440 se encuentra en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro se encuentra en Seguridad de Vida.

La Figura 141 muestra los sectores de la curva de capacidad en dirección Xpropuesta por la ATC-40, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por ATC-40 en dirección X-

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro el punto desempeño según ASCE 41-17 se encuentra en Operacional y para el FEMA 440 se encuentra en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro se encuentra en Seguridad de Vida.

La Figura 142 muestra los sectores de la curva de capacidad en dirección Y+ propuesta por la ATC-40, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por ATC-40 en dirección Y+

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro el punto desempeño según ASCE 41-17 se encuentra en se encuentra en Operacional y según FEMA 440 se encuentra en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro se encuentra en Seguridad de Vida.

La Figura 143 muestra los sectores de la curva de capacidad en dirección Ypropuesta por la ATC-40, así como los puntos de desempeño que se encuentran en la Tabla 29 y Tabla 30.

Sectores propuestos por ATC-40 en dirección Y-

Interpretación, el punto de desempeño para un sismo Frecuente y Ocasional para el ASCE 41-17 y FEMA 440 se encuentra en Total Operacional, luego para un sismo Raro el punto desempeño según ASCE 41-17 se encuentra en se encuentra en Operacional y según FEMA 440 se encuentra en Seguridad de Vida, por último, el punto de desempeño para un sismo Muy Raro se encuentra en Seguridad de Vida.

3.8 Prueba de Hipótesis

Hipótesis 02

Hipótesis del investigador: La curva de capacidad mediante la aplicación de cargas monotónicas según el patrón especial tendrá un cambio considerable en comparación de la curva de capacidad aplicada mediante el modo fundamental mediante la ASCE 41-17.

H1: Existe un cambio significativo entre la curva de capacidad formada por un patrón especial y aquella formada por un modo fundamental mediante la ASCE 41-17.

Ho: No Existe un cambio significativo entre la curva de capacidad formada por un

patrón especial y aquella formada por un modo fundamental mediante la ASCE 41-17.

Evaluación de normalidad.

Se utilizará Chapiro Wilk porque tenemos muestras menores a 30, para verificar si

los resultados obtenidos tienen un patrón de distribución normal.

Criterio:

Hipótesis Nula (Ho): Los datos tienen una distribución normal con un P-valor de al menos 0,05.

Hipótesis Alternativa (Ha): El p-valor es inferior a 0,05, lo que indica que los datos no tienen una distribución normal.

Tabla 43

Prueba de Normalidad Shapiro Wilk Test hipótesis 2

	Sha	piro-Wilk	
	Estadístico	gl	Sig
MODOS_VIBRACION_X_POSITIVO	.849	4	.223
PATRON_ESPECIAL_X_POSITIVO	.847	4	.218
MODOS_VIBRACION_X_NEGATIVO	.853	4	.237
PATRON_ESPECIAL_X_NEGATIVO	.852	4	.233
MODOS_VIBRACION_Y_POSITIVO	.843	4	.204
PATRON_ESPECIAL_Y_POSITIVO	.841	4	.201
MODOS_VIBRACION_Y_NEGATIVO	.847	4	.217
PATRON_ESPECIAL_Y_NEGATIVO	.847	4	.216
Nota: Se realiza la prueba de normalidad co	n el programa S	$PSS v_21$	

Nota: Se realiza la prueba de normalidad con el programa SPSS v-21.

Se acepta la hipótesis Nula (Ho) porque la Tabla 43 muestra que los datos provienen

de una distribución normal, es decir, paramétrica, y el valor significativo es mayor que

0.05.

Prueba Paramétrica Numérica (T student)

Se utilizará el programa SPSS V-21 para realizar esta prueba estadística con un

porcentaje de confiabilidad de 95%.

Estadística de muestra relacionadas.

Tabla 44

Estadística de muestra relacionadas Test hipótesis 2.

Estadísticos de muestras relacionadas					
MODOS_VIBRACION_X	MEDIA	319.372			
PATRON_ESPECIAL_X	MEDIA	359.739			
MODOS_VIBRACION_Y	MEDIA	376.368			
PATRON_ESPECIAL_Y MEDIA 399.603					
Conclusión: Hay un cambio en las medias					

Nota: Se realiza la prueba de igualdad de varianzas con el programa SPSS v-21.

Calcular el P-valor (Valor de la prueba o significancia)

Si la probabilidad obtenida P-valor $\leq \alpha$, rechace Ho (Se acepta H1)

Si la probabilidad obtenida P-valor > α , no rechace Ho (Se acepta Ho)

Tabla 45

Prueba T student Test hipótesis 2

	Prueba	a T student	
Dirección X	P-Valor = 0.000	<	a = 0.05
Dirección Y	P-Valor = 0.000	<	a = 0.05

Conclusión: Existe un cambio significativo entre la curva de capacidad formada por un patrón especial y aquella formada por un modo fundamental mediante la ASCE 41-17.

Nota: Se realiza la prueba de T student con el programa SPSS v-21.

Hipótesis 03

Hipótesis del investigador: Los puntos de desempeños de los diferentes niveles de sismos propuesto por Visión 2000 mediante la aplicación de cargas monotónicas de patrón especial tendrán un cambio significado mediante la aplicación de modo fundamental mediante la ASCE 41-17 y FEMA 440.

H1: Existe un cambio significativo entre los puntos de desempeños de los diferentes niveles de sismos propuesto por Visión 2000 formada por un patrón especial y aquella formada por un modo fundamental mediante la ASCE 41-17 y FEMA 440.

Ho: No Existe un cambio significativo entre los puntos de desempeños de los diferentes niveles de sismos propuesto por Visión 2000 formada por un patrón especial y aquella formada por un modo fundamental mediante la ASCE 41-17 y FEMA 440.

Evaluación de normalidad.

Se utilizará Chapiro Wilk porque tenemos muestras menores a 30, para verificar si los resultados obtenidos tienen un patrón de distribución normal.

Criterio:

Hipótesis Nula (Ho): Los datos tienen una distribución normal con un P-valor de al menos 0,05.

Hipótesis Alternativa (Ha): El p-valor es inferior a 0,05, lo que indica que los datos no tienen una distribución normal.

Tabla 46

	Shapiro-Wilk		
	Estadístico	gl	Sig
MODOS_VIBRACION_X_DESP	.847	8	.089
PATRON_ESPECIAL_X_DESP	.828	8	.055
MODOS_VIBRACION_X_CORTANTE	.865	8	.135
PATRON_ESPECIAL_X_CORTANTE	.864	8	.131
MODOS_VIBRACION_Y_DESP	.840	8	.076
PATRON_ESPECIAL_Y_DESP	.839	8	.073
MODOS_VIBRACION_Y_CORTANTE	.840	8	.076
PATRON_ESPECIAL_Y_CORTANTE	.836	8	.068
Nota: Se realiza la prueba de normalidad con el programa SPSS v-21.			

Prueba de Normalidad Shapiro Wilk Test hipótesis 3

Se acepta la hipótesis Nula (Ho) porque la Tabla 46 muestra que los datos provienen de una distribución normal, es decir, paramétrica, y el valor significativo es mayor que 0.05.

Prueba Paramétrica Numérica (T student)

Se utilizará el programa SPSS V-21 para realizar esta prueba estadística con un

porcentaje de confiabilidad de 95%.

Estadística de muestra relacionadas.

Tabla 47

Estadísticos de muestras relacionadas Test hipótesis 3

Estadísticos de muestras relacionadas					
MODOS_VIBRACION_X	MEDIA	18.755			
PATRON_ESPECIAL_X MEDIA 18.466					
MODOS_VIBRACION_Y	MEDIA	20.105			
PATRON_ESPECIAL_Y	MEDIA	19.641			
Conclusión: Hay un cambio en las media					

Conclusión: Hay un cambio en las media.

Nota: Se realiza la prueba de igualdad de varianzas con el programa SPSS v-21.

Calcular el P-valor (Valor de la prueba o significancia)

Si la probabilidad obtenida P-valor $\leq \alpha$, rechace Ho (Se acepta H1)

Si la probabilidad obtenida P-valor > α , no rechace Ho (Se acepta Ho)

Tabla 48

Prueba T student Test hipótesis 3

Prueba T student			
Dirección X	P-Valor = 0.021	<	a = 0.05
Dirección Y	P-Valor = 0.000	<	a = 0.05

Conclusión: Existe un cambio significativo entre los puntos de desempeños de los diferentes niveles de sismos propuesto por Visión 2000 formada por un patrón especial y aquella formada por un modo fundamental mediante la ASCE 41-17 y FEMA 440.

Nota: Se realiza la prueba de T student con el programa SPSS v-21.

Hipótesis 04

Hipótesis del investigador: Mediante la aplicación de cargas monotónicas según el patrón especial tendrá un cambio considerable en la sectorización de curva de capacidad a comparada de la aplicación del modo fundamental mediante la SEAOC y ATC-40.

H1: Influye un cambio significativo entre la sectorización de curva de capacidad formada por un patrón especial y aquella formada por un modo fundamental mediante la SEAOC y ATC-40.

Ho: No Influye un cambio significativo entre la sectorización de curva de capacidad formada por un patrón especial y aquella formada por un modo fundamental mediante la SEAOC y ATC-40.

Evaluación de normalidad.

Se utilizará Chapiro Wilk porque tenemos muestras menores a 30, para verificar si

los resultados obtenidos tienen un patrón de distribución normal.

Criterio:

Hipótesis Nula (Ho): Los datos tienen una distribución normal con un P-valor de al menos 0,05.

Hipótesis Alternativa (Ha): El p-valor es inferior a 0,05, lo que indica que los datos no tienen una distribución normal.

Tabla 49

	Prueba de	Normalidad	Shapiro	Wilk Test	hipótesis 4.
--	-----------	------------	---------	-----------	--------------

	Shapiro-Wilk		
	Estadístico	gl	Sig
MODOS_VIBRACIÓN_X (SEAOC)	.918	10	.341
PATRON_ESPECIAL_X (SEAOC)	.924	10	.391
MODOS_VIBRACIÓN_Y (SEAOC)	.936	10	.511
PATRON_ESPECIAL_Y (SEAOC)	.938	10	.535
MODOS_VIBRACIÓN_X (ATC-40)	.868	8	.144
PATRON_ESPECIAL_X (ATC-40)	.868	8	.144
MODOS_VIBRACIÓN_Y (ATC-40)	.888	8	.226
PATRON_ESPECIAL_Y (ATC-40)	.888	8	.226
Nota: Se realiza la prueba de normalidad con el programa SPSS v-21			

Nota: Se realiza la prueba de normalidad con el programa SPSS v-21.

Se acepta la hipótesis Nula (Ho) porque la Tabla 49 demuestra que los datos provienen de una distribución normal, es decir, paramétrica, y el valor significativo es mayor que 0,05.

Prueba Paramétrica Numérica (T student)

Se utilizará el programa SPSS V-21 para realizar esta prueba estadística con un

porcentaje de confiabilidad de 95%.

Estadística de muestra relacionadas.

Tabla 50

Estadística de muestra relacionadas Test hipótesis 4.

Estadísticos de muestras relacionadas			
SEOAC Modos_vibracion_x	Media	0.2728	
SEOAC Patron_especial_x	Media	0.3320	
SEOAC Modos_vibracion_y	Media	0.3598	
SEOAC Patron_especial_y	Media	0.3612	
ATC-40 Modos_vibracion_x	Media	0.2683	
ATC-40 Patron_especial_x	Media	0.3150	
ATC-40 Modos_vibracion_y	Media	0.3535	
ATC-40 Patron_especial_y	Media	0.3550	
Conclusión: Hay un cambio en las media.			

Nota: Se realiza la prueba de igualdad de varianzas con el programa SPSS v-21.

Calcular el P-valor (Valor de la prueba o significancia)

Si la probabilidad obtenida P-valor $\leq \alpha$, rechace Ho (Se acepta H1)

Si la probabilidad obtenida P-valor > α , no rechace Ho (Se acepta Ho)

Tabla 51

Prueba T student Test hipótesis 4.

Prueba T student				
SEAOC Dirr.X	P-Valor = 0.020	<	a = 0.05	
SEAOC Dirr.Y	P-Valor = 0.044	<	a = 0.05	
ATC-40 Dirr.X	P-Valor = 0.105	>	a = 0.05	
ATC-40 Dirr.Y	P-Valor = 0.527	>	a = 0.05	
	1			

Conclusión: Existe un cambio significativo entre la sectorización de curva de capacidad formada por un patrón especial y aquella formada por un modo fundamental mediante la SEAOC y ATC-40.

Nota: Se realiza la prueba de T student con el programa SPSS v-21.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1. Limitaciones.

- Limitación de recursos financieros: Debido a las dificultades financieras, no se ha podido llevar a cabo un cabo de estudio específico de mecánica del suelo en la ubicación del edificio y evaluar. En su lugar, se ha llevado a cabo una búsqueda sistemática y se han recopilado cinco investigaciones cercanas a dicha ubicación. A partir de estas investigaciones, se ha obtenido una capacidad portante estimada de 4kg/cm2, lo que categoriza el suelo como "S2"(CAPECO, 2023). Además, se ha realizado la microzonificación sísmica del distrito de Miraflores, donde se encuentra el edificio, y también se ha clasificado el suelo como "S2". Por consiguiente, se ha modelado la edificación siguiendo este principio.

- Limitación de disponibilidad: Es cierto que no abundan empresas educativas que ofrezcan un curso de análisis no lineal estático, lo que lo convierte en un tema de estudio propio de nivel de maestría. Sin embargo, se logró encontrar un curso que permite adquirir conocimientos sobre las normas, calibración de elementos estructurales y una evaluación práctica del proceso de análisis y rendimiento.

-Limitaciones geográficas y de generalización: La investigación está restringida a una sola estructura de hormigón armado de 10 pisos con sede en Miraflores. Dado que las circunstancias sísmicas y de construcción pueden variar mucho, esto puede restringir la generalización de los resultados obtenidos a otras estructuras en otras regiones geográficas.

- Limitaciones del software: Como se mencionó anteriormente, la evaluación del desempeño sísmico se puede realizar utilizando el software Etabs 19 para modelar edificios, que actualmente incluye las normas ASCE41-13 y Fema 440. No obstante, es

relevante destacar que el procedimiento y las consideraciones contempladas en la normativa ASCE 41-13 son similares a las establecidas en la norma ASCE 41-17 lo que implica tener simplificaciones o supuestos que podrían afectar la precisión de los resultados.

 Limitación de recursos o hardware: Se recomienda contar con un equipo con un procesador de alto rendimiento, dado que el proceso involucrado demanda una carga computacional significativa.

4.2. Interpretación comparativa

Objetivo 1: El análisis sísmico estático se encontró una cortante en dirección X de 349.873 tn y en dirección Y de 310.026 tn y mediante el análisis dinámico se encontró una cortante en dirección X de 281.95 tn y en dirección Y de 266.69 tn, con unas derivas inelásticas máximas de 0.005en dirección X y 0.0052 en dirección Y. En comparación con Valle (2019), han utilizado la misma normativa E.030 y han obtenido un cortante estático en ambas direcciones de 285,50 tn. Mientras que Ojeda y López (2021), de la misma manera han obtenido un cortante de 258,30 tn y Chavesta (2019), han encontrado una cortante basal estática de 295.7572 tn según la norma E.030. Se puede determinar que las edificaciones están verificadas y diseñadas ya sean mediante el análisis estático o dinámico según la Norma E.030.

