

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA CIVIL

"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO Y CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA EN PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"

Tesis para optar al título profesional de:

INGENIERO CIVIL

Autores:

Ghyram Geordan Alarcon Bueno Rosa Carolina Villavicencio Acuña

Asesor:

Ing. Mg. Lizbeth Milagros Merma Gallardo https://orcid.org/0000-0002-4644-063X

Cajamarca - Perú

2023

JURADO CALIFICADOR

Jurado 1	Héctor Cuadros Rojas	219817	
Presidente(a)	Nombre y Apellidos	Nº DNI	

Jurado 2	Katia Carrión Rabanal	204883	
	Nombre y Apellidos	Nº DNI	

Jurado 3	Tulio Guillen Sheen	43126	
	Nombre y Apellidos	Nº DNI	

INFORME DE SIMILITUD

CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO Y CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA EN PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022

ORIGINALITY REPORT			
6% SIMILARITY INDEX	7% INTERNET SOURCES	1% PUBLICATIONS	6% STUDENT PAPERS
PRIMARY SOURCES			
1 hdl.han			1%
2 reposito	orio.unc.edu.pe		1,9
3 idoc.pu			1,9
4 reposito	orio.usanpedro.	edu.pe	1,
5 cdn.ww Internet Sour	w.gob.pe		1,
6 upc.aws	s.openrepository	/.com	1,
7 reposito	orio.continental.	edu.pe	1,9

Exclude quotes On Exclude matches < 1%
Exclude bibliography On

DEDICATORIA

La presente tesis va dedicada con todo nuestro amor y cariño, a nuestras familias; pero en especial, a nuestros padres, debido a todo el apoyo incondicional que nos han brindado en esta etapa de nuestras vidas, por creer en nosotros y brindarnos una carrera profesional, la cual ejerceremos con mucha pasión y orgullo en nuestro futuro profesional; a pesar de los duros momentos, siempre han estado presentes como el cimiento de nuestra vida profesional.

También va dedicada a todos nuestros amigos y compañeros, tanto presentes como pasados, quienes con las mejores intenciones compartieron con nosotros, sus experiencias y conocimientos; además, siempre estuvieron presentes apoyándonos en todo momento, siendo de esta forma nuestra fuente de inspiración y motivación para seguir superándonos y lograr la mejor versión de nosotros mismos.

AGRADECIMIENTO

Nos van a faltar palabras para agradecer a las personas que de cierta manera se han visto involucradas en la realización de esta presente tesis; sin embargo, merecen reconocimiento especial nuestros padres, que con su esfuerzo y dedicación nos ayudaron a culminar nuestra carrera profesional universitaria, y nos dieron el apoyo necesario para no decaer cuanto todo parecía complicado e inalcanzable.

Al vernos inmersos en el mundo de la Universidad, nos hemos dado cuenta que, más allá de ser una simple institución, es una base para el entendimiento, la cual nos sirve para formarnos profesionalmente; es por ello que, queremos agradecer a todos nuestros docentes, a nuestra asesora y a nuestro Director de Carrera, quienes siempre mostraron interés y dedicación para que pudiéramos desarrollarnos como personas de conocimiento con sentido ético y moral, con el fin de poder alcanzar nuestra meta profesional.

Gracias.

TABLA DE CONTENIDO

JURADO CALIFICADOR	2
INFORME DE SIMILITUD	3
DEDICATORIA	4
AGRADECIMIENTO	5
TABLA DE CONTENIDO	6
ÍNDICE DE TABLAS	7
ÍNDICE DE FIGURAS	9
RESUMEN	11
CAPÍTULO I: INTRODUCCIÓN	12
1.1. REALIDAD PROBLEMÁTICA:	12
1.2. FORMULACIÓN DEL PROBLEMA DE INVESTIGACIÓN:	38
1.3. Objetivos:	38
1.4. HIPÓTESIS:	39
CAPÍTULO II: METODOLOGÍA	40
CAPÍTULO III: RESULTADOS	48
CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES	84
REFERENCIAS	91
ANEXOS	96

ÍNDICE DE TABLAS

Tabla 1: Indice de competitividad global-Foro Económico Mundial (WEF)	.16
Tabla 2: Longitud de Infraestrutura Vial, según jerarquía y superficie de rodadura 2019 (km)	.17
Tabla 3:Clasificación del material granular en función de su tamaño	.31
Tabla 4:Clasificación del material granular (para afirmado)en función a su granulometría	.32
Tabla 5: Requisitos de calidad para emplear el material granular en vías afirmadas	.33
Tabla 6: Cantidad de ensayos realizados	.42
Tabla 7: Ensayos y frecuencias para material granular a utilizarse como afirmado	.45
Tabla 8: Contenido de humedad de las canteras en estudio	.48
Tabla 9: Porcentajes que pasa de las canteras en estudio	.48
Tabla 10: Limites Atterberg e Indice Plástico de las canteras en estudio	.49
Tabla 11: Plasticidad en función al Limite Liquido según L. Mondragón (2017).	.50
Tabla 12: Plasticidad en función al Indice Plástico según L. Mondragón (2017).	.50
Tabla 13: Porcentajes retenidos de las canteras en estudio	.52
Tabla 14: DS máx y W% OP de la Cantera Edgar sin arcilla	.52
Tabla 15: DS máx y W% OP de la Cantera Edgar con 5% de arcilla	.53
Tabla 16: DS máx y W% OP de la Cantera Edgar con 10 % de arcilla	.53
Tabla 17: DS máx y W% OP de la Cantera Edgar con 15 % de arcilla	.54
Tabla 18: DS máx y W% OP de la Cantera Guitarrero sin arcilla	.54
Tabla 19: DS máx y W% OP de la Cantera Guitarrero con 5 % de arcilla	.55
Tabla 20: DS máx y W% OP de la Cantera Guitarrero con 10 % de arcilla	.55
Tabla 21: DS máx y W% OP de la Cantera Guitarrero con 15 % de arcilla	.56
Tabla 22: DS máx y W% OP de la Cantera Chonta sin arcilla	.56
Tabla 23: DS máx y W% OP de la Cantera Chonta con 5% arcilla	.57
Tabla 24: DS máx y W% OP de la Cantera Chonta con 10% arcilla	.57
Tabla 25: DS máx y W% OP de la Cantera Chonta con 15% arcilla	.58
Tabla 26: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Edgar sin arcilla	.58
Tabla 27: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Edgar con 5 % de arcilla	.60
Tabla 28: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Edgar con 10 % de arcilla	.62

Tabla 29: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Edgar con 15 % de arcilla	64
Tabla 30: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Guitarrero sin arcilla	66
Tabla 31: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Guitarrero con 5 % de arcilla	68
Tabla 32:Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Guitarrero con 10% de arcilla	70
Tabla 33: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Guitarrero con 15% de arcilla	72
Tabla 34: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Chonta sin arcilla	74
Tabla 35: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Chonta con 5% de arcilla	76
Tabla 36: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Chonta con 10% de arcilla	78
Tabla 37: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Chonta con 15% de arcilla	80
Tabla 38: Resuttados de Abrasión Los Ángeles	82
Tabla 39: Resultados de partículas planas y alargadas	82
Tabla 40: Resumen de Resultados de las canteras en estudio	82

ÍNDICE DE FIGURAS

Figura 1: Estado de la Red Vial Nacional (RVN) Pavimentada y No Pavimentada	18
Figura 2: Estado de la Red Vial Departamental (RVD) en kilómetros	18
Figura 3: Estado de la Red Vial Vecinal (RVV) en kilómetros	19
Figura 4: Estados de Concistencia	35
Figura 5: Limites de Atterberg	36
Figura 6: Esquema del Procedimiento de la investigación	44
Figura 7: Curvas granulométricas de las canteras en estudio	49
Figura 8: Limites de Atterberg e IP de la cantera Edgar:	50
Figura 9:Limites de Atterberg e IP de la cantera Guitarrero	51
Figura 10:Limites de Atterberg e IP de la carretera Chonta	51
Figura 11:Curva de Proctor modificado de la Cantera Edgar sin arcilla	52
Figura 12:Curva de Proctor modificado de la cantera Edgar con 5% de arcilla	53
Figura 13:Curva de proctor modificado de la cantera Edgar con 10% arcilla	53
Figura 14:Curva de Proctor modificado de la cantera Edgar con 15% arcilla	54
Figura 15:Curva de Proctor modificado de la cantera Guitarrero sin arcilla	54
Figura 16:Curva de Proctor modificado de la cantera Guitarrero con 5% arcilla	55
Figura 17:Curva de Proctor modificado de la cantera Guitarrero con 10% arcilla	55
Figura 18:Curva de Proctor modificado de la cantera Guitarrero con 15% arcilla	56
Figura 19: Curva de Proctor modificado de la cantera Chonta sin arcilla	56
Figura 20:Curva de Proctor modificado de la cantera Chonta con 5% arcilla	57
Figura 21:Curva Proctor modificado de la cantera Chonta con 10% arcilla	57
Figura 22: Curva de Proctor modificado de la cantera Chonta con 15% arcilla	58
Figura 23: Gráfica de curva de densida seca de la cantera Edgar sin arcilla	58
Figura 24:Curvas de esfuerzo deformacion de la cantera Edgar sin arcilla	59
Figura 25:Gráfica de curva de densidad seca de la cantera Edgar con 5% arcilla	60
Figura 26: Curvas de esfuerzo deformacion de la cantera Edgar con 5% de arcilla	61
Figura 27: Gráfica de curva de densidad seca de la cantera Edgar con 10% arcilla	62

Figura 28:Curvas de esfuerzo deformación de la cantera Edgar con 10% de arcilla	63
Figura 29: Gráfica de curva de densidad seca de la cantera Edgar con 15% arcilla	64
Figura 30:Curvas de esfuerzo deformación de la cantera Edgar con 15% de arcilla	65
Figura 31:Gráfica de curva de densida seca de la cantera Guitarrero sin arcilla	66
Figura 32:Curvas de esfuerzo deformacion de la cantera Guitarrero sin arcilla	67
Figura 33: Gráfica de curva de densdad seca de la cantera Guitarrero con 5% arcilla	68
Figura 34: Curvas de esfuerzo deformación de la cantera Guitarrero con 5% de arcilla	69
Figura 35: Gráfica de curva de densidad seca de la cantera Guitarrero con 10% arcilla	70
Figura 36: Curvas de esfuerzo deformación de la cantera Guitarrero con 10% de arcilla	71
Figura 37: Gráfica de curva de densidad seca de la cantera Guitarrero con 15% arcilla	72
Figura 38: Curvas de esfuerzo deformación de la cantera Guitarrero con 15% de arcilla	73
Figura 39: Gráfica de curva de densida seca de la cantera Chonta sin arcilla	74
Figura 40:Curvas de esfuerzo deformacion de la cantera Chonta sin arcilla	75
Figura 41: Gráfica de curva de densidad seca de la cantera Chonta con 5% arcilla	76
Figura 42: Curvas de esfuerzo deformación de la cantera Chonta con 5% de arcilla	77
Figura 43: Gráfica de curva de densidad seca de la cantera Chonta con 10% arcilla	78
Figura 44: Curvas de esfuerzo deformación de la cantera Chonta con 10% de arcilla	79
Figura 45: Gráfica de curva de densidad seca de la cantera Chonta con 15% arcilla	80
Figura 46: Curvas de esfuerzo deformación de la cantera Chonta con 15% de arcilla	81
Figura 47: Gráfica de barras Ds Máx. y W%op de la cantera Edgar	85
Figura 48: Gráfica de barras Ds Máx. y W%op de la cantera Guitarrero	85
Figura 49: Gráfica de barras Ds Máx. y W%op de la cantera Chonta	86
Figura 50: Comparación resultados con el ensayo patrón CBR 0.1" Cantera Edgar	87
Figura 51: Comparación resultados con el ensayo patrón CBR 0.1" Cantera Guitarrero	87
Figura 52: Comparación resultados con el ensavo patrón CBR 0.1" Cantera Chonta	88

RESUMEN

La presente investigación tuvo como objetivo evaluar la calidad del material granular de las canteras Edgar, Guitarrero y Chonta, según el Manual de Carreteras EG-2013, adicionando arcilla en porcentajes de 5%, 10% y 15%, para su utilización en carreteras afirmadas en la ciudad de Cajamarca, ya que la arcilla tiene propiedades cohesivas que aglutinan las partículas. Los ensayos de laboratorio realizados fueron: Contenido de Humedad, Análisis Granulométrico, Límites de Atterberg, Proctor Modificado, Relación de Soporte de California, Abrasión Los Ángeles y, Partículas Planas y Alargadas. Como principales resultados tenemos que la franja granulométrica que más se asemeja a los agregados es la A-1, el Límite Líquido varía desde 17.8% hasta 28.1%, el Índice Plástico varía desde 4.03% hasta 11.24% (a excepción del agregado de río sin y con adición de 5% de arcilla), la Relación de Soporte de California de los agregados de cerro disminuye desde 83.14% hasta 19.60%, y el agregado de río desde 50.54% hasta 11.02%; finalmente, el porcentaje de abrasión de los agregados no supera el 50% máximo. De los resultados concluimos que la adición de arcilla no mejora la calidad de los materiales granulares. Cabe resaltar que el agregado de rio no presenta Índice Plástico.

PALABRAS CLAVES: "Afirmados", "Arcilla", "Límites de Atterberg", "Compactación", "CBR", "Abrasión Los Ángeles ".

CAPÍTULO I: INTRODUCCIÓN

1.1. Realidad problemática:

Alrededor del mundo, podemos identificar miles de kilómetros de carreteras pavimentadas y sin pavimentar (carreteras afirmadas), las cuales son administradas por las respectivas autoridades nacionales, regionales y locales, como también por entidades privadas. Las carreteras cumplen un papel muy importante en nuestra vida cotidiana y en el aporte económico del país, ya que constituyen uno de las principales medios de transporte a nivel global; es por ello que, estas deben presentar una estructura adecuada y también estar construidas por materiales de buena calidad, según estándares y normas establecidas de acuerdo a los países y/o sectores a las que pertenezcan, de modo que cumplan con el funcionamiento de diseño para las cuales han sido diseñadas y ejecutadas.

Es por ello que, se vuelve indispensable conocer el estado actual de la infraestructura vial, permitiendo llevar un mejor control en cuanto al cierre de brechas referido al ámbito de carreteras. Pozuelo (2018) menciona lo siguiente:

En base a los problemas existentes en carreteras afirmadas, el 21 de marzo de 1924, se ordenó una inspección general extraordinaria de los pavimentos de las carreteras del estado español. Cuyos resultados arrojaron que 27,549 kilómetros se encontraban en mal estado; mientras que, 28,170 kilómetros de carreteras se encontraban en condiciones tolerables (requirentes de mantenimiento).

Abarcando nuevamente el contexto internacional, el mayor problema que presentan las carreteras afirmadas, es que para su respectiva ejecución se emplean materiales granulares de dudosa calidad, que no cumplen con los requisitos de calidad establecidos por normas (requisitos tales como: baja rugosidad, propiedades cohesivas, baja permeabilidad, buena capacidad de distribución de esfuerzos, etc.); afectando directamente

a su comportamiento estructural, Sánchez (2016) menciona que, al afectar el comportamiento estructural "se generan deterioros tales como la pérdida de grava, ondulaciones, ahuellamiento, pérdida de la pendiente transversal, baches, surcos de erosión y cabezas duras, los cuales se cuantifican en base a la amplitud y gravedad de los mismos".

Es de suma importancia una adecuada y oportuna inversión en carreteras, para el desarrollo de la economía de los países, ya que de esta manera se permite el acceso a diversos bienes y servicios tanto de trabajo, mercado, comunicación, entre otros; de tal manera que, al ofrecer mayores y mejores conexiones viales, se genera transporte de calidad, más asequible y, con mayor comodidad y fluidez (tanto de personas como de carga), siendo esto resultado de un perfeccionamiento de la seguridad y eficacia en las operaciones para ampliar de manera óptima la infraestructura vial de acuerdo a las necesidades requeridas por las comunidades, lo que por ende, conlleva a menores costos en transporte. Los beneficios de mayor y mejor infraestructura de transporte se observan en la competitividad, eficiencia y costos agregados de la economía, esto siempre y cuando se eviten o minimicen las externalidades negativas del uso de la infraestructura, como son, siniestros, contaminación, congestión, entre otros. En América Latina y el Caribe, la inversión en infraestructura vial no es suficiente ni adecuada cuando nos referimos a cobertura y sostenibilidad (CEPAL, 2018).

La importancia de conocer la problemática de la infraestructura vial, es que se pueda identificar la realidad a la cual nos enfrentamos, y es el no óptimo desarrollo económico, comunicación y transporte, puesto que las carreteras son primordiales para el avance como nación. Carrión (2015) hace mención que:

Las carreteras son la primordial inversión económica que impulsa el desarrollo económico, educación, transporte y comunicación de un país. En América Latina y el

Caribe, en cuanto al transporte por carretera, este constituye un 80% en cuanto a pasajeros y un 60% en cuanto a carga y/o mercadería. Además, se estima que la inversión en infraestructura vial representa entre un 5% y un 10% del total de gastos de un Gobierno, pudiendo alcanzar incluso hasta el 20% del presupuesto nacional, por lo que concluye que es de vital importancia brindar vías de transporte de buena calidad, utilizando siempre materiales adecuados y escogidos apropiadamente.

En América Latina, la comunicación entre las ciudades, se realizan mediante carreteras, permitiendo una adecuada interconexión en todo momento y lugar; sin embargo, el principal problema radica en que la mayoría de ellas no cuentan con un estado estructuralmente adecuado para afrontar los diversos cambios climáticos y/o fenómenos naturales que puedan presentarse en su entorno. Por otro lado, el no invertir lo suficiente conlleva a que la mayoría de los servicios de transporte no presenten una calidad adecuada ni duren su tiempo de vida planeado, lo que conlleva a que las naciones tengan más gastos en reparar y rehabilitar las vías de comunicación (Cubas & Guevara, 2018).

Refiriéndonos al aspecto económico de un país, el sector de transporte de carga por vía terrestre, determina el desarrollo comercial, cultural y económico del mismo. Al momento de buscar eficiencia y competitividad en cuanto al desarrollo sostenible de un país, tanto la infraestructura vial, como los costos y la topografía del país, afectan positiva o negativamente al sector previamente mencionado. (Sánchez, 2012) identificó lo siguiente:

En Colombia, en el año 2009 se identificó que; el 23.50% de la red Nacional se encuentra representado por carreteras sin pavimentar; es decir, vías afirmadas. De esto, el 46.50% de carreteras se encuentran en estado regular y el 41.10% se encuentran en mal estado; esto indica que, el 87.60% de la red afirmada se encuentra en estado inadecuado.

La clasificación mencionada es realizada por el Instituto Nacional de Vías - Órgano encargado constantemente de actualizar el estado de la Red Nacional, buscando obtener un seguimiento y control que ayude a identificar medidas preventivas necesarias para mejorar el servicio que se les brinda a los usuarios de las mismas.

El país de Argentina, cuenta con una Red Vial de 640 mil kilómetros de extensión, considerando rutas nacionales, provinciales y caminos municipales; sin embargo, a pesar de ser la más extensa de América Latina, su estado y distribución geográfica arrastra una serie de problemas estructurales. Un informe del Ministerio de Obras Públicas de la Nación, elaborado en el 2021, señala que el 40% de las rutas argentinas no están en condiciones de ser transitadas, debido a que han sido construidas con materiales de baja calidad o materiales inapropiados para la zona designada (Carranza, 2022).

Además, siguiendo con el ámbito de la Red Vial Nacional de Argentina, el Ministerio de Obras Públicas (MOP, 2021), menciona lo siguiente:

En base a datos de la Dirección Nacional de Educación de Vialidad (DNV), se elabora el informe de mantenimiento de la Red Vial Nacional, el cual arroja que solamente un tercio de la red nacional se encuentra en un estado óptimo, mientras que el 27.6% presentan una situación regular. Además, la cifra total arroja que el 59.3% de las rutas tienen estados transitables, mientras que el 40.7% presentan un mal estado. Es decir, muestran problemas en la calzada, falta de señalización, o inconvenientes en las banquinas.

El conjunto de carreteras y pavimentaciones en Ecuador está integrado por la Red Vial Estatal (red primaria y secundaria, con 10 160 kilómetros), la Red Vial Provincial (vías terciarias) y la Red Vial Cantonal (caminos vecinales), las que se extienden por 42,000 kilómetros, de los cuales; el 74% de la red vial estatal está pavimentada, porcentaje del cual un 62% se encuentran en buenas condiciones; mientras que, sólo el 2% de la red

cantonal presenta un estado bueno. Debido al mal estado de las redes secundarias y terciarias, el Ministerio de Transportes y Obras Públicas (MTOP) viene promoviendo actuaciones de mejoramiento para acondicionar las redes a la demanda actual de transporte, lo que genera al país gastos no previstos por el estado (Martínez, 2020).

Según el Índice Global de Competitividad (WEF), del 2008 al 2015, la calidad de la infraestructura vial del Perú mejoró de 2.6 a 3.0 puntos, como puede observarse en la Tabla 1. Este indicador se calcula dividiendo las carreteras pavimentadas entre la población total, sin embargo, aún se evidencia una brecha significativa a pavimentar, sobre todo en las redes sub nacionales, a cargo de los Gobiernos Regionales y Locales (Torres, 2016).

Tabla 1: Índice de competitividad global-Foro Económico Mundial (WEF)

	2008-2009		2011-2012		2015-2016		
PERÚ	Ranking	Puntos	Ranking	Puntos	Ranking	Puntos	
	83	3.95	67	4.21	69	4.20	
N° Países	13	134		142		144	
Calidad Global de Infraestructura	113	2.4	105	3.5	112	3.2	
Carreteras	99	2.6	98	3.2	111	3.0	

Nota: Índice de calidad de infraestructura (1 = subdesarrollado, 7 = eficiente)

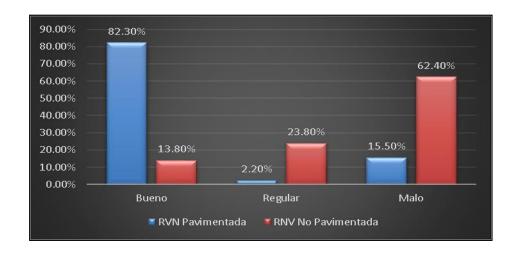
La problemática de la infraestructura de transporte en el Perú, se debe a una notable deficiencia en cuanto a cantidad y calidad de carreteras, ya que las autoridades encargadas del área no brindan una adecuada atención e interés al ámbito vial, interviniendo negativamente en el desarrollo del país. Al no construirse redes viales de calidad y en la cantidad necesaria, se generan problemas de comunicación y transporte, entre ciudades y comunidades de la nación. La problemática mencionada, es un hecho que reduce las

oportunidades de crecimiento a nivel nacional; mientras que, invirtiendo en este tipo de proyectos se tendría repercusión en el crecimiento económico del país (Carrión, 2015).

La irresponsabilidad de las autoridades gubernamentales en el ámbito de infraestructura vial en el país, reducen las oportunidades de un crecimiento económico óptimo, perjudicando significativamente al mismo. Caso contrario, si la infraestructura vial creciera un 1%, el Producto Bruto Interno (PBI), aumentaría un 0.218%, ya que se favorecerían la incorporación de nuevos sectores productivos. Es decir, la relación existente entre inversión, competitividad y crecimiento, ya que países y regiones con mayores niveles de inversión, son los más competitivos, por ende, presentan un mayor crecimiento económico. Sin embargo, alcanzar mejores índices de competitividad no solo requiere cerrar la brecha de inversión en infraestructura vial, sino también mejorar otros componentes como el buen clima de negocios, gestión de gobierno, institucionalidad, la preservación del ambiente, el uso racional y sostenibles de los recursos naturales y, el acceso eficiente a servicios de salud y educación (Vásquez & Calderón, 2008).

La red vial del Perú se encuentra organizada en tres niveles: Red Nacional, Red Departamental (Regional) y Red de caminos vecinales. Red cuya misión es vincular los principales centros productivos (proveedores), constituyendo todo el sistema de carreteras del país, el cual se distribuye tal cual se observa en la Tabla 2.

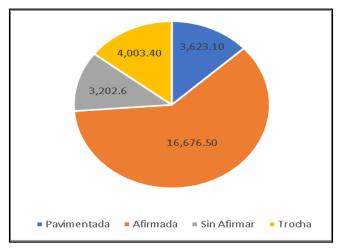
Tabla 2: Longitud de Infraestructura Vial, según jerarquía y superficie de rodadura (km)



SUPERFICIE	SIS	SISTEMA NACIONAL DE CARRETERAS						TOTAL	
DE RODADURA	Nacio	onal	Departa	mental	Veci	nal			
TOTAL	28,866.5	16.5%	32,199.0	18.4%	113,933.1	65.1%	174,998.5	100%	
1. Red vial actual	27,060.9	16.1%	27,505.6	16.3%	113,792.7	67.6%	168,359.2	96.2%	
Pavimentada No Pavimentada	21,649.0 5,411.9	80.0% 20.0%	3,623.1 23,882.5	13.0% 87.0%	1,906.2 111,886.6	2.0% 98.0%	27,178.3 141,180.9	16.0% 84.0%	
2. Proyectada	1,805.5	26.5%	4,693.4	71.3%	140.4	2.1%	6,639.32	3.8%	

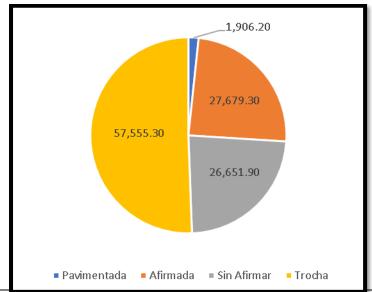
Nota: Elaborado y actualizado por la Oficina de Estadística del MTC a julio 2019.

La Red Vial Nacional (RVN), comprende las principales arterias que conectan departamentos y regiones naturales. En cuanto al estado de la superficie de rodadura de la esta red se tiene lo siguiente (véase la Figura 1):


Figura 1: Estado de la Red Vial Nacional (RVN) Pavimentada y No Pavimentada

Observamos que existe un gran déficit en cuanto a la calidad del estado de la superficie de rodadura de la RVN No Pavimentada, denotando la falta de interés de las autoridades respectivas y el uso de materiales granulares no aptos y esto abarca carreteras que conectan la capital de un departamento con sus respectivas provincias. Cuya distribución es la siguiente (Ver Figura 2):

Figura 2: Estado de la Red Vial Departamental (RVD) en kilómetros



Analizando los 16,676.50 km de vías afirmadas, obtenemos que el 60.63% de toda la RVD son vías afirmadas, dándonos una idea de lo importante que es el emplear materiales granulares adecuados para la elaboración de las mismas, verificando que se cumpla con los requisitos que se demandan para la utilización de estos materiales granulares.

La Red Vial Vecinal (RVV), se compone de carreteras en el ámbito local, cuya función es unir las capitales de provincia y las capitales de distrito de los centros poblados cuya distribución es (Véase la Figura 3):

Figura 3: Estado de la Red Vial Vecinal (RVV) en kilómetros

Los 57,555.30 km de trochas representan el 50.58% de la totalidad de la RVV, trochas que se convertirán próximamente en vías afirmadas, debiéndose emplear en estas, materiales granulares adecuados y de buena calidad, evitando inversiones que conlleven atraso en el crecimiento de la economía del país.

La problemática en la red vial de Cajamarca, es que la región presenta poca injerencia en cuanto a la fiscalización e intervención en los trabajos de mejoramiento y reconstrucción que deben realizarse en las vías; esto debido a que, estas vías han sido concesionadas por el Estado y el Gobierno Central, en la región Cajamarca, se cuenta con dos carreteras asfaltadas; mientras que, las otras vías, solo cuentan con un afirmado local; es decir, son vías que no permiten una transitabilidad adecuada, debido a que no cuenta con la correcta señalización y presentan falta de mantenimiento (Herrera, 2018).

Debido a toda la problemática ya mencionada anteriormente, nace la idea de esta investigación que consiste en: "Evaluar la calidad del material granular de las canteras Edgar, Guitarrero y Chonta, según el Manual de Carreteras EG-2013, adicionado arcilla en porcentajes de 5%, 10% y 15%, para su utilización en carreteras afirmadas en la ciudad de Cajamarca". Elaborando para ello una base de datos confiable que nos permita identificar la calidad del material granular de las canteras en estudio, sin adición y con adición de arcilla en los porcentajes anteriormente mencionados. Es decir, esta base de datos brindará información clara y concisa de la influencia de la arcilla, en las propiedades físicas y mecánicas del material granular de las canteras en estudio, para emplearse en carreteras afirmadas. La cantera Guitarrero (cantera de cerro) y la cantera Chonta (cantera de río), fueron seleccionadas ya que pertenecen al grupo de las más utilizadas y llevan más de 15 años proveyendo de material granular al ámbito de la construcción en general; por otro

lado, la cantera Edgar (cantera de cerro) fue seleccionada debido a que no lleva mucho tiempo en funcionamiento, siendo necesario conocer la calidad del material granular de la misma. Las canteras en mención muestran permanencia a largo plazo, ya que se evidencia que cuentan con gran cantidad de material granular.

En cuestión de antecedentes, en cuanto al ámbito internacional tenemos:

En Argentina, Gutiérrez et al (2004), realizaron una importante investigación titulada "Límites de plasticidad en suelo con usos diferentes en el Departamento 9 Julio (Chaco)", cuya investigación presentó como objetivo principal determinar si diferentes usos de suelo inciden de distintas maneras en los límites de plasticidad. Al realizar el muestro sistemático, emplearon cuatro repeticiones, de la cual obtuvieron como principales resultados que, en el espesor de 0.06 – 0.15m el Límite Líquido es más alto que en el superficial, en cambio el Límite Plástico y Punto de Adherencia disminuyen, en labranza convencional ocurre lo contrario, el Límite Líquido disminuye en profundidad y el Límite Plástico aumenta. Con lo que se concluye que, las situaciones de suelo de monte son las que tienen los mayores contenidos de agua en cuanto a Límite Líquido, Límite Plástico y Punto de Adherencia, y que la labranza cero incrementa los valores de los límites con respecto a la labranza convencional.

En Colombia, (Rivera, 2013), realizó una investigación titulada "Correlación del valor de Soporte de California (CBR) con la Resistencia a la Compresión Inconfinada y la Plasticidad del Suelo". Cuyo objetivo fue identificar el grado de correlación del CBR con la Compresión Inconfinada y Plasticidad del Suelo, para suelos finos de Municipios aledaños a Santiago de Cali. Obtuvo como resultado que, en cuanto al CBR natural vs. el Límite Líquido y vs al Índice de Plasticidad, los puntos son muy dispersas y no muestran tendencia alguna; es decir, el CBR en estado natural no presenta relación con la Plasticidad

del Suelo, lo mismo que ocurre para el CBR en estado saturado. Finalmente, concluyó que, las gráficas de dispersión para ambos casos presentan demasiada variabilidad en los datos, por lo cual es imposible tratar de realizar algún tipo de análisis con esta información.

En Colombia, (Carvajal, 2018), en su investigación titulada "Mejoramiento del material de afirmado de la cantera la Esmeralda mediante la adición de ceniza de cascarilla de arroz y material reciclado de escombro". Cuyo objetivo fue mejorar el material de afirmado de la cantera la Esmeralda, mediante la adición de ceniza de cascarilla de arroz y material reciclado de escombro. Obteniendo como principales resultados que, el Límite Líquido es 27.98% (menor al 40% máximo según INVÍAS), el Índice Plástico es NP (valor que no está en el rango de 4 a 9 según INVÍAS) y el CBR es 11.45% (menor al 15% mínimo según INVÍAS). Con lo que se concluye que, la muestra tiene una resistencia natural del 11.45%, la cual mejora de manera significativa cuando se le adiciona ceniza de cascarilla de arroz (CCA), pasando a una resistencia de 55.16% al proporcionar un 5% del material en CCA, y a un 119.91% empleando el reciclado de escombros como aditivo en un 20%, esto demuestra que la CCA y el reciclado de escombros, mejoran las propiedades físico-mecánicas del material.

En Colombia, (Palma, 2017), en su investigación titulada "Caracterización y mejoramiento del material de afirmado para terraplenes en la cantera Recebera la Esmeralda ubicada en el kilómetro 7 Vía Totumo". Cuyo objetivo fue caracterizar y mejorar el material afirmado para terraplenes de la cantera Rebeca la Esmeralda adicionando triturado de tamaño máximo ¾pulg, proveniente de La Caima en proporciones de 50-50, 70-30 y 85-15. Obtuvieron como principales resultados que, el valor del CBR natural sin aditivo es de un 20%, porcentaje alto, el cual le da distintos usos, valor mayor al 15% máximo según INVÍAS; y, con la proporción de 50-50, se logró aumentar el valor a

un 25%, gracias a la misma resistencia que tiene el triturado. Finalmente, concluyeron que, la proporción de 70-30 y la de 85-15, no satisfacen el propósito de la investigación debido a que las partículas no logran un buen encajamiento entre ellas.

En Colombia, (Patiño y Ríos, 2018), realizaron una investigación titulada "Caracterización de material granulares tipo afirmado existente en la Región del Alto Magdalena dosificados con roca ígnea basalto, cumpliendo con las especificaciones técnicas de INVÍAS". Cuyo objetivo fue implementar una mezcla de agregados (recebo) con basalto, que sea apto o cumpla las características exigidas por la norma INVÍAS. Obtuvieron como principales resultados que: En la dosificación con 70% basalto y 30% afirmado, el LL es 9% (<40% según INVÍAS), el IP es 4 (4-9 según INVÍAS) y el CBR es 65.6% (>15% según INVÍAS); por otro lado, En la dosificación con 30% basalto y 70% afirmado, el LL es 8% (<40% según INVÍAS), el IP es 4 (4-9 según INVÍAS) y el CBR es 53.8%% (>15% según INVÍAS). Finalmente, concluyeron que, ambas dosificaciones cumples con los valores establecidos según el capítulo 3, artículo 3. 11-13 del manual INVÍAS; es decir, ambas dosificaciones se pueden considerar para su uso en carreteras afirmadas.

