

# FACULTAD DE INGENIERÍA

# Carrera de INGENIERÍA DE MINAS

# "EVALUACIÓN GEOMECÁNICA Y GEOTÉCNICA, PARA EL DISEÑO DE ESTABILIDAD FÍSICA DE TALUDES DEL TAJO NORESTE DE UNA MINA EN JUNÍN, 2022"

Tesis para optar al título profesional de:

Ingeniero de Minas

# **Autores:**

Herber Shosman Perez Silva Elmer Geyner Portal Carahuatay

# Asesor:

Ing. Yuling Indira Quispe Arones https://orcid.org/0000-0003-1776-2362

Cajamarca - Perú

2023



# **JURADO EVALUADOR**

| Jurado 1      | Daniel Alejandro Alva Huamán | 43006890 |
|---------------|------------------------------|----------|
| Presidente(a) | Nombre y Apellidos           | Nº DNI   |

| lurado 2 | Miguel Ricardo Portilla Castañeda | 45209190 |  |
|----------|-----------------------------------|----------|--|
| Jurado 2 | Nombre y Apellidos                | Nº DNI   |  |

| lura da O | Rafael Napoleón Ocas Boñón | 42811302 |
|-----------|----------------------------|----------|
| Jurado 3  | Nombre y Apellidos         | Nº DNI   |



#### **INFORME DE SIMILITUD**

EVALUACIÓN GEOMECÁNICA Y GEOTÉCNICA, PARA EL DISEÑO DE ESTABILIDAD FÍSICA DE TALUDES DEL TAJO NORESTE DE UNA MINA EN JUNÍN, 2022

| ORIGINALITY REPORT  |                    |               |                |
|---------------------|--------------------|---------------|----------------|
| 20%                 | 18%                | 3%            | 8%             |
| SIMILARITY INDEX    | INTERNET SOURCES   | PUBLICATIONS  | STUDENT PAPERS |
| PRIMARY SOURCES     |                    |               |                |
| 1 hdl.ha            | andle.net          |               | 5%             |
| 2 Subm<br>Student F | itted to Universid | ad Privada de | Norte 2%       |
| 3 repos             | itorio.unap.edu.p  | е             | 2%             |
| 4 repos             | itorio.upn.edu.pe  |               | 2%             |
| 5 Subm<br>Student P | itted to uni       |               | 1 %            |
| 6 repos             | itorio.unsch.edu.p | oe            | 1 %            |
| 7 1libra            |                    |               | 1 %            |
| 8 repos             | itorio.uap.edu.pe  |               | 1 %            |
| repos               | itorio.ucp.edu.pe  |               |                |



# **DEDICATORIA**

A Dios por darme la vida y la salud para lograr mis objetivos, a mis padres por ser fuente de motivación en todo momento y a la vez darme su apoyo incondicional la que permitía estar firme en mi decisión.



# **AGRADECIMIENTO**

En primer lugar, a Dios por brindarle vida a mis padres que puedan ser partícipes del logro que deseamos alcanzar. Segundo lugar, a mi persona que por más obstáculos que se presentó en el camino me mantuve enfocado en lo que quería lograr.



# Tabla de contenido

| JURADO EVALUADOR                                     |            |
|------------------------------------------------------|------------|
| INFORMDE SIMILITUD                                   | ;          |
| DEDICATORIA                                          | 4          |
| AGRADECIMIENTO                                       | 5          |
| Tabla de contenido                                   | 6          |
| Índice de tablas                                     | 7          |
| Índice de figuras                                    | 8          |
| RESUMEN                                              | 9          |
| CAPÍTULO I: INTRODUCCIÓN                             |            |
| 1.1. Realidad problemática                           | 10         |
| 1.2. Formulación del problema                        |            |
| 1.3. Objetivos                                       | 14         |
| 1.3.1. Objetivo general                              | 14         |
| 1.3.2. Objetivos específicos                         | 14         |
| 1.4. Hipótesis                                       | 14         |
| 1.4.1. Hipótesis general                             | 14         |
| CAPÍTULO II: METODOLOGÍA                             | 15         |
| 2.1. Tipo de investigación                           | 15         |
| 2.2. Población y muestra                             | 16         |
| 2.2.1. Población                                     | 16         |
| 2.2.2. Muestra                                       | 16         |
| 2.3. Materiales, instrumentos y equipos              | 16         |
| CAPÍTULO III: RESULTADOS                             | 26         |
| 3.1. Caracterización geológica-estrutural            | 26         |
| 3.2. Sistemas de discontinuidades estructurales      | 27         |
| 3.3. Caracterización geomecánica                     | 31         |
| 3.4. Distribución geoestadística de data geomecánica | 39         |
| CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES                | 5 <i>0</i> |
| 4.2. Conclusiones                                    | 51         |
| Referencias                                          | 5 <i>3</i> |
| Anexos                                               |            |



# Índice de tablas

| Tabla 1: Datos de los ensayos de carga puntual                                       | . 22 |
|--------------------------------------------------------------------------------------|------|
| Tabla 2: Datos de ensayos de tracción indirecta                                      | . 23 |
| Tabla 3: Valor "mi", de los ensayos de compresión triaxial                           | . 23 |
| Tabla 4: Resultados de los ensayos de constantes elásticas                           | . 23 |
| Tabla 5: Propiedades físicas de la roca intacta                                      | . 24 |
| Tabla 6: Datos de ensayos de corte en discontinuidades                               | . 24 |
| Tabla 7: Orientación de las discontinuidades                                         | . 27 |
| Tabla 8: Parámetros de resistencia de la masa rocosa de los 4 dominios estructurales |      |
| Sector 3 Tajo Norte                                                                  | . 31 |
| Tabla 9: Caracterización geomecánica de testigo de sondaje diamantino DDH-056        | . 32 |
| Tabla 10: Caracterización geomecánica de testigo de sondaje diamantino DDH-057       | . 34 |
| Tabla 11: Caracterización geomecánica de testigo de sondaje diamantino DDH-059       | . 36 |
| Tabla 12: Resumen de la distribución de la calidad de los macizos rocosos            | . 42 |
| Tabla 13: Zonificación geomecánica para el Tajo                                      | . 43 |
| Tabla 14: Aceleraciones espectrales en roca para diferentes periodos de retorno      | . 45 |
| Tabla 16: Caracterización geomecánica de Tajo noreste, Estación 01                   | . 56 |
| Tabla 17: Caracterización geomecánica del Tajo noreste, Estación 02                  | . 57 |
| Tabla 18: Caracterización geomecánica del tajo Noreste, Estación 03                  | . 58 |
| Tabla 19: Caracterización geomecánica del Tajo noreste, Estación 04                  | . 59 |
| Tabla 20: Caracterización geomecánica del Tajo noreste, Estación 05                  | . 60 |
| Tabla 21: Caracterización geomecánica del Tajo noreste, Estación 06                  | . 61 |
| Tabla 22: Caracterización geomecánica del tajo noreste, Estación 07                  | . 62 |
| Tabla 23: Caracterización geomecánica del Tajo Noreste, Estación 08                  | . 63 |
| Tabla 24: Caracterización geomecánica del tajo noreste, Estación 09                  | . 64 |



# Índice de figuras

| Figura 1: Formato de registro geomecánico - geotécnico en campo                      | 18     |
|--------------------------------------------------------------------------------------|--------|
| Figura 2: GSI modificado 2002                                                        | 19     |
| Figura 3.1: Columna estratigráfica Rio Pallanga, Carhuacayán, Animon, Huarón         | 26     |
| Figura 5: Estereogramas en el plano de geología local                                | 27     |
| Figura 6: Diagrama de roseta de estructuras del Tajo Noreste                         | 28     |
| Figura 7: Determinación del tipo de rotura                                           | 28     |
| Figura 8: Determinación del tipo de rotura                                           | 29     |
| Figura 9: Plano estructural 3D Tajo de una mina en Junín                             | 30     |
| Figura 10: Sección litológica geomecánica                                            | 33     |
| Figura 11: Sección litológica geomecánica                                            | 35     |
| Figura 12: Sección litológica geomecánica                                            | 37     |
| Figura 13: Plano de arreglo estructural y modos de inestabilidad cinemática en el To | ijo de |
| la unidad minera                                                                     | 38     |
| Figura 14: La mayor cantidad de datos se encuentra entre el cuartil Q=1 y Q=3        | 39     |
| Figura 15: Distribución de datos en función a la litología                           | 39     |
| Figura 16: Normalización de la data de campo (RMR)                                   | 40     |
| Figura 17: Histogramas de los diferentes tipos de roca                               | 41     |
| Figura 18: Porcentaje de litologías en el Tajo                                       | 42     |
| Figura 19: Zonificación geomecánica                                                  | 44     |
| Figura 20: Factor de seguridad de taludes de banco en función a rotura planar        | 46     |
| Figura 21: Factor de seguridad de taludes de banco en función a rotura en cuña       | 46     |
| Figura 22: Estabilidad de taludes del sector SD1 - Condiciones estáticas             | 47     |
| Figura 23: Estabilidad de taludes SD1 - Condiciones pseudoestáticas                  | 47     |
| Figura 24: Análisis de taludes del sector SD2                                        | 48     |
| Figura 25: Plano de ángulos de taludes recomendado                                   | 49     |



#### **RESUMEN**

El objetivo del estudio, es determinar el diseño de estabilidad física en base a la evaluación geomecánica y geotécnica de los taludes del sector 3 del tajo de mina en Junín. La investigación es por el fin aplicada, por el alcance descriptiva y por el enfoque es cuantitativa, la muestra son los taludes del tajo de la mina, como principales técnicas de recolección de datos, tenemos la observación directa en campo y como instrumentos, los formatos geomecánicos de RMR, GSI, así mismo se tuvo una etapa de precampo donde se realizó un análisis documental, una etapa de campo que consistió en caracterizar los macizos rocosos de los taludes, toma de muestras para determinar la resistencia en laboratorio. Dentro del análisis de datos, la información fue procesada en diferentes softwares como slide para el cálculo del factor de seguridad Autocad y Arcgis para elaboración de planos. Se determinó el diseño garantizando la estabilidad de los taludes.

PALABRAS CLAVES: Evaluación geomecánica, geotecnia, diseño, estabilidad, taludes



# CAPÍTULO I: INTRODUCCIÓN

#### 1.1. Realidad problemática

Actualmente, a nivel internacional, autores como Aguedo y Asencios, (2020) indican que para el diseño de una operación minera a tajo abierto se toman en cuenta ciertos parámetros tales como las condiciones geológicas, geomecánicas, geográficas, entre otras. En tal sentido, el proceso "estándar" para el diseño de taludes los cuales incluyen; levantamiento de datos de logueo y mapeo geotécnico de la zona donde se desarrollará la operación, se establecen modelos geológicos, estructurales e hidrogeológico, sectorizando el diseño en subdivisiones de dominio.

Por ejemplo, en el Perú, Gónzales, (2018), indica que, dependiendo de la evaluación geomecánica y de, las condiciones en el proceso de minado, la masa rocosa varia de una mina a otra. Es importante el conocimiento de los atributos geomecánicos del macizo rocoso y la interacción que tienen con las operaciones mineras, de esta manera se puede identificar los peligros potenciales que ocasionarian accidentes por desprendimientos de rocas, por lo que determinar los parámetros geomecánicos ayudan en la toma de buenas decisiones para el planeamiento y diseño de minado, relacionado a la explotación del mineral, garantizando la estabilidad de las operaciones mineras.

Por otro lado a nivel local Márquez y Villanueva (2019), mencionan que, para la explotación de yacimientos no metálicos, los taludes, no hacen una correcta evaluación de geomecánica para el diseño de explotación y estabilidad taludes, lo cual puede generar deslizamientos, derrumbes, afectado a la zona de influencia de la explotación. Por ello, la importancia de un diseño geotécnico para una mina a cielo abierto, comienza a partir de la caracterización geológica de los datos obtenidos en campo producto del logueo y mapeo



geomecánico, con la finalidad de determinar parámetros como son la resistencia a la compresión (UCS), RQD y RMR (Vergara, 2020).

Se han considerado como antecedentes estudios como los de Mamani (2021), quien realizó una evaluación geomecánica más un análisis cinemático y de estabilidad de taludes para finalizar con la evaluación geotécnica de la voladura en Mina Toquepala. Para el macizo rocoso se obtuvo un RMR de 75 siendo de buena calidad, en la celda 3280 NE 4 37, se identificó una familia de discontinuidades con una rotura de tipo vuelco, por lo que sugiere un seguimiento en los niveles superiores e inferiores de los taludes. En la parte NE de la Mina Toquepala obtuvo que los factores de seguridad son mayores a 3 se obtuvo un factor de seguridad de 2.9. otro estudio es el de Romero (2018), quien, estableció 55 estaciones geomecánicas (utilizando el mapeo de líneas de detalle), mediante la evaluación geomecánica en La Mina 2-3-4 Shougang, las condiciones del macizo rocoso en gran parte son por roca dura y roca muy dura, con una resistencia media, el RMR promedio en su mayoría varía de Regular y buena calidad obteniendo un intervalo entre 53-63. Para la estabilidad en los bancos son estables en condiciones estáticos y pseudo estáticos, sin embargo, en algunos sectores el FS pseudo estático es menor a 1.1 donde se recomienda eliminar aquellos bloques que generarían riesgos. Por otro lado, Vergara Lovera, (2020); en su investigación que se desarrolló en los Andes Centrales del Perú, al realizar su evaluación geomecánica, estimó parámetros como son la resistencia a la compresión uniaxial (UCS) valores de 70 a 80 MPa, RQD que varía entre 60-80% y RMR entre 55 a 60. Para el segundo dominio geotécnico obtiene que la litología está conformada por intrusivos, presenta un RMR entre 55 a 65, un RQD que varía entre 70-90% y una resistencia entre 80 a 120 MPa. Para el tercer dominio geotécnico, está conformado por areniscas, el RMR está entre 45-50, el RQD varía entre 40-60% y una resistencia a la compresión uniaxial entre 40 a 70 MPa.



Logrando zonificar geomecánicamente los taludes estudiados. (Molina Quispe, 2019), realizó una caracterización geomecánica del macizo rocoso del tajo Jessica del proyecto Jessica en Puno, mediante: RMR, SMR Y GSI, utilizó técnicas estereográficas computarizadas, zonificación de dominios geotécnicos, establecida por la distribución del GSI. Los ángulos de los taludes propuestos y las condiciones de estabilidad son satisfactorios debido a que los factores de seguridad superan por un buen margen los mínimos requeridos estando en valores de 2.435 en condiciones estáticas no drenadas y en pseudo estáticas no drenadas de 1.874. La clasificación geomecánica de la masa rocosa utilizando el criterio de Bieniaswaki (1989), la calidad de la roca va desde Mala (RMR 38-40) hasta Buena (RMR 62-63), pasando por regular B (RMR 42-50) y regular A (RMR 54-57).

Como marco teórico (Araujo, Britto, Meza, & Olivella, 2017) señala que, la evaluación geomecánica de los macizos rocosos para el diseño de estabilidad de taludes en un pit es de acuerdo a las condiciones del terreno, es decir las más favorables para el talud siendo tomadas en cuenta la altura máxima del banco, el ancho y el ángulo de fricción. Otro parámetro que se debería tener presente es la geometría del talud como también la resistencia de la roca. Según Molina (2019), la caracterización geomecánica de macizos rocosos y la determinación del factor de seguridad de los taludes; se realiza con mediciones in situ e información preexistente, para esto se evaluará con el RMR, GSI y SMR, se aplicará también los softwares Dips y Slide.

Para Mendoza (2016), una evaluación o estudio geomecánico, es utilizar sistemas de clasificación que ayuden a evaluar las propiedades estructurales e inherentes de la masa rocosa, por ello es conveniente realizar el cálculo de estabilidad, tomando en cuenta la cohesión y el ángulo de fricción. Además, la evaluación geomecánica consiste en tomar en cuenta la altura de los bancos e inclinación de los taludes con el fin de garantizar la



estabilidad del proyecto, para ello se debe conocer las propiedades geomecánicas de los materiales y de las condiciones de flujo de agua, así como también se debe de evaluar la alteración progresiva. También (Aguedo Asencios, 2020) mencionan que las propiedades geométricas de las discontinuidades son las que tienen una influencia considerable en la estabilidad global del talud, por ello se debe de evaluar la orientación de las discontinuidades y el espaciamiento, ya que con estos parámetros se podría modelar de manera continua el macizo rocoso obteniendo el factor de seguridad. Mediante el cálculo del factor de seguridad se determina que los deslizamientos de taludes están asociados a fenómenos con la obstrucción y rotura de bancos de mina, la inestabilidad de los cortes, las afectaciones en los sistemas de drenajes y de los valores de extracción (Helder Vemba Mucuta, Pires, & Quesada, 2020), siendo, la estabilidad de taludes, uno de los factores críticos en la economía y seguridad de operaciones mineras a cielo abierto.

Por lo tanto, el estudio se justifica ya que, contribuirá a futuras investigaciones, utilizándose como guía para estudiantes, profesionales de la carrera, empresas e instituciones interesadas en este tema. Además, complementar estudios previos a nivel local garantizando la caracterización geomecánica, para el diseño de estabilidad y servir como guía en otros proyectos y operaciones mineras con problemas de inestabilidad en la zona y en otros lugares del país. Así mismo, tal y como menciones Vergara (2020) los diseños de los taludes deben ser técnicamente sólidos y deben de realizarse con la finalidad de que abarque toda la operación y que contemple la seguridad del personal, equipos y los niveles de riesgo aceptables para la compañía minera.



# 1.2. Formulación del problema

¿Cuál es el diseño de estabilidad física en base a la evaluación geomecánica de los taludes del tajo noreste de una mina en Junín, 2022?

# 1.3. Objetivos

#### 1.3.1. Objetivo general

Realizar la caracterización geomecánica para el diseño de estabilidad física de los taludes del tajo noreste de una mina en Junín, 2022.

# 1.3.2. Objetivos específicos

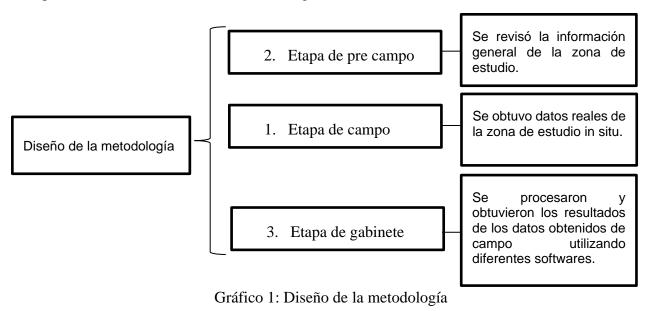
Caracterizar la geología y estructuras de la mina

Determinar la calidad del macizo rocoso mediante el RMR, GSI, elaborar el mapa de zonificación geomecánica.

Determinar los posibles tipos de rotura mediante el análisis del comportamiento de las discontinuidades en el software DIPS.

## 1.4. Hipótesis

#### 1.4.1. Hipótesis general


Al realizar la evaluación geomecánica y geotécnica se diseñará la estabilidad de taludes del tajo de una mina en Junín.