Objetivo 2: Las curvas de capacidad según el ASCE 41-17 mediante la aplicación de cargas monotónicas del modo fundamental se obtienen los siguientes puntos de colapso que están relacionado (Desplazamientos en el Techo; Cortante en la Base); dirección X (41.4 cm; 764.744 tn), dirección -X (-40.45cm; 792.268 tn), dirección Y (55.55cm; 745.514 tn), dirección -Y (-52.2 cm; 725.232 tn), sin embargo, mediante la aplicación del patrón especial las curvas de capacidad según el ASCE 41-17 llegan en

dirección X (51.4 cm; 857.435 tn), -X (-49.6 cm; 889.207 tn), Y (55.2 cm; 792.354 tn), -Y (-52.2 cm; 771.702 tn). Al comparar estos resultados con Salcedo (2017), que aplico cargas monotónicas de una combinación de envolvente de los 10 primeros modos fundamental llegando la curva de capacidad llegan en dirección X (12.5 cm; 3.60 Kn) y dirección Y (14.5 cm; 3.80 Kn), se construyó la curva de capacidad mediante ATC-40. Así mismo, Duarte, Martínez y Santamaria, (2018), aplicaron cargas monotónicas mediante el patrón de la cortante basal estático llegando la curva de capacidad dirección X (3.5 cm; 30 tn) y dirección Y (2.1 cm; 38 tn), se construyó la curva de capacidad mediante FEMA 356. En contraste, los resultados presentados por Samillán (2019), que aplico cargas monotónicas mediante un patrón especial de la cortante estático llegando la curva de capacidad en dirección X (48 cm; 1173.57 tn) y en dirección Y (31 cm; 3095.064 tn) se construyó la curva de capacidad mediante ASCE 41-13. Todos los análisis empiezan de la carga de gravedad no lineal.

Objetivo 3. Los puntos de desempeño de los diferentes niveles de sismo según Visión mediante el ASCE 41-17 y FEMA 440, aplicando carga monotónica del modo fundamental y la aplicación de cargas monotónicas de un patrón especial. En contraste con los resultados de Salcedo (2017), determinó los puntos de desempeño para un sismo raro o de diseño mediante FEMA 440. Por otro lado, Valle (2019), se aplicó un patrón especial determinando los puntos de desempeño según ASCE 41.13. De la misma manera Chavesta (2019), siguió el mismo procedimiento y determinó los puntos de desempeños según el FEMA 440 del sismo de servicio y sismo máximo. Se coincide en que todos los puntos de desempeño fueron determinados utilizando la normativa ASCE 41 y FEMA 440.

Objetivo 4. La sectorización de la curva de capacidad formada por la aplicación de carga monotónica del modo fundamental resultó ser menor en comparación mediante la aplicación de cargas monotónicas utilizando un patrón especial establecido por SEOACE y ATC-40. En el caso de Fajardo, (2020), se limitará la sectorización de la curva de capacidad de manera similar, siguiendo los objetivos establecidos por el SEOACE, igual manera Samillán (2019), se limitará la sectorización de la curva de capacidad de manera similar, siguiendo los opre el SEOACE. Por otro lado, en el estudio realizado por Valle (2019), la sectorización se prolongará utilizando la normativa ATC-40. Estos resultados indican que la sectorización de la curva de capacidad varía en función de los objetivos establecidos por diferentes normativas y estándares. Es importante considerar estas diferencias al interpretar y comparar los resultados obtenidos en diferentes estudios.

4.3. Implicancias

- Contribución al conocimiento científico: La investigación proporciona evidencia adicional sobre el efecto de las cargas monotónicas en el desempeño sísmico de un edificio de concreto armado. Estas mejoras podrían contribuir al conocimiento científico y brindar información relevante para futuros estudios y mejoras en el diseño y construcción de edificios más seguros ante eventos sísmicos.

-Importancia relativa de las cargas monotónicas: Al comparar las cargas monotónicas aplicadas a través de un patrón especial con las cargas monotónicas de los modos fundamentales, los resultados muestran que, si hay una variación significativa en la curva de capacidad, punto de desempeño y sectorización. Por lo tanto, se concluye que las cargas monotónicas analizadas por un patrón especial, que representan el comportamiento dinámico, tienen un impacto significativo en el desempeño sísmico del

edificio.

-Aplicabilidad de normas y metodologías de análisis: La investigación utiliza normas y metodologías reconocidas, como el análisis sísmico (E.030), curva de capacidad (ASCE 41-17), desempeño sísmico (ASCE 41-17 y FEMA 440) y sectorización de la curva de capacidad (SEOACE y ATC-40). Estas pruebas respaldan la aplicabilidad y utilidad de estas normas y metodologías en la evaluación del comportamiento sísmico de edificios de hormigón armado.

-Importancia de la observación experimental: La recolección de datos se realizó mediante observación experimental utilizando fichas de recolección de datos como instrumento. Esto resalta la manera de recopilar datos de manera precisa y detallada para obtener resultados confiables en la evaluación del desempeño sísmico de la estructura

-Contribución al conocimiento nuevo científico: Esta investigación aporta de manera significativa al campo del análisis sísmico de edificaciones. Tienen algunas limitaciones en la aplicación del análisis no lineal estático según la normativa ASCE 41-17 que sean edificaciones de pocos pisos, regulares y en las que el primer modo fundamental se encuentra en traslación con una alta participación de masa, y de no cumplir se tiene que utilizar un análisis no lineal dinámico (IDA), sin embargo, los resultados obtenidos al aplicar cargas monotónicas mediante el patrón especial propuesto indican que si se producen cambios significativos en la curva de capacidad, desempeño sísmico y sectorización. Por ello, se propone utilizar como indica la norma ASCE 41-17, para obtener datos validados, por otro lado, a pesar que hay un cambio significativo ambos cumplen con los objetivos planteados por la SEAOCE Y ATC -40.

4.4. Conclusiones

Objetivo 1. Se encontró un cortante basal de 349.873 tn en dirección X y 310.026 tn en dirección Y después de un análisis estático de la estructura. Sin embargo, debido a la altura del edificio (más de 30 metros), la norma E.030 (NPT) requería un análisis sísmico dinámico. Un cortante dinámico de 281.95 tn en dirección X y 266.69 tn en dirección Y se descubrió en este análisis. Se descubrió que la estructura era regular en ambos sentidos y que las derivas inelásticas máximas en la dirección X y en la dirección Y fueron de 0.0050. Por último, la edificación demuestra su calidad y confiabilidad al cumplir con los criterios de seguridad y estabilidad establecidos por la norma N.P.T E.030.

Objetivo 2. La hipótesis alternativa es aceptada. **Existe** un cambio significativo entre la curva de capacidad formada por un patrón especial y aquella formada por un modo fundamental mediante la ASCE 41-17. Al analizar los resultados obtenidos, se observa que, al aplicar un patrón especial en comparación con el modo fundamental, se produce una variación de crecimiento en la media de la curva de capacidad en ambas direcciones.

Objetivo 3: La hipótesis alternativa es aceptada. **Existe** un cambio significativo entre los puntos de desempeños de los diferentes niveles de sismos propuesto por Visión 2000 formada por un patrón especial y aquella formada por un modo fundamental mediante la ASCE 41-17 y FEMA 440. Al analizar los resultados obtenidos, se observa que, al aplicar un patrón especial en comparación con el modo fundamental, se produce una variación de crecimiento en la media de los puntos de desempeño en ambas direcciones.

Objetivo 4: La hipótesis alternativa es aceptada. **Existe** un cambio significativo entre la sectorización de curva de capacidad formada por un patrón especial y aquella formada por un modo fundamental mediante la SEAOC y ATC-40. Al analizar los resultados obtenidos, se observa que, al aplicar un patrón especial en comparación con el modo fundamental, se produce una variación de crecimiento de medias de la sectorización de la curva en ambas direcciones.

Objetivo general: El uso de cargas monotónicas y modos fundamentales impacta significativamente el desempeño sísmico del edificio, mostrando aumentos notables en la curva de capacidad y la sectorización. La normativa ASCE 41-17 sugiere aplicar cargas monotónicas según el modo fundamental, más representativo del comportamiento dinámico. El análisis sísmico dinámico con patrón especial revela cambios sustanciales. No obstante, al emplear ambos tipos de cargas monotónicas, la estructura cumple con los objetivos de SEAOC y ATC-40.

Recomendaciones

El primer paso necesario para llevar a cabo el diseño estructural es el análisis sísmico lineal. Sin embargo, durante su vida útil, la estructura se comporta de manera inelástica en lugar de lineal. Por lo tanto, se recomienda realizar un análisis no lineal para verificar el comportamiento ante una demanda sísmica con mayor aproximación a la realidad. Este tipo de análisis también nos permite evaluar los elementos estructurales de manera individual, es decir, comprender cómo se comporta cada elemento y en qué rango se encuentra.

Se recomienda a los próximos estudiantes interesados en realizar un análisis no lineal estático, se les recomienda considerar utilizar la aplicación del modo fundamental como lo indica la Norma ASCE 41-17, por otro lado, se sugiere a los futuros estudiantes

que antes de realizar el análisis profundo de las estructuras, se ameritan tener una alta capacitación que les brinden los conocimientos necesarios para un análisis y modelado adecuado.

Es recomendable colocar los elementos estructurales de forma paralela en ambos sentidos mientras se realiza el diseño estructural. Esto hará que la estructura sea más sencilla y simétrica al colocar los centros de masa y rigidez en las posiciones correctas.

Por otro lado, debe tenerse en cuenta que la aplicación de las instrucciones de la norma ASCE 41-17 tiene algunas limitaciones. Para obtener un análisis representativo, se recomienda que la estructura sea regular y que sus primeros modos fundamentales tengan una masa participativa significativa en traslación, sin embargo, si no cumple ese criterio se recomienda utilizar el análisis no lineal dinámico (IDA).

REFERENCIAS

AGUIAR, R., (2010). Análisis sísmico por desempeño, CEINCI – ESPE. Quito: Ediespe.

ASCE/SEI 41-17. (2017). Seismic Evaluation and Retrofit of Existing Buildings. Reston,

Virginia, EEUU: American Society of Civil Engineers.

- ATC-40. (1996). Seismic Evaluation and Retrofit of Concrete Buildings, ATC-40 Report, Volumes 1 and 2. California: Applied Technology Council.
- Blanco, A. (1994). Estructuración y Diseño de Edificaciones de Concreto Armado. Lima: Capítulo de Ingeniería Civil, CDL.
- Calcina, R. (2017). Evaluación del desempeño sísmico de un edificio de once pisos utilizando análisis estático y dinámico no lineal. (Tesis de maestría, Universidad Privada de Tacna, Tacan, Perú).
- Chavesta Ruelas, E. (2019). Análisis estático no lineal para estimar el desempeño sísmico de una estructura aporticada de 5 pisos en la ciudad de Lima (Tesis de pregrado, Universidad Nacional Federico Villarreal, Perú).
- Deierlein, Gregory G., Reinhorn, Andrei M. y Willford, Michael R. (2010). "Análisis estructural no lineal para diseño sísmico", NEHRP Informe técnico de diseño sísmico n. ° 4, elaborado por NEHRP Consultantes Joint Venture, una asociación del Consejo de Tecnología Aplicada y el Consorcio de Universidades para la Investigación en Ingeniería Sísmica, para el Instituto Nacional de Estándares y Tecnología, Gaithersburg, MD, NIST GCR 10-917-5.
- Duarte, C., Martínez, M. y Santamaria, J. (2017). Análisis estático no lineal (Pushover)del cuerpo central del edificio de la faculta de medicina de la universidad de el salvador (Tesis de pregrado, Universidad del Salvador, San Salvador, El Salvador).

ο

- Fajardo Gaviria, F. (2020). Análisis estático lineal y no lineal del Edificio Icaro de la ciudad de Manizalez (Tesis de pregrado, Universidad de los Andes).
- Fuentes, N. (2018). Desempeño sísmico de un edificio de cinco niveles de concreto armado mediante el análisis estático no lineal "pushover". (Tesis de pregrado, Universidad Nacional de Antúnez de Mayolo, Ancash, Perú.).
- Hognestad, E. (1951). Study of combined bending and axial load in reinforced concrete members. Illinois.
- Holzer et al. (1975). SINDER. A Computer Code for General Analysis of Two-Dimensional Reinforced Concrete Structures. Report. AFWL-TR74-228 Vol. 1. Air Force Weapons Laboratory, Kirtland, AFB, New México.
- Mander, J.B., M.J.N. Priestley, and R. Park (1984). *Theoretical StressStrain Model for Confined Concrete. Journal of Structural Engineering*. ASCE. 114(3). 1804-1826.
- Ministerio de Vivienda, Construcción y Saneamiento. Norma Técnica de Edificación E.030 Diseño Sismorresistente (2020). Lima, Perú: El Ministerio.
- Ojeda, J. y López, J. (2021). Desempeño sísmico de una edificación de concreto armado dual mediante el análisis no lineal en el tiempo ubicado en el distrito de Lince, departamento de Lima-Perú. (Tesis de pregrado, Universidad Peruana de Ciencias Aplicadas, Lima, Perú).
- Ottazzi. (2011). Concreto Armado I. Lima: PUCP.
- Park, R., Priestley, M. J., & Gill, W. D. (1982). Ductility of Square Confined Concrete. Rodriguez, I. (2015). Análisis estático no lineal, Pushover. [CSI CARIBE, Intérprete] República Dominicana.
- Richart, F. E., Brandtzaeg, A., and Brown, R. L. (1929). "The failure of plain and spirally reinforced concrete in compression." Bulletin 190, Univ. of Illinois Engineering

ο

Experimental Station, Champaign, 111.

- Rodríguez, I. (2015). *Análisis estático no lineal, Pushover*. [CSI CARIBE, Intérprete] República Dominicana.
- Salcedo, Y. (2017). Desempeño sísmico por el método pushover de un edificio construido en la ciudad de barranquilla bajo la norma nsr-10. (Tesis de pregrado, Universidad de la Costa, Barranquilla, Colombia).
- Samillán, R (2019). Análisis del desempeño sísmico no lineal estático (pushover) en una edificación de ocho pisos Chiclayo-Lambayeque. (Tesis de maestría, Universidad Cesar Vallejo, Chiclayo, Perú).
- Valle, E. (2019). Desempeño sismorresistente a través del análisis estático no lineal de un edificio de concreto armado de 8 pisos y un sótano. (Tesis de pregrado, Universidad Cesar Vallejo, Lima, Perú).

ο
1 UPN UNIVERSIDAD PRIVADA DEL NORTE

ANEXOS ANEXO 1: MATRIZ DE CONSISTENCIA.

