

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA CIVIL

"ADICIÓN DE MgCl₂ PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 DESVIO ALTO CUIN – DESVIO CHINAPAMPA, COCHORCO, SÁNCHEZ CARRIÓN- LA LIBERTAD 2022"

Tesis para optar al título profesional de:

INGENIERO CIVIL

Autores:

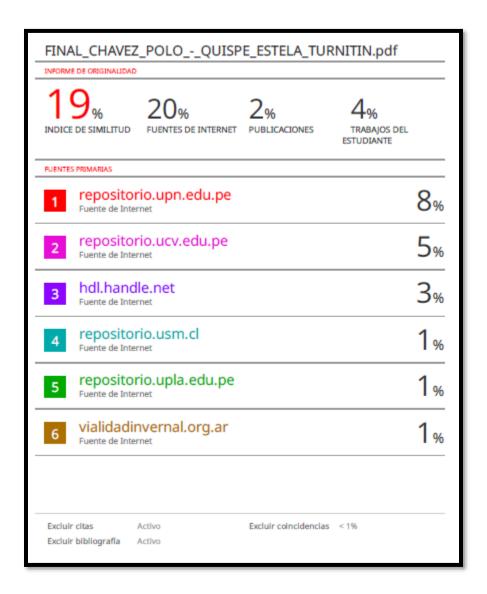
Darwin Antonio Chavez Polo Kerly Jimena Quispe Estela

Asesor:

Mg. German Sagastegui Vásquez https://orcid.org/0000-0003-3182-3352
Trujillo - Perú

2023

JURADO EVALUADOR


Jurado 1	Nixon Brayan Peche Melo	70615775
Presidente(a)	Nombre y Apellidos	Nº DNI

Jurado 2	Gonzalo Hugo Diaz García	40539624	
	Nombre y Apellidos	Nº DNI	

Jurado 3	Sheyla Cornejo Rodriguez	41639360	
	Nombre y Apellidos	Nº DNI	

INFORME DE SIMILITUD

UPN
UNIVERSIDAD
PRIVADA
DEI NORTE

DEDICATORIA

A nuestros padres. Ustedes han sido siempre el motor que impulsa nuestras sueños y

esperanzas, quienes estuvieron siempre a muestro lado en los días y noches más difíciles

durante nuestras horas de estudio. Siempre han sido nuestros mejores guías de vida. Hoy

cuando concluimos nuestros estudios, les dedicamos a ustedes este logro amados padres,

como una meta más conquistada. Orgullosos que sea. Nuestros padres y que estén a nuestro

lado en este momento tan importante.

Gracias por ser quienes son y por creer en nosotros.

Chávez Polo, Darwin Antonio

Quispe Estela Kerly Jimena

Chávez Polo, Darwin Antonio - Quispe Estela, Kerly Jimena

Pág. 4

UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

AGRADECIMIENTO

Dedicamos nuestra tesis principalmente a Dios, por darnos la fuerza necesaria para culminar esta meta.

A nuestros padres, hermanos e hijos por todo su amor y por motivarnos a seguir hacia adelante.

A nuestro asesor Ing. German Sagastegui Vasquez por el tiempo y dedicación nos ha apoyado con sus conocimientos para la realización de nuestra investigación, gracias también a todos nuestros profesores de la Universidad Privada del Norte

Chávez Polo, Darwin Antonio

Quispe Estela Kerly Jimena

RESUMEN

El estudio tuvo como propósito analizar la adición de cloruro de magnesio a nivel de

subrasante en una trocha carrozable desvío Alto Cuin - desvío Chinapampa, su tipo de

investigación es aplicada, diseño de investigación experimental y el muestreo fue no

probabilístico, se adicionó a la subrasante 3%, 5% y 10% de cloruro de magnesio. El

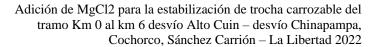
resultado de esta investigación para el 3% de magnesio se tuvo un CBR de 17.92% con

contenido de humedad 7.20% y una MDS 1.75 g/cm³, con un 5% MgCl2 se tuvo un CBR de

26.09% con un contenido de humedad 6.48% y una MDS 1.96 g/cm³, con un 10% MgCl2 se

tuvo un CBR de 38.55% con un contenido de humedad 7.40% y una MDS 1.97 g/cm³. Se

concluyó que ha mayor porcentaje de cloruro de magnesio las características del suelo natural

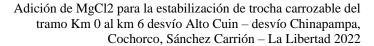

mejora.

Palabras clave: cloruro de magnesio, CBR, Proctor modificado, subrasante

TABLA DE CONTENIDO

RADO CALIFICADOR	2
FORME DE SIMILITUD DICATORIA	3 4
RADECIMIENTO	5
SUMEN	6
BLA DE CONTENIDO	7
DICE DE TABLAS	9
DICE DE FIGURAS	12
PÍTULO I: INTRODUCCIÓN	13
Realidad problemática	13
Antecedentes	15
Definiciones conceptuales	20
Formulación del problema	27
Objetivos	27
Hipótesis	27
PÍTULO II: METODOLOGÍA	28
Tipo de investigación	28
Diseño de investigación	28
Clasificación de variables	28
Población, muestra y muestreo	29
Operacionalización de variables	30
Técnicas e instrumentos de recolección	32
Procedimiento	32
File Control C	DICATORIA

2.8	Análisis de datos	37
2.9.	Aspectos éticos	37
CA	PÍTULO III: RESULTADOS	38
CA	PÍTULO IV: DISCUSIÓN Y CONCLUSIONES	88
RE	FERENCIAS	93
AN	EXOS	98



INDICE DE TABLAS

Tabla 1: Clasificación de Suelos	21
Tabla 2: Clasificación de Variables	29
Tabla 3: Matriz de operacionalización de variables	31
Tabla 4: Requisitos para el agua	36
Tabla 5: Análisis Mecánico por tamizado (ASTM D-422) de la calicata PC-01	38
Tabla 6: Límite de consistencia de la calicata PC-01	39
Tabla 7: Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-02	39
Tabla 8: Límite de consistencia de la calicata PC-02	40
Tabla 9: Análisis mecánico por tamizado (ASTM D-22) de la calicata PC-03	40
Tabla 10: Límite de consistencia de la calicata PC-03	41
Tabla 11: Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-04	42
Tabla 12: Límite de consistencia de la calicata PC-04	42
Tabla 13: Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-05	43
Tabla 14: Límite de consistencia de la calicata PC-05	44
Tabla 15: Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-06	44
Tabla 16: Límite de consistencia de la calicata PC-06	45
Tabla 17: Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-07	45
Tabla 18: Límite de consistencia de la calicata PC-07	46
Tabla 19: Ensayo Proctor modificado 1 suelo natural	46
Tabla 20: Ensayo CBR 1 a los 12, 25 y 56 golpes suelo natural	48
Tabla 21: Porcentaje obtenidos para golpes de 12,25 y 56 CBR suelo natural	50
Tabla 22: Ensayo Proctor modificado 2 suelo natural	50
Tabla 23: Ensayo CBR 2 a los 12, 25 y 56 golpes suelo natural	51
Tabla 24: Porcentaje obtenidos para golpes de 12, 25 y 56 CBR suelo natural	53
Tabla 25: Ensayo de Proctor modificado 3 suelo natural	53
Tabla 26: Ensayo de CBR 3 a los 12, 25 y 56 golpes suelo natural	54
Chávez Polo Darwin Antonio – Quisne Estela Kerly limena	

Tabla 27: Porcentaje obtenidos para golpes de 12,25 y 56 CBR natural
Tabla 28: Ensayo Proctor modificado 1 suelo natural + 3% cloruro de magnesio
Tabla 29: Ensayo CBR 1 a los 12,25 y 56 golpes suelo natural + 3% cloruro de magnesio57
Tabla 30: Porcentajes obtenidos para golpes de 12,25 y 56 CBR 1 suelo natural + 3% cloruro de magnesio59
Tabla 31: Ensayo de Proctor Modificado 2 suelos natural + 3% cloruro de magnesio
Tabla 32: Ensayo CBR 2 a los 12,25 y 56 golpes suelo natural + 3% cloruro de magnesio60
Tabla 33: Porcentajes obtenidos para golpes de 12,25 y 56 CBR 2 suelo natural + 3% cloruro de magnesio62
Tabla 34: Ensayo de Proctor Modificado 3 suelo natural + 3% cloruro de magnesio
Tabla 35: Ensayo CBR a los 12,25 y 56 golpes suelo natural + 3% cloruro de magnesio
Tabla 36: Porcentaje obtenidos para golpes de 12,25 y 56 CBR suelo natural + 3% de cloruro de magnesio65
Tabla 37: Ensayo de Proctor Modificado 1 suelo natural + 5% cloruro de magnesio
Tabla 38: Ensayo CBR 1 a los 12,25 y 56 golpes suelo natural + 5% cloruro de magnesio66
Tabla 39: Porcentaje obtenidos para golpes de 22, 25 y 56 CBR 1 suelo natural + 5% cloruro de magnesio68
Tabla 40: Ensayo de Proctor Modificado 2 suelo natural + 5% cloruro de magnesio
Tabla 41: Ensayo CBR 2 a los 12,25 t 56 golpes suelo natural + 5% cloruro de magnesio69
Tabla 42: Porcentaje obtenidos para golpes de 12,25 y 56 CBR 2 suelo natural + 5% cloruro de magnesio71
Tabla 43: Ensayo de Proctor Modificado 3 suelo natural +5% cloruro de magnesio
Tabla 44: Ensayo CBR 3 a los 12,25 y 56 golpes suelo natural + 5% de cloruro de magnesio72
Tabla 45: Porcentajes obtenidos para golpes de 12,25 t 56 CBR 3 suelo natural + 5% cloruro de magnesio74
Tabla 46: Ensayo de Proctor Modificado 1 suelo natural + 10% cloruro de magnesio74
Tabla 47: Ensayo CBR 1 a los 12,25 y 56 golpes suelo natural + 10% cloruro de magnesio
Tabla 48: Porcentajes obtenidos para golpes de 12,25 y 56 CBR 1 suelo natural + 10% cloruro de magnesio.77
Tabla 49: Ensayo de Proctor Modificado 2 suelo natural + 10% cloruro de magnesio
Tabal 50: Ensayo CBR 2 a los 12,25 y 56 golpes suelo natural + 10% cloruro de magnesio
Tabla 51: Porcentajes obtenidos para golpes de 12, 25 y 56 CBR 2 suelo natural+10% de cloruro magnesio.80 Chávez Polo, Darwin Antonio – Quispe Estela, Kerly Jimena

Tabla 52: Ensayo de Proctor Modificado 3 suelo natural + 10% cloruro de magnesio
Tabla 53: Ensayo CBR a los 12,25 y 56 golpes suelo natural + 10% cloruro de magnesio
Tabla 54: Porcentajes obtenidos para golpe de 12, 25 y 56 CBR 3 suelo natural+10% cloruro de magnesio83
Tabla 55: Comparación CBR del suelo natural y con porcentaje de adición de 3%, 5% y 10% de cloruro de
magnesio83
Tabla 56: Comparación Proctor Modificado del suelo natural y con porcentaje de adición de 3%, 5% y 10% de
cloruro de magnesio
Tabla 57: Índice Medio Diario semana – Promedio de vehículos diarios
Tabla 58: Población futura de vehículos
Tabla 59: Ejes Equivalentes y factor camión
Tabla 60: Tráfico proyectado de diseño 10 años

INDICE DE FIGURAS

Figura 1. Estructura del pavimento	26
Figura 2. Curva de contenido de humedad vs densidad seca 1	48
Figura 3. Curvas de contenido de humedad vs densidad seca 2	51
Figura 4. Curva de contenido de humedad vs densidad seca 3	54
Figura 5. Curva de contenido de humedad vs densidad seca 1 suelo natural + 3% cloruro de magnesio	o57
Figura 6. Curva de contenido de humedad vs densidad seca 2 suelo natural + 3% cloruro de magnesio	o60
Figura 7. Curva de contenido de humedad vs densidad seca 3 suelo natural + 3% cloruro de magnesio	o63
Figura 8. Curva de contenido de humedad vs densidad seca 1 suelo natural + 5% cloruro de magnesio	o66
Figura 9. Curva de contenido de humedad vs densidad seca 2 suelo natural + 5% cloruro de magnesio	o69
Figura 10. Curva de contenido de humedad vs densidad seca 3 suelo natural + 5% cloruro de magnes	sio72
Figura 11. Curva de contenido de humedad vs densidad seca 1 suelo natural + 10% cloruro de magne	esio75
Figura 12. Curva de contenido de humedad vs densidad seca 2 suelo natural + 10% cloruro de magne	esio78
Figura 13. Curva de contenido de humedad vs densidad seca 3 suelo natural + 10% cloruro de magne	esio81
Figura 14. Ecuación del método NAASRA	87

T UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

CAPÍTULO 1. INTRODUCCION

2.1 Realidad Problemática

Macro

En España, uno de los principales problemas en carreteras a nivel de subrasante es el polvo

que desprende las vías terrestres no pavimentadas puede impactar significativamente en la

salud, la seguridad y en el costo de su mantenimiento. Este problema se da especialmente en

terrenos arcillosos y climas áridos y semiáridos. En estos casos, se puede utilizar como

alternativa los cloruros para reducir la cantidad de polvo (Yepes, 2021).

En Costa Rica según Jones & Surdahl (2014) indican que en los pasados 100 años nivel

internacional los profesionales en carreteras se han dado la tarea de investigar los

mecanismos químicos y físicos debido a un gran problema que aqueja las vías no

pavimentadas y en realidad una gran variedad de tratamientos químicos se ha desarrollado

para mejorar el desempeño de suelos y agregados marginales, lo que a la vez ayuda a reducir

el impacto ambiental y social asociado a la extracción de agregados de calidad.

En Ecuador los autores Delgado & Pastor (2011) indican que los vehículos que transitan

diariamente sobre la trocha carrozable sin mantenimiento generan polvo durante la marcha a

lo largo de toda su trayectoria. (Miranda & Negrete, 2011) Es necesario conocer los tipos de

vehículos y los posibles pesos por eje que descargarán sobre la superficie de la carretera. La

actividad para establecer las cargas que se aplican sobre una superficie de rodado es

denominado: Estudio de Cargas por Eje.

Micro

Chávez Polo, Darwin Antonio - Quispe Estela, Kerly Jimena

Pág. 13

UPN
UNIVERSIDAT
PRIVADA
DEL NORTE

En el caso peruano, desde el punto de vista vial, el suelo presenta varias dificultades. La

amplia morfología constituye un reto continuo que destaca la disociación nacional, las

soluciones se están dando de manera progresiva. El estado ha tomado la medida de rehabilitar

las carreteras que fueron construidas y que por deficiente construcción y plan de

mantenimiento, han sido destruidas, de esta manera Provias, viene ejecutando estas

rehabilitaciones utilizando los métodos químicos como alternativa de solución (Condor &

Huamancayo, 2016)

Se han desarrollado una gran variedad de tratamientos con el fin de corregir esta problemática

utilizando diferentes alternativas de estabilización de suelos; una de ellas, es aquella que se

aplica productos químicos no tóxicos que permiten a estos suelos en carreteras un adecuado

comportamiento en servicio. (Calderón, 2017)

Las vías de comunicación permiten la circulación de diferentes tipos de vehículos, tamaños

y pesos, por lo que el paquete estructural de una carretera (pavimento, base, subbase) debe

ser diseñada para soportar durante su vida útil las solicitaciones de los pesos de todos

vehículos que circular y circularán por esa vía (Cedeño, 2013).

Nano

Las trochas carrozables llevan décadas sin mantenimiento por parte las entidades públicas y

las vías nacionales se encuentran en las mismas condiciones como es el caso del tramo desvío

Alto Cuin hasta el desvío Chinapampa.

En la Provincia Sánchez Carrión, distrito de Cochorco desde el tramo desvío Alto Cuin hasta

el desvío Chinapampa en este recorrido se ubican viviendas habitadas por numerosas familias

que diariamente respiran aire con partículas finas de polvo ingresando al interior de los

domicilios contaminando los alimentos; los baches malogran diferentes repuestos de los

UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

vehículos motorizados. Al ser esta una vía abandonada por el estado no cuenta con señales

de tránsito y causante de muchos accidentes de tránsito.

La población de los lugares de la zona de influencia ha colocado rompe muelles artesanales

de tierra aproximadamente cada 20 m y 50 m en las curvas y rectas prolongadas de más de

100 metros en los sectores más habitados, con finalidad de evitar la generación de polvo y

los accidentes de tránsito.

Uno de los puntos centrales de la aplicación en la cual se utilizarán las herramientas de

estudio, es el poder presentar en tiempo real el estado situacional de la trocha, para ello es

necesario adicionar el cloruro de magnesio al suelo para el mejoramiento de la trocha

carrozable en tramos no estructurados.

2.2 Antecedentes teóricos

Internacional:

Heitzer (2017). Tiene como principal objetivo estudiar el efecto de las sales y tipos de suelos

en su comportamiento, en la absorción, retención y pérdida de humedad, con el fin de tener

mejores condiciones en el terreno. Este estudio utilizó una metodología experimental

aplicada, como resultados obtuvo que el cloruro de magnesio comenzó a consumir agua

cuando la humedad relativa es mayor a 32% y disminuye la tasa de evaporación del agua en

3,1 veces, mientras que el cloruro de sodio tiene una menor capacidad de absorber y retener

humedad, ya que comienza a absorber agua cuando la humedad relativa está por sobre el 75%

y disminuye la tasa de evaporación del agua en 1,3 veces. La disminución de la tasa de

evaporación permite la retención de humedad en la superficie de rodado, por medio de una

presión de vapor menor a la del agua. Como conclusiones las muestras con mezclas M2 y

Chávez Polo, Darwin Antonio - Quispe Estela, Kerly Jimena

Pág. 15

UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

M3 se comportaron igual a las muestras M1 y M4 con un solo tipo de sal, mostrando tendencias similares en términos de absorción y evaporación de la humedad. Las mezclas con mayor cloruro de magnesio tuvieron una mayor capacidad de absorción de humedad que las muestras sólo con contenido de cloruro de sodio, lo anterior para todos los tipos de suelos en estudio; comparando las tres humedades de acondicionamiento, se observó que a una humedad de acondicionamiento del 40%, el agua absorbida se encuentra en equilibrio con el agua en estado de vapor en el aire dentro de la cámara de humedad al final de la fase de absorción, es por esto que las curvas tienden a mantenerse constantes en el tiempo, mientras que para humedades del 90%, todas las mezclas continuaron absorbiendo humedad al final. Esta investigación nos aporta el comportamiento en absorción, retención y pérdida de humedad en la adición de cloruro de magnesio en tipos de suelos, esto permite tomar en cuenta el desarrollo de los ensayos.

Maturano, Aguilera & Bustos (2015). En su investigación el objetivo de estudio fue realizar diseños de soluciones con proporciones variables salinas y productos orgánicos, teniendo un tipo de investigación aplicada y diseño de investigación experimental. Consideró 6 soluciones donde toma en cuenta la Salmuera + bischofita (cloruro de magnesio). Como resultados tuvieron que las mediciones llevadas a cabo alcanzaron un mayor residuo salino sobre la calzada en función a los días transcurridos y tránsito, en orden decreciente de mejores resultados, 90% de salmuera + 10% vinaza comercial (caña de azúcar), 50% de salmuera + 40% bischofita (cloruro de magnesio) + 1°% vinaza comercial, 90% de salmuera + 10% vinaza de vino procedente de Neuquén. Como conclusión, se verificó con claridad, que la adición de vinaza concentrada genera que las sales permanezcan más tiempo sobre calzada.

UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

Esta investigación nos aporta que las sales en este caso el cloruro de magnesio (bischofita)

genera mejores características para una calzada en el tiempo, esto permite considerar dentro

de las discusiones.

Nacional:

López (2019). En su trabajo de tesis tiene como objetivo analizar la influencia de la bischofita

en la estabilidad de la capa de rodadura Palca-chana, Huari, Ancash. Diseño fue

experimental, el tipo de investigación fue aplicada, ya que se pretende resolver un problema

práctico. Como resultados se tiene que la muestra sin bischofita presenta 59.00% de CBR, la

muestra que cuenta con 3% de bischofita presenta 59.30% de CBR, con 7% de bischofita

presenta 59.70% de CBR y con 9% de bischofita presenta 59.90% de CBR. Se concluye que

teniendo en cuenta el ensayo de California Bearing Ratio (C.B.R) – ASTM D1883 (C) mejora

significativamente la resistencia, la densidad seca aumenta al incorporarse bischofita, así

como el contenido de humedad disminuye al incorporarse bischofita, por lo que se afirma

que la aplicación de la bischofita mejora la compactación de la superficie de rodadura de la

carretera no pavimentada respecto a la resistencia – C.B.R.

Esta investigación nos aporta las conclusiones de mejora para el ensayo de CBR adicionando

el cloruro de magnesio.

Cosiche (2019). Desarrolla el siguiente estudio teniendo como objetivo evaluar la influencia

del cloruro de magnesio hexahidratado en las propiedades de la subrasante en carreteras no

pavimentadas. Tomó como metodología el método científico de tipo aplicada, con nivel

explicativo, de lo cual obtuvo los siguientes resultados, donde el 3% es el porcentaje

Chávez Polo, Darwin Antonio - Quispe Estela, Kerly Jimena

Pág. 17

UPN
UNIVERSIDAD
PRIVADA
DEI MORTE

adecuado, La C-1, M3, tramo Pazos desvío Pampas Km 339 + 100, terreno natural +3% cloruro de magnesio hexahidratado presenta un C.B.R. a 0.1" al 100% arroja un 43.1% y al 95% proyecta un 40.2 %; asimismo la C-2, M3, tramo Pazos desvío Pampas Km 339 + 100, terreno natural +3% cloruro de magnesio hexahidratado presenta un C.B.R. a 0.1" al 100% arroja un 24.78 % y al 95% proyecta un 19.95 %; y por último la C-3, M3, tramo Pazos desvío Pampas Km 339 + 100, terreno natural +3% cloruro de magnesio hexahidratado presenta un C.B.R. a 0.1" al 100% arroja un 19.88% y al 95% proyecta un 19.11 %. El investigador determinó la siguiente conclusión, que el cloruro de magnesio eleva el CBR del suelo a una proporción del 3%, resultando con una mejor resistencia al corte en el tramo C-1, M3, tramo Pazos desvío Pampas Km 339 + 100, terreno natural +3% cloruro de magnesio hexahidratado presenta un C.B.R. a 0.1" al 100% arroja un 43.1% y al 95% proyecta un 40.2 %.

Esta investigación nos aporta sus resultados para las discusiones y comparar con nuestros resultados.

Valera, (2021) en su tesis tuvo como propósito determinar la influencia del cloruro de magnesio en las características mecánicas de las estabilizaciones de la subrasante en la Av. El Milagro del CPM El Milagro 2021. Como metodología es de tipo experimental y el muestreo fue no probabilístico, la técnica fue la observación. Obtuvo los siguientes resultados: en suelo natural + 1% de MgCl2 la media es de 27.7060, al 95% de intervalo de confianza para en media en límite inferior es de 18.1337 y límite superior el 37.2563, la media recortada al 5% es de 27.7483, la mediana es 24.43, la varianza es 59.159, la desviación estándar es de 7.69152, el mínimo es de 18.85, el máximo es de 35.80, con un

rango de 16.95, una asimetría de 0.242, y una curtosis de -2.599; asimismo en suelo natural + 2% de MgCl2 la media es de 28.71, al 95% de intervalo de confianza para en media en límite inferior es de 24.8257 y límite superior el 32.5943, la media recortada al 5% es de 28.7772, la mediana es 28.83, la varianza es 9.786, la desviación estándar es de 3.12828, el mínimo es de 24.51, el máximo es de 31.7, con un rango de 7.19, una asimetría de -0.374, y una curtosis de -1.682; y por último en el en suelo natural + 3% de MgCl2 la media es de 39.0420, al 95% de intervalo de confianza para en media en límite inferior es de 26.1970 y límite superior el 51.8870, la media recortada al 5% es de 38.9224, la mediana es 33.15, la varianza es 107.018, la desviación estándar es de 10.34495, el mínimo es de 29.81, el máximo es de 50.30, con un rango de 20.49, una asimetría de 0.349, y una curtosis de -3.243.

Concluye que, realizó la estabilización con 1% de cloruro de magnesio aumentó el CBR llegando a un 27.706 % con una humedad optima de 8.176%; con 2% de cloruro de magnesio aumentó un CBR llegando a 28.71 % con una humedad optima de 8.056%; se logró la mejor dosificación al someter el material a una mejora del 3% de Cloruro de Magnesio creando un CBR de 39.04% al 95% MDS y con una humedad optima de 8.62% siendo una estabilización apta para mejorar las carreteras no asfaltadas en CPM El Milagro.

1.3 Definiciones conceptuales

Suelos

Según Duque & Escobar (2002), en Ingeniería Civil, los suelos son los sedimentos no consolidados de partículas sólidas, generadas de la alteración de las rocas, hielo o viento con contribución de la gravedad como fuerza direccional selectiva, y que suelen tener materia orgánica.

T UPN
UNIVERSIDAT
PRIVADA
DEL NORTE

El suelo tiene a presentar diversos tipos de fallas tales como: disgregamiento, deslizamiento en líneas de rotura o fluencia plástica.

Para poder conceptualizar el comportamiento del suelo se consideran tres grupos de parámetros:

a. Parámetros de identificación: La granulometría (distribución de los tamaños de grano que constituyen el agregado), y la plasticidad (la variación de consistencia del agregado en función del contenido en agua).

b. Parámetros de estado: La humedad (contenido en agua del agregado), y la densidad, referida al grado de compacidad que muestren las partículas constituyentes.

c. Parámetros estrictamente geo mecánicos: Resistencia al esfuerzo cortante, deformidad o la permeabilidad.

Clasificación SUCS (Sistema Unificado de Clasificación de Suelos)

Según NTP 339.134.1999 empleado para describir el tamaño, y estructura de partículas de un suelo, este método de clasificación se basa en la gráfica de plasticidad.

El sistema se divide en 2 tipos de suelo:

✓ Suelo grueso

✓ Suelo fino

Los suelos de granos grueso y fino se diferencian mediante el tamizado del material correspondiente por el tamiz N° . 200.

A) Clasificación para suelos Gruesos

Se dividen en gravas y arena, y se separan con el tamiz N° 4, de manera que un suelo pertenece al grupo de grava si más del 50% retiene el tamiz No 4 y pertenecerá al grupo arena en caso contrario.

Los suelos gruesos corresponden a los retenidos en dicho tamiz y los finos a los que lo pasan, de esta forma se considera que un suelo es grueso si más del 50% de las partículas del mismo son retenidas en el tamiz N°. 200 y fino si más del 50% de sus partículas son menores que dicho tamiz.

B) Clasificación para suelos Finos

Según NTP 339.134, 1999 el sistema unificado considera en tres grupos para los limos y arcillas con límite líquido menos al 50%, en tres grupos para los limos y arcillas con límite líquido mayor de 50% y en un grupo para los suelos finos altamente orgánicos.

Los suelos finos divididos entre grupos: limos inorgánicos (M), arcillas inorgánicas (C) y limos y arcillas orgánicas (0). Cada uno de estos suelos se subdivide a su vez según su límite líquido, en dos grupos cuya frontera es Ll = 50%.

Tabla 1 *Clasificación de suelos*

Tipo de suelo	Prefijo	Subgrupo	Sifijo
Grava G		Bien gradada	W
Arena	S	Probamente gradada	P
Limo	M	Limoso	M
Arcilla	C	Arcilloso	C
Orgánico	O	Limite liquido alto	L
Turba	Pt	Limite liquido alto	Н

T UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

Nota: Se observa la clasificación de suelos según la NTP 339.134,1999.