# CAPÍTULO II: METODOLOGÍA

#### 2.1. Tipo de investigación

El enfoque de investigación es cuantitativo ya que se miden y cuantifican diferentes parámetros geomecánicos. La investigación aplicada, por la aplicación del conocimiento geomecánico para el diseño de estabilidad de taludes del tajo de una mina en Junín, tal como menciona (Murillo, 2008), recibe el nombre de "investigación práctica o empírica", debido a que, se caracteriza porque busca la aplicación o utilización de los conocimientos adquiridos, a la vez que se adquieren otros, después de implementar y sistematizar la práctica basada en la investigación. Hernández, Fernández y Baptista (2014), sostiene la investigación correlacional tiene la finalidad conocer la relación o grado de asociación que exista entre dos o más conceptos, categorías o variables en una muestra o contexto en particular. Según el alcance la presente es de carácter correlacional porque existe una relación entre las variables "Evaluación geomecánica y diseño de estabilidad de taludes". El diseño de investigación es de carácter no experimental, porque las variables independientes no se manipulan. Asimismo, este tipo de diseño recolecta datos en un solo momento, en un tiempo único, siendo de corte transversal. (Aguilar, Duarte, & Orrantia, 2011).





# 2.2. Población y muestra

#### 2.2.1. Población

Todos los taludes de la unidad minera en Junín.

#### 2.2.2. Muestra

Los taludes del del tajo de la mina en Junín

#### 2.3. Materiales, instrumentos y equipos

Brújulas

Picota

**GPS** 

Libretas de campo

Como principal técnica se aplicó la observación directa en campo, la información se recoge directamente del macizo rocoso teniendo en cuenta como instrumentos a los formatos geotécnicos y geomecánicos, la clasificación geomecánica RMR (Bieniawski, 1989), registrando la resistencia, RQD, espaciamiento entre discontinuidades, condición de las discontinuidades, condición del agua en el macizo.

Se registran datos estructurales para determinar el tipo de rotura que puede darse con el software DIPS.

Además, haciendo uso del Índice de Resistencia Geológica (GSI) se registró el grado de blocosidad del macizo rocoso.

Se han recuperado núcleos de roca en el campo para pruebas de laboratorio para medir la resistencia de la roca intacta. Mediante ensayos de carga uniaxial y puntual.

Con todo lo mencionado se realizó la zonificación geomecánica para modelar el tajo en estudio y empezar a diseñar la estabilidad.



Otra técnica es el análisis documental, utilizando la información de la revisión sistemática, e información geológica como del INGEMMET.

Como instrumentos se usó formatos geotécnicos y geomecánicos presentados en las siguientes figuras.



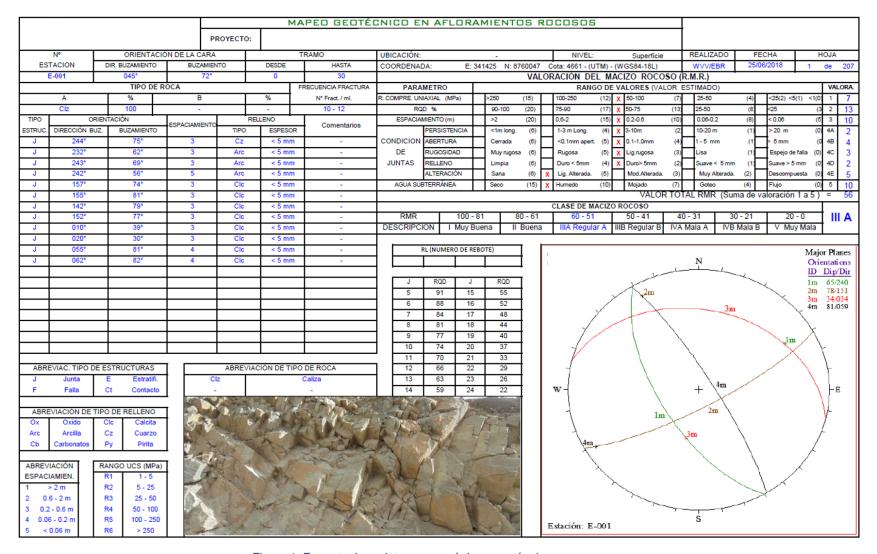



Figura 1: Formato de registro geomecánico - geotécnico en campo



# Geological Strength Index (GSI)

| GEOLOGICAL STRENGTH INDEX FOR JOINTED ROCKS (Hoek and Marinos,2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 too 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavourable orientation with respect to the excavation face, these will dominate the rock mass behavior. The shear strength of surface in rocks that are prone to deterioration as a result of changes in moisture content will be reduced is water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis. | SURFACE CONDITIONS   | USERY GOOD  Not rough, fresh, unweathered surfaces | GOOD  Rough, slightly weathered, iron stained surfaces. | FAIR<br>D Smooth, moderately weathered and altered surfaces | POOR Slickensided, highly weathered surfaces with compact coatings or angular fragments. | VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or filings |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                    | 90                                                 |                                                         |                                                             | N/A                                                                                      | N/A                                                                                  |
| BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ROCK PIECES          |                                                    | 70<br>60                                                |                                                             |                                                                                          |                                                                                      |
| VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SING INTERLOCKING OF |                                                    |                                                         | 50                                                          |                                                                                          |                                                                                      |
| BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                    |                                                         | 40                                                          | 30                                                                                       |                                                                                      |
| DISINTEGRATED - poorly inter-<br>locked, heavily broken rock mass<br>with mixture of angular and<br>rounded rock pieces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DECREA               |                                                    |                                                         |                                                             | 20                                                                                       |                                                                                      |
| LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ۷.                   | N/A                                                | N/A                                                     |                                                             | //                                                                                       | 10                                                                                   |

Figura 2: GSI modificado 2002

Para el procedimiento de recolección de datos se tuvo en cuenta la etapa de precampo,



la cual consistió en la recolección de información bibliográfica, utilizando bases de datos como Google académico, Scielo, Alicia-Concytec y repositorios institucionales, además información del INGEMMET, considerando como eje central de búsqueda, la evaluación geomecánica y geotécnica para el diseño de estabilidad de taludes. Por otra parte, se confeccionó el mapa topográfico, instrumentos de recolección de datos geomecánicos y planificación del trabajo de campo.

Tabla. Estudios utilizados en la tesis

| Título de la<br>investigación                                                                                                                  | Autor (es)                                     | Base de datos                                            | País     | Tipo<br>de<br>fuente | Link                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------|----------------------|----------------------------------------------------------------------------------------------------------------|
| Análisis de estabilidad de<br>taludes de suelos de gran<br>altura en la mina<br>Antapaccay                                                     | (Mendoza,<br>2016)                             | Google<br>Académico                                      | Perú     | Tesis                | https://tesis.pucp.ed<br>u.pe/repositorio/han<br>dle/20.500.12404/7<br>614                                     |
| Análisis geotécnico de los<br>taludes del tajo apumayo<br>norte, Proyecto Minero<br>Apumayo dto. cora-cora –<br>dpto. Ayacucho                 | (Cruzado,<br>2017)                             | Repositorio de<br>la UNC                                 | Perú     | Tesis                | https://repositorio.u<br>nc.edu.pe/handle/20<br>.500.14074/1405                                                |
| Caracterización y clasificación geomecánica del depósito de cobre localizado en el corregimiento de Camperucho, municipio de Valledupar, Cesar | (Araujo, Britto,<br>Meza, &<br>Olivella, 2017) | Google<br>Académico                                      | Colombia | Artículo             | https://www.metare<br>vistas.org/Record/oa<br>i:ojs.revia.areandina<br>.edu.co:articleojs-<br>1210/Description |
| Estudio de factor de<br>seguridad y caracterización<br>geotécnica para la<br>estabilidad del talud<br>minado en concesión Sojo<br>Piura        | (Ardiles &<br>Ahumada,<br>2017)                | Repositorio de<br>la Universidad<br>Privada del<br>Norte | Perú     | Tesis                | https://repositorio.u<br>pn.edu.pe/handle/11<br>537/13369                                                      |
| Geología y estabilidad de<br>taludes en la mina 2-3-4<br>Shougang                                                                              | (Romero, 2018)                                 | Google<br>Académico                                      | Perú     | Tesis                | http://repositorio.un<br>ap.edu.pe/handle/U<br>NAP/7489                                                        |
| Estabilidad de taludes para<br>la explotación y cierre de<br>dos tajos de agregados en el<br>distrito de Palca-Tarma-<br>Junín                 | (Echeverria,<br>2018)                          | Alicia-<br>Concytec                                      | Perú     | Tesis                | https://alicia.concyt<br>ec.gob.pe/vufind/Re<br>cord/UNAL 71d06<br>4b7120dc196c5046<br>56ccf9c0665             |
| Caracterización geomecanica de la zona huantajalla - compañía de minas buenaventura – UEA. Uchucchacua                                         | (Gónzales,<br>2018)                            | Alicia-<br>Concytec                                      | Perú     | Tesis                | https://alicia.concyt<br>ec.gob.pe/vufind/Re<br>cord/RUND dc92d<br>ec3ca4addd6c54aef<br>c87294084b/Details     |
| Caracterización geotécnica<br>y análisis de estabilidad de<br>"proyecto continuidad<br>Mina Gabriela                                           | (Ricci, 2018)                                  | Scielo                                                   | Chile    | Tesis                | http://dspace.utalc<br>a.cl/handle/1950/1<br>2298                                                              |



| Evaluación geomecanica y<br>determinación de ángulos<br>de talud en los proyectos<br>mineros                                                                                        | (Molina, 2019)                           | Google<br>Académico                         | Perú   | Tesis    | http://repositorio.<br>unap.edu.pe/handl<br>e/UNAP/12652                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis of the impacts of<br>slope angle variation on<br>slope stability and NPV via<br>two different final pit<br>deficition techniques                                           | (Soares, y<br>otros, 2020)               | Scielo                                      | Brasil | Artículo | https://www.scielo.<br>br/j/remi/a/66GDH3<br>mpP5Thhgrh9PQ8d<br>cL/abstract/?lang=e                                                                                                                                             |
| Influencia del arreglo estructural de las discontinuidades en la estabilidad global de taludes a escala global de tajos abiertos mediante la metodología de elementos finitos (FEM) | (Aguedo, 2020)                           | Repositorio<br>institucional<br>de la PUCP  | Perú   | Tesis    | https://tesis.pucp.<br>edu.pe/repositorio<br>/handle/20.500.12<br>404/18318                                                                                                                                                     |
| Slopes stability evaluation<br>of Castellano deposit by<br>calculating the safety factor                                                                                            | (Helder Vemba,<br>Cartaya, & L,<br>2020) | Scielo                                      | Cuba   | Artículo | http://scielo.sld.cu/s<br>cielo.php?pid=S199<br>3-<br>8012202000040044<br>1&script=sci_abstra<br>ct&tlng=en                                                                                                                     |
| Estabilidad de Taludes del<br>Tajo Abierto Jésica<br>considerando el Macizo<br>Rocoso Isotrópico y<br>Anisotrópico                                                                  | (Herrera &<br>Solórzano,<br>2020)        | Repositorio<br>institucional<br>de la UNMSM | Perú   | Tesis    | https://revistasinvest<br>igacion.unmsm.edu.<br>pe/index.php/iigeo/a<br>rticle/view/17331                                                                                                                                       |
| Evaluación geotécnica de<br>voladura para el control de<br>daño de taludes en minería<br>superficial - mina<br>Toquepala                                                            | (Mamani,<br>2021)                        | Google<br>Académico                         | Perú   | Tesis    | http://repositorio.un<br>sa.edu.pe/handle/20.<br>500.12773/13071                                                                                                                                                                |
| Análisis de la malla short<br>hole en la estabilidad del<br>talud en el tajo Diana en<br>Summa Gold Corporation                                                                     | (Rondo, 2021)                            | Alicia-<br>Concytec                         | Perú   | Tesis    | https://alicia.concyt<br>ec.gob.pe/vufind/Se<br>arch/Results?lookfo<br>r=An%C3%A1lisis<br>+de+la+malla+short<br>+hole+en+la+estabi<br>lidad+del+talud+en<br>+el+tajo+Diana+en<br>+Summa+Gold+Cor<br>poration&type=AllF<br>ields |

Fuente: Elaboración propia.

En la etapa de campo se realizó el reconocimiento geológico de la zona, para luego hacer el mapeo geomecánico de afloramientos rocosos superficiales, según normas de la Sociedad Internacional de Mecánica de Rocas ISRM, a la par con la toma de muestras rocosas para ensayos de laboratorio y ejecución de pruebas de campo durante la toma de muestras:



Impactos con el martillo de geólogo y tablero inclinable (tilt test table).

El mapeo geomecánico de afloramientos en las paredes del tajo se realizó mediante ventanas de 1x1 m². En cada estación geomecánica se registró la orientación de las discontinuidades y la calidad de la roca. Se realizaron 9 estaciones dentro del área del tajo.

Se describió la litología y las estructuras en base al mapeo geomecánico de afloramientos rocosos superficiales en los taludes de banco del actual Tajo y en base al mapeo geotécnico de testigos de los sondajes diamantinos ejecutados como parte de la exploración del yacimiento. Para tal caracterización se utilizaron las normas ISRM (International Society for Rock Mechanics).

Tabla 1: Datos de los ensayos de carga puntual

| Sondaje o Bloque | Profundidad<br>(m) | Litología   | Is (50)<br>(MPa) | Resistencia<br>Compresiva<br>(MPa) |
|------------------|--------------------|-------------|------------------|------------------------------------|
| DDH-S-18-059     | 99.05 – 99.4       | Marga verde | 1.31             | 30.2                               |
| DDH-S-18-057     | 191.6 – 191.95     | Toba        | 3.28             | 75.9                               |
| DDH-S-18-057     | 173.6 – 173.9      | Marga       | 5.46             | 126.3                              |
| AL-07 - AL-09*   | 47.40 - 47.67      | Marga       | 4.94             | 126.6                              |
| AL-07 - AL-09*   | 52.60 - 52.85      | Marga       | 4.91             | 136.1                              |
| AL-07 - AL-39*   | 62.30 - 62.50      | Marga       | 0.48             | 11.3                               |
| AL-07 - AL-39*   | 63.95 - 64.20      | Marga       | 1.34             | 31.4                               |
| AL-07 - AL-39*   | 68.30 - 68.90      | Marga       | 0.44             | 10.4                               |
| AL-07 - AL-39*   | 69.50 - 69.72      | Marga       | 0.45             | 10.6                               |
| AL-07 - AL-39*   | 71.35 - 71.75      | Marga       | 2.53             | 59.4                               |
| AL-07 - AL-39*   | 78.25 - 78.40      | Marga       | 0.22             | 5.3                                |
| AL-08 - F1-05*   | 20.60 - 20.75      | Calcarenita | 1.94             | 45.5                               |
| AL-08 - F1-05*   | 20.93 - 21.16      | Calcarenita | 4.52             | 106.3                              |
| Bloque rocoso *  |                    | Caliza      | 4.12             | 96.8                               |
| Bloque rocoso *  |                    | Andesita    | 6.18             | 145.2                              |



Tabla 2: Datos de ensayos de tracción indirecta

| Sondaje o      | Profundidad<br>(m) | Litología   | Resistencia a tracción |      |  |
|----------------|--------------------|-------------|------------------------|------|--|
| Bloque         |                    |             | Kg/cm <sup>2</sup>     | Мра  |  |
| DDH-S-18-059   | 99.05 - 99.4       | Marga verde | 32.0                   | 3.1  |  |
| DDH-S-18-057   | 191.6 - 191.95     | Toba        | 55.0                   | 5.4  |  |
| DDH-S-18-057   | 173.6 - 173.9      | Marga       | 99.0                   | 9.7  |  |
| AL-07 - AL-09* | 51.90 - 52.30      | Marga       | 198.4                  | 19.4 |  |
| AL-07 - AL-39* | 71.35 - 71.75      | Marga       | 93.5                   | 9.2  |  |
| AL-08 - F1-05* | 23.70 - 24.00      | Calcarenita | 51.0                   | 5.0  |  |
| Bloque rocoso* |                    | Caliza      | 112.6                  | 11.0 |  |
| Bloque rocoso* |                    | Andesita    | 127.7                  | 12.5 |  |

Tabla 3: Valor "mi", de los ensayos de compresión triaxial

| Sondaje o<br>Bloque | Litología   | Resistencia<br>compresiva<br>uniaxial<br>(Mpa) | "mi" | Cohesión<br>C (Mpa) | Ángulo de<br>fricción (°) |
|---------------------|-------------|------------------------------------------------|------|---------------------|---------------------------|
| DDH-S-18-059        | Marga verde | 39.7                                           | 23.0 | 7.95                | 50.5                      |
| DDH-S-18-057        | Toba        | 72.7                                           | 23.3 | 12.7                | 53.4                      |
| DDH-S-18-057        | Marga       | 117.4                                          | 28.7 | 17.8                | 57.4                      |
| AL-07 - AL-09*      | Marga       | -                                              | 15.9 | 2.98                | 50.3                      |
| AL-07 - AL-39*      | Marga       | -                                              | 8.5  | 0.8                 | 32.0                      |
| Bloque rocoso*      | Andesita    | -                                              | 15.8 | 1.02                | 36.0                      |

Tabla 4: Resultados de los ensayos de constantes elásticas

| Sondaje o<br>Bloque | Litología   | Resistencia<br>compresiva<br>uniaxial<br>(Mpa) | Módulo<br>de Young<br>E - (Gpa) | Relación de<br>Poisson - V |
|---------------------|-------------|------------------------------------------------|---------------------------------|----------------------------|
| DDH-S-18-059        | Marga verde | 40.3                                           | 7.63                            | 0.31                       |
| DDH-S-18-057        | Toba        | 68.9                                           | 9.47                            | 0.30                       |
| DDH-S-18-057        | Marga       | 114.0                                          | 12.83                           | 0.29                       |



Tabla 5: Propiedades físicas de la roca intacta

| Sondaje o<br>Bloque | Litología   | Porosidad<br>Aparente<br>(%) | Absorción<br>(%) | Peso<br>Específico<br>(kN/m³) |
|---------------------|-------------|------------------------------|------------------|-------------------------------|
| DDH-S-18-059        | Marga verde | 5.54                         | 2.15             | 25.8                          |
| DDH-S-18-057        | Toba        | 3.58                         | 1.39             | 25.6                          |
| DDH-S-18-057        | Marga       | 1.79                         | 0.66             | 26.78                         |
| AL-07 - AL-39*      | Marga       | 5.17                         | 2.04             | 24.9                          |
| AL-08 - F1-05*      | Calcarenita | 3.13                         | 1.18             | 26.0                          |
| Bloque rocoso*      | Caliza      | 0.32                         | 0.12             | 26.6                          |
| Bloque rocoso*      | Andesita    | 1.61                         | 0.62             | 25.6                          |

#### Resistencia de las discontinuidades

Tabla 6: Datos de ensayos de corte en discontinuidades

| Sondaje          | Litología   | Cohesión<br>"c" (KPa) | Angulo de<br>fricción (°) | Superficie<br>de ensayo |
|------------------|-------------|-----------------------|---------------------------|-------------------------|
| DDH-S-18-059     | Marga verde | 116                   | 28.1                      | Simulada                |
| DDH-S-18-057     | Toba        | 104                   | 26.9                      | Simulada                |
| DDH-S-18-057     | Marga       | 105                   | 27.1                      | Simulada                |
| AL-07 - AL-09 *  | Marga       | 64                    | 37.3                      | Simulada                |
| AL-07 - AL-039 * | Marga       | 109                   | 32.5                      | Simulada                |
| AL-08 - F1-05 *  | Calcarenita | 314                   | 55.8                      | Natural                 |
| Bloque rocoso *  | Caliza      | 119                   | 40.8                      | Simulada                |
| Bloque rocoso *  | Andesita    | 167                   | 27.9                      | Simulada                |

Para el análisis de datos en cuanto a caracterizar la geología y estructuras de la mina, la información recolectada en campo se procesó en el software Arcgis para la generación del plano geológico estructural.