Título: "IMPACTO DE CARGAS MONOTÓNICAS EN EL DESEMPEÑO SÍSMICO DE UN EDIFICIO DE CONCRETO ARMADO DE 10 NIVELES EN EL DISTRITO DE MIRAFLORES,

LIMA - 2023''

Formulación de problema.	Objetivo	Hipótesis Variables Instrumentos		Instrumentos	Metodología	
Problema general	Objetivo general	Hipótesis general.	Variable Independiente: Cargas Monotónicas.	Fichas de recopilación:	Investigación de cuantitativo:	
 Problema general ¿Cuál es impacto de cargas monotónicas en el desempeño sísmico de un edificio de concreto armado de 10 niveles en el distrito de Miraflores, Lima - 2023? Problemas específicos ¿Cuál es el comportamiento del modelo estructural al considerar los planos estructurales y aplicar el análisis sísmico estático y dinámico de acuerdo con los requisitos establecidos en la norma E.030? ¿En qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en la curva de capacidad mediante la ASCE 41-17? ¿En qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en los puntos de desempeños de los diferentes niveles de sismo propuesto por Visión 2000 mediante la ASCE 41-17 y FEMA 440? ¿En qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en los puntos de desempeños de los diferentes niveles de sismo propuesto por Visión 2000 mediante la ASCE 41-17 y FEMA 440? ¿En qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en los puntos de desempeños de los diferentes niveles de sismo propuesto por Visión 2000 mediante la ASCE 41-17 y FEMA 440? 	 Objetivo general Analizar el impacto de cargas monotónicas en el desempeño sísmico de un edificio de concreto armado de 10 niveles en el distrito de Miraflores, Lima - 2023. Objetivos específicos Analizar y determinar el comportamiento del modelo estructural al considerar los planos estructurales y aplicar el análisis sísmico estático y dinámico de acuerdo con los requisitos establecidos en la norma E.030. Determinar en qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en la curva de capacidad mediante la ASCE 41-17. Determinar en qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en los puntos de desempeños de los diferentes niveles de sismo propuesto por Visión 2000 mediante la ASCE 41-17 y FEMA 440. Determinar en qué medida influye la aplicación de cargas monotónicas del modo fundamental y de un patrón especial en los puntos de desempeños de los diferentes niveles de sismo propuesto por Visión 2000 mediante la ASCE 41-17 y FEMA 440. 	 Hipótesis general. Las cargas monotónicas tienen un impacto significativo en el desempeño sísmico de un edificio de concreto armado de 10 niveles en el distrito de Miraflores, Lima - 2023. Hipótesis específicas Mediante el análisis sísmico estático y dinámico de acuerdo con los requisitos establecidos en la norma E.030, se espera que el comportamiento del modelo estructural demuestre una mayor resistencia y capacidad de respuesta frente a cargas sísmicas, garantizando la seguridad y estabilidad de la estructura. La curva de capacidad mediante la aplicación de cargas monotónicas según el patrón especial tendrá un cambio considerable en comparación de la curva de capacidad mediante la ASCE 41-17. Los puntos de desempeño de los diferentes niveles de sismo propuesto por Visión 2000 mediante la aplicación de cargas monotónicas de patrón especial tendrán un cambio significado mediante la aplicación de cargas monotónicas de patrón especial tendrán un cambio significado mediante la aplicación de cargas monotónicas de patrón especial tendrán un cambio significado mediante la aplicación de modo fundamental mediante la aplicación de modo fundamental mediante la aplicación de modo fundamental mediante la ASCE 41-17 y FEMA 440. 	 Variable Independiente: Cargas Monotónicas. Definición Conceptual: Una carga monotónica es aquella que se aplica gradualmente y sin interrupciones, manteniendo una dirección y magnitud constantes (ASCE 41-17, 2017). Variable Dependiente: Desempeño sísmico. Definición Conceptual: Evaluación del comportamiento y respuesta de un edificio durante un evento sísmico (ATC-40, 1996). 	Fichas de recopilación: Que se solidifica junto con el programa ETABS V19, se solidifica para recopilar los datos (Anexo N.º 8.1). Este proceso nos proporciona datos importantes como los desplazamientos entre pisos, la presencia de rótulas plásticas, las derivas máximas, la capacidad y el punto de desempeño de cada elemento o planta del edificio frente a amenazas sísmicas. Para analizar y determinar nuestros objetivos de manera efectiva, este enfoque integral nos permitirá obtener una base de datos confiable. Validación Para adquirir datos confiables las "Fichas de recopilación" son extraídas de normas E.030, E.060, ASCE 41-17, FEMA 440, SEAOCE Y ATC-40 ya validadas, por otro lado, se debe verificar la calidad de la información. También se menciona la capacidad de una prueba para representar, caracterizar o anticipar el atributo importante para el evaluador (Universidad Católica de los Ángeles de Chimbote, s.f.). Esto se conoce como la precisión con la que un instrumento mide lo que está diseñado para evaluar. Esto se puede realizar mediante: • Revisión manual: se revisa la información de forma	 Investigación de cuantitativo: Se mide y analiza los fe causales del impacto di monotónicas en el de sísmico, mediante la recopidatos numéricos y se medidas estadísticas como de hipótesis para analizar numéricos. Investigación de tipo aplio Se enfoca en un problema pespecífico relacionado seguridad sísmica de edificiubicación concreta. Los nobtenidos tendrán una numéricos en el construcción de edificiubicación de nivel exportante esta área. Investigación de nivel expose Se busca explicar cómo l monotónicas afectan al de sísmico de la estructura, a las posibles relaciones de efecto. Se usará métor recolección y análisis de de examinar y explicar la entre estas variables. Investigación de diseñ experimental: Se manipula la independiente que viene cargas monotónica, pero totalidad, debido a quimitaciones inherentes, factor de suelo, que podrían de sísmico. 	
	SEAOC y ATC-40.	curva de capacidad a comparación de la aplicación del modo fundamental mediante la SEAOC y ATC-40.		independiente con hojas de Excel de la información proporciona del software ETABS.		

Población y muestra

enfoque Población:

cada:

práctico y con la cios en una

nalizando causa y todos de datos para relación

io cuasi

variable hacer las no en su ue tiene como el n afectar el

Todas las edificaciones que se enómenos encuentran conformados por le cargas concreto armado y tengan una esempeño estructuración de muros vilación de estructurales de 10 niveles y se utilizan encuentra localizados en el distrito la prueba de Miraflores, Lima, Perú. Estén los datos diseñados siguiendo los parámetros establecidos en las Normas Técnicas E.030-2020 y E.060-2020 del RNE en la ciudad de Lima.

Muestra:

resultados Para nuestra investigación relevancia aplicamos la herramienta de cisiones y muestreo no probabilístico, por diseño y juicio de investigador, por lo que el ficaciones edificio a evaluar está diseñado bajo las normativas E-030 y E-060 del año 2020 del RNE. La muestra es un plicativo: edificio con sistema estructural de las cargas muros estructurales ubicado en el esempeño Distrito de Miraflores, Lima Perú.

Anexo 2. Plano de Estructura: Cimentación.

CUADRO DE ZAPATAS								
DECODIDCIÓN	DIMEN	SIONES	DISTRIBUCIÓN DE ACERO					
DESCRIPCION	Largo (m)	Ancho (m)	As1-Inferior	As2-Superior				
Z1	5.85	2.5	Ø3/4"@.15	Ø3/4"@.15				
Z2	2.40	6.20	Ø1"@.15	Ø1"@.15				
Z3	2.40	3.70	Ø1"@.15	Ø1"@.15				
Z4	2.40	2.60	Ø3/4"@.10	Ø3/4"@.10				
Z5	3.00	3.00	Ø3/4"@.10	Ø3/4"@.10				
Z6	2.75	2.00	Ø3/4"@.10	Ø3/4"@.10				
Z7	2.00	8.45	Ø3/4"@.10	Ø3/4"@.10				
Z8	3.60	4.00	Ø3/4"@.10	Ø3/4"@.10				
Z9	1.00	3.00	Ø3/4"@.10	Ø3/4"@.10				
Z10	2.15	10.00	Ø3/4"@.10	Ø3/4"@.10				
Z11	4.20	8.15	Ø3/4"@.10	Ø3/4"@.10				
Z12	3.60	2.00	Ø3/4"@.10	Ø3/4"@.10				

Pillaca Cisneros, Hebert

Vivanco Salvatierra, Christian Orlando

Anexo 3. Plano de especificaciones técnicas detalle de escalera, columnas y placas.

Anexo 4. Plano de Estructuras: Encofrado.

Pillaca Cisneros, Hebert Vivanco Salvatierra, Christian Orlando

Anexo 5. Plano de Estructuras: Detalles de vigas.

Pillaca Cisneros, Hebert Vivanco Salvatierra, Christian Orlando

Anexo 6. Plano de Arquitectura: Planta primer piso.

	CUADRO DE VANOS - VENTANAS							
DESCRIPC	CANTIDAD	ALFEIZAR	ALTO	ANCHO	TIPO			
VENTANA COR	02	1.00	1.20	1.70	¥-1			
VENTANA ALTA DE VID	01	2.10	0.40	0.50	¥-2			
VENTANA ALTA DE VID	01	1.80	0.50	0.90	V-3			
VENTANA COR	01	1.00	1.32	1.05	V-4			
VENTANA ALTA DE VID	02	1.99	0.50	1.04	V-5			
VENTANA COR	01	0.90	1.42	1.41	¥-6			
VENTANA COR	01	1.00	1.32	1.70	¥-7			
VENTANA	01	1.00	1.32	1.13	V-8			
VENTANA COF	02	0.90	1.62	1.50	¥-9			
VENTANA ALTA DE VID	01	1.00	1.32	2.03	V-10			
VENTANA COF	02	1.00	1.54	1.13	¥-11			
VENTANA COR	01	1.00	1.54	2.03	V-12			
VENTANA COF	02	2.10	0.64	1.25	¥-13			
VENTANA ALTA DE VID	01	1.02	0.50	1.05	V-14			

	CUADRO DE VANOS - PUERTAS							
DESCRIPCIÓN	CANTIDAD	ALFEIZAR	ALTO	ANCHO	TIPO			
PUERTA CONTRAPLA	01		2.10	0.80	P-1			
PUERTA CONTRAPLA	01		2.10	0.90	P-2			
PUERTA CONTRAPLA	01		2.10	0.70	P-3			
PUERTA CONTRAPLA	05		2.10	0.60	P-4			
PUERTA CONTRAPLA	06		2.10	1.00	P-5			
PUERTA DOBLE CON	01		2.10	1.80	P-6			
PUERTA DOBLE CON	01		2.10	1.20	P-7			
PUERTA DOBLE CON	01		2.10	2.00	P-8			

Pillaca Cisneros, Hebert Vivanco Salvatierra, Christian Orlando

1 UPN UNIVERSIDAD PRIVADA DEL NORTE
FICIO DE MULTIEMPRESARIAL
реотесто: EDI
UBICACION: AV. :LFREDO BENAVIDES . M. MARKO JORA SCHENON DISTRITO: MIRAFLORES. REFERENCIA: O. HIGUERE!
escala: 1/75
FECHA: JUNIO 2023
PLAND PLANTA 1ER PISO.
Nº DE LAMINA:
A-01

Anexo 7. Plano de Arquitectura: Plantas Típica.

Anexo 8. Plano de Arquitectura: Cortes y Elevaciones.

	11 UPN UNIVERSIDAD DEL MORTE
	CIO DE MULTIEMPRESARIAL
	UBICACION AV.SFREDO BENAVIDES - M. MARKO JORA SCHENONE DISTRITO: MIRAFLORES. REFERENCIA: O. HIGUIRETA
	ESCALA: 1/75 FECHA: JUNIO 2023
	PLAND PLAND CORTES Y ELEVACIONES
	A-03

Anexo 8.1: Tablas de recolección de datos.

Tabla 52:

Periodo fundamental.										
Modo	Period.sec	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ
1										
2										
3										
4										
5										
6										
7										
8										

Tabla 53:

Centro de rigidez y centro de masa.

Nivel	Mass X	Mass Y	XCM	YCM	XCR	YCR
	tonf-s²/m	tonf-s²/m	(m)	(m)	(m)	(m)
P10						
P9						
P8						
P7						
P6						
P5						
P4						
P3						
P2						
P1						

Tabla 54:

D	/	•
Peso	sisn	исо.

Nivel	Caso	Combinacion	Ubicación	P (tonf)	P (tonf)
P10					· · · ·
P9					
P8					
P7					
P6					
P5					
P4					
P3					
P2					
P1					

Tabla 55: Fuerzas estáticas en dirección X.

ANÁLISIS LATERAL LOAD USER LOADS DIRECCIÓN X

Nivel	Altura. Acom. (hi)	Peso por piso. (Pi)	Pi*(hi*K)	alfa	Fuerza actuante en el CM (Fi)
P10					
P9					
P8					
P7					
P6					
P5					
P4					
P3					
P2					
P1					
Base					
Sumatoria					

Tabla 56:

Fuerzas estáticas en dirección Y.

ANÁLISIS LATERAL LOAD USER LOADS DIRECCIÓN Y

Nivel	Altura. Acom. (hi)	Peso por piso. (Pi)	Pi*(hi*K)	alfa	Fuerza actuante en el CM (Fi)
P10					
P9					
P8					
P7					
P6					
P5					

Tabla 57:

Análisis del Sistema Estructural.		
V(tonf) - SDX	V(tonf) - SDY	
Total		
Columnas		
Placas		

Tabla 58:

Comprobación en dirección X desviación de Rigidez.					
Nivel	Rigidez X	70%	80%	60%	70%
	(tonf/m)	K(i+1)	(Kprom)	K(i+1)	(Kprom)
P10					
P9					
P8					
P7					
P6					
P5					
P4					
P3					
P2					
P1					

Tabla 59:

Comprobación en dirección Y desviación de Rigidez.					
Nivel	Rigidez Y	70%	80%	60%	70%
	(tonf/m)	K(i+1)	(Kprom)	K(i+1)	(Kprom)
P10					
P9					
P8					
P7					
P6					
P5					
P4					
P3					
P2					
P1					

Tabla 60:

Comprobación en dirección X desviación de Resistencia.

Nivel	Cortante	80%	65%
	Х	(K.prom)	K(+1)
P10			
P9			
P8			
P7			
P6			
P5			
P4			
P3			
P2			
P1			

Tabla 61:

Comprobación en dirección Y desviación de Resistencia.

Nivel		Cortante	80%	65%
	Y		(Kprom)	K(+1)
P10				
P9				
P8				
P7				
P6				
P5				
P4				
P3				
P2				
P1				

Tabla 62:

Comprobación de desviación de masa o peso.				
P=100%	CM+25%CV	r		
Nivel	Peso	Sup	Inf	
P10				
P9				

Tabla 63:

Comprobación en dirección X desviación torsional.					
Nivel	Max Drift	Avg Drift	Ratio	1.3	1.5
P10					
P9					
P8					
P7					
P6					
P5					
P4					
P3					
P2					
P1					

Tabla 64:

Compr	obación en d	dirección X	l desvi	ación	torsional.
Nivel	Max Drift	Avg Drift	Ratio	1.3	1.5
P10					
P9					
P8					
P7					
P6					
P5					
P4					
P3					
P2					
P1					

Tabla 65:

Recopilación de todas las irregularidades.