Seguidamente, en cuanto al ámbito nacional tenemos:

En Huancavelica, (Ramos y Torres, 2012), realizaron una investigación titulada "Mejoramiento del material afirmado de las canteras adyacentes para el terraplén de la carretera Lircay - Ccochaccasa". Cuyo objetivo fue evaluar el empleo del cemento en la estabilización del material de afirmado para el mejoramiento del terraplén de las canteras ubicadas en el anexo de Ucchupampa y el Distrito de Ccochaccasa, Angaraes, Huancavelica, para lo cual se mejorará el material de afirmado con el incremento de cemento en porcentajes de 1%, 2% y 3%; para este fin se tomaron 3 muestras por cantera,

las cuales fueron sometidas a los ensayos de laboratorio respectivos como Contenido de Humedad, Análisis Granulométrico, Límites de Atterberg, Proctor Modificado y CBR, según las normas del ASTM y MTC. Obtuvieron como principales resultados que, en la cantera Ucchupampa (en estado natural), la máxima Densidad Seca es de 2.16kg/cm³ y el valor del CBR (al 100%) es 48%; mientras que, al 1% de incremento en cemento, la máxima Densidad Seca es de 2.166kg/cm³ y el valor del CBR (al 100%) es 48.50%; por otro lado, en la cantera Ccochaccasa (en estado natural), la máxima Densidad Seca es de 2.11kg/cm³ y el valor del CBR (al 100%) es 44%; mientras que, al 1% de incremento en cemento, la máxima Densidad Seca es de 2.151kg/cm³ y el valor del CBR (al 100%) es 44.50%; sin embargo, conforme se incrementa el 2% de cemento, los valores de máxima Densidad Seca y el valor del CBR (al 100%), disminuyen en ambas canteras; además, con 3% de incremento en cemento, ambos valores disminuyen de manera mucho más significativa, pero manteniéndose dentro del valor mínimo que es 40%. Finalmente, concluyeron que, solo al incrementar cemento en 1% es que se mejora la resistencia del suelo y mejora la estabilización del material de afirmado para el mejoramiento del terraplén de la carretera Lircay – Ccochaccasa.

En Ancash, (Ramírez, 2018), en su investigación titulada "Estabilización de suelos de la avenida 2 del caserío de Pueblo Libre Nuevo, adicionando 3% y 5% de la ceniza de schinus molle de horno artesanal, Distrito de Pueblo Libre, Huaylas, Ancash". Cuyo objetivo fue estabilizar el suelo de la avenida 2 con adición de ceniza de Schinus Molle (CSM), en afirmados con bajo CBR para aumentar la capacidad de soporte. Obtuvo como principales resultados, por un lado, el suelo de estudio es de clasificación GW-GM mediante el método SUCS, y A-1-a (0) mediante el método AASHTO; por otro lado, el valor de CBR (al 100%) mezcla óptima del afirmado al natural es 80.10% y el valor de

CBR (al 95%) es 57.20%; además, el valor de CBR (al 100%) mezcla óptima del afirmado adicionando el 3% de CSM es 84.30% y el valor de CBR (al 95%) es 61.90%. Como principales conclusiones obtuvo que: En cuanto a las características de compactación de los suelos, la Densidad Seca Máxima aumenta y la Humedad Óptima de Compactación disminuyen con cada incremento de porcentaje de CSM; al aumentar el 5% de adición, el valor de CBR disminuye debido a su adherencia y reduciendo la fricción irregular que presentan los suelos, y finalmente y por tanto la elevada cantidad de óxido de potasio en su composición química influyó en la desintegración del material que lo contenga; es decir, la presencia de este álcalis producirá desintegración entre las partículas del suelo.

En Lambayeque, (Lozada, 2018), realizó una investigación titulada "Estudio de las características físicas y mecánicas de las canteras Hualango como material de afirmado en carreteras, Provincia de Utcubamba". Cuyo objetivo fue realizar un estudio de las características físicas y mecánicas de las canteras Hualango como material de afirmado en carreteras. Obteniendo como resultados que, el material de la cantera La Loma presenta un valor promedio de Límite Líquido de 23.42%, un valor promedio de Índice Plástico de 8.27% y un valor de CBR (al 100%) de 46.0%; por otro lado, la cantera Las Paguillas presenta un valor promedio de Límite Líquido de 27.26%, un valor de promedio de Índice Plástico de 7.82% y un valor CBR (al 100%) de 47.4%. Finalmente, concluyó que, los valores de Índice Plástico se encuentran dentro del rango de 4% a 9%; sin embargo, los valores de CBR indican que no son canteras a emplearse en carreteras, puesto que su material no representa buena calidad por ende al construir con estas generaría malestares prontamente.

En Lambayeque, (Chafloque y Fernández, 2020), realizaron una investigación titulada "Aplicación de mezcla de cloruro de calcio con material afirmado para mejorar la

estabilización de la base en la carretera 7 de agosto. Pimentel - Chiclayo - Lambayeque, 2020". Cuyo objetivo fue aplicar la mezcla de cloruro de calcio con material afirmado para mejorar la estabilización de la base de la carretera 7 de agosto. Obtuvieron como principales resultados que: El valor promedio de las 06 calicatas el Límite Líquido es 25.5%, el Índice Plástico es 7.67%; y, el CBR (al 100%) es 19.2%; mientras que, aplicando la dosificación de 6%, los valores obtenidos son LL=19%, IP=3 y el valor CBR (al 100%) = 112%. Finalmente, concluyeron que, la dosificación de 6% cumple una excelente estabilización y esto con la Cantera Tres Tomas.

En Ayacucho, (Isla, 2021), en su investigación titulada "Influencia de la incorporación de Polycom en la estabilidad del afirmado para el mejoramiento de los pavimentos, Huanta, Ayacucho, 2021". Cuyo objetivo fue evaluar la influencia de la incorporación de PolyCom en dosificaciones de 0.01%, 0.02% y 0.03%, en la estabilidad del afirmado para el mejoramiento de los pavimentos en Huanta; Obteniendo como principales resultados que el Índice de Plasticidad no se alteró con ninguna dosificación, mientras que el CBR aumentó el 101% con respecto a la muestra patrón, por lo que mejora la capacidad de resistencia. Finalmente, concluyó que, con la dosificación de 0.03% se obtuvieron mejores resultados determinando que la misma influye positivamente en la estabilidad del afirmado.

En Junín, (Cuadros, 2017), realizó una investigación titulada "Mejoramiento de las propiedades físico-mecánicas de la subrasante en una vía afirmada de la Red Vial Departamental de la Región Junín mediante la estabilización química con óxido de calcio - 2016". Cuyo objetivo fue determinar la influencia de la estabilización química mediante la adición de diversos porcentajes de óxido de calcio en el mejoramiento de las propiedades físico-mecánicas de la subrasante en una vía afirmada de la RVD de la Región Junín.

Obtuvo como principales resultados que, la variación del Límite Líquido del suelo natural con el suelo con adición de 3% de CaO, disminuye de 41% a 40%; mientras que, la variación del Índice de Plasticidad del suelo natural con el suelo con adición de 3% de CaO, disminuye de 19.08% a 4.17%. Finalmente, concluyó que, el porcentaje óptimo de CaO al adicionar diversas proporciones (1%, 3%, 5% y 7%) para la estabilización del suelo en estudio es de 3% respecto al peso del suelo.

Finalmente, en cuanto al ámbito local tenemos:

En Cajamarca, (Mejía, 2013), realizó una investigación titulada "Estudio de las propiedades físicas mecánicas cantera 3M y su utilización como material de afirmado". Cuyo objetivo fue analizar la calidad de agregados que brinda la cantera 3M y que se están utilizando como material de afirmado, en varias calles de Cajamarca; para ello se determinó la granulometría, el óptimo Contenido de Humedad y la máxima Densidad Seca, y se evaluó su dureza; características que brindan una valiosa información de la capacidad de servicio de la estructura a largo plazo. Obtuvo como principales resultados que: en la cantera 3M está conformada por una grava pobremente gradada, b) El agregado grueso presenta buena resistencia a la Abrasión con un valor promedio de 43.048%, la plasticidad del suelo, el Límite Líquido encontrado es de 20.43%, el Límite Plástico e Índice Plástico son NP, y en general, el agregado de esta cantera presenta características mecánicas de buena calidad ya que el valor del CBR (al 100%) de la muestra es de 63.53% y el valor del CBR (al 95%) es de 51.20%. Finalmente, concluyó que, la cantera 3M es de naturaleza grava mal gradada con varios tamaños; sin embargo, presenta una ausencia de tamaños intermedio y finos IP=NP=0, esto debido a la ausencia de contenido de finos; además, la cantera 3M, para poder emplear su material granular en el mejoramiento de carretera a nivel de afirmado, se propone combinar materiales con la cantera Bazán, la cual cumple

con especificaciones de afirmado EG-2000 MTC, la combinación de materiales en los posible deberá cumplir con las consideraciones granulométricas (5% a 20% de finos que pasa la malla N°200), e índice de plasticidad (4% a 9%) que se requiere para afirmado (Acap. 302-EG-2000 MTC/15-17).

En Cajamarca, (Rivera y Medina, 2016), realizaron una investigación titulada "Influencia de la incorporación de cuatro niveles de cloruro de calcio en la resistencia mecánica de un material para afirmado". Cuyo objetivo fue determinar la influencia de la incorporación de cada uno de los niveles de cloruro de calcio en la resistencia mecánica de un material para afirmado. Obtuvieron como principales resultados que: al incorporar cloruro de sodio, la máxima Densidad Seca se incrementó desde 2.195gr/cm³ hasta 2.253gr/cm³ para un 4% de cloruro de sodio, el contenido óptimo de humedad para la muestra patrón fue de 6.10%; sin embargo, para las dosificaciones de 1%, 2%, 3% y 4%, los valores disminuyeron a 5.24%, 5.58%, 5.32% y 5.55% respectivamente, y la influencia del cloruro de calcio para la muestra patrón arrojó un valor de CBR (al 100%) de 74%, valor que al adicionar las dosificaciones de 1%, 2%, 3% y 4%, aumentó a 103%, 105%, 142% y 150% respectivamente. Finalmente, concluyeron que, el cloruro de calcio aumenta la resistencia en más del 5% para cada 1% de adición respecto a la muestra patrón.

En Cajamarca, (Becerra, 2019), realizó una investigación titulada "Adición de miel de caña sobre el CBR del afirmado de la cantera el Gavilán, Cajamarca, 2017". Cuyo objetivo fue determinar mediante un estudio experimental, que efecto produce la adición de miel de caña sobre el material para afirmado de la cantera el Gavilán. Obteniendo como principal resultado que: los valores del CBR (a 0.1") se apreció un incremento - al adicionar 2% de miel de caña-, de un 4.22% de la muestra patrón, y en los valores del CBR (a 0.2") se incrementó el valor en un 44% de la muestra patrón al adicionar el 2% de miel

de caña; sin embargo, al momento de adicionar un 5% y 10% de miel de caña, los valores de CBR – tanto para el 0.1" y el 0.2" –, disminuyen. Finalmente, concluyó que, solo al adicionar un 2% de miel de caña, es que se logra aumentar los valores del CBR

En Cajamarca, (Vargas, 2017), realizó una investigación titulada "Influencia de la combinación de agregado de cerro y de río en la capacidad de soporte de un afirmado". Cuyo objetivo fue determinar la influencia de la combinación de agregado de río y de cerro en la capacidad de soporte de un afirmado, Obteniendo como principales resultados que: El agregado de la cantera de río (Chonta) obtuvo un valor de CBR del 15%, el agregado de la cantera de cerro (Bazán) obtuvo un valor del CBR de 22%, la combinación de agregado de río / agregado de cerro en una proporción de 75%/25% obtuvo un valor de CBR del 110%, la combinación de agregado de río / agregado de cerro en una proporción de 50%/50%, obtuvo un valor de CBR del 55%, y la combinación de agregado de río / agregado de cerro en una proporción de 25%/75%, obtuvo un valor de CBR del 75%. Finalmente, concluyó que, ninguna de las canteras cumple con los requisitos mínimos de diseño de afirmado según el Manual de Carreteras EG-2013, mientras que las 3 combinaciones cumplen lo requerido, indicándose que la proporción de 75%/25% tuve la mejor capacidad de soporte (CBR).

Para la presente investigación se tuvo como marco normativo lo siguiente:

Como normas a emplearse para la ejecución de los ensayos de Laboratorio del material granular de las canteras en estudio, tales como: Contenido de Humedad, Análisis Granulométrico de Agregado Fino y Grueso, Límites de Atterbeg (Plasticidad del Suelo), Compactación en Laboratorio (Proctor Modificado), Ensayo de Relación de Soporte de California en Laboratorio (CBR), Ensayo de Abrasión Los Ángeles al desgaste de los agregados de tamaños menores de 37.5mm (1 ½), y Ensayo de Partículas Planas y

Alargadas en agregado grueso; por el ámbito nacional, tenemos las del MTC (Normas del Ministerio de Transportes y Comunicaciones) y las NTP (Normas Técnicas Peruanas); así como también, por el ámbito internacional, tenemos las ASTM (American Society for Testing and Materials) y las normas AASHTO (American Association of State Highway and Transportation Officials).

Además, también se contó con el Manual de "Especificaciones Técnicas Generales para Construcción", el cual forma parte de los Manuales de Carreteras establecidos por el Reglamento Nacional de Gestión de Infraestructura Vial aprobado por D.S. N°034-2008-MTC y constituye uno de los documentos técnicos de carácter normativo, que rige a nivel nacional y es de cumplimiento obligatorio para los órganos responsables de la gestión de la Infraestructura Vial de los tres niveles de Gobierno. Manual cuya finalidad es uniformizar las condiciones, requisitos, parámetros y procedimientos de las actividades relativas a las obras de Infraestructura Vial. Teniendo en consideración que, como toda ciencia y técnica, la ingeniería vial está permanentemente en cambio e innovación, es necesario que el presente Manual sea actualizado periódicamente por el órgano normativo correspondiente (MTC, 2013).

La presente investigación consideró las siguientes bases teóricas: Las canteras son la fuente principal de materiales pétreos que a la vez constituyen los insumos fundamentales en el sector de la construcción de infraestructura civil y vial, como vías, presas, embalses, edificaciones, entre otros. Al considerarse como una materia prima en la ejecución de estas obras, su valor económico representa un factor considerable en el costo total de cualquier proyecto. Toda cantera tiene una vida útil, y una vez agotada, el abandono de la actividad suele originar serios problemas de carácter ambiental, principalmente relacionados con la destrucción del paisaje (ECOTEC, 2016).

Los materiales granulares se producen de la fragmentación de rocas, debido a la erosión - desgaste producido en la superficie de un cuerpo por el roce o frotamiento con otro el tamaño y forma que los puede caracterizar depende de factores como el grado de meteorización, conjunto de procesos externos que provocan la alteración y disgregación de las rocas en contacto con la atmósfera, la calidad de la roca madre de la cual provienen, y del desgaste al cual ha sido expuesto para su transporte. Estos materiales los podemos encontrar en mares, lecho de los ríos, brechas de falla, fondo de los valles, entre otros. Debido a su variada distribución, son utilizados como material para cimentación en obras de infraestructura civil; sin embargo, también podemos utilizarlos para la construcción de estructuras de tierra como presas, pavimentos, pedraplenes, carreteras afirmadas, etc. (Cabrera, 2018).

El material granular se puede clasificar de acuerdo a su tamaño en base a la Tabla 3 que se presenta a continuación.

Tabla 3: Clasificación del material granular en función de su tamaño

CLASIFICACIÓN	BRITÁNICO	AASHTO	ASTM	SUCS
CLASIFICACION	(mm)	(mm)	(mm)	(mm)
Grava	60 - 2	75 – 2	> 2	75 – 4.75
Arena	2 - 0.06	2 - 0.05	2 - 0.075	4.75 - 0.075
Limo	0.06 - 0.02	0.05 - 0.002	0.075 - 0.005	< 0.075 FINOS
Arcilla	< 0.002	< 0.002	< 0.005	

Las arcillas son los materiales geológicos más contradictorios de acuerdo a la utilidad que se le brinda en el ámbito de la Ingeniería Civil. Son fuente inagotable de problemas referidos a la inestabilidad de obras de infraestructura; sin embargo, se constituyen también como material de propiedades ingenieriles a tener en cuenta. Desde el punto de vista petrológico, la arcilla es una roca sedimentaria, en la mayor parte de los

casos de origen detrítico, con características bien definidas. En general, el término arcilla es aplicado a un material natural, terroso, cuyo tamaño ronda el de grano. Además, la arcilla es un material que cuando se mezcla con cierta proporción de agua, se convierte en una pasta plástica (Suárez, 2018).

Jiménez y Justo (2016), mencionan que:

Las arcillas suelen tener propiedades tales como: a) Propiedades coloidales, b) Consisten en su mayor parte en minerales arcillosos, c) Son partículas con forma laminar, d) Son suaves al tacto, e) Presentan una baja permeabilidad, f) Se secan lentamente pegándose a los dedos, g) Los terrones secos se pueden partir, pero no reducir a polvo con los dedos, h) No son colapsables, e i) Pueden ser demasiado expansivas.

El afirmado es una capa de material granular natural o procesado con gradación específica que soporta directamente las cargas y esfuerzos del tránsito. Debe poseer la cantidad apropiada de materiales fino cohesivo que permita mantener aglutinadas las partículas. Funciona como superficie de rodadura en carreteras y trochas carrozables. Por ende, una carretera afirmada es aquella cuya superficie de rodadura está constituida por una o más capas de afirmado (MTC, 2008).

El material granular que ha de ser empleado en carreteras afirmadas debe cumplir con los siguientes requisitos:

Los materiales granulares deben ajustarse a alguna de las siguientes franjas granulométricas de la Tabla 4 y cumplir con los requisitos de calidad de la Tabla 5.

Tabla 4: Clasificación del material granular (para afirmado) en función a su granulometría

TAMIZ	PORCENTAJE QUE PASA					
	$\overline{A-1}$	A-2	C	D	\mathbf{E}	\mathbf{F}

50mm (2")	100	-	-	-	-	-
37.5mm (1 ½")	100	-	-	-	-	-
25mm (1")	90-100	100	100	100	100	100
19mm (3/4")	65-100	80-100	-	-	-	-
9.5mm (3/8")	45-80	65-100	50-85	60-100	-	-
4.75mm (N°04)	30-65	50-85	35-65	50-85	55-100	70-100
2.0mm (N° 10)	22-52	33-67	25-50	40-70	40-100	55-100
425 μm (N° 40)	15-35	20-45	15-30	25-45	20-50	30-70
75 μm (N°200)	5-20	5-20	5-15	5-20	6-20	8-25

Tabla 5: Requisitos de calidad para emplear el material granular en vías afirmadas

REQUISITOS	RANGO DE VALORES			
Límite Líquido	35% máximo			
Índice Plástico	4-9%			
CBR (1)	40% mínimo			
Abrasión Los Ángeles	50% máximo			

Nota: (1) – Referido al 100% de la Ds Máx. y una Penetración de carga de 0.1" (2.5mm)

Cabe resaltar que, la Tabla 4 y Tabla 5 se basan en la Tabla 301-01 y los requisitos de calidad de la Sección 301 - Afirmados del Manual de Carreteras EG-2013 respectivamente.

En cuanto a las propiedades físicas y mecánicas del material granular, tenemos al Contenido de Humedad, que es la relación expresada como porcentaje del peso de agua en una masa dada de suelo, al peso de las partículas sólidas. Es decir, determina el peso de agua eliminada, secando el suelo húmedo hasta un peso constante en un horno controlado a 110 ± 5 °C* (MTC, 2016).

Nota 1. (*) El secado en horno siguiendo a 110 °C no da resultados confiables cuando el suelo contiene yeso u otros minerales que contienen gran cantidad de agua de hidratación o

cuando el suelo contiene cantidades significativas de material orgánico. Se pueden obtener valores confiables secando el suelo en un horno a una temperatura de 60 °C.

Seguidamente, tenemos a la granulometría, la cual se refiere a las proporciones relativas en que se encuentran las diferentes partículas minerales del suelo (grava, arena, limo y arcilla), expresadas en base al peso seco del suelo (en porcentaje), después de la destrucción de los agregados. Estudia la distribución de las partículas que conforman un suelo según su tamaño, lo cual ofrece un criterio obvio para una clasificación descriptiva. Independientemente del origen del suelo, los tamaños de las partículas que conforman un suelo, varían en un amplio rango. Cabe resaltar que, la textura y propiedades físicas del suelo, dependerán del tamaño de ellas (Llique, 2017).

El análisis granulométrico también nos permite determinar los coeficientes de uniformidad y curvatura del material granular. El coeficiente de uniformidad (Cu) mide qué tan uniforme es la muestra. Se considera que un material granular con Cu inferior a 4 es mal gradado, un Cu superior a 4 es bien gradado y un Cu igual a 1 corresponde a que todas las partículas tienen el mismo tamaño. Por otro lado, el coeficiente de curvatura mide la curvatura de la curva granulométrica. Cuando el coeficiente está dentro del rango de 1 y 3, el material granular se consideran bien gradado, cuando el coeficiente está por fuera del rango, la curva granulométrica es rara; es decir, que tiene saltos o cambios fuertes de pendiente, indicando que hay ciertos valores de diámetro que predominan (González, 2014).

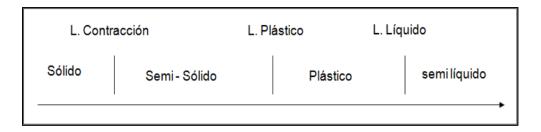
Además, otra propiedad a tomar en cuenta es la plasticidad del suelo, propiedad la cual ha sido empleada para clasificar a los suelos en forma totalmente descriptiva, ya que no basta con decir que un suelo plástico puede deformarse sin producir agrietamiento en el,

pues una arena fina y húmeda tiene esas características cuando la deformación se produce lentamente y; sin embargo, no es plástica (Llique, 2017).

La plasticidad es un fenómeno inherente a los suelos de partículas muy finas como limos y arcillas; por lo tanto, se define a la plasticidad como la propiedad de un material por la cual es capaz de soportar deformaciones rápidas, sin rebote elástico, sin variación volumétrica apreciable y sin desmoronarse ni agrietarse (Llique, 2017).

Dentro del ámbito de la plasticidad, existen los estados de consistencia. La consistencia se define como su resistencia al esfuerzo cortante; es decir, es la oposición que presenta la masa de suelo a que se deforme. Según su contenido de agua en forma decreciente, un suelo susceptible de ser plástico puede estar en cualquiera de los siguiente estados de consistencia (definidos por Atterberg): Estado líquido (el suelo tiene las propiedades y apariencias de una suspensión), Estado semilíquido (el suelo presenta las propiedades de un fluido viscoso), Estado plástico (el suelo se comporta plásticamente), Estado semi sólido (el suelo tiene la apariencia de un sólido, pero aún disminuye de volumen al estar sujeto a secado), y Estado sólido (el volumen del suelo no varía con el secado) (Llique, 2017).

Figura 4: Estados de Consistencia



Por otro lado, tenemos a los límites de consistencia, los cuales son fases generales por las que pasa el suelo conforme se va secando y los límites de consistencia son las

fronteras convencionales que se presentan entre los estados y están definidos por un Contenido de Humedad. Los límites son propiedades que definen la plasticidad y se emplean para clasificar el suelo (Llique, 2017).

Figura 5: Limites de Atterberg

El Límite Líquido (LL), es el Contenido de Humedad, expresado en porcentaje, para el cual el suelo se halla en el en el límite entre los estados líquido y plástico. Arbitrariamente se designa como el Contenido de Humedad al cual el surco separador de dos mitades de una pasta de suelo se cierra a lo largo de su fondo en una distancia de 13mm (1/2pulg.) cuando se deja caer la Copa de Casagrande 25 veces desde una altura de 1cm a razón de dos caídas por segundo (MTC, 2016).

Por otro lado, el Límite Plástico (LP), es la humedad más baja con la que puedan formarse barritas de suelo de unos 3.2mm (1/8") de diámetro, rodando dicho suelo entre la palma de la mano y una superficie lisa (vidrio esmerilado), sin que dichas barritas se desmoronen (MTC, 2016).

Se denomina como Índice Plástico (IP) a la diferencia entre Límite Líquido (LL) y Límite Plástico (LP), diferencia que cuantifica la amplitud o extensión del estado plástico del suelo (MTC, 2016).

Otra propiedad es la compactación, la cual implica un reordenamiento de las partículas sólidas y como consecuencia la densidad aparente del suelo aumenta; es decir, el fenómeno de la compactación del suelo es el resultado de una fuerza aplicada que destruye

la estructura y colapsa o disminuye los poros, lo que limita el espacio para el almacenamiento o movimiento del aire y el agua en el suelo. En resumen, cuando una determinada porción de material granular se ve afectada por fuerzas externas, se compacta (Llique, 2017).

La Humedad Óptima (Wop), es el porcentaje de humedad para la cual un suelo sometido a una energía de compactación determinada presenta su densidad máxima seca compactada. Mientras que, la Densidad Seca Máxima Compactada (Ds máx.), es la mayor densidad que se puede alcanzar cuando el suelo es compactado a la humedad óptima (Cárdenas & Donoso, 2008).

La Relación de Soporte de California (CBR) o también conocida como California Bearing Ratio, la cual es el índice de resistencia del terreno, se aplica para la evaluación de la capacidad de soporte de suelos de subrasante, de los materiales de sub bases, bases granulares y afirmado de un pavimento. Este índice mide la resistencia al corte de un suelo bajo las condiciones de humedad y densidad controlada. (Llique, 2017).

Abrasión Los Ángeles al desgaste de los agregados de tamaños menores de 37.5 mm (1 ½"), este ensayo determina la resistencia a la degradación utilizando la Máquina de Los Ángeles. Este modo operativo es una medida de la degradación de agregados minerales de gradaciones normalizadas resultantes de una combinación de acciones, las cuales incluyen abrasión o desgaste, impacto y trituración, en un tambor de acero en rotación. (MTC, 2016)

Partículas Planas y Alargadas, este método de prueba cubre la determinación de los porcentajes de partículas planas, partículas alargadas o partículas planas y alargadas en agregados gruesos (ASTM-D4791, 2020)

Alarcón Bueno; G. Villavicencio Acuña; R.

Es por ello que la presente tesis tiene la finalidad de evaluar las propiedades físico mecánicas del agregado granular para afirmado en su estado natural y también adicionando distintos porcentajes de arcilla, puesto que en la actualidad se ha visto que en las zonas rurales de Cajamarca, este material es usado frecuentemente en la apertura u mantenimiento de trochas carrozables, las cuales no cumplen su función de diseño y perseverancia en el tiempo, lo que nos indica que hay deficiencia en su calidad como material para una carretera.

1.2. Formulación del Problema de Investigación:

¿Cómo influye la adición de arcilla, en la calidad del material granular de las canteras Edgar, Guitarrero y Chonta, para su utilización en Carreteras Afirmadas en la ciudad de Cajamarca?

1.3. Objetivos:

a) General:

Evaluar la calidad del material granular de las canteras Edgar, Guitarrero y Chonta, según el Manual de Carreteras EG-2013, adicionando arcilla en porcentajes de 5%, 10% y 15%, para su utilización en carreteras afirmadas en la ciudad de Cajamarca.

b) Específicos:

Determinar las propiedades físico – mecánicas de material granular de las canteras Edgar, Guitarrero y Chonta.

Comparar la calidad del material granular de las canteras Edgar, Guitarrero y Chonta, adicionando arcilla en porcentajes de 5%, 10% y 15%, en función a los requisitos de calidad según el Manual de Carreteras EG-2013.

Verificar si es permisible el uso de material granular mezclado con arcilla en distintos porcentajes, 5% 10% y 15%, en afirmados y brindar recomendaciones en base a los estudios realizados.

1.4. Hipótesis:

Como hipótesis general se tiene que "La calidad del material granular de las canteras Edgar, Guitarrero y Chonta, según el Manual de Carreteras EG-2013, adicionando arcilla en porcentajes de 5%, 10% y 15%, para su utilización en carreteras afirmadas, mejora un 10%, 20% y 30% respectivamente.

CAPÍTULO II: METODOLOGÍA

Según los propósitos de la investigación es de carácter **Aplicativo** ya que se determinará la calidad de un material granular de diferentes canteras a través de la adición parcial de porcentajes de arcilla; este tipo de investigación es la que busca generar conocimiento con aplicación directa y a mediano plazo en los problemas de la sociedad (Lozada, 2014).

Según la intervención del nivel de investigación, es **Explicativa**, ya que se determinará la calidad de material granular y se estudiará de qué manera influye agregar parcialmente la arcilla, así mismo se conocerá la resistencia del material para ser usado en carreteras afirmadas.

El diseño que se aplicará en esta investigación es **Experimental**, debido a que se manipulará las variables de estudio, se adicionará arcilla en porcentajes de 5%, 10% y 15%, lo cual influye directamente a la utilización de este material en carreteras afirmadas parcialmente. Según (Muñoz, 2010) una investigación experimental es aquella que realiza la alteración de una variable o varias al mismo tiempo, en un ambiente estrictamente vigilado a base de protocolos que se deben cumplir para que los datos sean confiables.

Según el enfoque, la presente investigación es **Cuantitativa**, ya que se determinará la influencia que tiene la adición de arcilla en porcentajes de 5%, 10% y 15% en la calidad de material granular de tres canteras, según el DG-2013 para su utilización en carreteras afirmada.

Según la planificación en la recolección de datos, la presente investigación es de tipo **Prospectiva**, ya que la medición será mediante toma de datos producto de los ensayos realizados en el laboratorio de suelos UPN.

También es **Descriptiva** porque analiza y compara los resultados del material para

afirmado con la adición arcilla en distintos porcentajes, es decir caracteriza la nueva fórmula (agregado) y describe sus características y comportamiento actual.

Para continuar, en cuanto al ámbito temporal, el desarrollo de la investigación se llevó a cabo entre los meses de noviembre del 2022 y abril del 2023, mientras que, en cuanto al ámbito espacial, la presente investigación se realizó en el Laboratorio de Mecánica de Suelos de la Universidad Privada del Norte – Sede Cajamarca – Cajamarca – Perú.

Según, (Arias-Gómez et al, 2016), la población de estudio es un conjunto de elementos, definido, limitado y accesible, que formará el referente para la elección de la muestra que cumple con una serie de criterios predeterminados. Por lo tanto, para esta investigación la **población** está conformado por todo el peso del material granular (kg) a ser empleado en carreteras afirmadas de las canteras Edgar, Guitarrero y Chonta. Las canteras fueron seleccionadas aleatoriamente, dando prioridad a las más cercanas a la zona urbana del distrito de Cajamarca, ya que son las más recurrentes para la utilización en las obras.

Para determinar la muestra se ha utilizado un muestreo no probabilístico por conveniencia el cual según (Ortega, 2020). "Permite seleccionar aquellos casos accesibles que acepten ser incluidos. Esto, fundamentado en la conveniente accesibilidad y proximidad de los sujetos para el investigador" (pág. 9), en tal sentido la **muestra** ha sido delimitada con un peso de 250kg del material granular de cada cantera en estudio, que será necesario para realizar los diferentes tipos de ensayos de acuerdo a las normativas y guías del Laboratorio de Concreto y el Laboratorio de Suelos de la Universidad Privada del Norte – Sede Cajamarca.

El material a utilizar fue el siguiente, material granular extraído de las canteras ya mencionadas, para lo cual se realizó un cuarteo correspondiente a cada muestra obtenida, las cuales se pusieron a secar al aire libre por 24 horas, para luego proceder a realizar los ensayos descritos líneas abajo, también se utilizó la arcilla, la cual se extrajo de la cantera Edgar, realizando el cuarteo pertinente.

En cuanto a las técnicas de recolección de datos, se comenzó por la observación simple debido a que los resultados numéricos de los ensayos respectivos, fueron tomados directamente de los instrumentos y/o equipos de medición y control, tales como la balanza y la prensa hidráulica. Seguidamente, el análisis de contenido, el cual consistió en trasladar los resultados numéricos obtenidos, a los distintos protocolos de control para su procesamiento. Finalmente, la revisión documental, porque se contrastó los resultados numéricos obtenidos con los requisitos de calidad de la Tabla 5.

En cuanto a los instrumentos de recolección de datos, se emplearon los Formatos de los Protocolos del Laboratorio Mecánica de Suelos de la Universidad Privada del Norte – Sede Cajamarca – Cajamarca – Perú (Véase la Tabla 6).

Tabla 6: Cantidad de ensayos realizados

Ensayos	Norma Técnica	Muestras por cantera	Muestras totales
Contenido de Humedad	MTC E-108, NTP 339.127, ASTM D2216, AASHTO T265	4 Muestras	12 Muestras
Análisis Granulométrico de Agregado Fino y Grueso	MTC E-204, NTP 400.012, ASTM C136, AASHTO T27	4 Muestras	12 Muestras
Límites de Atterberg (Plasticidad del suelo)	MTC E-110/111, NTP 339.130, ASTM D4318, ASSHTO T89/90	20 Muestras	60 Muestras
Compactación en Laboratorio (Proctor Modificado)	MTC E-115, NTP 339.141, ASTM D1557, AASHTO T180	4 Muestras	12 Muestras
Relación de Soporte de California en Laboratorio (CBR)	MTC E-132, NTP 339.145, ASTM D1883, AASHTO T193	4 Muestras	12 Muestras

Abrasión Los Ángeles al desgaste de los agregados de tamaños menores de 37.5 mm	MTC E-207, ASTM C131/NTP 400.019	3 Muestras	12 Muestras
Partículas planas y alargadas en agregado grueso	ASTM D4791	1 Muestra	3 Muestras

Se emplearon los siguientes materiales y equipos para presente la investigación:

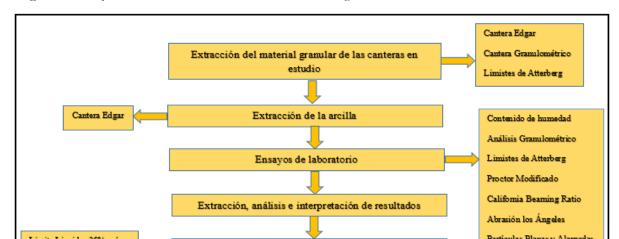
Primero, para el Contenido de humedad (MTC E-108, NTP 339.127, ASTM D2216, AASHTO T265), se utilizó como material a una muestra alterada extraída del estrato en estudio o agregado fino o grueso (500gr). El número de taras a utilizar depende de la cantidad y el tamaño de la tara. Se utilizaron como equipos: Balanza con aproximación 0.01gr, Estufa con control de temperaturas u horno de temperatura (100±10°C) y recipientes o taras.