Para determinar la calidad del macizo rocoso mediante el RMR, se cargaron en formatos geomecánicos los datos de los parámetros de resistencia, RQD, espaciamiento,



condición de las discontinuidades, agua en el macizo y ajuste por orientación de discontinuidades para determinar las calidades de los macizos rocosos.

Se registraron datos a partir del mapeo geomecánico de campo en la cara de los taludes de banco del tajo y del logueo geotécnico de testigos de las perforaciones diamantinas según normas ISRM para definir la calidad de la roca en profundidad.

Se realizó la **zonificación geomecánica** para determinar los dominios estructurales Se evaluaron las características de presencia del agua subterránea y los sismos, de acuerdo con el Artículo 264 del Reglamento de Seguridad y Salud Ocupacional en Minería del Perú.

Para determinar los posibles tipos de rotura la información de orientaciones de las discontinuidades y de la cara del talud, obtenida en campo se procesó en software DIPS, mediante el análisis cinemático para rotura tipo planar, en cuña y por vuelco.

Por otra parte, para elaborar el diseño de estabilidad física de taludes del tajo final, los parámetros geotécnicos se evaluaron en el RocData, para determinar resistencia el macizo rocoso, cohesión, fricción para luego llevarlos al Slide donde se calculará el factor de seguridad y el diseño de estabilidad de los taludes.

Como aspectos éticos, este estudio protege la propiedad intelectual asociada a la teoría y el conocimiento de cada autor citando adecuadamente según las normas APA y citando fuentes bibliográficas. Se obtuvo la aprobación de las personas involucradas en la encuesta y el permiso correcto para publicarlos en los medios digitales pertinentes. Estricta credibilidad en el manejo de la información dirigida al proyecto. Más allá de eso, los datos no se distorsionan ni manipulan para que sean objetivos y se pueden utilizar en estudios posteriores.



# CAPÍTULO III: RESULTADOS

# 3.1. Caracterización geológica-estrutural

#### Geología de la unidad minera

La mina se emplaza en la meseta intracordillerana de Junín – Cerro de Pasco. Está presente como litología dominante las Capas Rojas de la Fm. Casapalca, compuesta por secuencias pelíticas – clásticas y calcáreas conformado por limolitas, limoarenitas, margas, calcarenitas y calizas. En el sector o flanco NE se presentan rocas piroclásticas calcáreas de la formación Yantac y en menor proporción también se presentan rocas intrusivas de tipo andesítico en forma de diques o sills. Las capas sedimentarias tienen un rumbo Noroeste-Sureste con buzamientos de 62°NE a 83°SW formando un anticlinal erosionado.

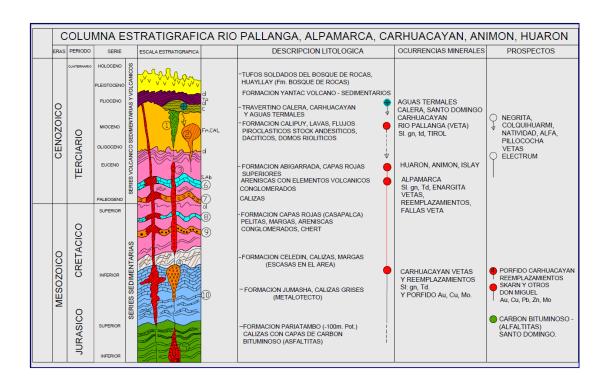



Figura 3.1: Columna estratigráfica Rio Pallanga, Carhuacayán, Animon, Huarón.



# 3.2. Sistemas de discontinuidades estructurales

Tabla 7: Orientación de las discontinuidades

|            | Zona                | Sistema 1       | Sistema 2      | Sistema 3      | Sistema 4      |
|------------|---------------------|-----------------|----------------|----------------|----------------|
|            |                     | Estratificación | Juntas         | Juntas         | Juntas         |
| Compósito  | Rumbo y Buzamiento  | N 77°E - 89°SE  | N 27°W - 79°NE | N 05°W - 60°SW | N 61°E - 41°NW |
| Tajo Norte | Direc.Buz. y Buzam. | 167° / 89°      | 063° / 79°     | 265° / 60°     | 331° / 41°     |
| Sector 3   | Rumbo y Buzamiento  | N 45°W - 63°NE  | N 66°E - 53°SW | N 40°E - 45°NW | E W – 89° S    |
| Tajo Norte | Direc.Buz. y Buzam. | 045° / 63°      | 156° / 53°     | 310° / 45°     | 360° / 89°     |

Según la tabla, se observa que en el área de evaluación la estructura principal corresponde a un anticlinal erosionado cuyas capas sedimentarias tienen un rumbo NW-SE, y buzamiento de 62°NE a 83°SW como se puede apreciar en los estereogramas de las Figuras 5 a 6 y en el Plano de geología local.

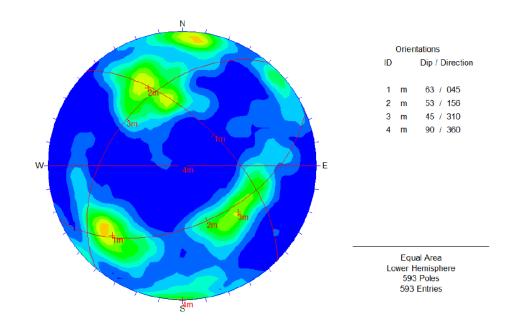



Figura 4: Estereogramas en el plano de geología local



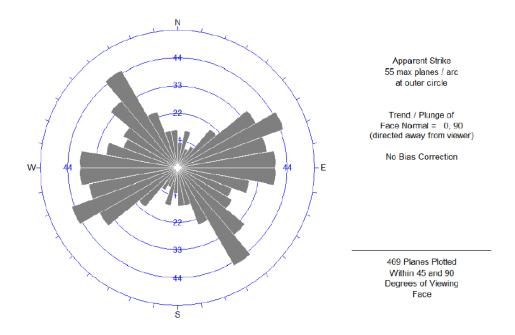



Figura 5: Diagrama de roseta de estructuras del Tajo Noreste

El arreglo estructural del área de estudio está determinado por la orientación de la estratificación de las rocas sedimentarias de la Formación Casapalca donde el sinclinal es perturbado localmente por la presencia de fallas.

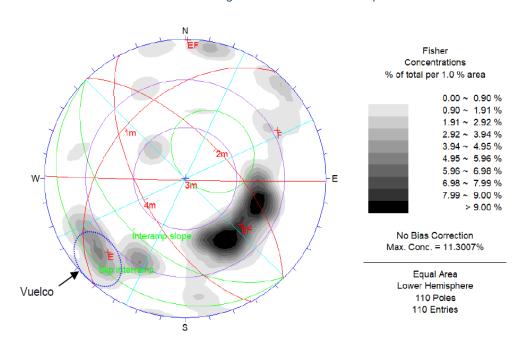



Figura 6: Determinación del tipo de rotura



#### a) Estructuras mayores

Tipo de Discontinuidad : Fallas y estratos

Sets de Discontinuidades: N° Dip / Dip Direction

#1 43/310 #2 65/046 #3 89/181 #4 63/242

Angulo inter-rampa: 46 deg

Modo de Inestabilidad Potencial: Vuelco potencial Set #2

#### Suposiciones y consideraciones de estabilidad:

- 1) Direccion de buzamiento nominal del Sector 3 es 225°
- 2) Un ángulo de fricción de 30° para estratos y juntas fue asumido
- 3) Inestabilidad tipo vuelco potencial en talud interrampa. Cuña y vuelco potenciales se presenta en taludes banco.
- 4) Los taludes de banco e interrampa serán definidos por metodos cuantitativos.

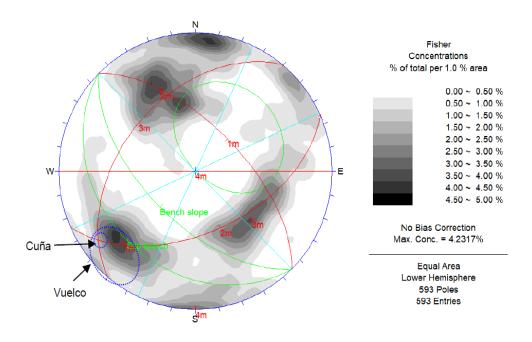



Figura 7: Determinación del tipo de rotura

#### a) Estructuras menores

Tipo de Roca Margas y calizas
Tipo de Discontinuidad : Juntas y estratos

Sets de Discontinuidades: N° Dip / Dip Direction # 1 63 / 045

#1 63/045 #2 53/156 #3 45/310 #4 90/360

Angulo talud banco : 60 deg

Modo de Inestabilidad Potencial: Vuelco potencial Set #1

Cuña potencial Set (#2, #3)



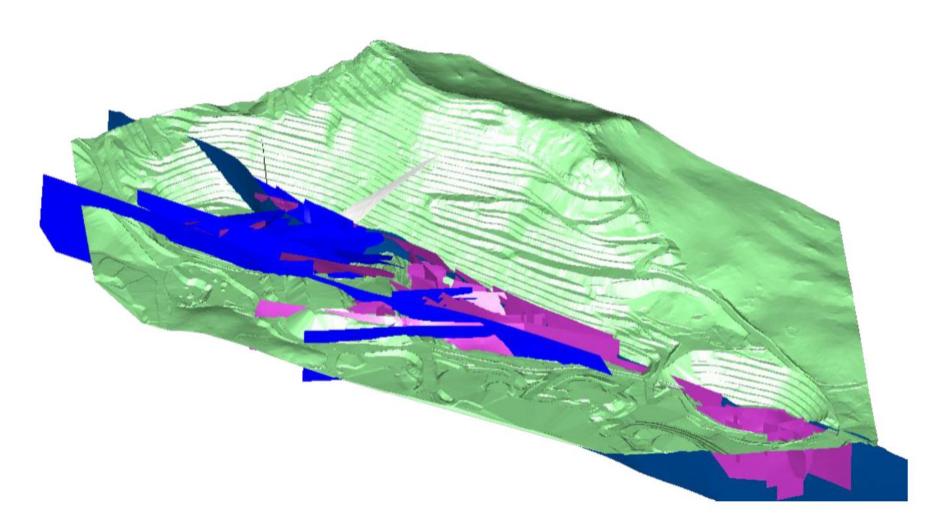



Figura 8: Plano estructural 3D Tajo de una mina en Junín



# 3.3. Caracterización geomecánica

Tabla 8: Parámetros de resistencia de la masa rocosa de los 4 dominios estructurales Sector 3 Tajo Norte

| Dominio<br>Estructural | Litología                           | Peso<br>Unitario<br>(KN/m3) | Resistencia<br>compresiva<br>(MPa) | RMR =<br>GSI | mi | Cohesión<br>"c" (KPa) | Angulo de<br>Fricción (°) |
|------------------------|-------------------------------------|-----------------------------|------------------------------------|--------------|----|-----------------------|---------------------------|
| DE III A               | Margas, caliza                      | 26                          | 7.5                                | 5.0          | 15 | 970                   | 56                        |
| DE III A               | Toba y conglomerado                 | 26                          | 75                                 | 56           | 23 | 965                   | 60                        |
|                        | Calizas, margas                     | 26                          | 75                                 | 47<br>44     | 12 | 742<br>665            | 44<br>42                  |
| DE III B               | Vetas (VLS, Alpamarca y<br>Fortuna) | 26                          | 60                                 | 44           | 8  | 735                   | 42                        |
|                        | Brecha tectónica                    | 26                          | 90                                 | 47           | 18 | 880                   | 48                        |
|                        | Margas, Caliza                      | 26                          | 40                                 | 39<br>34     | 8  | 410<br>365            | 32.5<br>31                |
| DE IV A                | Andesita porfirítica                | 26                          | 50                                 | 34           | 15 | 530                   | 40                        |
|                        | Vetas                               | 26                          | 40                                 | 34           | 8  | 490                   | 37                        |
|                        | Marga, caliza                       | 25                          | 10                                 | 27           | 8  | 180                   | 20                        |
| DE IV D                | Andesita porfirítica                | 26                          | 20                                 | 30           | 15 | 480                   | 38                        |
| DE IV B                | Brecha tectónica, arenisca          | 26                          | 20                                 | 30           | 15 | 480                   | 38                        |
|                        | Vetas y fallas                      | 26                          | 10                                 | 30           | 8  | 250                   | 26                        |



Tabla 9: Caracterización geomecánica de testigo de sondaje diamantino DDH-056

| s      | ONDAJE             | COO  | RDENAD       | AS E                | : 34         | 1,700.09     | N:             |            | 8,760,30 | 7.09     | Co                               | ta :             | 4 811.5   | 3 msnm         | Real         | i <b>z</b> : E | BR/WV       | V          | Ноја     |              | Pág.    |   |  |
|--------|--------------------|------|--------------|---------------------|--------------|--------------|----------------|------------|----------|----------|----------------------------------|------------------|-----------|----------------|--------------|----------------|-------------|------------|----------|--------------|---------|---|--|
| DDH-   | S-AL-18-056        | ORII | ENTACIO      | ON Azin             | iut: 2       | 223.50°      | Inclinaci      | ón :       | -45.00   | )°       | Long                             | gitud:           | 285.      | 00 m           | Fech         | na: J          | ulio 201    | 8 1        | de       | 7            | 2       |   |  |
| Interv | alo de Profundidad | Lo   | ngitud       |                     | Grado        | Resistenc.   | RQD            |            |          |          |                                  | Parámet          | ros del R | MR             |              |                |             |            |          |              |         |   |  |
| Desde  | e Hasta            | del  | tramo        | Litología           | de           | compres.     | RQD            | RC         | RQD      | Esp.     |                                  | Condición de jui |           | itas (4)       |              | Agua           | RMI         | R          | Des      | cripción     | 1       |   |  |
| (m)    | (m)                |      | (m)          |                     | Alteración   | roca intacta | a (%)          | (1)        | (2)      | (3)      | Per                              | Ap               | Rug       | Rel            | Alt          | (5)            | Tota        | al         |          |              |         |   |  |
| 0.00   | 0.75               | 0    | ).75         |                     | Mod          | R2           | 50 3           |            | 8        | 6        | 2                                | 1                | 2         | 0              | 3            | 10             | 35          | IVA        |          | Mala         | Α       |   |  |
| 0.75   | 1.20               | 0    | ).45         |                     | Muy          | R2           | 15             | 2          | 3        | 5        | 0                                | 1                | 2         | 0              | 2            | 10             | 25          | IVB        |          | Mala         | В       |   |  |
| 1.20   | 3.73               | 2    | 2.53         |                     | Lig          | R4           | 51             | 7          | 9        | 9        | 1                                | 2                | 2         | 1              | 5            | 10             | 46          | IIIB       |          | Regula       | ır B    |   |  |
| 3.73   | 7.28               | 3    | 3.55         |                     | Lig          | R3           | 63             | 5          | 11       | 7        | 1                                | 1                | 1         | 1              | 4            | 10             | 41          | IIIB       |          | Regula       | ır B    |   |  |
| 7.28   | 7.40               | C    | ).12         |                     | Muy          | R2           | 15             | 1          | 3        | 5        | 0                                | 0                | 1         | 0              | 1            | 10             | 21          | IVB        |          | Mala         | В       |   |  |
| 7.40   | 8.00               | 0    | 0.60         |                     | Lig          | R3           | 40             | 5          | 6        | 7        | 1                                | 1                | 1         | 1              | 4            | 10             | 36          | IVA        |          | Mala         | Α       |   |  |
| 8.00   | 8.20               | C    | 0.20         |                     | Muy          | R1           | 15             | 1          | 3        | 5        | 0                                | 0                | 1         | 0              | 1            | 10             | 21          | IVB        |          | Mala         | В       |   |  |
| 8.20   | 10.40              | 2    | 2.20         |                     | Mod          | R2           | 15             | 3          | 3        | 5        | 1                                | 2                | 1         | 1              | 3            | 10             | 29          | IVB        |          | Mala         | В       |   |  |
| 10.40  | 11.08              | 0    | ).68         |                     | Lig          | R2           | 50             | 3          | 8        | 6        | 1                                | 2                | 1         | 1              | 3            | 10             | 35          | IVA        |          | Mala         | Α       |   |  |
| 11.08  | 12.95              | 1    | 1.87         |                     | Lig          | R2           | 68             | 3          | 12       | 8        | 1                                | 2                | 2         | 1              | 4            | 10             | 43          | IIIB       |          | Regula       | ır B    |   |  |
| 12.95  | 13.00              | 0    | 0.05         |                     | Muy          | R1           | 15             | 3          | 3        | 5        | 0                                | 0                | 1         | 0              | 1            | 10             | 23          | IVB        | _        | Mala         |         |   |  |
| 13.00  | 13.41              | 0    | ).41         |                     | Lig          | R2           | 95             | 3          | 18       | 9        | 1                                | 2                | 4         | 1              | 4            | 10             | 52          | IIIA       |          | Regula       | ır A    |   |  |
| 13.41  | 14.55              | 1    | 1.14         |                     | Lig          | R3           | 60             | 4          | 10       | 9        | 2                                | 2                | 2         | 1              | 5            | 10             | 45          | IIIB       |          | Regula       | ır B    |   |  |
| 14.55  | 17.10              | 2    | 2.55         |                     | Lig          | R3           | 41             | 4          | 6        | 8        | 1                                | 2                | 2         | 1              | 4            | 10             | 38          | IVA        | IVA Mala |              |         |   |  |
| 17.10  | 17.55              | C    | ).45         |                     | Muy          | R2           | 15             | 2          | 3        | 5        | 0                                | 1                | 1         | 0              | 2            | 10             | 24          | IVB        |          | Mala         | В       |   |  |
| 17.55  | 19.60              | 2    | 2.05         |                     | San          | R3           | 85             | 4          | 16       | 10       | 3                                | 4                | 2         | 1              | 5            | 10             | 55          | IIIA       |          | Regula       | r A     |   |  |
| 19.60  | 19.90              | 0    | 0.30         |                     | Mod          | R2           | 15             | 3          | 3        | 5        | 1                                | 1                | 2         | 1              | 3            | 10             | 29          | IVB        |          | Mala         |         |   |  |
| 19.90  | 20.05              | 0    | ).15         |                     | Muy          | R2           | 15             | 2          | 3        | 5        | 0                                | 0                | 1         | 1              | 1            | 10             | 23          | IVB        |          | Mala         | В       |   |  |
| 20.05  | 23.00              | 2    | 2.95         |                     | Lig          | R3           | 62             | 4          | 10       | 8        | 2                                | 2                | 2         | 1              | 4            | 10             | 43          | IIIB       |          | Regula       | ar B    |   |  |
| 23.00  | 26.40              | 3    | 3.40         |                     | Lig          | R2           | 57             | 3          | 9        | 7        | 1                                | 1                | 2         | 0              | 4            | 10             | 37          | IVA        |          | Mala         |         |   |  |
|        | Litología          |      | Resiste      | ncia de la roca     | intacta      | MPa          |                |            |          |          | VALORACI                         |                  | N DEL     | MACIZO         | ROCOS        | ROCOSO         |             |            |          |              |         |   |  |
|        |                    |      | Deleznal     | ble con golpes firr | nes, se      |              | RESIST. COM    | P. UNIAX.  | >250     | (15)     | 100-250 (12)                     |                  | 50-100    | (7)            | 25-50        | (4)            | <25(2)      | <5(1) <1(0 | )        | 1            |         |   |  |
|        |                    | - R1 | descond      | ha con una cuchi    | a            | 1-5          | RQD(           | %)         | 90-100   | (20)     | 75-90                            | (17)             | 50-75     | (13)           | 25-50        |                |             |            |          | (3           | )       | 2 |  |
|        |                    |      | Se desc      | oncha con dificul.  | c/ cuchilla. |              | ESPACIAMIE     | NTO (m)    | >2       | (20)     | 0,6-2                            | (15)             | 0.2-0.6   | (10)           | 0.06-0.2 (8) |                |             |            | <0.06    | (5)          | _       | 3 |  |
|        |                    | R2   | Marcas       | no profundas con    | la picota.   | 5 - 25       | Pe             | rsistencia | <1 m     | (6)      | 1-3 m                            | (4)              | 3-10 m    | (2)            | 10-20 m      | 1 (1)          | >20 m       | n (0)      |          | 4A           |         |   |  |
|        |                    | -    | No se ra     | ya ni desconcha     | / cuchillo.  | 05.50        | COND. Ap       | ertura     | Cerrada  | (6)      | <0.1 n                           | nm (5)           | 0.1-1 mr  | n (4)          | 1 - 5 mn     | n (1)          | >5 mn       | n (0)      |          | 4B           |         |   |  |
|        |                    | R3   |              | e con golpe firme   |              | 25 - 50      | DE Rugosidad   |            | Muy rug  | osa ( 6) | Rugosa                           | (5)              | Lig. rugo | osa (3)        | Lisa         | (1)            | Espejo      |            |          | 4C           |         |   |  |
| Grad   | o de alteración    | 1    | <del>-</del> | stra se rompe con   | •            | 50 400       | JUNTAS Relleno |            | Limpia   | (6)      | _                                | imm (4)          |           | mm (2)         | Suave <      |                | Suave       |            |          | 4D           |         |   |  |
| San    | Sano               | R4   | 1            | de la picota.       |              | 50 - 100     | Alteración     |            | Sana     | (6)      | Lig. Altera (5) Mod.Alterada (3) |                  |           | Muy Alterada ( |              | ( )            |             |            | 4E       |              |         |   |  |
| Lig    | Ligero             | 1    | <u> </u>     | ere varios golpes   | de la        |              | AGUA SUBTE     |            | Seco     | (15)     | Húmedo                           |                  | Mojado    | (7)            | Goteo        | (4)            | Flujo       | (0         | _        | 5            |         |   |  |
| •      | Moderado           | R5   |              | ara romper la mue   |              | 100 - 250    | RMR            | _          | 0 - 81   |          | - 61                             |                  | - 51      |                | -41 40-      |                | <del></del> |            |          | 30 - 21 20 - |         |   |  |
|        | Muy alterado       | R6   | -            | rompe esquirlas c   |              | >250         | DESCRIPCION    | I Mu       | y Buena  | II B     | uena                             | IIIA Re          | egular A  | IIIB Re        | gular B      | IVA Ma         | ala A       | IVB Ma     |          |              | uy Mala |   |  |