Clases de estratos o suelos, la variedad de tipología de estratos se diferencia

por sus distintas características físicas, mecánicas, químicas y morfológicas, su

color y textura hace valioso la clasificación de estos, entre los más conocidos

se tiene a:

Gravas: Su dimensión oscila superior a la malla N°4 se le considera grava,

siendo fragmentos de rocas que tienen más de 2 mm de diámetro.

Arenas: Es considerado lo que retiene la malla N°4, donde se tiene arenas

gruesas y finas, procedentes de la trituración artificial o natural por años, cuyas

partículas varían entre 2 mm a 0.05 mm.

Limos: Se considera material de grano fino, con poca plasticidad, considerado

como limo orgánico o inorgánico, hallándose en ríos, su tamaño varía entre 0.05

mm hasta 0.005 mm

Arcillas: Se consideran como partículas de poco tamaño inferior a 0.005 mm y

cuya masa tiene la cualidad de convertirse plástica al ser involucrada con agua.

Existen tablas con simbologías y descripciones para contemplar a mayor detalle

(Norma Técnica E.050 Suelos y Cimentaciones, 2018).

Estabilización de suelos

Según MTC (2014). La estabilización de suelos, tiene como objetivo mejorar

una o más propiedades físicas de un suelo a través de procedimientos mecánicos

o adicionando productos químicos, naturales o sintéticos. Las estabilizaciones

T UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

se aplican en las subrasante inadecuado o pobre, en este caso son conocidas como estabilización de suelo-cemento, suelo-cal, suelo-asfalto y otros productos diversos, esto conlleva a una mayor resistencia mecánica y permanencia de tales propiedades al paso de los años. Las técnicas son variadas

y van desde la adición de otro suelo, a la incorporación o adición de uno o más

agentes estabilizantes.

Estabilización química

Según Murty et all (2016) se entiende en emplear sustancias químicas para el

mejoramiento de las propiedades de los suelos, disminuyendo su plasticidad e

incrementando su resistencia frente las cargas de tráfico el cual está expuesto el

suelo y condiciones ambientales.

Estabilización Mecánica

Este método de estabilización de suelos mediante la compactación se logre un

material denso y bien graduado mediante la mezcla. (Higuera et all, 2012)

Estabilización física

En este tipo de estabilización se pretende incrementar la fricción cohesión y la

impermeabilidad del suelo, esta se realiza mediante ajuste en la granulometría

agregando material a la banda granulométrica del suelo (Higuera et all, 2012)

Estabilización físico – química

UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

Es usualmente utilizado en suelo que tienen mayor cantidad de finos plásticos, como limos y arcillas, donde se le agrega el insumo químico el cual genera un intercambio iónico y cementación, esta estabilización se realiza con el fin de incrementar la resistencia, permeabilidad, trabajabilidad y estabilidad volumétrica del suelo (Higuera et all, 2012)

Cloruro magnesio

Es en forma de color blanco, más efectivo que el cloruro de calcio para incrementar la tensión superficial generan una superficie más dura, en caminos no pavimentos, como tratamiento supresor de polvo, de preferencia contar con un 10% -20% de material fino para la cohesión y al menos un 20% de material granular superior al tamaño 10mm para asegurar una estabilidad estructural. (MTC, 2014)

Método NAASRA (National Association of Australian State Road Authorities)

Método para el dimensionamiento de espesores de afirmado que relaciona el valor de soporte del suelo (CBR) y la carga actuante sobre el afirmado, expresada en número de repeticiones de EE. (Manual de Carreteras sección Suelos y pavimentos, 2014).

$$e = [219 - 211 * (log_{10}CBR) + 58 * (log_{10}(CBR)^2] * log_{10}(\frac{Nreq}{120})$$

Pavimento

El pavimento es una conformación por varias capas construida sobre la subrasante del camino, para resistir y distribuir esfuerzos originados por los vehículos, mejorar las condiciones de seguridad y comodidad para el tránsito. (MTC, 2014)

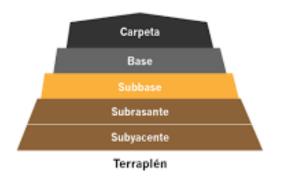
Capa de Rodadura

Es la parte superior de un pavimento, de tipo bituminoso, de concreto o adoquines, cuyo objetivo es sostener el tránsito, su función es absorber las cargas generadas por los vehículos y distribuirlas, para evitar grandes deformaciones. (MTC, 2014)

Base

Capa constituida por material cuya función es estructural, y cuyo espesor depende de un diseño en función a la cantidad de vehículo que transitan sobre ella. Esta se coloca sobre la sub base o sobre el nivel de sub rasante, según sea que se considere o no la incorporación de material sub base (Ponce, 2018).

Sub base


Es la capa que se encuentra debajo de un pavimento y cumple la función de absorber las cargas de tránsito en menor cantidad, por lo que cumple una función estructural ya que, deberá de tener buena capacidad de carga. (Montejo, 2002)

Subrasante

Es la capa situada arriba del cuerpo de terraplén y debajo de la sub base, que tiene la función de dar alineamiento vertical del camino, por lo que recibe menor cantidad de esfuerzo a causa de las cargas de tránsito. (Coronado, 2002).

Figura 1

Estructura del Pavimento

Nota: En esta imagen se puede apreciar la conformación de la estructura del pavimento. Sánchez, (2022)

1.4 Formulación del problema

¿Cuál es la adición del MgCl₂ para la estabilización de trocha carrozable del tramo km 0 al km 6 desvío Alto Cuin – desvío Chinapampa, distrito de Cochorco, Sánchez Carrión- La Libertad 2022?

1.5 Objetivos

Objetivo general

Determinar la adición de MgCl2 para la estabilización de trocha carrozable del tramo km 0 al km 6 Alto Cuin – desvío Chinapampa, distrito de Cochorco, Sánchez Carrión- La Libertad 2022

Objetivos específicos

OE1: Determinar las características del suelo de la trocha carrozable del km 0 al km 6 Alto Cuin – desvío Chinapampa, distrito de Cochorco, Sánchez Carrión.

OE2: Determinar el porcentaje óptimo de MgCl2 en la subrasante de la trocha carrozable en estudio.

OE3: Comparar las propiedades mecánicas de la subrasante inicial y la subrasante con el MgCl2 en estudio.

OE4: Diseñar mediante el método Naasra considerando las propiedades mejoradas con el MgCl2.

1.6 Hipótesis:

La adición de cloruro de magnesio mejorará las características de la trocha carrozable del tramo Km 0 al Km 6 desvío Alto Cuin – desvío Chinapampa.

UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

CAPITULO II: METODOLOGIA

2.3 Tipo de investigación

Por el propósito

Tipo aplicada, debido a que requiere información real teórica y aplicada para nutrir de

conocimientos y poder aplicarlos en una situación real, con la finalidad de poder

intervenir o dar solución a un problema (Cochachin, 2018). Podemos considerar en la

investigación a través de los resultados tener un porcentaje de solución adecuado de

cloruro de magnesio antes un problema detectado en la realidad, mediante criterios o

parámetros técnicos aplicativos para tener un mejor resultado.

2.4 Diseño de investigación

Experimental, dado que hay una manipulación deliberada de las variables específicas,

por lo que se tiene que estudiar los efectos producto de la manipulación de las variables

mencionadas (Hernandez,2014). Podemos considerar que se manipuló la variable

independiente con el objetivo de evaluar y estudiar la cantidad de adición de cloruro de

magnesio sobre la variable dependiente, es experimental puro porque se presume que

la variable independiente causará una variación en el comportamiento de la variable

dependiente.

2.5 Clasificación de variables

Chávez Polo, Darwin Antonio - Quispe Estela, Kerly Jimena

Pág. 28

Tabla 2Clasificación de Variables

	Clasificación					
VARIABLES	Relación	Naturaleza	Escala de medición	Dimensión	Forma de medición	
Cloruro de magnesio	Independiente	Cuantitativa	Intervalo	Porcentaje de adición	Directa	
Estabilización de trocha carrozable	Dependiente	Cuantitativa	Intervalo	Limites, CBR, Proctor	Directa	

Nota. En esta figura se muestra la clasificación de variables acorde a la relación, naturaleza, escala de medición, dimensión y forma de medición.

2.4 Población, muestra y muestreo

Población

La población fue las trochas carrozables del distrito de Cochorco. Una población es el conjunto de todos los casos que concuerdan con una serie de especificaciones (Lepkowski, 2008).

Muestra

La muestra es un subgrupo de la población de interés sobre el cual se recolectarán datos, y que tiene que definirse y delimitarse de antemano con precisión, además de que debe ser representativo de la población (Fernández-Baptista, 2014). Por lo tanto, la muestra se consideró la trocha carrozable del desvío Alto Cuín – desvío Chinapampa del Km 00+0.00 al Km 06+0.00, distrito de Cochorco, La Libertad. Así mismo se realizó 7 calicatas de 1.00 x 1.00 x 1.50m donde se realizó los ensayos

correspondientes, análisis mecánico por tamizado, limites consistencia, Proctor modificado, California Bearing Ratio – CBR y expansión.

Muestreo

El muestreo es no probabilístico a conveniencia. En las muestras no probabilísticas, la elección de los elementos no depende de la probabilidad, sino de causas relacionadas con las características de la investigación o los propósitos del investigador (Lepkowski, 2008)

2.5 Operacionalización de Variables

Tabla 3

Matriz de operacionalización de variables

Variables	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Instrumentos	ESCALA DE MEDICION
VI: Cloruro de	Es una sal donde tiene la finalidad de estabilizar superficialmente en	Se realizó la aplicación de cloruro		Proporción 3%		
magnesio	carpetas granulares. (Gutiérrez, 2010)	de magnesio en 3,5,10 % en el suelo.	Dosificación de cloruro	Proporción 5%	Guía de	Intervalo
		, ,		Proporción 10%	observación	
VD: Estabilización de la trocha carrozable	Es el proceso de mejorar una o más propiedades físicas de un suelo a través de procedimientos mecánicos o adicionando productos químicos,	Se agrupó y clasificará las partículas que forman los suelos	Propiedades físicas	Granulometría Límites		
	naturales o sintéticos (MTC, 2014)	separándolas en intervalos de	Propiedades Mecánicas	CBR	Guía de observación	Intervalo
		tamaños, se realizó los ensayos CBR,	Wiecamcas	Proctor	observacion	
		Proctor, limites	Método NAASRA	ESAL CBR		

2.6 Técnicas e instrumentos de recolección

Técnicas de recolección de datos

La técnica de recolección de datos que se utilizó en la investigación fue la observación, se realizó las tomas de muestras de suelo para su análisis en laboratorio para el estudio de sus propiedades físico mecánicas sin y con adición de cloruro de magnesio de acuerdo a las normas "ASTM". Según Bunge (2007), la observación es donde el investigador se analiza procedimiento elemental de la ciencia y procesa hechos o fenómenos, realiza una selección particular de la información verdadero o contundente.

Instrumentos de recolección de datos

Se utilizó la guía de observación, estos formatos nos permitieron la recolección los datos obtenidos y ayudó a llevar un orden para describir lo observado en cada ensayo aplicado para las propiedades físicas y mecánicas. Según Tamayo (2004) define como un formato de recolección de datos registro constante y homogéneo, es decir el control claro objetiva de acontecimientos necesarios respondiendo a las variables.

2.7 Procedimiento

Se describe a continuación el proceso de desarrollo que se llevó usando procedimientos sugeridos por las normas. Se realizó 7 calicatas en el tramo de 6 km, donde se excavó 1.50 m de profundidad elaborando los siguientes ensayos:

Ensayos de laboratorio

Análisis mecánico por tamizado (ASTM D-422)

Tiene como objetivo determinar el material en dosificaciones en tamaños distintos que forman la muestra. El ensayo consiste en pasar la muestra por distintos tamices 3", 21/2", 2", 1 ½", 1", ¾", ½", 3/8", N°4, N°8, N°16, N°30, N°50, N°100, N°200, luego pesar lo retenido en los tamices y calcular el porcentaje con relación al peso seco.

$$\%Retenido = \frac{Peso\ material\ retenido\ en\ tamiz}{Peso\ total\ de\ la\ muestra} x100$$
 $\%Pasa = 1 - \%Retenido$

Ensayo de contenido de humedad (NTP 339.185)

Su objetivo es disponer la humedad evaporable de los conglomerados en estudio mediante le secado. Se logra llevando el espécimen al horno, luego ya seco se obtendrá la variación con respecto a su peso seco. El valor se expresa en porcentaje:

$$P\% = \frac{(W-D)}{D}x100$$

Donde:

✓ P% = contenido total

✓ W = masa de muestra húmeda

 \checkmark D = masa de muestra seca

Limites de Attemberg (ASTM D4318)

En la primera parte, se tamizó una cierta cantidad de muestra (suelo) por un tamiz número 40. Para determinar el **límite líquido**, se mezcló el suelo con agua hasta obtener una mezcla homogénea. A continuación, la muestra preparada se colocó en la cuchara Casagrande dividiéndola por una ranura. Finalmente, se realizan los golpes necesarios con la palanca hasta que la muestra se unió para luego colocarla en el horno. Para determinar el **límite plástico**, se preparó la cantidad de muestra en una prueba de flujo, se formó manualmente en pequeñas bolas, luego se colocó la bola en un portavaso, el cual se giró con la yema del dedo hasta formar columnas de 3 mm de diámetro. se mantuvo hasta que se rompió, así que lo pusimos en un recipiente para meterlo al horno. (Diaz, 2018)

$$LP(\%) = \frac{W}{Ws} x 100$$

Donde:

 \checkmark W = peso del agua

✓ Ws = peso seco de la muestra en el horno

Proctor modificado según norma (ASTM D1557)

El ensayo fue desarrollado por Ralph R. Proctor en 1933, este ensayo permite determinar la compactación máxima de un terreno respecto a su contenido de humedad.

El ensayo consiste en compactar el suelo en un cilindro (molde Proctor) con un peso y volumen conocido, este suelo se mezclará con diferentes porcentajes de agua con respecto al peso del suelo a compactar, esta secuencia se repite un número de veces, las suficientes para obtener los datos que permitan dibujar una curva de densidad seca versus contenido de

humedad. Se proporciona 3 métodos alternativos, en este caso se realizó

mediante el Método B.

METODO B

- Molde: 101,6 mm (4 pulg) de diámetro.

- Materiales: Se emplea el que pasa por el tamiz de 9,5 mm (3/8 pulg).

- Número de Capas: 5

- Golpes por capa: 25

- Usos: Cuando más del 20% del peso del material es retenido en el tamiz

4,75 mm (N°4) y 20% ó menos de peso del material es retenido en el tamiz

9,5 mm (3/8 pulg).

- Otros Usos: Si el método no es especificado, y los materiales entran en los

requerimientos de gradación pueden ser ensayados usando Método C.

California Bearing Ratio (ASTM D1883)

Describe el procedimiento de ensayo para la determinación de un índice de

resistencia de los suelos denominado valor de la relación de soporte. El

ensayo se realiza normalmente sobre un suelo preparado en el laboratorio

en condiciones determinadas de humedad y densidad. Este método de

ensayo se usa para evaluar la resistencia potencial de subrasante, subbase y

material de base (MTC, 2014).

La prueba CBR de suelos consiste básicamente en compactar un suelo con

el óptimo contenido de humedad, en unos moldes normalizados de peso y

volumen conocido, sumergirlos, medir la expansión producida y aplicar un

punzonamiento sobre la superficie del terreno mediante un pistón

normalizado (MTC, 2014).

$$CBR = \frac{carga\ unitaria\ del\ ensayo}{carga\ unitaria\ patron} \times 100(\%)$$

Agua

El agua que será utilizado para la elaboración del insumo requerido estará normada por todos los reglamentos vigentes:

Tabla 4 *Requisitos para el Agua*

Descripción	Valor
	Máximo
	Admisible
Cloruros	1000 p.p.m.
Sulfatos	600 p.p.m.
Alcalinidad	1000 p.p.m.
РН	5 a 8
Sólidos en Suspensión	5000 p.p.m.
Materia Orgánica	3 p.p.m.

Fuente: NTP 339.088

Validación del instrumento de recolección de datos

En esta investigación se validó los instrumentos de recolección de datos, mencionados anteriormente, gracias a la firma del ingeniero German Sagastegui Vasquez, especialista en la rama de Transportes, teniendo en cuenta la consideración fundamental de cumplir con lo que se requiere representar de manera efectiva.

2.8 Análisis de Datos

Se procedió a recoger de datos. Se utilizó el programa Microsoft Excel 2016 para crear gráficos estadísticos y tablas de frecuencias, para documentar como se resuelven los procedimientos y comprobar que los procesos se completan en las fechas previstas para ello. (Batanero, C. & Diaz, C. ,2011)

2.9 Aspectos éticos.

La ética estará necesariamente presente en nuestro trabajo de investigación y me adheriré a esto a través de formas normativa de cita y cita. El plagio, la apropiación de derechos de propiedad intelectual, textos científicos, métodos de investigación, gráficos e ideas, así como la fabricación y falsificación de información se clasifican como una forma de mala conducta científica en la ética de la publicación científica. (Castro, Y. 2021)

CAPITULO III: RESULTADOS

 Determinar las características del suelo de la trocha carrozable del km 0 al km 6 Alto Cuin – desvío Chinapampa

Con respecto al suelo se realizó 7 calicatas

Características del suelo PC - 01

Tabla 5Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-01

Tamices	Abert.	Peso reten.	% Reten.	% Reten.	% Que
ASTM	(mm)	(gr)	Parcial	Acum.	pasa
3"	76.200	0.0	0.0	0.0	100.0
2 ½"	63.500	0.0	0.0	0.0	100.0
2"	50.600	0.0	0.0	0.0	100.0
1 ½"	38.100	0.0	0.0	0.0	100.0
1"	25.400	0.0	0.0	0.0	100.0
3/4"	19.050	0.0	0.0	0.0	100.0
1/2**	12.700	0.0	0.0	0.0	100.0
3/8"	9.525	0.00	0.0	0.0	100.0
N° 4	4.760	4.23	0.7	0.7	96.2
N° 8	2.380	5.12	0.8	1.50	87.2
N° 10	2.000	3.84	0.6	2.10	
N° 16	1.190	8.62	1.4	3.50	65.7
N° 30	0.590	15.05	2.4	5.80	35.1
N° 40	0.420	20.12	3.2	9.00	
N° 50	0.300	21.44	3.4	12.40	14.3
N° 100	0.149	33.23	5.3	17.70	4.9
N° 200	0.074	12.45	2.0	19.60	1.6
Fondo	-	507.90	80.4	100.0	0.0
		867.9	100		

Nota: En la tabla se observa el análisis mecánico por tamizado donde contamos con los pesos retenidos en el tamiz N° 4 de 4.23 gr., tamiz N° 8 de 5.12 gr., tamiz N° 10 de 3.84 gr., tamiz N° 16 de 8.62 gr., tamiz N° 30 de 15.05 gr., tamiz N°

40 de 20.12 gr., tamiz N° 50 de 21.44 gr., tamiz N° 100 de 33.23 gr., tamiz N°

200 de 12.45 gr., fondo de 507.90 gr., haciendo una suma de 867.90 gr.

Tabla 6Limite de consistencia de la calicata PC-01

Límites de consistencia	Und	Límite Líquido			Límite Plástico		
N° de golpes		16	26	34	-	-	-
Peso de tara	gr	16.56	19.79	24.22	20.45	22.90	22.41
Peso tara + suelo	~**	333.99	38.66	44.02	25.32	26.42	26.32
húmedo	gr						
Peso tara + suelo seco	gr	28.61	33.16	38.54	24.48	25.83	25.64
Humedad %	%	44.65	41.14	38.25	20.84	20.14	21.05
Límites			41.05			20.68	
Índice Plástico				20	0.40		

Nota: En la tabla se observa los límites de consistencia en el caso del límite

líquido de 41.05, límite plástico de 20.68 y para el índice plástico de 20.40

Tabla 7Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-02

Tamices	Abert.	Peso reten.	% Reten.	% Reten.	% Que
ASTM	(mm)	(gr)	Parcial	Acum.	pasa
3"	76.200	0.0	0.0	0.0	100.0
2 ½"	63.500	0.0	0.0	0.0	100.0
2"	50.600	0.0	0.0	0.0	100.0
1 ½"	38.100	0.0	0.0	0.0	100.0
1"	25.400	0.0	0.0	0.0	100.0
3/4**	19.050	0.0	0.0	0.0	100.0
1/2**	12.700	0.0	0.0	0.0	100.0
3/8"	9.525	0.00	0.0	0.0	100.0
N° 4	4.760	4.35	0.8	0.8	99.24
N° 8	2.380	5.67	1.0	1.7	98.26
N° 10	2.000	3.24	0.6	2.3	97.69
N° 16	1.190	7.44	1.3	3.6	96.40
N° 30	0.590	12.67	2.2	5.8	94.19
N° 40	0.420	15.56	2.7	8.5	91.48

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

			Cochorco, Sánchez Carrión – La Libertad 20				
N° 50	0.300	14.37	2.5	11.0	88.98		
N° 100	0.149	34.23	6.0	17.0	83.02		
N° 200	0.074	16.69	2.9	19.9	80.11		
Fondo	-	460.01	80.1	100.0	0.0		
		574.23					

Nota: En la tabla se observa el análisis mecánico por tamizado donde contamos con los pesos retenidos en el tamiz N° 4 de 4.35 gr., tamiz N° 8 de 5.67 gr., tamiz N° 10 de 3.24 gr., tamiz N° 16 de 7.44 gr., tamiz N° 30 de 12.67 gr., tamiz N° 40 de 15.56 gr., tamiz N° 50 de 14.37 gr., tamiz N° 100 de 34.23 gr., tamiz N° 200 de 16.69 gr., fondo de 460.01 gr., haciendo una suma de 574.23 gr.

Tabla 8Límite de consistencia de la calicata PC-02

Límites de consistencia	Und	Límite Líquido			Límite Plástico		
N° de golpes		16	24	35	-	-	-
Peso de tara	gr	17.43	16.34	29.20	23.14	21.45	20.34
Peso tara + suelo húmedo	gr	40.23	36.35	41.34	28.24	27.43	28.40
Peso tara + suelo seco	gr	33.24	30.62	38.00	27.38	26.43	27.00
Humedad %	%	44.21	40.13	37.95	20.28	20.08	21.02
Límites			40.40			20.46	
Índice Plástico				19	9.90		

Nota: En la tabla se observa los límites de consistencia en el caso del límite

líquido de 40.40, límite plástico de 20.46 y para el índice plástico de 19.90

Tabla 9Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-03

Tamices	Abert.	Peso reten.	% Reten.	% Reten.	% Que
ASTM	(mm)	(gr)	Parcial	Acum.	pasa
3"	76.200	0.0	0.0	0.0	100.0
2 ½"	63.500	0.0	0.0	0.0	100.0
2"	50.600	0.0	0.0	0.0	100.0
1 ½"	38.100	0.0	0.0	0.0	100.0

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

			Cochorco	, Sánchez Ca	ırrión – La Libe	rtad 2
1"	25.400	0.0	0.0	0.0	100.0	
3/4"	19.050	0.0	0.0	0.0	100.0	
1/2"	12.700	0.0	0.0	0.0	100.0	
3/8"	9.525	0.00	0.0	0.0	100.0	
N° 4	4.760	0.00	0.0	0.0	100.00	
N° 8	2.380	0.00	0.0	0.0	100.00	
N° 10	2.000	109.40	10.9	10.9	89.06	
N° 16	1.190	175.30	17.5	28.5	71.53	
N° 30	0.590	140.60	14.1	42.5	57.47	
N° 40	0.420	100.20	10.0	52.6	47.45	
N° 50	0.300	110.10	11.0	63.6	36.44	
N° 100	0.149	119.80	12.0	75.5	24.46	
N° 200	0.074	77.70	7.8	83.3	16.69	
Fondo	-	166.90	16.7	100.0	0.0	
		1000.0				

Nota: En la tabla se observa el análisis mecánico por tamizado donde contamos con los pesos retenidos en el tamiz N° 10 de 109.40 gr., tamiz N° 16 de 175.30 gr., tamiz N° 30 de 140.60 gr., tamiz N° 40 de 100.20 gr., tamiz N° 50 de 110.10 gr., tamiz N° 100 de 119.80 gr., tamiz N° 200 de 77.70 gr., fondo de 166.90 gr., haciendo una suma de 1000.0 gr.

Tabla 10Límite de consistencia de la calicata PC-03

Límites de consistencia	Und	Límite Líquido			Límite Plástico		
N° de golpes		15	24	36	-	-	-
Peso de tara	gr	23.21	23.00	23.81	22.49	22.47	
Peso tara + suelo húmedo	gr	36.31	35.89	35.90	35.81	35.20	
Peso tara + suelo seco	gr	32.51	32.60	33.40	33.60	33.10	
Humedad %	%	40.86	34.27	26.08	19.89	19.76	
Límites			32.63			19.82	
Índice Plástico				12	2.81		

Nota: En la tabla se observa los límites de consistencia en el caso del límite

líquido de 32.63, límite plástico de 19.82 y para el índice plástico de 12.81

Tabla 11Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-04

Tamices	Abert.	Peso reten.	% Reten.	% Reten.	% Que
ASTM	(mm)	(gr)	Parcial	Acum.	pasa
3"	76.200	0.0	0.0	0.0	100.0
2 ½"	63.500	0.0	0.0	0.0	100.0
2"	50.600	0.0	0.0	0.0	100.0
1 ½"	38.100	0.0	0.0	0.0	100.0
1"	25.400	0.0	0.0	0.0	100.0
3/4**	19.050	0.0	0.0	0.0	100.0
1/2"	12.700	0.0	0.0	0.0	100.0
3/8"	9.525	0.00	0.0	0.0	100.0
N° 4	4.760	0.00	0.0	0.0	100.0
N° 8	2.380	0.00	0.0	0.0	100.0
N° 10	2.000	0.00	0.0	0.0	100.0
N° 16	1.190	176.20	17.6	17.6	82.38
N° 30	0.590	139.50	14.0	31.6	68.43
N° 40	0.420	96.20	9.6	41.2	58.81
N° 50	0.300	109.40	10.9	52.1	47.87
N° 100	0.149	121.40	12.1	64.3	35.73
N° 200	0.074	69.70	7.0	71.2	28.76
Fondo	-	287.60	28.8	100.0	0.0
		1000.0			

Nota: En la tabla se observa el análisis mecánico por tamizado donde contamos con los pesos retenidos en el tamiz N° 16 de 176.20 gr., tamiz N° 30 de 139.50 gr., tamiz N° 40 de 96.20 gr., tamiz N° 50 de 109.40 gr., tamiz N° 100 de 121.40 gr., tamiz N° 200 de 69.70 gr., fondo de 287.60 gr., haciendo una suma de 1000.0 gr.