Segundo, para el Análisis Granulométrico de Agregado Fino y Grueso (MTC E-204, NTP 400.012, ASTM C136, AASHTO T27), se utilizó como material 5000gr. para cada cantera. Y como equipos se usó: Juego de tamices, Balanza con aproximación de 0.1gr, Taras, Envases para el manejo y secado de muestras, y Cepillo y brocha.

Tercero, en cuanto a los Límites de Atterberg (MTC E-110/111, NTP 339.130, ASTM D4318, ASSHTO T89/90); para empezar, tenemos el Límite Líquido (LL), en el cual se utilizó como material al suelo seco que pasa la malla N° 40. Se utilizaron como equipos: Malla N° 40, Copa de Casagrande, Acanalador, Balanza con aproximación de 0.01gr, Estufa, Espátula, Probeta de 100ml, Cápsula de porcelana e Taras. Seguidamente, en cuanto al Límite Plástico (LP), se utilizó como material una porción de la mezcla preparada para el LL. Se utilizaron como equipos: Balanza con aproximación de 0.01gr, Estufa, Espátula, Cápsula de porcelana, Placa de vidrio y Taras.

Cuarto, para la Compactación en Laboratorio (P. Modificado) (MTC E-115, NTP 339.141, ASTM D1557, AASHTO T180), se utilizaron como materiales una muestra

alterada seca (24kg) y papel filtro. Se utilizaron como equipos: Equipo Proctor Modificado (molde cilíndrico, placa base y anillo de extensión), Pisón Proctor Modificado, Balanza con aproximación de 0.01gr, Estufa, Probeta de 1000ml, Espátula, Taras y Tamices.


Quinto, para la Relación de Soporte de California en Laboratorio (CBR) (MTC E-132, NTP 339.145, ASTM D1883, AASHTO T193), se utilizaron como materiales una muestra alterada seca (18kg) y papel filtro. Se utilizaron como equipos: Equipo CBR (moldes cilíndricos con placa de base y collar de extensión, 3 discos espaciadores, 3 placas de expansión, 3 sobrecargas y 3 trípodes), Pisón Proctor Modificado, Balanza con aproximación de 0.01gr, 3 diales de expansión con divisiones de 0.01mm, Estufa, Probeta de 1000ml, Recipiente de 6kg de capacidad, Espátula e Taras.

Sexto, para el ensayo de Abrasión Los Ángeles al Desgaste de los agregados de tamaños menores de 37.5 mm (1^{1/2}) (MTC E 207, ASTM C131, NTP 400.019), se utilizaron como materiales una muestra alterada seca (15kg). Se utilizaron como equipos: Máquina de los Ángeles, tamiz N° 12, Balanza con aproximación de 0.01gr, y un recipiente.

Sétimo para el ensayo de Partículas Chatas y Alargadas (ASTM D4 791) se utilizaron como materiales una muestra alterada seca (60kg). Se utilizaron como instrumentos: Calibrador Proporcional de Partículas Chatas y Alargadas para Agregados, Balanza con aproximación de 0.01 gr, Vernier o pie de Rey y recipientes.

Por consiguiente, detallamos el procedimiento de la presente investigación:

Figura 6: Esquema del Procedimiento de la investigación

Primero, se inspeccionaron las canteras en estudio, identificando su ubicación exacta para la extracción de las respectivas muestras. La cantera Edgar se ubica en el kilómetro 1.65 de la carretera salida a la costa. La cantera Guitarrero se ubica al sur este de la ciudad de Cajamarca, al costado derecho de la carretera Cajamarca – Pacasmayo. Y la cantera Chonta se ubica con un rumbo de S86°E, con respecto a la ciudad de Cajamarca.

Segundo, se realizó la extracción de arcilla, la cual (como material de adición), se optó por solicitar unos 50kg a los encargados del material granular de la cantera Edgar.

Tercero, en cuanto a la extracción del material granular de las canteras en estudio, de cada procedencia de los materiales granulares a utilizarse y para cualquier volumen previsto se tomarán, cuatro muestras para los ensayos y frecuencias que se indican en la Tabla 7, basándonos en la Tabla 301-02 (Ensayos y frecuencias) del Manual de Carreteras EG-2013.

Tabla 7: Ensayos y frecuencias para material granular a utilizarse como afirmado

PROPIEDAD	FRECUENCIA	LUGAR DE MUESTREO
Granulometría	1 cada 750m²	Cantera (2)
Límites de Consistencia	1 cada 750m²	Cantera (2)
CBR	1 cada 2000m ²	Cantera (2)

Nota: (2) – Material preparado previo a su uso.

El criterio que se tuvo en cuenta para la extracción de la muestra es el cuarteo, que consiste en: estando en cada cantera en estudio, se recolectó material con una palana de diez puntos o más a la zona de extracción; cabe resaltar que, los puntos seleccionados deben ser los más representativos del todo el conjunto del material granular a extraer, tanto

de la parte alta como de la parte media y baja, Se amontona el material para formar un tronco de cono, Se divide el tronco de cono en 4 partes, tratando de que sean lo más iguales posibles y Se recogen solamente 2 partes del tronco de cono que sean opuestas para su respectivo análisis en Laboratorio, se repite el procedimiento hasta completar los 250kg.

Cuarto, se procedió a realizar los ensayos descritos anteriormente, teniendo en cuenta sus procedimientos estándares y normativas de cada uno de ellos y supervisadas por el encargado de laboratorio.

Quinto, se realizó la toma de datos de los protocolos establecidos de cada uno de los ensayos y se tomaron evidencias (fotografías) para aumentar el grado de veracidad y confiabilidad de estos.

En cuanto al análisis y presentación de la información, se aplicó procedimientos automatizados, considerando el empleo de medios informáticos. Para ello, se utilizó el Software Microsoft Excel, ya que cuenta con diferentes herramientas matemáticas y recursos gráficos necesarios para el ordenamiento y desarrollo de los datos obtenidos mediante observación directa e instrumental. Es decir, los datos que primeramente se obtuvieron de los equipos de cada ensayo respectivo, fueron trasladados a los Protocolos de Laboratorio para finalmente procesarlos en el Software, obteniendo los resultados finales de cada ensayo, tanto los que se calculan mediante operaciones matemáticas en base a las ecuaciones brindadas en la presente investigación, como los que se calculan en base a gráficos y/o curvas.

Los resultados que se obtuvieron, solo servirán para el análisis de calidad del material granular de las canteras Edgar, Guitarrero y Chonta; para su utilización en Carreteras Afirmadas, por lo tanto, no se pueden generalizar los resultados para otras canteras o para emplear el material granular de las canteras en estudio, en Bases y

Alarcón Bueno; G. Villavicencio Acuña; R.

En la presente investigación, se realizó bajo los principios éticos y morales que nos inculcaron en la Universidad Privada del Norte, sede Cajamarca, en donde prima la responsabilidad e integridad, como también el principio de justicia y no mal eficiencia, lo que brinda un carácter de veracidad único a la presente tesis, puesto que los datos han sido adquiridos insitu, sin tomar u plagiar resultados obtenidos por otros autores, es por ello que el presente documento puede servir como base para futuras investigaciones con las variables aquí estudiadas.

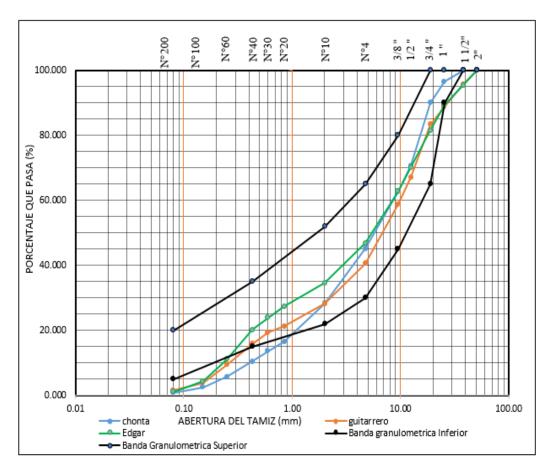
CAPÍTULO III: RESULTADOS

De los ensayos de laboratorio que realizamos, se obtuvieron los siguientes resultados: **Contenido de Humedad**, se analizó el material granular sin adición de arcilla, ya que dichos valores obtenidos servirán solo de referencia para el ensayo de Compactación en Laboratorio (Proctor Modificado).

Tabla 8: Contenido de humedad de las canteras en estudio

CANTERA	CONTENIDO DE HUMEDAD (W%)
Edgar	1.54
Guitarrero	2.46
Chonta	3.79

Análisis Granulométrico del Agregado Fino y Grueso: los resultados sirvieron para clasificar al material granular en base a las bandas granulométricas.


Tabla 9: Porcentajes que pasa de las canteras en estudio

		CANTERAS								
		Edgar Guitarrero Chonta BANDA GRANULOMETRICAS						}		
Tamiz	Abertur a (mm)	% Que pasa	% Que pasa	% Que pasa	A-1	A-2	C	D	E	F
2''	50.80	100.000	100.000	100.000	100	-				
1 1/2"	38.10	95.437	95.684	100.000	100	-				
1''	25.40	89.320	88.848	96.519	90-100	100	100	100	100	100
3/4''	19.00	81.508	83.374	90.095	65-100	80-100				
3/8''	9.50	62.764	58.740	62.720	45-80	65-100	50-85	60-100		
N°4	4.75	46.882	40.581	45.116	30-65	50-85	35-65	50-85	55-100	70-100
$N^{\circ}10$	2.00	34.583	28.201	28.335	22-52	33-67	25-50	40-70	40-100	55-100
N°40	0.43	20.122	15.800	10.401	15-35	20-45	15-30	25-45	20-50	30-70
N°200	0.08	1.112	1.517	0.790	5-20	5-20	5-15	5-20	6-20	8-25

El porcentaje que pasa del Análisis Granulométrico del Agregado Fino y Grueso de las canteras en estudio nos muestra que la franja a la cuál más se asemejan es la A-1.

Figura 7: Curvas granulométricas de las canteras en estudio

Nota: Análisis granulométricos con respecto a la banda granulométrica A-1

Límites de Consistencia o Atterberg:

Tabla 10: Limites Atterberg e Índice Plástico de las canteras en estudio

		CANTERAS										
		EDGAR GUITARRERO CHONTA										
% de arcilla	0%	5%	10%	15%	0%	5%	10%	15%	0%	5%	10%	15%
L. Líquido (%)	21.00	23.20	24.80	26.10	17.80	19.20	20.20	21.60	23.10	24.80	26.30	28.10
L. Plástico (%)	16.97	16.93	16.28	14.86	13.39	12.55	12.20	11.32	NP	NP	23.84	23.02
Í. Plástico (%)	4.03	6.27	8.52	11.24	4.41	6.65	8.00	10.28	NP	NP	2.46	5.08

El material granular se puede clasificar en base al Límite Líquido (LL) y al Índice Plástico (IP), según la Tabla 11 y Tabla 12 respectivamente:

Tabla 11: Plasticidad en función al Limite Liquido según L. Mondragón (2017)

PLASTICIDAD	LÍMITE LÍQUIDO (LL)
Baja plasticidad	< 35%
Plasticidad intermedia	35% - 50%
Alta plasticidad	50% - 70%
Plasticidad muy alta	70% - 90%

Tabla 12: Plasticidad en función al Índice Plástico según L. Mondragón (2017)

PLASTICIDAD	ÍNDICE PLÁSTICO (IP)
No plástico	NP
Baja plasticidad	< 7%
Mediana plasticidad	7% - 17%
Alta plasticidad	> 17%

Figura 8: Limites de Atterberg e IP de la cantera Edgar:

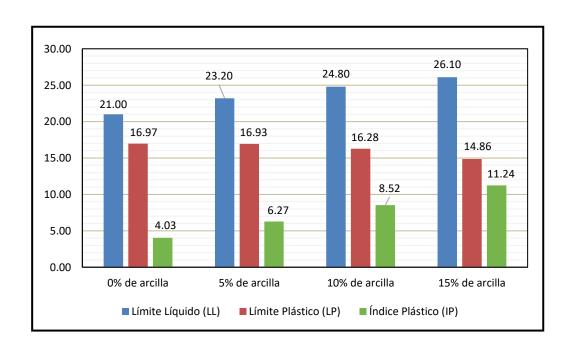


Figura 9: Limites de Atterberg e IP de la cantera Guitarrero

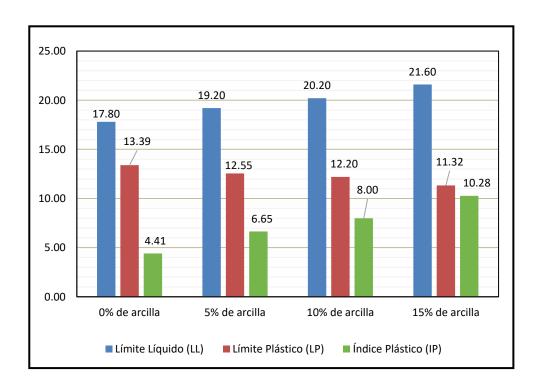
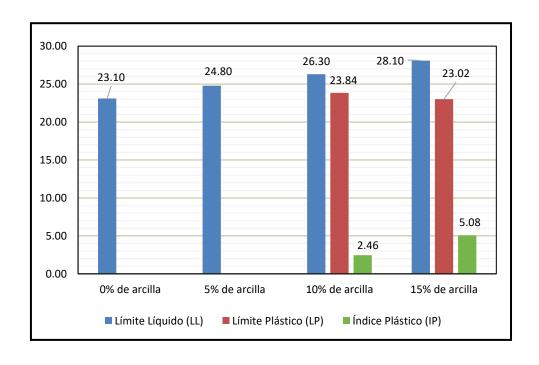
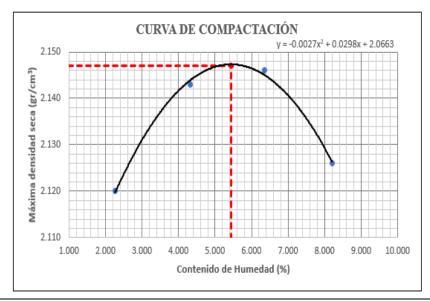



Figura 10:Limites de Atterberg e IP de la carretera Chonta

Compactación en Laboratorio (Proctor Modificado): de acuerdo a la gradación del material, se utilizó el método "C", debido a que los porcentajes retenidos acumulados en la Malla 3/4" son menores o iguales al 20% y los porcentajes retenidos acumulados en la Malla 3/8" son mayores o iguales al 20%.

 Tabla 13: Porcentajes retenidos de las canteras en estudio


	-	CANTERA				
	_	EDGAR	GUITARRERO	CHONTA		
Tamiz	Abertura (mm)	%Retenido Acumulado	%Retenido Acumulado	%Retenido Acumulado		
3/4''	19.00	18.492	16.626	9.905		
3/8''	9.50	37.236	41.260	37.280		
N°4	4.75	53.118	59.419	54.884		

Los resultados de los estudios de Proctor de las tres canteras son:

Tabla 14: DS máx. y W% OP de la Cantera Edgar sin arcilla

DS Máx.	2.147
(gr/cm3)	
W% OP (%)	5.44

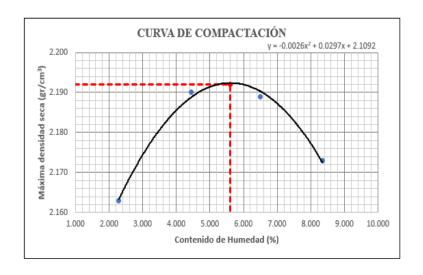

Figura 11:Curva de Proctor modificado de la Cantera Edgar sin arcilla

Tabla 15: DS máx. y W% OP de la Cantera Edgar con 5% de arcilla

DS Máx.	
(gr/cm3)	2.192
W% OP (%)	5.61

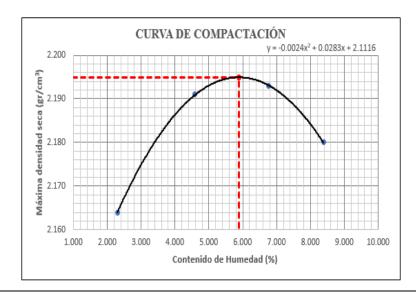

Figura 12:Curva de Proctor modificado de la cantera Edgar con 5% de arcilla

Tabla 16: DS máx. y W% OP de la Cantera Edgar con 10 % de arcilla

DS Máx.	
(gr/cm3)	2.195
W% OP (%)	5.89

Figura 13:Curva de Proctor modificado de la cantera Edgar con 10% arcilla

Tabla 17: DS máx. y W% OP de la Cantera Edgar con 15 % de arcilla

DS Máx.	
(gr/cm3)	2.206
W% OP (%)	6.13

Figura 14: Curva de Proctor modificado de la cantera Edgar con 15% arcilla

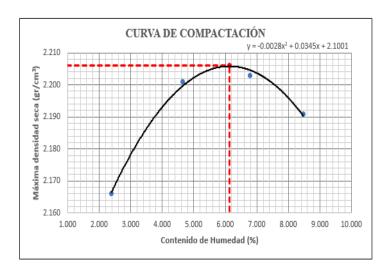


Tabla 18: DS máx. y W% OP de la Cantera Guitarrero sin arcilla

DS Máx.	
(gr/cm3)	2.135
W% OP (%)	5.7 5

Figura 15: Curva de Proctor modificado de la cantera Guitarrero sin arcilla

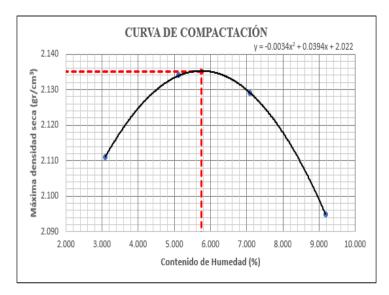


Tabla 19: DS máx. y W% OP de la Cantera Guitarrero con 5 % de arcilla

DS Máx.	
(gr/cm3)	2.176
W% OP (%)	5.88

Figura 16:Curva de Proctor modificado de la cantera Guitarrero con 5% arcilla

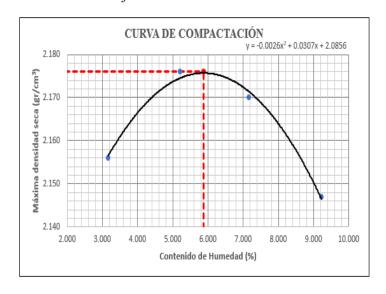


Tabla 20: DS máx. y W% OP de la Cantera Guitarrero con 10 % de arcilla

DS Máx.	
(gr/cm3)	2.188
W% OP (%)	6.14

Figura 17: Curva de Proctor modificado de la cantera Guitarrero con 10% arcilla

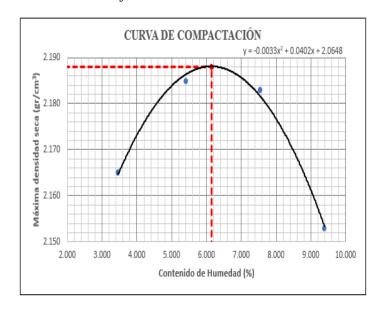


Tabla 21: DS máx. y W% OP de la Cantera Guitarrero con 15 % de arcilla

DS Máx.	
(gr/cm3)	2.212
W% OP (%)	6.33

Figura 18:Curva de Proctor modificado de la cantera Guitarrero con 15% arcilla

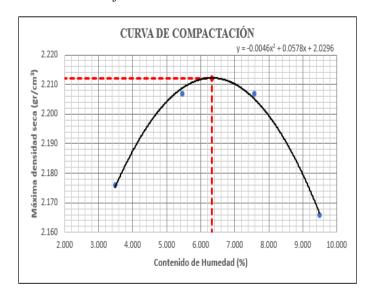


Tabla 22: DS máx. y W% OP de la Cantera Chonta sin arcilla

DS Máx.	
(gr/cm3)	1.961
W% OP (%)	7.96

Figura 19: Curva de Proctor modificado de la cantera Chonta sin arcilla

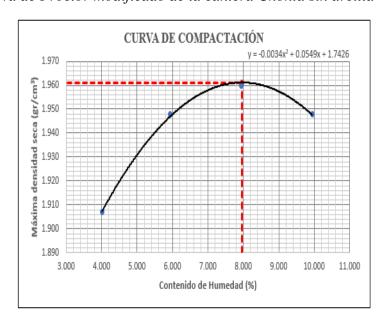
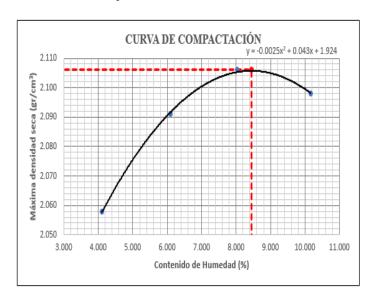



Tabla 23: DS máx. y W% OP de la Cantera Chonta con 5% arcilla

DS Máx.	
(gr/cm3)	2.106
W% OP (%)	8.44

Figura 20:Curva de Proctor modificado de la cantera Chonta con 5% arcilla

Tabla 24: DS máx. y W% con 10% arcilla

OP de la Cantera Chonta

DS Máx.	
(gr/cm3)	2.201
W% OP (%)	8.75

Figura 21:Curva Proctor modificado de la cantera Chonta con 10% arcilla

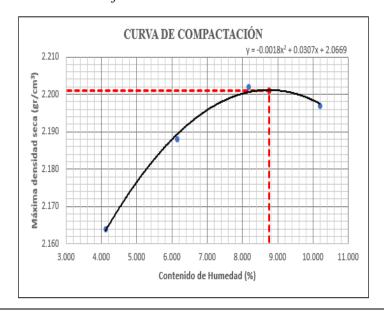
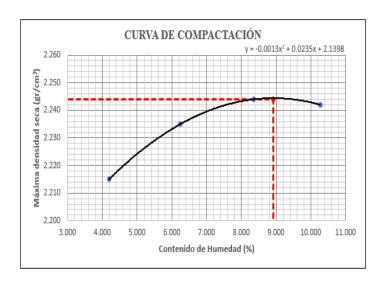



Tabla 25: DS máx. y W% OP de la Cantera Chonta con 15% arcilla

DS Máx.	
(gr/cm3)	2.244
W% OP (%)	8.92

Figura 22: Curva de Proctor modificado de la cantera Chonta con 15% arcilla

Relación de Soporte de California (CBR 0.1"):

Tabla 26: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Edgar sin arcilla

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.147 kg/cm ³
CBR 0.1" (%)	83.14 %
Máxima Densidad Seca (gr./cm3)	2.040 kg/cm ³
CBR 0.2" (%)	39.24 %

Figura 23: Gráfica de curva de densidad seca de la cantera Edgar sin arcilla

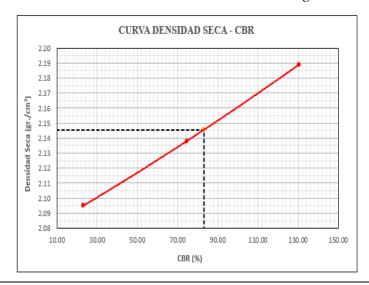
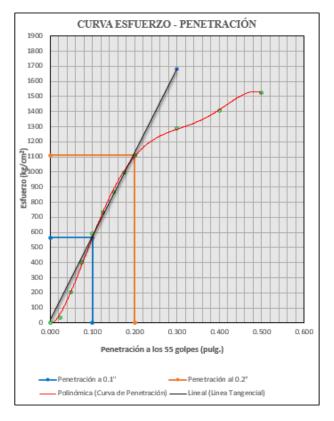
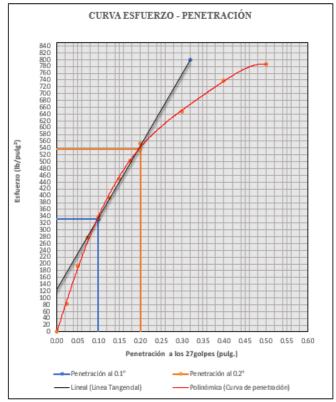
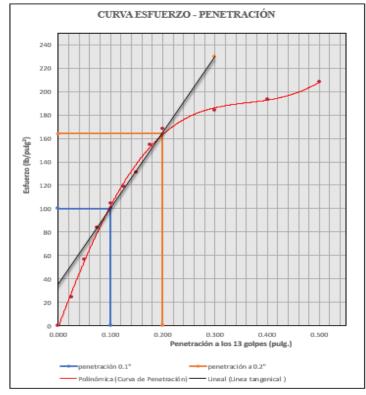





Figura 24: Curvas de esfuerzo deformación de la cantera Edgar sin arcilla

Tabla 27: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Edgar con 5 % de arcilla

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.192
CBR 0.1" (%)	47.99 %
Máxima Densidad Seca (gr./cm3)	2.082 kg/cm ³
CBR 0.2" (%)	22.43 %

Figura 25: Gráfica de curva de densidad seca de la cantera Edgar con 5% arcilla

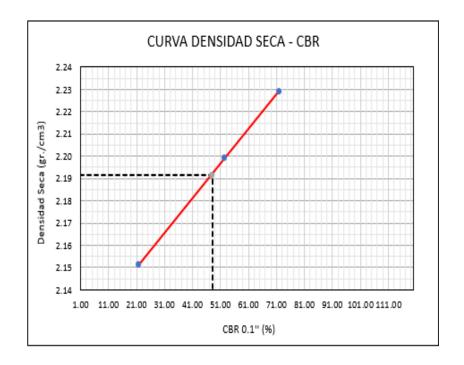
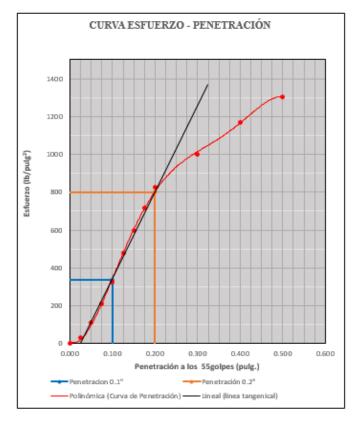
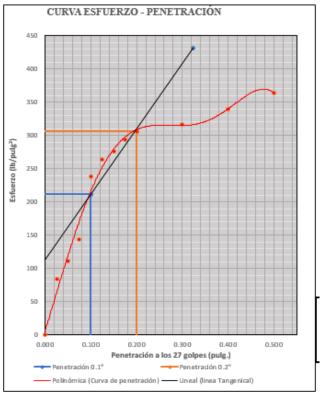
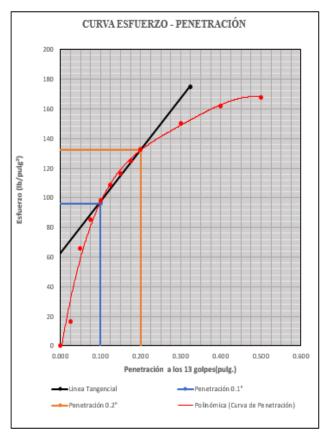





Figura 26: Curvas de esfuerzo deformación de la cantera Edgar con 5% de arcilla

Tabla 28: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Edgar con 10 % de arcilla

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.195
CBR 0.1" (%)	37.17 %
Máxima Densidad Seca (gr./cm3)	2.085 kg/cm ³
CBR 0.2" (%)	14.87 %

Figura 27: Gráfica de curva de densidad seca de la cantera Edgar con 10% arcilla

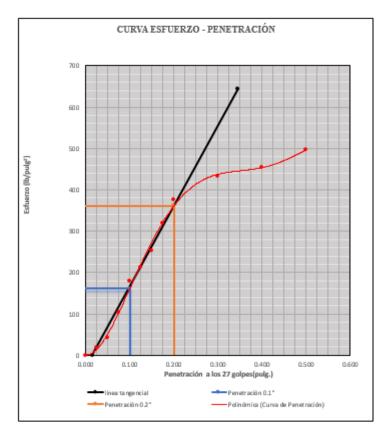
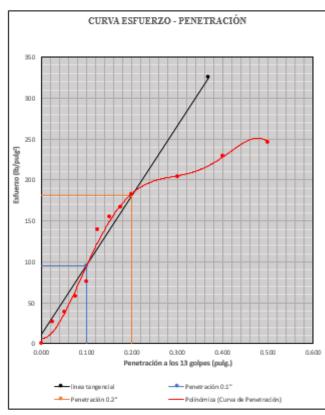




Figura 28:Curvas de esfuerzo deformación de la cantera Edgar con 10% de arcilla

Tabla 29: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Edgar con 15 % de arcilla

RESULTADOS		
Máxima Densidad Seca (gr./cm3)	2.206	
CBR 0.1" (%)	19.60 %	
Máxima Densidad Seca (gr./cm3)	2.096 kg/cm ³	
CBR 0.2" (%)	16.57 %	

Figura 29: Gráfica de curva de densidad seca de la cantera Edgar con 15% arcilla

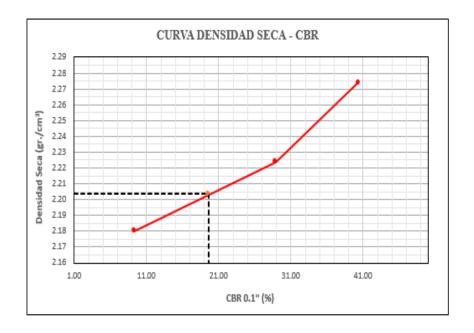
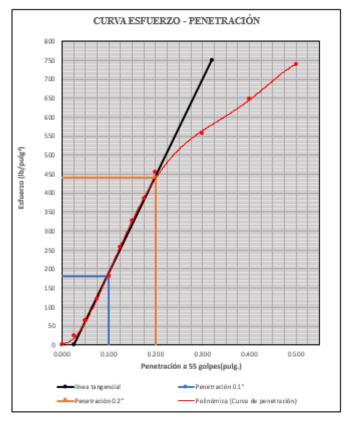
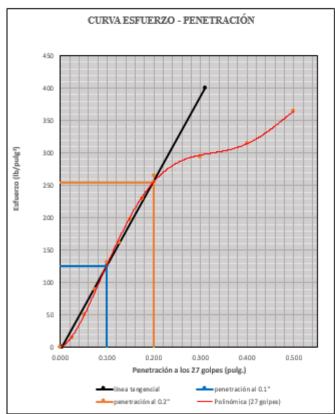




Figura 30: Curvas de esfuerzo deformación de la cantera Edgar con 15% de arcilla

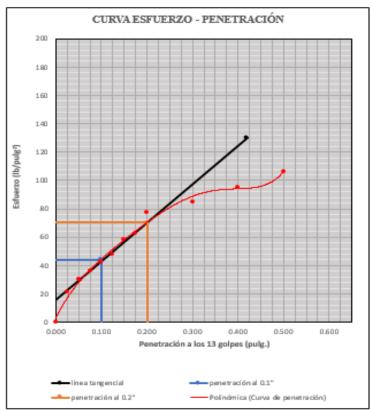


Tabla 30: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Guitarrero sin arcilla

RESULTADOS		
Máxima Densidad Seca (gr./cm3)	2.135	
CBR 0.1" (%)	71.41 %	
Máxima Densidad Seca (gr./cm3)	2.028 kg/cm ³	
CBR 0.2" (%)	27.33 %	

Figura 31:Gráfica de curva de densidad seca de la cantera Guitarrero sin

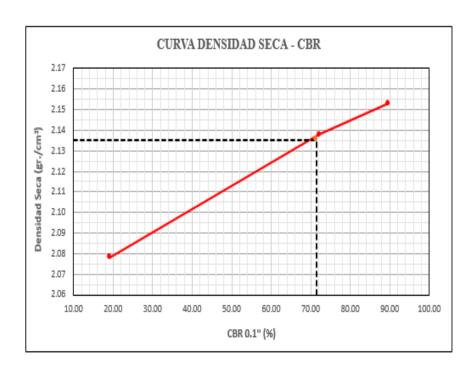
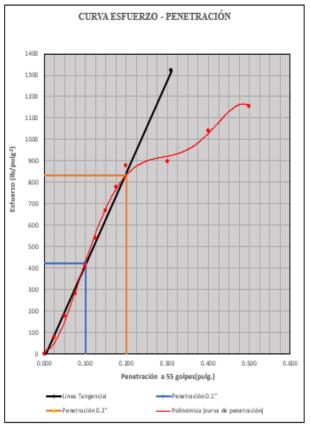
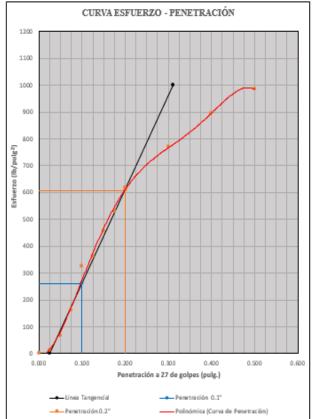
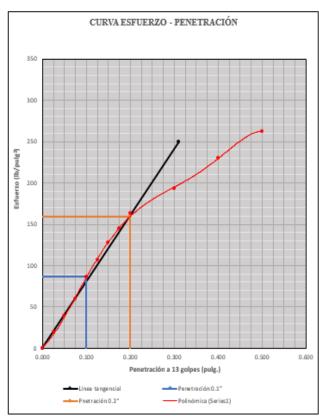





Figura 32:Curvas de esfuerzo deformación de la cantera Guitarrero sin arcilla

Tabla 31: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Guitarrero con 5 % de arcilla

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.176
CBR 0.1" (%)	58.27 %
Máxima Densidad Seca (gr./cm3)	2.067 kg/cm ³
CBR 0.2" (%)	4.63 %

Figura 33: Gráfica de curva de densidad seca de la cantera Guitarrero con 5% arcilla