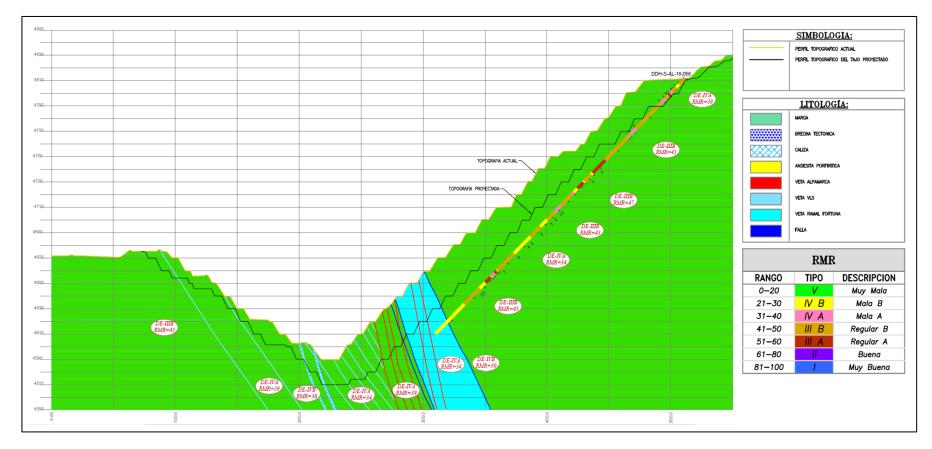



Figura 9: Sección litológica geomecánica



Tabla 10: Caracterización geomecánica de testigo de sondaje diamantino DDH-057

| S      | ONDAJE             | coo | RDENAD   | AS E                 | : 34         | 1,778.60    | l N              | ۱:        | 8,7      | 760,163  | 3.47     | Co           | ta :     | 4 755.4          | 1 msnm            | Real     | iz: E     | BR/WV      | /V           | Н        | oja       | Pág.     |
|--------|--------------------|-----|----------|----------------------|--------------|-------------|------------------|-----------|----------|----------|----------|--------------|----------|------------------|-------------------|----------|-----------|------------|--------------|----------|-----------|----------|
| DDH    | -S-AL-18-057       | ORI | IENTACIO | ON Azim              | ut: 2        | 217.00°     | Inclin           | ación :   |          | -60.00°  | 0        | Long         | gitud:   | 235.             | 00 m              | Fech     | ia: J     | ulio 201   | 18           | 1 (      | de 4      | 9        |
| Interv | alo de Profundidad | Lo  | ongitud  |                      | Grado        | Resistenc   | RQE              |           |          |          |          |              | Parámeti | ros del R        | RMR               |          |           |            |              |          |           |          |
| Desd   | e Hasta            | de  | el tramo | Litología            | de           | compres.    | RQL              | R         | C F      | RQD      | Esp.     |              | Condi    | ción de jun      | itas (4)          |          | Agua      | RM         | R            | D        | escripció | n        |
| (m)    | (m)                |     | (m)      |                      | Alteración   | roca intact | a (%)            | (1        | 1)       | (2)      | (3)      | Per          | Ap       | Rug              | ug Rel Alt (5) To |          | Tota      | al         |              |          |           |          |
| 0.00   | 8.10               |     | 8.10     |                      | Muy          | R2          | 20               | 3         | 3        | 3        | 5        | 0            | 1        | 1                | 0                 | 1        | 10        | 24         | 1            | IVB Mala |           | В        |
| 8.10   | 10.35              |     | 2.25     |                      | Mod          | R2          | 50 3             |           | 3        | 8        | 8        | 2            | 2        | 2                | 0                 | 3        | 10        | 38         | 3 /          | IVA Mala |           | A        |
| 10.3   | 5 12.90            |     | 2.55     |                      | Muy          | R2          | 15               | 2         | 2        | 3        | 5        | 0            | 1        | 1                | 0                 | 0        | 10        | 22         | 2 /          | VB       | Mala      | В        |
| 12.9   | 0 14.90            |     | 2.00     |                      | Mod          | R4          | 52               | 7         | 7        | 10       | 9        | 2            | 3        | 3                | 0                 | 3        | 10        | 47         | 7 <b>I</b> I | IIB      | Regul     | ar B     |
| 14.9   | 0 20.70            |     | 5.80     |                      | Lig          | R3          | 55               | 5         | 5        | 10       | 9        | 2            | 3        | 3                | 0                 | 4        | 10        | 46         | 6 <b>1</b> 1 | IIB      | Regul     | ar B     |
| 20.7   | 0 22.50            |     | 1.80     |                      | Mod          | R2          | 30               | 3         | 3        | 5        | 5        | 0            | 0        | 1                | 0                 | 1        | 10        | 25         | 5 /          | VB       | Mala      | В        |
| 22.5   | 0 30.65            |     | 8.15     |                      | Lig          | R3          | 65               | 4         | 4        | 10       | 9        | 2            | 3        | 3                | 0                 | 4        | 10        | 45         | 5 <b>1</b> 1 | IIB      | Regul     | ar B     |
| 30.6   | 5 31.20            |     | 0.55     |                      | Muy          | R2          | 15               | 2         | 2        | 3        | 5        | 0            | 0        | 1                | 0                 | 1        | 10        | 22         | 2 /          | VB       | Mala      | В        |
| 31.2   | 0 32.90            |     | 1.70     |                      | Lig          | R3          | 55               | 4         | 4        | 13       | 10       | 2            | 3        | 3                | 0                 | 4        | 10        | 49         | ) [          | IIB      | Regul     | ar B     |
| 32.9   | 0 34.60            |     | 1.70     |                      | Muy          | R2          | 15               | 3         | 3        | 3        | 5        | 0            | 0        | 1                | 0                 | 1        | 10        | 23         | 3 /          | VB       | Mala      | В        |
| 34.6   | 0 43.80            |     | 9.20     |                      | Lig          | R3          | 70               | 4         | 4        | 13       | 10       | 2            | 3        | 4                | 0                 | 5        | 10        | 51         | 11           | IIA      | Regul     | ar A     |
| 43.8   | 0 47.80            |     | 4.00     |                      | Muy          | R2          | 15               | 3         | 3        | 3        | 5        | 2            | 1        | 3                | 0                 | 3        | 10        | 30         | ) //         | VB       | Mala      | В        |
| 47.8   | 0 55.90            |     | 8.10     |                      | Mod          | R2          | 50               | 3         | 3        | 8        | 8        | 2            | 1        | 3                | 1                 | 3        | 10        | 39         | 9 /          | VA       | Mala      | A        |
| 55.9   | 0 62.20            |     | 6.30     |                      | Muy          | R2          | 15               | 2         | 2        | 3        | 5        | 0            | 0        | 1                | 0                 | 1        | 10        | 22         | 2 /          | VB       | Mala      | В        |
| 62.2   | 0 63.30            |     | 1.10     |                      | Mod          | R2          | 45               | 3         | 3        | 8        | 8        | 1            | 1        | 1                | 0                 | 1        | 10        | 33         | 3 /          | VA       | Mala      | A        |
| 63.3   | 0 70.40            |     | 7.10     |                      | Muy          | R2          | 20               | 2         | 2        | 3        | 5        | 0            | 0        | 1                | 0                 | 1        | 10        | 22         | 2 /          | VB       | Mala      | В        |
| 70.4   | 0 75.40            |     | 5.00     |                      | Mod          | R3          | 50               | 4         | 4        | 8        | 8        | 2            | 1        | 3                | 0                 | 4        | 10        | 40         | ) //         | VA       | Mala      | A        |
| 75.4   | 0 79.70            |     | 4.30     |                      | Lig          | R3          | 70               | 4         | 4        | 13       | 10       | 2            | 3        | 3                | 0                 | 5        | 10        | 50         | ) [          | IIB      | Regul     | ar B     |
| 79.7   | 0 80.90            |     | 1.20     |                      | Mod          | R2          | 38               | 3         | 3        | 5        | 5        | 1            | 1        | 1                | 0                 | 1        | 10        | 27         | <i>'</i>     | VB       | Mala      | В        |
| 80.9   | 0 87.60            | -   | 6.70     |                      | Mod          | R3          | 50               | 4         | 4        | 8        | 8        | 2            | 3        | 3                | 0                 | 4        | 10        | 42         | 2 <b>I</b> I | IIB      | Regul     | ar B     |
|        | Litología          |     | Resiste  | ncia de la roca      | intacta      | MPa         |                  |           |          |          |          | VALORA       |          | ION DEL MACIZO   |                   | ROCOS    | ocoso     |            |              |          |           |          |
|        |                    | R1  | Delezna  | ble con golpes fim   | ies, se      | 1-5         | RESIST. C        | OMP. UNI/ | 4X. >    | >250     | (15)     | 100-250 (12) |          | 50-100           | (7)               | 25-50    | (4)       | <25(2)     | ) <5(1) <    | 1(0)     | 1         |          |
|        |                    | KI  | descond  | cha con una cuchill  | a            | 1-5         | RQ               | D (%)     | 9        | 90-100   | (20)     | 75-90        | (17)     | 50-75            | (13)              | 25-50    | (8)       | <25        |              | (3)      | 2         |          |
|        |                    | R2  | Se desc  | oncha con dificul.   | c/ cuchilla. | 5 - 25      | ESPACIA          | MIENTO (n | n) :     | >2       | (20)     | 0,6-2        | (15)     | 0.2-0.6          | (10)              | 0.06-0.2 | 2 (8)     | <0.06      |              | (5)      | 3         |          |
|        |                    | R/Z | Marcas   | no profundas con l   | a picota.    | 5-25        |                  | Persisten | cia <1   | 1 m      | (6)      | 1-3 m        | (4)      | 3-10 m           | (2)               | 10-20 m  | (1)       | >20 n      | n            | (0)      | 4A        |          |
|        |                    | R3  | No se ra | aya ni desconcha c   | / cuchillo.  | 25 - 50     | COND.            | Apertura  |          | Cerrada  | (6)      | <0.1 n       | nm (5)   | 0.1-1 mr         | n (4)             | 1 - 5 mn | n (1)     | >5 mr      | m            | (0)      | 4B        |          |
|        |                    | KS  | Se romp  | e con golpe firme    | de picota.   | 25-50       | DE Rugosidad     |           | d        | Muy rugo | osa ( 6) | Rugosa       | (5)      | Lig. rugo        | osa (3)           | Lisa     | (1)       | Espej      | jo falla     | (0)      | 4C        |          |
| Grad   | do de alteración   | R4  | La mues  | stra se rompe con    | más de       | 50 - 100    | JUNTAS Relleno   |           |          | Limpia   | (6)      | Duro <5      | mm (4)   | Duro >5          | imm (2)           | Suave <  | 5 mm (1)  | Suave      | >5 mm        | (0)      | 4D        |          |
| San    | Sano               | R4  | un golpe | e de la picota.      |              | 30 - 100    | Alteración       |           |          | Sana     | (6)      | Lig. Alte    | era (5)  | Mod.Alterada (3) |                   | Muy Alte | erada (2) | (2) Descom |              | (0)      | 4E        |          |
| Lig    | Ligero             | R5  | Se requi | iere varios golpes ( | de la        | 100 - 250   | AGUA SUBTERRANEA |           | EA S     | Seco     | (15)     | Húmedo       | (10)     | Mojado           | (7)               | Goteo    | (4)       | (4) Flujo  |              | (0)      | 5         |          |
| Mod    | Moderado           | Ko  |          | ara romper la mue    | stra.        | 100 - 250   | RMR              |           | 100 - 81 | 1        | 80 - 61  |              | 60 - 51  |                  | 50                | - 41     | 40 -      | 31 30 - 2  |              | - 21     | 2         | 20 - 0   |
| Muy    | Muy alterado       | R6  | Solo se  | rompe esquirlas c/   | la picota.   | >250        | DESCRIPC         | ION I     | Muy Bue  | ena      | II Bi    | uena         | IIIA Re  | egular A         | IIIB Re           | gular B  | IVA Ma    | ala A      | IVB          | Mala B   | V M       | luy Mala |