Tabla 12

Límite de consistencia de la calicata PC-04

Límites de consistencia	Und	L	ímite Líqu	uido	Límite Plástico		tico
N° de golpes		15	24	36	-	-	-
Peso de tara	gr	23.15	23.20	23.18	23.25	23.80	
Peso tara + suelo		26.40	26.01	35.90	35.90	35.20	
húmedo	gr	36.40	36.01				

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa, Cochorco, Sánchez Carrión – La Libertad 2022

Peso tara + suelo seco	gr	32.60	32.80	33.30	33.81	33.30
Humedad %	%	40.21	33.44	25.69	19.79	20.00
Límites			32.04		19.90	
Índice Plástico				12	2.14	

Nota: En la tabla se observa los límites de consistencia en el caso del límite

líquido de 32.04, límite plástico de 19.90 y para el índice plástico de 12.14

Tabla 13Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-05

Tamices	Abert.	Peso reten.	% Reten.	% Reten.	% Que
ASTM	(mm)	(gr)	Parcial	Acum.	pasa
3"	76.200	0.0	0.0	0.0	100.0
2 ½"	63.500	0.0	0.0	0.0	100.0
2"	50.600	0.0	0.0	0.0	100.0
1 ½"	38.100	0.0	0.0	0.0	100.0
1"	25.400	0.0	0.0	0.0	100.0
3/4**	19.050	0.0	0.0	0.0	100.0
1/2**	12.700	0.0	0.0	0.0	100.0
3/8"	9.525	0.00	0.0	0.0	100.0
N° 4	4.760	4.15	0.7	0.7	99.30
N° 8	2.380	7.52	1.3	2.0	98.04
N° 10	2.000	2.16	0.4	2.3	97.68
N° 16	1.190	8.00	1.3	3.7	96.33
N° 30	0.590	12.62	2.1	5.8	94.21
N° 40	0.420	13.51	2.3	8.1	91.94
N° 50	0.300	15.10	2.5	10.6	89.41
N° 100	0.149	40.16	6.7	17.3	82.66
N° 200	0.074	13.21	2.2	19.6	80.44
Fondo	-	478.88	80.4	100.0	0.0
		595.30			

Nota: En la tabla se observa el análisis mecánico por tamizado donde contamos con los pesos retenidos en el tamiz N° 4 de 4.15 gr., tamiz N° 8 de 7.52 gr., tamiz N° 10 de 2.16 gr., tamiz N° 16 de 8.00 gr., tamiz N° 30 de 12.62 gr., tamiz N° 40 de 13.51 gr., tamiz N° 50 de 15.10 gr., tamiz N° 100 de 40.16 gr., tamiz N° 200 de 13.21 gr., fondo de 478.88 gr., haciendo una suma de 595.30 gr.

Tabla 14Límite de consistencia de la calicata PC-05

Límites de consistencia	Und	Límite Líquido			Límite Plástico		
N° de golpes		16	26	34	-	-	-
Peso de tara	gr	20.86	22.90	22.41	21.40	24.10	23.24
Peso tara + suelo húmedo	gr	35.15	40.24	39.43	28.54	29.67	28.65
Peso tara + suelo seco	gr	30.88	35.33	36.16	27.27	28.72	27.71
Humedad %	%	42.61	39.50	23.78	21.64	20.56	21.03
Límites			34.23		21.08		
Índice Plástico				13	3.16		

Nota: En la tabla se observa los límites de consistencia en el caso del límite

líquido de 34.23, límite plástico de 21.08 y para el índice plástico de 13.16

Tabla 15Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-06

Tamices	Abert.	Peso reten.	% Reten.	% Reten.	% Que
ASTM	(mm)	(gr)	Parcial	Acum.	pasa
3"	76.200	0.0	0.0	0.0	100.0
2 ½"	63.500	0.0	0.0	0.0	100.0
2"	50.600	0.0	0.0	0.0	100.0
1 ½"	38.100	0.0	0.0	0.0	100.0
1"	25.400	0.0	0.0	0.0	100.0
3/4**	19.050	0.0	0.0	0.0	100.0
1/2**	12.700	0.0	0.0	0.0	100.0
3/8"	9.525	0.00	0.0	0.0	100.0
N° 4	4.760	0.00	0.00	0.00	100.0
N° 8	2.380	12.68	1.3	1.3	98.73
N° 10	2.000	86.20	8.6	9.9	90.11
N° 16	1.190	96.30	9.6	19.5	80.48
N° 30	0.590	95.00	9.5	29.0	70.98
N° 40	0.420	86.90	8.7	37.7	62.29
N° 50	0.300	55.70	5.6	43.3	56.72
N° 100	0.149	160.30	16.0	59.3	40.69
N° 200	0.074	51.20	5.1	64.4	35.57
Fondo	-	355.72	35.6	100.0	0.0
		1000.0			

Nota: En la tabla se observa el análisis mecánico por tamizado donde contamos con los pesos retenidos en el tamiz N°8 de 12.68 gr., tamiz N°10 de 86.20 gr., tamiz N°16 de 96.30 gr., tamiz N°30 de 95.00 gr., tamiz N°40 de 86.90 gr., tamiz N°50 de 55.70 gr., tamiz N°100 de 160.30 gr., tamiz N°200 de 51.20 gr., fondo de 355.72 gr., haciendo una suma de 1000.0 gr.

Tabla 16 *Límite de consistencia de la calicata PC-06*

Límites de consistencia	Und	Límite Líquido			Límite Plástico		
N° de golpes		15	23	36	-	-	-
Peso de tara	gr	15.94	19.79	23.44	23.25	23.80	
Peso tara + suelo húmedo	gr	34.37	34.52	40.68	35.90	35.20	
Peso tara + suelo seco	gr	29.06	30.86	37.17	33.80	33.35	
Humedad %	%	40.47	33.06	25.56	19.91	19.37	
Límites			31.74		19.64		
Índice Plástico				12	2.10		

Nota: En la tabla se observa los límites de consistencia en el caso del límite

líquido de 31.74, límite plástico de 19.64 y para el índice plástico de 12.10

Tabla 17Análisis mecánico por tamizado (ASTM D-422) de la calicata PC-07

Tamices	Abert.	Peso reten.	% Reten.	% Reten.	% Que
ASTM	(mm)	(gr)	Parcial	Acum.	pasa
3"	76.200	0.0	0.0	0.0	100.0
2 ½"	63.500	0.0	0.0	0.0	100.0
2"	50.600	0.0	0.0	0.0	100.0
1 ½"	38.100	0.0	0.0	0.0	100.0
1"	25.400	0.0	0.0	0.0	100.0
3/4**	19.050	0.0	0.0	0.0	100.0
1/2"	12.700	0.0	0.0	0.0	100.0
3/8"	9.525	0.00	0.0	0.0	100.0
N° 4	4.760	0.00	0.00	0.00	100.0

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

			Cochorco	, Sánchez Ca	rrión – La Libertad 2022
N° 8	2.380	4.35	0.7	0.7	99.33
N° 10	2.000	7.32	1.1	1.8	98.21
N° 16	1.190	5.84	0.9	2.7	97.31
N° 30	0.590	9.72	1.5	4.2	95.81
N° 40	0.420	15.49	2.4	6.6	93.43
N° 50	0.300	32.75	5.0	11.6	88.39
N° 100	0.149	42.95	6.6	18.2	81.79
N° 200	0.074	20.54	3.2	21.4	78.63
Fondo	-	511.27	78.6	100.0	0.0
		650.23			

Nota: En la tabla se observa el análisis mecánico por tamizado donde contamos con los pesos retenidos en el tamiz N°8 de 4.35 gr., tamiz N°10 de 7.32 gr., tamiz N°16 de 5.84 gr., tamiz N°30 de 9.72 gr., tamiz N°40 de 15.49 gr., tamiz N°50 de 32.75 gr., tamiz N°100 de 42.95 gr., tamiz N°200 de 20.54 gr., fondo de 511.27 gr., haciendo una suma de 650.23 gr.

Tabla 18Límite de consistencia de la calicata PC-07

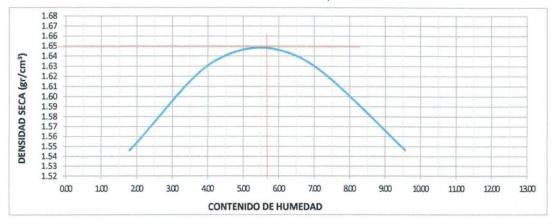
Límites de consistencia	Und	Límite Líquido			Límite Plástico		
N° de golpes		17	26	35	-	-	-
Peso de tara	gr	20.54	23.65	21.60	20.64	23.65	21.60
Peso tara + suelo húmedo	gr	34.60	37.45	43.26	26.43	27.46	29,33
Peso tara + suelo seco	gr	30.20	33.40	37.30	25.41	26.82	28.00
Humedad %	%	45.55	41.54	37.96	21.38	20.19	20.78
Límites			41.63		20.78		_
Índice Plástico				20	0.84		

Nota: En la tabla se observa los límites de consistencia en el caso del límite

líquido de 41.63, límite plástico de 20.78 y para el índice plástico de 20.84

Tabla 19Ensayo de Proctor modificado 1 suelo natural

coenore	o, sunen
Contenido de humedad	(%)


		` ,		
	1	2	3	4
g	120.40	114.13	118.99	118.00
g	118.90	111.00	114.00	111.00
g	1.50	3.13	4.99	7.00
g	35.70	36.90	38.60	37.80
g	83.20	74.10	75.40	73.20
%	1.80	4.22	6.62	9.56
Dei	nsidad Seca	(gr/cm³)		
	1	2	3	4
g	3400	3525	3565	3515
g	1895	1895	1895	1895
ø	1505	1630	1670	1620
0				
g	956.04	956.04	956.04	956.04
	g g g g %	g 120.40 g 118.90 g 1.50 g 35.70 g 83.20 % 1.80 Densidad Secand 1 g 3400 g 1895	g 120.40 114.13 g 118.90 111.00 g 1.50 3.13 g 35.70 36.90 g 83.20 74.10 % 1.80 4.22 Densidad Seca (gr/cm³) 1 2 g 3400 3525 g 1895 1895	g 120.40 114.13 118.99 g 118.90 111.00 114.00 g 1.50 3.13 4.99 g 35.70 36.90 38.60 g 83.20 74.10 75.40 % 1.80 4.22 6.62 Densidad Seca (gr/cm³) 1 2 3 g 3400 3525 3565 g 1895 1895 1895

Nota: En la tabla presenta los resultados de contenidos de humedad y las densidades secas de los 4 ensayos.

Figura 2

Curva de contenido de humedad vs densidad seca 1

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa, Cochorco, Sánchez Carrión – La Libertad 2022

Nota: En la figura se observa los resultados densidad seca máxima 1,65 gr/cm³ con un óptimo contenido de humedad 5.80%

Tabla 20

Ensayo CBR 1 a los 12, 25 y 56 golpes suelo natural

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	7850	7720	7540
Peso de Molde (gr)	4110	4122	4100
Peso de suelo húmedo (gr)	3740.00	3598	3440
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1096	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	1.77	1.70	1.63
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	66.2	66.8	66.5
Peso de suelo seco + cápsula (gr)	63.2	63.7	63.5
Peso de agua (gr)	3.00	3.1	3.00
Peso de cápsula (gr)	20.5	20	20
Peso de suelo seco (gr)	42.7	43.7	43.50
% de Humedad	7.03	7.14	6.90
Densidad de suelo seco (gr/cm³)	1.65	1.59	1.52

CBR en capas de 12, 25 y 56 golpes por apisonamiento.

Tabla 21Porcentajes obtenidos para golpes de 12, 25 y 56 CBR suelo natural

Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	3.48	10.00	3.48	1.52
12	0.20	3.79	15.00	2.52	1.52
25	0.10	4.21	10.00	4.21	1.59
25	0.20	4.36	15.00	2.91	1.59
56	0.10	5.12	10.00	5.12	1.65
56	0.20	5.31	15.00	3.54	1.65

Nota: En el presente cuadro obtenemos el CBR máximo a 5.12% a 56 golpes y

el CBR mínimo a 3.48% a 12 golpes, densidad máxima seca 1.65 gr/cm³

Tabla 22Ensayo de Proctor modificado 2 suelo natural

	Cont	enido de hu	medad (%)		
Ensayo N°		1	2	3	4
Peso tara + suelo húmedo	g	155.40	135.10	145.60	152.60
Peso tara + suelo seco	g	150.50	128.66	136.05	139.47
Peso del Agua	g	4.90	6.44	9.55	13.13
Peso Tara	g	22.54	23.65	25.51	19.84
Peso Suelo seco	g	127.96	105.01	110.54	119.63
Contenido de humedad	%	3.83	6.13	8.64	10.98
	De	nsidad Seca	(gr/cm ³)		
Ensayo N°		1	2	3	4
Peso molde + peso suelo húmedo	g	9730	10030	10120	9970
Peso Molde	g	6295	6295	6295	6295
Peso Suelo húmedo	g	3435	3735	3825	3675
Volumen Suelo húmedo	g	2122.07	2123.07	2124.07	2125.07
Densidad Húmeda	g/cm³	1.62	1.76	1.80	1.73

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa, Cochorco, Sánchez Carrión – La Libertad 2022

Densidad Seca

g/cm³

1.56


1.66

1.56

Nota: En la tabla presenta los resultados de contenidos de humedad y las densidades secas de los 4 ensayos.

Figura 3

Curva de contenido de humedad vs densidad seca 2

Nota: En la figura se observa los resultados densidad seca máxima 1,67 gr/cm³ con un óptimo contenido de humedad 7.40%

Tabla 23

Ensayo CBR 2 a los 12, 25 y 56 golpes suelo natural

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	7880	7730	7570
Peso de Molde (gr)	4140	4108	4130
Peso de suelo húmedo (gr)	3740.00	3622	3440
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	1.77	1.71	1.63
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	66.8	66.6	67.6
Peso de suelo seco + cápsula (gr)	63.6	63.2	64.2
Peso de agua (gr)	3.20	3.4	3.40
Peso de cápsula (gr)	20.5	20	20
Peso de suelo seco (gr)	43.1	43.2	44.20
% de Humedad	7.42	7.97	7.69
Densidad de suelo seco (gr/cm³)	1.65	1.59	1.51

CBR en capas de 12, 25 y 56 golpes por apisonamiento.

Tabla 24Porcentajes obtenidos para golpes de 12, 25 y 56 CBR suelo natural

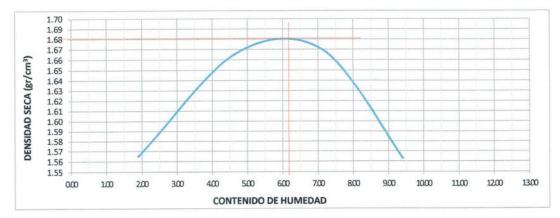
Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	3.54	10.00	3.54	1.51
12	0.20	3.79	15.00	2.52	1.51
25	0.10	5.12	10.00	5.12	1.59
25	0.20	5.43	15.00	3.62	1.59
56	0.10	5.98	10.00	5.98	1.65
56	0.20	6.22	15.00	4.15	1.65

Nota: En el presente cuadro obtenemos el CBR máximo a 5.98% a 56 golpes y

el CBR mínimo a 2.52% a 12 golpes, densidad máxima seca 1.65 gr/cm³

Tabla 25Ensayo de Proctor modificado 3 suelo natural

Contenido de humedad (%)							
Ensayo N°		1	2	3	4		
Peso tara + suelo húmedo	g	119.10	113.41	119.40	117.21		
Peso tara + suelo seco	g	117.504	110.00	114.00	110.39		
Peso del Agua	g	1.56	3.41	5.40	6.82		
Peso Tara	g	35.70	36.90	38.60	37.80		
Peso Suelo seco	g	81.84	73.10	75.40	72.59		
Contenido de humedad	%	1.91	4.66	7.16	9.40		
	De	nsidad Seca	(gr/cm³)				
Ensayo N°		1	2	3	4		
Peso molde + peso suelo húmedo	g	3420	3562	3605	3530		
Peso Molde	g	1895	1895	1895	1895		
Peso Suelo húmedo	g	1525	1667	1710	1635		
Volumen Suelo húmedo	g	956.04	956.04	956.04	956.04		
Densidad Húmeda	g/cm³	1.60	1.74	1.79	1.71		


Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa, Cochorco, Sánchez Carrión – La Libertad 2022

Densidad Seca g/cm³ 1.565 1.666 1.669 1.563

Nota: En la tabla presenta los resultados de contenidos de humedad y las densidades secas de los 4 ensayos.

Figura 4

Curva de contenido de humedad vs densidad seca 3

Nota: En la figura se observa los resultados densidad seca máxima 1,68 gr/cm³ con un óptimo contenido de humedad 6.10%

Tabla 26

Ensayo CBR 3 a los 12, 25 y 56 golpes suelo natural

Estado	Sin saturar	Saturado	Sin saturar	Saturado	Sin saturar	Saturado
Molde	Mo	lde 1	Molde 2		Molde 3	
N de golpes por capa	4	56		25		12
Sobrecarga	45	530	4	530	4:	530
Peso de suelo húmedo + molde (gr)	7940		7710		7500	
Peso de Molde (gr)	4135		4135		4135	
Peso de suelo húmedo (gr)	3805.00		3575		3365	
Volumen del molde (cm³)	3211		3211		3211	
Volumen del disco espaciador (cm³)	1095		1095		1095	
Volumen Útil (cm³)	2116		2116		2116	
Densidad Húmeda (gr(cm³)	1.80		1.69		1.59	
Cápsula N°	1		2		3	
Peso de suelo Húmedo + cápsula (gr)	67.1		66.9		67.8	
Peso de suelo seco + cápsula (gr)	63.2		63.0		63.80	
Peso de agua (gr)	3.90		3.9		4.01	
Peso de cápsula (gr)	20.5		20		20	
Peso de suelo seco (gr)	42.7		43.0		43.79	
% de Humedad	9.13		9.12		9.16	
Densidad de suelo seco (gr/cm³)	1.65		1.55		1.46	

CBR en capas de 12, 25 y 56 golpes por apisonamiento.

Tabla 27Porcentajes obtenidos para golpes de 12, 25 y 56 CBR suelo natural

Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	3.30	10.00	3.30	1.46
12	0.20	3.76	15.00	2.50	1.46
25	0.10	5.43	10.00	5.43	1.55
25	0.20	6.04	15.00	4.02	1.55
56	0.10	7.60	10.00	7.60	1.65
56	0.20	8.16	15.00	5.44	1.65

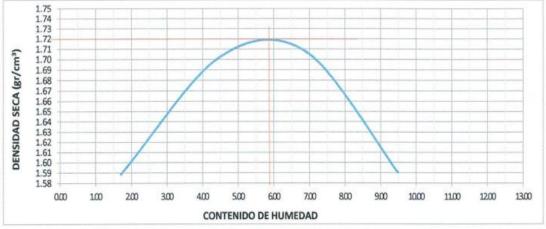
Nota: En el presente cuadro obtenemos el CBR máximo a 7.60% a 56 golpes y

el CBR mínimo a 2.50% a 12 golpes, densidad máxima seca 1.65 gr/cm³

Respecto al objetivo 2: Determinar el porcentaje óptimo de MgCl2 en la subrasante de la trocha carrozable en estudio.

Tabla 28Ensayo de Proctor modificado 1 suelo natural + 3% cloruro de magnesio

Contenido de humedad (%)							
Ensayo N°		1	2	3	4		
Peso tara + suelo húmedo	g	119.10	114.70	121.58	118.36		
Peso tara + suelo seco	g	117.70	111.37	116.21	111.39		
Peso del Agua	g	1.40	3.33	5.37	6.97		
Peso Tara	g	35.70	36.90	38.60	37.80		
Peso Suelo seco	g	82.00	74.47	77.61	73.59		
Contenido de humedad	%	1.71	4.47	6.92	9.47		
	De	ensidad Seca	(gr/cm ³)				
Ensayo N°		1	2	3	4		
Peso molde + peso suelo húmedo	g	3440	3595	3640	3560		
Peso Molde	g	1895	1895	1895	1895		


Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

			Cochorco, Sai	ichez Carrion -	- La Libertad 20	JZ_{2}
Peso Suelo húme	do g	1545	1700	1745	1665	
Volumen Suchúmedo	elo g	956.04	956.04	956.04	956.04	
Densidad Húmed	a g/cm³	1.62	1.78	1.83	1.74	
Densidad Seca	g/cm³	1.589	1.702	1.707	1.591	

Nota: En la tabla presenta los resultados hallados de contenidos de humedad y las densidades secas para la realización del gráfico de curva suelo natural + 3% cloruro de magnesio

Figura 5

Curva de contenido de humedad vs densidad seca 1 suelo natural + 3% de cloruro de magnesio

Nota: En la figura se observa los resultados densidad seca máxima 1,72 gr/cm³ con un óptimo contenido de humedad 5.90%

Tabla 29

Ensayo CBR 1 a los 12, 25 y 56 golpes suelo natural + 3% cloruro de magnesio

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	8261	8052	7796
Peso de Molde (gr)	4135	4135	4135
Peso de suelo húmedo (gr)	4126.00	3917	3661
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	1.95	1.85	1.73
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	66.4	70.2	67.73
Peso de suelo seco + cápsula (gr)	63.9	67.4	65.17
Peso de agua (gr)	2.45	2.7	2.56
Peso de cápsula (gr)	27.6	27.45	28.1
Peso de suelo seco (gr)	36.3	40.0	37.07
% de Humedad	6.75	6.83	6.91
Densidad de suelo seco (gr/cm³)	1.83	1.73	1.62

CBR 1 en capas de 12, 25 y 56 golpes por apisonamiento para suelo natural +

3% cloruro de magnesio

Tabla 30Porcentajes obtenidos para golpes de 12, 25 y 56 CBR 1 suelo natural + 3% cloruro de magnesio

Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	13.33	10.00	13.33	1.62
12	0.20	13.63	15.00	9.09	1.62
25	0.10	14.85	10.00	14.85	1.73
25	0.20	15.15	15.00	10.10	1.73
56	0.10	16.37	10.00	16.37	1.83
56	0.20	16.67	15.00	11.11	1.83

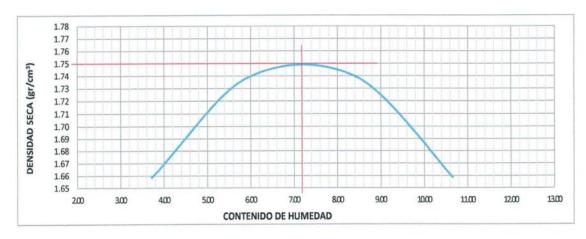
Nota: En el presente cuadro obtenemos el CBR máximo a 16.37% a 56 golpes

y el CBR mínimo a 9.09% a 12 golpes, densidad máxima seca 1.83 gr/cm³

Tabla 31

Ensayo de Proctor modificado 2 suelo natural + 3% cloruro de magnesio

Contenido de humedad (%)							
Ensayo N°		1	2	3	4		
Peso tara + suelo húmedo	g	115.40	117.14	112.60	116.10		
Peso tara + suelo seco	g	112.70	112.90	107.10	108.80		
Peso del Agua	g	2.70	4.24	5.50	7.30		
Peso Tara	g	40.20	41.50	41.80	40.30		
Peso Suelo seco	g	72.50	71.40	65.30	68.50		
Contenido de humedad	%	3.72	5.94	8.42	10.66		
	De	ensidad Seca	(gr/cm ³)				
Ensayo N°		1	2	3	4		
Peso molde + peso suelo húmedo	g	3540	3656	3698	3650		
Peso Molde	g	1895	1895	1895	1895		
Peso Suelo húmedo	g	1645	1761	1803	1755		


Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa, Cochorco, Sánchez Carrión – La Libertad 2022

Volumen	Suelo	~	956.04	956.04	956.04	956.04
húmedo		g	930.04	930.04	930.04	930.04
Densidad Hún	neda	g/cm³	1.72	1.84	1.89	1.84
Densidad Seca	a	g/cm³	1.659	1.739	1.739	1.659

Nota: En la tabla presenta los resultados hallados de contenidos de humedad y las densidades secas para la realización del gráfico de curva suelo natural + 3% cloruro de magnesio

Figura 6

Curva de contenido de humedad vs densidad seca 2 suelo natural + 3% de cloruro de magnesio

Nota: En la figura se observa los resultados densidad seca máxima 1,75 gr/cm³ con un óptimo contenido de humedad 7.20%

Tabla 32

Ensayo CBR 2 a los 12, 25 y 56 golpes suelo natural + 3% cloruro de magnesio

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	8292	8090	7880
Peso de Molde (gr)	4135	4135	4135
Peso de suelo húmedo (gr)	4157	3955	3745
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	1.96	1.87	1.77
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	66.0	66.7	66.9
Peso de suelo seco + cápsula (gr)	63.5	64.1	64.4
Peso de agua (gr)	2.54	2.6	2.48
Peso de cápsula (gr)	27.6	27.45	28.1
Peso de suelo seco (gr)	35.9	36.7	36.27
% de Humedad	7.08	7.09	6.84
Densidad de suelo seco (gr/cm³)	1.83	1.75	1.66

CBR 2 en capas de 12, 25 y 56 golpes por apisonamiento para suelo natural + 3% cloruro de magnesio

Tabla 33Porcentajes obtenidos para golpes de 12, 25 y 56 CBR 2 suelo natural + 3% de cloruro de magnesio

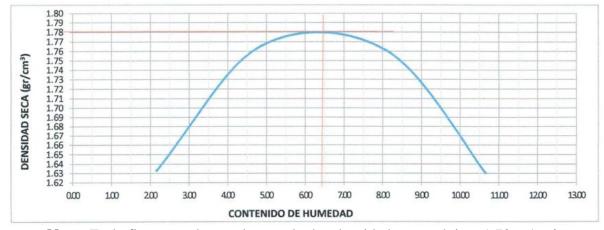
Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	13.94	10.00	13.94	1.66
12	0.20	14.24	15.00	9.49	1.66
25	0.10	16.06	10.00	16.06	1.75
25	0.20	16.37	15.00	10.91	1.75
56	0.10	17.92	10.00	17.92	1.83
56	0.20	18.19	15.00	12.13	1.83

Nota: En el presente cuadro obtenemos el CBR máximo a 17.92% a 56 golpes

y el CBR mínimo a 9.49% a 12 golpes, densidad máxima seca 1.83 gr/cm³

Tabla 34Ensayo de Proctor modificado 3 suelo natural + 3% cloruro de magnesio

Contenido de humedad (%)						
Ensayo N°		1	2	3	4	
Peso tara + suelo húmedo	g	120.70	114.60	120.10	118.80	
Peso tara + suelo seco	g	118.90	111.00	114.00	111.00	
Peso del Agua	g	1.80	3.60	6.10	7.80	
Peso Tara	g	35.70	36.90	38.60	37.80	
Peso Suelo seco	g	83.20	74.10	75.40	73.20	
Contenido de humedad	%	2.16	4.86	8.09	10.66	
Densidad Seca (gr/cm³)						
Ensayo N°		1	2	3	4	



Peso molde + peso suelo húmedo	g	3490	3665	3715	3620
Peso Molde	g	1895	1895	1895	1895
Peso Suelo húmedo	g	1595	1770	1820	1725
Volumen Suelo húmedo	g	956.04	956.04	956.04	956.04
Densidad Húmeda	g/cm³	1.67	1.85	1.90	1.80
Densidad Seca	g/cm³	1.633	1.766	1.761	1.631

Nota: En la tabla presenta los resultados hallados de contenidos de humedad y las densidades secas para la realización del gráfico de curva suelo natural + 3% cloruro de magnesio

Figura 7

Curva de contenido de humedad vs densidad seca 3 suelo natural + 3% de cloruro de magnesio

Nota: En la figura se observa los resultados densidad seca máxima 1,78 gr/cm³ con un óptimo contenido de humedad 6.40%

Tabla 35

Ensayo CBR 3 a los 12, 25 y 56 golpes suelo natural + 3% cloruro de magnesio

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	8292	8056	7799
Peso de Molde (gr)	4135	4135	4135
Peso de suelo húmedo (gr)	4127	3921	3664
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	1.95	1.85	1.73
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	69.0	66.6	66.7
Peso de suelo seco + cápsula (gr)	66.4	64.1	64.3
Peso de agua (gr)	2.64	2.5	2.40
Peso de cápsula (gr)	27.6	27.45	28.1
Peso de suelo seco (gr)	38.8	36.7	36.20
% de Humedad	6.80	6.82	6.63
Densidad de suelo seco (gr/cm³)	1.83	1.73	1.62