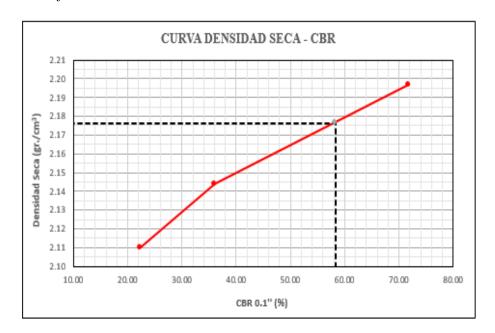
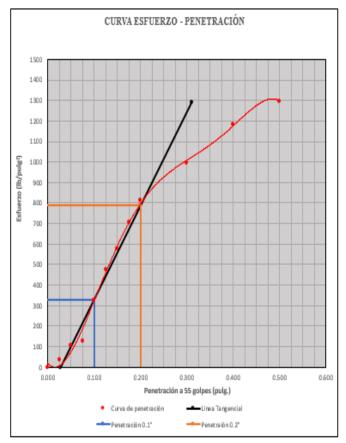
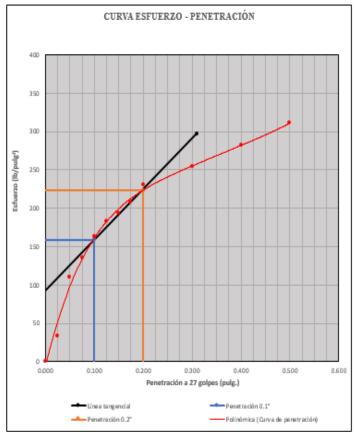
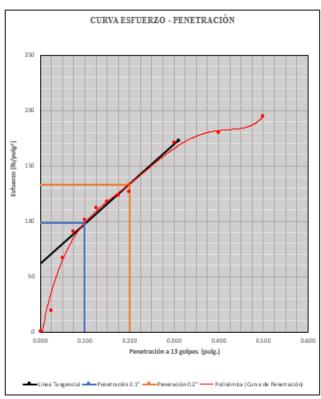





Figura 34: Curvas de esfuerzo deformación de la cantera Guitarrero con 5% de arcilla

Tabla 32:Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Guitarrero con 10% de arcilla

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.188
CBR 0.1" (%)	41.48 %
Máxima Densidad Seca (gr./cm3)	2.079 kg/cm ³
CBR 0.2" (%)	17.60 %

Figura 35: Gráfica de curva de densidad seca de la cantera Guitarrero con 10% arcilla

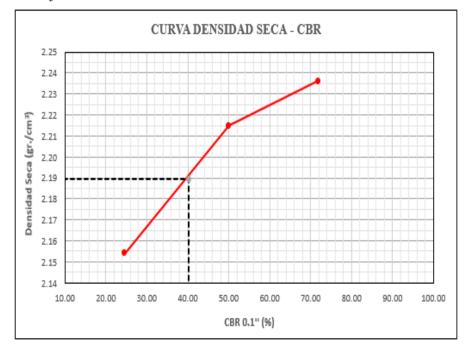
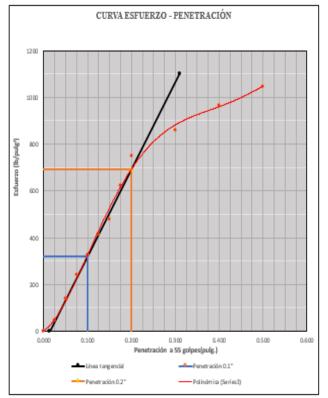
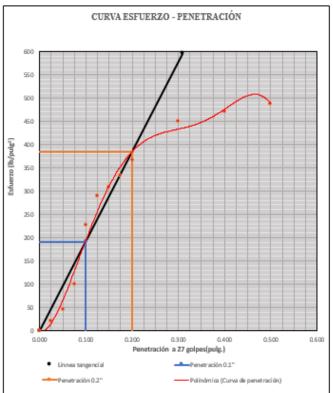
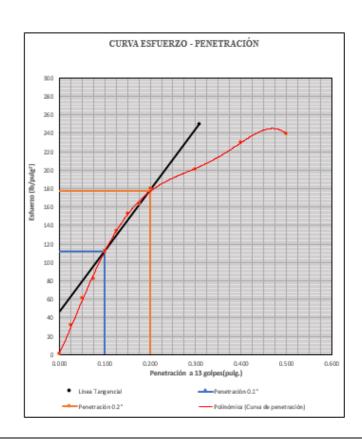





Figura 36: Curvas de esfuerzo deformación de la cantera Guitarrero con 10% de arcilla

Tabla 33: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Guitarrero con 15% de arcilla

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.212
CBR 0.1" (%)	19.76 %
Máxima Densidad Seca (gr./cm3)	2.101 kg/cm ³
CBR 0.2" (%)	28.44 %

Figura 37:Gráfica de curva de densidad seca de la cantera Guitarrero con 15% arcilla

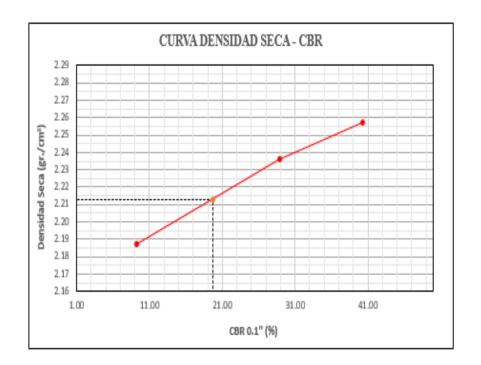
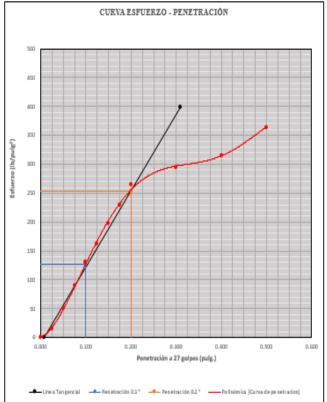



Figura 38:Curvas de esfuerzo deformación de la cantera Guitarrero con 15% de arcilla

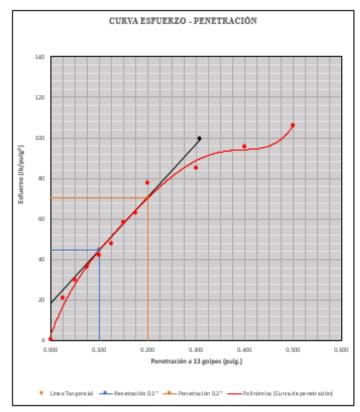


Tabla 34: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Chonta sin arcilla

RESULTADOS								
Máxima Densidad Seca (gr./cm3)	1.961							
CBR 0.1" (%)	50.54 %							
Máxima Densidad Seca (gr./cm3)	1.863 kg/cm^3							
CBR 0.2" (%)	21.15 %							

Figura 39: Gráfica de curva de densidad seca de la cantera Chonta sin

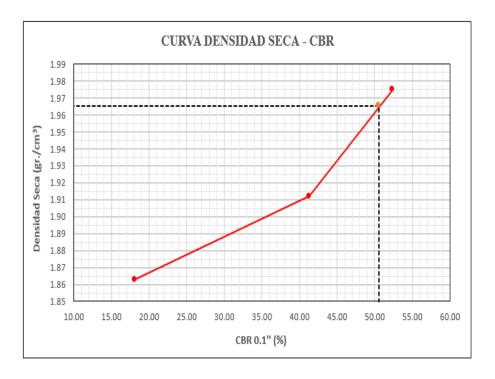
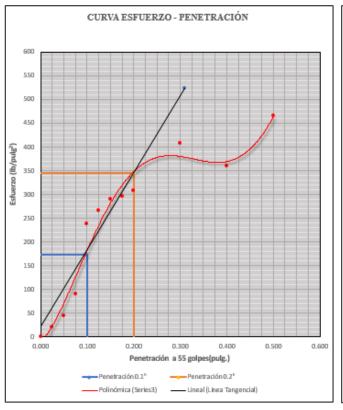
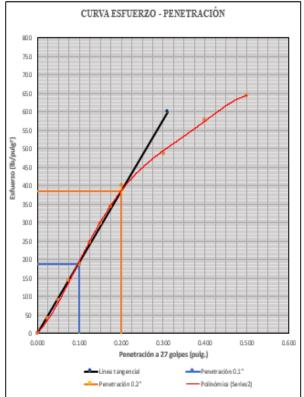
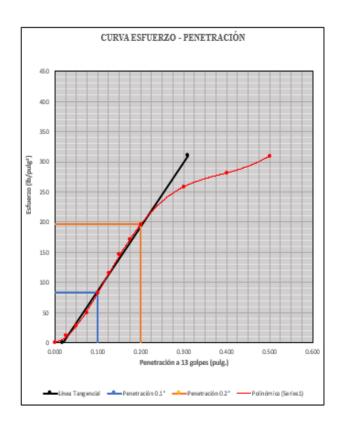





Figura 40:Curvas de esfuerzo deformación de la cantera Chonta sin arcilla

Tabla 35: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Chonta con 5% de arcilla

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.106
CBR 0.1" (%)	35.49 %
Máxima Densidad Seca (gr./cm3)	2.001 kg/cm^3
CBR 0.2" (%)	28.22 %

Figura 41: Gráfica de curva de densidad seca de la cantera Chonta con 5% arcilla

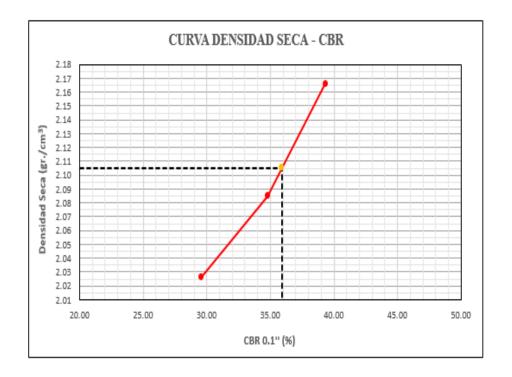
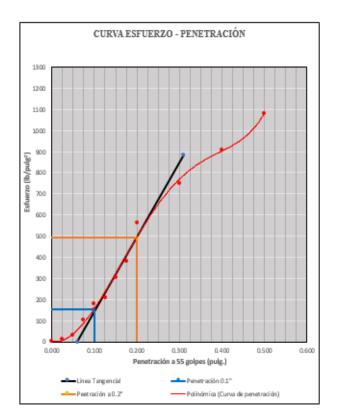
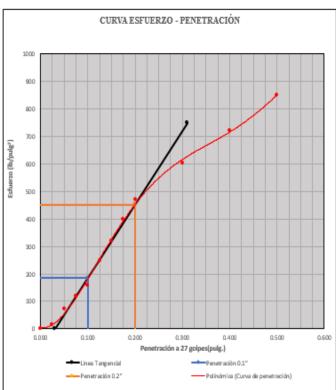
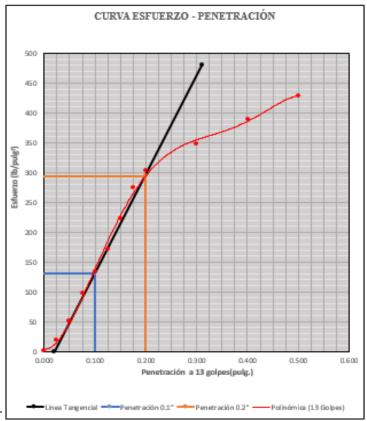





Figura 42: Curvas de esfuerzo deformación de la cantera Chonta con 5% de arcilla

Tabla 36: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Chonta con 10% de arcilla

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.201
CBR 0.1" (%)	22.00 %
Máxima Densidad Seca (gr./cm3)	2.091 kg/cm ³
CBR 0.2" (%)	13.29 %

Figura 43: Gráfica de curva de densidad seca de la cantera Chonta con 10% arcilla

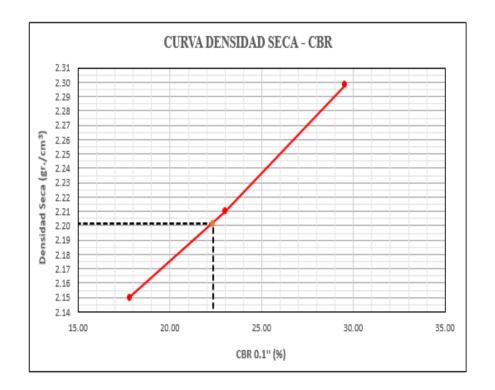
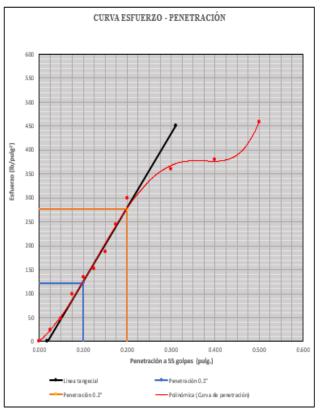
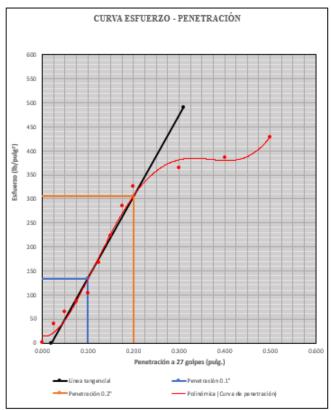
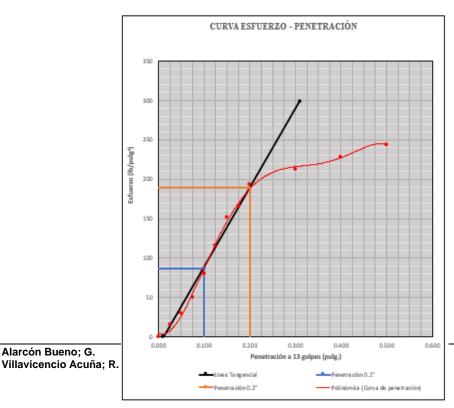





Figura 44: Curvas de esfuerzo deformación de la cantera Chonta con 10% de arcilla

Pág. 79

Tabla 37: Máxima densidad seca de 0.1 y 0.2 de CBR de la cantera Chonta con 15% de arcilla

RESULTADOS							
Máxima Densidad Seca (gr./cm3)	2.244						
CBR 0.1" (%)	11.02 %						
Máxima Densidad Seca (gr./cm3)	2.132 kg/cm ³						
CBR 0.2" (%)	4.21 %						

Figura 45: Gráfica de curva de densidad seca de la cantera Chonta con 15% arcilla

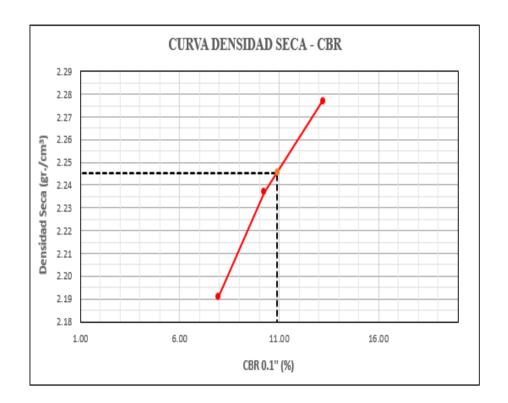
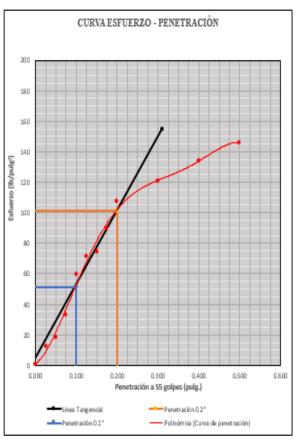
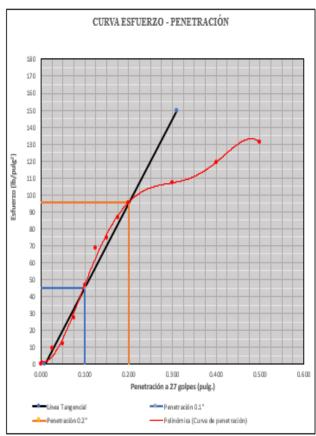
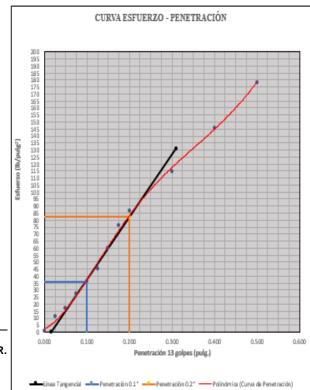





Figura 46: Curvas de esfuerzo deformación de la cantera Chonta con 15% de arcilla

Alarcón Bueno; G. Villavicencio Acuña; R.

Pág. 81

Abrasión Los Ángeles: Este ensayo es para determinar la resistencia del material a la degradación. Según la EG-2013 para afirmados el rango máximo que debe ser es 50% máx. (MTC E-207), esto quiere decir que los resultados de las tres canteras si están dentro del rango que estipula la normativa.

Tabla 38: Resultados de Abrasión Los Ángeles

CANTERA	Abrasión Los Ángeles
Edgar	46.25%
Guitarrero	40.53%
Chonta	34.21%

Partículas planas y alargadas: este ensayo es para determinar el porcentaje de partículas planas y alargadas en agregados gruesos.

Tabla 39: Resultados de partículas planas y alargadas

CANTERA	Partículas Planas y alargadas
Edgar	71.77%
Guitarrero	67.54%
Chonta	65.94%

Tabla 40: Resumen de Resultados de las canteras en estudio

						CANT	ERA					
	EDGAR				GUITARRERO				CHONTA			
Arcilla	0%	5%	10%	15%	0%	5%	10%	15%	0%	5%	10%	15%
LL	21.00	23.20	24.80	26.10	17.80	19.20	20.20	21.60	23.10	24.80	26.30	28.10
Requisito		35% máx.										
Arcilla	0%	5%	10%	15%	0%	5%	10%	15%	0%	5%	10%	15%
IP	4.30	6.27	8.52	11.24	4.41	6.65	8.00	10.28	NP	NP	2.46	5.08
Requisito						4-9	%					
Arcilla	0%	5%	10%	15%	0%	5%	10%	15%	0%	5%	10%	15%
CBR 0.1"	83.14	47.99	37.17	19.60	71.41	58.27	41.48	19.76	50.54	35.49	22.00	11.02
Requisito						40% m	ínimo					

Arcilla	0%	5%	10%	15%	0%	5%	10%	15%	0%	5%	10%	15%
Abrasión	46.25				40.53				39.50			
Requisito 50% máx.												
	Nota:		Sí cu	mple		No c	umple					

CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES

Al analizar en primera instancia a los Límites de Atterberg y el Índice de Plasticidad del material granular de las canteras en estudio, se observa en la Tabla 10 que el LL aumenta conforme la adición de arcilla, el LP por el contrario disminuye; y, por ende, el IP aumenta, teniendo esto concordancia ya que la arcilla al ponerse en contacto con determinada cantidad de agua se vuelve una masa plástica. Cabe resaltar que, la plasticidad de los materiales granulares de las canteras en estudio (con la adición de arcilla) en base al LL, se caracterizan como materiales de baja plasticidad (<35% en base a la Tabla 11); mientras que, en base al IP, los materiales se encuentran entre los rangos de baja a mediana plasticidad (Baja: <7%, Mediana 7%-17%, en base a la Tabla 12), a excepción del material de la cantera Chonta con 0% y 5% de adición de arcilla, cuya plasticidad es nula (NP), demostrando que la arcilla aumenta la plasticidad de los materiales granulares, a comparación con los estudios realizados por (Nina,2019), en el cual concluyó que el material de la cantera rio mashcón en su estado natural no es apto para utilizarlo en carreteras ya que al ser utilizado generaría agrietamientos e hundimientos, perjudicando sustancialmente a los beneficiarios directos, por lo que el autor en mención propuso adicionar cal en distintos porcentajes, cuyos resultados disminuyeron la plasticidad del material granular de 26.36% a 24.10% mientras que los valores del LP no presentaron plasticidad.

También se pudo analizar la compactación en laboratorio (Proctor modificado), sobre ello observamos que según las Tablas N° 14 a la Tabla N° 25 el Contenido Óptimo de Humedad aumenta conforme la adición de arcilla al 5%, 10% y 15% por ende se necesita menor cantidad de agua para lograr una correcta compactación. En comparación al ensayo patrón este no aumenta su densidad máxima ni su contenido óptimo.

Figura 47: Gráfica de barras Ds Máx. y Wop de la cantera Edgar

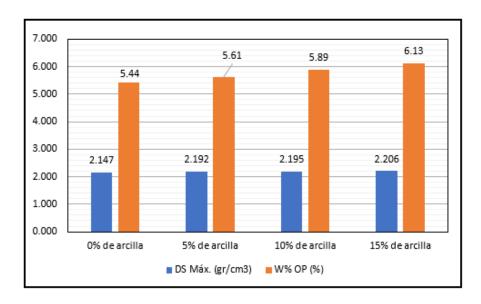


Figura 48: Gráfica de barras Ds Máx. y Wop de la cantera Guitarrero

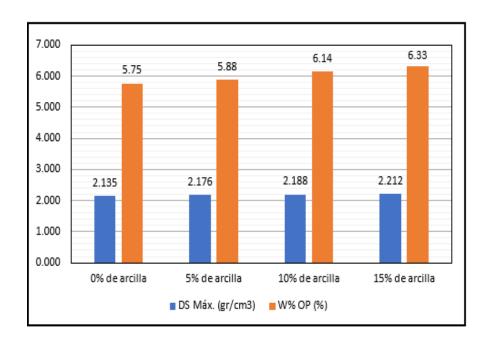
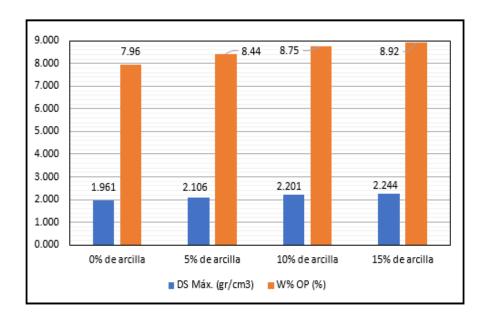
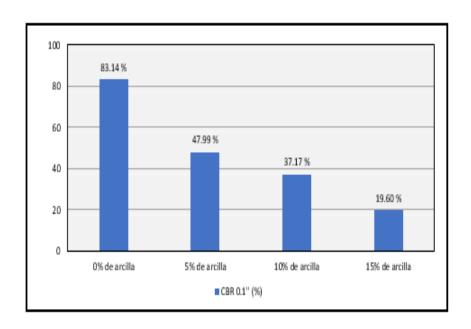



Figura 49: Gráfica de barras Ds Máx. y Wop de la cantera Chonta



Comparando con el estudio de Nina (2019), tiene mucha relación el Contenido Óptimo de Humedad de la cantera Mashcón con el de nuestra cantera Chonta, ya que ambas son de río y si bien al inicio comienzan con un Wop de 7.81% y 7.96% respectivamente; en nuestro caso aumenta hasta 8.92%; mientras que, en su caso los valores aumentan hasta un 9.55% con un 4% agregando otro aditivo; sin embargo, con la adición de 6% de la misma, el Wop comienza a decrecer.

Finalizando, tenemos a la Relación de Soporte de California (CBR), según las Tablas N° 26 a la N° 38, el valor obtenido disminuye al adicionar arcilla en comparación del ensayo patrón, es decir, la arcilla genera adherencia con el material granular, pero tiende a bajar su densidad máxima seca.

Figura 50: Comparación resultados con el ensayo patrón CBR 0.1" Cantera Edgar

Figura 51: Comparación resultados con el ensayo patrón CBR 0.1" Cantera Guitarrero

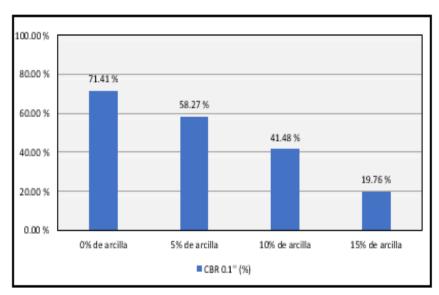
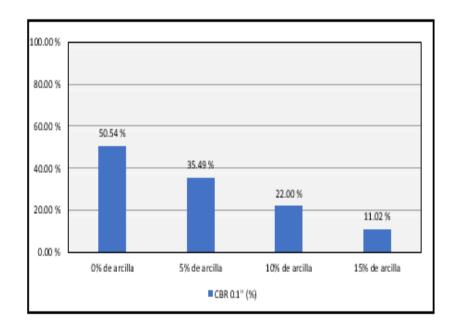



Figura 52: Comparación resultados con el ensayo patrón CBR 0.1" Cantera Chonta

Muy por el contrario, en el estudio realizado por (Nina, 2019). En un 2% de cal aumenta el valor patrón de 7.6% a 8.7%, la adición de 4% y 6% de cal decrece el valor hasta un 7.5% (valor menor al patrón). Esto demuestra que al agregar este aditivo mejora las propiedades del material granular y al adicionar arcilla esta disminuye sustancialmente.

Continuando con el capítulo, se indican algunas limitaciones que se encontró en la presente investigación, las cuales están referidas principalmente a: tiempos prolongados para el desarrollo óptimo de los ensayos, ya que algunos requerían de muchos días para obtener los resultados, pero se logró hacer con medidas preventivas como calcular la fecha que se requerían los ensayos y separar el laboratorio con anticipación, también se tuvo como limitación la falta de estudios – investigaciones científicas referentes al tema abordado, el cual se superó realizando búsquedas en bibliotecas y revistas internacionales en otros idiomas encontrando lo necesario para desarrollar de manera correcta la presente tesis.

Previo a las recomendaciones, abordaremos las implicancias de la presente investigación:

Primero, la presente investigación sirve para demostrar las propiedades aglutinantes que presenta la arcilla como aditivo en los materiales granulares de las canteras en estudio, ya que esta mezcla genera disminución en sus propiedades tales como; en la resistencia, lo que hace que este se vuelva material no recomendable para vías afirmadas, puesto que disminuye su capacidad portante y esto es la principal característica en una carretera que debe primar, por otro lado se puede determinar si el contenido de humedad aumenta, y al sobrepasar el óptimo, esto generaría que se altere la máxima densidad seca (aumentaría considerablemente) y finalmente al realizar esta aleación con porcentajes de arcilla, su nivel de saturación incrementa lo cual puede generar agrietamiento y hundimiento en las carreteras.

Antes de finalizar el apartado, indicaremos las recomendaciones adecuadas:

Se recomienda realizar más estudios sobre las variables tratadas en la presente tesis, puesto que al no haberlas no podemos tomar decisiones acerca del uso de la arcilla como material para carreteras.

También se recomienda que los ensayos se realicen de acuerdo a las normas establecidas y vigentes, bajo lineamientos estándares y monitoreo de un especialista.

Finalmente, investigar y/o proponer otro tipo de materiales que sirvan como aditivo natural y que puedan mejorar la calidad de los materiales granulares de las mismas y/u otras canteras tanto para su uso en afirmados, bases y subbases granulares.

Finalizando el capítulo, para responder a la hipótesis planteada, al objetivo general y a los objetivos específicos, se presentan las siguientes conclusiones:

En primera instancia se pudo evaluar la calidad del agregado granular adicionando diversos porcentajes de arcilla, con la que se rechaza la hipótesis planteada en la presente investigación puesto que al aumentar este aditivo sus propiedades de este disminuyen progresivamente, lo que nos indica que no se debe usar en carreteras ni en ninguna construcción.

Se pudo determinar satisfactoriamente las propiedades físico – mecánicas del material granular de las canteras en estudio, las cuales nos permitieron comparar las propiedades del material en su estado natural y con adición de arcilla en distintos porcentajes.

Se logró comparar la calidad del material granular con y sin adición de la arcilla, con la que se concluyó que este es mejor en su estado natural que adicionando arcilla ya que perjudica en sus capacidades portantes.

Finalmente se determinó que no es permisible el uso de material granular mezclado con arcilla en afirmados ya que esto disminuiría las propiedades de este, y generaría daños en la carretera a corto o largo plazo.

REFERENCIAS

- Alan Neill, D., & Cortez Suárez, L. (2017). Procesos y Fundamentos de la Investigación Científica. Ecuador: REDES.
- Arias-Gómez, J., Villasís-Keever, M., Novales, M., & Guadalupe, M. (2016). México: Revista Alergia México.
- ASTM-D4791. (2020). Método de Prueba Estándar para Particulas Planas y Alargadasen agregado grueso.
- Becerra Vasquez, Y. (2019). Adición de miel de caña sobre el CBR del afirmado de la cantera el Gavilán, Cajamarca, 2017. Cajamarca, Cajamarca, Perú: Universidad Privada del Norte. Facultad de Ingeniería.
- Cabrera, R. (2018). Comportamiento de Materiales Granulares a Bajas y Altas Tensiones. Perú.
- Cárdenas Piucol, A., & Donoso Montero, A. (Diciembre de 2008). Proposición de una Metodología Particular para obtener la Capacidad de Soporte para Suelos Granulares sin Curva Proctor Definida. Chile: Universidad de Magallanes. Facultad de Ingeniería.
- Carranza, P. (2022). La red vial argentina, entre la desatención y la siniestralidad. Argentina: Redacción MAYO.
- Carrión, K. (24 de Septiembre de 2015). Problemática de la infraestructura vial en el Perú.

 Perú.
- Carvajal Ortegón, N., Rincón Plazas, D., & Zarate Ramírez, J. (2018). Mejoramiento del material de afirmado de la cantera la Esmeralda mediante la adición de ceniza de cascarilla de arroz y material reciclado de escombro. Colombia: Universidad Cooperativa de Colombia. Facultad de Ingenierías.
- CEPAL. (2018). Facilitación del transporte y el comercio en América Latina y el Caribe. (7), 367. División de Recursos Naturales e Infraestructura.

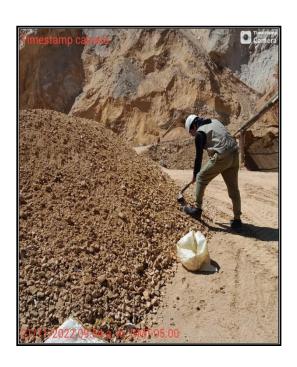
- Chafloque Balarezo, J., & Fernández Mego, E. (2020). Aplicación de mezcla de cloruro de calcio con material afirmado para mejorar la estabilización de la base en la carretera 7 de agosto. Pimentel Chiclayo Lambayeque, 2020. Chiclayo, Lambayeque, Perú: Universidad César Vallejo. Facultad de Ingeniería y Arquitectura.
- Cheesman, S. (2018). Conceptos básicos en investigación. Huatemala: Carolina Academia Coactemalensis Inter Caeteras Orbis Conspicua.
- Cuadros Surichaqui, C. (2017). Mejoramiento de las propiedades físico-mecánicas de la subrasante en una vía afirmada de la Red Vial Departamental de la Región Junín mediante la estabilización química con óxido de Calcio 2016. Junín, Perú: Universidad Peruana los Andes. Facultad de Ingeniería.
- Cubas Gálvez, J., & Guevara Bustamante, J. (2018). Diseño de Infraestructura vial para accesibilidad de las localidades El Granero km 0+000, Surumayo y Cutaxi km8+450, Conchán, Chota, Cajamarca. 2018. Chiclayo, Perú.
- Cubas, A. (2017). Afirmados. Perú: Universidad Privada del Norte.
- ECOTEC. (2016). Las canteras. Perú.
- González Ovalle, K. (Noviembre de 2014). *Análisis Granulométrico de un material poroso*. Bogotá, Colombia: Universidad de los Andes.
- Gutierrez, N., Venialgo, C., Fernández, F., & Ruíz Estevez, F. (2004). Límites de plasticidad en suelo con usos diferentes en el Departamento 9 Julio (Chuco). Argentina: Universidad Nacional del Nordeste. Comunicaciones Científicas y Tecnológicas.
- Herrera, V. (5 de Enero de 2018). Cajamarca solo tiene dos carreteras asfataldas mientras que el resto de vías están afirmadas. Perú: Red de Comunicación Regional.
- Isla Cifuentes, W. (2021). Influencia de la incorporación de Polycom en la estabilidad del afirmado para el mejoramiento de los pavimentos, Huanta Ayacucho 2021. Huanta, Ayacucho, Perú: Universidad César Vallejo. Facultad de Ingeniería y Arquitectura.
- Jimenez Salas, J., & Justo Alpañes, J. (2016). Diferencia entre limos y arcillas. Perú.

- Llique Mondragón, R. (2017). Mecánica de Suelos. Cajamarca, Perú: Universidad Privada del Norte.
- Lozada Tiglla, E. (2018). Estudio de las características físicas y mecánicas de las canteras Hualango como material de afirmado en carreteras Provincia de Utcubamba. Lambayeque, Perú: Universidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismo.
- Lozada, J. (Diciembre de 2014). Investigación Aplicada: Definición, Propiedad Intelectual e Industria. (3). Ecuador: Universidad Tecnológica Indoamérica.
- Lozano, J. (2014). Estudios transversales. Perú.
- Martínez, J., Pérez, J., Sauri, S., Blas, F., Kohon, J., & Agosta, R. (2020). Análisis de Inversiones en el Sector Transporte Terrestre Interurbano. Ecuador: Corporación Andina de Fomento.
- Mejía Chatilán, J. (2013). Estudio de las propiedades físicas mecánicas cantera 3M y su utilización como material de afirmado. Cajamarca, Cajamarca, Perú: Universidad Nacional de Cajamarca. Facultad de Ingeniería.
- Ministerio de Obras Públicas. (2021). Informe de Mantenimiento de la Red Vial Nacional. Argentina: Dirección Nacional de Vialidad.
- Ministerio de Transportes y Comunicaciones. (2008). Glosario de Término en Infraestructura Vial. Perú: Dirección de Transportes y Comunicaciones.
- Ministerio de Transportes y Comunicaciones. (Junio de 2013). Manual de Carreteras: Especificaciones Técnicas Generales para Construcción, EG-2013. Perú: Dirección General de Caminos y Ferrocarriles.
- Ministerio de Transportes y Comunicaciones. (2016). Manual de Ensayo de Materiales. Perú: Dirección General de Caminos y Ferrocarriles.
- Ministerio de Transportes y Comunicaciones. (Enero de 2020). Diagnóstico de la situación de las brechas de Infraestructura o de acceso a servicios. Lima: Programación Multianual de Inversiones 2021-2023.
- MTC. (2016). Manual de Ensayos de Materiales. Lima.