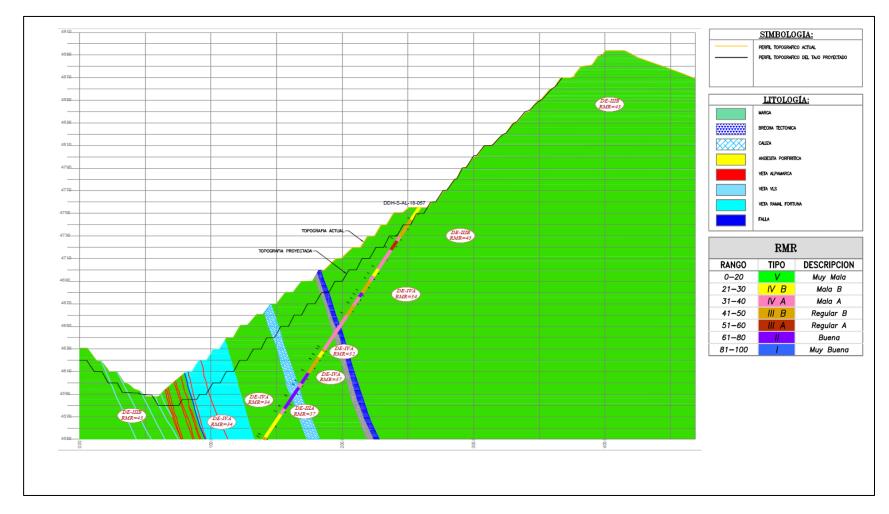



Figura 10: Sección litológica geomecánica



Tabla 11: Caracterización geomecánica de testigo de sondaje diamantino DDH-059

| s      | ONDAJE             | COO  | RDENAD    | AS E                 | 34          | 1,759.98    | N              | :            | 8,760,18  | 30.05    | Co       | ota :    | 4 755.0      | 2 msnm    | Real      | iz: E        | EBR/W\      | //            | Ноја           | ı         | Pág.    |   |    |   |  |
|--------|--------------------|------|-----------|----------------------|-------------|-------------|----------------|--------------|-----------|----------|----------|----------|--------------|-----------|-----------|--------------|-------------|---------------|----------------|-----------|---------|---|----|---|--|
| DDH-   | S-AL-18-059        | ORI  | ENTACIO   | ON Azim              | ut: 2       | 217.00°     | Inclina        | ción :       | -60.0     | 0°       | Long     | gitud:   | 240          | .20 m     | Fech      | na: .        | Julio 20    | 18 1          | de             | 2         | 14      |   |    |   |  |
| Interv | alo de Profundidad | Lo   | ongitud   |                      | Grado       | Resistenc   | DOD            |              |           |          |          | Parámet  | ros del F    | RMR       |           | •            |             |               |                |           |         |   |    |   |  |
| Desde  | e Hasta            | de   | l tramo   | Litología            | de          | compres.    | RQD            | RC           | RQD       | Esp.     |          | Condi    | ición de jur | ntas (4)  |           | Agua         | Agua RM     |               | Des            | cripciór  | n       |   |    |   |  |
| (m)    | (m)                |      | (m)       |                      | Alteración  | roca intact | a (%)          | (1)          | (2)       | (3)      | Per      | Ap       | Rug          | Rel       | Alt       | (5)          | Tot         | al            |                |           |         |   |    |   |  |
| 0.00   | 7.80               |      | 7.80      |                      | Muy         | R2          | 15 2           |              | 3         | 5        | 0        | 0        | 0            | 0         | 0         | 10           | 20          | ) <b>V</b>    |                | Muy M     | lala    |   |    |   |  |
| 7.80   | 14.00              |      | 6.20      |                      | Lig         | R3          | 60             | 5            | 10        | 9        | 2        | 2        | 3            | 0         | 4         | 10           | 45          | 5 IIIE        | IIIB Regula    |           | ar B    |   |    |   |  |
| 14.00  | 16.10              |      | 2.10      |                      | Mod         | R3          | 34             | 5            | 5         | 5        | 2        | 1        | 3            | 0         | 3         | 10           | 34          | 1 <i>IV</i>   | 1              | Mala      | Α       |   |    |   |  |
| 16.10  | 28.15              | 1    | 12.05     |                      | San         | R3          | 85             | 6            | 17        | 12       | 3        | 2        | 4            | 1         | 5         | 10           | 60          | )             | ١              | Regula    | ar A    |   |    |   |  |
| 28.15  | 32.20              | -    | 4.05      |                      | Muy         | R2          | 16             | 2            | 3         | 5        | 0        | 0        | 0            | 0         | 0         | 10           | 20          | ) V           |                | Muy M     | lala    |   |    |   |  |
| 32.20  | 35.30              |      | 3.10      |                      | Mod         | R3          | 40             | 4            | 8         | 6        | 2        | 1        | 3            | 0         | 3         | 10           | 37          | 7 IV          | 1              | Mala      | A       |   |    |   |  |
| 35.30  | 36.30              |      | 1.00      |                      | Muy         | R2          | 15             | 3            | 3         | 5        | 1        | 1        | 1            | 0         | 3         | 10           | 27          | 7 IVE         | 3              | Mala      | В       |   |    |   |  |
| 36.30  | 37.50              |      | 1.20      |                      | Lig         | R3          | 75             | 4            | 13        | 9        | 3        | 3        | 4            | 0         | 5         | 10           | 51          | 1 1114        | ١              | Regula    | ar A    |   |    |   |  |
| 37.50  | 41.10              |      | 3.60      |                      | Mod         | R2          | 40             | 3            | 8         | 8        | 1        | 1        | 2            | 0         | 3         | 10           | 36          | i IV          | 1              | Mala      | A       |   |    |   |  |
| 41.10  | 45.40              |      | 4.30      |                      | Lig         | R3          | 70             | 4            | 13        | 9        | 2        | 2        | 3            | 0         | 4         | 10           | 47          | 7 IIIE        | 3              | Regula    | ar B    |   |    |   |  |
| 45.40  | 47.10              |      | 1.70      |                      | Muy         | R2          | 23             | 3            | 3         | 5        | 0        | 1        | 1            | 0         | 0         | 10           | 23          | 3 IVE         | 3              | Mala      | В       |   |    |   |  |
| 47.10  | 56.35              |      | 9.25      |                      | Lig         | R3          | 75 4           |              | 13        | 10       | 3        | 2        | 4            | 2         | 4         | 10           | 52          | 2 1114        | IIIA Regular A |           | ar A    |   |    |   |  |
| 56.35  | 5 57.20            |      | 0.85      |                      | Muy         | R2          | 15             | 2            | 3         | 5        | 0        | 0        | 1            | 0         | 1         | 10           | 22          | 2 IVE         | 3              | Mala      | В       |   |    |   |  |
| 57.20  | 59.80              |      | 2.60      |                      | Lig         | R3          | 73             | 4            | 13        | 10       | 3        | 2        | 4            | 2         | 4         | 10           | 52          | 2 111.4       | ١              | Regula    | ar A    |   |    |   |  |
| 59.80  | 62.90              |      | 3.10      |                      | San         | R2          | 82             | 3            | 17        | 12       | 3        | 2        | 2            | 0         | 4         | 10           | 53          | 3 1114        | IIIA Regular A |           | ar A    |   |    |   |  |
| 62.90  | 64.35              |      | 1.45      |                      | Mod         | R2          | 30             | 3            | 5         | 5        | 1        | 1        | 2            | 0         | 3         | 10           | 30          | ) IVE         | 3              | Mala      | В       |   |    |   |  |
| 64.35  | 68.30              |      | 3.95      |                      | Lig         | R2          | 75             | 3            | 13        | 10       | 3        | 1        | 2            | 0         | 4         | 10           | 46          | ille          | 3              | Regula    | ar B    |   |    |   |  |
| 68.30  | 69.20              |      | 0.90      |                      | Mod         | R2          | 40             | 3            | 8         | 8        | 2        | 1        | 2            | 0         | 3         | 10           | 37          | 7 IVA         | 1              | Mala      | Α       |   |    |   |  |
| 69.20  | 73.20              | -    | 4.00      |                      | Lig         | R2          | 75             | 3            | 13        | 10       | 3        | 1        | 2            | 0         | 4         | 10           | 46          | 5 IIIE        | 3              | Regula    | ar B    |   |    |   |  |
| 73.20  | 76.90              | ;    | 3.70      |                      | Muy         | R2          | 15             | 2            | 3         | 5        | 0        | 0        | 0            | 0         | 0         | 10           | 20          | ) <b>V</b>    |                | Muy M     | lala    |   |    |   |  |
|        | Litología          |      | Resiste   | ncia de la roca      | intacta     | MPa         |                |              |           |          | VALOR    |          | CION DEL MA  |           | ROCOS     | 0            |             |               |                |           |         |   |    |   |  |
|        |                    | R1   | Delezna   | ble con golpes firm  | es, se      | 1-5         | RESIST. CO     | MP. UNIAX    | (. >250   | (15)     | 100-250  | 0 (12)   | 50-100       | (7)       | 25-50     | (4)          | <25(2       | !) <5(1) <1(0 | 0)             | 1         |         |   |    |   |  |
|        |                    | KI   | descond   | ha con una cuchilla  | a           | 1-5         | RQI            | 0 (%)        | 90-100    | (20)     | 75-90    | (17)     | 50-75        | (13)      | 25-50     | 25-50 (8)    |             | 25-50 (8)     |                | 25-50 (8) |         | ( | 3) | 2 |  |
|        |                    | R2   | Se desc   | oncha con dificul. o | / cuchilla. | 5 - 25      | ESPACIAN       | IENTO (m)    | >2        | (20)     | 0,6-2    | (15)     | 0.2-0.6      | (10)      | 0.06-0.2  | 0.06-0.2 (8) |             | 6 (5          | )              | 3         |         |   |    |   |  |
|        |                    | - K2 | Marcas    | no profundas con l   | a picota.   | 5-25        | F              | Persistencia | a <1 m    | (6)      | 1-3 m    | (4)      | 3-10 m       | (2)       | 10-20 m   | n (1)        | >20 r       | m (0          | )              | 4A        |         |   |    |   |  |
|        |                    | R3   | No se ra  | ya ni desconcha c    | cuchillo.   | 25 - 50     | COND.          | Apertura     | Cerrad    | a (6)    | <0.1 r   | mm (5)   | 0.1-1 m      | m (4)     | 1 - 5 mn  | n (1)        | >5 m        | m (0          | )              | 4B        |         |   |    |   |  |
|        |                    | KS   | Se romp   | e con golpe firme    | de picota.  | 25 - 50     | DE Rugosidad   |              | Muy ru    | gosa (6) | Rugosa   | a (5)    | Lig. rug     | osa (3)   | Lisa      | (1)          | Espe        | jo falla (0   | )              | 4C        |         |   |    |   |  |
| Grad   | lo de alteración   | R4   | La mues   | stra se rompe con r  | nás de      | 50 - 100    | JUNTAS Relleno |              | Limpia    | (6)      | Duro <5  | 5mm (4)  | Duro >5      | imm (2)   | Suave <   | 5 mm (1)     | Suave       | >5 mm (       | 0)             | 4D        |         |   |    |   |  |
| San    | Sano               | R4   | un golpe  | de la picota.        |             | 50 - 100    |                |              | Sana      | (6)      | Lig. Alt | tera (5) | Mod.Alt      | erada (3) | Muy Alt   | rada (2) Des |             | ompuesta (0   | )              | 4E        |         |   |    |   |  |
| Lig    | Ligero             | R5   | Se requi  | iere varios golpes o | le la       | 100 - 250   | AGUA SUB       | TERRANEA     | A Seco    | (15)     | Húmed    | o (10)   | Mojado       | (7)       | Goteo     | (4)          | Flujo       | (             | 0)             | 5         |         |   |    |   |  |
| Mod    | Moderado           | R5   | picota pa | ara romper la mues   | tra.        | 100 - 250   | RMR            |              | 100 - 81  | 80       | 80 - 61  |          | 60 - 51      |           | ) - 41 40 |              | 0 - 31 30 - |               | 21             | 20        | 0 - 0   |   |    |   |  |
| Muy    | Muy alterado       | R6   | Solo se   | rompe esquirlas c/   | la picota.  | >250        | DESCRIPCIO     | N I N        | Nuy Buena | II B     | Buena    | IIIA Re  | egular A     | IIIB Re   | egular B  | IVA M        | ala A IVB M |               | 3 Mala B V     |           | uy Mala |   |    |   |  |



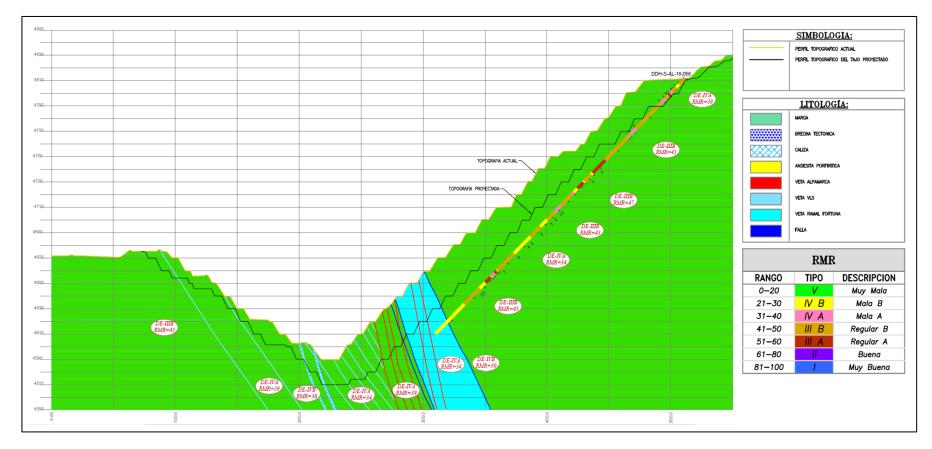



Figura 11: Sección litológica geomecánica



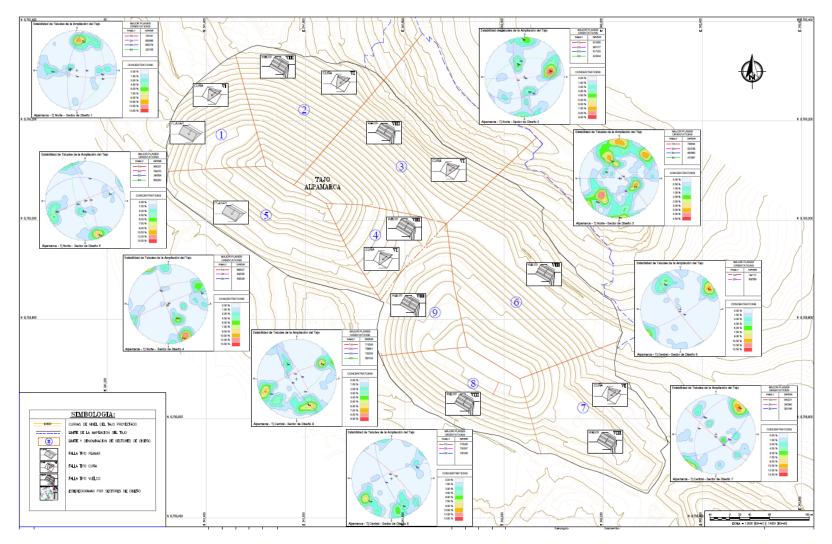



Figura 12: Plano de arreglo estructural y modos de inestabilidad cinemática en el Tajo de la unidad minera



## 3.4. Distribución geoestadística de data geomecánica

## a) Distribución de los datos geomecánicos en función del tipo de roca

Se muestra una confiabilidad mayor al 90%

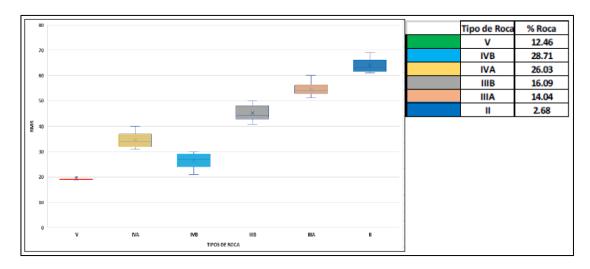



Figura 13: La mayor cantidad de datos se encuentra entre el cuartil Q=1 y Q=3

## b) Distribución de la datos geomecánicos en función de la litología

La mayor cantidad de datos se encuentra entre el cuartil Q=1 y Q=3

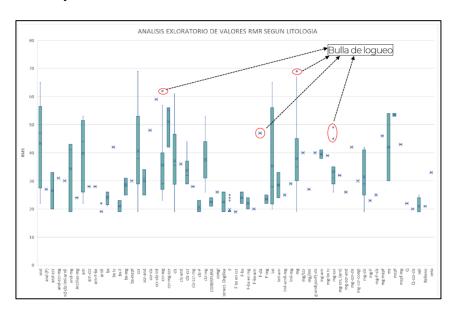
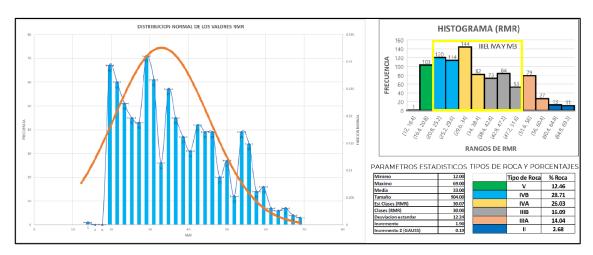


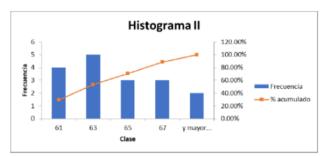

Figura 14: Distribución de datos en función a la litología



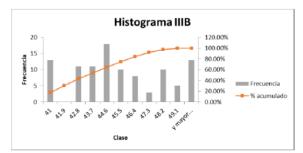
## c) Normalización de los datos geomecánicos

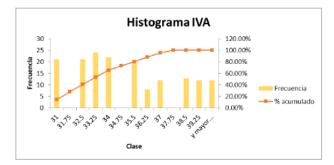
Se observa que los tipos de roca predominante son IIIB, IVA y IVB.

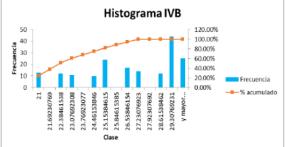




Figura 15: Normalización de la data de campo (RMR)




## d) Histogramas según tipo de roca


Los histogramas de tipo de roca II, IIIA, IIIB y IVA, presentan mayor nivel de confianza.


Los histogramas IVB y V, muestra mucha dispersión de datos, atribuyendose los datos anómalos a estos dominios geotécnicos.











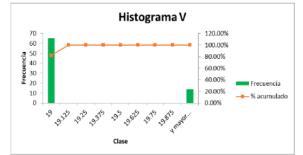



Figura 16: Histogramas de los diferentes tipos de roca



## e) Distribución de porcentajes de roca según litología

En la Fig. 18, las litologías predominantes del tajo, son las calcarenitas, caliza y marga con RMR de 41, 37 y 39 respectivamente.

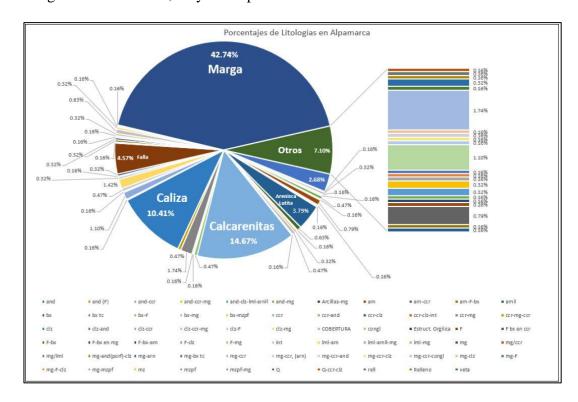



Figura 17: Porcentaje de litologías en el Tajo

Según los datos registrados, en los afloramientos y sondajes, la calidad del macizo rocoso del área de estudio se presenta en forma resumida en la siguiente tabla

Tabla 12: Resumen de la distribución de la calidad de los macizos rocosos

| Tipo de<br>roca | Rango<br>RMR | Promedio<br>RMR | Desviación<br>estándar | Porcentaje<br>(%) | Calidad según<br>RMR |
|-----------------|--------------|-----------------|------------------------|-------------------|----------------------|
| II              | > 60         | 61.7            | 0.2                    | 7.8               | Buena                |
| IIIA            | 51 – 60      | 56.4            | 2.4                    | 6.3               | Regular A            |
| IIIB            | 41 – 50      | 44.4            | 2.8                    | 43.4              | Regular B            |
| IVA             | 31 – 40      | 33.7            | 2.6                    | 20.4              | Mala A               |
| IVB             | 21 – 30      | 27.6            | 2.4                    | 21.3              | Mala B               |
| V               | < 21         | 12              | 0                      | 0.5               | Muy Mala             |



# Zonificación geomecánica

En el del Tajo Noreste existen cuatro tipos de masa rocosa y que se muestran en la siguiente tabla, de estos cuatro tipos, tres son los principales: el DE-IIIB, DE-IVA y DE-IVB ya que constituyen el 85% de la masa rocosa.

Tabla 13: Zonificación geomecánica para el Tajo

| Dominio<br>Estructural | Litología                                                                           | RMR | Clase | Descripción |
|------------------------|-------------------------------------------------------------------------------------|-----|-------|-------------|
| DE-IIIA                | Margas, calizas, conglomerado y tobas                                               | 56  | III-A | Regular – A |
| DE-IIIB                | Margas, calizas, tobas, arenisca, brecha, calcarenitas y lutita                     | 44  | III-B | Regular – B |
| DE-IVA                 | Margas, calizas, tobas, arenisca, calcarenitas, lutita y vetas                      | 34  | IV-A  | Mala – A    |
| DE-IVB                 | Marga, calizas, toba, limolita,<br>lutita, conglomerado y mineral<br>zonas de falla | 27  | IV-B  | Mala – B    |



# Zonificación geomecánica

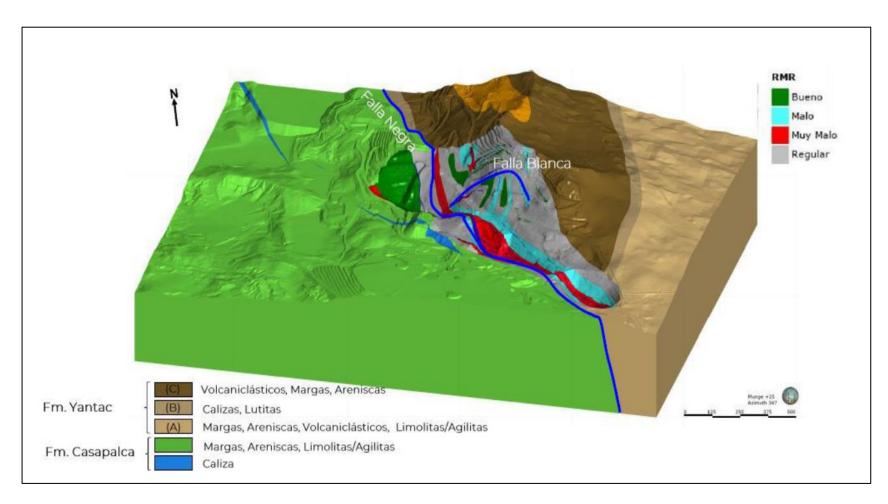
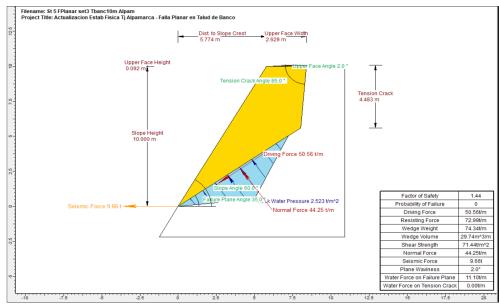



Figura 18: Zonificación geomecánica



## Peligro sísmico

Se determinó que la aceleración pico del terreno (PGA), para roca es de 0.26g, para un periodo de retorno de 475 años y vida útil de 50 años. Para el tajo se considera un coeficiente sísmico de 100% de aceleración máxima por el método probabilístico, es decir  $\alpha = 0.13$ .