CBR 3 en capas de 12, 25 y 56 golpes por apisonamiento para suelo natural + 3% cloruro de magnesio

Tabla 36

Porcentajes obtenidos para golpes de 12, 25 y 56 CBR suelo natural + 3 % de cloruro de magnesio

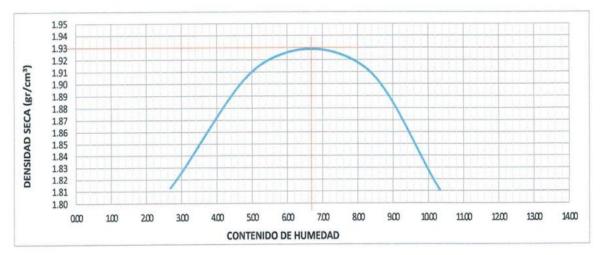
Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	12.42	10.00	12.42	1.62
12	0.20	12.72	15.00	8.48	1.62
25	0.10	15.15	10.00	15.15	1.73
25	0.20	15.46	15.00	10.30	1.73
56	0.10	17.58	10.00	17.58	1.83
56	0.20	17.89	15.00	11.92	1.83

Nota: En el presente cuadro obtenemos el CBR máximo a 17.58% a 56 golpes

y el CBR mínimo a 8.48% a 12 golpes, densidad máxima seca 1.83 gr/cm³

Tabla 37Ensayo de Proctor modificado 1 suelo natural + 5% cloruro de magnesio

Contenido de humedad (%)						
Ensayo N°		1	2	3	4	
Peso tara + suelo húmedo	g	122.50	124.20	123.00	122.40	
Peso tara + suelo seco	g	120.30	120.00	116.70	114.70	
Peso del Agua	g	2.20	4.20	6.30	7.70	
Peso Tara	g	38.50	40.80	39.60	40.10	
Peso Suelo seco	g	81.80	79.20	77.10	74.60	
Contenido de humedad	%	2.69	5.30	8.17	10.32	
	De	ensidad Seca	(gr/cm³)			
Ensayo N°		1	2	3	4	
Peso molde + peso suelo húmedo	g	3680	3830	3880	3810	
Peso Molde	g	1900	1900	1900	1900	


Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

				Cocnorco, San	cnez Carrion –	La Libertad 20	12
Peso Suelo húm	nedo	g	1780	1930	1980	1910	
Volumen S húmedo	uelo	g	956.04	956.04	956.04	956.04	
Densidad Húme	eda	g/cm³	1.86	2.02	2.07	2.00	
Densidad Seca		g/cm³	1.813	1.917	1.915	1.811	

Nota: En la tabla presenta los resultados hallados de contenidos de humedad y las densidades secas para la realización del gráfico de curva suelo natural + 5% cloruro de magnesio

Figura 8

Curva de contenido de humedad vs densidad seca 1 suelo natural + 5% de cloruro de magnesio

Nota: En la figura se observa los resultados densidad seca máxima 1,93 gr/cm³ con un óptimo contenido de humedad 6.70%

Tabla 38

Ensayo CBR 1 a los 12, 25 y 56 golpes suelo natural + 5% cloruro de magnesio

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	8520	8370	8200
Peso de Molde (gr)	4135	4135	4135
Peso de suelo húmedo (gr)	4385	4235	4065
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	2.07	2.00	1.92
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	69.0	68.0	68.3
Peso de suelo seco + cápsula (gr)	66.5	65.1	65.70
Peso de agua (gr)	2.50	2.9	2.60
Peso de cápsula (gr)	27.6	27.45	28.1
Peso de suelo seco (gr)	38.9	37.7	37.60
% de Humedad	6.43	7.70	6.91
Densidad de suelo seco (gr/cm³)	1.95	1.86	1.80

CBR 1 en capas de 12, 25 y 56 golpes por apisonamiento para suelo natural + 5% cloruro de magnesio

Chávez Polo, Darwin Antonio – Quispe Estela, Kerly Jimena

Tabla 39

Porcentajes obtenidos para golpes de 12, 25 y 56 CBR 1 suelo natural + 5% cloruro de magnesio

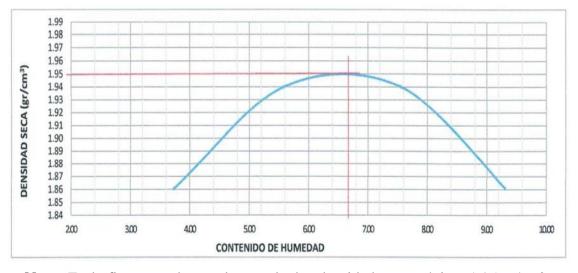
Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	11.81	10.00	11.81	1.80
12	0.20	12.11	15.00	8.08	1.80
25	0.10	16.06	10.00	16.06	1.86
25	0.20	16.37	15.00	10.91	1.86
56	0.10	23.40	10.00	23.40	1.95
56	0.20	23.66	15.00	15.77	1.95

Nota: En el presente cuadro obtenemos el CBR máximo a 23.40% a 56 golpes

y el CBR mínimo a 8.08% a 12 golpes, densidad máxima seca 1.95 gr/cm³

Tabla 40Ensayo de Proctor modificado 2 suelo natural + 5% cloruro de magnesio

Contenido de humedad (%)						
Ensayo N°		1	2	3	4	
Peso tara + suelo húmedo	g	121.90	120.80	130.40	122.40	
Peso tara + suelo seco	g	118.90	116.30	123.40	115.30	
Peso del Agua	g	3.00	4.50	7.00	7.00	
Peso Tara	g	38.50	35.60	30.70	40.10	
Peso Suelo seco	g	80.40	80.70	92.70	75.20	
Contenido de humedad	%	3.73	5.58	7.55	9.31	
	De	ensidad Seca	(gr/cm ³)			
Ensayo N°		1	2	3	4	
Peso molde + peso suelo húmedo	g	3740	3853	3890	3840	
Peso Molde	g	1895	1895	1895	1895	


Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

			Cochorco, Sai	ichez Carrion –	- La Libertad 20	JZ_{2}
Peso Suelo húmedo	g	1845	1958	1995	1945	
Volumen Suelo húmedo	g	956.04	956.04	956.04	956.04	
Densidad Húmeda	g/cm³	1.93	2.05	2.09	2.03	
Densidad Seca	g/cm³	1.860	1.940	1.940	1.861	

Nota: En la tabla presenta los resultados hallados de contenidos de humedad y las densidades secas para la realización del gráfico de curva suelo natural + 5% cloruro de magnesio

Figura 9

Curva de contenido de humedad vs densidad seca 2 suelo natural + 5% de cloruro de magnesio

Nota: En la figura se observa los resultados densidad seca máxima 1,95 gr/cm³ con un óptimo contenido de humedad 6.70%

Tabla 41

Ensayo CBR 2 a los 12, 25 y 56 golpes suelo natural + 5% cloruro de magnesio

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	8520	8340	8160
Peso de Molde (gr)	4135	4135	4135
Peso de suelo húmedo (gr)	4385	4205	4025
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	2.07	1.99	1.90
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	68.7	67.7	67.9
Peso de suelo seco + cápsula (gr)	66.1	64.7	65.30
Peso de agua (gr)	2.57	3.0	2.60
Peso de cápsula (gr)	27.6	27.45	28.1
Peso de suelo seco (gr)	38.5	37.3	37.20
% de Humedad	6.67	8.11	6.99
Densidad de suelo seco (gr/cm³)	1.94	1.84	1.78

CBR 2 en capas de 12, 25 y 56 golpes por apisonamiento para suelo natural + 5% cloruro de magnesio

Chávez Polo, Darwin Antonio – Quispe Estela, Kerly Jimena

Tabla 42

cloruro de magnesio

Porcentajes obtenidos para golpes de 12, 25 y 56 CBR 2 suelo natural + 5%

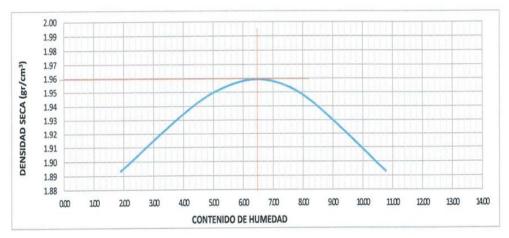
Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	13.02	10.00	13.02	1.78
12	0.20	13.33	15.00	8.89	1.78
25	0.10	17.28	10.00	17.28	1.84
25	0.20	17.58	15.00	11.72	1.84
56	0.10	23.66	10.00	23.66	1.94
56	0.20	23.96	15.00	15.98	1.94

Nota: En el presente cuadro obtenemos el CBR máximo a 23.66% a 56 golpes

y el CBR mínimo a 8.89% a 12 golpes, densidad máxima seca 1.94 gr/cm³

Tabla 43Ensayo de Proctor modificado 3 suelo natural + 5% cloruro de magnesio

Contenido de humedad (%)									
Ensayo N°		1	2	3	4				
Peso tara + suelo húmedo	g	126.85	127.00	124.80	126.00				
Peso tara + suelo seco	g	125.20	122.85	118.80	117.65				
Peso del Agua	g	1.65	4.15	6.00	8.35				
Peso Tara	g	38.50	40.80	39.60	40.10				
Peso Suelo seco	g	86.70	82.05	79.20	77.20				
Contenido de humedad	%	1.90	5.06	7.58	10.77				
	D	ensidad Seca	(gr/cm³)						
Ensayo N°		1	2	3	4				
Peso molde + peso suelo húmedo	g	3745	3859	3909	3905				
Peso Molde	g	1900	1900	1900	1900				


Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

			Cochorco, Sanchez Carrion – La Libertad 202			
Peso Suelo húmedo	o g	1845	1959	2009	2005	
Volumen Suel húmedo	o g	956.04	956.04	956.04	956.04	
Densidad Húmeda	g/cm³	1.93	2.05	2.10	2.10	
Densidad Seca	g/cm³	1.894	1.950	1.953	1.893	

Nota: En la tabla presenta los resultados hallados de contenidos de humedad y las densidades secas para la realización del gráfico de curva suelo natural + 5% cloruro de magnesio

Figura 10

Curva de contenido de humedad vs densidad seca 3 suelo natural + 5% de cloruro de magnesio

Nota: En la figura se observa los resultados densidad seca máxima 1,96 gr/cm³ con un óptimo contenido de humedad 6.48%

Tabla 44

Ensayo CBR 3 a los 12, 25 y 56 golpes suelo natural + 5% cloruro de magnesio

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	8740	8510	8260
Peso de Molde (gr)	4135	4135	4135
Peso de suelo húmedo (gr)	4605	4375	4125
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	2.18	2.07	1.95
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	68.6	67.3	67.6
Peso de suelo seco + cápsula (gr)	66.0	64.6	65.10
Peso de agua (gr)	2.57	2.7	2.50
Peso de cápsula (gr)	27.6	27.45	28.1
Peso de suelo seco (gr)	38.4	37.2	37.00
% de Humedad	6.69	7.27	6.76
Densidad de suelo seco (gr/cm³)	2.04	1.93	1.83

Nota: En la tabla presenta los resultados hallados para la realización del ensayo

CBR 3 en capas de 12, 25 y 56 golpes por apisonamiento para suelo natural + 5% cloruro de magnesio

Tabla 45

Porcentajes obtenidos para golpes de 12, 25 y 56 CBR 3 suelo natural + 5% cloruro de magnesio

Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	16.06	10.00	16.06	1.83
12	0.20	16.37	15.00	10.91	1.83
25	0.10	20.62	10.00	20.62	1.93
25	0.20	20.92	15.00	13.95	1.93
56	0.10	26.09	10.00	26.09	2.04
56	0.20	26.39	15.00	17.60	2.04

Nota: En el presente cuadro obtenemos el CBR máximo a 26.09% a 56 golpes

y el CBR mínimo a 10.91% a 12 golpes, densidad máxima seca 2.04 gr/cm³

Tabla 46Ensayo de Proctor modificado 1 suelo natural + 10% cloruro de magnesio

	Contenido de humedad (%)								
Ensayo N°		1	2	3	4				
Peso tara + suelo húmedo	g	121.90	120.80	130.40	122.30				
Peso tara + suelo seco	g	118.90	116.30	123.40	115.30				
Peso del Agua	g	3.00	4.50	7.00	7.00				
Peso Tara	g	38.50	35.60	30.70	40.10				
Peso Suelo seco	g	80.40	80.70	92.70	75.20				
Contenido de humedad	%	3.73	5.58	7.55	9.31				
	De	ensidad Seca	(gr/cm³)						
Ensayo N°		1	2	3	4				
Peso molde + peso suelo húmedo	g	3910	4043	4083	4020				
Peso Molde	g	1895	1895	1895	1895				

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

			Cochorco, Sanchez Carrion – La Libert			
Peso Suelo húmedo	g	2015	2148	2188	2125	
Volumen Suelo húmedo	g	956.04	956.04	956.04	956.04	
Densidad Húmeda	g/cm³	2.11	2.25	2.29	2.22	
Densidad Seca	g/cm³	2.032	2.128	2.128	2.033	

Nota: En la tabla presenta los resultados hallados de contenidos de humedad y las densidades secas para la realización del gráfico de curva suelo natural + 10% cloruro de magnesio

Figura 11

Curva de contenido de humedad vs densidad seca 1 suelo natural + 10% de cloruro de magnesio

Nota: En la figura se observa los resultados densidad seca máxima 2.14 gr/cm³ con un óptimo contenido de humedad 6.70%

Tabla 47

Ensayo CBR 1 a los 12, 25 y 56 golpes suelo natural + 10% cloruro de magnesio

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	8840	8670	8400
Peso de Molde (gr)	4135	4135	4135
Peso de suelo húmedo (gr)	4705	4535	4265
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	2.22	2.14	2.02
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	69.3	68.2	68.5
Peso de suelo seco + cápsula (gr)	66.5	65.1	65.70
Peso de agua (gr)	2.85	3.1	2.80
Peso de cápsula (gr)	27.6	27.45	28.1
Peso de suelo seco (gr)	38.9	37.7	37.60
% de Humedad	7.34	8.23	7.45
Densidad de suelo seco (gr/cm³)	2.07	1.98	1.88

Nota: En la tabla presenta los resultados hallados para la realización del ensayo

CBR 1 en capas de 12, 25 y 56 golpes por apisonamiento para suelo natural +

10% cloruro de magnesio

Tabla 48

Porcentajes obtenidos para golpes de 12, 25 y 56 CBR 1 suelo natural + 10% cloruro de magnesio

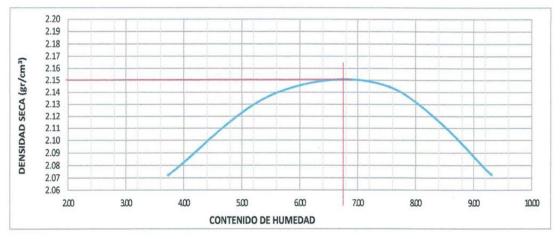
Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	23.05	10.00	23.05	1.88
12	0.20	23.36	15.00	15.57	1.88
25	0.10	30.34	10.00	30.34	1.98
25	0.20	30.65	15.00	20.43	1.98
56	0.10	36.12	10.00	36.12	2.07
56	0.20	36.42	15.00	24.28	2.07

Nota: En el presente cuadro obtenemos el CBR máximo a 36.12% a 56 golpes

y el CBR mínimo a 15.57% a 12 golpes, densidad máxima seca 2.07 gr/cm³

Tabla 49Ensayo de Proctor modificado 2 suelo natural + 10% cloruro de magnesio

	Cont	tenido de hu	medad (%)		
Ensayo N°		1	2	3	4
Peso tara + suelo húmedo	g	121.90	120.80	130.40	122.30
Peso tara + suelo seco	g	118.90	116.30	123.40	115.30
Peso del Agua	g	3.00	4.50	7.00	7.00
Peso Tara	g	38.50	35.60	30.70	40.10
Peso Suelo seco	g	80.40	80.70	92.70	75.20
Contenido de humedad	%	3.73	5.58	7.55	9.31
	De	ensidad Seca	(gr/cm ³)		
Ensayo N°		1	2	3	4
Peso molde + peso suelo húmedo	g	3950	4054	4100	4061
Peso Molde	g	1895	1895	1895	1895


Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

			Cochorco, Sai	ichez Carrion -	- La Libertau 20	044	
Peso Suelo h	úmedo	g	2055	2159	2205	2166	
Volumen húmedo	Suelo	g	956.04	956.04	956.04	956.04	
Densidad Hú	imeda	g/cm³	2.15	2.26	2.31	2.27	
Densidad Sec	ca	g/cm³	2.072	2.139	2.144	2.073	

Nota: En la tabla presenta los resultados hallados de contenidos de humedad y las densidades secas para la realización del gráfico de curva suelo natural + 10% cloruro de magnesio

Figura 12

Curva de contenido de humedad vs densidad seca 2 suelo natural + 10% de cloruro de magnesio

Nota: En la figura se observa los resultados densidad seca máxima 2.15 gr/cm³ con un óptimo contenido de humedad 6.80%

Tabla 50

Ensayo CBR 2 a los 12, 25 y 56 golpes suelo natural + 10% cloruro de magnesio

Estado	Sin Saturado saturar	Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	8740	8510	8260
Peso de Molde (gr)	4135	4135	4135
Peso de suelo húmedo (gr)	4605	4375	4125
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	2.18	2.07	1.95
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	68.6	67.3	67.6
Peso de suelo seco + cápsula (gr)	66.0	64.6	65.10
Peso de agua (gr)	2.57	2.7	2.50
Peso de cápsula (gr)	27.6	27.45	28.1
Peso de suelo seco (gr)	38.4	37.2	37.00
% de Humedad	6.69	7.27	6.76
Densidad de suelo seco (gr/cm³)	2.04	1.93	1.83

Nota: En la tabla presenta los resultados hallados para la realización del ensayo

CBR 2 en capas de 12, 25 y 56 golpes por apisonamiento para suelo natural +

10% cloruro de magnesio

Tabla 51

Porcentajes obtenidos para golpes de 12, 25 y 56 CBR 2 suelo natural + 10%

cloruro de magnesio

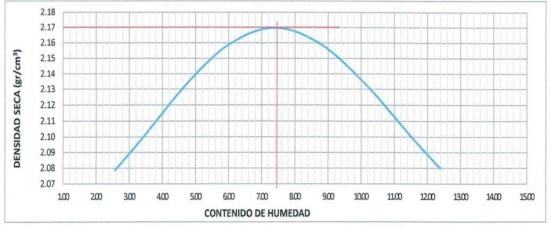
Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	24.27	10.00	24.27	1.87
12	0.20	24.57	15.00	16.38	1.87
25	0.10	30.95	10.00	30.95	1.97
25	0.20	31.26	15.00	20.84	1.97
56	0.10	37.33	10.00	37.33	2.07
56	0.20	37.64	15.00	25.09	2.07

Nota: En el presente cuadro obtenemos el CBR máximo a 37.33% a 56 golpes

y el CBR mínimo a 16.38% a 12 golpes, densidad máxima seca 2.07 gr/cm³

Tabla 52Ensayo de Proctor modificado 3 suelo natural + 10% cloruro de magnesio

Contenido de humedad (%)								
Ensayo N°		1	2	3	4			
Peso tara + suelo húmedo	g	121.90	120.80	130.40	122.30			
Peso tara + suelo seco	g	118.90	116.30	123.40	115.30			
Peso del Agua	g	3.00	4.50	7.00	7.00			
Peso Tara	g	38.50	35.60	30.70	40.10			
Peso Suelo seco	g	80.40	80.70	92.70	75.20			
Contenido de humedad	%	3.73	5.58	7.55	9.31			
	De	ensidad Seca	(gr/cm³)					
Ensayo N°		1	2	3	4			
Peso molde + peso suelo húmedo	g	3939	4089	4145	4135			
Peso Molde	g	1900	1900	1900	1900			


Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

NUNIE			Cochorco, Sár	nchez Carrión –	- La Libertad 20	22
Peso Suelo húmedo	g	2039	2189	2245	2235	
Volumen Suelo húmedo	g	956.04	956.04	956.04	956.04	
Densidad Húmeda	g/cm³	2.13	2.29	2.35	2.34	
Densidad Seca	g/cm³	2.079	2.159	2.160	2.080	

Nota: En la tabla presenta los resultados hallados de contenidos de humedad y las densidades secas para la realización del gráfico de curva suelo natural + 10% cloruro de magnesio

Figura 13

Curva de contenido de humedad vs densidad seca 3 suelo natural + 10% de cloruro de magnesio

Nota: En la figura se observa los resultados densidad seca máxima 2.17 gr/cm³ con un óptimo contenido de humedad 7.40%

Tabla 53

Ensayo CBR 3 a los 12, 25 y 56 golpes suelo natural + 10% cloruro de magnesio

Estado	Sin Saturado saturar	o Sin Saturado saturar	Sin Saturado saturar
Molde	Molde 1	Molde 2	Molde 3
N de golpes por capa	56	25	12
Sobrecarga	4530	4530	4530
Peso de suelo húmedo + molde (gr)	8850	8640	8400
Peso de Molde (gr)	4135	4135	4135
Peso de suelo húmedo (gr)	4715	4505	4265
Volumen del molde (cm³)	3211	3211	3211
Volumen del disco espaciador (cm³)	1095	1095	1095
Volumen Útil (cm³)	2116	2116	2116
Densidad Húmeda (gr(cm³)	2.23	2.13	2.02
Cápsula N°	1	2	3
Peso de suelo Húmedo + cápsula (gr)	68.8	67.7	67.6
Peso de suelo seco + cápsula (gr)	65.9	64.6	64.80
Peso de agua (gr)	2.90	3.1	2.80
Peso de cápsula (gr)	27.6	27.45	28.1
Peso de suelo seco (gr)	38.3	37.2	36.70
% de Humedad	7.57	8.34	7.63
Densidad de suelo seco (gr/cm³)	2.07	1.97	1.87

Nota: En la tabla presenta los resultados hallados para la realización del ensayo

CBR 3 en capas de 12, 25 y 56 golpes por apisonamiento para suelo natural +

10% cloruro de magnesio

Tabla 54

Porcentajes obtenidos para golpes de 12, 25 y 56 CBR 3 suelo natural + 10% cloruro de magnesio

Golpes	Penetración (Pulg)	Esfuerzo (Mpa)	Carga Unitaria (MPa)	CBR (%)	Densidad Seca (gr/cm³)
12	0.10	24.27	10.00	24.27	1.83
12	0.20	24.57	15.00	16.38	1.83
25	0.10	30.95	10.00	32.47	1.93
25	0.20	31.26	15.00	21.85	1.93
56	0.10	37.33	10.00	38.55	2.04
56	0.20	37.64	15.00	25.90	2.04

Nota: En el presente cuadro obtenemos el CBR máximo a 38.55% a 56 golpes y el CBR mínimo a 16.38% a 12 golpes, densidad máxima seca 2.04 gr/cm³

3) Comparar las propiedades mecánicas de la subrasante inicial y la subrasante con el MgCl2 en estudio

Tabla 55

Comparación CBR del suelo natural y con porcentajes de adición de 3%, 5% y 10% de cloruro de magnesio

Porcentaje de cloruro de magnesio (%)	СВ	R (%)
	1	5.12
0%	2	5.98
	3	7.60
	1	16.37
3%	2	17.92
	3	17.58
5%	1	23.40

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa, Cochorco, Sánchez Carrión – La Libertad 2022

	2	23.66
	3	26.09
	1	36.12
10%	2	37.33
	3	38.55

Nota: En la tabla se puede observar el CBR natural más crítico de 5.12%, con suelo natural + 3% de cloruro de magnesio con 17.92% de CBR, con suelo natural + 5% de cloruro de magnesio con 26.09% de CBR, con suelo natural + 10% de cloruro de magnesio con 38.55% de CBR

Tabla 56

Comparación Proctor modificado del suelo natural y con porcentajes de adición de 3%, 5% y 10% de cloruro de magnesio

Porcentaje de cloruro de magnesio (%)	Proctor modificado	Contenido de humedad óptimo (%)	Densidad seca Máxima (gr/cm³)
	1	5.80	1.65
0	2	7.40	1.67
	3	6.10	1.68
	1	5.90	1.72
3	2	7.20	1.75
	3	6.40	1.78
	1	6.70	1.93
5	2	6.70	1.95
,	3	6.48	1.96
	1	6.70	2.14
10	2	6.80	2.15
	3	7.40	2.17

Nota: En la tabla se puede observar los contenidos de humedad óptimo y las densidades secas máximas con respecto al suelo natural y con la adición de 3%,

5% y 10% de cloruro de magnesio.

4) Diseñar mediante el método NAASRA considerando las propiedades mejoradas con el MgCl2

Tabla 57Índice Medio Diario Semanal – Promedio de vehículos diarios

DIA			S.	Camionetas	Camion
DIA	L	Auto	Wagon	Pick Up	2E
	Ida	5	4	3	2
Domingo	Vuelta	5	3	2	2
	Total	10	7	5	4
	Ida	3	4	2	1
Lunes	Vuelta	3	4	2	1
	Total	6	8	4	2
	Ida	3	4	2	1
Martes	Vuelta	3	3	2	0
	Total	6	7	4	1
	Ida	4	4	2	1
Miércoles	Vuelta	3	3	1	1
	Total	7	7	3	2
	Ida	3	3	1	0
Jueves	Vuelta	3	4	2	1
	Total	6	7	3	1
	Ida	4	4	2	1
Viernes	Vuelta	4	3	1	1
	Total	8	7	3	2
	Ida	5	3	3	2
Sábado	Vuelta	4	4	2	1
	Total	9	7	5	3
	Ida	3.86	3.71	2.14	1.14
IMDs	Vuelta	3.57	4.43	1.71	1.00
	Total	7.33	8.14	3.85	2.14
IMDa	Ida	3.76	3.62	2.07	1.10
	Vuelta	3.48	4.32	1.66	0.97
	Total	7.24	7.94	3.73	2.07
IMDa 2023	Total, Veh.	7	8	4	2

Nota: En la tabla tenemos el conteo diario según los tipos de vehículos del lugar de estudio

Tabla 58 *Población futura de vehículos*

VEH	ICULO	IMDa	r%	n	IMDa "n"
	Auto	7	1.26	4	7.27
	S. Wagon	8	1.26	4	8.31
Camionetas	Pick up	4	1.26	4	4.15
Camión	2E	2	2.83	4	2.17

Nota: En la tabla pronosticamos los vehículos

Tabla 59 *Ejes Equivalentes y Factor Camión*

TIPO DE VEI	HICULO	IMDA 2027	TIPO EJE	NUMERO LLANTAS	CARGA EJE Tn	"F" P. FLEXIBLE	F. IMDA FLEXIBLE
	Autos	7.27	SIMPLE	2	1	0.00052702	0.00383144
		7.27	SIMPLE	2	1	0.00052702	0.00383144
VEHICULOS	S. Wagon	8.31	SIMPLE	2	1	0.00052702	0.00437954
LIGEROS		8.31	SIMPLE	2	1	0.00052702	0.00437954
	Pick Up	4.15	SIMPLE	2	1	0.00052702	0.00218713
		4.15	SIMPLE	2	1	0.00052702	0.00218713
CAMIÓN	2E	2.17	SIMPLE	2	7	1.26536675	2.74584585
CAMION		2.17	SIMPLE	4	11	3.23828696	7.02708270
							9.79372477

Nota: En la tabla tenemos las cargas de cada tipo de vehiculos

Tabla 60 *Trafico proyectado de diseño 10 años*

TRAFICO PROYECTADO) DE DISEÑO	10 AÑOS
Tasa anual de crecimiento Vehículos pesados	r=	2.83%
Tiempo de vida útil de pavimento (años)	n =	10
Factor Fca vehículos pesados	Fca =	11.37
N° de calzadas, sentidos y carriles por sentido		1 calzada, 1 sentidos, 1 carril por sentido
	Σf. IMDa =	9.7937
Factor direccional*Factor carril	Fd*Fc =	1.0
Número de ejes equivalentes	ESAL =	40644.34

Nota: En la Tabla se observa el valor del ESAL proyectado para 10 años.