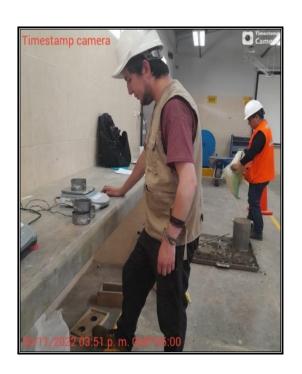
- Müggenburg Rodríguez, M., & Pérez Cabrera, I. (Enero-Abril de 2007). Tipos de estudio en el enfoque de investigación cuantitativa. *4*(1). México: Revista Enfermería Universitaria-UNAM.
- Muñoz, E. (2010). Métodos de Investigación de Enfoque Experimental. Perú: Universidad Nacional de Educación Enrique Guzmán y Valle.
- Ortega, C. (2020). Muestreo no probabilístico. Colombia.
- Palma Ramírez, M., Cervera Enciso, M., & Arenas Álvarez, E. (2017). Caracterización y mejoramiento del material de afirmado para terraplénes en la cantera Recebera la Esmeralda ubicada en el kilómetro 7 Vía Totumo. Colombia: Universidad Cooperativa de Colombia. Facultad de Ingenierías.
- Patiño Ospina, J., & Ríos Alfonso, W. (2018). Caracterización de material granulares tipo afirmado existente en la Región del Alto Magdalena dosificados con roca ígnea basalto, cumpliendo con las especificaciones técnicas de INVÍAS. Colombia: Universidad Piloto de COlombia Seccional Alto Magdalena. Facultad de Ingeniería Civil.
- Pozuelo, J. (21 de Septiembre de 2018). La moderna construcción de carreteras en España. 3. España: Carretera Classic.
- Ramírez Jara, I. (2018). Estabilización de suelos de la avenida 2 del caserío de Pueblo Libre Nuevo, adicionando 3% y 5% de la ceniza de schinus molle de horno artesanal, Distrito de Pueblo Libre Haylas Ancash. Ancash, Perú: Universidad San Pedro. Facultad de Ingeniería.
- Ramos Guzmán, B., & Torres Sueldo, J. (2012). Mejoramiento del material afirmado de las canteras adyacentes para el terraplén de la carretera Lircay Ccochaccasa. Huancavelica, Perú: Universidad Nacional de Huancavelica. Facultad de Ingeniería de Minas Civil.
- Rivera León, C., & Medina Sánchez, M. (2016). Influencia de la incorporación de cuatro niveles (1%, 2%, 3% y 4%) de cloruro de calcio en la resistencia mecánica de un material para afirmado. Cajamarca, Cajamarca, Perú: Universidad Privada del Norte. Facultad de Ingeniería.

- Rivera Mena, W. (2013). Correlación del valor de Soporte de Caifornia (C.B.R.) con la Resistencia a la Compresión Inconfinada y la Plasticidad del Suelo. Colombia: Universidad del Valle. Escuela de Ingeniería Civil y Geomática.
- Sánchez González, D., Gallardo Mogollón, D., & Márquez Aponte, P. (2012). ¿La infraestructura vial Colombiana impulsa la competitividad del país? Colombia.
- Sánchez Sabogal, F. (2016). Vías en afirmado. Perú.
- Suárez Barrios, M. (2018). Las arcillas: propiedades y usos. España: Universidad de Salamanca.
- Toledo, N. (2018). Población y muestra. México: Universidad Autónoma del Estado de México.
- Torres Trujillo, R. (Marzo de 2016). Intervenciones en la Red Vial Nacional. Lima: Ministerio de Transportes y Comunicaciones.
- Vargas Álvarez, F. (2017). Influencia de la combinación de agregado de cerro y de río en la capacidad de soporte de un afirmado. Cajamarca, Cajamarca, Perú: Universidad Privada del Norte. Facultad de Ingeniería.
- Vásquez, A., & Calderón, C. (Septiembre de 2008). Ensayos sobre el rol de la Infraestructura Vial en el Crecimiento Económico del Perú. Lima: Consorcio de Investigación Económica y Social y Banco Central de Reserva del Perú.

ANEXOS


Anexo N°01

Operacionalización de Variables


TÍTULO	FORMULACIÓN DEL PROBLEMA GENERAL	HIPÓTESIS	VARIABLES		DEFINICÓN CONCEPTUAL	DIMENSIONES	INDICADORES	UND	INSTRUMENTO
"Calidad del material granular de las canteras Edgar, Guitarrero y Chonta, según el Manual de Carreteras EG-	¿Cómo influye la adición de arcilla en porcentajes de 5%, 10% y 15%, en la calidad del material granular de las canteras Edgar, Guitarrero y Chonta, según	La calidad del material granular de las canteras Edgar, Guitarrero y Chonta, según el Manual de Carreteras EG-2013, adicionando arcilla en porcentajes de	Calidad del material granular de las canteras Edgar, Guitarrero y Chonta adicionando arcilla, para uso de afirmado.	DEPENDIENTE	La calidad del material granular es un factor que se mide en función a ciertos requisitos según el Manual de Carreteras.	Límites de Atterberg (Plasticidad del Suelo) Relación de Soporte de California	LL, LP e IP CBR	%	Normas MTC E- 110/111, NTP 339.130, ASTM D4318, ASSHTO T89/90 Normas MTC E-132, NTP 339.145, ASTM D1883, AASHTO T193
2013, el Manual de carreteras EG-arcilla en porcentajes de 5%, 10% y 15%, carreteras Cajamarca afirmadas en la comporce de porce sen porcentajes de utilización en carreteras mejora un y 3	5%, 10% y 15%, para su utilización en carreteras afirmadas, mejora un 10%, 20% y 30%	Material granular de las canteras Edgar,	INDEPENDIENTE	Es el producto de la fragmentación	Contenido de Humedad	W	%	Normas MTC E-108, NTP 339.127, ASTM D2216, AASHTO T265	
	ciudad de	respectivamente.	Guitarrero y Chonta a ser utilizado en carreteras afirmadas.	INDEPEN	de rocas, debido a la erosión.	Análisis Granulométrico del Agregado Fino y Grueso	% que pasa	%	Normas MTC E-204, NTP 400.012, ASTM C136, AASHTO T27

Anexo N° 02 Recolección de material de la cantera Edgar

Anexo $N^{\circ}03$ Contenido de Humedad de las canteras en estudio

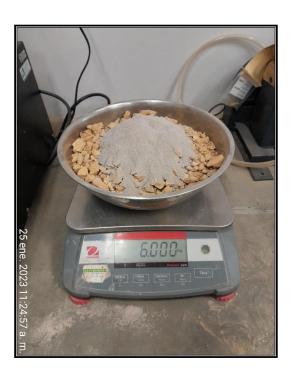
Análisis Granulométrico del Agregado Fino y Grueso de las canteras en estudio

Anexo N°05Chancado y tamizado de la arcilla

Anexo N°06

Límite Líquido (LL) de las canteras en estudio

Anexo N°07Límite Plástico (LP) de las canteras en estudio



Anexo N°08

Preparación del material para la compactación en laboratorio de las canteras en estudio

Anexo N°09

Compactación en Laboratorio (Proctor Modificado) de las canteras en estudio

Anexo N°10

Medición de las dimensiones de los 03 moldes a emplear para el ensayo CBR

Anexo N°11

Armado de moldes y puesta en agua para el ensayo de hinchamiento de las canteras en estudio

Anexo N°12

Ensayo de Penetración de las canteras en estudio (con asesoría del personal responsable)

Anexo N°13

Visita técnica de la asesora responsable en el ensayo de penetración

Anexo N°14

Ensayo de partículas planas y alargadas de las canteras en estudio

Anexo N°15

Ensayo de Abrasión los Ángeles de las canteras en estudio

Ensayo de Contenido de Humedad de la cantera Edgar

41	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO									
	ENSAYO:	CONTE	NIDO DE HUMEDAD	CÓDIGO DEL DOCUMENTO:						
LINIVERSIDAD	NORMA:	MTC E 108 / NTP	339.127 / ASTM D2216 / AASHTO T26	CH-LS-UPNT:						
PRIVADA DEL NORTE	TESIS:	Y CHONTA		AS CANTERAS EDGAR, GUITARRERO ETERAS EG-2013, ADICIONANDO % Y 15%, CAJAMARCA 2022"						
TIPO DE MAT	ERIAL:	AFIRMADO SI	N ADICIÓN DE ARCILLA							
CANTERA:	-	EDGAR FECHA DEL ENSAYO: 30 - 11 - 2022								

Temperatura de Secado

Método

60 °C / 110 °C /Ambiente

Horno 110 ± 5 °C

CONTENIDO DE HUMEDAD ·

ID	DESCRIPCIÓN	UND	1	2	3	4	
A	Identificación del recipiente o tara		Tesis-T1	Tesis-T2	Tesis-T3	Tesis-T4	
В	Peso del recipiente	gr.	27.80	27.00	27.60	27.70	
С	Recipiente + Suelo Húmedo	gr.	245.00	171.50	215.80	232.40	
D	Recipiente + Suelo Seco		242.00	169.10	212.70	229.60	
E	Peso Suelo Húmedo / Ww=C-B	gr.	217.20	144.50	188.20	204.70	
F	Peso Suelo Seco / Ws=D-B	gr.	214.20	142.10	185.10	201.90	
G	Porcentaje de Humedad W% = [(E-F)/F]*100	%	1.40	1.69	1.67	1.39	
W%	Promedio Porcentaje de Humedad	%	1.54				

OBSERVACIONES:			
INVESTI	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Jantelman .	Villandono Al	(Value)	July
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	NG. VALDERA CHÁVEZ, CÉSAR E.	ING. MÉRMA GALLARDO, LIZBETH MILAGROS

Ensayo de Contenido de Humedad de la cantera Guitarrero

UNIVERSIDAD PRIVADA DEL NORTE	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO						
	ENSAYO:	CONTENI	DO DE HUMEDAD	CÓDIGO DEL DOCUMENTO: CH-LS-UPNT:			
	NORMA:	MTC E 108 / NTP 339.	127 / ASTM D2216 / AASHTO T26				
	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO Y CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA EN PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"					
TIPO DE MATERIAL:		AFIRMADO SIN ADICIÓN DE ARCILLA					
CANTERA:		GUITARRERO	FECHA DEL ENSAYO:	24 - 01 - 2023			

Temperatura de Secado

Método

60 °C / 110 °C /Ambiente

Horno 110 ± 5 °C

CONTENIDO DE HUMEDAD ·

ID	DESCRIPCIÓN	UND	1	2	3	4
A	Identificación del recipiente o tara		Tesis-T1	Tesis-T2	Tesis-T3	Tesis-T4
В	Peso del recipiente		28.00	28.30	26.90	27.50
С	Recipiente + Suelo Húmedo		270.00	253.60	272.60	242.90
D	Recipiente + Suelo Seco	gr.	263.90	248.40	266.70	237.80
E	Peso Suelo Húmedo / Ww=C-B		242.00	225.30	245.70	215.40
F	Peso Suelo Seco / Ws=D-B	gr.	235.90	220.10	239.80	210.30
G	Porcentaje de Humedad W% = [(E-F)/F]*100		2.59	2.36	2.46	2.43
W%	Promedio Porcentaje de Humedad	%	2.46			

OBSERVACIONES:						
INVESTI	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS			
free way	Villamore	2 mmol				
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	JNG. VALDE RA CHÁVEZ, CÉSAR E.	ING. MERMA GALLARDO, LIZBETH MILAGROS			

Ensayo de Contenido de Humedad de la cantera Chonta

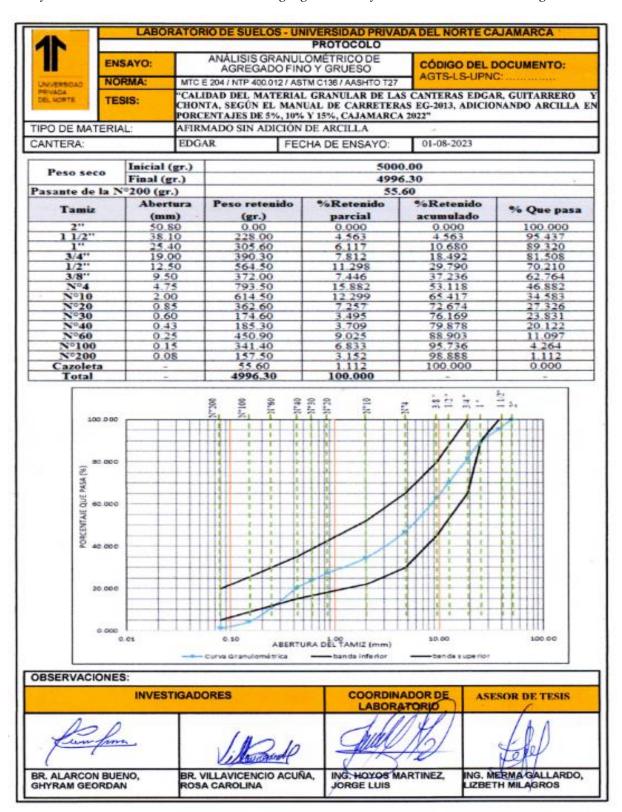
Universidad PRIVADA DEL NORTE	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO						
	ENSAYO:	CONTE	NIDO DE HUMEDAD	CÓDIGO DEL DOCUMENTO: CH-LS-UPNT:			
	NORMA:	MTC E 108 / NTP 3	39.127 / ASTM D2216 / AASHTO T265				
	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO Y CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA EN PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"					
TIPO DE MATERIAL:		AFIRMADO SIN ADICIÓN DE ARCILLA (HORMIGÓN)					
CANTERA:		CHONTA	FECHA DEL ENSAYO:	24 - 01 - 2023			

Temperatura de Secado

Método

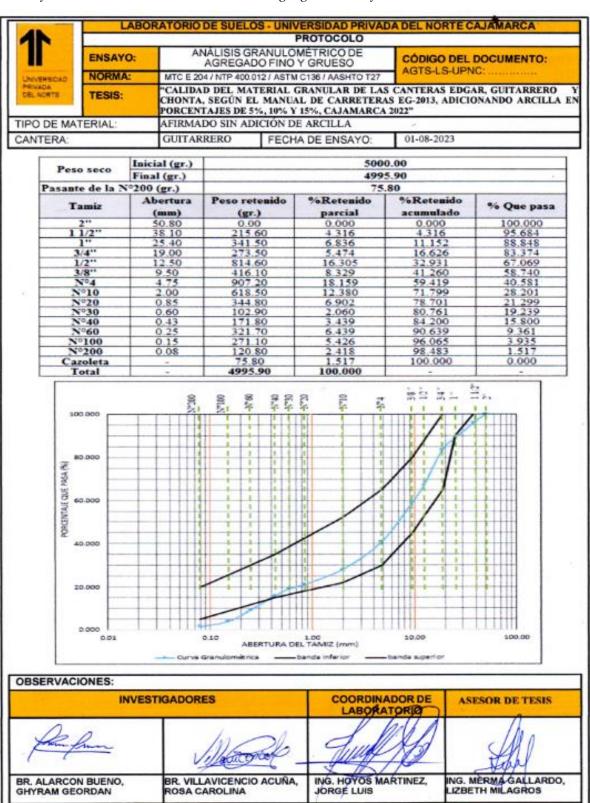
60 °C / 110 °C /Ambiente

Horno 110 ± 5 °C

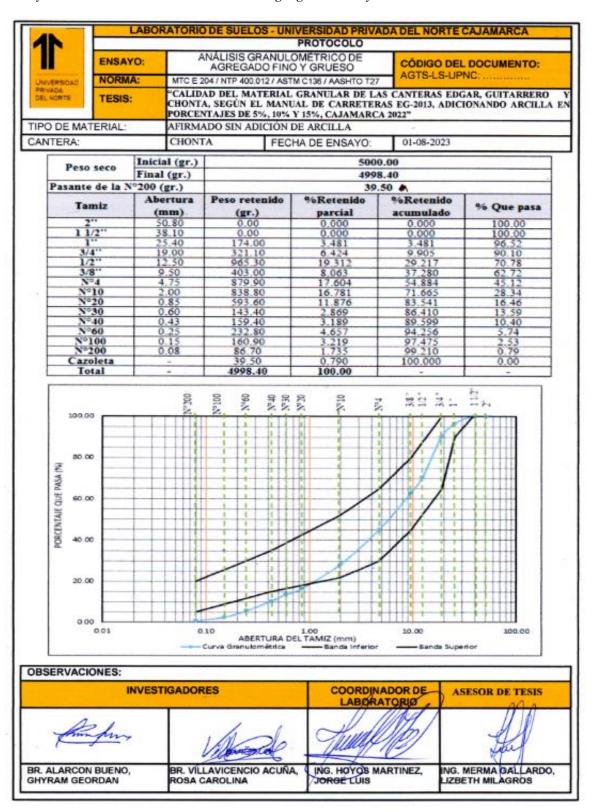

CONTENIDO DE HUMEDAD

ID	DESCRIPCIÓN	UND	1	2	3	4
A	Identificación del recipiente o tara		Tesis-T1	Tesis-T2	Tesis-T3	Tesis-T4
В	Peso del recipiente		27.80	27.00	27.20	27.40
С	Recipiente + Suelo Húmedo		256.10	280.80	265.00	259.70
D	Recipiente + Suelo Seco	gr.	247.80	271.40	256.40	251.20
E	Peso Suelo Húmedo / Ww=C-B	gr.	228.30	253.80	237.80	232.30
F	Peso Suelo Seco / Ws=D-B	gr.	220.00	244.40	229.20	223.80
G	Porcentaje de Humedad % 3.77 3.85 3.75 W% = [(E-F)/F]*100		3.80			
W%	Promedio Porcentaje de Humedad	%	3.79			

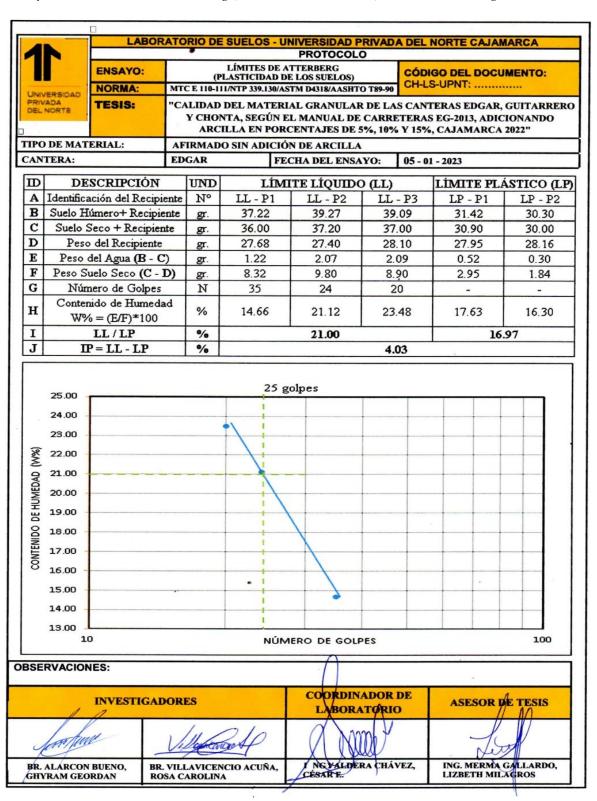
OBSERVACIONES:					
INVESTI	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS		
fine fines	Vi Maxancost	X mm			
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. VALDERA CHÂVEZ, CÉSAR E.	ING. MERMA GALLARDO, LIZBETH MILAGROS		



Ensayo del Análisis Granulométrico del Agregado Fino y Grueso de la cantera Edgar

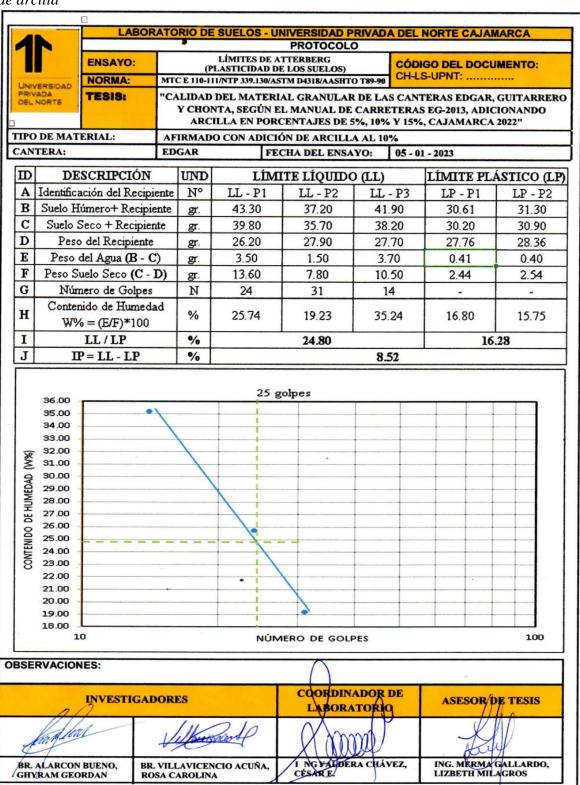


Ensayo del Análisis Granulométrico del Agregado Fino y Grueso de la cantera Guitarrero


Ensayo del Análisis Granulométrico del Agregado Fino y Grueso de la cantera Chonta

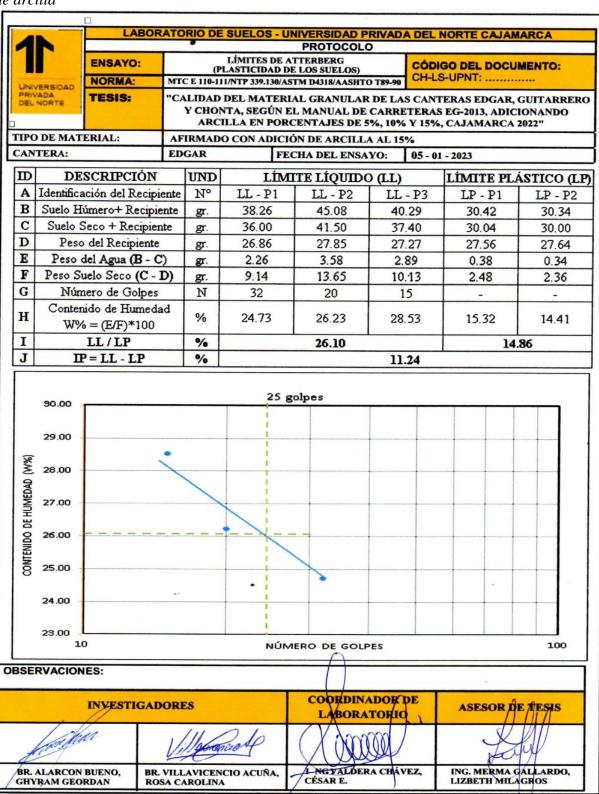
Anexo N°22

Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Edgar



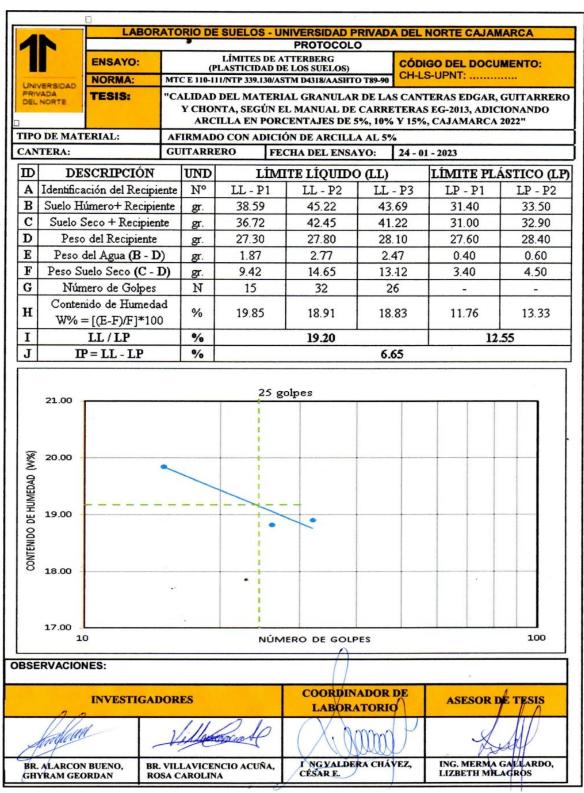
Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Edgar con 5% de arcilla

41		LABOR	ATORIO DE	SUELOS - U	NIVERSIDAD P	RIVADA DEI	NORTE CAJA	MARCA
1		ENSAYO:	•	LÍMITES DE A	PROTOCOL	0		
				LASTICIDAD D	E LOS SUELOS)	CLI	DIGO DEL DOCU LS-UPNT:	
UNIVE	ERSIDAD	NORMA:			STM D4318/AASHT	0 189-90		
	ORTE	TESIS:	Y CHON	NTA, SEGÚN I	EL MANUAL DE	CARRETERA	NTERAS EDGAR, AS EG-2013, ADIC %, CAJAMARCA	CIONANDO
ГІРО	DE MAT	ERIAL:			ÓN DE ARCILL		76, CAJAMARCA	2022
	ERA:		EDGAR		CHA DEL ENSA		01 - 2023	
ID	DI	SCRIPCIÓN	UND	ΤÍΜ	ITE LÍQUIDO	0(II)	LÍMITE PLA	ÁSTICO ΔΙ
\vdash		ación del Recipi		LL - P1	LL - P2	LL - P3	LP - P1	LP - P2
В	CO.10 90 107	Iúmero+ Recipie		41.90	38.10	40.80	29.63	30.36
C		Seco + Recipier		39.40	35.90	38.20	29.20	30.00
D	Pes	o del Recipiente		28.22	27.00	27.25	26.71	27.83
E		del Agua (B - C		2.50	2.20	2.60	0.43	0.36
F		Suelo Seco (C -		11.18	8.90	10.95	2.49	2.17
G	Nú	mero de Golpes	N	28	18	23	-	-
н		nido de Humeda % = (E/F)*100	ad %	22.36	24.72	23.74	17.27	16.59
I		LL/LP	%		23.20	711	16	.93
J	I	P = LL - LP	%			6.27	1	
CONTENIDO DE HUMEDAD (W%)	25.00 24.00 23.00 22.00 21.00							
BSER	RVACION	.o 		NÚN	MERO DE GOL	PES		100
		INVESTIGAD	ORES		COORDIN	ADOR DE	ASESOR	DE TESIS
1/1	pirth	BUENO, BR.	Villavicen	1		D RA CHÁVEZ	ING. MERMA	



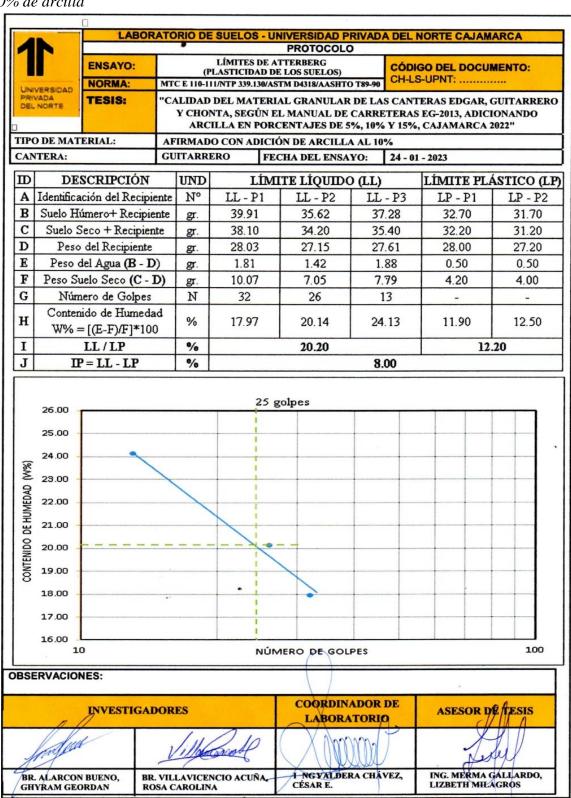
Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Edgar con 10%

Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Edgar con 15%

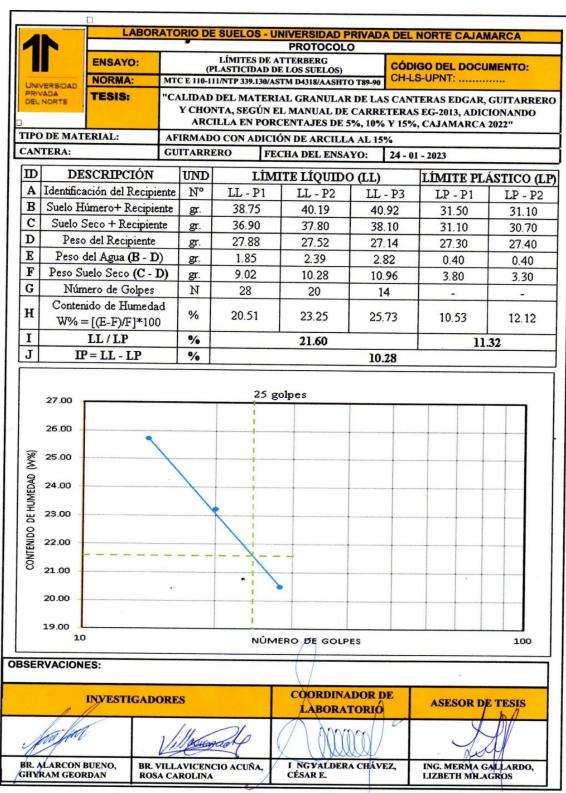


Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Guitarrero

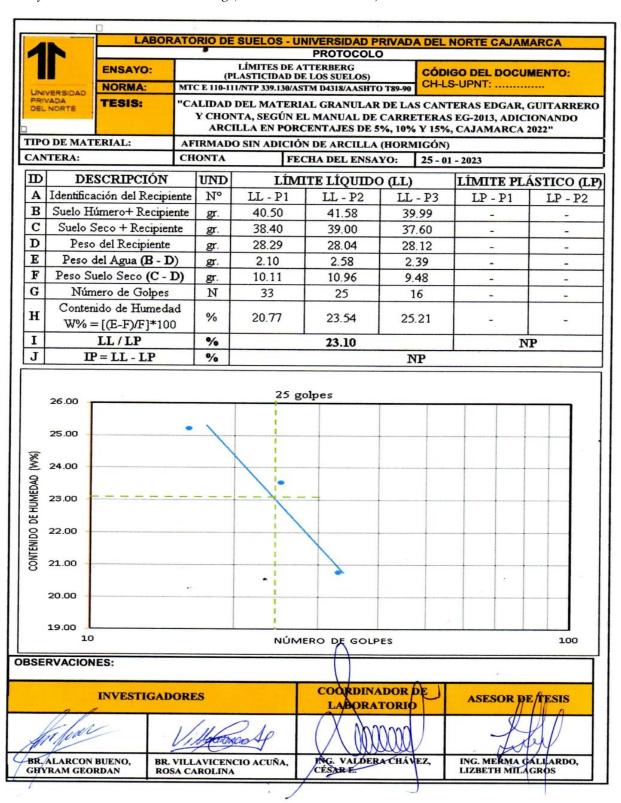
A		LABOR	ATORIO D	E SUELOS	- UNIVERSIDAD		NORTE CAJAN	MARCA		
1		ENSAYO:		LÍMITES I	PROTOCOL DE ATTERBERG		100 PEL DOOL			
		NORMA:			D DE LOS SUELOS) 0/ASTM D4318/AASH7	CII	DIGO DEL DOCU LS-UPNT:			
UNIV	ERSIDAD	TESIS:					TERAS EDGAR, GUITARREI			
	NORTE	I ESIS:	Y CHO	D DEL MATI ONTA. SEGÚ	ERIAL GRANULA N EL MANUAL DI	R DE LAS CAN E CARRETERA	NTERAS EDGAR, AS EG-2013. ADIC	GUITARRERO TONANDO		
					ORCENTAJES DE					
_	DE MAT	ERIAL:			CIÓN DE ARCILL	4				
CANT	ΓERA:		GUITARI	RERO	01 - 2023					
ID	DE	SCRIPCIÓN	UNI) I.	ÍMITE LÍQUID	(LD O	LÍMITE PL	ÁSTICO (LI		
A		ación del Recipi		LL-P		LL - P3	LP - P1	LP - P2		
В	Suelo H	úmero+Recipie	nte gr.	43.00		42.40	30.70	32.60		
C	Suelo :	Seco + Recipien		40.80	36.00	40.00	30.40	32.10		
D	Pesc	del Recipiente	gr.	28.10	27.40	28.20	28.30	28.10		
E	Peso	del Agua (B - C) gr.	2.20	1.40	2.40	0.30	0.50		
F	Peso S	uelo Seco (C -]	D) gr.	12.70	8.60	11.80	2.10	4.00		
G		nero de Golpes	N	25	31	18	-	-		
н	Contenido de Humedad W% = (E/F)*100		nd %	17.32	16.28	20.34	14.29	12.50		
I		LL/LP	%		17.80		13	.39		
J	I	P = LL - LP	%			4.41				
CONTENIDO DE HUMEDAD (W%)	21.00 - 20.00 - 19.00 - 18.00 - 17.00 - 15.00 -									
SSEF	RVACION			N	ÚMERO DE GOL	PES		100		
		INVESTIGAD	ORES		1 1	ATORIO	ASESOR I	E TESIS		
4	fugliss.		Villa	Das H	Xnm	m/	S	Pull .		