Tabla 14: Aceleraciones espectrales en roca para diferentes periodos de retorno

| Modelo de Atenuación                                                    | Longitud<br>(W) | Latitud<br>(S) | model  | Aceleración horizontal máxima (gals) d<br>diferentes<br>modelos de atenuación para un periodo<br>retorno de: |        |        |                    |  |  |  |  |
|-------------------------------------------------------------------------|-----------------|----------------|--------|--------------------------------------------------------------------------------------------------------------|--------|--------|--------------------|--|--|--|--|
| Youngs et al. 1997 (P.50) -<br>Área<br>de Botaderos y Tajo<br>Alpamarca | -76.447         | -11.218        | 130.00 | 180.00                                                                                                       | 256.00 | 336.00 | <b>2500</b> 453.00 |  |  |  |  |

| Modelo de Atenuación                                                    | Longitud<br>(W) | Latitud<br>(S) |      | Aceleración horizontal máxima (g) de difere<br>modelos de atenuación para un periodo<br>retorno de: |      |      |      |  |  |  |  |  |  |
|-------------------------------------------------------------------------|-----------------|----------------|------|-----------------------------------------------------------------------------------------------------|------|------|------|--|--|--|--|--|--|
|                                                                         | (00)            | (3)            | 100  | 200                                                                                                 | 475  | 1000 | 2500 |  |  |  |  |  |  |
| Youngs et al. 1997 (P.50) -<br>Área<br>de Botaderos y Tajo<br>Alpamarca | -76.447         | -11.218        | 0.13 | 0.18                                                                                                | 0.26 | 0.34 | 0.45 |  |  |  |  |  |  |

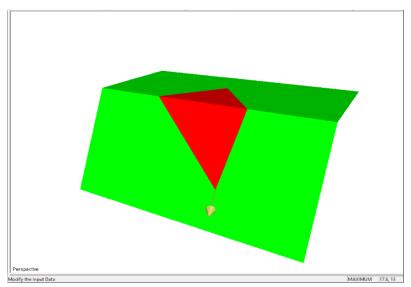



Figura 19: Factor de seguridad de taludes de banco en función a rotura planar



| Altura de talud | Talud de banco | Plano de<br>falla | Peso Específico | Cohesión (KPa) | Angulo de fricción (°) | Probabilidad<br>de falla (%) | Factor de<br>seguridad |
|-----------------|----------------|-------------------|-----------------|----------------|------------------------|------------------------------|------------------------|
| (m)             | (°)            | (°)               | (kN/m³)         |                |                        | ao rana (70)                 | ooganaaa               |
| 10              | 60             | 35 ± 8            | 26              | 50             | 27                     | 0.00                         | 1.44                   |

Figura 20: Factor de seguridad de taludes de banco en función a rotura en cuña



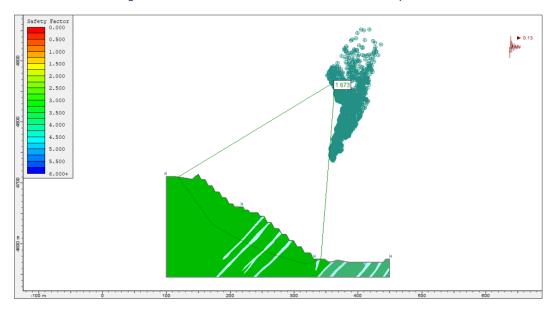
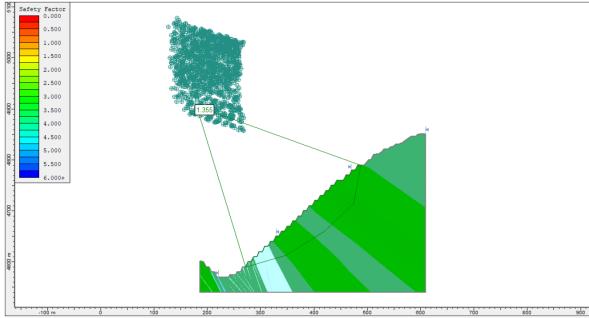

| ſ | Altura | Talud de | Sistema              | de juntas                                | Peso                 | Cohesión | Angulo            | Probabilidad |      |
|---|--------|----------|----------------------|------------------------------------------|----------------------|----------|-------------------|--------------|------|
| ١ | Talud  | Banco    | Buz ± σ <sub>n</sub> | Buz $\pm \sigma_n$ DirBuz $\pm \sigma_n$ |                      | Conesion | Fricción          | de falla     | F.S. |
| - | (m)    | Buz/Dir  | (°)                  | (°)                                      | (KN/m <sup>3</sup> ) | (KPa)    | (°)± <b>⊙</b> est | %            |      |
|   | 10     | 60 / 205 | S1 67 ± 10           | 255 ± 10                                 | 26                   | 50       | 27                | 0.00         | 3.1  |
| ١ | 10     | 007203   | S3 41 ± 10           | 153 ± 15                                 | 20                   | 30       | 21                | 0.00         | 3.1  |



Figura 21: Estabilidad de taludes del sector SD1 - Condiciones estáticas




Figura 22: Estabilidad de taludes SD1 - Condiciones pseudoestáticas



| Descripción        |  | Calidad          | Densidad<br>(kN/m³) | <b>О</b> с (МРа) | GSI        | mi    |
|--------------------|--|------------------|---------------------|------------------|------------|-------|
| Marga              |  | IIIB             | 26                  | 65, 100          | 43, 47     | 12    |
| Marga              |  | IVB - IVA        | 26                  | 10, 30, 40       | 30, 35, 39 | 8     |
| Caliza             |  | IVB - IVA        | 26                  | 10, 40, 110      | 30, 39     | 8, 12 |
| Vetas              |  | IVB - IVA - IIIB | 26                  | 10, 40, 40       | 30, 34, 43 | 8.0   |
| Brecha tectonic    |  | IVB - IIIB       | 26                  | 20, 90           | 30, 47     | 15    |
| Arenisca           |  | IVA              | 26                  | 20               | 32         | 13    |
| Andesita porfiriti |  | IVA              | 26                  | 20, 50           | 30, 35     | 15    |



Figura 23: Análisis de taludes del sector SD2



| Descripción        | Calidad          | Densidad<br>(kN/m³) | <b>О</b> с (МРа) | GSI        | mi    |
|--------------------|------------------|---------------------|------------------|------------|-------|
| Marga              | IIIB             | 26                  | 65, 100          | 43, 47     | 12    |
| Marga              | IVB - IVA        | 26                  | 10, 30, 40       | 30, 35, 39 | 8     |
| Caliza             | IVB - IVA        | 26                  | 10, 40, 110      | 30, 39     | 8, 12 |
| Vetas              | IVB - IVA - IIIB | 26                  | 10, 40, 40       | 30, 34, 43 | 8.0   |
| Brecha tectonic    | IVB - IIIB       | 26                  | 20, 90           | 30, 47     | 15    |
| Arenisca           | IVA              | 26                  | 20               | 32         | 13    |
| Andesita porfiriti | IVA              | 26                  | 20, 50           | 30, 35     | 15    |



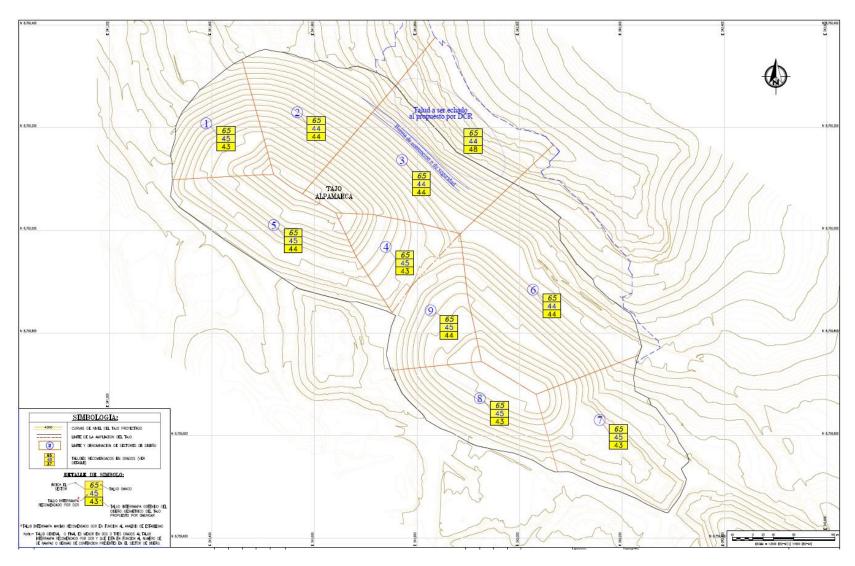



Figura 24: Plano de ángulos de taludes recomendado



#### CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES

En función a los hallazgos de la presente investigación se acepta la hipótesis planteada ya que la evaluación geomecánica-geotécnica permitió diseñar la estabilidad física de los taludes del tajo noreste de una mina en Junín.

En cuanto a la Caracterización de la geología y estructuras de la mina superficialmente los afloramientos rocosos presentan procesos de intemperización sin embargo estas por lo general están secas a húmedas y a medida que la masa rocosa profundiza la presencia del agua subterránea puede tener efecto sobre las margas ya que esta sería la razón por lo que la calidad de la roca según los registros geotécnicos de sondajes es menor al de la superficie además en el fondo del tajo la presencia de las fallas ha creado zonas de influencia donde se ha generado zonas de corte haciendo que la calidad de las rocas de estas áreas presenten rocas de calidad mala.

Con respecto a la calidad del macizo rocoso mediante el RMR, a diferencia de Mamani (2021), quien realizó un levantamiento geomecánico en Mina Toquepala, y dio una valoración al macizo rocoso con RMR de 75 y factores de seguridad mayores a 2, en la presente se tienen en cuenta más estaciones geomecánicas garantizando más cercanía a la realidad y permitiendo diseñar mejor la estabilidad. Pero en concordancia con Romero (2018) quien, estableció 55 estaciones geomecánicas con el RMR promedio en su mayoría varía de Regular y buena calidad obteniendo un intervalo entre 53-63. Para la estabilidad en los bancos son estables en condiciones estáticos y pseudo estáticos, sin embargo, en algunos sectores el FS pseudo estático es menor a 1.1 donde se recomienda eliminar aquellos bloques que generarían riesgos.

Caracterización geomecánica mediante: RMR, y GSI, y determinó una zonificación de dominios geotécnicos en la mina, la cual queda establecida por la distribución del GSI. Y en concordancia con Aguedo y Asencios, (2020) El proceso "estándar" para el diseño de taludes son, el levantamiento de datos de logueo geomecánico y mapeo geomecánico de la zona donde se desarrollará la operación, se determinan dominios estructurales tal como se determinó en la presente investigación donde se determinaron 4 dominios estructurales.

Los posibles tipos de rotura mediante el análisis del comportamiento de las discontinuidades en el software DIPS, lo mismo que Quispe (2019), quien en su caracterización geomecánica, aplicó también los softwares Dips v5. y utilizó técnicas estereográficas computarizadas tomando en cuenta la orientación de las estructuras, para esta investigación los tipos de rotura son en cuña y por vuelco.

Para el diseño de estabilidad física de taludes del tajo final como indica Gonzales (2018), es importante identificar los atributos geomecánicos del macizo rocoso y la interacción que tienen con las operaciones mineras, de esta manera se puede identificar los peligros potenciales que ocasionarian accidentes por desprendimientos de rocas, ayudando en la toma de buenas decisiones para el planeamiento y diseño de minado, garantizando la estabilidad de las operaciones mineras.

#### 4.2. Conclusiones

La geología está compuesta en forma dominante las Capas Rojas de la Fm. Casapalca, En el sector o flanco NE se presentan rocas piroclásticas calcáreas de la formación Yantac y en menor proporción también se presentan rocas intrusivas de tipo andesítico en forma de diques o sills. El sector 3 que es parte del Tajo Noreste está conformado por 4 sistemas de discontinuidades, el Set 1 de los estratos tiene rumbo Noroeste y buzamiento medio a alto hacia el Noreste, el Set 2 está conformado por diaclasas con

rumbo NE-E y buzamiento medio a alto al Suroeste, el Set 3 conformado por estratos y diaclasas presenta rumbo NE con buzamiento medio al NW y el Set 4 por diaclasas tiene rumbo Este-Oeste e inclinación subvertical tanto al Norte como al Sur.

Las calidades del macizo rocoso de los 3 dominios estructurales principales son, del dominio IIIB un RMR promedio de 44.4 que es regular B, el dominio IVA un RMR promedio de 33.7 con calificación de Mala A y el dominio IVB, un RMR promedio 27.6, calificando a la roca como Mala B.

La zonificación geomecánica del Sector 3 del Tajo Noreste existen cuatro tipos de masa rocosa y que se muestran en la siguiente tabla, de estos cuatro tipos, tres son los principales: el DE-IIIB, DE-IVA y DE-IVB ya que constituyen el 85% de la masa rocosa.

Los posibles tipos de rotura son de vuelco potencial por la familia 1 y 2, y cuña entre las familias 2 y 3.

El diseño de estabilidad física de taludes del tajo final, del Sector 3 del Tajo Norte según el último diseño, tendrá una longitud de 350 m por 290 m de ancho, que representa una extensión de 10.2 Ha y una altura máxima de 320 m, estando la cota inferior del tajeo en la cota 4575 msnm. La altura de los bancos será de 10 m (banco simple) y ángulo de la cara del talud de 65° pero con sugerencia de ángulo interrampa de 44°- 45°.



#### Referencias

- Alpízar Barquero, A. (2012). Metodología de análisis de estabilidad de taludes para proyectos viales. *Congeo, Costa Rica*, 1-18.
- Arteaga Fernández, N. M. (2017). Análisis geológico-geotécnico en los taludes de la carretera Choropampa-Magdalena. Universidad Nacional de Cajamarca, Cajamarca.
- Belandria, N., Ucar, R., & Bongiorno, F. (2011). Determinación de expresiones matemáticas para el cálculo de los esfuerzos aplicados a la estabilidad de taludes. *Ciencia e Ingeniería*, 32(3), 115-121. Obtenido de http://www.redalyc.org/articulo.oa?id=507550793001
- Bongiorno, F., Monsalve, Z., Belandria, N., & Montilla, N. (2009). Evaluación geotécnica del Río Topo, Autopista Caracas La Guaira, Venezuela. *Ciencia e Ingeniería*, *31*(1), 25-31. Obtenido de http://www.redalyc.org/articulo.oa?id=507550787003
- Camacho Orozco, S., Ramos Cañón, A. M., Escobar Vargas, J. A., & Garzón González, A. F. (2017). Análisis cuantitativo en la influencia de la geomorfología en la estabilidad de taludes. *Revista Ingenierías Universidad de Medellín*, 16(30), 13-28. doi:https://doi.org/10.22395/rium.v16n30a1
- Chuquiruna Rojas, L. E. (2019). Evaluación geotécnica, para el cálculo de inestabilidad sísmica, del talud ubicado en el kilometro 139 (500 al 450), San Juan-Cajamarca. Universidad Privada del Norte, Cajamarca.
- Medinaceli Tórrez, R., & Medinaceli Ortiz, R. (2021). Aplicación de la simulación de Montecarlo a la evaluación probabilistica de la estabilidad de taludes en roca. *Revista de Medio Ambiente Minero y Minería*, 6(1), 33-48.
- Melentijevic, S. (2005). Estabilidad de taludes en macizos rocosos con criterios de rotura no lineales y leyes de fluencia no asociada. Universidad Politécnica de Madrid,



- Mendoza Espitia, S., & Ochoa Rojas, M. (2017). Optimización de la longitud total de anclajes para el sostenimiento de bloques de roca en taludes. Universidad La Gran Colombia, Bogotá.
- Mesa Lavista, M., Álvarez Pérez, J., & Chávez Gómez, J. H. (2020). Evaluación del factor de seguridad en taludes de terraplenes carreteros altos ante carga sísmica. *Revista de ingeniería sísmica*(103), 1-17. doi:10.18867/ris.103.489
- Montoya, S. (17 de 09 de 2013). *Gidahatari*. Obtenido de https://gidahatari.com/ihes/estabilidad-de-taludes-deslizamientos-de-tierra-causas#:~:text=Las%20fallas%20en%20los%20taludes,las%20placas%20tect%C3%B3nicas%2C%20entre%20otros.
- Mora, R., & Granados, R. (2012). Analisis de estabilidad de taludes considerando la incertidumbre de los datos: caso comunidad de mansiones de Montes de Oca, San José, Costa Rica. *Revista Geológica de América Central*(47), 133-141. Obtenido de http://www.redalyc.org/articulo.oa?id=45437354007
- Pacheco Zapata, A. A. (2006). Estabilización del talud de la Costa Verde en la zona del distrito de San Isidro. Pontificia Universidad Catolica del Perú, Lima.
- Ramos Miñano, F. E. (2021). Propuesta de un sistema de sostenimiento para la estabilidad del talud en el km 232 +390 al km 232+450 de la Interoceánica sur Puno, 2020. Universidad Nacional de Trujillo, Trujillo.
- Rodriguez Cifuentes, L., & Sanhueza Plaza, C. (2013). Análisis comparativo de métodos de cálculo de estabilidad de taludes finitos aplicados a laderas naturales. *Revista de la Construcción*, 12(1), 17-29. Obtenido de http://www.redalyc.org/articulo.oa?id=127628890003



Sullcahuaman Ponce, D. (2019). Evaluación diferencial entre la aplicación de cargas monotónicas y cíclicas del ensayo Pull Out Test en la instalación del sistema de sostenimiento del talud norte C2 Cerro Verde-Arequipa. Universidad Nacional de San Agustín de Arequipa, Arequipa.

Canadian Dam Association (2007) – Dam Safety Guidelines.