Irregularidad en Planta	Ipx	Іру
Irregularidad Torsional		
Irregularidad Torsional		
Discontinuidad en Diafragma		
Sistema no Paralelos		
Irregularidad en Altura	IaX	Iay
Masa o Peso		
Geometría Vertical		
Discontinuidad Sist. Resist		
Discontinuidad Sist. Resist		
Rigidez		
Rigidez Extrema		
Resistencia		
Extrema Resistencia		

Tabla 66: Darin

Derivas en Dirección X-Y.						
Caso	Nivel	Elevación	Locación	Drift	Drift	Verificación
		(m)		Х	Y	< 0.007
Deriva						
Deriva						
Deriva						
Deriva						
Deriva						
Deriva						
Deriva						
Deriva						
Deriva						
Deriva						
Deriva						

Tabla 67:

Nivel	Des,max (cm) X	Des, max (cm) Y
P10		
P9		
P8		
P7		
P6		
P5		
P4		
P3		
P2		
P1		
Base		

Desplazamiento máximo inelásticos por nivel.

Tabla 68:

Distribución de Fuerzas laterales mediante el modo fundamental

Nivel	F.push X, X-	F.push Y, Y-
P10		
P9		
P8		
P7		
P6		
P5		
P4		
P3		
P2		
P1		

Tabla 69:

Nivel	VxD	VyD	Fx	Fy	F.push-X	F.push-Y
P10						
P9						
P8						
P7						
P6						
P5						
P4						
P3						
P2						
P1						

Distribución de Cargas laterales mediante el Patrón Especial.

Tabla 70:

Curva de Capacidad en dirección X mediante modos fundamentales.

Dirección X+		Dirección X-		
Desp. (m)	F. basal (tonf)	Despl. (m)	F. basal (tonf)	

Tabla 71:

Curva de Capacidad en dirección Y mediante modos fundamentales.

Dirección Y+		Dirección Y-	
Desp. (m)	F. basal (tonf)	Despl. (m)	F. basal (tonf)

Tabla 72:

Curva de Capacidad en dirección X mediante Patrón Especial.

Dirección X+		Dirección X-		
Desp. (m)	F. basal (tonf)	Despl. (m)	F. basal (tonf)	

Tabla 73:

Curva de Capacidad en dirección Y mediante Patrón Especial.

Dirección Y+		Dirección Y-	
Desp. (m) F. basal (tonf		Despl. (m)	F. basal (tonf)

Tabla 74:

Desempeño efectivo mediante aplicación de modos fundamentales. Dir. Desempeño Max. Desempeño Efectiva F. Basal (tn) Despla. (m) F. Basal (tn) Despla. (m) Х Х-Y Y-

Tabla 75:

Desempeño efectivo mediante aplicación de patrón especial.

	V	1			1	
Dir.		Desempeño N	/Iax.		Desempeño Et	fectiva
		F. Basal (tn)	Despla.	(m)	F. Basal (tn)	Despla. (m)
Х						
Х-						
Y						
Y-						

Tabla 76

Coeficiente de R.

Nivel del movimiento sísmico	Periodo medio de retorno	Probalidad de excedencia	Coeficiente de R
Frecuente			
Ocasional			
Raro			
Muy Raro			

Tabla 77:

Resumen de Desempeño sísmico de la curva de capacidad formada por modos fundamentales.

Mátodo	Ciarra	Dirección X		Dirección Y	
Metodo	5151110	Desp. (cm)	Cortante (tn)	Desp. (cm)	Cortante (tn)
ASCE 41-17 (+)					
ASCE 41-17 (-)					
FEMA 440 (+)					
FEMA 440 (-)					

Tabla 78:

Resumen de Desempeño sísmico de la curva de capacidad formada por Patrón Especial.

Mátodo	Sigmo	Dirección X		Dirección Y	
Metodo	5181110	Desp. (cm)	Cortante (tn)	Desp. (cm)	Cortante (tn)
ASCE 41-17 (+)					
ASCE 41-17 (-)					
FEMA 440 (+)					
FEMA 440 (-)					

Sectorizada de la curva de capacidad formada por modos fundamentales según SEAOC

Dirección	TO (m)	IO (m)	SL(m)	CP(m)	C(m)
X+					
X-					
Y+					
Y-					

Tabla 80

Objetivos aceptados por el SEAOC según ASCE 41-17

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy Baro
X+				Maro
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Х-				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Y+				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Y-				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				

Objetivos aceptados por el S	SEAOC según FEMA 440
------------------------------	----------------------

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy
				Raro
X +				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Х-				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Y+				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Y-				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				

Tabla 82

Sectorizada de la curva de capacidad formada por modos fundamentales según ATC-40

Dirección	TO (m)	IO (m)	SL(m)	CP(m)
X+				
Х-				
Y+				
Y-				

Objetivos aceptados por el ATC-40 según ASCE 41-17
--

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy
				Raro
X +				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Х-				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Y+				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Y+				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				

Objetivos aceptados por el ATC-40 seg	ún FEMA 440
---------------------------------------	-------------

Dirección	S. Frecuente	S. Ocasional	S. Raro	S. Muy
				Raro
X +				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Х-				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Y+				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				
Y-				
Totalmente Operativo				
Operacional				
Seguridad de Vida				
Prevención de Colapso				

Anexo 9: Desarrollo de tesis.

Material Name Fr: 210 kg/cm2 Material Type Concrete Unctional Symmetry Type Isconosic Material Diplay Color Concrete Material Nates Modify/Show Notes Material Weight and Mass 0.00024 (a) Specify Weight Density O specify Mass Density Weight per Unit Volume 0.00024 Modula of Basticity, E 253456.35 Modula of Basticity, E 253456.35 Poisson's Ratio, U 0.15 Coefficient of Themal Expansion, A 0.0000099 Sheer Modulas, G 110198.41 Modula of Rupter for Cacceted Date: Material Damping Property Data Modula of Rupter for Cacceted Date: Material Damping Property Experiment Modula of Rupter for Cacceted Date: Material Damping Property: Modula of Rupter for Cacceted Date: Material Damping Properties: Three Dependent Property Data OK Modula of Rupter for Cacceted Date: Material Damping Properties: Three Dependent Property Data OK Other Sepecified OK	General Data			
Material Type Drectional Symmetry Type Material Diaplay Color Material Notes Material Notes Material Netes Modular of Basticry, E Poisson's Ratio, U Coefficient of Themal Expansion, A Design Property Das Modular of Basticry, E	Material Name	Fo: 210 kg/cm2		
Directional Symmetry Type Isosopic Material Display Color Change Material Notes Modify/Show Notes Material Notes Modify/Show Notes Material Notes 0.000002 Weight per Unit Volume 0.000002 Modulas of Basticity, E 253455.35 Poisson's Ratio, U 0.15 Coefficient of Themal Expansion, A 0.0000009 1010198.41 kgf/cm ² Modulas, G 110198.41 Modulas of Rupture for Cancete Sab Design Data Shear Strength Reduction Factor Modulas of Rupture for Cacked Deflections Material Damping Properties @ Program Default (Based on Concrete Sab Design Code) OK Outer of Pacetted OK	Material Type	Concrete ~		
Material Display Color Change Material Notes Modify/Show Notes Material Notes Modify/Show Notes Material Veight and Mass 0.0024 kgf/cm³ @ Specify Weight Density Specify Mass Density Material Name Fc"=210 kg/cm2 Weight per Unit Volume 0.0024 kgf/cm³ Modulas of Disposity Data 0.0000002 kgf /cm³ Modulas, G 110198.41 kgf/cm² Coefficient of Themal Expansion, A 0.0000099 1/C Shear Modulas, G 110198.41 kgf/cm² Modify/Show Material Damping Properties Time Dependent Properties Shear Strength Reduction Factor Modulas of Rubure for Cascked Deflectons OK Cancel @ Program Defast (Based on Concrete Sab Design Code) OK Cancel	Directional Symmetry Type	Isotropic \checkmark		
Material Notes Modify/Show Notes Material Weight and Mass Material Name Fc"=210 kg/cm2 @ Specify Weight Denaity O Specify Mass Density Material Name Fc"=210 kg/cm2 Weight per Unit Volume 0.00002 kg#/cm³ Material Name Fc"=210 kg/cm2 Mass per Unit Volume 0.00002 kg#/cm³ Material Type Concrete, Isotropic Mechanical Property Data O Oisson's Rato, U 0.15 Coefficient of Themal Expansion, A 0.0000099 1/C Design Property Data Modify/Show Material Property Data Material Damping Properties Time Dependent Properties Shear Strength Reduction Factor Modulus of Rubure for Concrete Sab Design Code) OK Cancel	Material Display Color	Change	Material Property Design Data	
Material Weight and Mass Specify Weight Density Specify Mass Density Weight per Unit Volume D00024 kgf/cm³ Material Name and Type Material Name Fc"=210 kg/cm2 Material Name Fc"=210 kg/cm2 Material Name Fc"=210 kg/cm2 Material Name Fc"=210 kg/cm2 Material Type Concrete, Isotropic Grade Fc 210 kg/cm2 Modulus of Blasticity, E 253456.35 kgf/cm2 Poisson's Rato, U 0.15 Specified Concrete Materials Design Property Data Specified Concrete Specified Concrete Modulus, G 110198.41 kgf/cm2 Shear Strength Reduction Factor Design Property Data Material Damping Properties Shear Strength Reduction Factor Modulus of Rubure for Cascked Deflections Material Damping Properties OK Modulus of Rupture for Cascked Deflections Orgore Default (Based on Concrete Stab Design Code) Ots Specified 	Material Notes	Modify/Show Notes		
Weight Denity Specify Mass Denity Weight per Unit Volume 0.0024 kgf/cm ² Mass per Unit Volume 0.00000 kgf/cm ² Machanical Property Data 0.0000000 kgf/cm ² Modulus of Blasticity, E 253456.35 kgf/cm ² Poisson's Rato, U 0.15 Concrete Coefficient of Themal Expansion, A 0.0000099 1/C Shear Modulus, G 110198.41 kgf/cm ² Design Property Data Material Property Data Shear Strength Reduction Factor Modulus of Rupture for Cascked Deflections Material Damping Properties OK Okdus of Rupture for Cascked Deflections OK Cancel	Material Weight and Mass		Material Name and Type	
Weight per Unit Volume 0.0024 kgf/cm³ Mass per Unit Volume 0.000002 kgf eV/cm³ Mochanical Property Data 0.000009 kgf/cm² Modulus of Basticity. E 253456.35 kgf/cm² Poisson's Ratio. U 0.15 Design Properties for Concrete Materials Specified Concrete Compressive Strength, ftc 210 kgf/cm² Design Property Data	 Specify Weight Density 	O Specify Mass Density	Material Name	Fc"=210 kg/cm2
Mass per Uht Volume 0.000002 kg/ e³/cm² Mass per Uht Volume 0.000002 kg/ e³/cm² Mocharical Property Data 0.015 Coefficient of Themal Expansion, A 0.000009 1/C Poisson's Rato, U 0.15 Specified Concrete Materials Specified Concrete Materials Coefficient of Themal Expansion, A 0.000009 1/C Lightweight Concrete Specified Concrete Materials Design Property Data Moddus of Rubure for Coacked Deflectons Shear Strength Reduction Factor Ulightweight Concrete Moddus of Rubure for Coacked Deflectons OK Cancel OK	Weight per Unit Volume	0.0024 kgf/cm ³	Material Type	Concrete Instrucio
Mechanical Property Data Grade fc 210 kg/cm2 Modular of Basticity, E 253456.35 kg/cm2 Poisson's Ratio, U 0.15 Specified Concrete Materials Coefficient of Themal Expansion, A 0.0000099 1/C Shear Modulus, G 110198.41 kg/cm2 Design Property Data Shear Strength Reduction Factor Modulus of Pupperty Data Shear Strength Reduction Factor Modulus of Pupperty Data Material Damping Properties Time Dependent Properties OK © Program Default (Based on Concrete Sab Design Code) OK	Mass per Unit Volume	0.000002 kgf-s²/cm4	material Type	Concrete, isotropic
Mechanical Property Data Modulus of Elasticity, E 253456.35 kgf/cm ² Poisson's Ratio, U 0.15 Coefficient of Themal Expansion, A 0.0000099 1/C Shear Modulus, G 110198.41 kgf/cm ² Design Property Data Design Property Data Modify/Show Material Property Design Data Advanced Material Property Data Modulus of Flupture for Cacked Deflectons © Program Defaut (Based on Concrete Slab Design Code) User Specified Modulus of Slab Design Code)			Grade	fo 210 kg/om2
Modulus of Elablody, E [253456.35] kg/cm² Poisson's Ratio, U 0.15 Coefficient of Themal Expansion, A 0.0000099 Sheer Modulus, G 110198.41 Sheer Modulus, G 110198.41 Modulus of Paptered Expansion, A 0.0000099 Work Uightweight Concrete Compressive Strength, fc Lightweight Concrete Specified Concrete Compressive Strength, fc Modulus, G 110198.41 Modulus, G Material Property Data Nonlinear Material Data Material Damping Properties Modulus of Flapture for Cacked Deflectons OK © Program Default (Based on Concrete Slab Design Code) OK	Mechanical Property Data		Design Description for Consulty Matural	
Poisson's Ratio, U 0.15 Coefficient of Themal Expansion, A 0.0000099 1/C Shear Modulus, G 110198.41 kg/cm ² Design Property Data Modify/Show Material Property Design Data Advanced Material Property Data Nonlinear Material Data Time Dependent Properties Time Dependent Properties Modulus of Rupture for Cracked Deflections @ Program Default (Based on Concrete Slab Design Code) Uger Specified	Modulus of Elasticity, E	253456.35 kgt/cm ²	Design Properties for Concrete Materials	5
Coefficient of Themal Expansion. A 0.0000099 1/C Shear Modulus, G 110198.41 kgf/cm² Design Property Data Modify/Show Material Property Design Data Advanced Material Property Data Shear Strength Reduction Factor Monthear Material Data Material Damping Properties Time Dependent Properties Time Dependent Properties Ø Program Default (Based on Concrete Slab Design Code) OK Output Gescrifted OK	Poisson's Ratio, U	0.15	Specified Concrete Compressive Stre	ength, fc 210 kgf/cm ²
Shear Modulus, G 110198.41 kgf/cm² Design Property Data Modify/Show Material Property Design Data Advanced Material Property Data Shear Strength Reduction Factor Modulus of Rupture for Cracked Deflectons OK © Program Default (Based on Concrete Slab Design Code) OK	Coefficient of Thermal Expansion, A	0.0000099 1/C		
Shear Strength Reduction Factor Shear Strength Reduction Facto	Shear Modulus, G	110198.41 kgf/cm ²		
Design Property Data Modify/Show Material Property Design Data Advanced Material Property Data Nonlinear Material Data Material Damping Properties Time Dependent Properties Modulus of Rupture for Cracked Deflections © Program Default (Based on Concrete Slab Design Code) O User Specified			Shear Strength Reduction Factor	or
Modify/Show Material Property Design Data Advanced Material Property Data Advanced Material Data Material Damping Properties Time Dependent Properties Time Dependent Properties Modulus of Rupture for Cracked Deflections OK © Program Default (Based on Concrete Slab Design Code) OK	Design Property Data			
Advanced Material Property Data Nonlinear Material Data Material Damping Properties Time Dependent Properties Time Dependent Properties Modulus of Rupture for Cracked Deflections OK © Program Default (Based on Concrete Slab Design Code) OK	Modify/Show Ma	aterial Property Design Data		
Nonlinear Material Data Material Damping Properties Time Dependent Properties Time Dependent Properties Modulus of Rupture for Cracked Deflections OK © Program Default (Based on Concrete Slab Design Code) OK	Advanced Material Property Data			
Time Dependent Properties Modulus of Rupture for Cracked Deflections OK Cancel • Program Default (Based on Concrete Slab Design Code) • User Specified OK Cancel	Nonlinear Material Data	Material Damping Properties		
Modulus of Flupture for Cracked Deflections OK Cancel 	Time De	mandart Properties		
Modulus of Rupture for Cracked Deflections OK Cancel OUser Specified	Time De	pendenik moperaes		
Program Default (Based on Concrete Slab Design Code) User Specified	Modulus of Rupture for Cracked Deflection	ons	OK	Cancel
O User Specified	Program Default (Based on Conc.	rete Slab Design Code)		
	O User Specified			

Anexo 9.1: Propiedades del Concreto f'c=210 kg/cm2.