Diseño mediante el método NAASRA

Después de haber realizado los cálculos se procede a definir el espesor del afirmado para la capa de rodadura, siguiendo la normativa del manual de carreteras- suelos, geología, geotecnia y pavimentos 2014, mediante el método NAASRA

Figura 14Ecuación del Método NAASRA

e = [219 - 211 x (log₁₀CBR) + 58 x (log₁₀CBR)²] x log₁₀ (Nrep/120)

Donde:

e = espesor de la capa de afirmado en mm.

CBR = valor del CBR de la sub rasante.

Nrep = número de repeticiones de EE para el carril de diseño.

Nota: Fórmula del Método NAASRA, MC-SSP 2014

De los CBR encontrados se calculó con el mejor valor de CBR adicionados el 10% de cloruro de magnesio: 38.50%

$$e = [219 - 211 * (log_{10}38.50) + 58 * (log_{10}(38.50)^{2}] * log_{10}(\frac{40644.34}{120})$$

$$e = 78.67mm$$

e = 10 cm

CAPITULO IV: DISCUSION Y CONCLUSIONES

DISCUSION

Maturano, Aguilera & Bustos (2015), en su investigación indica al adicionar sales

concentradas genera que permanezcan más tiempo sobre calzada. La cantidad de

residuo salino sobre la calzada va disminuyendo en el tiempo, pero la incorporación

de sales permite mantener sobre el pavimento una mayor cantidad de residuo salino

luego de varios días, respecto a lo que se observa en el caso de las soluciones sin

este agregado, en nuestra investigación se observó que al adicionar los porcentajes

de cloruro de magnesio tiene un mejor comportamiento, lo que genera una mejor

cohesión del material, generando mejores condiciones y características al suelo,

este tipo de alternativa se utiliza presencia de polvo o pequeñas partículas en el

suelo generando una mejor cohesión de ello.

Cosiche (2019) en esta investigación se determinó la siguiente conclusión, que el

cloruro de magnesio eleva el CBR del suelo a una proporción del 3%, resultando

con una mejor resistencia al corte en el tramo C-1, M3, tramo Pazos desvío Pampas

Km 339 + 100, terreno natural +3% cloruro de magnesio hexahidratado presenta un

C.B.R. a 0.1" al 100% arroja un 43.1% y al 95% proyecta un 40.2 %, en nuestra

investigación tenemos resultados similares en nuestro caso el porcentaje de adición

adecuada es de 10% de cloruro de magnesio, donde presenta un CBR de 38.55%

mejorando 7 veces mas con respecto al suelo natural.

Valera (2021) concluye en su investigación, la aplicación con cloruro de magnesio

al 1% aumenta de CBR llegando a un 27.706 %, una humedad optima de 8.176%;

con cloruro de magnesio al 2% aumenta de CBR llegando a un 28.71 %, una

humedad optima de 8.056%; la mejor dosificación fue con el 3% de Cloruro de

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa,

Cochorco, Sánchez Carrión – La Libertad 2022

Magnesio obteniendo un CBR de 39.04% al 95% MDS y con una humedad optima

de 8.62%, teniendo finalmente una estabilización adecuada en las carreteras no

asfaltadas en CPM El Milagro, en nuestra investigación para 3% de cloruro de

magnesio tenemos un CBR de 17.92% con una humedad de 7.20%, con 5% de

cloruro de magnesio tenemos un CBR de 26.09% con una humedad 6.48%, con

10% de cloruro de magnesio tenemos un CBR de 38.55% con un contenido de

humedad 7.40%, se puede observar que a cantidades pequeñas como indica Valera

en su investigación sube gradualmente y es óptima para carreteras no asfaltadas.

Implicancias

Los ensayos de laboratorio nos implicaron poder comprobar los parámetros y

procedimientos de nuestros resultados.

Con respecto al diseño vial, nos implicó corroborados con el Manual de Carreteras

suelos, geología, geotecnia y pavimentos del MTC con el fin de dar una propuesta

de mejora basada en el método NAASRA.

Limitaciones

En cuanto a las limitaciones de las investigaciones ha sido complejo encontrar

temas relacionados al cloruro de magnesio a nivel internacional.

Existen fuentes de información que no tiene acceso al contenido de la investigación

sobre cloruro de magnesio, esto nos limita para de realizar nuestra recopilación

documentaria.

Existen investigaciones de aplicación a nivel de base mas no de subrasante a nivel

internacional.

Chávez Polo, Darwin Antonio - Quispe Estela, Kerly Jimena

Pág. 89

Conclusiones

Se evaluó el tramo desvío Alto Cuin – desvío Chinapampa del Km 0 al Km 6.00, donde se tuvo un estudio de tráfico 40,644.34EE, clasificándose en un TNP2 en carreteras no pavimentadas.

Se determinó las propiedades mecánicas del suelo de las 7 calicatas en las cuales en su granulometría tiene presencia en su mayoría finos, el tipo de suelo mediante la clasificación al sistema SUCS, es CL (arcilla media plasticidad arenosa), mediante ASSHTO es un suelo arcilloso A-7-6. En cuanto al ensayo de Proctor modificado del suelo natural se obtuvo su máxima densidad de 1.65 g/cm³ con contenido óptimo de humedad de 5.80%, teniendo un CBR natural de 5.12%.

Se determinó que el porcentaje óptimo de cloruro de magnesio para la subrasante siendo el 10%, obteniendo como MDS en el ensayo Proctor modificado 7.40 g/cm³, con respecto a los ensayos de CBR con la adición de 10% de cloruro de magnesio se obtuvo un valor de 38.55%.

Se evaluó que las propiedades mecánicas del suelo natural de la subrasante no son buenas para el diseño vial según la normativa al tener menor al 6% de CBR tenemos una subrasante pobre, por consiguiente, se buscó la adición de cloruro de magnesio en las propiedades del suelo, esto generó un aumento de forma progresiva con respecto a los diferentes porcentajes. Se concluyó que al adicionar 10% de cloruro de magnesio al suelo natural aumenta hasta 7 veces el CBR; así mismo se puede observar en su MDS dando un aumento de 0.52 g/cm³ con respecto al valor inicial obtenido del suelo natural. Finalmente, con respecto a la adición de porcentajes en el ensayo CBR con el 10% se logró una subrasante excelente considerando estas características adecuadas para el diseño vial de una subrasante pobre.

Adición de MgCl2 para la estabilización de trocha carrozable del tramo Km 0 al km 6 desvío Alto Cuin – desvío Chinapampa, Cochorco, Sánchez Carrión – La Libertad 2022

Se diseñó mediante el método NAASRA la estructura vial del tramo desvío Alto

Cuin – desvío Chinapampa, considerando la adición al 10% de cloruro de magnesio, el espesor de una capa de afirmado resultó menor con respecto al suelo natural. Para un diseño vial según el catálogo del manual de carreteras suelos, geología, geotecnia, y pavimentos el espesor es considerado 30 cm base de afirmado y en nuestra propuesta de diseño vial considerando las nuevas características se reduce hasta 10 cm. como propuesta.

Recomendaciones

Se recomienda adicionar otros porcentajes mayores a nivel de base o subbase

Comparar con nuevos aditivos tomando en cuenta el cloruro de magnesio a nivel de subrasante.

Se recomienda adicionar materiales ecológicos, eco sostenible a nivel de subrasante para caminos de bajo volumen de tránsito

Realizar diseño con otras metodologías y compararlo donde el producto económico sea lo más beneficioso.

REFERENCIAS

BUNGE, M. (2007). La investigación científica. México, Siglo XXI.

Batanero, C. & Diaz, C. (2011) Estadística de proyectos

CALDERÓN, M. (2017). "Mejoramiento de la superficie de rodadura a nivel de afirmado mediante el uso de cloruro de magnesio como mejorador de la capacidad de soporte" Huánuco, Perú, Universidad Alas Peruanas.

Castro, Y. (2021) Ética

CEDEÑO, D. (2013). Investigación de la estabilización de suelos con Enzima aplicado a la Sub-rasante de la Avenida Quitumbre - Ñan, Cantón Quito. Quito, Ecuador: Universidad Central del Ecuador. Obtenido de http://www.dspace.uce.edu.ec/handle/25000/2201

Condor, E. & Huamancayo, P. (2016) Comparación Económica del Resultado y el Mantenimiento entre los Estabilizadores PROES y CONSOLID para el Sistema de Mejoramiento de Suelos Blandos para las Carreteras no Pavimentadas en La Selva Peruana, Universidad Peruana de Ciencias Aplicadas, Lima, Perú https://upc.aws.openrepository.com/bitstream/handle/10757/620693/HUAMANC

Coronado J. (2002) Manual centroamericano para diseño de pavimentos

https://sjnavarro.files.wordpress.com/2008/08/manual-de-pavimentos.pdf

Cosiche, G. (2019) INFLUENCIA DEL CLORURO DE MAGNESIO HEXAHIDRATADO EN LAS PROPIEDADES DE LA SUBRASANTE EN CARRETERAS NO PAVIMENTADAS, "Universidad Peruana Los Andes", Tesis de Pregrado, Huancayo, Perú

https://repositorio.upla.edu.pe/handle/20.500.12848/927

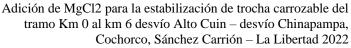
AYO_CP.pdf?sequence=1&isAllowed=y

DELGADO, A., & PASTOR, R. (2011). Estabilización de suelos para atenuar efectos de plasticidad del material de subrasante de la carretera Montecristi - Los Bajos. Manabí, Ecuador.

Duque G. & Escobar, C. (2002) Mecánica de Suelos

Goodrich, B., Koski, R., Jacobi, W. (2019) artículo Roadside vegetation healt condition and magnesium chloride (MgCl2) dust suppressant use in two Colorado, U.S. Counties, USA.

Gutiérrez, C. (2010) Estabilización química de carreteras no pavimentadas en el peru y ventajas comparativas del cloruro de magnesio (bischofita) frente al cloruro de calcio, Tesis Pre grado, Universidad Ricardo Palma, Lima, Perú https://repositorio.urp.edu.pe/bitstream/handle/20.500.14138/116/gutierrez_ca.pdf ?sequence=1


Hernández, R., Fernández, C., Baptista, P. (2014). *Metodología de la investigación* (6^a edición). México: Mc Graw Hill/Interamericana Editores S. A.

Heitzer, C. (2017). Efectos de mezclas de cloruros en la humedad de caminos no pavimentados. Chile. Universidad Técnica Federico Santa María departamento de obras civiles Valparaiso – Chile

https://repositorio.usm.cl/bitstream/handle/11673/23014/3560900231931UTFSM.pdf?sequence=1&isAllowed=y

Hernández. (2014). "Metodología de la investigación". Perú.

Higuera, C., Gómez, J. & Pardo, Ó. (2012). Caracterización de un suelo arcilloso tratado con hidróxido de calcio. Revista Facultad de Ingeniería, vol. 21, no. 32, pp. 21-40. ISSN 2357-5328. DOI 10.19053/01211129.1431.

Jones, D., & Surdahl, R. (2014). A New Procedure for Selecting Chemical Treatments or Unpaved Roads. University of California Davis, University of California Pavement Research Center, Department of Civil and Environmental Engineering, Davis, CA.

https://journals.sagepub.com/doi/10.3141/2433-10

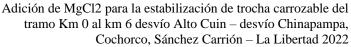
Llerena, H. (2015). Mejoramiento de una base superficial con cloruro de magnesio hexahidratado. Arequipa, Perú: Universidad Nacional de San Agustín de Arequipa.

López, B. (2019). Aplicación de bischofita para mejorar la estabilidad de la superficie de rodadura de la carretera no pavimentada Palca-Chana, Huari, Ancash. Lima. Perú: Universidad César Vallejo.

https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/53242/Lopez_BFG-SD.pdf?sequence=1&isAllowed=y

Lepkowski, J (2008) Metodología de la investigación: Muestreo

Maturano, Aguilera & Bustos (2015). Diseño y aplicación experimental de soluciones salinas antihielo con aditivos residuales de origen orgánico. Universidad Nacional de San Juan, Argentina


 $\underline{http://www.vialidadinvernal.org.ar/pdfs/Disenio-aplicacion-soluciones-}$

antihielo_Maturano-otros.pdf

Ministerio de Transporte y Comunicaciones (2014) Manual de carreteras: Suelos Geología, geotecnia y pavimentos

https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/MTC%20NOR

MAS/ARCH_PDF/MAN_7%20SGGP-2014.pdf

Miranda, J., & Negrete, D. (2011). Estabilización de suelos cohesivos con el uso de

cloruro de calcio. Quito, Ecuador: Pontificia Universidad Católica del Ecuador.

Montejo, A. (2002) Ingeniería de pavimentos

Murty, K., Silva, A. & Venkata, B.(2016). Chemical stabilization of Sub-grade soil with gypsum and NaCl. International Journal of Advances 55 in ingineering &

Technology vol. 9, N°. 5, pp. 569-581. DOI ISSN 22311963. Disponible en:

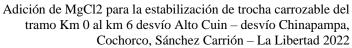
https://www.researchgate.net/profile/Kavya-Ch

4/publication/352019122_CHEMICAL_STABILIZATION_OF_SUB-

GRADE_SOIL_WITH_GYPSUM_AND_NACL/links/60b5e019299bf106f6edd2 55/CHEMICAL-STABILIZATION-OF-SUB-GRADE-SOIL-WITH-GYPSUM-AND-NACL.pdf.

Norma Técnica Peruana 339.134.(1999) Métodos clasificación Suelos SUCS: INDECOPI

Norma Técnica Peruana 400.012. (2013). Agregados. Análisis granulométrico del agregado fino, grueso y global. Lima: INDECOPI.


Norma Técnica Peruana 339.088. (2006). Agua de mezcla utilizada en la producción de concreto de cemento portland. Lima: INDECOPI.

Norma Técnica Peruana 339.185. (2013). Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. Lima: INDECOPI.

Norma Técnica Peruana 339.129 (1998) Limites de Atterberg. Lima: INDECOPI

Norma Técnica Peruana 339.141 (2014) Método de ensayo para la compactación

mediante Proctor Modificado. Lima: INDECOPI

Norma Técnica Peruana 339.145 (1999) Método de Ensayo CBR. Lima:

INDECOPI

Ponce, D. (2018). Uso del cloruro de calcio para estabilización de la subrasante en suelos arcillosos de la avenida Ccoripaccha-Puyhuan Grande-Hunacavelica. Universidad Nacional de Huancavelica.

Sanchez, F. (2022) Tipos de Suelos para carreteras

http://compavsa.com.mx/2022/09/22/tipos-de-suelos/

Tamayo, M. (2004). El proceso de la investigación científica. México: Limusa

file:///C:/Users/USUARIO/Downloads/Dialnet-

LaObservacionUnMetodoParaElEstudioDeLaRealidad-3979972.pdf

Valera, b. (2021). Influencia del cloruro de magnesio hexahidratado en las propiedades mecánicas para la estabilización de la Av. El Milagro intersección con Ca. Banchero Rossi hasta Ca. Ciro Alegría del CPM El Milagro 2021. Perú: Universidad privada del Norte

Yepes, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603

Zea, N. (2005). "Características de las arcillas para la fabricación de ladrillos artesanales" Estudio de Investigación. Universidad San Carlos de Guatemala, Chimaltenango – Guatemala.

https://www.studocu.com/pe/document/universidad-nacional-de-ingenieria/taller-de-geotecnia/tesis-caracterizacion-de-arcilla-para-la-fabricacion-de-ladrillos-artesanales/19082096.

ANEXOS

Fotografía 1: Elaboración de ensayos

Fotografía 2: Granulometría del material de la subrasante

Fotografía 3: Material natural en horno para el contenido de humedad

Fotografía 4: Ensayo para determinar limite de consistencia mediante copa de Casagrande

Fotografía 5: Ensayo Proctor del terreno natural

Fotografía 6: Elaboración de compactado en ensayo CBR

Fotografía 7: Adición de MgCl2 en suelo natural

Fotografía 8: Ensayo de CBR adicionado MgCl2

Fotografía 9: Ensayo de CBR adicionado al 3% MgCl2

ANALISIS MECANICO POR TAMIZADO ASTM D-422

: ADICIÓN DE MgCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-

DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

Solicitante | KERLY JIMENA QUISPE ESTELA | DARWIN ANTONIO CHAVEZ POLO

Ubicación : SANCHEZ CARRION - LA LIBERTAD Fecha : TRUJILLO, NOVIEMBRE DEL 2022

Calicata : PC 01

Obra

Tipo de suelo : Arcillo de baja plasticidad Peso de muestra seca : 632.0 Peso de muestra lavada : 507.9

ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	ESPECIFI	CACION	
3"	76,200	0.00	0.0	0.0	100.00	Lim	Limites	
2 1/2*	63.500	0.00	0.0	0.0	100.00	Superior	Infersor	
2"	50,600	0.00	0.0	0.0	100.00	-		
1.1/2*	38.100	0.00	0.0	0.0	100.001			
1.	25.400	0.00	0,0	0.0	100.00			
3/4"	19.050	0.00	0.0	0.0	100.00			
1/24	12.700	0.00	0.0	0.0	100.00			
3/8"	9.525	0.00	0.0	0.0	100:00			
324	4.760	4.23	0.7	0.7	99.33			
N'8	2.380	5.12	0.8	1.5	98.52			
Nº10	2.000	3.84	0.6	2.1	97.91			
Nº16	1.190	8.62	1.4	3.5	96.55			
Nº30	0.590	15.05	2.4	5.8	94.17			
N*40	0.420	20:12	3.2	9.0	90.08			
Nº50	0.300	25.44	3.4	12.4	87.59			
37100	0.149	33.23	5.3	17.7	82.33			
Nº200	0.074	12.45	2.0	19.6	80.36			
< Nº200	100000000000000000000000000000000000000	507.90	80.4	100.0	0.00			
Total		632.00				No		

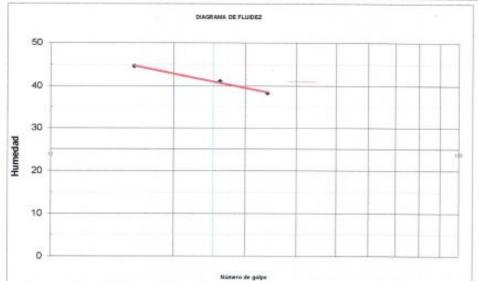
Limites e Ind	ices de	Consistencia
L. Liquido	_	41.05
L. Plastico		20.68
Ind Plastico		20.40
Clas. SUCS		CL
Clas. AASHTO		A-7-6 (12)

HUMEDAD NATURAL = 8.59%

® INDECOPI

TRUJILLO - PERU

Anton Fiestas


Calle Huayna Cápac 144 — Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

	LIMITES DE CONSISTENCIA
Obra	: ADICIÓN DE MgCl. PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUR-
	DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022
Solicitante	: KERLY JIMENA QUISPE ESTELA
	DARWIN ANTONIO CHAVEZ POLO
Ubicación	: SANCHEZ CARRION - LA LIBERTAD
Fecha	: TRUJILLO, NOVIEMBRE DEL 2022
Calicata	: PC 01
Tipo de suelo	: Arvilla de baja plasticidad

Muestra									
Limites de Consistencia	Limite L	iquido		Limite Plást	Limite Plástico				
N° de golpes		16	26	34					
Peso tara	(g)	16.56	19.79	24.22	20.45	22.90	22.41		
Peso tara + suelo húmedo	(g)		38.66	44.02	25.32	26.42	26.32		
Peso tara + suelo seco	(g)	28.61	33.16	38.54	24.48	.25.83	25.64		
Humedad %		44.65	41.14	38.25	20.84	20.14	21.05		
Limites				41.05				20.68	
Indice Plástico					20.40				

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI

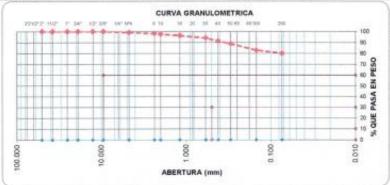
Calle Huayna Câpac 144 — Int. 2 - Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

ANALISIS MECANICO POR TAMIZADO **ASTM D-422**

Obra : ADICIÓN DE MgCI: PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN -

DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

: KERLY JIMENA QUISPE ESTELA Solicitante


DARWIN ANTONIO CHAVEZ POLO

Ubicación : SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022

Fecha Calicata

Tipo de suele : Arcilla de baja plasticidad Peso de muestra seca 574.2

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	ESPECIFI	CACION
3.	76.200	0.00	0.0	0.0	100.00	Limites	
2.1/2"	63.500	0.00	0.0	0.0	100.00	Superior	Inferior
2"	50.600	0.00	0.0	0.0	100.00		
11/2"	38 100		0.0	0.0	100.00		
1*	25.400	0.00	0.0	0.0	100.00		
3/4"	19,050	0:00	0.0	0.0	100.00		
1/2*	12.700		0.0	0.0	100.00		
3/8"	9.525	0.00	0.0	0.0	100.00		
Nº4	4.760	4.35	0.8	0.8	99.24		
N°S	2.380	5.67	1.0	1.7	98.26		
Nº10	2,000	3.24	0.6	2.3	97.69		
Nº16	1.190	7.44	1.3	3.6	96.40		
Nº30	0.590	12.67	2.2	5.8	94.19		
Nº40	8.420	15 56	2.7	8.5	91.48		
Nº50	0.300	14.37	2.5	11.0	88.98		
Nº100	0:149	34.23	6.0	17.0	83.02		
3/200	0.074	16.69	2.9	19.9	80.11		
< Nº200		460.01	80.1	100.0	0.00		
Total		574.23					

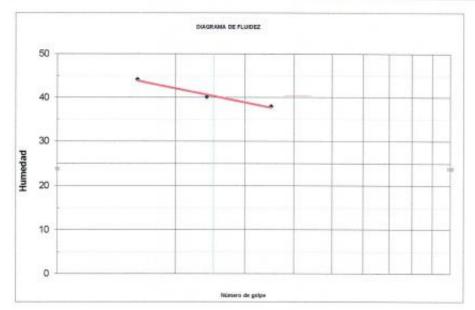
L. Liquido	: 40.40
L. Plastico	20.46
Ind. Plastico	19.90
Clas. SUCS	CL
Clas. AASHTO	A-7-6 (12)

HUMEDAD NATURAL = 8.82

® INDECOPI

TRUJILLO - PERU

Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701


Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

	LIMITES DE CONSISTENCIA							
Obra	: ADICIÓN DE MgC5 PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN- DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022							
Solicitante	: KERLY JIMENA QUISPE ESTELA							
	DARWIN ANTONIO CHAVEZ POLO							
Ubicación	: SANCHEZ CARRION - LA LIBERTAD							
Fecha	: TRUJILLO, NOVIEMBRE DEL 2022							
Calicata	PC 02							
Tipo de suelo	: Arcilla de baja plasticidad							

Muestra					0.			
Limites de Consistencia	Limite Liquido			Limite Plástico				
N° de golpes		. 16	24	35	-			-
Peso tara	(g)	17.43	16.34	29.20	23.14	21:45	20.34	
Peso tara + suelo húmedo	(g)		36,35	41.34	28.24	27.43	28.40	
Peso tara + suelo seco	(g)	33.24	30.62	38.00	27.38	26.43	27.00	
Humedad %	- 7700	44.21	40.13	37.95	20.28	20.08	21.02	
Limites				40.40				20.46
Indice Plástico					19.90			

ing. C. Jim C. Anton Flestas JEFE DE LABORATORIO

R INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

ANALISIS MECANICO POR TAMIZADO ASTM D-422

Obra : ADICIÓN DE MgCb PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-

DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

Solicitante : KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO Ubicación : SANCHEZ CARRION - LA LIBERTAD

Fecha : TRUJILLO, NOVIEMBRE DEL 2022
Calicata : PC 03

Tipo de suelo : Arena Arcillosa Peso de muestra seca (gr) : 1000.0

Peso de muestra lavada (gr) : 166,9

Tamices Abertura ASTM en mm.		Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	ESPECIFICACION TIPO B		
3"	76.200	0.00	-0.0	0.0	100.00	Lin	tifes	
2 1/2*	63.500	0.00	0.0	0.0	100.00	Superior	Infenor	
2"	50.600		0.0	0.0	100.00	100		
1.1/2*	38.100	0.00	0.0	0.0	100.00		-365	
1"	25.400	0.00	0.0	.0.0	100.00	95	75	
3/4"	19.050	0.00	0.0	0.0	100.00			
1/2"	12.700	0.00	0.0	0.0	100.00			
3-8"	9.525	0.00	0.0	0.0	100.00	75	40	
3/4	4.760	0.00	0.0	0.0	100:00	60	30	
N/8	2.380	0.00	0.0	0.0	100.00			
Nº10	2.000	109.40	10.9	10.9	89.06	45	20	
Nº16	1.190	175.30	17.5	28.5	71.53			
Nº30	0.590	140.00	14.1	42.5	57,47			
Nº40	0.420	100:20	10.0	52.6	47,45	30	15	
Nº50	0.300	110.10	.11.0	63.6	36.44			
Nº100	0.149	119-80	12.0	75.5	24.46			
Nº200	0.074	77.70	7.8	83.3	16.69	35	5	
< Nº200	1000000	166 BO	16.7	100.0	0.00			
Total		1000.00	10 11000					

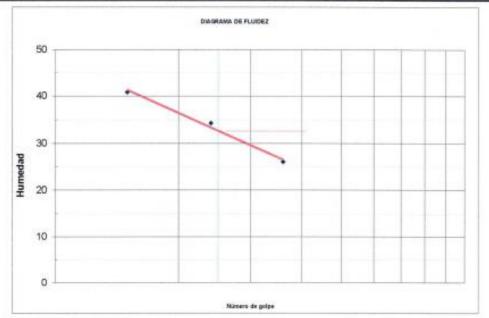
Limites e Indices de Consistencia						
L. Liquida	32.63					
L. Plástico	19.82					
Ind. Plastico	12.81					
Clas. SUCS	SC					
Clas. AASHTO	A-2-6 (0)					

HUMEDAD :	NATU	RAL
Sh + Tara (gr)	1	108.1
Ss + Tara (gr)	:	159.3
Tara (gr)		39.8
Peso Agua (ar)	1	8.8
Peso Suelo Seco (3	119.5
Humedad(%)	:	7.40

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI

TRUJILLO - PERU


Calle Huayna Capac 144 — Int. 2 — Urb. Santa Muria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

	LIMITES DE CONSISTENCIA
Obra	: ADICIÓN DE MgCl, PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN- DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022
Solicitante	: KERLY JIMENA QUISPE ESTELA
	DARWIN ANTONIO CHAVEZ POLO
Ubicación	: SANCHEZ CARRION - LA LIBERTAD
Fecha	: TRUJILLO, NOVIEMBRE DEL 2022
Calicata	: PC 03
Tipo de suelo	: Arena Artillosa

Muestra		9						
Limites de Consistencia	Limite L	iquido			Limite Plástico			
N° de golpes		15	24	36				
Peso tara	(g)	23,21	23,00	23.81		22,49	22.47	
Peso tara + suelo húmedo	(g)	36.31	35.89	35.90		35.81	35.20-	
Peso tara + suelo seco	(g)	32.51	32.60	33.40		33.60	33.10	
Humedad %		40.86	34.27	26.08		19.89	19.76	
Limites					32.63			19.82
Indice Plástico				-	12.81			