## Anexos

Tabla 15: Caracterización geomecánica de Tajo noreste, Estación 01

|          | N°             |         | ORIENTACIÓ | ON DE LA CARA | $\overline{}$ | •            | TRAMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UBICACIÓN:    |             |            |            |          | Banco | o 4780        |          |                  | $\neg$ | REALIZAD       | οТ                        | FECHA         | HC             | JA                 |
|----------|----------------|---------|------------|---------------|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------------|------------|----------|-------|---------------|----------|------------------|--------|----------------|---------------------------|---------------|----------------|--------------------|
| ES.      |                | DIR. B  | UZAMIENTO  | BUZAMIEI      | NTO           | DESDE        | HASTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COORDENAL     | DAS: N:     | 8,759      | ,669       | E:       | 341,  |               | COTA:    | 4,780 msnm       |        | AV / RZ        |                           | / 11 / 2019   | _              | de 9               |
|          | R-01           | 1       | 160°W      | 70°SW         | <i>-</i>      | 0            | 30 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |             |            |            | _        |       |               | EL MA    | CIZO ROCO        | SO (R  | .M.R.)         |                           |               |                |                    |
|          |                |         | TIPO DE R  | OCA           |               |              | FRECUENCIA FRACTURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PARA          | METRO       |            |            |          |       | RAN           | IGO DE V | /ALORES (VAL     | OR ES  | STIMADO)       |                           |               |                | VALORA.            |
|          | Α              |         | %          | В             |               | %            | N* Fract. / ml.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R. COMPRE. UN | IAXIAL (M   | Pa)        | >250       | (15)     | 10    | 00-250        | (12) X   | 50-100           | (7)    | 25-50          | (4                        | <25(2         | ) <5(1) <1(0)  | 1 7                |
|          | Marga          |         | 100        |               |               |              | 12 - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RG            | D %         |            | 90-100     | (20)     | 75    | 5-90          | (17) X   | 50-75            | (13)   | X 25-50        | (8                        | <25           | (3)            | 2 10               |
| TIPO     | ORI            | ENTACK  | ÒN         | ESPACIAMIENTO | RE            | LLENO        | Comentarios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ESPACIA       | MIENTO (m   | )          | >2         | (20)     | 0,    | ,6-2          | (15)     | 0.2-0.6          | (10)   | X 0.06-0.2     | (8                        | < 0.06        | (5)            | 3 8                |
| ESTRUC.  | DIRECCIÓN BUZ  | Z. E    | BUZAMIENTO | ESPACIAMIENTO | TIPO          | ESPESOR      | Comentarios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | PERSISTE    | NGIA       | <1m lor    | ng. (6)  | 1     | -3 m Long.    | (4)      | 3-10m            | (2)    | X 10-20 m      | (1                        | > 20 1        | m (0)          | 4A 1               |
| J        | 210°           |         | 50°        | 4             | Ox, Cb        | < 1 mm       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONDICION     | ABERTUR     | ۸          | Cerrada    | (6)      |       | 0.1mm aper    | rt. (5)  | 0.1-1.0mm        | (4)    | 1 - 5 mm       | 0                         | 1) - 5 mr     | m (0)          | 48 1               |
| E        | 046°           |         | 75°        | 3, 4          | Arc, Ox, Cl   | b 1-2 mm     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE            | RUGOSID     |            | Muy rug    | gosa (6) |       | Rugosa        | (5) X    | Lig.rugosa       | (3)    | Lisa           | 0                         | 1) Espej      | o de falla (0) | 4C 3               |
| J        | 143°           |         | 78°        | 4             | Ox, Cb        | < 1 mm       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JUNTAS        | RELLENO     |            | Limpia     | (6)      |       | Duro < 5mm    | (4) X    | Duro> 5mm        | (2)    | Suave < 5      | mm (2                     | 2) Suave      | > 5 mm (0)     | 4D 2               |
| E        | 066°           |         | 77°        | 3, 4          | Arc, Ox, Cl   |              | Persistencia > 10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | ALTERAC     | ÓN         | Sana       | (6)      | XL    | .ig. Alterada | . (5)    | Mod.Alterada.    | (3)    | Muy Alter      | rada. (2)                 | Desco         | ompuesta (0)   | 4E 5               |
| Е        | 038°           |         | 82°        | 3, 4          | Arc, Ox, Cl   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AGUA SUI      | BTERRÂNE    | ٨          | Seco       | (15)     | ХН    | lumedo        | (10)     | Mojado           | (7)    | Goteo          | (4)                       |               |                | 5 10               |
| Е        | 050°           | $\perp$ | 64°        | 3, 4          | Arc, Ox, Cl   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |            |          |       |               |          |                  | R TOT  | ALRMR (        | Suma d                    | e valorac     | ión 1 a 5)     | = 47               |
| J        | 112°           | $\perp$ | 58°        | 3             | Arc, Ox       | 1-2 mm       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1 (7)        |             | 400 -      |            |          |       | ASE DE I      |          |                  |        |                |                           |               |                |                    |
| J        | 150°           | +       | 68°        | 3             | Ox, Cb        | < 1 mm       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMR           | <u> </u>    | 100 - 81   | _          | 80 - 61  | _     | 60 - 5        | _        | 50 - 41          |        | - 31           | 30 - 21                   |               | 20 - 0         | III A              |
| J        | 295°           | _       | 20°        | 2,3           | Ox, Cb        | 3-4 mm       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESCRIPC      | ION I       | Muy Bue    | na         | II Buen  | ia .  | IIIA Regu     | lar A    | IB Regular B     | IVA    | Mala A         | IVB Mala                  | aB V          | Muy Mala       |                    |
| J        | 188°           | +       | 44°        | 2             | СЬ            | 1 mm         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |             |            |            | _        |       |               |          |                  |        |                | _                         |               |                |                    |
| J        | 205°           | +       | 36°        | 3             | СЬ            | 1 mm         | poco persistente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b> </b>      | RL (NUME    | RO DE REBO | TE)        | _        |       |               |          | a Estabilida     |        |                | <ul> <li>Secto</li> </ul> | r 3           |                | Planes             |
| J        | 142°           | +       | 77°<br>56° | 3,4           | Ox, Cb        | 1 mm         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ┥ └──         |             |            |            |          | 13    | ajo Nor       | te - Mi  | na Alpama        | rca    | N              |                           |               |                | tations<br>Dip/Dir |
| 1        | 318°<br>327°   | +       | 34°        | 3             | Ox, Cb        | < 1 mm       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l ——          | RQD         | J          | RQD        |          | Ш     |               |          | سل               |        |                | _                         |               |                | 4 / 050            |
|          | 321            | +       | 34         | -             | OX, OD        | \$11000      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             | 91          | 15         | 55         | $\vdash$ | Ш     |               |          | 1                |        |                |                           | ~             |                | 0 / 138            |
| $\vdash$ |                | +       |            |               |               | _            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6             | 88          | 16         | 52         | $\dashv$ | Ш     |               | ×        |                  |        |                |                           | $\overline{}$ | 3m 3           | 6/316              |
| $\vdash$ |                | +       |            |               |               | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7             | 84          | 17         | 48         | $\dashv$ | Ш     |               | /        | ,                |        |                |                           |               | 4m 4           | 3 / 201            |
| $\vdash$ |                | +       |            |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8             | 81          | 18         | 44         | $\dashv$ | Ш     | ,             |          | 1 <sup>+</sup> × |        |                | _                         |               |                |                    |
| $\vdash$ |                | +       |            |               |               | +            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9             | 77          | 19         | 40         | $\dashv$ | Ш     | 7             |          | 3m/              |        | +              | J                         | /             | / /            |                    |
| $\vdash$ |                | +       |            |               |               | +            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10            | 74          | 20         | 37         | $\dashv$ | Ш     |               |          |                  |        |                |                           | /             | \              |                    |
| -        |                |         |            |               |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11            | 70          | 21         | 33         | $\dashv$ | Ш     | Λ             |          | /                |        |                |                           | /             | 7              |                    |
| ABR      | EVIAC. TIPO DE | ESTR    | JCTURAS    | 1             | ABREVIA       | ACIÓN DE TIP | O DE ROCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12            | 66          | 22         | 29         | $\dashv$ | Ш     | <i>_</i> /\   | /        |                  |        | ∖.             |                           |               | L              |                    |
| J        | Junta          | Е       | Estratifi. | C             | z             |              | Caliza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13            | 63          | 23         | 26         | $\dashv$ | Ш     | 7 \           | /        |                  |        | $\chi_{\rm p}$ | m                         |               |                |                    |
| F        | Falla          | Ct      | Contacto   | -             | .             |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14            | 59          | 24         | 22         | $\neg$   | n     | , 」 \         | . /      |                  |        | + `            | \ /                       |               |                | - E                |
|          |                |         |            | , L           |               |              | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 Pat 14    | F. 2 1 2    | 1000       | Serence Co | <i>-</i> | 11 "  |               | V        |                  |        |                | X                         |               |                | -                  |
| ABR      | EVIACIÓN DE TI | PO DE   | RELLENO    | 1             |               |              | 40000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No Aller      | -           |            |            |          | Ш     | 4             |          |                  |        | ×              |                           |               | L              |                    |
| Ox       | Oxido          | Clc     | Calcita    | 1             |               |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THE WAY       |             | 55771      | 15         |          | Ш     | \             | 1        |                  |        | //             | m \                       |               | /              |                    |
| Arc      | Arcilla        | Cz      | Cuarzo     |               |               | 16           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>思力的 70</b> |             |            |            | <b>1</b> | Ш     | 7             |          |                  |        |                | +J                        |               | <i>_</i>       |                    |
| Cb       | Carbonatos     | Py      | Pirita     |               |               | 400          | STATE OF THE PARTY |               |             |            |            |          | Ш     | \             | 1        |                  | /      |                |                           | \             | /              |                    |
|          |                |         |            |               | A             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |            |            | 250      | Ш     | À             | \ +E     | $\sim$           | m      |                |                           |               | / <i> </i>     |                    |
| ABREV    |                |         | OUCS (MPa) |               | 460           |              | 部 多為 學                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |             |            |            |          | Ш     |               | 1        |                  | -      |                |                           | -             |                |                    |
| ESPACI   |                | R1      | 1-5        | - 4           |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -10         | 200        | Mark St    |          | Ш     |               | 1        |                  |        |                |                           | 1             |                |                    |
| 1 '      | > 2 m          | R2      | 5 - 25     | 4550          |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             | 1000       |            | -        | Ш     |               | ^        |                  |        |                |                           | $\sim$        |                |                    |
|          | 6-2 m          | R3      | 25 - 50    | 12256         | -             |              | 1/2010年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | September 1   | Contract of |            |            | 100      | Ш     |               |          | 1                |        |                |                           |               |                |                    |
|          | - 0.6 m        | R4      | 50 - 100   |               | A VIEW        | BELL I       | 1-2 23-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | F-1         |            | 20         | 7        | Ш     |               |          | _                | 7      | 1              |                           |               |                |                    |
|          | 8 - 0.2 m      | R5      | 100 - 250  | 100           | -             | 30. 10       | The state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |             |            | 1          | 100      | II F  | stación       | FR_01    | Marga            |        | S              |                           |               | 14 F           | Poles              |
| 5 <      | 0.08 m         | R6      | > 250      | THE PARTY     | 15 300        | The state of | - Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | -           | 1000       | White The  |          |       | Jacacion      | LIC-01   | Marga            |        |                |                           |               |                |                    |



Tabla 16: Caracterización geomecánica del Tajo noreste, Estación 02

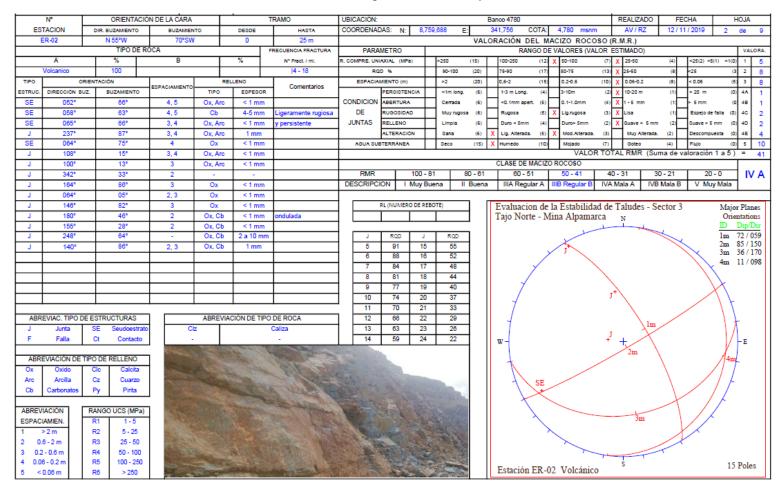





Tabla 17: Caracterización geomecánica del tajo Noreste, Estación 03

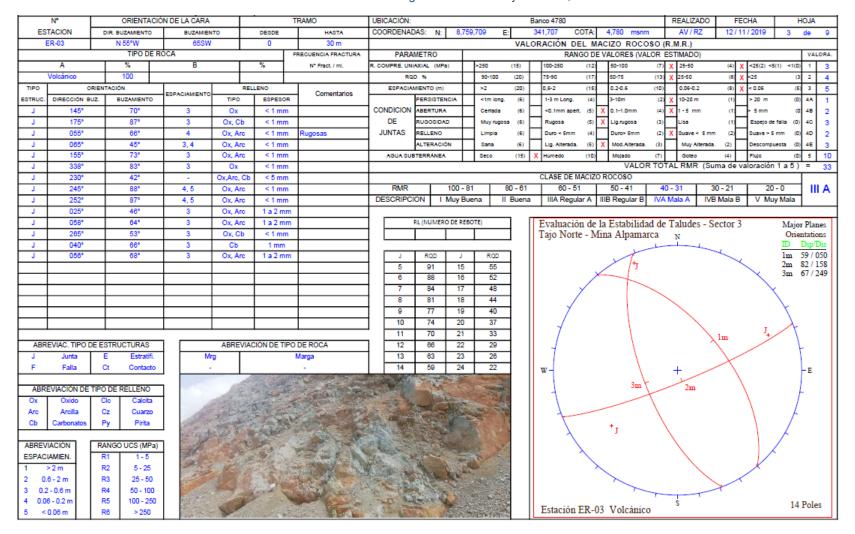





Tabla 18: Caracterización geomecánica del Tajo noreste, Estación 04

|               | N°             | ORIENTACIO      | N DE LA CARA    |            | ٠ .            | TRAMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UBICACIÓN:         |             |          |           |         | Banc | o 4780             |              |                  | RE     | EALIZADO      | FECH            | A I         | HOJA                   |
|---------------|----------------|-----------------|-----------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------|-----------|---------|------|--------------------|--------------|------------------|--------|---------------|-----------------|-------------|------------------------|
| ES            | TACION         | DIR. BUZAMIENTO | BUZAMIEN        | то         | DESDE          | HASTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COORDENAD          | AS: N:      | 8,759    | ,731      | E:      | 341. | ,662 COTA:         | 4            | ,780 msnm        | +      | AV / RZ       | 12 / 11 / 2     | 2019        | 4 de 9                 |
|               | ER-04          | N 55°W          | 60 SW           |            | 0              | 50 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |             |          |           | VAL     | ORA  | CIÓN DEL N         | IACI         | ZO ROCOSO        | (R.M   | I.R.)         |                 |             |                        |
|               |                | TIPO DE R       | OCA             |            |                | RECUENCIA FRACTURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PARA               | METRO       | $\neg$   |           |         |      | RANGO D            | E VA         | LORES (VALOR     | ESTI   | IMADO)        |                 |             | VALORA.                |
|               | Α              | %               | В               |            | %              | N* Fract. / ml.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R. COMPRE. UNI     | AXIAL (MPa) |          | >250      | (15)    | 1    | 00-250 (12)        | П            | 50-100 (7        | 7)     | 25-50         | (4) X <         | 25(2) <5(1) | <1(0) 1 2              |
|               | Marga          | 100             |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RQ                 | 9 %         |          | 90-100    | (20)    | 7    | 5-90 (17)          | П            | 50-75 (1         | 3)     | 25-50         | (8) X <2        | 25          | (3) 2 3                |
| TIPO          | ORI            | IENTACIÓN       | ESPACIAMIENTO   | REL        | LENO           | Comentarios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ESPACIAN           | MIENTO (m)  |          | >2        | (20)    | 0    | ,6-2 (15)          |              | 0.2-0.6 (10      | D)     | 0.06-0.2      | (8) X <         | 0.06        | (5) 3 5                |
| ESTRUC.       | DIRECCIÓN BUZ  | z. BUZAMIENTO   | ESPACIAMIENTO   | TIPO       | ESPESOR        | Comentarios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | PERSISTEN   | SIA      | <1m long. | . (6)   | 1    | 1-3 m Long. (4)    |              | 3-10m (          | 2) X   | 10-20 m       | (1) >           | 20 m        | (0) 4A 1               |
| Е             | 038°           | 48°             | 4               | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONDICION          | ABERTURA    |          | Cerrada   | (6)     | □ ·  | <0.1mm apert. (5)  | X            | 0.1-1.0mm (4     | 4) X   | 1 - 5 mm      | (1)             | 5 mm        | (0) 48 3               |
| Е             | 027°           | 55°             | 4               | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE                 | RUGOSIDAD   |          | Muy rugo: | sa (6)  | □    | Rugosa (5)         | X            | Lig.rugosa (3    | 3) X   | Lisa          | (1) E           | spejo de fa | lla (0) 4C 2           |
| Е             | 020°           | 57°             | 4               | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JUNTAS             | RELLENO     |          | Limpia    | (6)     | :    | Duro < 5mm (4)     | X            | Duro> 5mm (2     | 2)     | Suave < 5 mm  | (2) 8           | uave > 5 mr | n (D) 4D 2             |
| J             | 205°           | 38°             | 3               | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ALTERACIÓN  | 4        | Sana      | (6)     | I    | Lig. Alterada. (5) | X            | Mod.Alterada. (3 | 3) X   | Muy Alterada. | (2) D           | escompues   | ta (0) 4E 2            |
| J             | 212°           | 27°             | 3               | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AGUA SUB           | TERRÂNEA    |          | Seco      | (15)    | Х    | lumedo (10)        |              | Mojado (7        |        | Goteo         |                 | lujo        | (0) 5 10               |
| J             | 150°           | 43°             | 3, 4            | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |          |           |         |      |                    |              |                  | OTAL   | .RMR (Sur     | na de valo      | ración 1    | a5) = 30               |
| J             | 162°           | 63°             | 5               | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |          |           |         |      | LASE DE MACIZ      |              |                  |        |               |                 |             |                        |
| J             | 152°           | 56°             | 3               | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMR                |             | 100 - 81 |           | 80 - 61 |      | 60 - 51            |              |                  | 40 - 3 |               | 0 - 21          | 20 - (      | 5                      |
| J             | 140°           | 46°             | 3               | Ox, Cb     | < 1 mm         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESCRIPCI          | ON I N      | luy Bue  | ena l     | I Buena | а    | IIIA Regular A     | IIIB         | Regular B IV     | /A Mal | la A IVB      | Mala B          | V Muy I     | Mala                   |
| Е             | 030°           | 57°             | 3, 4            | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |          |           | _       | _    |                    |              |                  |        |               |                 |             |                        |
| Е             | 032°           | 65°             | 4               | Ox         | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | RL (NUMERO  | DE REBO  | OTE)      | -       |      |                    |              | Estabilidad d    |        | aludes - Se   | ector 3         |             | Major Planes           |
| J             | 140°           | 52°             | 2, 3            | Ox         | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |          |           |         | Ta   | ajo Norte - N      | Mina         | a Alpamarca      | 1      | N             |                 |             | Orientations           |
| J             | 150°           | 60°             | 3               | Ox, Arc    | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  |             |          |           | _       | Ш    |                    |              | L                |        |               | _               |             | ID Dip/Dir             |
| J             | 308°           | 40°             | 3               | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                  | RQD         | J        | RQD       | -       | Ш    |                    |              | 1                |        |               | 1               |             | 1m 58/030<br>2m 54/151 |
| J             | 305°           | 42°             | 3               | Ox, Cb     | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>6             | 91<br>88    | 15<br>16 | 55<br>52  | -       | Ш    |                    | $\checkmark$ |                  |        |               | -               |             | 3m 41/306              |
| J             | 036°           | 65°             | 4               | Cb         | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 7                | 84          | 17       | 48        |         | Ш    |                    |              |                  | /      |               |                 |             | 4m 32/208              |
| J             | 158°           | 58°             | 4               | СЬ         | 1 mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                  | 81          | 18       | 44        | -       | Ш    | Y                  |              | 1/               |        |               |                 | X           |                        |
| $\vdash$      |                |                 |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                  | 77          | 19       | 40        | 4       | Ш    | 1                  |              |                  |        |               |                 | `           | \<br>\                 |
| $\vdash$      |                |                 |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                 | 74          | 20       | 37        | 4       | Ш    | Æ                  |              | . /              |        |               |                 |             | $\lambda$ 1            |
| $\vdash$      |                |                 |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                 | 70          | 21       | 33        | -       | Ш    | 41                 |              | 3m/              |        | J* ln         | 1               |             | / Y                    |
| ADD           | EVIAC TIPO DE  | ESTRUCTURAS     | · —             | A DDEV/IA/ | CIÓN DE TIPO   | DE BOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 12               | 66          | 22       | 29        |         | Ш    | / \                | ,            | /                |        |               |                 | /           | ' \                    |
| J             | Junta          | E Estratifi.    | Mr              |            | DIOIN DE TII O | Marga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                 | 63          | 23       | 26        | -       | Ш    | 7 \                | _/           |                  |        |               |                 | /           | +                      |
| l ř           | Falla          | Ct Contacto     | "               | •          |                | ma ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                 | 59          | 24       | 22        | -       |      | . / \              | /            |                  |        |               |                 |             |                        |
| <u> </u>      | rana           | or consisto     | -               | 40000      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | 1000     | Section 1 |         | W    | 71 \ ,             | /            |                  | -      | H             |                 | X           | -E                     |
| ABR           | EVIACIÓN DE TI | IPO DE RELLENO  | 1               |            | 40             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |          |           |         | Ш    | 1 \ /              |              |                  |        |               |                 |             |                        |
| Ox            | Oxido          | Clc Calcita     | -               | 15 E       |                | May 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |             |          |           | 2       | Ш    | 7 V                |              |                  |        |               |                 | \           | Γ                      |
| Arc           | Arcilla        | Cz Cuarzo       | 4.9             |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1000        |          |           |         | Ш    | 7 1                |              |                  |        |               | ∕† <sub>J</sub> | \           | 1                      |
| Сь            | Carbonatos     | Py Pirita       | 2 7 5           |            |                | A STATE OF THE PARTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SALTED AND         |             | 1        |           |         | Ш    | 1                  |              |                  |        | 2m            |                 |             | \ <i>/</i> `           |
| $\vdash$      |                | -               | 4               |            | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Ze          |          |           |         | Ш    | * 1                |              | \                |        | _             |                 |             | <i>X</i>               |
| ABREV         | IACIÓN         | RANGO UCS (MPa) |                 |            | The second     | <b>**</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |             |          | de        |         | Ш    | 17                 | _            | E*               |        |               |                 | //          | ′                      |
| ESPAC         | IAMIEN.        | R1 1-5          |                 | 11         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.                |             |          |           |         | Ш    |                    | \            | 4m               |        |               |                 |             |                        |
| 1             | > 2 m          | R2 5 - 25       | at the state of |            |                | AL THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W                  | a fac       |          |           |         | Ш    | `                  | X            |                  |        |               |                 | /           |                        |
| 2 0.          | 6 - 2 m        | R3 25 - 50      |                 |            |                | <b>《广本》</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |             |          | S         | 4       | Ш    |                    |              | >                |        |               |                 |             |                        |
| 3 0.2         | 2 - 0.6 m      | R4 50 - 100     | 400             | 1000       |                | The state of the s | THE REAL PROPERTY. |             |          | 1         | à       |      |                    |              | 7                |        |               | 7               |             |                        |
| 4 0.0         | 6 - 0.2 m      | R5 100 - 250    |                 |            | TO THE TO      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -           |          |           |         |      |                    |              |                  | 9      | S             |                 |             | 17 Poles               |
| 5 <           | 0.08 m         | R6 > 250        |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | -        |           | 6       | E    | stación ER-        | 04           | Marga            |        |               |                 |             | 1710163                |
| $\overline{}$ | -              | _               |                 |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  |             | -        |           |         |      |                    |              |                  |        |               |                 |             |                        |