Anexo 9.2: Propiedades del Acero f'y=4200 kg/cm2.

Material Name Material Type	fy=4200 kg/cm2 Rebar	~		
Directional Symmetry Type	Uniaxial		E Material Property Design Data	
Material Display Color Material Notes	Change. Modify/Show Notes.	••	Material Name and Type	fv=4200 ka/cm2
Material Weight and Mass			Material Type	Rebar, Uniaxial
Specify Weight Density	O Specify Mass Dens	ity	Grade	fy=4200
Weight per Unit Volume	0.00785	kgf/cm ³	Design Properties for Rebar Materials	
Mass per onic volume	0.000000	Kgrs / cm	Minimum Yield Strength, Fy	4200 kgf/cm ²
Mechanical Property Data			Minimum Tensile Strength, Fu	6300 kgf/cm ²
Modulus of Elasticity, E	2000000	kgt/cm ²	Expected Yield Strength, Fye	4200 kgf/cm ²
Coefficient of Thermal Expansion	. A 0.0000117	1/C	Expected Tensile Strength, Fue	6300 kgf/cm ²
Design Property Data				
Modify/Sho	w Material Property Design Data		:	
Advanced Material Property Data			01	Count
Nonlinear Material Data	Material Damp	ing Properties	OK	Cancel
Tim	e Dependent Properties			
OK	Cancel			

Anexo 9.3: Creación de las columnas.

General Data		
Property Name	C1- (0.30x0.60) m	
Material	210 kg/cm2 🗸 🗸	2
Notional Size Data	Modify/Show Notional Size	
Display Color	Change	I i ← i
Notes	Modify/Show Notes	• • •
Shape		
Section Shape	Concrete Rectangular 🗸 🗸	
Section Property Source		
Source: User Defined		Property Modifiers
Section Dimensions		Modify/Show Modifiers
Depth	30 cm	Currently Default
Width	60 cm	Reinforcement
		Modify/Show Rebar
		07
	Show Section Properties	Cancel

Anexo 9.4: Creación de las Vigas Peraltadas y Chatas.

eneral Data		
Property Name	VP-101 (.30X.65) 9NO y 10MO	
Material	210 kg/cm2 🗸	2
Notional Size Data	Modify/Show Notional Size 3	
Display Color	Change	
Notes	Modify/Show Notes	
hape		
Section Shape	Concrete Rectangular V	
ection Property Source		
Source: User Defined	Property N	lodifiers
ection Dimensions	Mo	dify/Show Modifiers
Depth	G0 cm	rrently User Specified
Width	Reinforcer	ment
THOM I	M	odify/Show Rebar
		OK
	Show Section Properties	Cancel

Anexo 9.5: Creación de Muros Estructurales

Wall Property Data		:	×	E Wall Property Data			
General Data				General Data			
Property Name	E= 30 cm			Property Name	E=20 cm		
Property Type	Specified	·		Property Type	Specified	\sim	
Wall Material	210 kg/cm2			Wall Material	210 kg/cm2	~	
Notional Size Data	Modify/Show Notional Size			Notional Size Data	Modify/Show Notiona	I Size	
Modeling Type	Shell-Thin 🔨	·		Modeling Type	Shell-Thin	\sim	
Modifiers (Currently Default)	Modify/Show			Modifiers (Currently Default)	Modify/Show		
Display Color	Change	1		Display Color	Cha	nge	
Property Notes	Modify/Show			Property Notes	Modify/Show		
Property Data				Property Data			
Thickness	30	cm		Thickness	20	cr	n
Include Automatic Rigid Zone	Area Over Wall			Include Automatic Rigid Zone	Area Over Wall		
OK	Cancel			ОК	Cancel		
OK	Cancel			UK	Cancel		

Anexo 9.6: Creación de la sección de Losa Aligerada en 2 direcciones.

Property Name	Loza Aliger	a 25 cm	
Slab Material	210 kg/cm2	2	~
Notional Size Data	Modify	Show Notional Size	ə
Modeling Type	Membrane		\sim
Modifiers (Currently Default)	I	Modify/Show	
Display Color		Change	
Property Notes		Modify/Show	
Use Special One-Way Load Dis	stribution		
roperty Data			
Туре	Waffle		\sim
		25	cm
Overall Depth			
Overall Depth Slab Thickness		5	cm
Overall Depth Slab Thickness Stem Width at Top		5	cm
Overall Depth Slab Thickness Stem Width at Top Stem Width at Bottom		5 10 10	cm
Overall Depth Slab Thickness Stem Width at Top Stem Width at Bottom Spacing of Ribs that are Parallel to	Slab 1-Axis	5 10 10 40	cm
Overall Depth Slab Thickness Stem Width at Top Stem Width at Bottom Spacing of Ribs that are Parallel to Spacing of Ribs that are Parallel to	Slab 1-Axis Slab 2-Axis	5 10 10 40 40	cm cm cm cm

Anexo 9.7: Creación de la sección de Losa Maciza.

General Data		
Property Name	Losa maciza h=20cm	
Slab Material	Fc''=210 kg/cm2	~
Notional Size Data	Modify/Show Notional Size	
Modeling Type	Membrane	\sim
Modifiers (Currently Default)	Modify/Show	
Display Color	Change	
Property Notes	Modify/Show	
Use Special One-Way Load Di	stribution	
Type	Shah	~
Thickness	0.2	m

Anexo 9.8: Vista en planta y 3D del modelo.

Parámetros	Factores
Z	0.45
U	1
S	1
ТР	0.4
TL	2.5
Rx=Ry	6

Anexo 9.9: Analisis Estatico Lineal (Parámetros de la Edificación)

Anexo 9.10: Diafragma Rígido en toda las Plantas.

_

Anexo 9.11 Análisis Dinámico Lineal (Parámetros de Análisis Sísmico Dinámico X y Y)

Factor de Zona "Z"			
Zona	Z		
Zona 4	0.45		

Suelo "S"			
Z4-S1			
Descripción	S	Тр	TL
S1	1	0.40	2.50

Factor de uso "U"			
Categoría	U	Restricciones	
C -Edificaciones comunes	1.00	Verificar la Tabla Nº06 -	

SUELO Y ZONA "S"		
S1 - Z4	1	

Factor de sistema estructural "Ro"		
Sistema Estructural	Ro	
Concreto Armado - Muros	6	
Estructurales	U	

Irregularidades Estructurales en Altura		
Irreg. Altura	la	
Sin Irregularidad	1.00	

Irregularidades Estructurales en Planta		
Irreg.Planta	lp	
Sin Irregularidad	1.00	

3	ales en Altura			
	la			
	1.00			
	•			
3	les en Planta			
	lp			
	1.00			
	R			
	Ro x la x lp			
	6.0			

Factor de Amplificación Sísmica (C)		
$T < T_P$	<i>c</i> = 2.5	
$T_P < T < T_L$	$C = 2,5 \cdot \left(\frac{T_P}{T}\right)$	
$T > T_L$	$C = 2.5 \cdot \left(\frac{T_P \cdot T_L}{T^2}\right)$	

	Aceleración Espectral	
$S_a = \frac{Z}{2}$	$\frac{\overline{\cdot U \cdot C \cdot S}}{R} \cdot g$	

Anexo 9.12: Espectro de Pseudoaceleraciones X y Y, Norma E.030.

SX-SY								
С	T (s)	Sa(g)						
2.500	0	0.1875						
2.500	0.1	0.1875						
2 500	0.2	0 1875						
2.500	0.3	0 1875						
2.500	0.0	0.1875						
2.000	0.5	0.1500						
1.667	0.6	0.1250						
1.007	0.7	0.1071						
1.425	0.8	0.0038						
1 111	0.0	0.0833						
1,000	1	0.0750						
0 909	11	0.0682						
0.833	12	0.0625						
0.769	1.2	0.0577						
0.703	1.0	0.0077						
0.714	1.4	0.0536						
0.667	1.5	0.0500						
0.625	1.6	0.0469						
0.588	1.7	0.0441						
0.556	1.8	0.0417						
0.526	1.9	0.0395						
0.500	2	0.0375						
0.476	2.1	0.0357						
0.455	2.2	0.0341						
0.435	2.3	0.0326						
0.417	2.4	0.0313						
0.400	2.5	0.0300						
0.370	2.6	0.0277						
0.343	2.7	0.0257						
0.319	2.8	0.0239						
0.297	2.9	0.0223						
0.278	3	0.0208						
0.260	3.1	0.0195						
0.244	3.2	0.0183						
0.230	3.3	0.0172						
0.216	3.4	0.0162						
0.204	3.5	0.0153						
0.193	3.6	0.0145						
0.183	3.7	0.0137						
0.173	3.8	0.0130						
0.164	3.9	0.0123						
0.156	4	0.0117						
0.149	4.1	0.0112						
0.142	4.2	0.0106						
0.135	4.3	0.0101						
0.129	4.4	0.0097						
0.123	4.5	0.0093						
0.118	4.6	0.0089						
0.113	4.7	0.0085						

E	-			0.05		
Function Name	Espe	ctro X-X, T-T		0.05		
Parameters				Define Function		
Seismic Zone		Zone 4	\sim	Period	Acc	eleration
Occupation Category		С	\sim		0.4075	
Soil Type		S1	\sim	0.1	0.18/5	1
Irregularity Factor, la		1		0.2	0.1875	
Irregularity Factor, Ip		1		0.4	0.1875 ✓ 0.15	
Basic Response Modification Fa	ctor, R0	6		0.0	0.10	
		-		Plot Options		
				Linear X - Linear X	near Y	
				C Linear X - Lo	g Y	
				O Log X - Linea	ar Y	
Convert to	User Defined			O Log X - Log	Y	
Function Graph						
E-3 210 -						
180 -						
150 -						
90 -						
60 -						
30 -	_					
0 16 20	4.6	80 76		10.5 12.0	12.5	15.0
0.0 1.0 3.0	4.0	0.0 7.0	0.0	10.0 12.0	13.5	10.0

Anexo 9.14: Sismo Dinámico en dirección X.

Load Case Name Load Case Type		SDIX	SDIX				
		Response Spectru	m ~	Notes			
Mass Source		Previous (Peso SI	smo)				
Analysis Model		Default					
ads Applied							
Load Type	Load Name	Function	Scale Factor	0			
Acceleration	U1	Espectro X-X, Y-Y	9.81	Add			
her Parameters Modal Load Case	_	Modal	~	Advance			
her Parameters Modal Load Case	_	Modal	~	Advance			
her Parameters Modal Load Case Modal Combination Meth	nod	Modal		Advance			
her Parameters Modal Load Case Modal Combination Meth	nod Response	Modal CQC Rigid Frequency, f1	~ ~ 	Advance			
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	nod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	~ ~ 	Advance			
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	nod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	✓	Advance			
her Parameters Modal Load Case Modal Combination Meth Include Rigid f Earthquake Durat	nod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	✓	Advance			
her Parameters Modal Load Case Modal Combination Meth Include Rigid f Earthquake Durat Directional Combination	nod Response Ion, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS	~ ~ 	Advance			
her Parameters Modal Load Case Modal Combination Meth Include Rigid f Earthquake Durat Directional Combination Absolute Direction	nod Response ion. td Type ral Combination Scale	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor		Advance			
her Parameters Modal Load Case Modal Combination Meth Include Rigid I Earthquake Durat Directional Combination Absolute Direction Modal Damping	nod Response ion. td Type Iel Combination Scale Constant at 0.05	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor	- Modify/Show	Advance			

Anexo 9.15: Sismo Dinámico en dirección Y.

Load Case Name Load Case Type Mass Source		SDIY			Design	
		Response Spectru	Notes			
		Ī	Previous (Peso SI	smo)		
Analysis Model		Ī	Default			
oads Applied						
Load Type	Load Name	-	Function	Scale Fa	actor	0
Acceleration ~	U2	Esp	ectro X-X, Y-Y	9.8067		Add
ther Parameters						Advanced
						Advanced
ther Parameters	_	-				Advanced
ther Parameters Modal Load Case		[Modal		~	Advanced
ther Parameters Modal Load Case Modal Combination Meth	od		Modal		~	Advanced
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	iod Response	Rigid	Modal CQC J Frequency, f1		~	Advanced
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	[[Rigid Rigid	Modal CQC I Frequency, f1 I Frequency, f2		~	Advanced
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Rigid Rigid Perio	Modal CQC I Frequency, f1 I Frequency, f2 odic + Rigid Type		~	Advanced
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	iod Response	Rigid Rigid Perio	Modal CQC I Frequency, f1 I Frequency, f2 I dic + Rigid Type		~	Advanced
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	iod Response Ion, td Type	Rigid Rigid Perio	Modal CQC I Frequency, f1 I Frequency, f2 udic + Rigid Type SRSS		× ×	Advanced
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	iod Response ion, td Type ial Combination Scale	Rigid Rigid Perio	Modal CQC I Frequency, f1 I Frequency, f2 udic + Rigid Type SRSS		> > 	Advanced
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination Absolute Direction Modal Damping	iod Response ion, td Type ial Combination Scale Constant at 0.05	Rigid Rigid Perio	Modal CQC I Frequency, f1 I Frequency, f2 udic + Rigid Type SRSS	Modify/	Show	Advanced

Anexo 9.16: Características de la no linealidad del concreto f'c=210 kg/cm2.