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO

R INDECOPI

TRUJILLO - PERU

Calle Huayna Cápac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

ANALISIS MECANICO POR TAMIZADO ASTM D-422

: ADICIÓN DE MgCb PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-Obra

DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

Solicitante

: KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO : SANCHEZ CARRION - LA LIBERTAD Ubicación Fecha Calicata TRUJILLO, NOVIEMBRE DEL 2022

: PC 04

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa		ICACION O B
3*	76.200	0.00	0.0	0.0	100.00	Lim	iifga
2.1/2"	63.500	0.00	0.0	0.0	100.00	Superior	Inferior
2"	50:600	0.00	0.0	-0.0	100.00	100	100
1 1/2"	38.100	0.00	0.0	0.0	100.00		
1*	25.400	0.00	0.0	0.0	100.00	95	75
3/4"	19.050	0.00	0.0	0.0	100.00	100000000000000000000000000000000000000	
1/2*	12.700	0.00	0.0	0.0	100.00		
3/8"	9.525	0.00	0.0	0.0	100.00	75	= 40
Nº4	4,760	0.00	0.0	0.0	100.00	60	30
No8	2.380	0.00	0.0	0.0	100.00		
Nº10	2.000	0.00	0.0	0.0	100.00	45	20
Nº16	1.190	176.20	17.6	17.6	82.38	1000	
Nº30	0.590	139.50	14.0	31.6	68.43		
Nº40	0.420	96.20	9.6	41.2	58.81	30	15
Nº50	0.300	109.40	10.9	52.1	47.87		
Nº100	0.149	121.40	12.1	64.3	35.73		
Nº200	0.074	69.70	7.0	71.2	28.76	15	5
< Nº200	1100000	287.60	28.8	100.0	0.00	1000	
Total		1000.00					

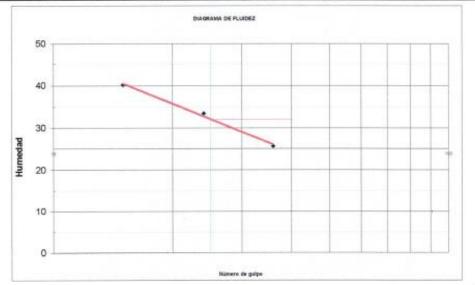
Lémites e Indic	es de	Consistencia
L. Liquido	11	32.04
L. Plastico		19,90
Ind. Plástico		12.14
Clas. SUCS		SC
Clas. AASHTO		A-2-6(0)

Sh + Tara (gr)	1	149.3
Ss + Tara (gr)	*	142.9
Tara (gr)	4	48.1
Peso Agua (gr)	3	6.4
Peso Suelo Seco	(;	94.8
Humodad(%)	4	6.80

JEFE DE LABORATORIO CIP: 251701

® INDECOPI

TRUJILLO - PERU


Calle Huayna Cápac 144 — Int. 2 - Urb. Santa Muria - Mov. 976788652 - E-Mail: Jim_0626@hotmail.com

	LIMITES DE CONSISTENCIA
Obra	: ADICIÓN DE MgCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN - DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022
Solicitante	KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO
Ubicación	SANCHEZ CARRION - LA LIBERTAD
Fecha	: TRUJILLO, NOVIEMBRE DEL 2022
Calicata	: PC 04
Tipo de suelo	: Arma Arcillosa

Muestra							
Limites de Consistencia		Limite Liqu	ido	- 55	Limite Plast	tico	
N° de golpes		1.5	24	36	-	-	
Peso tara	(g)	23.15	23,20	23.18	23,25	23.80	
Peso tara + suelo húmedo	(g)	36,40	36:01	35.90	35.90	35.20	
Peso tara + suelo seco	(g)	32.60	32.80	33.30	33.81	33.30	
Humedad %		40.21	33.44	25.69	19.79	20.00	
Limites				32.	.04		19.90
Indice Plástico				12.14			

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

© INDECOPI TRUJILLO - PERU
Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

ANALISIS MECANICO POR TAMIZADO ASTM D-422

Obra ADICIÓN DE MgCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-

DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 Solicitante Ubicación Fecha

Calicata Tipo de suelo

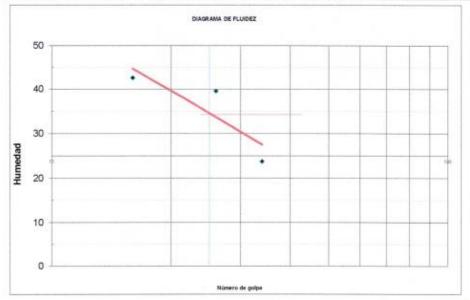
: PC 05 : Arcilla de baja plasticidad seca : 595.3 Peso de muestra se

ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	ESPECIF	ICACION
3"	76.200	0.00	0.0	0.0	100.00	Lin	žes
21/2"	63.500		.0.0	0.0	100.00	Superior	Inferior
2"	50.600		0.0	0.0	100.00		177000000
1.1/2*	38.100	0.00	0.0	0.0	100.00	1	
1.	25,400	0.00	0.0	0.0	100.00		
3/4"	19.050	0.00	0.0	0.0	100.00	1	
1/2*	12.700	0.00	0.0	0.0	100.00	1	
3/8"	9.525	0.00	0.0	0.0	100.00		
Nº4	4.760	4.15	0.7	0.7	99.30		
Nº8	2.380	7.52	1.3	2.0	98.04		
Nº10	2.000	2.10	0.4	2.3	97.68		
Nº16	1.190	8.00	1.3	3.7	96.33		
Nº30	0.590	12.82	2.1	5.8	94.21		
Nº40	0.420	13.51	2.3	8.1	91.94		
N*50	0.300	15.10	2.5	10.6	89.41		
Nº100	0.149	40.16	6.7	17.3	82.66	i	
Nº200	0.074	15.21	2.2	19.6	80.44		
< N°200		478.66	80.4	100.0	0.00		
Total		595.30				1	

Limites e Indices de Consistencia					
L Liquido	100	43.50			
. Plástico		22.80			
nd Plastico		20.70			
Clas. SUCS		CL			
Clas. AASHTO		A-7-6 (13)			

HUMEDAD NATURAL = 8.78%

Jim C. Anton Fiestas CIP: 251701


® INDECOPI TRUJILLO - PERU
Calle Huayna Capac 144 − Int. 2 − Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

	LIMITES DE CONSISTENCIA
Obra	: ADICIÓN DE MgCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-
	DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022
Solicitante	: KERLY JIMENA QUISPE ESTELA
	DARWIN ANTONIO CHAVEZ POLO
Ubicación	: SANCHEZ CARRION - LA LIBERTAD
Fecha	: TRUJILLO, NOVIEMBRE DEL 2022
Calicata	: PC 05
Tipo de suelo	: Arcilla de baja plasticidad

Muestra								
Limites de Consistencia		Limite L	íquido		Limite Plástico			
Nº de golpes		16	26	34	-	*		(i+)
Peso tara	(g)	20.86	22.90	22.41	21.40	24.10	23.24	
Peso tara + suelo húmedo	(g)	35.15	40.24	39.43	28,54	29.67	28.65	
Peso tara + suelo seco	(g)	30.88	35,33	36.16	27.27	28.72	27.71	
Humedad %		42.61	39,50	23.78	21.64	20.56	21.03	
Limites				34.23				21.08
Indice Plástico					13.16			

ing. C. Jim C. Anton Flestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI TRUJILLO - PERU

Calle Huayna Capac 144 — Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

ANALISIS MECANICO POR TAMIZADO

ASTM D-422


: ADICIÓN DE MgCl- PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-Obra

DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

: KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO : SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 Solicitante Ubicación

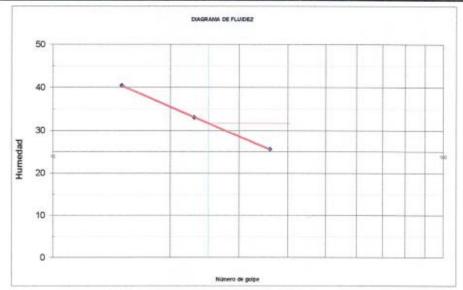
Fecha : TRUJILLO, NO
Calicata : PC 06
Tipo de suelo : Arena Arcillosa
Peso de muestra seca (gr)
Peso de muestra lavada (gr) :

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	ESPECIFI	CACION
3"	76.200	0.00	0.0	0.0	100.00	Lim	ites
2 1/2*	63.500	0.00	0,0	0.0	100.00	Superior	Inferio
2"	50.600	0.00	0.0	0.0	100.00		
11/2"	38.100	0.00	0.0	0.0	.100.00		
1,	25.400	0.00	0.0	0.0	100.00	6	
3/4"	19.050	0.00	0.0	0.0	100.00	19	
1/2*	12.700	0.00	0.0	0.0	100.00		
3/8"	9.525	0.00	0.0	0.0	100.00		
Nº4	4.760	0.00	0.0	0.0	100.00		
Nº8	2.380	12.68	1.3	1.3	98.73		
Nº10	2.000	86.20	8.6	9.9	90.11		
Nº16	1.190	96.30	9.6	19.5	80.48		
Nº30	0.590	95.00	9.5	29.0	70.98		
Nº40	0.420	86.90	8.7	37.7	62.29		
N°50	0.300	55.70	5.6	43.3	56.72		
Nº100	0.149	150.30	16.0	59.3	40.69		
Nº200	0.074	51.20	5.1	64.4	35.57		
< N°200		355.72	35.6	100.0	0.00		
Total		1000.00					

Limites e Indi	ices de (Consistencia
L. Liquido	- 1	31:74
L. Plástico		19.64
Ind. Plastico		12.10
Clas. SUCS		SC
Clas. AASHTO		A-6(1)

Sh + Tara (or)	-	250.4
Ss + Tara (gr)	1	239.9
Tara (str)		36.5
Peso Agua (gr)	10	10.6
Peso Suelo Seco (gr)	1	203.4
Humedad(%)		5.21

Jim C. Anton Fiestas


DE LABORATORIO CIP: 251701 ® INDECOPI TRUJILLO - PERU Calle Huaynu Capac 144 - Int. 2 - Urb. Santa Muria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

	LIMITES DE CONSISTENCIA
Obra	: ADICIÓN DE MgCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 6 AL KM 6 ALTO CUIN – DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022
Solicitante	: KERLY JIMENA QUISPE ESTELA
	DARWIN ANTONIO CHAVEZ POLO
Ubicación	: SANCHEZ CARRION - LA LIBERTAD
Fecha	: TRUJILLO, NOVIEMBRE DEL 2022
Calicata	: PC 66
Tipo de suelo	: Arena Arelliosa

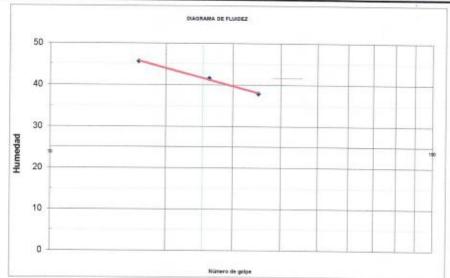
Muestra		and the second							
Limites de Consistencia		Limite Liquido			Limite Plást	Limite Plástico			
N° de golpes		15	23	36	-	-	-	2 2	
Peso tara	(g)	15.94	19.79	23.44	23.25	23.80			
Peso tara + suelo húmedo	(g)		34,52	40.68	35,90	35,20			
Peso tara + suelo seco	(g)		30.86	37.17	33.80	33.35			
Humedad %		40.47	33.06	25.56	19.91	19.37			
Limites				31.74				19.64	
Indice Plástico		12.10							

ing. C. Jim C. Anton Fleshas JEFE DE LABORATORIO CIP: 251701

® INDECOPI TRUJILLO - PERU Calle Huayna Capac 144 − Int. 2 − Urb. Santa Muria − Mov. 976785652 − E-Mail: Jim_0626@hotmail.com

E		ANAI		NICO POR TA FM D-422	AMIZADO				
Obra	: ADICIÓN DE Mg	Ch PARA LA ESTA	BILIZACIÓN DE TRO	CHA CARROZABLE DE	L TRAMO KM 0	AL KM 6 ALTO CUIN -			
		DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022							
Solicitante		KERLY JIMENA QUISPE ESTELA							
		NIO CHAVEZ POLO							
Ubicación		RION - LA LIBERTA							
Fecha	-	TEMBRE DEL 2022							
Calicata	: PC 07								
	le : Arcilla de baja pla								
Peso de muest		650.2							
Peso de muest Tamices	The second secon	511.3			-				
ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido	% que	ESPECIFI			
3*	76.200	Retensor	0.0	Acumulado	Pasa 100.00	Si Lin			
21/2"	63.500	0.00	0.0	0.0	100.00	Superior	Inferior		
2"	50.600	0.00	0.0	0.0	100.00	Aupence	America.		
1.1/2"	38.100	0.00	0.0	0.0	100.00	- 1			
1.	25.400	0.00	0.0	0.0	100.00	33			
3/4"	19.050	0.00	0.0	0:0	100.00	<u> </u>			
3/8"	12.700	0.00	0.0	0.0	100.00				
N94	9.525 4.760	0.00	0.0	0.0	100.00	88			
Nº8	2,380	4.35	0.7	0.0	100.00				
32910	2,000	7.32	1.1	1.8	98.21				
Nº16	1.190	5.84	0.9	27	97.31				
Nº30	0.590	9.72	1.5	4.2	95.81				
Nº40	0.420	15.49	2.4	6.6	93.43				
Nº50	0,300	32.75	5:0	11.6	88.39				
Nº100	0.149	42.95	6.6	18.2	81.79				
N°200 < N°200	0.074	20.54	3.2	21.4	78.63				
Total	_	650.23	78.6	100.0	0.00				
Total	-	630.23							
3540*2* (nor in ser norser		GRANULOMETRICA			Limites e Indices			
					100	L. Liquido	41.63		
			1		90	L. Plastico Ind. Plastico	20.78		
					80	Clas. SUCS	CL		
					70 8	Clas AASHTO	A-7-6 (13)		
					. oo W				
					50 W				
					₹	HUMEDAD NAT	URAL - 8.94		
					9 30 A				
					20 8				
					36				
000	00		8	00	960				
0 0	10.000		Ď.	0.100	0.0				
8	-	ARER	TURA (mm)		-				
		ABILI	cross (man)			J			

® INDECOPI


Calle Huaynu Capac 144 − Int. 2 − Urb. Santa Maria − Mov. 976785652 − E-Mail: Jim_0626@hotmail.com

	LIMITES DE CONSISTENCIA				
Obra	: ADICIÓN DE MgCli PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 6 AL KM 6 ALTO CUIN-				
	DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022				
Solicitante	: KERLY JIMENA QUISPE ESTELA				
	DARWIN ANTONIO CHAVEZ POLO				
Ubicación	: SANCHEZ CARRION - LA LIBERTAD				
Fecha	: TRUJILLO, NOVIEMBRE DEL 2022				
Calicata	: PC 67				
Tipo de suelo	: Arcilla de buja plasticidad				

Muestra	3							
Limites de Consistencia		Limite Liqu	.imite Liquido Limite Plástico			ico		
N° de golpes		17	26	35	-	.		
Peso tara	(g)	20.54	23.65	21.60	20.64	23.65	21.60	_
Peso tara + suelo húmedo	(g)	34,60	37,45	43.26	26.43	27:46	29.33	
Peso tara + suelo seco	(g)	30.20	33,40	37.30	25.41	26.82	28.00	
Humedad %		45.55	41.54	37.96	21.38	20.19	20.78	
Limites				41.0	3		20110	20.78
Indice Plástico		20.84						

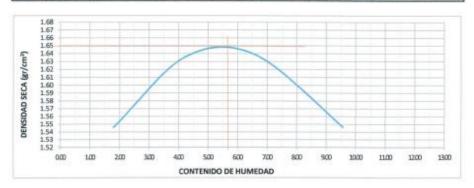
ing. C. Jim C. Anton Flestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI TRUJILLO - PERU Calle Huayna Capac 144 — Int. 2 — Urb. Santa Muria — Mov. 976788652 — E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgC1: PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN — DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

SOLICITA: KERLY JIMENA QUISPE ESTELA


DARWIN ANTONIO CHAVEZ POLO

UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD

FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	120.40	114.13	118.99	118.00			
Peso Tara + Suelo Seco (gr)	118.90	111.00	114.00	111.00			
Peso del Agua (gr)	1,50	3.13	4.99	7.00			
Peso tara (gr)	35.70	36.90	38.60	37.80			
Peso Suelo Seco (gr)	83.20	74.10	75.40	73.20			
Contenido de humedad (%)	1.80	4.22	6.62	9.56			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3400	3525	3565	3515			
Peso Molde (gr)	1895	1895	1895	1895			
Peso Suelo Húmedo (gr)	1505	1630	1670	1620			
Volumen Suelo Húmedo (gr)	956.04	956.04	956.04	956.04			
Densidad Humeda (gr/cm3)	1.67	1.70	1.75	1.69			
Densidad Seca (gr/cm3)	1.546	1.636	1,638	1.547			

DENSIDAD SECA MAXIMA: 1.65 gr/cm³

OPTIMO CONTENIDO DE HUMEDAD: 5.80

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

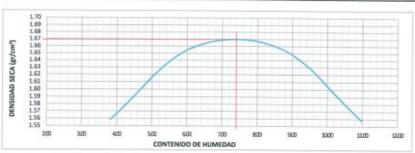
® INDECOPI

TRUJILLO - PERU

Calle Huayna Capac 144 - Int. 2 - Urb. Santa Muria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE M_BCI₂ PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN -DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022


SOLICITA: KERLY JIMENA QUISPE ESTELA

DARWIN ANTONIO CHAVEZ POLO

UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL

	CONTENIDO	DE HUMEDAD (%)		
ENSAYO No	1	2	3	4
Peso Tara + Suelo Húmedo (gr)	155.40	135.10	145,60	152.60
Peso Tara + Suelo Seco (gr)	150.50	128.68	136,05	139.47
Peso del Agua (gr)	4.90	6.44	9.55	13.13
Peso tara (gr)	22.54	23.65	25.51	19.84
Peso Suelo Seco (gr)	127.96	105.01	110.54	119.63
Contenido de humedad (%)	3.83	6.13	8.64	10.98
	DENSIDAD	SECA (gr/cm3)		10.90
ENSAYO No	1	2	3	4
Peso Molde+Peso Suelo Húmedo (gr)	9730	10030	10120	9970
Peso Molde (gr)	6295	6295	6295	6295
Peso Suelo Húmedo (gr)	3435	3735	3825	3675
Volumen Suelo Húrnedo (gr)	2122.07	2123.07	2124.07	2125.07
Densided Humeda (gr/cm3)	1.62	1.78	1.80	1.73
Densidad Seca (gr/cm3)	1.56	1.68	1.66	1.56

DENSIBAD SECA MAXIMA: 1.67 gr/cm³

OPTIMO CONTENIDO DE HIMEDAD: 7.4 %

Anton Fiestas

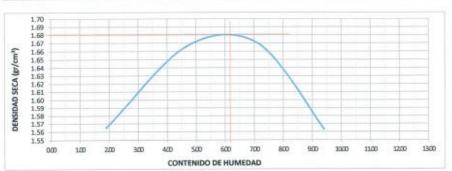
® INDECOPI

TRUJILLO - PERU

Calle Huayna Capac 144 — Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgCb PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN -DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022


SOLICITA: KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO

UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD

FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO	DE 5	UE	.O: N	ATU	RAL

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	119.10	113.41	119.40	117.21			
Peso Tara + Suelo Seco (gr)	117.54	110.00	114.00	110,39			
Peso del Agua (gr)	1.56	3.41	5.40	6.82			
Peso tara (gr)	35.70	36.90	38.60	37.80			
Peso Suelo Seco (gr)	81.84	73.10	75.40	72.59			
Contenido de humedad (%)	1.91	4.66	7.16	9.40			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1 1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3420	3562	3605	3530			
Peso Molde (gr)	1895	1895	1895	1895			
Peso Suelo Húmedo (gr)	1525	1667	1710	1635			
Volumen Suelo Húmedo (gr)	956.04	956.04	956.04	956.04			
Densidad Humada (gr/cm3)	1.60	1.74	1.79	1.71			
Densidad Seca (gr/cm3)	1,565	1.666	1.669	1,563			

DENSIDAD SECA MAXIMA: 1.68 gr/em³

OPTIMO CONTENIDO DE HUMEDAD: 6.10 %

> Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

TRUJILLO - PERU

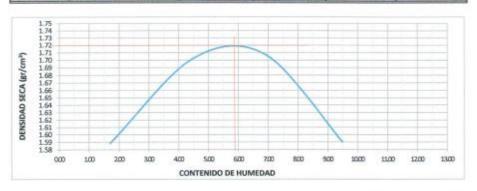
® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@.botmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgCl₂ PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTÓ CUIN — DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

SOLICITA: KERLY JIMENA QUISPE ESTELA


DARWIN ANTONIO CHAVEZ POLO

UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD

FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL + 3% CLORURO DE MAGNESIO

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	119.10	114.70	121.58	118.36			
Peso Tara + Suelo Seco (gr)	117.70	111.37	116.21	111.39			
Peso del Agua (gr)	1.40	3.33	5.37	6.97			
Peso tara (gr)	35.70	36.90	38.60	37.80			
Peso Suelo Seco (gr)	82.00	74.47	77.61	73.59			
Contenido de humedad (%)	1.71	4.47	6.92	9.47			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3440	3595	3840	3560			
Peso Molde (gr)	1895	1895	1895	1895			
Peso Suelo Húmedo (gr)	1545	1700	1745	1665			
Volumen Suelo Húmedo (gr)	956.04	956.04	956.04	956.04			
Densidad Humeda (gr/cm3)	1,62	1.78	1.83	1.74			
Densidad Seca (gr/cm3)	1.589	1,702	1.707	1,591			

DENSIDAD SECA MAXIMA: 1.72 gr/cm³

OPTIMO CONTENIDO DE HUMEDAD: 5.90 %

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

CIP: 251701

® INDECOPI

TRUJILLO - PERU

Calle Huayna Capac 144 - Int. 2 - Urb. Santa Muria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgCl: PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 6 AL KM 6 ALTO CUIN — DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

SOLICITA: KERLY JIMENA QUISPE ESTELA

DARWIN ANTONIO CHAVEZ POLO UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD

TIPO DE SUELO: NATURAL + 3% CLORURO DE MAGNESIO

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	115.40	117.14	112.60	116,10			
Peso Tara + Suelo Seco (gr)	112.70	112.90	107.10	108.80			
Peso del Agua (gr)	2.70	4.24	5.50	7.30			
Peso tara (gr)	40.20	41.50	41.80	40.30			
Peso Suelo Seco (gr)	72.50	71.40	65.30	68,50			
Contenido de humedad (%)	3.72	5.94	8.42	10.66			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3540	3656	3698	3650			
Peso Molde (gr)	1895	1895	1895	1895			
Peso Suelo Húmedo (gr)	1645	1761	1803	1755			
Volumen Suelo Hürnedo (gr)	956.04	956.04	956.04	956.04			
Densidad Humeda (gr/cm3)	1.72	1.84	1.89	1.84			
Densidad Seca (gr/cm3)	1.659	1.739	1.739	1.659			

DENSIBAD SECA MAXIMA: 1.75 gr/cm²

OPTIMO CONTENIDO DE HUMEDAD: 7.20 %

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

C. Jim C. Anton Fiestas EFE DE LABORATORIO CIP: 251701

R INDECOP

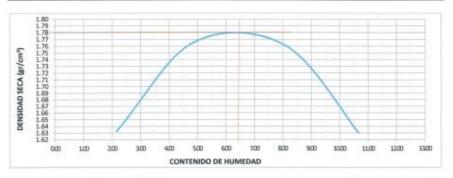
TRUJILLO - PERU

Calle Huayna Cápac 144 — Int. 2 — Urb. Santa Maria — Mov. 976788652 — E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgCl: PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN— DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

SOLICITA: KERLY JIMENA QUISPE ESTELA


DARWIN ANTONIO CHAVEZ POLO

UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD

FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL + 3% CLORURO DE MAGNESIO

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	120.70	114.60	120.10	118.80			
Peso Tara + Suelo Seco (gr)	118.90	111.00	114.00	111.00			
Peso del Agua (gr)	1.80	3.60	6.10	7.80			
Peso tara (gr)	35.70	36.90	38.60	37.80			
Peso Suelo Seco (gr)	83.20	74.10	75.40	73.20			
Contenido de humedad (%)	2.16	4.88	8.09	10.66			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3490	3665	3715	3620			
Peso Molde (gr)	1895	1895	1895	1895			
Peso Suelo Húmedo (gr)	1595	1770	1820	1725			
Volumen Suelo Húmedo (gr)	956.04	956.04	956.04	956.04			
Densidad Humeda (gr/cm3)	1.67	1.85	1.90	1.80			
Densidad Seca (gr/cm3)	1.633	1.766	1.761	1.631			

DENSIDAD SECA MAXIMA: 1.78 gr/em²

OPTIMO CONTENIDO DE HUMEDAD: (

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

C. Jim C. Anton Fleshas FE DE LABORATORIO CIP: 251701

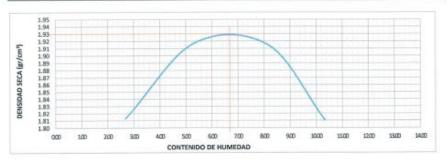
® INDECOR

TRUJILLO - PERU

Calle Huayna Cápac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgCi, PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN − DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022


SOLICITA: KERLY JIMENA QUISPE ESTELA

DARWIN ANTONIO CHAVEZ POLO

UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL + 5% CLORURO DE MAGNESIO

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	122.50	124.20	123.00	122.40			
Peso Tara + Suelo Seco (gr)	120.30	120.00	116.70	114.70			
Peso del Agua (gr)	2.20	4.20	6.30	7,70			
Peso tara (gr)	38.50	40.80	39.60	40.10			
Peso Suelo Seco (gr)	81.80	79.20	77.10	74.60			
Contenido de humedad (%)	2.69	5.30	8.17	10.32			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3680	3830	3880	3810			
Peso Molde (gr)	1900	1900	1900	1900			
Peso Suelo Húmedo (gr)	1780	1930	1980	1910			
Volumen Suelo Húmedo (gr)	956.04	956.04	956.04	956.04			
Densidad Humeda (gr/cm3)	1.86	2.02	2.07	2.00			
Densidad Seca (gr/om3)	1,813	1.917	1.915	1.811			

DENSIBAD SECA MAXIMA: 1.93 gr/cm²

OPTIMO CONTENIDO DE HUMEDAD: 6.70 %

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI

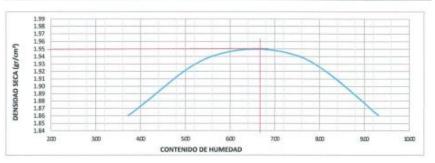
TRUJILLO - PERU

Calle Huayna Capac 144 — Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgCL-PARA LA ESTABELIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

SOLICITA: KERLY JIMENA QUISPE ESTELA


DARWIN ANTONIO CHAVEZ POLO

UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD

FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL + 5% CLORURO DE MAGNESIO

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	- 4			
Peso Tara + Suelo Húmedo (gr)	121.90	120.80	130.40	122.30			
Peso Tara + Suelo Seco (gr)	118.90	116.30	123.40	115.30			
Peso del Agua (gr)	3.00	4.50	7.00	7.00			
Peso tara (gr)	38.50	35.60	30.70	40.10			
Peso Suelo Seco (gr)	80.40	80.70	92.70	75.20			
Contenido de humedad (%)	3.73	5.58	7.55	9.31			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3740	3853	3890	3840			
Peso Molde (gr)	1895	1895	1895	1895			
Peso Suelo Húrnedo (gr)	1845	1958	1995	1945			
Volumen Suelo Húmedo (gr)	956.04	956.04	956.04	956.04			
Densided Humeda (gr/cm3)	1.93	2.05	2.09	2.03			
Densidad Seca (gr/cm3)	1.860	1.940	1.940	1.861			

DENSIDAD SECA MAXIMA: 1.95 gr/cm²

OPTIMO CONTENIDO DE HUMEDAD:

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

DE LABORATORIO CIP: 251701

® INDECOPI

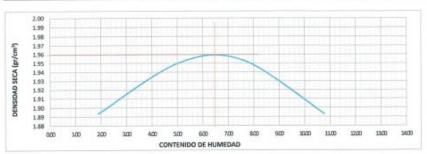
TRUJILLO - PERU

Calle Huayna Capac 144 — Int. 2 - Urb. Santa Muria - Mov. 976788652 - E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE M_BCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTÓ CUIN – DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

SOLICITA: KERLY JIMENA QUISPE ESTELA


DARWIN ANTONIO CHAVEZ POLO

UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD

FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL + 5% CLORURO DE MAGNESIO

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	126.85	127.00	124.80	126.00			
Peso Tara + Suelo Seco (gr)	125.20	122.85	118.80	117.65			
Peso del Agua (gr)	1.65	4.15	6.00	8.35			
Peso tara (gr)	38.50	40.80	39.60	40.10			
Peso Suelo Seco (gr)	86.70	82.05	79.20	77.55			
Contenido de humedad (%)	1.90	5.06	7,58	10.77			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3745	3859	3909	3905			
Peso Moide (gr)	1900	1900	1900	1900			
Peso Suelo Húmedo (gr)	1845	1959	2009	2005			
Volumen Suelo Hürnedo (gr)	956.04	956.04	956.04	956.04			
Densided Humeda (gr/cm3)	1.93	2.05	2.10	2.10			
Densidad Seca (gr/cm3)	1.894	1.950	1.953	1.893			

DENSIBAD SECA MAXIMA: 1.96 gr/cm³

OPTIMO CONTENIDO DE BUMEDAD: 6.48%

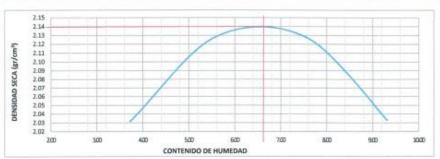
NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

ng. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI

TRUJILLO - PERU

Calle Huayna Capac 144 - Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com


(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgCI: PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN – DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022.