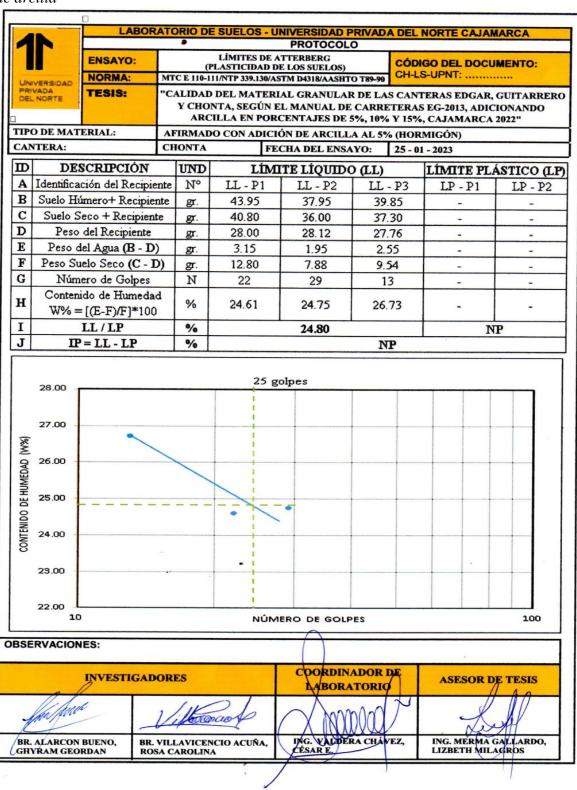
Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Guitarrero con



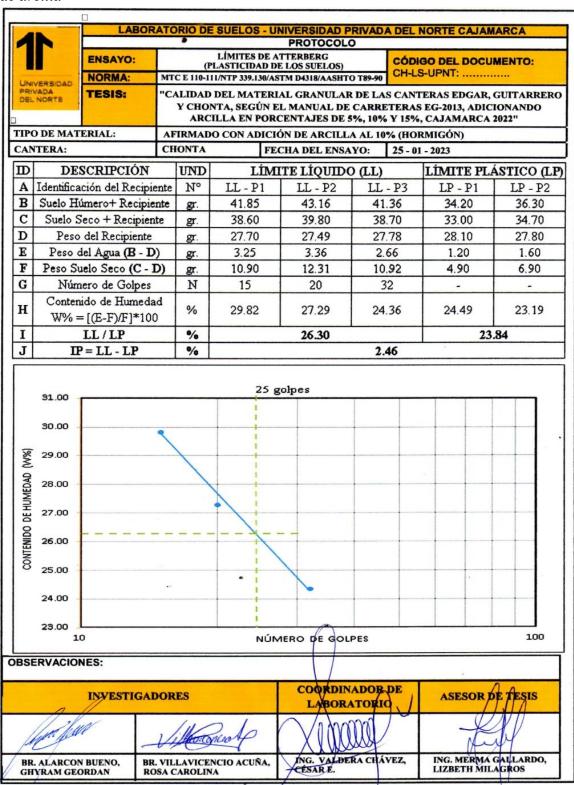
Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Guitarrero con



Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Guitarrero con



Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Chonta



Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Chonta con 5%

Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Chonta con 10%

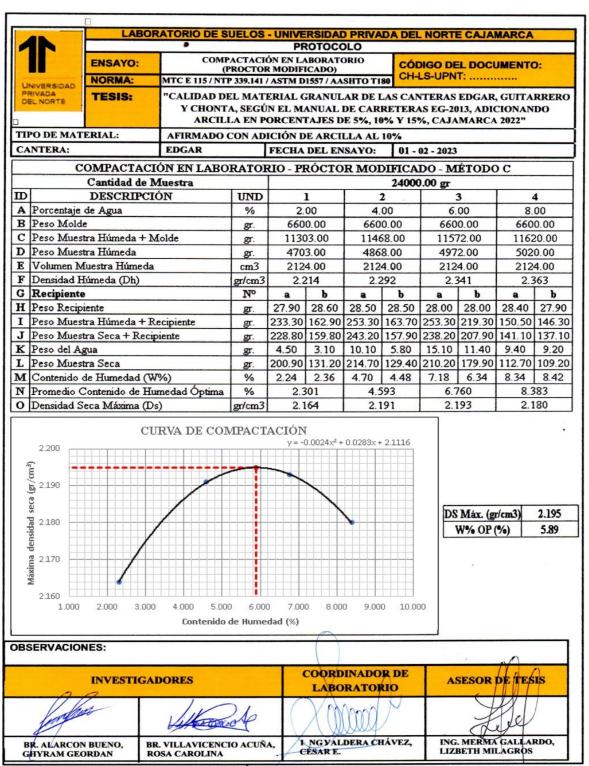
Ensayo de los Límites de Atterberg (Plasticidad del Suelo) de la cantera Chonta con 15% de arcilla

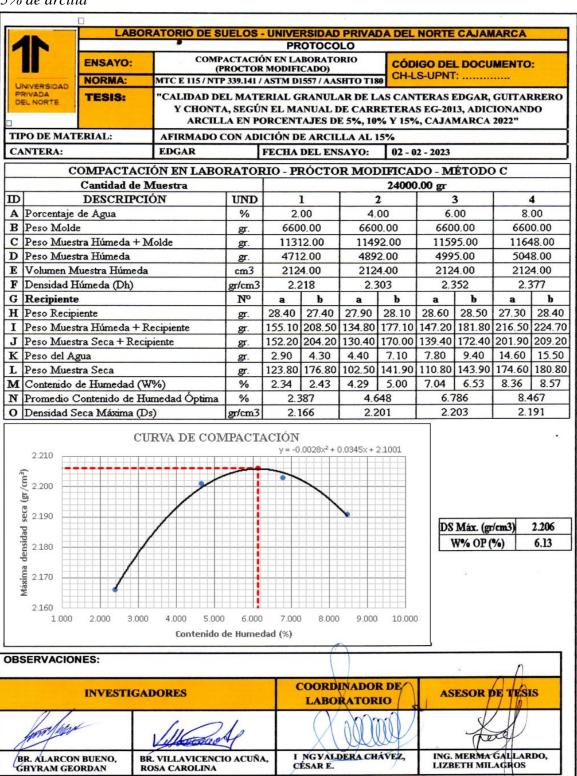
4		LABOR	ATORIO DE	SUELOS - UI			DEL	NORTE CAJAM	ARCA
1		ENSAYO:	(P	LÍMITES DE A				IGO DEL DOCU	
Linary	ERSIDAD	NORMA:			TM D4318/AASHT	O T89-90	CH-L	S-UPNT:	
PRIV		TESIS:	Y CHO!	NTA, SEGÚN E	L MANUAL DE	CARRE	TERA	TERAS EDGAR, S EG-2013, ADIC 6, CAJAMARCA	IONANDO
TPO	DE MAT	ERIAL:			ÓN DE ARCILL				
_	TERA:		CHONTA		CHA DEL ENSA		-	1 - 2023	
Ш	DE	SCRIPCIÓN	UND	LÍMI	TE LÍQUIDO) (LL)		LÍMITE PLÁ	STICO (LI
A	Identifica	ción del Recipie		LL - P1	LL-P2	LL -	P3	LP - P1	LP - P2
В		úmero+ Recipies		41.30	46.66	47.		34.20	36.30
c	7,00	Seco + Recipient		37.90	42.60	43.	7000	33.00	34.70
D		del Recipiente	gr.	26.54	28.26	28.		27.40	28.20
E		del Agua (B - D)		3.40	4.06	3.9		1.20	1.60
F		uelo Seco (C - I		11.36	14.34	15.4		5.60	6.50
G		nero de Golpes	N B.	17	25	32		-	-
н	Conten	ido de Humeda = [(E-F)/F]*100	d %	29.93	28.31	26.4		21.43	24.62
I		LL/LP	%		28.10			23.	02
J	П	P = LL - LP	%		20.10	5.0	8		
	31.00								
8	30.00		./						
PEDAD (W	29.00						+		
CONTENIDO DE HUMEDAD (W%)	28.00				_		+		
CONTENID	27.00								
	26.00			-					
	25.00	1		NIÚS.	1ERO DE GOL	DES			100
BSE	RVACIO			14014	LAG DE GOL				
		INVESTIGAD	ORES		COORDIN			ASESON	E TESIS
A	finsh	un	Villa	Coco 4	LABORA	M			
	ALARCON YRAM GEO		VILLAVICEI SA CAROLIN	NCIO ACUÑA,	ING. VALDE	RA CHÁY	EZ,	ING. MERMA LIZBETH MIL	



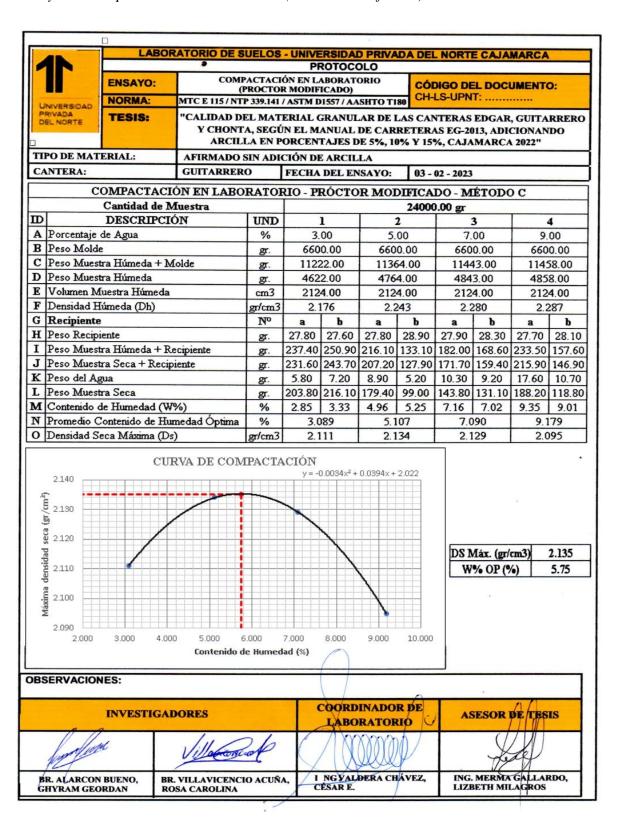
Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Edgar

										7.5	
4	LABOR	RATORIO DE SI	JELOS				DA DEL	NORTE	CAJA	MARCA	
1		•			отосс		_				
	ENSAYO:			ON EN LA R MODIFI		DRIO				JMENTO):
UNIVERSIDAD	NORMA:	MTC E 115/NTP	E 115 / NTP 339.141 / ASTM D1557 / AASHTO T180 CH-LS-UPNT:								
PRIVADA DEL NORTE	TESIS:	"CALIDAD DE	L MATI	ERIAL G	RANUL	AR DE L	AS CAN	TERAS	EDGAR,	GUITA	RRERO
		Y CHONTA									DO
TRO BELLIA						E 5%, 10	% Y 15%	6, CAJA	MARCA	2022"	
TPO DE MAT	ERIAL:	AFIRMADO S					_				
CANTERA:		EDGAR		FECHA	DEL EN	SAYO:	24 - 0	1 - 2023			
(COMPACTAC	IÓN EN LABO	RATO	RIO - PI	RÓCTO	R MOI	DIFICA	DO - M	ÉTODO	ОС	
	Cantidad de l						The state of the s	0.00 gr			
D	DESCRIPCI	ÓN	UND		1	:	2		3		1
A Porcentaje	de Agua		%	2.	00	4.	00	6.	00	8.	00
B Peso Mole	de		gr.	660	0.00	660	0.00	660	0.00	660	0.00
C Peso Mue	stra Húmeda + N	Aolde .	gr.	1120	05.00	11349.00		1144	17.00	1148	36.00
D Peso Mue	stra Húmeda		gr.	460	5.00	474	9.00	484	7.00	488	6.00
	Muestra Húmeda		cm3		4.00	212	4:00	212	4.00	212	4.00
	Húmeda (Dh)		gr/cm3	2.	168	2.2	236	2.2	282	2.3	800
G Recipient			No	a	b	a	b	a	b	a	b
H Peso Reci			gr.	28.40		28.00	27.30				
	stra Húmeda + F		gr.			222.10					
	stra Seca + Reci	piente	gr.			213.90					
K Peso del A			gr.	2.40	2.20	8.20	4.20	8.90	6.20	9.90	10.90
L Peso Mue			gr.			185.90					
	de Humedad (V		%	2.11	2.41	4.41	4.22	6.06	6.63	8.45	7.96
	Contenido de Hi		· -				6.345 8.205 2.146 2.126				
Densidad.	Seca Máxima (D	s)	gr/cm3	2.1	120	2.1	43	2.1	40	2.1	20
2.150			†	y=-(1.0027x*+	0.0298x+	2.0663				
Wáxima densidad seca (gr/cm²) 2.140 ————————————————————————————————————	2.000 3.000	4.000 5.000 Contenido			0 8.000	0 9.000	0 10.00		Máx. (gr V% OP (2.147 5.44
2.110	NES:	Contenido (dad (%)		15001000	2 3042000000	0	W% OP (%)	5.44
2.110		Contenido (dad (%)	COORD	0 9.000 INADOI RATOR	R DE	0	W% OP (5.44
2.110	NES:	Contenido (de Hume	dad (%)	LABO	INADOI	R DE	O AS	W% OP (%)	5.44 IS


Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Edgar con

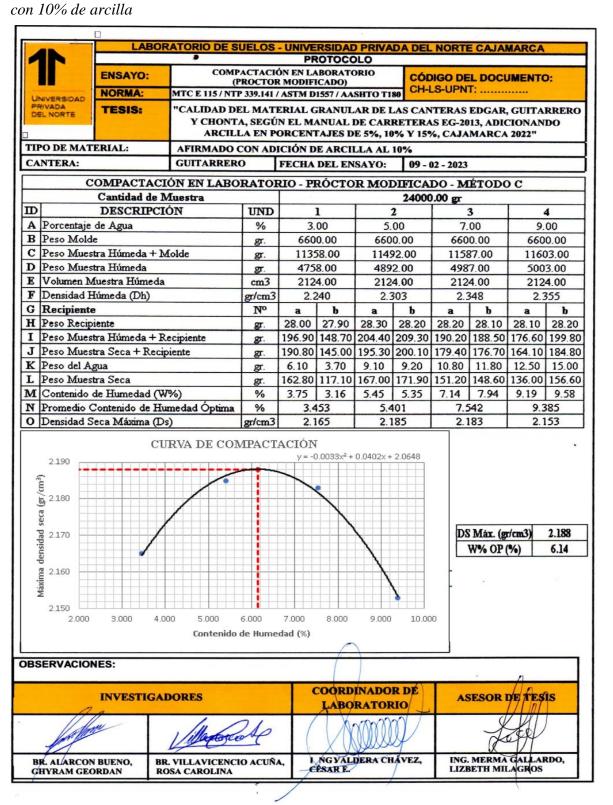

Anexo N°36

Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Edgar con



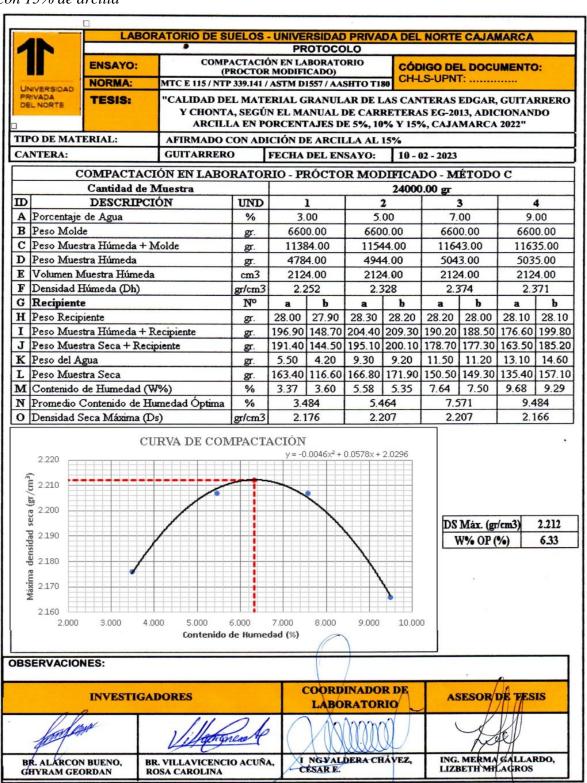
Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Edgar con

Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Guitarrero



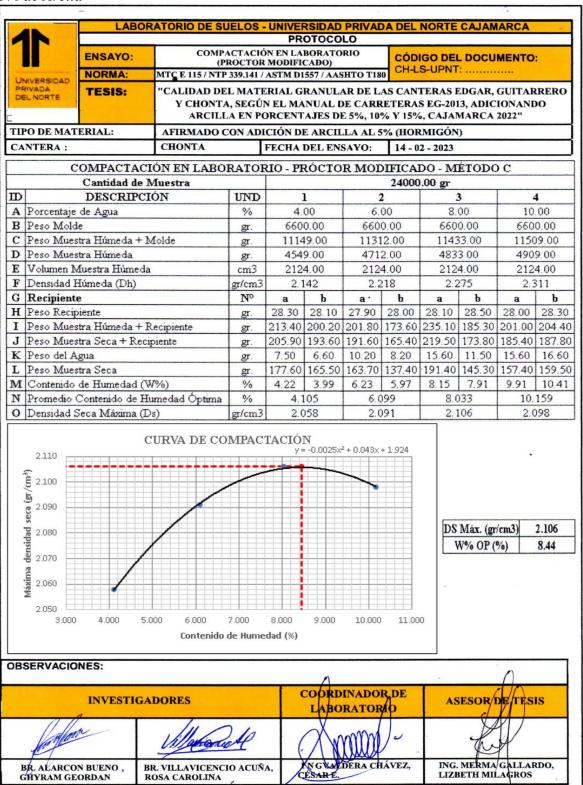
Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Guitarrero

4	LABO	RATORIO DE S	UELOS		ROTOCO		DA DEL	NORT	E CAJA	MARCA			
1	ENSAYO:				ABORATO		1000		-	UMENT	o:		
UNIVERSIDAD	NORMA:	MTC E 115 / NTI	E 115 / NTP 339.141 / ASTM D1557 / AASHTO T180							LS-UPNT:			
PRIVADA DEL NORTE	TESIS:	"CALIDAD DI											
			CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA EN PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"										
TIPO DE MAT	EDIAL.	AFIRMADO						70, CAJA	MARCA	1 2022			
CANTERA:	ERIAL:	GUITARRER			DEL EN			02 - 2023					
		ÓN EN LABO	RATOR	UO - PI	ROCTO	R MOL			ETODO	ОС			
m	Cantidad de N			<u> </u>				.00 gr					
ID	DESCRIPCI	ON	UND		<u>l</u>		!		3		1		
A Porcentaje			%		00	5.0	70.02		00		00		
B Peso Mold C Peso Mues	e tra Húmeda + N	gr.	_	0.00	1146	0.00		0.00 39.00	_	0.00			
	tra Húmeda + N	ioide	gr. gr.		4.00	486			9.00		1.00		
	fuestra Húmeda		cm3		4.00		4.00		4.00		4.00		
F Densidad H			gr/cm3		224		89		325		45		
G Recipient			No	a	ь	a	b	a	b	a	ь		
H Peso Recip			gr.	28.00	28.30	27.00	28.10	27.90	28.60	27.70	28.2		
	tra Húmeda + R	ecipiente	gr.	185.10	163.50	159.90	154.20	147.60	183.70	161.70	150.9		
J Peso Mues	tra Seca + Recij	oiente	gr.	180.00	159.60	153.20	148.10	139.50	173.50	150.10	140.8		
K Peso del A	gua		gr.	5.10	3.90	6.70	6.10	8.10	10.20	11.60	10.1		
L Peso Mues			gr.	152.00	131.30	126.20	120.00	111.60	144.90	122.40	112.6		
	de Humedad (W		%	3.36	2.97	5.31	5.08	7.26	7.04	9.48	8.97		
_	Contenido de Hu		%		163	5.1			149		23		
O Densidad S	eca Máxima (D	s)	gr/cm3	2.1	156	2.1	76	2.1	70	2.1	47		
2.180 (g./cm/) 2.170 Waxima densidad seca (g./cm/) 2.160 2.160 2.140 2.000	3.000 4.0	00 5.000 Contenido	6.000 de Hume	7.000	8.000	9.000			S Máx. (j W% OP		2.176 5.88		
DBSERVACIO	NES:	DORES				DINADO DRATOI		A	SESOR	DE TES	SIS		
Port	u	1/Marion	alp		Mr	MMA	1			P)			



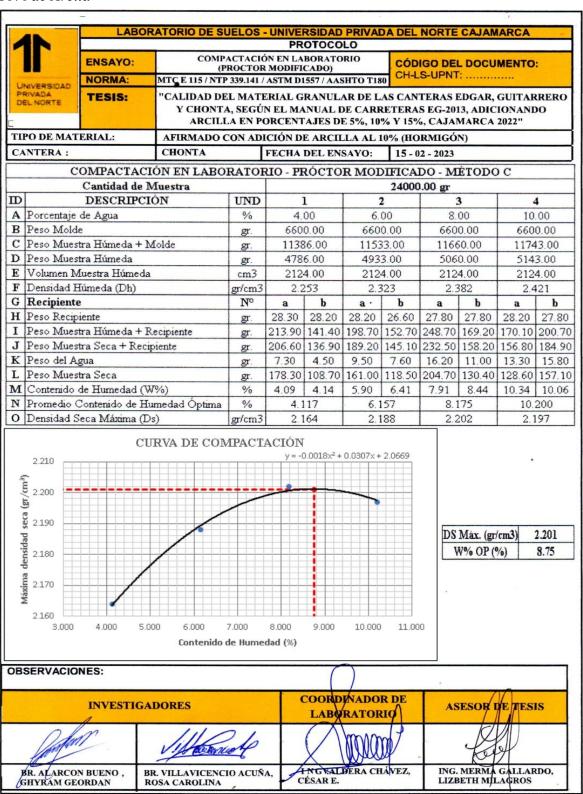
Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Guitarrero

Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Guitarrero con 15% de arcilla

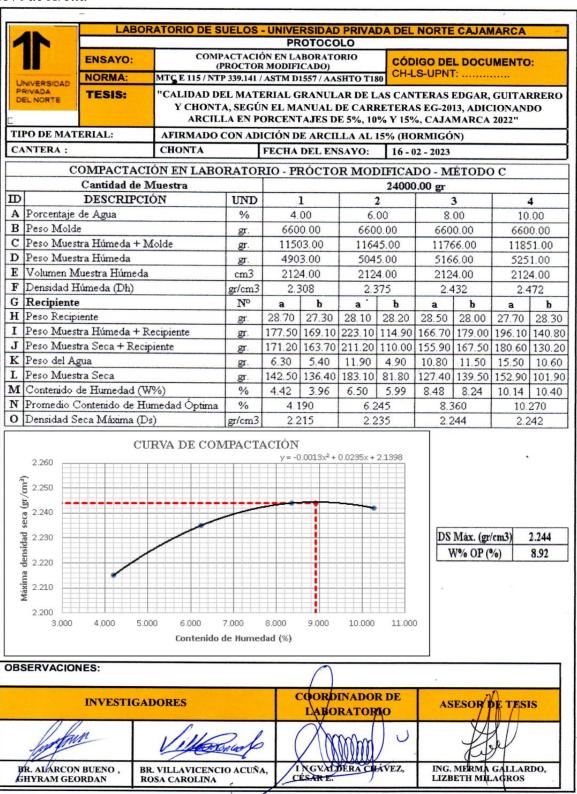

Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Chonta

	LABO	RATORIO DE SI	JELOS	- UNIVE	RSIDAD	PRIVA	DA DEL	NORTE	CAJAN	IARCA	54
1					отосо						
	ENSAYO:			ÓN EN LA R MODIFI		RIO			L DOCU		:
UNIVERSIDAD	NORMA:	MTC E 115 / NTF				SHTO T18	CH-L	S-UPNT	·		•
PRIVADA DEL NORTE	TESIS:	"CALIDAD DE	L MAT	ERIAL G	RANUL	AR DE L	AS CAN	TERAS I	EDGAR,	GUITAR	RERO
DEC HON IE		Y CHONTA		N EL MA							00
TIPO DE MAT	ERIAL:	AFIRMADO S			AND THE PERSON NAMED IN				VIARCA	2022	
CANTERA:	EKKKE.	CHONTA	LVADIO	FECHA				2 - 2023			
-	OMBACTAC	IÓN EN LABO	DATOI						ÉTODO		
	Cantidad de		KATOI	do-Fr	tocio	K MOL		.00 gr	ETODO	, с	
ID	DESCRIPC		UND	,	1		24000		3		ı
A Porcentaje			%		00		00		00		00
B Peso Mold		gr.	660	0.00		0.00		0.00		0.00	
C Peso Mues	tra Húmeda + 1	gr.	1081	5.00	1098	31.00	1109	5.00	1115	0.00	
D Peso Mues	tra Húmeda	gr.	421	5.00	438	1.00	449	5.00	455	0.00	
	luestra Húmeda	a	cm3	212	4.00	212	4.00	212	4.00	212	4.00
	Húmeda (Dh)		gr/cm3	1.9	84		63	2.1	16	2.1	42
G Recipiente			No	a	b	a '	b	a	b	a	b
H Peso Recip			gr.	28.70	28.20	27.30	28.30	-	27.70	27.80	28.10
	tra Húmeda + I		gr.			207.50					
K Peso Mues	tra Seca + Rec	ipiente	gr.	8.30	4.90	197.00	8.80		12.70	14.50	14.70
L Peso Mues			gr.			169.70					
	de Humedad (\	λ ₂ %)	gr.	4.31	3.71	6.19	5.67	8.03	7.84	10.07	9.81
		umedad Óptima	%		14		27		33		41
	eca Máxima (I		gr/cm3	1.9			48		60		48
1.970 (2.1.960 (2.1.950 (2.1.9				y = -	0.0034ײ+	0.0549x+	1.7426	-	Máx. (gr W% OP (1.961 7.96
1.890 3.000	4.000 5.	000 6.000 Contenido	7.000 de Hume	8.000 dad (%)	9.000	10.000	11.00	0			
1.890					9.000	10.000	11.00	0			
1.890	NES:	Contenido		dad (%)						1	
1.890		Contenido		dad (%)	COORD	10.000	R DE		sesor/i	E TESI	S
1.890	NES:	Contenido		dad (%)	COORD	INADO	R DE		SESOR/I	Tesi	s

Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Chonta con


5% de Arcila

Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Chonta con


10% de Arcila

Ensayo de Compactación en Laboratorio (Proctor Modificado) de la cantera Chonta con

15% de Arcila

Anexo N°46

Ensayo de CBR de la cantera Edgar sin adición de arcilla

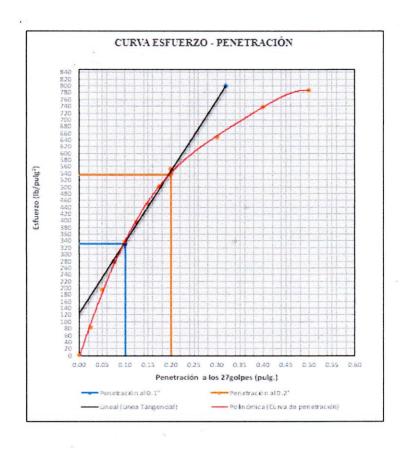
41	LABO	RATORIO DE SUE	LOS - UNIVERSIDAD PRIVAD PROTOCOLO	DA DEL NORTE CAJAMARCA				
T	ENSAYO:	EN LABORATORIO (CBR)						
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 39	99.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN		CANTERAS EDGAR, GUITARRERO S EG-2013, ADICIONANDO ARCILLA E 2022"				
TIPO DE MA	TERIAL:	AFIRMADO SIN	ADICIÓN DE ARCILLA	2				
CANTERA:		EDGAR	FECHA DE ENSAYO:	02-08-2023				

	CAL	FORNI	A BEAL	RING RAT	IO - CI	BR				
Cantidad de Muestra					1	8000.0	0 gr			
DESCRIPCIÓN	UND	1			2			3		
Nº Capas		5			5					
N° Golpes por Capa			13			27			55	
Condición de Muestra		An	tes	Desp.	An	ites	Desp.	An	ites	Desp.
Peso Molde	gr.	gr. 7226.00		7226.00	722	4.00	7224.00	720	2.00	7202.00
Peso Muestra Húmeda + Molde	gr.	1227	9.00	12339.00	1237	75.00	12436.00	1249	1.00	12567.00
Peso Muestra Húmeda	gr.	505	3.00	5113.00	515	1.00	5212.00	528	9.00	5365.00
Diámetro del Molde	cm	15	.20	15.20	15	.20	15.20	15	.20	15.20
Altura del Molde	cm	17	.60	17.60	17	.60	17.60	17	.60	17.60
Altura del Disco Espaciador	cm	5.	5.00		5.	00	5.00	5.	00	5.00
Altura Muestra Compactada	cm	12	.60	12.60	12	.60	12.60	12	.60	12.60
Volumen Muestra Húmeda	cm3	228	6.38	2286.38	2286.38		2286.38	228	6.38	2286.38
Densidad Húmeda (Dh)	gr/cm3	2.	21	2.24		2.25 2.		28 2.31		2.35
		CONTI	NIDO	DE HUME	DAD					
Ensayo	N°	1 - A	1 - B	1 - C	1 - A	1 - B	1 - C	1 - A	1 - B	1 - C
Peso Recipiente	gr.	27.80	28.10	29.00	27.80	28.50	26.90	28.10	27.90	28.00
Peso Muestra Húmeda + Recipiente	gr.	230.90	202.40	161.20	181.10	201.50	145.20	195.50	216.10	140.90
Peso Muestra Seca + Recipiente	gr.	220.70	193.10	153.80	173.50	192.80	138.20	186.40	206.60	133.90
Peso del Agua	gr.	10.20	9.30	7.40	7.60	8.70	7.00	9.10	9.50	7.00
Peso Muestra Seca	gr.	192.90	165.00	124.80	145.70	164.30	111.30	158.30	178.70	105.90
Contenido de Humedad (W%)	%	5.29	5.64	5.93	5.22	5.30	6.29	5.75	5.32	6.61
Promedio Contenido de Humedad	9/6	5.	47	5.93	5.	26	6.29	5.	54	6.61
Ds (gr./cm ³)	gr/cm3	2.0	195	2.115	2.1	38	2.145	2.1	89	2.204

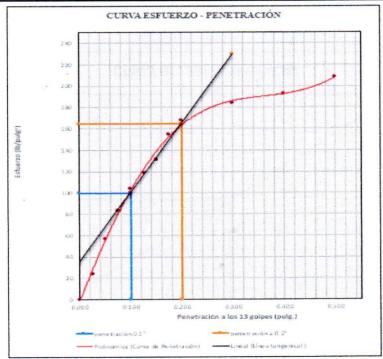
				ENSAY	O DE HINC	HAMIEN	O			
TIEN	TIEMPO MOLDE Nº 01				M	OLDE No	02	MOLDE Nº 03		
ACUM	LADO	Lectura	Hincha	miento	Lectura	Hinch	amiento	Lectura	Hincha	miento
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
24	01	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000
48	02	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000
72	03	-	-	-	-	-		-	-	-
96	04	0.0003	0.008	0.004	0.0002	0.005	0.003	0.0002	0.005	0.003

OBSERVACIONES:					
INVES	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS		
Jann from	Villand	Jungha			
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLÁVICENCIO ACUÑA, ROSA CAROLINA	JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS		

4	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA						
T	ENSAYO:		RELACIÓN DE SOPORTE DE CALIFORNIA EN LABORATORIO (CBR) CÓDIGO DEL D							
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	45 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:						
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022".						
TIPO DE MA	TERIAL:	AFIRMADO SIN ADI	AFIRMADO SIN ADICIÓN DE ARCILLA							
CANTERA:		EDGAR	FECHA DE ENSAYO:	07-08-2023						

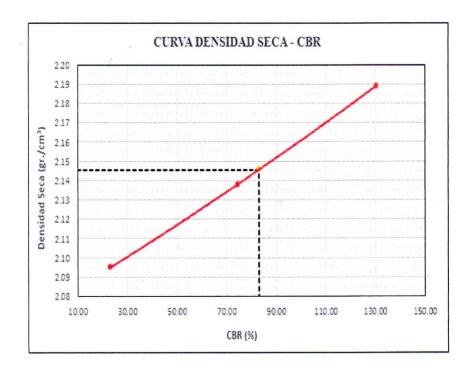

				C.	ARGA -	PENETRACIÓN				
Da	itos	I) pisón (pulg	= 2.00		A pison (pulg2)	= 3.14		F de carga =	7.5
n			MOLDE Nº 0	1		MOLDE Nº 0	2	MOLDE Nº 03		
Pene	tración		Carga Esfuer			Carga	Esfuerzo		Carga	Esfuerzo
mm	Pulg.	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg2
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43
0.64	0.025	16.0	76.06	24.22	55.0	257.91	82.14	25.0	118.05	37.60
1.27	0.050	38.0	178.68	56.91	130.0	606.64	193.20	137.0	639.13	203.54
1.91	0.075	56.0	262.57	83.62	187.0	870.82	277.33	270.0	1254.16	399.41
2.54	0.100	70.0	327.76	104.38	228.0	1060.38	337.70	401.0	1855.98	591.08
3.18	0.125	80.0	374.30	119.20	267.0	1240.33	395.01	498.0	2299.06	732.19
3.81	0.150	\$8.0	411.51	131.05	305.0	1415.34	450.74	592.0	2726.38	868.28
4.45	0.175	104.0	485.89	154.74	340.0	1576.23	501.98	681.0	3129.11	996.53
5.08	0.200	113.0	527.71	168.06	375.0	1736.85	553.14	759.0	3480.56	1108.46
7.62	0.300	124.0	578.79	184.33	440.0	2034.39	647.89	\$86.0	4049.82	1289.75
10.16	0.400	130.0	606.64	193.20	502.0	2317.29	737.99	970.0	4424.30	1409.01
12.70	0.500	140.0	653.04	207.98	536.0	2472.05	787.28	1050.0	4779.44	1522.12

OBSERVACIONES: INVESTIGADORES COORDINADOR DE LABORATORIO ASESOR DE TESIS LABORATORIO BR. ALARCON BUENO, GHYRAM GEORDAN BR. VILLAVICENCIO ACUÑA, JORGE LUIS ING. MERMA GALLARDO, LIZBETH MILAGROS


41	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO								
	ENSAYO:		PORTE DE CALIFORNIA ATORIO (CBR)	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.	145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARI CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO AR PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"							
TIPO DE MA	TERIAL:	AFIRMADO SIN ADICIÓN DE ARCILLA							
CANTERA:		EDGAR	FECHA DE ENSAYO:	07-08-2023					

OBSERVACIONES:					
INVEST	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS		
Lum finns	Villamignos	- AMAGIAN	Jeg		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VIĹLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS		

41	LABO	RATORIO DE SUELOS	S - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA				
	ENSAYO:	RELACIÓN DE SOPO EN LABORA	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	5 / ASTM D183 / AASHTO T193	CBR-LS-OFNC				
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL	ERIAL GRANULAR DE LAS MANUAL DE CARRETERAS 6, 10% Y 15%, CAJAMARCA 2	CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"				
TIPO DE MA	TERIAL:	AFIRMADO SIN ADI	CIÓN DE ARCILLA	2				
CANTERA:		EDGAR	EDGAR FECHA DE ENSAYO: 07-08-2023					