Material Name [e^-210 kg/cm3] Material Type Converse Directional Symmetry Type Isotropic Material Diplay Color Donge Material Name Material Diplay Color Material Name Material Diplay Color Material Name Material Diplay Color Material Name Material Name Specify Weight Density Specify Mass Density Weight per luit Volume 0.00002 kodruceal Property Data Moddulas of Battichy, E 217370.65 Poisson's Ratio, U 0.15 Coefficient of Themal Expansion, A 0.0000099 Ivo Coefficient of Themal Expansion, A 0.0000099 Norinear Material Data Material Data Moddulas of Battichy, See Modulas, G 94508.98 Modely/Show Material Data Material Damping Properties Modulas of Rapture for Cacked Deflections 0.002 @ Program Default (Based on Concrete Stab Design Code)	General Data										
Material Type Concrete Dectoral Symmetry Type Isercojc Material Daplay Color Change Material Name Material Name and Type Material Nates Moddy/Show Notes Material Name Modify/Show Notes Material Name Material Name Material Name Material Name Material Name Material Name Modify/Show Notes Material Name Material Name Modify/Show Notes Material Name Modify/Show Notes Material Name Material Name Material Name Material Name Material Name Material Name Modify/Show Notes Material Name Material Name Modify/Show Notes Modify/Show Notes Material Name Modify/Show Notes Modify/Show N	Material Name Fo"=2	210 kg/cm2			ear Mater	ial Data					
Directional Symmetry Type Isoeropic V Material Diplay Color Ohange Material Name Converter Parameters Material Notes Modify/Show Notes Material Name Converter Isoeropic Material Name	Material Type Conc	rete	~								
Material Display Color Change Material Notes Modify/Show Notes Material Notes Modify/Show Notes Material Notes Modify/Show Notes Material Weight and Mass Specify Weight Densty © Specify Weight Densty Specify Mass Density Weight per Unit Volume 0.0024 Rechanical Property Data Compression Modulus of Basticity, E 217370.65 Poisson's Ratio, U 0.15 Coefficient of Themal Expansion, A 0.0000099 Sheer Modulus, G 94508.98 Modify/Show Material Property Data 0.002 Modulus of Rupture for Cracked Deflections 0.002 Works of Rupture for Cracked Deflections Material Droperty Data Modulus of Rupture for Cracked Deflections OK OK Cancel	Directional Symmetry Type Isotro	opic	~	Materia	I Name and T	уре			Miscellaneous Paran	neters	
Material Notes Moddy/Show Notes Material Notes Moddy/Show Notes Material Notes Modely/Show Notes Modulus of Basticity, E 217370.65 kgl/cm² Poisson's Ratio, U 0.15 Convect to User Defined Ceefficient of Themal Expansion, A 0.00000000000000000000000000000000000	Material Display Color	Change		Mate	erial Name	Fc"=210 kg	/cm2		Hysteresis Type	Concrete	~
Material Weight and Mass	Material Notes	Modify/Show Notes		Mate	erial Type	Concrete, Is	otropic		Modify/Shore	w Hysteresis Parame	ters
Specify Weight Density Specify Weight Density Specify Weight Density Diatational Angle Weight per ltitk Volume 0.000002 kgf-gr/m ² Diatational Angle Mass per ltitk Volume 0.000002 kgf-gr/m ² Ension Compression Sress Strain Curve Definition Options Modulus of Basticity, E 217370.65 kgf/cm ² 0.000000000000000000000000	Material Weight and Mase								Drucker-Prager P	arameters	de
Weight per Unit Volume 0.0024 kgf/cm³ Mass per Unit Volume 0.000002 kgf/cm³ Mechanical Property Data 0.000002 kgf/cm³ Modulus of Basticity, E 217370.65 kgf/cm³ Poisson's Ratio, U 0.15 Coefficient of Themail Expansion, A 0.00000090 1/C Shear Modulus, G 94508.98 kgf/cm³ Mody/Show Material Property Data 0.002 Modulus of Rupture for Cracked Deflections 0.002 Wodukus of Rupture for Cracked Deflections 0.002 @ Program Default (Based on Concrete Sab Design Code) 0.01	Specify Weight Density	Specify Mass Density							Dilatational A		de
Mass per link Volume 0.000002 kgf eVcm* Mass per link Volume 0.000002 kgf eVcm* Mechanical Propety Data 0.000002 kgf eVcm* Modulus of Bastichy, E 217370.85 kgf /cm* Poisson's Ratio, U 0.15 0.005 .0015 m/m Coefficient of Themal Expansion, A 0.00000099 1/C Strain At Unconfined Compressive Strength, Fc 0.002 Design Property Data Modify/Show Material Property Design Data Advanced Material Property Data 0.004 Modulus of Rupture for Cracked Deflections 0.00 0.00 0.00 0.01 0.004 @ Program Default (Based on Concrete Sab Design Code) Material Data OK Cancel	Weight per Unit Volume	0.0024	kof/cm ³	Accept	ance Criteria	Strains	_		Diatational A		dei
Machanical Property Data Mander Mechanical Property Data O Output Mander Modulus of Basticity, E 217370.65 kgf/cm ² O O O O Convect to User Defined Convect to User Defined Convect to User Defined Output	Mass ner Unit Volume	0.000002	kaf-s²/cm4	10	Tensi	ion (Compressio	m/m	Stress Strain Curve [Definition Options	
Mechanical Property Data Modulus of Basticity, E Poisson's Ratio, U 0.15 Coefficient of Themal Expansion, A 0.0000099 1/C Shear Modulus, G 3Hear Modulus, G <		1	ngi oʻran	15	0.02		006	m/m	Parametric	Mander	~
Modulus of Elasticity, E 217370.65 kg/cm² Poisson's Ratio, U 0.15 Coefficient of Themal Expansion, A 0.0000099 1/C Shear Modulus, G 34508.98 kg/cm² Design Property Data 0.0002 Modify/Show Material Property Data 0.0004 Modulus of Rupture for Cracked Deflections 0.00 @ Program Default (Based on Concrete Slab Design Code) 0K	Mechanical Property Data			CP	0.05		115	m/m		Convert to Us	er Defined
Poisson's Ratio. U 0.15 Coefficient of Themail Expansion. A 0.0000099 1/C Shear Modulus, G 34508.98 kgf/cm ² Design Property Data Modify/Show Material Property Design Data Revenced Material Property Data Modulus of Rupture for Cracked Deflections @ Program Default (Based on Concrete Slab Design Code)	Modulus of Elasticity, E	217370.65	kgf/cm ²		Ignore Tensio	on Acceptance	Criteria		O User Defined		
Coefficient of Themal Expansion. A 0.0000099 1/C Shear Modulus, G 94508.98 kg/cm ² Design Property Data 0.000 Modify/Show Material Property Design Data 0.002 Advanced Material Property Data 0.001 Nonlinear Material Data Material Damping Properties Time Dependent Properties OK Modulus of Rupture for Cracked Deflections @ Program Default (Based on Concrete Slab Design Code)	Poisson's Ratio, U	0.15									
Shear Modulus, G 94508 3/8 kg/cm ² Strain at Unconfined Compressive Strength, fc 0.002 Design Property Data Modify/Show Material Property Design Data 0.004 0.004 Advanced Material Property Data 0.01 0.01 Nonlinear Material Data Material Damping Properties 0.0 Modulus of Rupture for Cracked Deflections 0.0 0.004	Coefficient of Thermal Expansion, A	0.0000099	1/C	Parame	tric Strain Da	ta					
Design Property Data 0.004 Modify/Show Material Property Design Data 0.1 Advanced Material Property Data 0.1 Nonlinear Material Data Material Damping Properties Time Dependent Property Ensign Data 0K Modulus of Rupture for Cracked Deflections 0K @ Program Default (Based on Concrete Slab Design Code) 0K	Shear Modulus, G	94508.98	kgf/cm ²	Stra	in at Unconfir	ned Compressiv	ve Strength	n, f'c		0.002	_
Modify/Show Material Property Design Data 4dvanced Material Property Data 0.1 Advanced Material Property Data Show Stress-Strain Plot Ima Dependent Properties OK Cancel	Design Property Data			Ultin	nate Unconfin	ed Strain Capa	acity			0.004	
Advanced Material Property Data Advanced Material Property Data Nonlinear Material Data Time Dependent Properties OK Cancel Modulus of Rupture for Cracked Deflections OK Cancel	Modify/Show Material F	Property Design Data		Fina	I Compression	n Slope (Multipl	ier on E)			-0.1	
Nonlinear Material Data Material Damping Properties Time Dependent Properties OK Cancel Modulus of Rupture for Cracked Deflections OK Cancel 	Advanced Material Property Data						ſ	Show Stress	Strain Plot		
Time Dependent Properties OK Cancel Modulus of Rupture for Cracked Deflections OK Cancel Program Default (Based on Concrete Slab Design Code) Image: Concrete Slab Design Code OK Cancel 	Nonlinear Material Data	Material Damping	Properties	-							
Modulus of Rupture for Cracked Deflections Program Default (Based on Concrete Slab Design Code)	Time Depende	nt Properties						OK	Cancel		
Program Default (Based on Concrete Slab Design Code)	Modulus of Runture for Cracked Deflections										
	Program Default (Based on Concrete Sla	ab Design Code)									
O User Specified	O User Specified										
	C opeoned										

Anexo 9.17: Concreto confinado y no confinado de Mander.

Anexo 9.18: Características de la no linealidad del acero f'y=4200 kg/cm2.

General Data		E Nonlinear Material Data
Material Name Material Type Directional Symmetry Type Material Display Color Material Notes Material Weight and Mass	Fy= 4200kg/cm2 Rebar Uniaxial Change Modfy/Show Notes Specify Mass Density	Material Name and Type Material Name If y= 4200kg/cm2 Material Name If y= 4200kg/cm2 Material Type Rebar, Uniaxial Acceptance Citeria Strains Tension 10 0.01 LS 0.02 0.01 m/m
Weight per Unit Volume Mass per Unit Volume Mechanical Property Data Modulus of Elasticity, E Coefficient of Thermal Expansion	0.00785 kgf/cm ³ 0.000008 kgf/s ² /cm ⁴ 2000000 kgf/cm ² . A 0.0000117 1/C	CP 0.05 0.02 m/m Convert to User Defined Parametric Strain Data Strain at Onset of Strain Hardening 0.01 Utimate Strain Capacity 0.09 Final Slope (Multipler on E) 0.1
Design Property Data Modify/Sho Advanced Material Property Data Nonlinear Material Data Tim OK	w Material Property Design Data Material Damping Properties Dependent Properties Cancel	Show Stress-Strain Plot OK Cancel

Anexo 9.19: Características de la no Linealidad del Acero.

Anexo 9.20: Elementos estructurales: Detalle de Columna C-1.

Anexo 9.21: Definición del Refuerzo en Columnas.

×	E Frame Section Property Reinfor	rcement Data	
24	Design Type P-M2-M3 Design (Column) M3 Design Only (Beam) Reinforcement Configuration	Rebar Material Longitudinal Bars Confinement Bars (Ties) Confinement Bars	F'y= 4200kg/cm2 . F'y= 4200kg/cm2 . Check/Design .
· · · · · · · · ·	 Rectangular Circular 	Ties Spirals	 Reinforcement to be Checked Reinforcement to be Designed
Property Modifiers Modify/Show Modifiers Currenty Default Reinforcement Modify/Show Rebar	Longtudnal Ban Clear Cover for Confinement Ban Number of Longtudnal Ban Along 3 Number of Longtudnal Ban Along 2 Longtudnal Bar Size and Area Corner Bar Size and Area	dir Face dir Face 1/2" 5/8"	0.04 m 7 4 0.00013 m ² 0.0002 m ²
ОК	Confinement Bars Confinement Bar Size and Area Longtudinal Spacing of Confinement Number of Confinement Bars in 3-dir Number of Confinement Bars in 3-dir	3/8" Bars (Along 1-Axis)	 0.00007 m² 0.1 m 2 2
	X	Confinement Bars Confinement Societ Confinement	Property Modilers Confinement Bars Modify/Show Modilers State and Area Modify/Show Rebar State and Area OK Number of Confinement Bars Modify/Show Rebar State and Area OK Number of Confinement Bars

Anexo 9.22: Propiedades de las Columnas tipo Fibra.

Hinge Property Data ×	E Hinge Property Data for Fibra o	de Columna - Fiber P-M2-M3	X
Hinge Property Name Fibra de Columna Hinge Type O Force Controlled (Brittle) © Deformation Controlled (Ductile)	Fiber Definition Options Default From Frame Section User Defined 	Hinge Length Hinge Length 0.1 Relative Length	
Fiber P-M2-M3 V Modify/Show Hinge Property	Defi	ine/Show Fibers	
OK	ОК	Cancel	

Anexo 9.23: Elementos estructurales: Viga. VP-101 (0.30 x 0.6

Anexo 9.24: Definición del refuerzo en viga. (Propiedades de las Viga tipo Rotula.)

General Data			perty Neimo						
People Name 10400 (1101 - 55-06 (III - 55-06 (IIII - 55-06 (IIIII - 55-06 (IIIII - 55-06 (IIIII - 55-06 (IIIII - 55-06 (IIIIII - 55-06 (IIIIII - 55-06 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2	Design Type O P-M2-M3 Design () M3 Design Only	n (Column) (Beam)	Rebar Mate Longitus Confine	erial dinal Bars ment Bars (Ties)	f"y= 4200 f"y= 4200)kg/cm2)kg/cm2	* *	
Sector Property Source Source: User Defined Sectors Development Depth (6) Width (5)	Projetly Modien Modry Shore Modien Carmity Les Specified on Renforcement Modry Show Rebar.	-Cover to Longitudinal f Top Bars Bottom Bars	Rebar Group Cent	roid cm cm	Reinforcement A Top Bars at I- Top Bars at J Bottom Bars a Bottom Bars a	rea Overwrite End -End at I-End at J-End	es for Ductile Beams 11.36 11.36 11.36 11.36 11.36	a a	m² m² m²
Shoe Section Properties Include Automatic Rigid Zone Area Over Column	OK Cancel			OK	Cance	I			

Anexo 9.25: (Propiedades de las Viga tipo Rotula.)

Auto Hinge Assignment Data		×	E Frame Assignment - Hinges				
Auto Hinge Type From Tables in ASCE 41-17		~	Frame Hinge Assignment Data				
Select a Hinge Table			Hinge Property	Location Type	Relative Distance	Distance from End m	
Table 10-7 (Concrete Beams - Flexure) Item i		\sim	Auto	 Relative to clear length 	✓ 1		Add
Degree of Freedom O M2 O M3	V Value From O Case/Combo		Auto M3 Auto M3	Relative to clear length Relative to clear length	0		Modify
Transverse Reinforcing	User Value V2 15 Reinforcing Ratio (p - p') / pbalanced From Current Design	tonf					Leiete
	User Value (for positive bending)		Auto Hinge Assignment Data Type: From Tables In ASCE 41-17 Table: Table 10-7 (Concrete Beam	s - Flexure) item i			
Deformation Controlled Hinge Load Carrying Capacity			DOF: M3				
Drops Load After Point E Is Extrapolated After Point E				Modify/Show Auto H	inge Assignment Data		
ОК	Cancel			ОК	Cancel		

Anexo 9.26: Elementos estructurales: Detalle de Placa PL-6B.