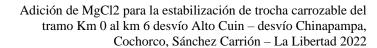
SOLICITA: KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL + 10% CLORURO DE MAGNESIO

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	121.90	120.80	130.40	122.30			
Peso Tara + Suelo Seco (gr)	118.90	116.30	123.40	115.30			
Peso del Agua (gr)	3.00	4.50	7.00	7.00			
Peso tara (gr)	38.50	35.60	30.70	40.10			
Peso Suelo Seco (gr)	80.40	80.70	92.70	75.20			
Contenido de humedad (%)	3.73	5.58	7.55	9.31			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Moide+Peso Suelo Húrnedo (gr)	3910	4043	4083	4020			
Peso Molde (gr)	1895	1895	1895	1895			
Peso Suelo Húmedo (gr)	2015	2148	2188	2125			
Volumen Suelo Húmedo (gr)	956.04	956.04	956.04	956.04			
Densidad Humeda (gr/cm3)	2.11	2.25	2.29	2.22			
Densidad Seca (gr/cm3)	2.032	2.128	2.128	2.033			

DENSIDAD SECA MAXIMA: 2.14 gr/cm³

OPTIMO CONTENIDO DE HUMEDAD: 6.76 %


NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a reulizar el ensayo

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI

TRUJILLO - PERU

Calle Huayna Capac 144 - Int. 2 - Urb. Santa Maria - Mov. 976788652 - E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgCs PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN – DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2622

SOLICTTA: KERI, Y JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL + 10% CLORURO DE MAGNESIO

	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	121.90	120.80	130.40	122.30			
Peso Tara + Suelo Seco (gr)	118.90	118.30	123.40	115.30			
Peso del Agua (gr)	3.00	4.50	7.00	7.00			
Peso tara (gr)	38.50	35.60	30.70	40.10			
Peso Suelo Seco (gr)	80.40	80.70	92.70	75.20			
Contenido de humedad (%)	3.73	5.58	7.55	9.31			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3950	4054	4100	4061			
Peso Molde (gr)	1895	1895	1895	1895			
Peso Suelo Húrnedo (gr)	2055	2159	2205	2166			
Volumen Suelo Húmedo (gr)	956.04	956.04	956.04	956.04			
Densidad Humeda (gr/cm3)	2.15	2.26	2.31	2.27			
Densidad Seca (gr/cm3)	2.072	2.139	2.144	2,073			

DENSIDAD SECA MAXIMA: 2.15 gr/cm³

PTIMO CONTENIDO DE HUMEDAD: 6.80 %

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

ing, C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

R INDECOPI

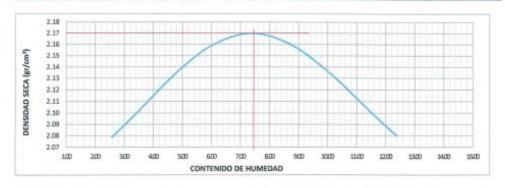
TRUJILLO - PERU

Calle Huaynu Capac 144 - Int. 2 - Urb. Santa Muria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

(ASTM D1557 - METODO B)

OBRA: ADICIÓN DE MgCl- PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN — DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

SOLICITA: KERLY JIMENA QUISPE ESTELA


DARWIN ANTONIO CHAVEZ POLO

UBICACIÓN: SANCHEZ CARRION - LA LIBERTAD

FECHA: TRUJILLO, NOVIEMBRE DEL 2022

TIPO DE SUELO: NATURAL + 10% CLORURO DE MAGNESIO

Note that the same of the same	CONTENIDO DE HUMEDAD (%)						
ENSAYO No	1	2	3	4			
Peso Tara + Suelo Húmedo (gr)	125.90	126.90	124.60	125.40			
Peso Tara + Suelo Seco (gr)	123.70	122.00	117.80	116.00			
Peso del Agua (gr)	2.20	4.90	6.80	9.40			
Peso tara (gr)	38.50	40.80	39.60	40.10			
Peso Suelo Seco (gr)	85.20	81.20	78.20	75.90			
Contenido de humedad (%)	2.58	6.03	8.70	12.38			
	DENSIDAD SECA (gr/cm3)						
ENSAYO No	1	2	3	4			
Peso Molde+Peso Suelo Húmedo (gr)	3939	4089	4145	4135			
Peso Molde (gr)	1900	1900	1900	1900			
Peso Suelo Húmedo (gr)	2039	2189	2245	2235			
Volumen Suelo Húmedo (gr)	956.04	956.04	956.04	956.04			
Densidad Humeda (gr/cm3)	2.13	2.29	2.35	2.34			
Densidad Seca (gr/cm3)	2.079	2.159	2.160	2.080			

DENSIDAD SECA MAXIMA: 2.17 ge/cm²

OPTIMO CONTENIDO DE HUMEDAD: 7.4 %

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI

TRUJILLO - PERU

Calle Huayna Capac 144 — Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com

: ADICIÓN DE MgC1 PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-DESVIO CHINAPAMPA. COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 : KERLY JIMENA QUESPE ESTELA DARWIN ANTONIO CHAVEZ POLO : SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 : NATURAL Obra

ENSAYO DE COMPACTACION CBR

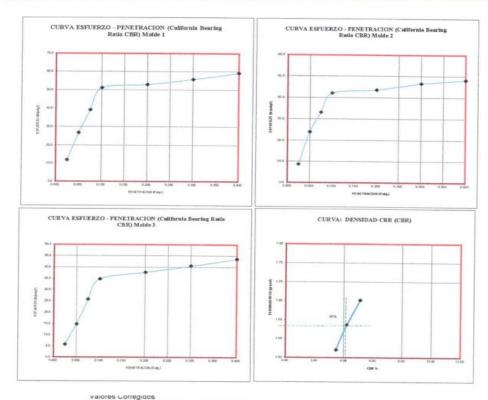
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MO	MOLDE 1		MOLDE 2		DE 3
N° DE GOLPES POR CAPA		56	2:	5	12	
SOBRECARGA (gr.)	4	530	450	30	450	30
Peso de Suelo húmedo + Molde (gr.)	7850		7720		7540	
Peso de Molde (gr.)	4110		4122		4100	
Peso del suelo Húmedo (gr.)	3740.00		3598		3440	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Densidad Húmeda (gr/cm3)	1.77		1.70		1.63	
CAPSULA N°	1		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	66.2		06.8		66.5	
Peso de suelo seco + Cápsula (gr.)	63.2		63.7		63.5	
Peso de Agua (gr)	3.00		3.1		3.00	
Peso de Cápsula (gr.)	20.5		20		20	
Peso de Suelo Seco (gr.)	42.7		43.7		43.50	
% de Humedad	7.03		7.14		6.90	
Densidad de Suelo Seco (gr/cm3)	1.65		1.59		1.52	

DIA	LECT. DIAL	HINCH, (%)	LECT. DIAL	HINCH. (%)	LECT. DIAL	HINCH (%
1	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00

Estructura	Limite Max
TIPO	HINCH. (%)
Base	1
Sub Base	2
Sub Rasante	3

ENSAYO DE CARGA PENETRACION

									*
ENSAYO DE CARGA	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	lbs.	lbs/pulg2	DIAL	ibs.	lbs/pulg2	DIAL	Ibs.	lbs/pulg2
0.025	7	35.2	11.7	6	26.1	8.7	5	17.0	5.7
0.050	12	80.8	26.9	- 11	71.7	23.9	- 8	44.3	14.8
0.075	16	117.3	39.1	14	99.0	33.0	12	77.1	25.7
0.100	20	153.7	51.24	17	126.4	42.1	1.5	104.5	34.8
0.200	21	159.2	53.1	18	130.9	43.6	16	113.6	37.9
0.300	22	167.4	55.8	19	140.0	46.7	17	121.8	40.6
0.400	2.5	144.1	60.1	NO.	146.6	49.7	1.0	120.0	42.4


C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

R INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 9767885652 — E-Mail: Jim_0626@hotmail.com

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B.R %	DENSIDAD SECA (gr/cm3)
1	0.1	51.2	1000	5.12	1.65
2	0.1	42.1	1000	4.21	1.59
3	0.1	34.8	1000	3.48	1.52

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	53.1	1500	3.54	1.65
2	0.2	43.6	1500	2.91	1.59
3	0.2	37.9	1500	2.52	1.52

Máxima Densidad Seca (gr./cm3)	1.65
ÓPTIMO Contenido de Humedad	7.03%
C.B.R Al 100 % de la Máxima Densidad Seca	5.12%
C.B.R Al 95% de la Máxima Densidad Seca	3.54%

. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251791

® INDECOPI TRUJILLO - PERU
Calle Huayna Capac 144 − Int. 2 - Urb. Santa Muria - Mov. 976785652 - E-Mail: Jim_0626@botmail.com

: ADICIÓN DE M₈CL PARA LA ENTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 : KERLY JIMENA QUISPE ESTELA DARWIN ASTONIO CHAVEZ POLO : SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 : NATURAL Obra

TO 2011 11	7 121, 1, 17	PART ALL	ACROS	CBR

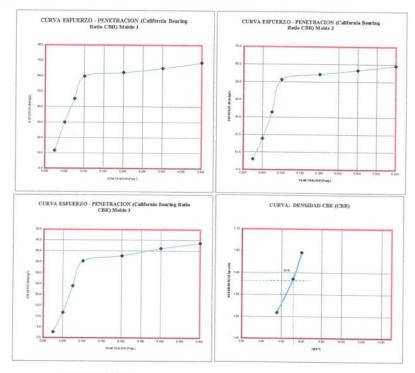
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOI	LDE 1	MOLI	DE 2	MOL	
N° DE GOLPES POR CAPA		56	25		17	
SOBRECARGA (gr.)	4:	530	453	0	453	
Peso de Suelo húmedo + Molde (gr.)	7880		7730		7570	-
Peso de Molde (gr.)	4140		4108		4130	
Peso del suelo Húmedo (gr.)	3740.00		3622		3440	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (em3)	1095		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Densidad Hümeda (gr/cm3)	1.77		1.71		1.63	
CAPSULA N°	1		2		3	
Peso de saelo Húmedo + Cápsula (gr.)	66.8		66.6		67.6	
Peso de suelo seco + Cápsula (gr.)	63.6		63.2		64.2	
Peso de Agua (gr)	3.20		3.4		3.40	
Peso de Cápsula (gr.)	20.5		20		20	
Peso de Saelo Seco (gr.)	43.1		43.2		44.20	
% de Humedad	7,42		7.97		7.69	
Densidad de Suelo Seco (gr/cm3)	1.65		1.59		1.51	

	ENSAYO DE EXPANSION						
DIA	LECT. DIAL	HINCH. (%)	LECT, DIAL	HINCH: (%)	LECT. DIAL	HINCH, (%	
1	0.00	0.00	0.00	0.00	0.00	0.00	
2	0.00	0.00	0.00	0.00	0.00	0.00	
3	0.00	0.00	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	0.00	0.00	

Estructura	Limite Ma		
TIPO	HINCH. (%)		
Base	1		
Sub Base	2		
Sub Rasante	3		

ENSAYO DE CARGA PENETRACION

ENSAYO DE CARGA	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	ibs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2
0.025	7	35.2	11.7	5	17.9	6.0	4	7.9	2.6
0.050	.13	89.9	30.0	9	53.4	17.8	7	35.2	11.7
0.075	18	135.5	45.2	14	99.0	33.0	- 11	71.7	23.9
0.100	23	179.4	59.81	20	153.7	51.2	15	106.3	35.4
0.200	24	186.5	62.2	21	162.8	54.3	16	113.6	37.9
0.300	25	194.7	64.9	22	170.1	56.7	17	123.6	41.2
0.400	26	205.7	68.6	23	177.4	59.1	18	130.9	43.6


TRUJILLO - PERU

® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	59.8	1000	5.98	1.65
2	0.1	51.2	1000	5.12	1.59
3	0.1	35.4	1000	3.54	1.51

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (ibs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	62.2	1500	4.15	1.65
2	0.2	54.3	1500	3.62	1.59
3	0.2	37.9	1500	2.52	1.51

Máxima Densidad Seca (gr./cm3)	1.65
ÓPTIMO Contenido de Humedad	7.42%
C.B.R Al 100 % de la Máxima Densidad Seca	5,98%
C.B.R Al 95% de la Máxima Densidad Seca	4.15%

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI

Calle Huayna Capac 144 — Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com TRUJILLO - PERU

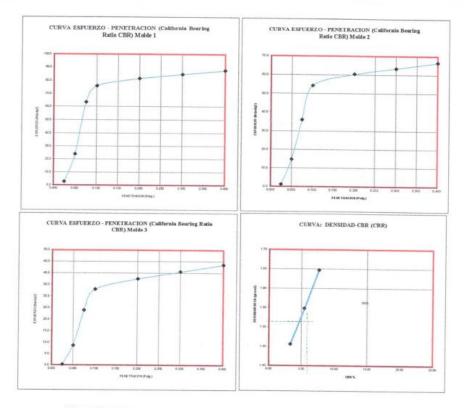
: ADICIÓN DE MgCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN – DESVIO CHÍNAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 : KERLY JIMERA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO : SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 : NATURAL

Fecha Tipo de sueto

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOI	LDE 1	MOL	DE 2	MOL	The second secon
N° DE GOLPES POR CAPA	VIII -	56		25		1
SOBRECARGA (gr.)	4530		4530		4530	
Peso de Suelo húmedo + Molde (gr.)	7940		7710		7500	76.
Peso de Molde (gr.)	4135		4135		4135	
Peso del suelo Humedo (gr.)	3805.00		3575		3365	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Densidad Húmeda (gr/cm3)	1.80		1.69		1.59	
CAPSULA N°	1		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	67.1		66.9		67.8	
Peso de suelo seco + Cápsula (gr.)	63.2		63.0		63.8	
Peso de Agua (gr)	3.90		3.9		4.01	
Peso de Capsula (gr.)	20.5		20		20	
Peso de Suelo Seco (gr.)	42.7		43.0		43.79	
% de Humedad	9.13		9.12		9.16	
Densidad de Suelo Seco (gr/cm3)	1.65		1.55		1.46	

DIA	LECT. DIAL	HINCH. (%)	LECT. DIAL	HINCH (%)	LECT, DIAL	HINCH: (%)
1	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0,00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00

Estructura	Limite Max
TIPO	HINCH. (%)
Base	1
Sub Base	2
Sub Rasante	- 3


ENSAYO DE CARGA PENETRACION ENSAYO DE CARGA LECTURA MOLDE 1 56 GOLPES LECTURA MOLDE 2 25 GOLPES LECTURA MOLDE 3									
									12 GOLPES
PENETRACION	DIAL	Ibs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2
0.025	4	7.9	2.6	4	3.3	1.1	3	0.6	0.2
0.050	. 11	71.7	23.9	8	44.3	14.8	6	26.1	8.7
0.075	24	190.2	63.4	15	108.1	36.0	11	71.7	23.9
0.300	28	228.0	76.00	21	162.8	54.3	14	99.0	33.0
0.200	30	244.9	81.6	23	181.1	60.4	16	112.7	37.6
0.300	31	254.0	84.7	24	190.2	63.4	17	121.8	40.6
9.400	32	263.1	87.7	25	199.3	66.4	18	130.0	43.6

® INDECOPI

Calle Huayna Capac 144 — Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com TRUJILLO - PERU

Valores Corregidos

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESIÓN PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	76.0	1000	7.60	1.65
2	0.1	54.3	1000	5.43	1.55
3	0.1	33.0	1000	3.30	1.46

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gt/cm3)
1	0.2	81.6	1500	5.44	1.65
2	0.2	60.4	1500	4.02	1.55
3	0.2	37.6	1500	2.50	1.46

Máxima Densidad Seca (gr./cm3)	1.65
ÓPTIMO Contenido de Humedad	9.13%
C.B.R Al 100 % de la Máxima Densidad Seca	7.60%
C.B.R Al 95% de la Máxima Densidad Seca	5.44%

: ADICIÓN DE MgCI: PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 : KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO : SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 : NATURAL + 3% CLORURO DE MAGNESIO

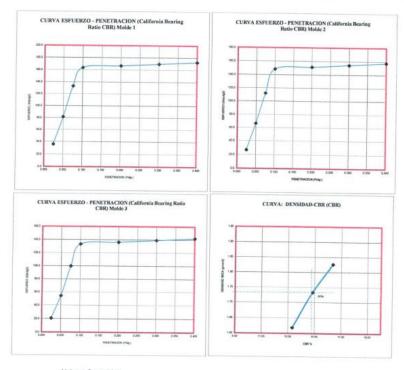
ENSAYO DE COMPACTACION CBR

ESTADO	SIN SATURAR	SIN SATURAR SATURADO		SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLDE 1		SIN SATURAR MOL		MOLDE 3	
N° DE GOLPES POR CAPA	56	56		5	12	
SOBRECARGA (gr.)	453	0	45	30	45	
Peso de Suelo húmedo + Molde (gr.)	8261		8052		7796	10
Peso de Molde (gr.)	4135		4135		4135	
Peso del suelo Húmedo (gr.)	4126		3917		3661	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116	2136		2116		
Densidad Hümeda (gr/cnt3)	1.95		1.85		2116 1.73	
CAPSULA N°	1		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	66.4		70.2		67.73	
Peso de suelo seco + Capsula (gr.)	63.9		67.4		65.17	
Peso de Agua (gr)	2.45		2.7		2.56	
Peso de Capsula (gr.)	27.6		27.45		28.1	
Peso de Suelo Seco (gr.)	36.3		40.0		37.07	
% de Humedad	6.75		6.83		6.91	
Densidad de Suelo Seco (gr/cm3)	1.83		1.73		1.62	

ENSAYO DE EXPANSION									
DIA	LECT, DIAL	HINCH. (%)	LECT, DIAL	HINCH. (%)	LECT. DIAL	HINCH, (%			
1	0.10	0.00	0.11	0.00	0.13	0.00			
2	0.11	0.12	0.12	0.24	0.15	0.48			
3	0.12	0.36	0.15	0.60	0.18	0.60			
4	0.13	0.24	0.18	0.84	0.22	0.96			

Estructura	Limite Max
TIPO	HINCH. (%)
Base	1
Sub Base	2
Sub Resente	3

ENSAYO DE CARGA PENETRACION ENSAYO DE CARGA LECTURA MOLDE 1 56 GOLPES LECTURA MOLDE 2 25 GOLPES LECTURA MOLDE 3									
									12 GOLPES
PENETRACION	DIAL.	lbs.	ths/pulg2	DEAL	lbs.	lbs/polg2	DIAL.	lbs.	lbs/pulg2
0.025	15	108.1	36.0	12	80.8	26.9	10	62.6	20.9
0.050	30	244.9	81.6	25	199.3	66.4	21	162.8	54.3
0.075	47	399.8	133.3	40	336.0	112.0	36	299.6	99.9
0.100	57	491.0	163.7	. 52	445.4	148.5	47	399.8	133.3
9.200	58	500.1	166.7	53	454.5	151.5	48	409.0	136.3
0.300	59	509.2	369.7	54	463.7	134.6	40	418.1	139.4
0.400	60	610.0	192.0	14	470.0	150.0	- 44	318.1	129.4


TRUJILLO - PERU

® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@bi

MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	163.7	1000	16.37	1.83
2	0.1	148.5	1000	14.85	1.73
3	0.1	133.3	1000	13,33	1.62

MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	166.7	1500	11,11	1.83
2	0.2	151.5	1500	10.10	1.73
3	0.2	136.3	1500	9.09	1.62

Máxima Densidad Seca (gr./cm3)	1.83
ÓPTIMO Contenido de Humedad	6.75%
C.B.R Al 100 % de la Máxima Densidad Seca	16.37%
C.B.R Al 95% de la Máxima Densidad Seca	14 959/

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

© INDECOPI TRUJILLO - PERU Calle Huayna Capac 144 — Int. 2 — Urb. Santa Muria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

: ADICIÓN DE MgC1 PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 ! KERLY JIMENA QUESPE ESTELA DARWIN ANTONIO CHAVEZ POLO ! SANCHEZ CARRION - LA LIBERTAD ! TRUJILLO, NOVIEMBRE DEL 2022 ! NATURAL + 3% CLORURO DE MAGNESIO

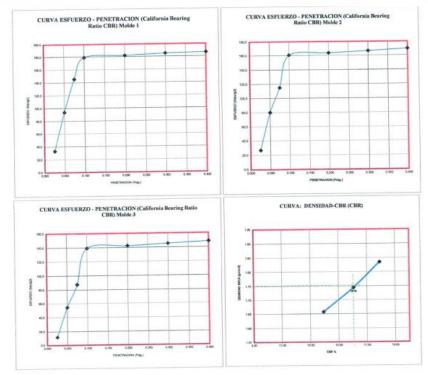
ENSAYO DE COMPACTACION CBR

ESTADO	SIN SATURAR SATURADO		SIN SATURAR	SATURADO	GIN CATEDAR	C. 1801 W. 1 W. 11
MOLDE	MOLDE 1		MOL	THE RESIDENCE AND ADDRESS OF THE PARTY OF TH	SIN SATURAR SATURA	
Nº DE GOLPES POR CAPA	56		The second secon		MOLDE 3	
SOBRECARGA (gr.)	453		25		15	
Peso de Suelo hámedo + Molde (gr.)	8292		8090	4530		10
Peso de Molde (gr.)	4135		The second second		7880	
Peso del suelo Húmedo (ur.)	4157		4135 3955		4135	
Volumen de Molde (cm3)	3211		3211		3745	
Volumen del Disco Especiador (cm3)	1095		1095		3211	
Volumen Util (cm3)	2116		2116		1095	
Densidad Húmeda (gr/cm3)	1.96		1.87		2116	
CAPSULA N°	1		2		1,77	
Peso de suelo Húmedo + Capsula (gr.)	66.0		66.7		3	
Peso de suelo seco + Cápsula (gr.)	63.5		64.1		66.9	
Peso de Agua (gr)	2.54		2.6		64.4	
Peso de Capsula (gr.)	27.6		27.45		2.48	
Peso de Suelo Seco (gr.)	35.0		36.7		28.1	
% de Humedad	7.08		7.09		36.27	
Densidad de Suelo Seco (gr/cm3)	1.83		1.75		6.84	
	1.02		1.72		1.66	

ENSAYO DE EXPANSION									
DIA	LECT. DIAL	HINCH. (%)	LECT. DIAL	HINCH (%)	LECT. DIAL	HINCH. (%)			
1	0.10	0.00	0.17	0.00	0.19	0.00			
2	0.11	0.24	0.19	0.36	0.21	0.60			
3	0.12	0.24	0.20	0.34	0.24	0.72			
4	0.14	0.36	0.22	0.38	0.28	0.84			

Estructura	Limite Max
TIPO	HINCH. (%)
Base	1
Sub Base	2
Sub Resente	3

ENSAYO DE CARGA PENETRACION ENSAVO DE CARGA | LECTURA | MO


ENSATO DE CARGA	LECTURA	MOEDE I	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	Re.	fbs/pulg2	DIAL	Bu.	lbs/pulg2	DIAL	lbs.	
0.025	14	99.0	33.0	12	80.8	26.9	Delete.		Ibs/pulg2
0.050	34	281.1	93.8	10	240.3		7	35.2	11.7
0.075	41	436.3	145.4	29		80,1	21	162.8	54.3
0.100				41	345.2	115.1	32	263.1	87.7
	- 24	537.5	179.2	. 56	481.9	160.6	49	418.1	130.4
0.200	63	545.7	181.9	57	491.0	163.7	50	427.2	
0.300	64	554.8	184.9	38	500.1	166.7			142.4
0.400	65	559.4	186.5	50			- 51	436.3	145.4
	-	2007	190.7	39	509.2	169.7	52	445.4	148.5

® INDECOPI

Culle Huayna Căpac 144 − Int. 2 − Urb. Santa Muria − Mov. 976785652

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	179.2	1000	17.92	1.83
2	0.1	160.6	1000	16.06	1.75
3	0.1	139.4	1000	13,94	1.66

MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	SECA (gr/cm3)
1	0.2	181.9	1500	12.13	1.83
2	0.2	163.7	1500	10.91	1.75
3	0.2	142.4	1500	9,49	1.66

Máxima Densidad Seca (gr./cm3)	1.83
ÓPTIMO Contenido de Humedad	7.08%
C.B.R Al 100 % de la Máxima Densidad Seca	17.92%
C.B.R Al 95% de la Máxima Densidad Seca	16.06%

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

ing, C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

B INDECOPI TRUJILLO - PERU

Calle Huavna Càpac 144 — Int. 2 - Urb. Santa Murin - Mov. 976785652 - E-Mail: Jim 0626@botmail.com

2 ADICIÓN DE M_BCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 1 KEELY JIMENA QUISFE ESTELA DARWIN ANTONIO CHAVEZ POLO SANCHEZ CARRION - LA LIBERTAD 1 TRUJILLO, NOVIEMBER DEL 2022 1 NATURAL * 3% CLORURO DE MAGNESIO