MOLDE N°	MOLDE Nº 01	MOLDE N° 02	MOLDE Nº 0:
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	230.12	744.49	1303.09
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	23.01	74.45	130.31
Ds (gr/cm ³)	2.095	2.138	2.189

OBSERVACIONES:					
INVES	TIGADORES	COORDINADOR DE LABØRATORIO	ASESOR DE TESIS		
fram from	Villangence	Jung [5]			
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS		

4	LABO	RATORIO DE SUELOS	S - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA			
1			PROTOCOLO				
	ENSAYO:		ORTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	CBR-LS-UPNC				
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"			
TIPO DE MATERIAL: AFIRMADO SIN ADICIÓN DE ARCILLA							
CANTERA:		EDGAR FECHA DE ENSAYO: 07-08-2023					

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.147 kg/cm ³
CBR 0.1" (%)	83.14 %
Máxima Densidad Seca (gr./cm3)	2.040 kg/cm ³
CBR 0.2" (%)	39.24 %

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS		
John fins	Marina	Junifold			
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS		

Anexo N°47

"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO Y CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA EN PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"

Ensayo de CBR de la cantera Edgar con 5%de arcilla

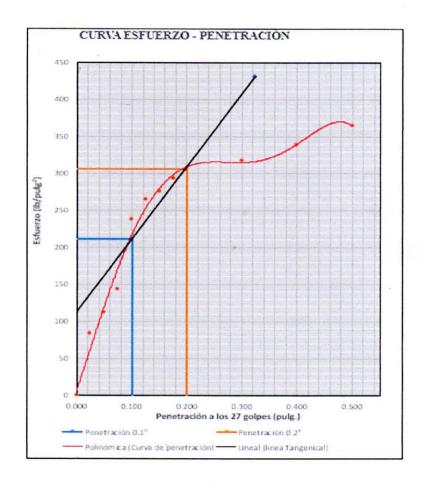
40	LABO	RATORIO DE SUI	ELOS - UNIVERSIDAD PRIVAI	DA DEL NORTE CAJAMARCA			
1			PROTOCOLO	,			
	ENSAYO:		SOPORTE DE CALIFORNIA BORATORIO (CBR)	CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 3	CBR-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"					
TIPO DE MA	TERIAL:	AFIRMADO CON	N ADICIÓN DE ARCILLA 5%	2			
CANTERA:		EDGAR	FECHA DE ENSAYO:	02-08-2023			

	CAI	LIFORN	IA BEA	RING RAI	10 - CI	BR					
Cantidad de Muestra						18000.0	0 gr				
DESCRIPCIÓN	UND		1		2				3		
N° Capas			5			5			5		
N° Golpes por Capa			13			27			55		
Condición de Muestra		Ar	ites	Desp.	An	tes	Desp.	Ar	ites	Desp.	
Peso Molde	gr.	722	6.00	7226.00	722	4.00	7224.00	720	2.00	7202.00	
Peso Muestra Humeda + Molde	gr.	124	18.00	12482.00	1253	4.00	12532.00	1260	08.00	12677.00	
Peso Muestra Húmeda	21.	519	2.00	5256.00 5310.00		5308.00	540	6.00	5475.00		
Diametro del Molde	cm	15	15.20 15.20		15	.20	15.20	15	.20	15.20	
Altura del Molde	cm	17	.60	17.60	17	.60	17.60	17	.60	17.60	
Altura del Disco Espaciador	cm	5.	.00	5.00	5.	00	5.00	5.	00	5.00	
Altura Muestra Compactada	cm	12	12.60		12	.60	12.60	12	.60	12.60	
Volumen Muestra Húmeda	cm3	228	2286.38		228	6.38	2286.38	228	6.38	2286.38	
Densidad Húmeda (Dh)	gr/cm3	2.	2.27		2.	32	2.32	2.	36	2.39	
		CONT	ENIDO	DE HUME	DAD			•			
Ensayo	N°	1 - A	1 - B	1-C	1 - A	1 - B	1-C	1 - A	1 - B	1-C	
Peso Recipiente	gr.	26.30	29.60	28.40	28.10	27.90	27.90	27.30	29.40	28.00	
Peso Muestra Húmeda + Recipiente	gr.	159.60	175.90	147.20	150.30	149.90	143.50	167.10	155.80	159.30	
Peso Muestra Seca + Recipiente	gr.	152.50	168.40	140.10	143.70	143.80	137.10	159.50	148.60	151.20	
Peso del Agua	gr.	7.10	7.50	7.10	6.60	6.10	6.40	7.60	7.20	8.10	
Peso Muestra Seca	gr.	126.20	138.80	111.70	115.60	115.90	109.20	132.20	119.20	123.20	
Contenido de Humedad (W%)	%	5.63	5.40	6.36	5.71	5.26	5.86	5.75	6.04	6.57	
Promedio Contenido de Humedad	96	5.	52	6.36	5.	19	5.86	5.	90	6.57	
Ds (gr./cm³)	gr/cm3	2.]	151	2.162	2.1	99	2.192	2.2	29	2.243	

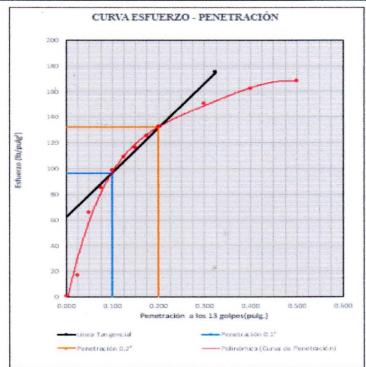
			E	NSAYO	DE HINCH	AMIENT	0											
TIE	(PO	MOLDE N° 01			PO MOLDE N° 01 MOLDE N° 02				02	MOLDE N° 03								
ACUM	ULADO	Lectura	Hinchamiento Lectura Hinchamiento Lectura		ra Hinchamiento Lectura Hinchamiento Lectura		Hinchamiento Lectura Hinchamiento Lectura		Hinchamiento		Hinchamiento Lectura Hinchamiento		chamiento Lectura Hincha		Lectura Hinchamiento Lectura Hinch		Hincha	miento
Horas	Días	Deforma.	mm	96	Deforma.	mm	96	Deforma.	mm	9/6								
24	01	0.0020	0.051	0.029	0.0012	0.030	0.017	0.0010	0.025	0.014								
48	02	0.0022	0.056	0.032	0.0015	0.038	0.022	0.0012	0.030	0.017								
72	03	0.0025	0.064	0.036	0.0022	0.056	0.032	0.0015	0.038	0.022								
96	04	0.0032	0.081	0.046	0.0025	0.064	0.036	0.0015	0.038	0.022								

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS	
Limpun	Villananle &	Jun Alba	July	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYO'S MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS	

41	LABO	RATORIO DE SUEL		DA DEL NORTE CAJAMARCA				
1	PROTOCOLO							
	ENSAYO:		PORTE DE CALIFORNIA RATORIO (CBR)	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399	.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN I		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"				
TIPO DE MATERIAL:		AFIRMADO CON A	AFIRMADO CON ADICIÓN DE ARCILLA 5%					
CANTERA:		EDGAR	FECHA DE ENSAYO:	07-08-2023				

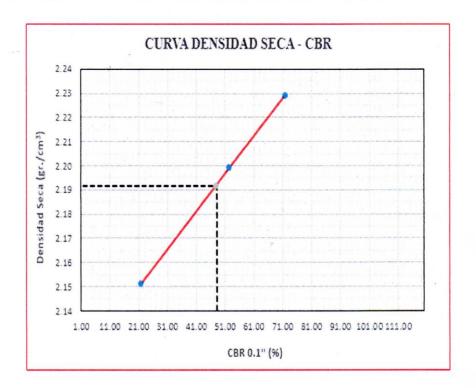

				(ARGA - PI	ENETRACIÓN	ř				
Da	itos	D pis	ón (pulg)=	2.00	A piso	in (pulg²)=	3.14	Fde	e carga =	7.5	
Danas	ración	M	OLDE Nº 01	(13)	M	OLDE Nº 02	27) MOLDE N° 03 ((55)	
renet	racion		Carga	Esfuerzo		Carga	Esfuerzo		Carga	Esfuerzo	
mm	Pulg.	Dial	Lb	Lb/pulg2	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg2	
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43	
0.64	0.025	11.0	52.72	16.79	56.0	262.57	83.62	21.0	99.39	31.65	
1.27	0.050	44.0	206.65	65.81	75.0	351.03	111.79	73.0	341.72	108.83	
1.91	0.075	57.0	267.23	85.10	96.0	448.71	142.90	140.0	653.04	207.98	
2.54	0.100	66.0	309.14	98.45	160.0	745.77	237.51	220.0	1023.42	325.93	
3.18	0.125	73.0	341.72	108.83	178.0	829.15	264.06	324.0	1502.71	478.57	
3.81	0.150	78.0	364.99	116.24	186.0	866.19	275.86	404.0	1869.71	595.45	
4.45	0.175	84.0	392.91	125.13	198.0	921.71	293.54	487.0	2248.92	716.22	
5.08	0.200	89.0	416.16	132.54	206.0	958.71	305.32	562.0	2590.23	824.91	
7.62	0.300	101.0	471.95	150.30	214.0	995.69	317.10	685.0	3147.17	1002.28	
10.16	0.400	109.0	509.13	162.14	229.0	1065.00	339.17	802.0	3673.72	1169.97	
12.70	0.500	113.0	527.71	168.06	246.0	1143.48	364.16	895.0	4090.02	1302.55	

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Limfuns	Villamones	Tuyl	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS


4	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO							
UNIVERSIDAD	ENSAYO: RELACIÓN DE SOPORTE DE CALIFORNIA EN LABORATORIO (CBR) CÓDIGO DEL DOCU							
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	CBR-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"				
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 5%						
CANTERA:		EDGAR	FECHA DE ENSAYO:	07-08-2023				

OBSERVACIONES:					
INVEST	IGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS		
finn fum	Villavienes	July 18			
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS		

	LABO	RATORIO DE SUEL		A DEL NORTE CAJAMARCA					
1		PROTOCOLO							
	ENSAYO:	CÓDIGO DEL DOCUMENTO: CBR-LS-UPNC:							
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399	0.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC					
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN I		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"					
TIPO DE N	MATERIAL:	AFIRMADO CON A	ADICIÓN DE ARCILLA 5%	,					
CANTERA		EDGAR	FECHA DE ENSAYO:	07-08-2023					



ESFUERZOS PARA 0.1" DE PENETRACIÓN, CBR Y DENSIDAD SECA							
MOLDE N°	MOLDE Nº 01	MOLDE Nº 02	MOLDE Nº 03				
Penetración (Pulg.)	0.1"	0.1"	0.1"				
Esfuerzo del suelo (lb/pulg²)	217.05	523.61	718.54				
Esfuerzo patrón (lb/pulg²)	1000	1000	1000				
CBR (%)	21.70	52.36	71.85				
Ds (gr/cm ³)	2.151	2.199	2.229				

TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS		
Villamores	FAMILIA			
BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HÖYÖS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS		
		BR. VILLAVICENCIO ACUÑA, (ING. HÓYOS MARTINEZ,		

	LABO	RATORIO DE SU	ELOS - UNIVERSIDAD PRIVAD	DA DEL NORTE CAJAMARCA					
1		PROTOCOLO							
	ENSAYO:		SOPORTE DE CALIFORNIA BORATORIO (CBR)	CÓDIGO DEL DOCUMENTO: CBR-LS-UPNC:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP	399.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC					
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚ		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022".					
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 5%							
CANTERA:		EDGAR	FECHA DE ENSAYO:	07-08-2023					

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.192
CBR 0.1" (%)	47.99 %
Máxima Densidad Seca (gr./cm3)	2.082 kg/cm ³
CBR 0.2" (%)	22.43 %

INVES	TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS		
frin fum	Villariamo de	THE STATE OF THE S	Lead		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS		

Ensayo de CBR de la cantera Edgar con 10% de arcilla

40	LABOR	RATORIO DE	SUELC	S - UN	IVERSID/	AD PRI	VADA	DEL NOR	TECA	JAMAF	RCA		
1					PROTO	COLO							
	ENSAYO:	RELACIÓN EN	DE SOP	ORTE D	E CALIFO (CBR)	RNIA		CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:		MTC E 132 / NTP 399.145 / ASTM D183 / AASHTO T193 CBR-LS-UPNC:										
PRIVADA DEL NORTE	TESIS:	"CALIDAD D CHONTA, SE PORCENTAJ	GUN EI	MANU	AL DE C	ARRET	ERAS F	G-2013. A	AS EDGAR, GUITARRERO , ADICIONANDO ARCILL				
TIPO DE MA	TERIAL:	AFIRMADO	CON AI	DICIÓN	DE ARCI	LLA 10	%	-					
CANTERA:		EDGAR			HA DE EN			04-08-202	23				
		CAI	LIFORN		RING RAT								
	Cantidad de Mues		T		uo icii		18000.0	0					
	SCRIPCIÓN	UND	1	1		T -	2	o gr	T	3			
N° Capas			1	5			5		_	5			
N° Golpes po	r Capa			13			27	-		55			
Condición de			4,	ntes	Desp.	4-	ites	Desp.	Antes		Dogg		
Peso Molde		gr.		6.00	7226.00		4.00	7224.00		2.00	Desp. 7202.00		
Peso Muestra	Húmeda + Molde	gr.	_	45.00	12507.00		41.00			12711.00			
Peso Muestra	Húmeda	gr.	521	9.00	5281.00	531	7.00	5363.00	547	3.00	5509.00		
Diametro del 1	Molde	cm	15	.20	15.20	15	.20	15.20	15	.20	15.20		
Altura del Mo	lde	cm	17	.60	17.60	17	.60	17.60	17	.60	17.60		
	co Espaciador	cm	5.	.00	5.00	5.	00	5.00	5.	.00	5.00		
Altura Muesti	ra Compactada	cm	12	.60	12.60	12	.60	12.60	12	.60	12.60		
Volumen Mue		cm3	228	6.38	2286.38	228	6.38	2286.38	228	6.38	2286.38		
Densidad Hún	neda (Dh)	gr/cm3	2.	.28	2.31	2.	33	2.35 2.39		39	2.41		
				Y	DE HUME	DAD							
Ensayo		N°	1 - A	1 - B	1-C	1'- A	1 - B	1-C	1 - A	1 - B	1 - C		
Peso Recipien		gr.	28.30	28.30	28.90	28.00	28.30	27.60	27.40		29.00		
	Húmeda + Recipie	-		202.20			181.30			183.60			
	Seca + Recipiente	gr.		192.60			173.30			175.00	148.70		
Peso del Agua		gr.	8.70	9.60	10.80	7.00	8.00	7.30	9.40	8.60	8.20		
Peso Muestra		gr.		164.30			145.00			147.20	119.70		
	Humedad (W%)	%	6.14	5.84	6.70	6.09	5.52	6.31	6.38	5.84	6.85		
	ntenido de Hume		_	99	6.70	5.5	81	6.31	6.	11	6.85		
n / 1 3			1 41					4 4 5 5		Water y			

			I	NSAYO	DE HINCH	LAMIEN	го		-	
TIEMPO ACUMULADO		MOLDE Nº 01			MOLDE N° 02			MOLDE N° 03		
		Lectura	Hinchamiento		Lectura	Hinchamiento		Lectura	Hinchamiento	
Horas	Días	Deforma.	mm	96	Deforma.	mm	96	Deforma.	mm	96
24	01	0.0033	0.084	0.048	0.0028	0.071	0.040	0.0015	0.038	0.022
48	02	-	-	-	-	-	-	-	-	
72	03	0.0052	0.132	0.075	0.0042	0.107	0.061	0.0022	0.056	0.032
96	04	0.0065	0.165	0.094	0.0048	0.122	0.069	0.0025	0.064	0.036

2.165

2.202

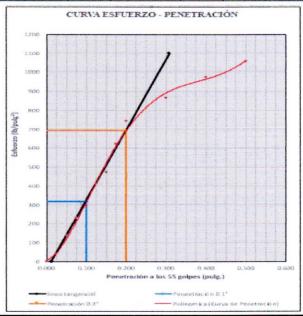
2.211

2.252

2.255

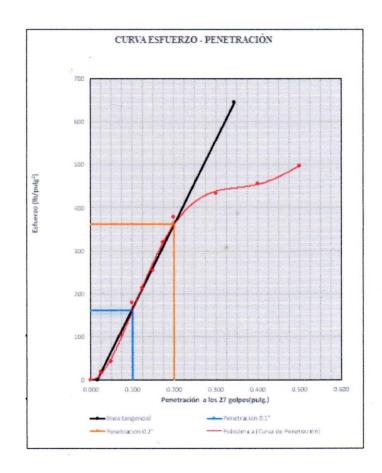
2.151

gr/cm3

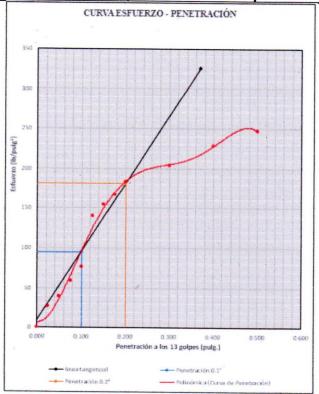

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS	
fum funs	Villamone Sc		Hull	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA,/ ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS	

Ds (gr./cm³)

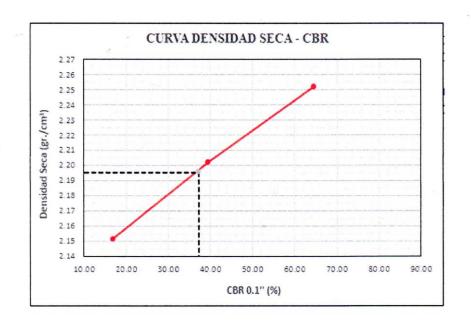
1	LABO	RATORIO DE SUI	ELOS - UNIVERSIDAD PRIVAD	DA DEL NORTE CAJAMARCA					
	PROTOCOLO								
	ENSAYO:		SOPORTE DE CALIFORNIA SORATORIO (CBR)	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 3	399.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"						
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 10%							
CANTERA:		EDGAR	FECHA DE ENSAYO:	08-08-2023					


					CARGA - I	ENETRACIÓ	V			
Da	itos	D pis	són (pulg)=	2.00	A pis	ón (pulg²)=	3.14	Fde	F de carga = MOLDE N° 03 (55)	
Danas	ración	V	fOLDE Nº 01	(13)		IOLDE Nº 02 (27)	M		
rene	racion	Dial	Carga	Esfuerzo	D: 1	Carga	Esfuerzo	D: I	Carga	Esfuerzo
mm	Pulg.	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg2
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43
0.64	0.025	18.0	85.39	27.19	12.0	57.39	18.28	28.0	132.05	42.05
1.27	0.050	26.0	122.72	39.08	28.0	132.05	42.05	93.0	434.76	138.46
1.91	0.075	39.0	183.35	58.39	69.0	323.10	102.90	156.0	727.24	231.60
2.54	0.100	51.0	239.27	76.20	120.5	562.54	179.15	198.0	921.71	293.54
3.18	0.125	94.0	439.41	139.94	144.0	671.60	213.88	277.0	1286.42	409.69
3.81	0.150	104.0	485.89	154.74	171.0	796.74	253.74	320.0	1484.33	472.72
4.45	0.175	112.0	523.06	166.58	215.0	1000.31	318.57	421.0	1947.51	620.23
5.08	0.200	123.00	574.15	182.85	255.0	1185.00	377.39	506.0	2335.51	743.79
7.62	0.300	137.00	639.13	203.54	293	1360.11	433.16	590	2717.31	865.39
10.16	0.400	154.00	717.96	228.65	308	1429.14	455.14	663	3047.81	970.64
12.70	0.500	166.00	773.58	246.36	336	1557.86	496.13	723	3318.53	1056.86

OBSERVACIONES:			
INVEST	IGADORES	COORDINADOR DE LABORATORIO	ASESOR DE DESIS
fumfum	Villando.	July 189	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS


1	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA							
	PROTOCOLO							
	ENSAYO:		SOPORTE DE CALIFORNIA BORATORIO (CBR)	CÓDIGO DEL DOCUMENTO: CBR-LS-UPNC:				
UNIVERSIDAD	NORMA:	MTC E 132 / NTP :	399.145 / ASTM D183 / AASHTO T193	CBR-LS-UPINC				
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚ	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"					
TIPO DE MA	TERIAL:	AFIRMADO CO	N ADICIÓN DE ARCILLA 10%	DICIÓN DE ARCILLA 10%				
CANTERA:		EDGAR	FECHA DE ENSAYO:	08-08-2023				

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
from from	Voltan Port -	July 16	Jul
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLÁVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS



ESFUERZOS PARA 0.1" DE PENETRACIÓN, CBR Y DENSIDAD SECA								
MOLDE N°	MOLDE N° 01	MOLDE N° 02	MOLDE N° 03					
Penetración (Pulg.)	0.1"	0.1"	0.1"					
Esfuerzo del suelo (lb/pulg²)	167.99	394.96	647.14					
Esfuerzo patrón (lb/pulg²)	1000	1000	1000					
CBR (%)	16.80	39.50	64.71					
Ds (gr/cm ³)	2.151	2.202	2.252					

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
frim fromes	Villanger	June 1	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYÓS MARTINEZ, JÓRGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

41	LABO	RATORIO DE SUE	ELOS - UNIVERSIDAD PRIVAD PROTOCOLO	DA DEL NORTE CAJAMARCA			
11	ENSAYO:		OPORTE DE CALIFORNIA ORATORIO (CBR)	CÓDIGO DEL DOCUMENTO: CBR-LS-UPNC:			
LINIVERSIDAD	NORMA:	MTC E 132 / NTP 3	99.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC			
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".					
TIPO DE MA	TERIAL:	AFIRMADO CON	AFIRMADO CON ADICIÓN DE ARCILLA 10%				
CANTERA:		EDGAR	FECHA DE ENSAYO:	08-08-2023			

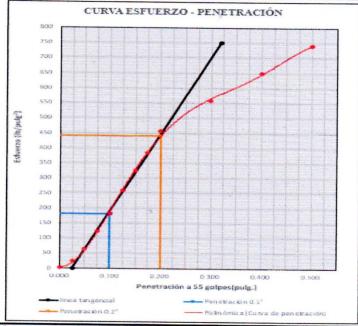
RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.195
CBR 0.1" (%)	37.17 %
Máxima Densidad Seca (gr./cm3)	2.085 kg/cm ³
CBR 0.2" (%)	14.87 %

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS		
from from	Marinet	AMASS)	Hart		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HØYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS		

Ensayo de CBR de la cantera Edgar con 15% de arcilla

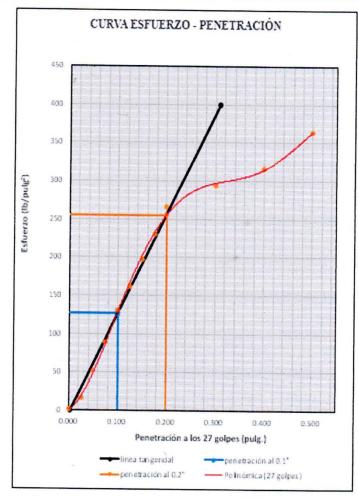
UNIVERSIDAD PRIVADA DEL NORTE	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
			PROTOCOLO						
	ENSAYO:	RELACIÓN DE EN LA	CÓDIGO DEL DOCUMENTO:						
	NORMA:	MTC E 132 / NTP	CBR-LS-UPNC:						
	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILL PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"							
TIPO DE MATERIAL: AFIRMADO CON ADICIÓN DE ARCILLA 15%									
CANTERA:		EDGAR	FECHA DE ENSAYO:	02-08-2023					

	CAL	IFORN	A BEA	RING RAT	10 - CI	3R				
Cantidad de Muestra			and Committee of the Co]	8000.0	0 gr			,
DESCRIPCIÓN	UND		1			2			3	
N° Capas			5			5			5	
Nº Golpes por Capa			13			27			55	
Condición de Muestra		An	ites	Desp.	An	ites	Desp.	An	ites	Desp.
Peso Molde	gr.	722	6.00	7226.00	722	4.00	7224.00	720	2.00	7202.00
Peso Muestra Húmeda + Molde	gr.	1250	06.00	12575.00	1262	20.00	12730.00	1274	1.00	12779.00
Peso Muestra Húmeda	gr.	528	0.00	5349.00	539	6.00	5506.00	553	9.00	5577.00
Diámetro del Molde	cm	15	15.20 15.20		15	.20	15.20	15	.20	15.20
Altura del Molde	cm	17	17.60		17	.60	17.60	17	.60	17.60
Altura del Disco Espaciador	cm	5.	5.00		5.	00	5.00	5.	00	5.00
Altura Muestra Compactada	cm	12.60		12.60	12	.60	12.60	12	.60	12.60
Volumen Muestra Húmeda	cm3	228	2286.38		228	6.38	2286.38	228	6.38	2286.38
Densidad Hümeda (Dh)	gr/cm3	2.31		2.34	2.	36	2.41	2.	42	2.44
2		CONTI	NIDO	DE HUME	DAD					
Ensayo	No	1 - A	1 - B	1-C	1 - A	1-B	1-C	1 - A	1-B	1-C
Peso Recipiente	gr.	27.90	26.40	28.10	27.90	28.00	27.70	27.90	27.60	26.70
Peso Muestra Húmeda + Recipiente	gr.	160.60	130.30	158.70	161.30	163.50	167.80	165.00	152.60	131.30
Peso Muestra Seca + Recipiente	gr.	153.40	124.30	151.00	153.80	155.50	159.20	156.30	145.50	124.70
Peso del Agua	gr.	7.20	6.00	7.70	7.50	8.00	8.60	8.70	7.10	6.60
Peso Muestra Seca	gr.	125.50	97.90	122.90	125.90	127.50	131.50	128.40	117.90	98.00
Contenido de Humedad (W%)	%	5.74	6.13	6.27	5.96	6.27	6.54	6.78	6.02	6.73
Promedio Contenido de Humedad	%	5.	94	6.27	6.	12	6.54	6.	40	6.73
Ds (gr./cm ³)	gr/cm3	2.1	80	2.202	2.2	24	2.262	2.2	74	2.286

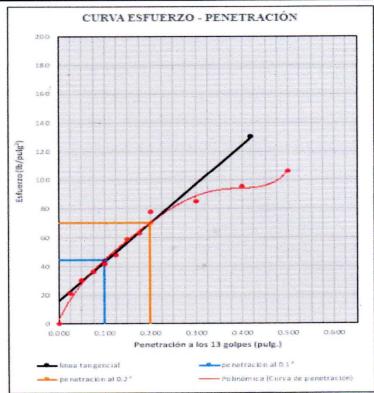

			E	NSAYO	DE HINCH	AMIENT	О			
TIE	MPO MOLDE N° 01 MOLDE N° 02		MOLDE Nº 01		02	MOLDE Nº 03				
ACUM	LADO	Lectura	Hinchs	miento	Lectura	Hincha	miento	Lectura	Hincha	miento
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
24	01	0.0045	0.114	0.065	0.0035	0.089	0.051	0.0020	0.051	0.029
48	02	0.0060	0.152	0.087	0.0042	0.107	0.061	0.0025	0.064	0.036
72	03	0.0066	0.168	0.095	0.0048	0.122	0.069	0.0032	0.081	0.046
96	04	0.0072	0.183	0.104	0.0055	0.140	0.079	0.0036	0.091	0.052

OBSERVACIONES:			
INVEST	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
framfins	Villain Le -	Jughts	July 1
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	DA DEL NORTE CAJAMARCA			
1	PROTOCOLO						
	ENSAYO:	RELACIÓN DE SOPO EN LABORA	ORTE DE CALIFORNIA ATORIO (CBR)	CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	45 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:			
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGUN EL	ERIAL GRANULAR DE LAS MANUAL DE CARRETERA 6, 10% Y 15%, CAJAMARCA	CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"			
TIPO DE MAT	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 15%					
CANTERA:		EDGAR	FECHA DE ENSAYO:	07-08-2023			

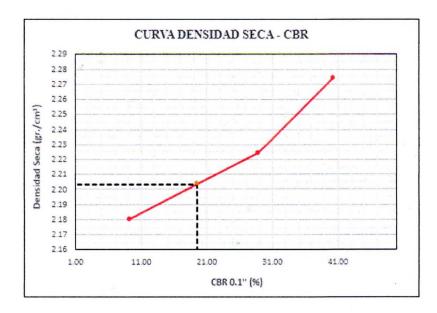

				CA	ARGA - P	ENETRACIÓN	***************************************			
Da	itos	D pis	ión (pulg)=	2.00	A pi	són (pulg²)=	3.14	F	de carga =	7.5
Penet	ración		MOLDE N° 01 MOLDE N° 02				MOLDE Nº 03			
		Dial	Carga	Esfuerzo	Dial	Carga	Esfuerzo		Carga	Esfuerzo
mm	Pulg.	Diai	Lb	Lb/pulg ²	Diai	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg2
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43
0.64	0.025	14.0	66.72	21.25	10.0	48.05	15.30	16.0	76.06	24.22
1.27	0.050	20.0	94.73	30.17	34.0	160.03	50.97	43.0	201.99	64.33
1.91	0.075	24.0	113.39	36.11	60.0	281.20	89.55	82.0	383.60	122.17
2.54	0.100	28.0	132.05	42.05	88.0	411.51	131.05	123.0	574.15	182.85
3.18	0.125	32.0	150.71	48.00	109.0	509.13	162.14	174.0	810.63	258.16
3.81	0.150	39.0	183.35	58.39	133.0	620.57	197.63	220.0	1023,42	325.93
4.45	0.175	42.0	197.33	62.84	155.0	722.60	230.13	260.0	1208.06	384.73
5.08	0.200	52.0	243.93	77.69	179.0	833.78	265.54	308.0	1429.14	455.14
7.62	0.300	57	267.23	85.10	198	921.71	293.54	378	1750.60	557.52
10.16	0.400	64	299.83	95.49	213	991.0701757	315.63	440	2034.38508	647.89
12.70	0.500	71	332.41	105.86	246	1143.475815	364.16	503	2321.843868	739.44

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Frinfing	Whater .	July 1961	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO


4	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA						
	PROTOCOLO							
II	ENSAYO:		OPORTE DE CALIFORNIA ORATORIO (CBR)	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.145 / ASTM D183 / AASHTO T193		CBR-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL M CHONTA, SEGÚN	MATERIAL GRANULAR DE LAS	S CANTERAS EDGAR, GUITARRERO Y AS EG-2013, ADICIONANDO ARCILLA EN				
TIPO DE MA	TERIAL:	AFIRMADO CON	ADICIÓN DE ARCILLA 15%	1				
CANTERA:		EDGAR	FECHA DE ENSAYO:	07-08-2023				

OBSERVACIONES:			
INVESTI	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Jone from	Villament	July	
	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HÓYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

1	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO					
	ENSAYO:		DRTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	45 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:		
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO EG-2013, ADICIONANDO ARCILLA E 022"		
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 15%				
CANTERA:		EDGAR	FECHA DE ENSAYO:	07-08-2023		



MOLDE N°	MOLDE Nº 01	MOLDE Nº 02	MOLDE Nº 03
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	92.71	288.92	403.11
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	9.27	28.89	40.31
Ds (gr/cm ³)	2.180	2.224	2.274

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
frimfun	Willemand		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

	LABO	RATORIO DE SUELO	OS - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA			
1	PROTOCOLO						
	ENSAYO:	ENSAYO: RELACIÓN DE SOPORTE DE CALIFORNIA EN LABORATORIO (CBR) CÓDIGO DEL DOCUM CBR-L S-UPNC:					
LINIVERSIDAD	NORMA:	MTC E 132 / NTP 399.	145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC			
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN E		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"			
TIPO DE MATERIAL:		AFIRMADO CON ADICIÓN DE ARCILLA 15%					
CANTERA:		EDGAR	FECHA DE ENSAYO:	07-08-2023			

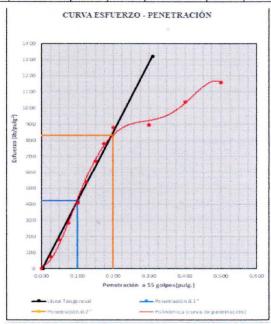
RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.206
CBR 0.1" (%)	19.60 %
Máxima Densidad Seca (gr./cm3)	2.096 kg/cm
CBR 0.2" (%)	16.57 %

OBSERVACIONES:			
INVEST	IGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
funfins	Villagenos	Julio D	Jeff Jeff
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GÁLLARDO, LIZBETH MILAGROS

Ensayo de CBR de la cantera Guitarrero sin adición de arcilla

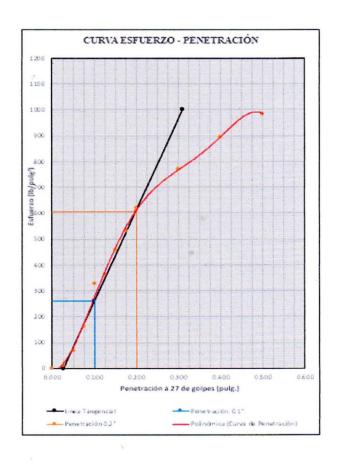
4	LABO	RATORIO DE SUELO		A DEL NORTE CAJAMARCA		
	PROTOCOLO					
II	ENSAYO:	RELACIÓN DE SOPO EN LABORA	CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	15 / ASTM D183 / AASHTO T193	CBR-LS-UPNC		
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"		
TIPO DE MA	TERIAL:	AFIRMADO SIN ADI	CIÓN DE ARCILLA	2		
CANTERA:	GUITARRERO FECHA DE ENSAYO: 14-08-2023					