Tabla 19: Caracterización geomecánica del Tajo noreste, Estación 05

|          | N°            |               | ORIENTACIÓ | N DE LA CARA  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRAMO                         |                           |             |            |           |                  |          | nco 4720                              |               | F             | REALIZADO     | FEC           | HA             | HOJ                  | A      |
|----------|---------------|---------------|------------|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|-------------|------------|-----------|------------------|----------|---------------------------------------|---------------|---------------|---------------|---------------|----------------|----------------------|--------|
| ES       | TACION        | DIR. BU       | JZAMIENTO  | BUZAMIEN      | то         | DESDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HASTA                         | COORDENAL                 | DAS: N      | : 8,759    | ,742 E    | 2                | 34       | 1,558 COTA: 4,7                       | 720 msnm      | $\top$        | AV / RZ       | 13 / 11       | / 2019         | 5 de                 | 9      |
| E        | R-05          | N             | 40°W       | 65°SW         | /          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 m                          |                           |             | _          |           | VAL              | OR       | ACIÓN DEL MACIZ                       | ZO ROCOSO     | (R.I          | M.R.)         |               |                |                      |        |
|          |               |               | TIPO DE RO | OCA           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRECUENCIA FRACTURA           | PARA                      | METRO       |            |           |                  |          | RANGO DE VAL                          | LORES (VALOF  | R ES          | TIMADO)       |               |                | V                    | ALORA. |
|          | Α             |               | %          | В             |            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N° Fract. / ml.               | R. COMPRE. UN             | IAXIAL (M   | Pa)        | >250      | (15)             | П        |                                       |               | 7)            | 25-50         |               | <25(2) <5(1)   | <1(0) 1              | 2      |
|          | Marga gris    |               | 100        |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -                         | QD %        |            | 90-100    | (20)             |          | , ,                                   | 0-75 (1       | 13) X         | 25-50         | (8) X         | <b>Q</b> 5     | (3) 2                | 5      |
| TIPO     |               | RIENTACIÓ     |            | ESPACIAMIENTO | _          | RELLENO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comentarios                   | ESPACIAMIENTO (m) >2 (20) |             |            |           |                  | , ,      | 0.2-0.6 (1                            | 0)            | 0.06-0.2      | (8) X         | < 0.06        | (5) 3          | 5                    |        |
| ESTRUC.  | DIRECCIÓN BI  | JZ. BI        | UZAMIENTO  |               | TIPO       | ESPESO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R                             |                           | PERSIST     |            | <1m long. | (6)              | Ш        | · · · · · · · · · · · · · · · · · · · |               | (2) X         | 10-20 m       | (1)           | > 20 m         | (0) 4A               | 1 ' 1  |
| J        | 175°          | $\perp$       | 55°        | 3, 4          | Ox, Arc    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                             | CONDICION                 | ABERTUR     |            | Cerrada   | (6)              | Ц        | · · · · · · · · · · · · · · · · · · · | ,             | (4) X         | 4             | (1)           | > 5 mm         | (0) 48               |        |
| J        | 178°          | $\bot$        | 58°        | 3, 4          | Ox, Arc    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | DE                        | RUGOSIE     |            | Muy rugos |                  | Ц        | · Н                                   |               | 3) X          | Lisa          | (1)           | Espejo de fall |                      |        |
| Е        | 296°          | -             | 42°        | 4             | Arc        | < 1 mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | JUNTAS                    | RELLENC     |            | Limpia    | (6)              | Щ        |                                       |               | 2)            | Suave < 5 mm  |               | Suave > 5 mm   |                      | 1 1    |
| E        | 300°          | -             | 56°        | 3, 4          | Arc        | 1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                             |                           | ALTERAC     |            | Sana      | (6)              | Ш        |                                       |               | 3) X          | Muy Alterada. | (2)           | Descompuest    |                      | _      |
| J        | 176°          | —             | 58°        | 3             | Ox, Arc    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | AGUA SU                   | BTERRÁNE    | A          | Seco      | (15)             | X        | Humedo (10)                           | Mojado (7     |               | Goteo         | (4)           | Flujo          | (0) 5                |        |
| J        | 174°          | —             | 65°        | 3             | Arc        | < 1 mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                           |             |            |           |                  |          | CLASE DE MACIZO RO                    |               | OTA           | L'RMR (Sur    | ma de va      | ioracion i     | a5) =                | 27     |
| J        | 064°          | -             | 60°        | 3             | Cb         | 1,2m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n                             | RMR                       |             | 100 - 81   | 1 (       | 30 - 61          | _        |                                       |               | 40 -          | 24   26       | 0 - 21        | 20 - 0         | 괻.                   |        |
| J        | 030°<br>052°  | -             | 47°        | 3, 4          | Ox, Cb     | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | DESCRIPC                  | ION         | Muy Bue    |           | Buena            | $\vdash$ |                                       |               |               |               | Mala B        | V Muy N        |                      | III B  |
| J        | 142°          | -             | 47°        | 3, 4          | Ox. Cb     | < 1 mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | DESCRIFC                  | ION         | i wuy bue  | ala II    | Duena            | 1        | IIIA Regulai A IIID I                 | Regulai B     | /A IVI        | Idid A IVD    | IVIdid D      | v Widy IV      | lala                 | -      |
| E        | 310°          | -             | 52°        | 4, 5          | Arc        | > 5 mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | -                         | DI (NILINAE | RO DE REBO | TE)       | ٦ ١              | Пт       | F 1 : 11F                             | 2 / 1 201 1 1 | 1 T           | 111 0         | . 2           |                |                      |        |
| F        | 298°          | -             | 40°        | 4, 5          | Arc        | > 5 cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                             | ┨ ├──                     | I (IVOIVIE  | NO DE REBO | 1         | -                |          | Evaluacion de la E                    |               |               |               | ector 3       |                | Major Pl<br>Orientat |        |
| _        | 250           | -             | 40         | -             | AIC        | - 5 GI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | ┨                         |             |            |           | J                | ¹        | Γajo Norte - Mina                     | Alpamarca     | l             | N             |               |                |                      | Dir    |
| $\vdash$ |               | -             |            |               |            | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                           | RQD         | J          | RQD       | n                | Ш        |                                       |               |               |               | _             | _              | m 47                 |        |
|          |               | -             |            |               |            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 5                         | 91          | 15         | 55        | 1                | Ш        |                                       |               |               |               | $\rightarrow$ | 2              | m 56                 | / 048  |
|          |               | $\overline{}$ |            |               |            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 6                         | 88          | 16         | 52        | 1                | Ш        | <u> </u>                              |               |               |               |               | × 3            | 3m 56                | / 170  |
|          |               | -             |            |               |            | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 1 7                       | 84          | 17         | 48        | 1                | Ш        | _                                     |               | J_/           |               |               |                |                      | - 11   |
|          |               | -             |            |               |            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 8                         | 81          | 18         | 44        | 1                | Ш        |                                       | /             | $\overline{}$ |               |               |                |                      |        |
|          |               | -             |            |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 9                         | 77          | 19         | 40        | 1                | Ш        | 7                                     |               |               |               |               | `              | 7                    |        |
|          |               | $\neg$        |            |               |            | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 10                        | 74          | 20         | 37        | 1                | Ш        | ./                                    |               |               |               |               |                | \_                   |        |
|          |               |               |            |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                             | 11                        | 70          | 21         | 33        | 1                | Ш        | 7 11                                  | m /           |               |               | 2m            |                | 7                    |        |
| ABR      | EVIAC. TIPO D | E ESTRU       | ICTURAS    | 1 [           | ABREV      | IACIÓN DE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO DE ROCA                    | 12                        | 66          | 22         | 29        | 1                | Ш        | 1                                     |               |               |               |               |                | 1                    |        |
| J        | Junta         | Е             | Estratifi. | Mr            | rg         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marga                         | 13                        | 63          | 23         | 26        | 1                | Ш        |                                       | /             |               |               |               |                | Λ                    | - 11   |
| F        | Falla         | Ct            | Contacto   | Mrg-          | Epd        | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rga Epidotizada               | 14                        | 59          | 24         | 22        | 1                | Ш,       | w - /                                 |               |               | +             |               |                | / <sub>-E</sub>      | . []   |
|          |               |               |            |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |             | 2× 5       |           |                  | Ш        | /                                     |               |               |               | \             |                |                      |        |
| ABRI     | EVIACIÓN DE 1 | TIPO DE F     | RELLENO    |               |            | . Aller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                           | The R       |            |           |                  | Ш        | + /                                   |               |               |               |               | \/             | F                    | - 11   |
| Ox       | Oxido         | Clc           | Calcita    |               |            | A STATE OF THE STA |                               |                           |             | 1          |           |                  | Ш        |                                       |               |               |               |               | 1              | /                    |        |
| Arc      | Arcilla       | Cz            | Cuarzo     |               | 100        | September 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | W. S. W.                  |             |            |           |                  | Ш        | 1                                     |               |               |               | E             | \              | 1                    |        |
| Cb       | Carbonatos    | Py            | Pirita     |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |             |            |           |                  | Ш        | \                                     | +1            |               | 3m            |               | 1              | /                    |        |
|          |               |               |            |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W. W.                         |                           |             |            |           |                  | Ш        | 1                                     |               |               |               |               | /              | ~                    |        |
| 1        | IACIÓN        |               | UCS (MPa)  |               | Con Silver |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |             |            | 1         |                  | Ш        | \ \                                   |               |               |               |               |                |                      |        |
| ESPAC    |               | R1            | 1-5        |               | < **       | (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 70.00                     |             |            |           | Name of the last | Ш        | \ \                                   |               |               |               |               | 1              |                      |        |
| 1        | > 2 m         | R2            | 5 - 25     |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE REAL PROPERTY. |                           |             |            | No.       | 0700             | Ш        | $\sim$                                | L             |               |               |               |                |                      |        |
|          | 6-2 m         | R3            | 25 - 50    |               |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                           |             |            |           | 000              | Ш        |                                       |               |               |               |               |                |                      |        |
| 1        | ! - 0.6 m     | R4            | 50 - 100   | 1             | W. W.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |             |            |           | 10000            | Ш        |                                       |               | _             | +             | -1            |                |                      |        |
| 1        | 6 - 0.2 m     | R5            | 100 - 250  |               |            | 1 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AL TON THE                    |                           |             |            |           |                  | П,       | Estación ER-05 N                      | Marga grie    |               | S             |               |                | 12 Po                | les    |
| 5 <      | 0.06 m        | R6            | > 250      | 19 1000       | 20298      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           | 30000       |            |           | 360              | <u> </u> | Laucion Lit-05 I                      | Turga gris    |               |               |               |                |                      |        |



Tabla 20: Caracterización geomecánica del Tajo noreste, Estación 06






Tabla 21: Caracterización geomecánica del tajo noreste, Estación 07

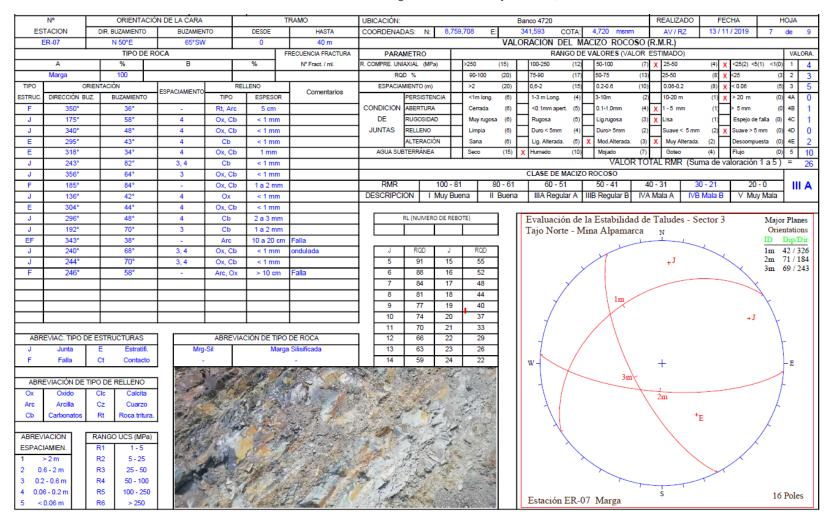





Tabla 22: Caracterización geomecánica del Tajo Noreste, Estación 08

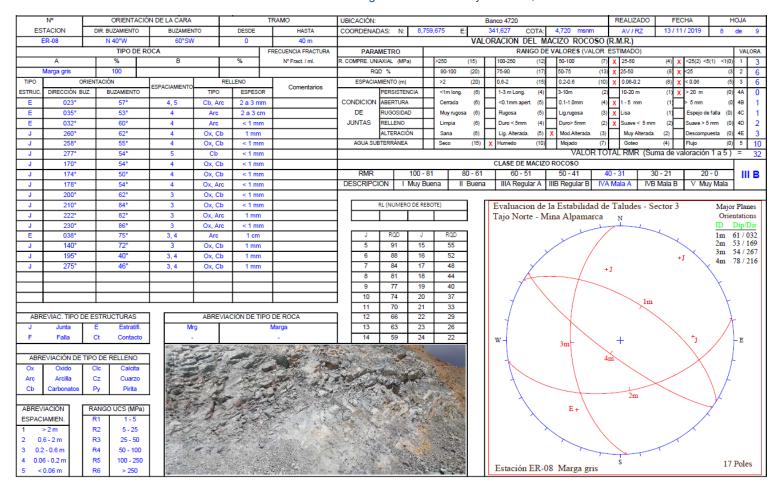
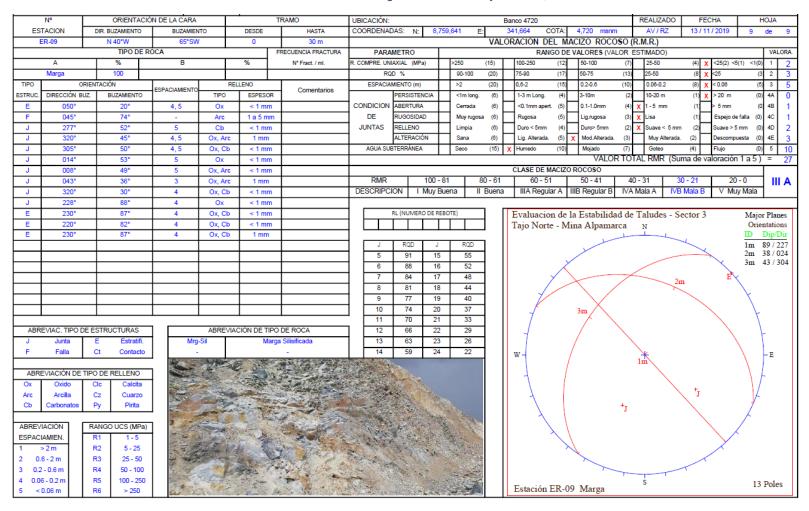






Tabla 23: Caracterización geomecánica del tajo noreste, Estación 09