ENSAYO	DE COMP	ACTA	CION	CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLI	DE 1	MOL	DE 2	MOL	DE 3
N° DE GOLPES POR CAPA	. 56		. 2		13	2
SOBRECARGA (gr.)	453	0	45	30	45.	30
Peso de Suelo humedo + Molde (gr.)	8262		8056		7799	
Peso de Molde (gr.)	4135		4135		4135	
Peso del suelo Himedo (gr.)	4127		3921		3664	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116		2316		2116	
Densidad Hirmeda (gp/cm3)	1.95		1.85		1.73	
CAPSULA N°	1.		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	69.0		66.6		66.7	
Peso de suelo seco + Cápsula (gr.)	66.4		64.1		64.3	
Peso de Agua (gr)	2.64		2.5		2.40	
Peso de Capsula (gr.)	27.6		27.45		28.1	
Peso de Suelo Seco (gr.)	38.8		36.7		36.20	
% de Humedad	6.80		6.82		6.63	
Densidad de Suelo Seco (gr/cm3)	1.83	0	1.73		1.62	(

	ENSAYO DE EXPANSION										
DIA	LECT. DIAL	HINCH. (%)	LECT. DIAL	HINCH: (%)	LECT. DIAL	HINCH, (%					
3	0.10	0.00	0.11	0.00	0.14	0.00					
9	0.12	0.48	0.13	0.50	0.16	0.58					
-	0.13	0.24	0.16	0.53	0.19	0.62					
4	0.14	0.31	0.18	0.58	0.22	0.72					

Estructura	Limite Max
TIPO	HINCH. (%)
Dase	1
Sub Base	2
Sub Rasante	3

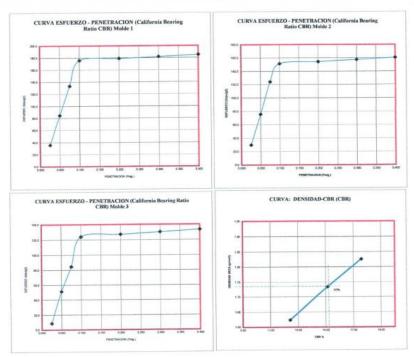
SUELO NO EXPANSIVO

	ENS	AYO DE C	ARGA PE	NETRACI	ON		
LECTION	MOLDET	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLI

ENSAYO DE CARGA	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2
PENETRACION	DEAL		36.0	19	80.0	30.0	6	26.1	8.7
0.025	15	108.1		10		75.5	20	153.7	51.2
0.050	31	254.0	84.7	28	226.6		201		
0.075	47	399.8	133.3	44	372.5	124.2	31	254.0	84.7
0.100	61	527.5	175.8	53	454.5	151.5	- 44	372.5	124.2
0.200	62	536.6	178.9	54	463.7	154.6	45	381.6	127.2
		545.7	181.9	44	472.8	157.6	46	390.7	130.2
0.300	63			- 22	481.9	160.6	47	399.8	133.3
0.400	64	554.K	184.0	38	481.9	1900	- 47	225,4	1000

NOTA: Les material fueson muestroados por el solicitante, el luboratorio solo se limitó a realizar el ensayo

Jim C. Anton Fiestas


TRUJILLO - PERU

® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@be

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	SECA (gr/cm3)	
1	0.1	175.8	1000	17.58	1.83	
2	0.1	151.5	1000	15,15	1.73	
3	0.1	124.2	1000	12.42	1.62	

MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	178.9	1500	11.92	1.83
2	0.2	154.6	1500	10.30	1.73
3	0.2	127.2	1500	8.48	1.62

Máxima Densidad Seca (gr./cm3)	1.83
ÓPTIMO Contenido de Humedad	6.80%
C.B.R Al 100 % de la Máxima Densidad Seca	17.58%
C R R Al 95% de la Máxima Densidad Seca	15.15%

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

© INDECOPI TRUJILLO - PERU Calle Huayna Capac 144 — Int. 2 — Urb. Santa Muria — Mov. 976785652 — E-Mail: Jim_0626@hotmail.com

: ADICIÓN DE M_ECI, PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN – DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 : KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO : SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 : NATURAL + 5% CLORURO DE MAGNESIO

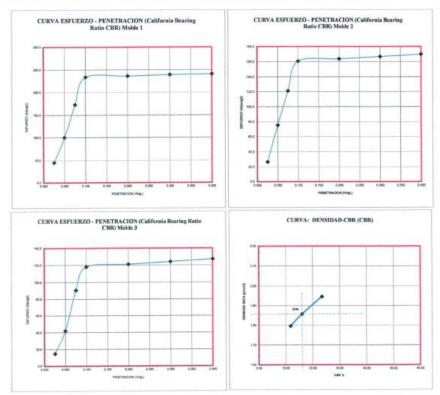
ENSAYO DE COMPACTACION CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLI	MOLDE I		MOLDE 2		DE 3
N° DE GOLPES POR CAPA	- 56	56		5	1.	2
SOBRECARGA (gr.)	453	4530		4530		30
Peso de Suelo húmedo + Molde (gr.)	8520		8370		8200	
Peso de Molde (gr.)	4135		4135		4135	
Peso del suelo Húmedo (gr.)	4385		4235		4065	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Densidad Húmoda (gr/cm3)	2.07		2.00		1.92	
CAPSULA Nº	1		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	69.0	3	68.0		68.3	
Peso de suelo seco + Cápsula (gr.)	66.5		65.1		65.70	
Peso de Agua (gr)	2.50		2.9		2.60	
Peso de Câpsula (gr.)	27.6		27.45		28.1	
Peso de Suelo Seco (gr.)	38.9		37.7		37.60	
% de Humedad	6.43		7.70		6.91	
Dessidad de Suelo Seco (gr/cm3)	1.95		1.86		1.80	

DIA	LECT, DIAL	HINCH. (%)	LECT. DIAL	HINCH: (%)	LECT. DIAL	HINCH (%
1	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00

Estructura	Limite Max
TIPO	HINCH. (%)
Base	1
Sub Base	2
Rich Danager	9.

ENSAYO DE CARGA PENETRACION									
ENSAYO DE CARGA	LECTURA	MOLDE I	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOUPES
PENETRACION	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	lbs/puig2	DIAL	lbs.	lbs/pulg2
0.025	18	135.5	45.2	12	80.8	26.9	8	44.3	14.8
0.050	36	299.6	00.0	26	226.6	75.5	17	126.4	42.1
0.075	60	518.3	172.8	41	363.4	121.1	33.	272.2	90.7
0.100	803	702.0	234.0	56	483.9	160.6	42	354.3	118.1
0.200	81	709.8	236.6	57	491.0	163.7	43	363.4	121.1
0.300	92	718.9	239.6	58	500.1	166.7	44	372.5	124.2
0.400	83	723.5	241.2	50	509.2	169.7	45	381.6	127.2


NOTA: Los material fueron muestreados por el solicizante, el laboratorio solo se limitó a realizar el ansayo

® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Muria — Mov. 976785652 — E-Mail: Jim_0626@hot TRUJILLO - PERU

MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)	
1	0.1	234.0	1000	23,40	1.95	
2	0.1	160.6	1000	16.06	1.86	
3	0.1	118.1	1000	11.81	1.80	

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	236.6	1500	15.77	1.95
2	0.2	163.7	1500	10.91	1.86
3	0.2	121.1	1500	8.08	1.80

Máxima Densidad Seca (gr./cm3)	1.95
ÓPTIMO Contenido de Humedad	6.43%
C.B.R Al 100 % de la Máxima Densidad Seca	23.40%
C R R Al 95% de la Máxima Densidad Seca	16.06%

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI TRUJILLO - PERU Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@.hotmail.com

: ADICIÓN DE MªCE PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN – DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

DISYRO CHINAPANI'A, COCHORGO, SANC I KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO I SANCHEZ CARRION - LA LIBERTAD TRUJILLO, NOVIEMBRE DEL 2022 1 NATURAL + 5% CLORURO DE MAGNESIO Ubicación Fecha Tipo de suelo

ENSAYO DE COMPACTACION CBR

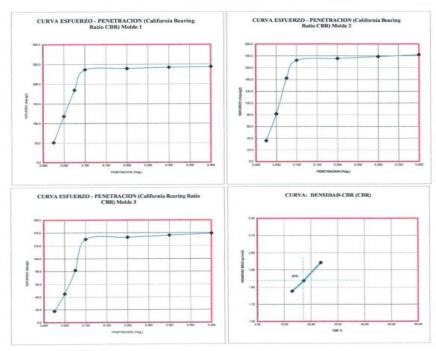
ESTADO	SIN SATURAR	SIN SATURAR SATURADO :		SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLI	MOLDE 1		MOLDE 2		DE 3
N° DE GOLPES POR CAPA	56	56		25		2
SOBRECARGA (gr.)	453	10	45	30	45	30
Peso de Suelo húmedo + Molde (gr.)	8520		8340		8160	
Peso de Molde (gr.)	4135		4135		4135	
Peso del suelo Húmedo (gr.)	4385		4205		4025	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Densidad Húmeda (gr/cm3)	2.07		1.99		1.90	
CAPSULA Nº	1		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	68.7		67.7		67.9	
Peso de suelo seco + Cápsula (gr.)	66.1		64.7		65.30	
Peso de Agua (gr)	2.57		3.0		2.60	
Peso de Cápsula (gr.)	27.6		27.45		28.1	
Peso de Suelo Seco (gr.)	38.5		37,3		37.20	
% de Humedad	6.67		8.11		6,99	
Densidad de Suelo Seco (gr/cm3)	1.94		1.84		1.78	

	ENSAYO DE EXPANSION								
DIA	LECT. DIAL	HINCH. (%)	LECT. DIAL	HINCH. (%)	LECT. DIAL	HINCH. (%			
1	0.00	0.00	0.00	0.00	0.00	0.00			
2	0.00	0.00	0.00	0.00	0.00	0.00			
3	0.00	0.00	0.00	0.00	0.00	0.00			
4	0.00	0.00	0.00	0.00	0.00	0.00			

Estructura	Limite Max
TIPO	HINCH. (%)
Base	1
Sub Base	2
Sub Resente	3

SUELO NO EXPANSIVO

ENSAYO DE CARGA PENETRACION									
ENSAYO DE CARGA	LECTURA	MOLDE I	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2	DIAL.	lbs.	lbs/pulg2
0.025	20	153.7	51.2	15	108.1	36.0	9	53.4	17.8
0.050	42	354.3	118.1	30	244.9	81.6	18	135.5	45.2
0.075	64	554.8	184.9	50	427.2	142.4	30	244.9	81.6
0.100	81	709.8	236.6	60	518.3	172.8	46	390.7	130.2
0.200	82	718.9	239.6	61	527.5	175.8	47	399.8	133.3
0.300	83	728.0	242.7	62	536.6	178.9	48	409.0	136.3
0.400	8.1	737.6	244.2	63	545.7	181.9	49	418.1	139.4


® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 TRUJILLO - PERU

Chávez Polo, Darwin Antonio - Quispe Estela, Kerly Jimena

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)	
1	0.1	236.6	1000	23.66	1.94	
2	0.1	172.8	1000	17.28	1.84	
3	0.1	130.2	1000	13.02	1.78	

	MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	SECA (gr/cm3)
Т	1	0.2	239.6	1500	15.98	1.94
-	2	0.2	175.8	1500	11.72	1.84
-	3	0.2	133.3	1500	8.89	1.78

Máxima Densidad Seca (gr./cm3)	1.94
ÓPTIMO Contenido de Humedad	6.67%
C.B.R Al 100 % de la Máxima Densidad Seca	23.66%
C.B.R Al 95% de la Máxima Densidad Seca	17.28%

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

® INDECOPI Calle Huayna Capac 144 — Int. 2 — Urb. Santa Muria — Mov. 976785652

: ADICIÓN DE MgCh PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN-DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 : KERLI Y JIMENA, QUISPE E ESTELA DARWIN ANTONIO CHAVEZ POLO : SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 : NATURAL + 5% CLORURO DE MAGNESIO Ubicación Fecha Tipo de suelo

ENSAYO DE COMPACTACION CB	

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLI	DE I	MOL	DE 2	MOLI	DE 3
N° DE GOLPES POR CAPA	56	D.	2	5	12	
SOBRECARGA (gr.)	453	0	45	30	453	90
Peso de Suelo húmedo + Molde (gr.)	8740		8510		8260	
Peso de Molde (gr.)	4135		4135		4135	
Peso del suelo Húmedo (gr.)	4605		4375		4125	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Densidad Húmoda (gg/cm3)	2.18		2.07		1.95	
CAPSULA Nº	1		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	68.6		67.3		67.6	
Peso de suelo seco + Cápsula (gr.)	66.0		64.6		65.10	
Peso de Agua (gr)	2.57		2.7		2.50	
Peso de Capsula (gr.)	27.6		27.45		28.1	
Peso de Suelo Seco (gr.)	38.4		37.2		37.00	
% de Humedad	6,69		7.27		6.76	
Densidad de Suelo Seco (gr/cm3)	2.84		1.93		1.83	

11	ENSAYO DE EXPANSION									
DIA	LECT. DIAL	HINCH. (%)	LECT. DIAL	HINCH. (%)	LECT. DIAL	HINCH (%				
1	0.10	0.00	0.11	0.00	0.13	0.00				
2	0.11	0.12	0.12	0.24	0.15	0.48				
3	0.12	0.38	0.15	0.60	0.18	0.60				
4	0.13	0.24	0.18	0.84	0.22	0.96				

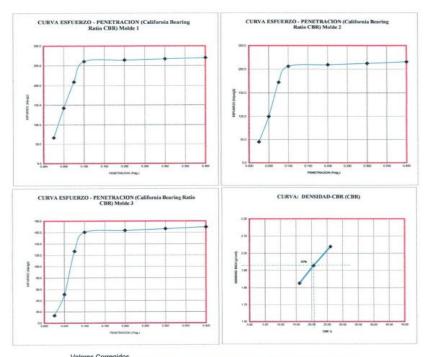
Estructura	Limite Max
TIPO	HINCH. (%)
Base	1
Sub Base	2
Sub Resente	3

SUELO NO EXPANSIVO

ENSAYO DE CARGA PENETRACION

ENSAYO DE CARGA	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2	DIAL	Ibs.	Ibs/pulg2
0.025	25	199.3	66.4	18	135.5	45.2	- 8	39.8	13.3
0.050	50	427.2	142.4	36	299.6	99.9	20	153.7	51.2
0.075	72	627.7	209.2	60	518.3	172.8	45	381.6	127.2
0.100	89	782.7	260.9	71	618.6	206.2	56	481.9	160.6
0.200	90	791.8	263.9	72	627.7	209.2	57	491.0	163.7
0.300	91	800.9	267.0	73	636.9	212.3	58	500.1	166.7
0.400	92	810.1	270.0	74	646.0	215.3	59	509.2	169.7

NOTA: Los materiales fueron muestreados por el laboratorio, ademis de realizar el ensayo


TRUJILLO - PERU

® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@ht

MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)	
1	0.1	260.9	1000	26.09	2.04	
2	0.1	206.2	1000	20.62	1.93	
3	0.1	160.6	1000	16.06	1.83	

MOLI Nº		APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	SECA (gr/cm3)
1	0.2	263.9	1500	17.60	2.04
2	0.2	209.2	1500	13.95	1.93
3	0.2	163.7	1500	10.91	1.83

Máxima Densidad Seca (gr./cm3)	2.04
ÓPTIMO Contenido de Humedad	6.69%
C.B.R Al 100 % de la Máxima Densidad Seca	26.09%
C.B.R Al 95% de la Máxima Densidad Seca	20.62%

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

© INDECOPI

Calle Huayna Capac 1-44 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_0626@1

26@hotmail.com

: ADICIÓN DE M_BCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN – DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

Solicitante

JESTIO CHICATA STATE, COLUMNO, SAMELI KERLY, JIMENA QUISPE ESTELA.
DARWIN ANTONIO CHAVEZ POLO
: SANCHEZ CARRION - LA LIBERTAD
: TRUJILLO, NOVIEMBRE DEL 2022
: NATURAL + 10% CLORURO DE MAGNESIO Ubicación Fecha Tipo de suelo

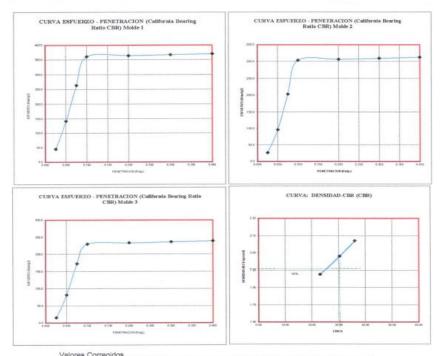
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLI	MOLDE 1		MOLDE 2		DE 3
Nº DE GOLPES POR CAPA	56	56		5	12	
SOBRECARGA (gr.)	453	0	45	30	453	30
Peso de Suelo húmedo + Molde (gr.)	8840		8670		8400	
Peso de Molde (gr.)	4135		4135		4135	
Peso del suelo Húmedo (gr.)	4705		4535		4265	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Densidad Hümeda (gr/cm3)	2 22		2.14		2.02	
CAPSULA N°	1		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	69.3		68.2		68.5	
Peso de suelo seco + Cápsula (gr.)	66.5		65.1		65.7	
Peso de Agua (gr)	2.85		3.1		2.80	
Peso de Cápsula (gr.)	27.6		27.45		28.1	
Peso de Suelo Seco (gr.)	38.9		37.7		37.60	
% de Humedad	7.34		8.23		7.45	
Densidad de Suelo Seco (gr/cm3)	2.07		1.98		1.88	

DIA	LECT. DIAL	HINCH, (%)	LECT. DIAL	HINCH (%)	LECT, DIAL	HINCH. (%
1	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00

Estructura	Limite Max
TIPO	HINCH (%)
Base	1
Sub Base	2
Sub Rasante	3

ENSAVO DE CARGA PENETRACION

ENSAYO DE CARGA	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	lbs/pulg2
0.025	18	135.5	45.2	12	80.8	26.9	8	44.3	14.8
0.050	50	427.2	142.4	35	290.5	96.8	30	244.9	81.6
0.075	90	791.8	263.9	70	609.5	203.2	60	518.3	172.8
0.100	122	1083.5	361.2	103	910.3	303.4	79	691.5	230.5
0.200	123	1092.6	364.2	104	919.4	306.5	80	700.7	233.6
0,300	124	1101.8	367.3	105	928.6	309.5	82	709.8	236.6
0.400	125	1110.9	370.3	106	937.7	312.6	82	718.9	239.6


TRUJILLO - PERU

® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Marin — Mov. 976785652 — E-Mail: Jim_0626@bi

MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (ibs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	361.2	1000	36.12	2.07
2	0.1	303.4	1000	30.34	1.98
3	0.1	230.5	1000	23.05	1.88

	MOLDE Nº	17.		PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
Г	1	0.2	364.2	1500	24.28	2.07
Г	2	0.2	306.5	1500	20.43	1.98
	3	0.2	233.6	1500	15.57	1.88

Máxima Densidad Seca (gr./cm3)	2.07
ÓPTIMO Contenido de Humedad	7.34%
C.B.R Al 100 % de la Máxima Densidad Seca	36.12%
C.B.R Al 95% de la Máxima Densidad Seca	30.34%

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO

® INDECOPI

Calle Huayna Capac 1.44 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mail: Jim_062669

TRUJILLO - PERU

: ADICIÓN DE MgCb PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN – DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022

DESVIO CHAVANTA, COLHORO, SANCE KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO SANCHEZ CARRION - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 : NATURAL + 10% CLORURO DE MAGNESIO Ubicación

Fecha Tipo de suelo

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLDE 1		MOLDE 2		MOLDE 3	
Nº DE GOLPES POR CAPA	56		2	25		2
SOBRECARGA (gr.)	453	10	45	30	4530	
Peso de Suelo húmedo + Molde (gr.)	8850		8640		8400	
Peso de Molde (gr.)	4135		4135		4135	
Peso del suelo Húmedo (gr.)	4715		4505		4265	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Densidad Hümeda (gr/cm3)	2.23		2.13		2.02	
CAPSULA Nº	1		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	68.8		67.7		67.6	
Peso de suelo seco + Cápsula (gr.)	65.9		64.6		64.8	
Peso de Agua (gr)	2.90		3.1		2.80	
Peso de Cápsula (gr.)	27.6		27.45		28.1	
Peso de Suelo Seco (gr.)	38.3		37.2		36.70	
% de Humedad	7.57		8.34		7.63	
Densidad de Suelo Seco (gr/cm3)	2.07		1.97		1.87	

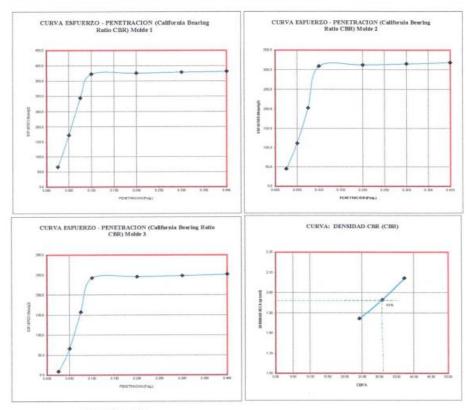
ENSAYO DE EXPANSION									
DIA	LECT. DIAL	HINCH (%)	LECT. DIAL	HINCH. (%)	LECT. DIAL	HINCH, (%			
1	0.10	0.00	0.11	0.00	0.13	0.00			
2	0.11	0.12	0.12	0.24	0.15	0.48			
3	0.12	0.36	0.15	0.60	0.18	0.60			
4	0.13	0.24	0.18	0.84	0.22	0.96			

Estructura	Limite Max
TIPO	HINCH. (%)
Base	1
Sub Base	2
Sub Rasante	3

ENSAYO DE CARGA PENETRACION

ENSAYO DE CARGA	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	Ibs.	lbs/pulg2	DIAL.	Ibs.	lbs/pulg2	DIAL	Ibs.	ibs/pulg2
0.025	25	199.3	66.4	18	135.5	45.2	6	26.1	8.7
0.050	60	518.3	172.8	40	336.0	112.0	25	199.3	66.4
0.075	100	883.0	294.3	70	609.5	203.2	55	472.8	157.6
0.100	126	1120.0	373.3	105	928.6	309.5	83	728.0	242.7
0.200	127	1129.1	376.4	106	937.7	312.6	84	737.1	245.7
0.300	128	1138.2	379.4	107	946.8	315.6	85	746.2	248.7
0.400	129	1147.3	382.4	108	955.9	318.6	86	755.4	251.8

Anton Fiestas


TRUJILLO - PERU

® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976788652 — E-Mail: Jim_0626@hotmail.com

alores Correg	idos				
MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (lbs/puig2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	373.3	1000	37.33	2.07
2	0.1	309.5	1000	30.95	1.97
3	0.1	242.7	1000	24.27	1.87

MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	376.4	1500	25.09	2.07
2	0.2	312.6	1500	20.84	1.97
3	0.2	245.7	1500	16.38	1.87

Máxima Densidad Seca (gr./cm3)	2.07
ÓPTIMO Contenido de Humedad	7.57%
C.B.R Al 100 % de la Máxima Densidad Seca	37.33%
C.B.R Al 95% de la Máxima Densidad Seca	30.95%

ing. C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI

Calle Huayna Capac 144 — Int. 2 — Urb. Santa Maria — Mov. 976785652 — E-Mailt Jim_0626@hotmail.com

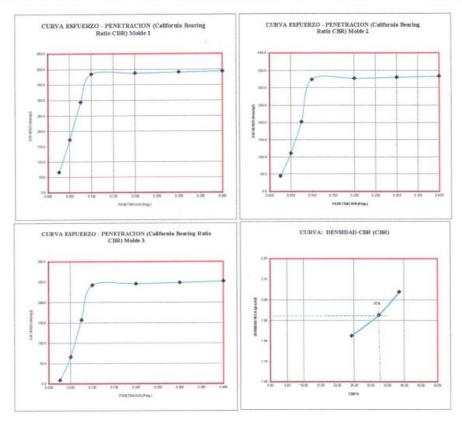
: ADICIÓN DE MgCL PARA LA ESTABILIZACIÓN DE TROCHA CARROZABLE DEL TRAMO KM 0 AL KM 6 ALTO CUIN - DESVIO CHINAPAMPA, COCHORCO, SANCHEZ CARRIÓN - LA LIBERTAD 2022 : KERLY JIMENA QUISPE ESTELA DARWIN ANTONIO CHAVEZ POLO : SANCHEZ CARRIÓN - LA LIBERTAD : TRUJILLO, NOVIEMBRE DEL 2022 : NATURAL + 10% CLORURO DE MAGNESIO Obra

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLI	DE 1	MOL	DE 2	MOL	DE 3
Nº DE GOLPES POR CAPA	56	5	2	5	13	2
SOBRECARGA (gr.)	453	10	45	30	45	30
Peso de Suelo húmedo + Molde (gr.)	8740		8510		8260	
Peso de Molde (gr.)	4135		4135		4135	
Peso del suelo Húmedo (gr.)	4605		4375		4125	
Volumen de Molde (cm3)	3211		3211		3211	
Volumen del Disco Espaciador (cm3)	1095		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Densidad Hümeda (gr/cm3)	2.18		2.07		1.95	
CAPSULA Nº	1		2		3	
Peso de suelo Húmedo + Cápsula (gr.)	68.6		67.3		67.6	
Peso de suelo seco + Cápsula (gr.)	66.0		64.6		65.10	
Peso de Agua (gr)	2.57		2.7		2.50	
Peso de Cápsula (gr.)	27.6		27.45		28.1	
Peso de Suelo Seco (gr.)	38.4		37.2		37.00	
% de Humedad	6.69		7.27		6.76	
Densidad de Suelo Seco (gr/cm3)	2.04		1.93		1.83	

		ENSA	YO DE EXPANS	SION		
DIA	LECT DIAL	HINCH. (%)	LECT. DIAL	HINCH. (%)	LECT, DIAL	HINCH (%
*	0.10	0.00	0.11	0.00	0.13	0.00
2	0.11	0.12	0.12	0.24	0.15	0.48
3	0.12	0.36	0.15	0.60	0.18	0.60
4	0.13	0.24	0.18	0.84	0.22	0.96

Estructura	Limite Max
TIPO	HINCH (%)
Base	1
Sub Base	2
Sub Rasante	3

ENSAYO DE CARGA PENETRACION


ENSAYO DE CARGA	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	lbs.	Ibs/pulg2	DIAL	lbs.	lbs/pulg2	DIAL	lbs.	Ibs/pulg2
0.025	25	199.3	66.4	18	135.5	45.2	- 6	26.1	8.7
0.050	60	518.3	172.8	40	336.0	112.0	25	199.3	66.4
0.075	100	883.0	294.3	70	609.5	203.2	55	472.8	157.6
0.100	130	1156.4	385.5	110	974.1	324.7	83	728.0	242.7
0.200	131	1165.6	388.5	111	983.3	327.8	84	737.1	245.7
0.300	132	1174.7	391.6	112	992.4	330.8	85	746.2	248.7
0.400	133	1183.8	394.6	113	1001.5	333.8	86	755.4	251.8

® INDECOPI

Calle Huayna Capac 144 — Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@b TRUJILLO - PERU

Valores Correg	pidos				
MOLDE Nº	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	385.5	1000	38.55	2.04
2	0.1	324.7	1000	32:47	1.93

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRÓN (Lb/pulg2)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	388.5	1500	25.90	2.04
2	0.2	327.8	1500	21.85	1.93
3	0.2	245.7	1500	16.38	1.83

Máxima Densidad Seca (gr./cm3)	2.04
ÓPTIMO Contenido de Humedad	6.69%
C.B.R Al 100 % de la Máxima Densidad Seca	38.55%
C.B.R Al 95% de la Máxima Densidad Seca	32,47%

ing, C. Jim C. Anton Fiestas JEFE DE LABORATORIO CIP: 251701

® INDECOPI

Calle Huayna Capac 144 — Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mail: Jim_0626@hotmail.com