Anexo 9.27: Detalle de Refuerzo Placa Pl-6B (0.30 x 3.80) 5° al 10° nivel.

ebar	Material					Lay	yout					
Ma	terial Flexure	f	"y= 4200kg/	cm2	2 ~	·						
Ma	terial Shear	f	"y= 4200kg/	cm.	2 ~	•				:		
Bar	r Clear Cover	4	4			cm						
ieom	etry											
S	itart X cm)	St (cr	art Y m)	E (d	ind X m)	End Y (cm)	Ler (cm	ngth 1)	Thicknes (cm)	s	Start Zone Size (cm)	End Zone Size (cm)
44	16	15	0	82	26	150	380	-	30		60	60
leinfo Fle:	orcement xural Detail - E	Eacl	h Face Bar Size		Bar	Number		Flexu	ral Detail (Additio	inal	Individual Bars) Distance (cm)	Area (cm2)
Reinfo Flei	orcement xural Detail - E Station	Eacl	h Face Bar Size		Bar Spacing	Number		Flexu	ral Detail (Additio	nal	Individual Bars) Distance (cm)	Area (cm2)
Flei	orcement xural Detail - E Station	Each	h Face Bar Size		Bar Spacing (cm)	Number of Bars		Flexu	ral Detail (Additio Material f''y= 4200k	nal	Individual Bars) Distance (cm) 6	Area (cm2)
Fle	orcement xural Detail - E Station Start	Each	h Face Bar Size 1/2" 2/8"	-	Bar Spacing (cm)	Number of Bars 5		Flexu	ral Detail (Additio Material f"y= 4200k f"y= 4200k	ral	Individual Bars) Distance (cm) 6 374	Area (cm2) 1.29 1.29
Fle	orcement xural Detail - E Station Start Center End	Eacl	h Face Bar Size 1/2" 3/8" 1/2"	•	Bar Spacing (cm) 20	Number of Bars 5 13 5		Flexu	Tal Detail (Addition Material f"y= 4200k f"y= 4200k f"y= 4200k	ral T	Individual Bars) Distance (cm) 6 374 54	Area (cm2) 1.29 1.29 1.29
Fle	Station Station State Center End	Eacl	h Face Bar Size 1/2" 3/8" 1/2"	•	Bar Spacing (cm) 20	Number of Bars 5 13 5		Flexu	ral Detail (Additio Material f"y= 4200k f"y= 4200k f"y= 4200k f"y= 4200k	nal • •	Individual Bars) Distance (cm) 6 374 54 327	Area (cm2) 1.29 1.29 1.29 1.29 1.29
Fle	Station Station Stat Center End ear/Confinem	Each	h Face Bar Size 1/2" 3/8" 1/2" Detail	•	Bar Spacing (cm) 20	Number of Bars 5 13 5		Flexu	ral Detail (Additio Material f"y= 4200k f"y= 4200k f"y= 4200k	r T T	Individual Bars) Distance (cm) 6 374 54 327	Area (cm2) 1.29 1.29 1.29 1.29 1.29
Reinfo	Station Station Station Stat Center End ear/Confinement Station	Each • •	h Face Bar Size 1/2" 3/8" 1/2" Detail Bar Size	•	Bar Spacing (cm) 20 Bar Spacing (cm)	Number of Bars 5 13 5 Confined		Flexu	ral Detail (Additio Material f [*] y= 4200k f [*] y= 4200k f [*] y= 4200k	ral T	Individual Bars) Distance (cm) 6 374 54 327	Area (cm2) 1.29 1.29 1.29 1.29 1.29
She	Station Station Station Center End ear/Confinement Station Station	Each • • ent	h Face Bar Size 1/2" 3/8" 1/2" Detail Bar Size 3/8"	•	Bar Spacing (cm) 20 Bar Spacing (cm) 15	Number of Bars 5 13 5 Confined Yes		Flexu	ral Detail (Addition Material f [*] y= 4200k f [*] y= 4200k f [*] y= 4200k	rnal • •	Individual Bars) Distance (cm) 6 374 54 327	Area (cm2) 1.29 1.29 1.29 1.29 1.29
She	Station Station Station Center End Station Station Statt Center	Each • • ent	h Face Bar Size 1/2" 3/8" 1/2" Detail Bar Size 3/8" 3/8"	•	Bar Spacing (cm) 20 Bar Spacing (cm) 15 20	Number of Bars 5 13 5 Confined Yes No	•	Plexu	ral Detail (Addition Material f"y= 4200k f"y= 4200k f"y= 4200k	v v v	Individual Bars) Distance (cm) 6 374 54 327	Area (cm2) 1.29 1.29 1.29 1.29

Anexo 9.28: Propiedades de las Placas Tipo Fibra.

Shell Assignment - Hinges
Shell Hinge Assignment Data Hinge Property Auto Fiber P-M3 ~ Auto Fiber P-M3 Add Delete
Options O Add Specified Assigns to Existing Assigns Replace Existing Assigns with Specified Assigns
OK Close Apply

Anexo 9.29: Modelo de Rotulas Plasticidad de los Elementos Estructurales

Anexo 9.30: Creación de Caso de Carga no Lineal por Gravedad.

General					
Load Case Name		Gravedad			Design
Load Case Type		Nonlinear St	atic	~	Notes
Mass Source		Previous		~	
Analysis Model		Default			
nitial Conditions	a - Start from Unstresse at End of Nonlinear Car	d State se (Loads at End	of Case ARE Inc	cluded)	
Loads Applied					•
Load Type	Loa	d Name	Scale	Factor	0
Load Pattern	Dead	~	1		Add
Load Pattern	Live		0.25		Delete
Other Parameters					
Modal Load Case		Modal		~	
Geometric Nonlinearity Op	ption	None		~	
Load Application	Full Load		1	Modify/Show	
Results Saved	Final State Only		1	Modify/Show	
Floor Cracking Analysis	No Cracked Analysi	s	1	Modify/Show	
Nonlinear Parameters	Default - Iterative E	vent-to-Event	1	Modify/Show	

Anexo 9.31: Punto más Cercado del Centro de Masa.

Anexo 9.32: Creación de Carga Pushover en Dirección X+

		ANLE X-X +	·		Design
Load Case Type		Nonlinear S	tatic	\sim	Notes
Mass Source		MsSrc1		\sim	
Analysis Model		Default			
itial Conditions					
O Zero Initial Conditions	- Start from Unstressed	State			
Continue from State a	it End of Nonlinear Case	(Loads at End	of Case A	RE Included)	
Nonlinear Case		Gravedad		~	
ads Applied					-
Load Type	Load	Name		Scale Factor	0
Load Type Mode	Load I	Name	1	Scale Factor	Add
Load Type Mode	Load I	Name	1	Scale Factor	Add Delete
Load Type Mode	Load I 2	Name	1	Scale Factor	Add Delete
Load Type Mode	Load 1	Name	1	Scale Factor	Add Delete
Load Type Mode ther Parameters Modal Load Case	Load 2	Name	1	Scale Factor	Add Delete
Load Type Mode ther Parameters Modal Load Case Geometric Nonlinearity Or	2	Name Modal None	1	Scale Factor	Add Delete
Load Type Mode ther Parameters Modal Load Case Geometric Nonlinearity Or Load Application	2 2 ztion	Mame Modal None	1	Scale Factor	Add Delete
Load Type Mode ther Parameters Modal Load Case Geometric Nonlinearity Or Load Application Results Saved	2 2 xtion Displacement Control	Name Modal None	1	Scale Factor	Add Delete
Load Type Mode Iher Parameters Modal Load Case Geometric Nonlinearity Op Load Application Results Saved Rioor Cracking Analysis	2 ption Displacement Control Multiple States No Cracked Analysis	Mame Modal None	1	Scale Factor	Add Delete

Anexo 9.33: Creación de Carga Pushover en Dirección X-

			ANLE X-X -			Design	
Load Case Type			Nonlinear S	tatic		 Notes. 	
Mass Source			MsSrc1			\sim	
Analysis Model			Default				
itial Conditions							
O Zero Initial Conditions	s - Start from	Unstressed S	itate				
Continue from State a	at End of Nor	nlinear Case	(Loads at End	of Case	ARE Included)		
Nonlinear Case			Gravedad			\sim	
ads Applied							
	Load Type Load N		Name Scale Factor		0		
Load Type		Load N	lame		Scale Factor	0	
Load Type Mode	2	Load N	lame	-1	Scale Factor	1 Add	
Load Type Mode	2	Load N	lame	-1	Scale Factor	Add Delete	
Load Type Mode	2	Load N	lame	-1	Scale Factor	Add Delete	
Load Type Mode	2	Load N	lame	-1	Scale Factor	Add Delete	
Load Type Mode ther Parameters	2	Load N	lame	-1	Scale Factor	Add Delete	
Load Type Mode ther Parameters Modal Load Case	2	Load N	ame Modal	-1	Scale Factor	Add Delete ~	
Load Type Mode ther Parameters Modal Load Case Geometric Nonlinearty O	2	Load N	lame Modal None	-1	Scale Factor	Add Delete v v	
Load Type Mode ther Parameters Modal Load Case Geometric Nonlinearity O Load Application	2 ption Displacem	Load N	Modal None	4	Scale Factor	Add Delete	
Load Type Mode ther Parameters Modal Load Case Geometric Nonlinearity O Load Application Results Saved	2 ption Displacem Multiple S	Load N nent Control tates	Modal None	-1	Scale Factor Modify/Sho Modify/Sho	Add Delete	
Load Type Mode ther Parameters Modal Load Case Geometric Nonlinearity O Load Application Results Saved Roor Cracking Analysis	2 ption Displacen Multiple S No Cracke	Load N eent Control tates ed Analysis	Modal None	-1	Scale Factor Modify/Sho Modify/Sho Modify/Sho	Add Delete	

Anexo 9.34: Configuración de Desplazamiento en Dirección X+, X -.

() Full ond							
Puil Load	Castral						
Displacement	Control						
	run as time histo	ry)					
Control Displacemen	it						
Use Conjugate	e Displacement						
Use Monitored	d Displacement						
Load to a Monitor	red Displacemen	t Magnitude o	of		60		cm
Monitored Displacen	nent						
DOF/loint	U1	× N	vel 10 (4	zotea)		~ 80	
Generalized [Displacement			,			_
Generalized L	naplacement						
Additional Controlled	Displacements						
None					I	Modify/Show	
Quari static Parama	tare						
Time History Type	a.		ſ	Nonlinear Dire	ct Integrati	on History	
Output Time Sten	Size		I	Noninear Dire	1	on matory	SPC
Mass Proportions	Damning						1/68
	ar Damping	tion Decema	lar Alaba		0		1/30
Hilber Hughen To	udar Tima Intear		EL AIDIR	1	0		

Anexo 9.35: Resultados de los Pasos no Lineal en Dirección X+, X -.

E Results Saved for Nonlinear Static Case	\times
Results Saved	
Final State Only Multiple States	
For Each Stage	
Minimum Number of Saved States 600	
Maximum Number of Saved States 700	
Save positive Displacement Increments Only	
OK Cancel	

Anexo 9.36: Parámetros no Lineales en Dirección X +, X -.

Solution Control	
Solution Scheme	Event to-Event Only
Maximum Total Steps (Static Only)	800
Maximum Null Steps (Static Only)	10
Event Lumping Tolerance (Relative)	0.01
Maximum Events per Step	200
Stop when Max Events per Step Exceeded	Yes
Minimum Event Step Size	0.000001
Maximum Null Events per Step	10
Use Correction Step for Large Unbalance (Static Only)	Last Step
Solution Control	

Anexo 9.37: Creación de Carga Pushover en Dirección Y+

		ANLE Y-Y -	•		Design
Load Case Type		Nonlinear S	itatic	~	Notes
Mass Source		Peso sismi	со	~]
Analysis Model		Default			
tial Conditions					
O Zero Initial Conditions	- Start from Unstressed	State			
Continue from State at	t End of Nonlinear Case	(Loads at End	of Case	ARE Included)	1
Nonlinear Case		Gravedad		~	
ads Applied					
Load Type	Load	Name		Scale Factor	•
Load Type Mode	Load 1	Name	1	Scale Factor	Add
Load Type Mode	Load 1	Name	1	Scale Factor	Add Delete
Load Type Mode her Parameters	Load 1	Name	1	Scale Factor	Add Delete
Load Type Mode her Parameters Modal Load Case	Load 1	Name	1	Scale Factor	Add Delete
Load Type Mode her Parameters Modal Load Case Geometric Nonlinearity Op	Load 1	Name Modal None	1	Scale Factor	Add Delete
Load Type Mode her Parameters Modal Load Case Geometric Nonlinearity Op Load Application	Load 1	Name Modal None	1	Scale Factor	Add Delete
Load Type Mode her Parameters Modal Load Case Geometric Nonlinearity Op Load Application Results Saved	Load 1	Name Modal None	1	Scale Factor	Add Delete
Load Type Mode her Parameters Modal Load Case Geometric Nonlinearity Op Load Application Results Saved Floor Cracking Analysis	Load 1 1 Displacement Control Multiple States No Cracked Analysis	Name Modal None	1	Scale Factor	Add Delete

Anexo 9.38. Creación de Carga Pushover en Dirección Y-.

Load Case Marile		ANLE Y-Y -			Design
Load Case Type		Nonlinear Sta	tic	~	Notes
Mass Source		Peso sismico		~]
Analysis Model		Default			
itial Conditions					
O Zero Initial Conditions	- Start from Unstressed S	State			
Continue from State a	at End of Nonlinear Case	(Loads at End of	f Case ARE	Included)	
Nonlinear Case		Gravedad		~]
ade Applied					
	Load I	Vame	S	cale Factor	0
Mode	1		-h		Add
					Delete
					J
har Paramatere					
aler i didiletera		Modal		~]
Modal Load Case				~]
Modal Load Case Geometric Nonlinearity O	ption	None			
Modal Load Case Geometric Nonlinearity Of Load Application	ption Displacement Control	None		Modify/Show	
Modal Load Case Geometric Nonlinearity Of Load Application Results Saved	Displacement Control Multiple States	None		Modify/Show	
Modal Load Case Geometric Nonlinearity O Load Application Results Saved Floor Cracking Analysis	Displacement Control Multiple States No Cracked Analysis	None		Modify/Show Modify/Show Modify/Show	

Anexo 9.39: Configuración de Desplazamiento en Dirección Y +, Y -

	ntroi				
Full Load					
Displacement	Control				
 Quasi-Static ((run as time histo	iry)			
Control Displacemen	nt				
🔘 Use Conjugat	e Displacement				
Use Monitored	d Displacement				
Load to a Monitor	red Displacement	t Magnitud	le of	60	cm
Monitored Displacen	nent				_
DOF/Joint	U2	\sim	Nivel 10 (Azotea)	~ 80	
	-				
O Generalized E	Displacement				
Generalized E Additional Controlled	Displacement				-
Generalized E	Displacement			Modify/Show	
Generalized E Additional Controlled None	Displacement			Modify/Show	
Generalized D Additional Controlled None	Displacement d Displacements			Modify/Show	
Generalized I Additional Controllect None Quasi-static Parame Time History Type	d Displacement d Displacements eters e		Nonlinear Dire	Modify/Show	
Generalized I Additional Controlled None Quasi-static Parame Time History Type Output Time Step	d Displacement d Displacements e e o Size		Nonlinear Dire	Modify/Show ct Integration History	sec
Generalized I Additional Controlled None Quasi-static Parame Time History Type Output Time Step Mass Proportione	I Displacement I Displacements e Size al Damping		Nonlinear Dire	Modify/Show ct Integration History 1 0	sec
Generalized I	I Displacement I Displacements e I Size al Damping sylor Time Integra	ation Para	Nonlinear Dire	Modify/Show ct Integration History 1 0 0	sec 1/sec

Anexo 9.40: Resultados de los States no Lineal en Dirección Y +, Y -.

E Results Saved for Nonlinear Static Case	×
Results Saved O Final State Only	
For Each Stage Minimum Number of Saved States Maximum Number of Saved States 700	
Save positive Displacement Increments Only OK Cancel	

Anexo 9.41: Parámetros no Lineales en Dirección Y +, Y -.

 Solution Control 	
Solution Scheme	Event-to-Event Only
Maximum Total Steps (Static Only)	800
Maximum Null Steps (Static Only)	10
Event Lumping Tolerance (Relative)	0.01
Maximum Events per Step	200
Stop when Max Events per Step Exceeded	Yes
Minimum Event Step Size	0.000001
Maximum Null Events per Step	10
Use Correction Step for Large Unbalance (Static Only)	Last Step
Solution Control	

Anexo 9.42: Espectros de Demanda Sísmica para un Sismo Frecuente.

Function Name	Esp. Demanda Trs	43	0.05	
Tancaon Name	Cap. Bolinaria a rie		0.00	
Parameters			Define Function	
Seismic Zone	Zone 4	\sim	Period	Acceleration
Occupation Category	С	\sim	0	0 4849
Soil Type	S1	\sim	0.1	0.4849
Irregularity Factor, Ia	1		0.3	0.4849
Irregularity Factor, Ip	1		0.5	✓ 0.3879
Basic Response Modification F	actor, R0 2.32		Plat Onlines	
			Linear X - Linear	r Y
			C Linear X - Log	r
			O Log X - Linear	r
Convert t	o User Defined		O Log X - Log Y	
E-3 580 480 320 240 180 80 0,0 1.5 3.0	i i i 4.5 8.0 7.1	5 9.0	10.5 12.0	13.5 15.0
				_

Anexo 9.43: Espectros de Demanda Sísmica para un Sismo Ocasional.

				Function Dan	nping Rat	io	
Function Name	Esp.D	emanda Trs	72	0.05			
Parameters				Define Function			
Seismic Zone		Zone 4	\sim	Period		Acceleration	
Occupation Category		С	\sim	0	. 0.5	020	
Soil Type		S1	\sim	0.1	0.5	829	î
Irregularity Factor, Ia		1		0.2	0.5	829	
Irregularity Factor, Ip		1		0.4	✓ 0.5 0.4	829 663	~
Basic Response Modification Factor,	R0	1.93					
				Plot Options	×		
					near t		
					y i		
Convert to Use	r Defined				ar i Y		
		_		O Lug X - Lug			
Function Graph							
E-3							
600 -							
500 -							
400 - 300 -							
200 -							
100 -							
0.0 1.5 3.0	4.5 6	.0 7.5	9.0	10.5 12.0	13.5	15.0	

Anexo 9.44: Espectros de Demanda Sísmica para un Sismo Raro y Muy raro

		Function Damping Ratio			Function Damoing Ratio
	The Densels To 470		5	Fre Demonde Tre 075	
Function Name	Esp.Demanda Trs 4/5	0.05	Function Name	Esp.Demanda Trs 975	0.05
arameters		Define Function	Parameters		Define Function
Seismic Zone	Zone 4 v	Period Acceleration	Seismic Zone	Zone 4 🗸 🗸 🗸	Period Acceleration
Occupation Category	c ~		Occupation Category	c ~	
Soil Type	S1 ~	0 1.125	Soil Type	S1 ~	0 1.4423 A
Irregularity Factor, la	1	0.2 1.125 0.3 1.125	Irregularity Factor, Ia	1	0.2 1.4423 0.3 1.4423
Irregularity Factor, Ip	1	0.4 1.125	Irregularity Factor, Ip	1	0.4 1.4423
Basic Response Modification Fact	or. R0 1	0.0	Basic Response Modification Fa	ctor, R0 0.78	
		Plot Options			Plot Options
		Linear X - Linear Y			Linear X - Linear Y
		O Linear X - Log Y			Linear X - Log Y
		O Log X - Linear Y			O Log X - Linear Y
Convert to U	ser Defined	O Log X - Log Y	Convert to	User Defined	O Log X - Log Y
	1 I I I 4.5 6.0 7.5 9.0	10.5 12.0 13.5 15.0	1.75 1.50 1.50 0.75 0.25 0.00 0.0 1.5 3.0	1 1 1 1 4.5 0.0 7.5 0.0	10.5 12.0 13.5 15.0
	OK Cano	el		OK Care	el

Anexo 9.45: Microzonificación según CAPECO.

Anexo 9.46: Tesis de antecedes sobre el estudio de suelo.

		TESIS 4 ANTECEDENTES					
TITULO	LINK	AUTOR	AÑO	UBICACIÓN CAPACIDAD PORTANTE		PARAMETR OS - E030	DESCRIPCION
DISEÑO ESTRUCTURAL DE UNA EDIFICACIÓN DE VIVIENDA MULTIFAMILIAR DE 7 PISOS Y 3 SÓTANOS EN EL DISTRITO DE MIRAFLORES	https://tesis.pucp.edu.pe/repositorio/bitstream/h andle/20.500.12404/19588/GUZMAN_RIVAS_CES AR_ALBERTO_DISE%c3%910_ESTRUCTURAL_EDIF ICIACION.pdf?sequence=1&isAllowed=y	Cesar Alberto Guzman Rivas	May-21				
DISEÑO ESTRUCTURAL DE UN EDIFICIO MULTIFAMILIAR DE 7 PISOS Y UN SEMISÓTANO EN MIRAFLORES	https://tesis.pucp.edu.pe/repositorio/bitstream/h andle/20.500.12404/18367/PRINCIPE_GONZALES _JORDY_DISE%c3%910%20ESTRUCTURAL_EDIFIC 	Huapaya Huapaya César Antonio	Jul-20				
"DISEÑO ESTRUCTURAL DE UN EDIFICIO DE OFICINA DE CONCRETO ARMADO UBICADO EN MIRAFLORES"	file:///C:/Users/Christian/Downloads/VARGAS_GO MEZ_CHRISTIAN_DISE%C3%910_ESTRUCTURAL_ EDIFICIO%20(1).pdf	CHRISTIAN ALONSO VARGAS GOMEZ	Ago-20	MIRAFLORES	4KG/CM2 O 40Tn/M2	TIPO - S1	ROCA O SUELO MUY RIGIDO
DISEÑO ESTRUCTURAL DE EDIFICIO MULTIFAMILIAR DE CONCRETO ARMADO	https://tesis.pucp.edu.pe/repositorio/bitstream/h andle/20.500.12404/16826/GUILLEN BERNUY SA LAZAR CRISPIN DISENO ESTRUCTURAL EDIFICIO _pdf?sequence=1&isAllowed=y	JUNIOR ROMARIO SALAZAR CRISPÍN GERARDO ENRIQUE GUILLEN BERNUY	Jun-20				
DISEÑO ESTRUCTURAL DE UN EDIFICIO MULTIFAMILIAR DE CONCRETO ARMADO DE SIETE NIVELES EN MIRAFLORES	https://tesis.pucp.edu.pe/repositorio/bitstream/h andle/20.500.12404/19540/SANCHEZ_ACAPANA EDDIE_DISE%c3%910_ESTRUCTURAL_EDIFICIO.p df?sequence=1&isAllowed=y	EDDIE SANCHEZ ACAPANA	Ene-21				

Anexo 10.1: Prueba de Hipótesis 2.

Pruebas	de	normalidad	
Tuebus	ae	normanaaa	

	Shapiro-Wilk					
	Estadístico	gl	Sig.			
MODOS_VIBRACION_X_POSITIVO	.849	4	.223			
PATRON_ESPECIAL_X_POSITIVO	.847	4	.218			
MODOS_VIBRACION_X_NEGATIVO	.853	4	.237			
PATRON_ESPECIAL_X_NEGATIVO	.852	4	.233			

Pruebas de normalidad

	Shapiro-Wilk					
	Estadístico	gl	Sig.			
MODOS_VIBRACION_Y_POSITIVO	.843	4	.204			
PATRON_ESPECIAL_Y_POSITIVO	.847	4	.218			
MODOS_VIBRACION_Y_NEGATIVO	.847	4	.217			
PATRON_ESPECIAL_Y_NEGATIVO	.847	4	.216			

Estadísticos de muestras relacionadas

		Media	N	Desviación típ.	Error típ. de la media
Par 1	MODOS_VIBRACION_X	319.3723	4	382.62796	191.31398
	PATRON_ESPECIAL_X	359.7393	4	430.10810	215.05405

Estadísticos de muestras relacionadas

		Media	Ν	Desviación típ.	Error típ. de la media
Par 1	MODOS_VIBR ACION_Y	316.2938	4	376.36842	188.18421
	PATRON_ESP ECIAL_Y	335.5655	4	399.60392	199.80 <mark>1</mark> 96

Prueba de muestras relacionadas

		Diferencias relacionadas							
				Error típ, de la	para la diferencia				
		Media	Desviación típ.	media	Inferior	Superior	t	gl	Sig. (bilateral)
.Par 1	MODOS_VIBRACION_X - PATRON_ESPECIAL_X	-40.36700	47.56985	23.78493	-116.06125	35.32725	-1.697	3	.038

	Prueba de muestras relacionadas										
			Diferencias relacionadas								
					para la d	iferencia					
				Error típ. de la							
		Media	Desviación típ.	media	Inferior	Superior	t	gl	Sig. (bilateral)		
Par 1	MODOS_VIBRACION_Y - PATRON_ESPECIAL_Y	-19.27175	23.26001	11.63000	-56.28361	17.74011	-1.657	3	.036		

Anexo 10.2: Prueba de Hipótesis 3.

	Shapiro-Wilk				
	Estadístico	gl	Sig.		
MODOS_VIBRACION_X_DESP	.847	8	.089		
PATRON_ESPECIAL_X_DESP	.818	8	.052		

Pruebas de normalidad

	Shapiro-Wilk				
	Estadístico	gl	Sig.		
MODOS_VIBRACION_X_CORTANTE	.865	8	.135		
PATRON_ESPECIAL_X_CORTANTE	.864	8	.131		
			1		

Pruebas de normalidad

	Shapiro-Wilk					
	Estadístico	gl	Sig.			
MODOS_VIBRACION_Y_DESP	.840	8	.076			
PATRON_ESPECIAL_Y_DESP	.839	8	.073			

Pruebas de normalidad

	Shapiro-Wilk					
	Estadístico	gl	Sig.			
MODOS_VIBRACION_Y_CORTANTE	.840	8	.076			
PATRON_ESPECIAL_Y_CORTANTE	.836	8	.068			

Estadísticos de muestras relacionadas

		Media	Ν	Desviación típ.	Error típ. de la media
Par 1	MODOS_VIBRACION_X	18.755	16	<mark>9</mark> .34557	2.33639
	PATRON_ESPECIAL_X	18.466	16	9.35867	2.33967

Estadísticos de muestras relacionadas

		Media	Ν	Desviación típ.	Error típ. de la media
Par 1	MODOS_VIBRACION_Y	20.1050	16	10.36705	2.59176
	PATRON_ESPECIAL_Y	19.6413	16	10.15737	2.53934

Prueba de muestras relacionadas

		Diferencias relacionadas							
					diferencia				
		Media	Desviación típ.	Error típ. de la media	Inferior	Superior	t	gl	Sig. (bilateral)
Par 1	MODOS_VIBRACION_X - PATRON_ESPECIAL_X	.28969	.88163	.22041	18010	.75948	1.314	15	.021

Prueba de muestras relacionadas

		Diferencias relacionadas							
				Error típ, de la	para la diferencia				
		Media	Desviación típ.	media	Inferior	Superior	t	gl	Sig. (bilateral)
Par1 MOD PATR	OS_VIBRACION_Y - RON_ESPECIAL_Y	.46375	.33986	.08497	.28265	.64485	5.458	15	.00007

Anexo 10.3: Prueba de Hipótesis 4.

Pruebas de normalidad					
	Shapiro-Wilk				
	Estadístico	gl	Sig.		
MODOS_VIBRACION_X	.918	10	.341		
PATRON_ESPECIAL_X	.924	10	.391		

Pruebas de normalidad

	Shapiro-Wilk			
	Estadístico	gl	Sig.	
MODOS_VIBRACION_Y	.936	10	.511	
PATRON_ESPECIAL_Y	.938	10	.535	

Pruebas de normalidad

	Shapiro-Wilk				
	Estadístico	gl	Sig.		
MODOS_VIBRACION_X	.868	8	.144		
PATRON_ESPECIAL_X	.868	8	.144		
Pruebas de normalidad					

	Shapiro-Wilk				
	Estadístico	gl	Sig.		
MODOS_VIBRACION_Y	.888	8	.226		
PATRON_ESPECIAL_Y	.888	8	.226		

Estadísticos de muestras relacionadas

		Media	Ν	Desviación típ.	Error típ. de la media
Par 1	MODOS_VIBRACION_X	.2683	4	.14050	.07025
	PATRON_ESPECIAL_X	.3150	4	.18112	.09056

Estadísticos de muestras relacionadas

		Media	Ν	Desviación típ.	Error típ. de la media
Par 1	MODOS_VIBRACION_Y	.3535	4	.19391	.09695
	PATRON_ESPECIAL_Y	.3550	4	.18972	.09486

Estadísticos de muestras relacionadas

		Media	Ν	Desviación típ.	Error típ. de la media
Par 1	MODOS_VIBRACION_X	.2728	5	.12210	.05461
	PATRON_ESPECIAL_X	.3320	5	.15742	.07040

Estadísticos de muestras relacionadas

		Media	N	Desviación típ.	Error típ. de la media
Par 1	MODOS_VIBR ACION_Y	.3598	5	.16852	.07536
PATRO ECIAL_	PATRON_ESP ECIAL_Y	.3612	5	.16488	.07374

"IMPACTO DE CARGAS MONOTÓNICAS EN EL DESEMPEÑO SISMICO DE UN EDIFICIO DE CONCRETO ARMADO DE 10 NIVELES EN EL DISTRITO DE MIRAFLORES, LIMA - 2023"

Prueba de muestras relacionadas

		Diferencias relacionadas							
				Error típ, de la	para la diferencia				
		Media	Desviación típ.	media	Inferior	Superior	t	gl	Sig. (bilateral)
Par 1 MODOS_VIBRACIO PATRON_ESPECIA	N_X- L_X	05920	.03532	.01580	10306	01534	-3.748	4	.020

Prueba de muestras relacionadas

Diferencias relacionadas									
				Error típ, de la	para la diferencia				
		Media	Desviación típ.	media	Inferior	Superior	t	gl	Sig. (bilateral)
Par 1	MODOS_VIBR ACION_Y - PATRON_ESP ECIAL_Y	00140	.00365	.00163	00593	.00313	858	4	.044