	CAL	IFORN	A BEAI	RING RAT	10 - CB	R				
Cantidad de Muestra					1	8000.00	gr			
DESCRIPCIÓN	UND	ND 1			2			3		
Nº Capas		5				5		5		
Nº Golpes por Capa			13			27			55	
Condición de Muestra		An	ites	Desp.	An	tes	Desp.	An	ites	Desp.
Peso Molde	gr.	722	6.00	7226.00	722	4.00	7224.00	720	2.00	7202.00
Peso Muestra Húmeda + Molde	gr.	1223	3.00	12315.00	1239	4.00	12480.00	1241	13.00	12490.00
Peso Muestra Húmeda	gr.	500	7.00	5089.00	517	0.00	5256.00	521	1.00	5288.00
Diámetro del Molde	cm	15	.20	15.20	15	.20	15.20	15	.20	15.20
Altura del Molde	cm	17.60 17.60		17	.60	17.60	17.	.60	17.60	
Altura del Disco Espaciador	cm	5.00		5.00	5.	00	5.00	5.	00	5.00
Altura Muestra Compactada	cm	12.60		12.60	12	.60	12.60	12	.60	12.60
Volumen Muestra Húmeda	cm3	228	6.38	2286.38	228	6.38	2286.38	228	6.38	2286.38
Densidad Húmeda (Dh)	gr/cm3	2.	19	2.23	2.	26	2.30	2.	28	2.31
		CONT	ENIDO	DE HUMEI	DAD					
Ensayo	No	1-A	1-B	1-C	1-A	1 - B	1-C	1 - A	1 - B	1 - C
Peso Recipiente	gr.	27.60	28.00	26.60	28.80	27.70	27.30	28.90	26.40	27.10
Peso Muestra Húmeda + Recipiente	gr.	203.80	195.40	172.90	142.80	142.10	207.30	140.60	139.50	158.00
Peso Muestra Seca + Recipiente	gr.	195.10	186.50	162.70	136.20	136.40	196.60	134.60	133.00	149.80
Peso del Agua	gr.	8.70	8.90	10.20	6.60	5.70	10.70	6.00	6.50	8.20
Peso Muestra Seca	gr.	167.50	158.50	136.10	107.40	108.70	169.30	105.70	106.60	122.70
Contenido de Humedad (W%)	%	5.19	5.62	7.49	6.15	5.24	6.32	5.68	6.10	6.68
Promedio Contenido de Humedad	%	5.	41	7.49	5.	70	6.32	5.	89	6.68
Ds (gr./cm ³)	gr/cm3	2.0	78	2.075	2.1	38	2.163	2.1	153	2.165

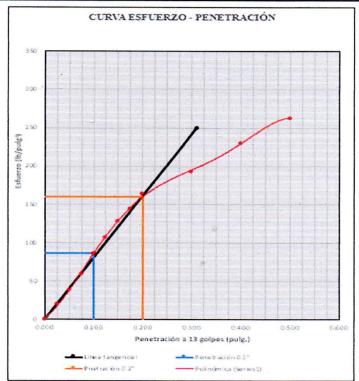

			I	NSAYO	DE HINCH	AMIENT	0				
TIEN	IPO	MOLDE Nº 01			MO	LDE No	02	MO	MOLDE Nº 03		
ACUM	LADO	Lectura	Hincha	miento	Lectura	Hinch	miento	Lectura	Hinch	miento	
Horas	Días	Deforma.	mm	9/6	Deforma.	mm	%	Deforma.	mm	9/0	
24	01	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	
48	02	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	
72	03	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000	
96	04	0.0003	0.008	0.004	0.0001	0.003	0.001	0.0001	0.003	0.001	

INVE	STIGADORES	COORDINADOR DE LABØRATORIO	ASESOR DE TESIS
Langhous	Village Con So	Julis	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS

4	LABO	RATORIO DE SUELO		DA DEL NORTE CAJAMARCA			
1		RELACIÓN DE SOPO	PROTOCOLO ORTE DE CALIFORNIA				
11	ENSAYO:		EN LABORATORIO (CBR)				
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.145 / ASTM D183 / AASHTO T193					
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".					
TIPO DE M							
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023			

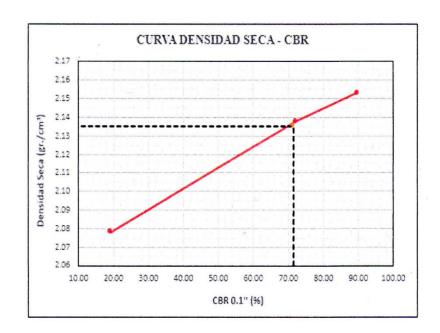

				C.	ARGA - P	ENETRACIÓ	N			
Da	tos	D pisc	D pisón (pulg)= 2.00 A pisón (in (pulg²)=	3.14	Fd	e carga =	7.5	
D			MOLDE Nº 0	1	MOLDE Nº 02				MOLDE No)3
rene	ración		Carga	Esfuerzo		Carga	Esfuerzo		Carga	Esfuerzo
mm	Pulg.	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg2	Dial	Lb	Lb/pulg ²
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43
0.64	0.025	13.0	62.05	19.76	7.0	34.04	10.84	50.0	234.61	74.72
1.27	0.050	26.0	122.72	39.08	46.0	215.97	68.78	120.0	560.22	178.41
1.91	0.075	40.0	188.01	59.87	108.0	504.48	160.66	190.0	884.70	281.75
2.54	0.100	58.0	271.88	86.59	221.0	1028.04	327.40	275.0	1277.20	406.75
3.18	0.125	72.0	337.07	107.35	244.0	1134.25	361.22	365.0	1690.99	538.53
3.81	0.150	86.0	402.21	128.09	310.0	1438.34	458.07	455.0	2102.91	669.72
4.45	0.175	97.0	453.36	144.38	360.0	1668.05	531.22	530.0	2444.76	778.59
5.08	0.200	110.0	513.77	163.62	420.0	1942.94	618.77	598.0	2753.59	876.94
7.62	0.300	130	606.64	193.20	525	2422.01	771.34	611	2812.51	895.70
10.16	0.400	155	722.60	230.13	610	2807.98	894.26	710	3259.94	1038.20
12.70	0.500	177	824.52	262.59	673	3092.98	985.03	792	3628.84	1155.68

OBSERVACIONES:			
INVESTI	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
firmufines.	War lo	July 1851	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA		ING. MERMA GÁLLARDO, LIZBETH MILAGROS


AN	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD PROTOCOLO	A DEL NORTE CAJAMARCA			
II	ENSAYO:	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	45 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:			
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO S EG-2013, ADICIONANDO ARCILLA EN 2022"			
TIPO DE MA	TERIAL:	AFIRMADO SIN ADI	AFIRMADO SIN ADICIÓN DE ARCILLA				
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023			

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
finnfiner	Margare	Sally S	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS

	LABO	RATORIO DE SUELOS		DA DEL NORTE CAJAMARCA				
1 P	PROTOCOLO							
	ENSAYO:		ORTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	15 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"					
TIPO DE MATERIAL: AFIRMADO SIN ADICIÓN DE ARCILLA								
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023				



MOLDE N°	MOLDE Nº 01	MOLDE Nº 02	MOLDE Nº 03
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	190.89	721.79	896.73
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	19.09	72.18	89.67
Ds (gr/cm ³)	2.078	2.138	2.153

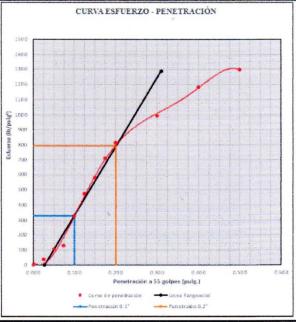
INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS	
Jumphing	Villaciones	Thurst B		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS	

4	LABO	RATORIO DE SUEL	OS - UNIVERSIDAD PRIVAD	DA DEL NORTE CAJAMARCA
1			PROTOCOLO	
	ENSAYO:		PORTE DE CALIFORNIA RATORIO (CBR)	CÓDIGO DEL DOCUMENTO: CBR-LS-UPNC:
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.	.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN E		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"
TIPO DE MA	O DE MATERIAL: AFIRMADO SIN ADICIÓN DE ARCILLA			
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.135
CBR 0.1" (%)	71.41 %
Máxima Densidad Seca (gr./cm3)	2.028 kg/cm ³
CBR 0.2" (%)	27.33 %

OBSERVACIONES:			
INVEST	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Som from,	Villandadado	July 16	I hay
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

Anexo N°51


Ensayo de CBR de la cantera Guitarrero adicionando el 5% de arcilla

4		LABOR	ATORIO D	E SUELO	OS - UN				DEL NOR	TE CAJ	AMARO	CA
1	ENSA	AYO:	RELACIÓ			DE CAL	FORNIA		CÓDIGO I	DEL DO	CUME	NTO:
	NOR	MA.		EN LABORATORIO (CBR) ITC E 132 / NTP 399.145 / ASTM D183 / AASHTO T193								
DEL NORTE MIC E 132/NIP 399.145/ASTM D183/AASHTO T193 TESIS: "CALIDAD DEL MATERIAL GRANULAR DE LAS CANTEL CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-201												
TIDO DE MA	TEDIAL		PORCENTA AFIRMAD						22"			
IPO DE MA	IERIAL		GUITARR						14-08-202	2		
ANTERA.			GUITARK				ENSAY		14-06-202.	,		
				CALIFOR	NIA BEA	IRING I	ATIO - O					
	SCRIPCI	de Muestra					1	18000.00	gr	Т	2	,
Nº Capas	SCRIPCI	ION	UND		5		+	<u>2</u> 5		-	5	~~~~
	C		-		13	-	+	-		+	55	
N° Golpes por	-		-			_	+	27	T =	—		T =
Condición de	Muestra			Ant		Desp.	_	Antes	Desp.	_	ates	Desp.
Peso Molde	Time 1	N 5-14	gr.	7226 12318		7226.00		224.00	7224.00		18.00	7202.00
Peso Muestra		Niolde	gr.	5092		12415.0			12517.00			12555.00
Peso Muestra l Diametro del N			gr.	5092 15.2		5189.00	_	198.00 15.20	5293.00		6.00	5353.00
Altura del Mol			cm	17.6		15.20		17.60	15.20		.60	15.20
Altura del Disc		dor	cm	5.0		5.00	-	5.00	5.00		.00	5.00
Altura Muestra	-		cm	12.6		12.60	+	12.60	12.60		.60	12.60
Volumen Mues			cm3	2286		2286.38		286.38	2286.38		6.38	2286.38
Densidad Húm			gr cm3	2.2		2.27	le .	2.27	2.32		33	2.34
	3			CON	TENIDO	DE HU	MEDAD					
Ensayo			N°	1-A	1 - B	1-C	1-A	1 - B	1-C	1 - A	1 - B	1-C
Peso Recipient	e		gr.	27.90	27.80	28.00	27.80	28.50	29.00	27.80	28.00	27.80
Peso Muestra	-		gr.	156.50	147.90	160.90		151.60	157.60	155.80	154.30	153.30
Peso Muestra	Seca + Re	cipiente	gr.		141.70	152.20				148.70	146.90	145.80
Peso del Agua			gr.	7.20	6.20	8.70	7.10	7.10	7.90	7.10	7.40	7.50
Peso Muestra		(3179/)	gr.		113.90	124.20				120.90		118.00
Contenido de F Promedio Con			%	5.93	5.44	7.00	5.64	6.12	6.55	5.87	6.22	6.36
,	iteniao a	e numedad		5.6 2.11		2.121	+	5.88 2.144	2.177		.05 197	2,200
Ds (gr./cm³)			gr/cm3	2.17	.0	2.121	1	2.144	2.173		131	2.200
				ENSAYO	DE HI	NCH.	MIENT	0				
TIEM	PO	M	OLDE N°		T		DE Nº		M	OLDE	Nº 03	
ACUMUI		Lectura		miento	Lect			miento	Lectura		chamie	nto
Horas	Días	Deforma		96	Defo		mm	96	Deforma			96
24	01	0.0015		0.022	0.00		0.025	0.014	0.0000	0.00		000
48	02	-	-	-	-		-	-	-			_
72	03	0.0022	0.056	0.032	0.00	18	0.046	0.026	0.0010	0.02	5 0.	014
96	04	0.0028	0.071	0.040	0.00	020	0.051	0.029	0.0010	0.02	5 0.	014
OBSERVACI	ONES:											
- DOLINA	J.120.		GADORE	S			COOF	RDINADO	OR DE	ASESC	OR DE T	TESIS
								ORATO)	A	4
frum	Ann		V	Marin	co f	_	The fill				A VAV	
BR. ALARCOI SHYRAM GEO		0,	BR. VILLA ROSA CA) ACUÑ		IG. HOY ORGE LI	S MART		IG. MER IZBETH		LARDO, ROS

41	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	DA DEL NORTE CAJAMARCA		
11	ENSAYO:		DRTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399 145 / ASTM D183 / AASHTO T		CBR-LS-UPNC:		
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022".		
TIPO DE MAT	ΓERIAL:	AFIRMADO CON AD	RMADO CON ADICIÓN DE ARCILLA 5%			
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023		

				(CARGA - P	ENETRACIÓ	N	*****************	***************************************	
D:	tos	D pis	ión (pulg)=	2.00	A piso	in (pulg²)=	3.14	Fd	e carga =	7.5
Dana	Penetración MOLDE Nº 01		•	MOLDE N° 02		MOLDE N° 03				
rene	racion	Dial	Carga	Esfuerzo	D'.	Carga	Esfuerzo	D'.	Carga	Esfuerzo
mm	Pulg.	Diai	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43
0.64	0.025	13.0	62.05	19.76	22.0	104.06	33.14	25.0	118.05	37.60
1.27	0.050	45.0	211.31	67.30	74.0	346.38	110.31	70.0	327.76	104.38
1.91	0.075	61.0	285.86	91.04	91.0	425.46	135.50	85.0	397.56	126.61
2.54	0.100	68.0	318.45	101.42	110.0	513.77	163.62	220.0	1023.42	325.93
3.18	0.125	75.0	351.03	111.79	123.0	574.15	182.85	321.0	1488.92	474.18
3.81	0.150	79.0	369.64	117.72	130.0	606.64	193.20	392.0	1814.76	577.95
4.45	0.175	83.0	388.25	123.65	140.0	653.04	207.98	480.0	2217.00	706.05
5.08	0.200	85.0	397.56	126.61	155.0	722.60	230.13	555.0	2558.43	814.79
7.62	0.300	115.0	537.00	171.02	172.0	801.37	255.21	680.0	3124.59	995.09
10.16	0.400	121.0	564.86	179.89	190.0	884.70	281.75	810.0	3709.61	1181.40
12.70	0.500	131.0	611.28	194.68	210.0	977,20	311.21	891.0	4072.15	1296.86

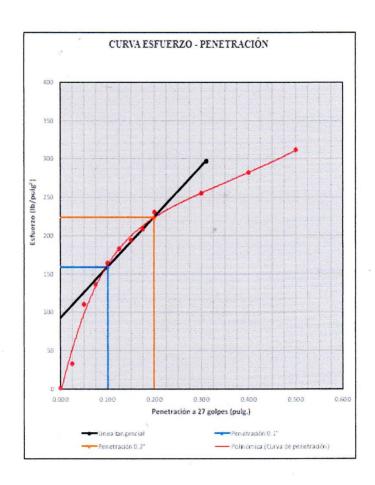
OBSERVACIONES:

INVESTIGADORES

COORDINADOR DE LABORATORIO

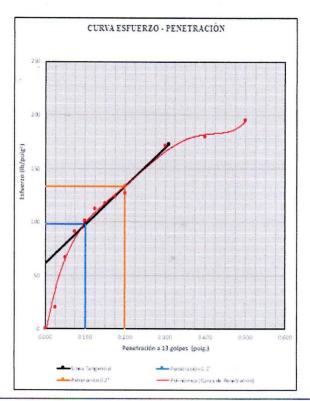
ASESOR DE TESIS

LABORATORIO


BR. ALARCON BUENO, GHYRAM GEORDAN

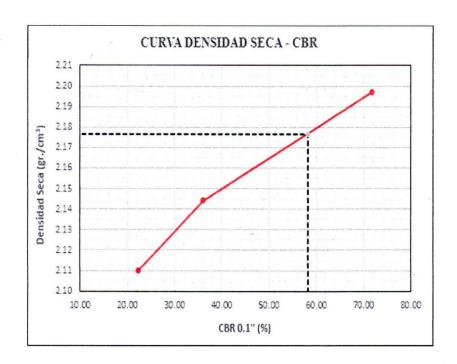
BR. VILLAVICENCIO ACUÑA, JORGE LUIS

ING. MERMA GALLARDO, LIZBETH MILAGROS


11	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO						
	ENSAYO:		ORTE DE CALIFORNIA ATORIO (CBR)	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.1	45 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO S EG-2013, ADICIONANDO ARCILLA E 2022"				
TIPO DE MA	TERIAL:	AFIRMADO CON AL	AFIRMADO CON ADICIÓN DE ARCILLA 5%					
CANTERA:		GUITARRERO	GUITARRERO FECHA DE ENSAYO: 18-08-2023					

OBSERVACIONES:			
INVESTI	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
famifina	Villerant	July 1	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

41	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD PROTOCOLO	DA DEL NORTE CAJAMARCA		
	ENSAYO:		ORTE DE CALIFORNIA ATORIO (CBR)	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.1	45 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:		
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MAT CHONTA, SEGÚN EL PORCENTAJES DE 59	CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"			
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 5%				
CANTERA:		GUITARRERO				



MOLDE N°	MOLDE Nº 01	MOLDE Nº 02	MOLDE Nº 03
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	223.58	360.72	718.54
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	22.36	36.07	71.85
Ds (gr/cm ³)	2.110	2.144	2.197

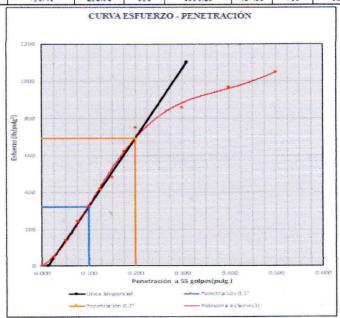
INVES	TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS	
finishms	Villarono de.	July 16		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS	

4	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
		PROTOCOLO								
	ENSAYO:		PORTE DE CALIFORNIA ATORIO (CBR)	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDA	NORMA:	MTC E 132 / NTP 399.	145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:						
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA I PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".								
TIPO DE	MATERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 5%								
CANTERA	\ :	GUITARRERO	FECHA DE ENSAYO:	18-08-2023						

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.176
CBR 0.1" (%)	58.27 %
Máxima Densidad Seca (gr./cm3)	2.067 kg/cm ³
CBR 0.2" (%)	4.63 %

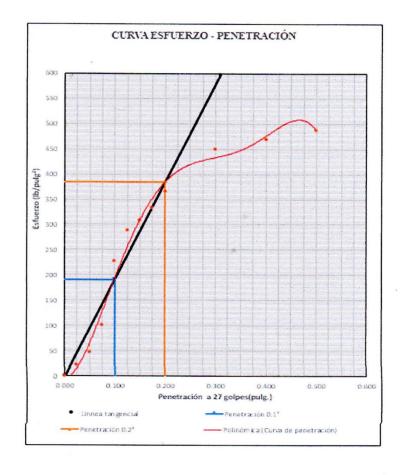
INVES	rigadores	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
frinfhms	Ji Haviores L	Julia	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS

Anexo N°52

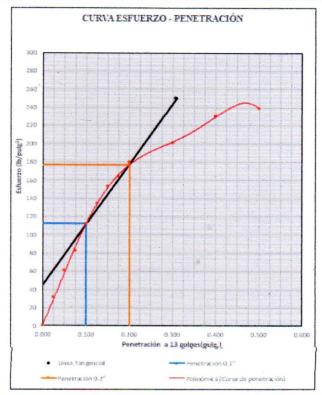

Ensayo de CBR de la cantera Guitarrero adicionando el 10% de arcilla

4		LABOR	ATORIO D	E SUEL	OS - UNI			/ADA D	EL NORT	ECAJA	AMARCA	4
1	ENS	AVO:	RELACIÓN					1,	ÓDICO F	EL DO	CHMEN	TO:
				EN LABORATORIO (CBR) MTC E 132 / NTP 399 145 / ASTM D183 / AASHTO T193								10.
UNIVERSIDAD PRIVADA	NOR	MA:						193				
DEL NORTE	TESI		CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITAR CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO AR PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"							RERO CILLA E		
TIPO DE MA	TERIAL		AFIRMADO						-			
CANTERA:			GUITARR	ERO	FEC	HA DE EN	ISAYO:		14-08-2023			
				CALIFO	RNIA BE.	ARING RA						
		de Muestra]	18000.00	gr			*
-	SCRIPC	ION	UND		1			2			3	-
Nº Capas			_		5			5			5	
N° Golpes po	r Capa				13	,		27	,		55	
Condición de	Muestra	1		Ar	ites	Desp.	An	tes	Desp.	An	ites	Desp.
Peso Molde			gr.	722	6.00	7226.00	722	4.00	7224.00	720	2.00	7202.00
Peso Muestra	Húmeda	+ Molde	gr.	124	58.00	12502.00	1260	2.00	12642.00	126.	28.00	12694.00
Peso Muestra	Hümeda		gr.	523	2.00	5276.00	537	8.00	5418.00	542	6.00	5492.00
Diametro del 1	Molde		cm	According to the second	.20	15.20		.20	15.20	100	5.20	15.20
Altura del Mo	lde		cm	17	.60	17.60	17	.60	17.60	17	.60	17.60
Altura del Dis	co Espaci	iador	cm		.00	5.00	Commence of the Commence of th	00	5.00		.00	5.00
Altura Muesti	-	COLUMN TWO IS NOT THE OWNER.	cm		.60	12.60		.60	12.60		1.60	12.60
Volumen Mue			cm3		6.38	2286.38		6.38	2286.38	7 200	86.38	2286.38
Densidad Hun	neda (Dh))	gr/cm3		29 NTENIDO	DE HUM	2.35 2.37		2.37		2.40	
Ensavo			N°	1-A	1-B	1-C	1 - A	1 - B	1-C	1-A	1 - B	1-C
Peso Recipien	te		gr.	28.00	27.90	26.30	28.40	27.90	27.40	29.00	27.80	28.30
Peso Muestra		+ Recipients		176.50	178.90	173.30	160.60	183.00	171.30	192.50	202.80	162.80
Peso Muestra			gr.	168.20	169.40	162.50	152.90	174.20	162.40	183.40	192.80	154.80
Peso del Agua			gr.	8.30	9.50	10.80	7.70	8.80	8.90	9.10	10.00	8.00
Peso Muestra	Seca		gr.	140.20	141.50	136.20	124.50	146.30	135.00	154.40	165.00	126.50
Contenido de	Humedad	(W%)	%	5.92	6.71	7.93	6.18	6.02	6.59	5.89	6.06	6.32
Promedio Co	ntenido	de Humeda	d %	6.	32	7.93	6.	10	6.59	5.	.98	6.32
Ds (gr./cm³)			gr/cm3	2.	154	2.140	2.140 2.215		2.223	2.236		2.257
			I	NSAYO	DE HI	NCHAM	ENTO					
TIEM	PO	M	OLDE N°	01		MOLDI	N° 02		M	OLDE	N° 03	
ACUMUI	ADO	Lectura	Hincha	miento	Lecti	ıra Hi	nchami	ento	Lectura	_	chamier	ito
Horas	Días	Deforma	. mm	96	Defor	ma. m	m	96	Deforma	. mn	9	6
24	01	0.0028	0.071	0.040	0.00	25 0.0	64 (0.036	0.0010	0.02	5 0.0	14
48	02	0.0035	0.089	0.051				0.040	0.0015	0.03		
72	03	0.0042	0.107	0.061	0.00	35 0.0	89 (0.051	0.0020	0.05	1 0.0	29
96	04	0.0052	0.132	0.075	0.00	40 0.1	02 (0.058	0.0022	0.05	6 0.0	32
OBSERVAC	IONES:											
		INVESTI	GADORES	3		C	OORD	NADO		ASESO	R DE TI	ESIS
finns	m		V.	Mia	al	C		Ø.		c.		
BR. ALARCO GHYRAM GE		0,	BR. VILLA ROSA CAF		O ACUÑA		HÓYOS SE LUIS				MA GALL MILAGRO	

41	LABO	RATORIO DE SUELO	OS - UNIVERSIDAD PRIVAD PROTOCOLO	DA DEL NORTE CAJAMARCA			
	ENSAYO:	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.1	CBR-LS-UPNC				
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILL PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".					
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 10%					
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023			

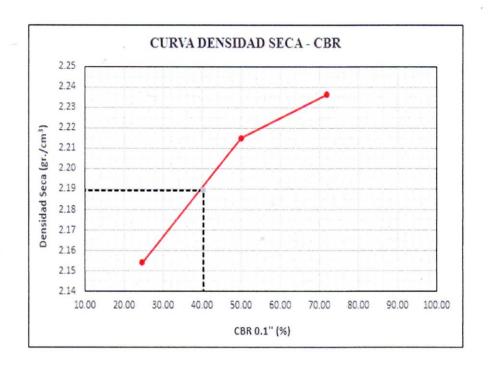

				CAR	GA - PEN	ETRACIÓN				
Datos D pisón (pulg)=		2.00	2.00 A pisón (pulg²)=		3.14	Fd	e carga =	7.5		
D	ración		MOLDE Nº 0		MOLDE Nº 02			MOLDE N° 03		
renet	racion	70.1	Carga	Esfuerzo	n	Carga	Esfuerzo	D	Carga	Esfuerzo
mm	Pulg.	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43
0.64	0.025	21.0	99.39	31.65	14.0	66.72	21.25	30.0	141.38	45.02
1.27	0.050	41.0	192.67	61.36	31.0	146.04	46.51	94.0	439.41	139.94
1.91	0.075	55.0	257.91	82.14	67.0	313.79	99.93	164.0	764.31	243.41
2.54	0.100	75.0	351.03	111.79	153.0	713.33	227.17	220.0	1023.42	325.93
3.18	0.125	90.0	420.81	134.02	195.0	907.83	289.12	281.0	1304.85	415.56
3.81	0.150	103.0	481.25	153.26	208.0	967.96	308.27	324.0	1502.71	478.57
4.45	0.175	110.0	513.77	163.62	225.0	1046.52	333.29	423.0	1956.66	623.14
5.08	0.200	121.0	564.86	179.89	247.0	1148.09	365.63	510.0	2353.73	749.59
7.62	0.300	135	629.85	200.59	304	1410.73	449.28	586	2699.17	859.61
10.16	0.400	155	722.60	230.13	318	1475.13	469.79	661	3038.77	967.76
12.70	0.500	161	750.41	238.98	330	1530.29	487.35	716	3286.99	1046.81

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
from fine	Villarencok.	Jungston	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS


Universidad Privada DEL NORTE	LABO	RATORIO DE SUEL	OS - UNIVERSIDAD PRIVAL PROTOCOLO	DA DEL NORTE CAJAMARCA			
	ENSAYO:		PORTE DE CALIFORNIA RATORIO (CBR)	CÓDIGO DEL DOCUMENTO:			
	NORMA:	MTC E 132 / NTP 399.	145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:			
	TESIS:	CHONTA, SEGÚN E	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"				
TIPO DE MATERIAL:		AFIRMADO CON ADICIÓN DE ARCILLA 10%					
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023			

OBSERVACIONES:			
INVESTI	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
firmfinns	Villagonado	July 15	Lift your
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

41	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA
1	ENSAYO:		DRTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	5 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL	ERIAL GRANULAR DE LAS MANUAL DE CARRETERAS 6, 10% Y 15%, CAJAMARCA 2	CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 10%		
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023



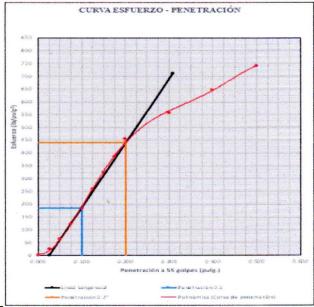
MOLDE N°	MOLDE Nº 01	MOLDE Nº 02	MOLDE Nº 03
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	246.46	500.83	718.54
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	24.65	50.08	71.85
Ds (gr/cm ³)	2.154	2.215	2.236

OBSERVACIONES:			
INVES	TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
from from	Marience	July 15	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

	LABO	RATORIO DE SUELOS	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA					
1	PROTOCOLO								
	ENSAYO:		ORTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	5 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILL PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".							
TIPO DE MAT	ΓERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 10%							
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023					

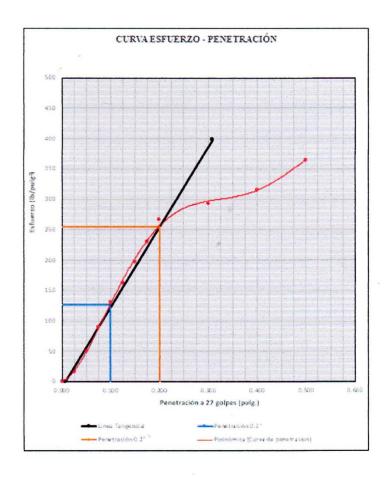
RESULTADOS	1
Máxima Densidad Seca (gr./cm3)	2.188
CBR 0.1" (%)	41.48 %
Máxima Densidad Seca (gr./cm3)	2.079 kg/cm ³
CBR 0.2" (%)	17.60 %

OBSERVACIONES:			
INVEST	IGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
from funs	Vellerinak	Juny 16	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYO'S MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS


Ensayo de CBR de la cantera Guitarrero adicionando el 15% de arcilla

		LABORA	ATORIO DE	SUELO	S - UNIV	RSIDAD	PRIV	ADA D	EL NOR	TE CAJ	AMAR	CA
1					-	ROTOCO	emericani.					
	ENSA	YO:	EN LABORATORIO (CBR)						DEL DOCUMENTO:			
UNIVERSIDAD	NORM	/A:	MTC E 132/	NTP 399.	145 / ASTM [0183 / AAS	HTO T19	93	BK-LS-U	PNC:		
PRIVADA DEL NORTE	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO Y CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA EN PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"											
IPO DE MA	TERIAL		AFIRMADO						-			
ANTERA:			GUITARRE	RO	FECHA	DE ENS	AYO:	1	4-08-2023	3		
	·	1. 1/		ALIFOR	NIA BEARI	NG RATIO	-	-				
	SCRIPC	de Muestr	UND		1		180	2	gr	T	3	
N° Capas	JOINT C	10.1	CAD		5			5		†	5	
N° Golpes pe	or Capa				13			27	-	1	55	
Condición d		a		A	ntes	Desp.	An	tes	Desp.	An	ites	Desp.
Peso Molde			gr.		26.00	7226.00		4.00	7224.00	_	2.00	7202.00
Peso Muestra	Hümeda	+ Molde	gr.	125	564.00	12587.00	1263	7.00	12741.00	1268	33.00	12739.00
Peso Muestra			gr.		38.00	5361.00		3.00	5517.00		1.00	5537.00
Diámetro del			cm		5.20	15.20		.20	15.20		.20	15.20
Altura del M Altura del Di		indoe	cm	-	7. 60 5.00	17.60 5.00		.60	17.60 5.00	-	.60	17.60 5.00
Altura Muesi			cm		2.60	12.60		.60	12.60		.60	12.60
Volumen Mu	_		cm3		86.38	2286.38		6.38	2286.38		6.38	2286.38
Densidad Hú	meda (Dh)	gr/cm3		2.33	2.34	2.	37	2.41	2.	40	2.42
					TENIDO DI	HUMED	AD		-	,		
Ensayo			N°	1 - A	1 - B	1-C	1 - A	1 - B	1-C	1 - A	1 - B	1-C
Peso Recipier		Di.	gr.	26.40	27.90	27.60 163.20	26.70 198.50	28.00	-	26.40	28.80	27.10 196.70
Peso Muestra Peso Muestra			gr.	154.70	157.00 148.60	154.40	189.40	-	-		211.60	186.40
Peso del Agu		copione	gr.	7.40	8.40	8.80	9.10	11.10		10.30	10.90	10.30
Peso Muestra	Seca		gr.	120.90	120.70	126.80	162.70	173.60	145.30	154.00	182.80	159.30
Contenido de			%	6.12	6.96	6.94	5.59	6.39	6.54	6.69	5.96	6.47
Promedio Co	ontenido	de Humed		-	5.54	6.94		99	6.54	-	33	6.47
Ds (gr./cm³)			gr/cm3	2	.187	2.188	2.2	236	2.262	2.2	257	2.273
					DE HINC							
TIEN			OLDE Nº (1		OLDE N	° 02	_	7	DLDE N	° 03	
ACUMU		Lectura	1		Lectura	1 111111	hamie		Lectura	Hinch	namien	
Horas	Días	Deforma	. mm	96	Deform	a. mm	'	% I)eforma.	mm	9,4	•
24	01	0.0040	0.102	0.058	0.0030	0.07	6 0.	043	0.0016	0.041	0.0	23
48	02	0.0055	0.140	0.079	0.0028	0.07	1 0.	040	0.0022	0.056	0.0	32
72	03	0.0062	0.157	0.089	0.0045	0.11	4 0.	065	0.0025	0.064	0.0	36
96	04	0.0075	0.191	0.108	0.0056	0.14	2 0.	081	0.0028	0.071	0.0	40
DBSERVAC		0.0075	1 0		0.0050	-						
		INVESTI	GADORES			-	ORDIN	-		ASES	OR DE	TESIS
James	2 fm	c	V	lloway	neofe	June 1		Jumpf B		A Self		
BR. ALARCO SHYRAM GE		Ο,	BR. VILLAV ROSA CAR		ACUÑA,	ING. H		MARTI		IG. MER IZBETH		LLARDO, ROS

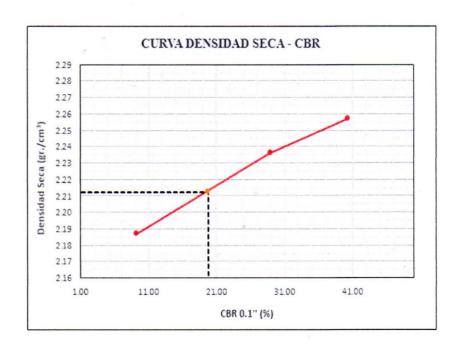
4	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO								
T	ENSAYO:		PORTE DE CALIFORNIA RATORIO (CBR)	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399	.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".							
TIPO DE MATERIAL:		AFIRMADO CON ADICIÓN DE ARCILLA 15%							
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023					


				C	ARGA - PEN	ETRACIÓN				
D	atos	D pisón	(pulg)=	2.00	A pisón (pulg ²)=	3.14	F de ca	rga =	7.5
D	tración	M	OLDE Nº 0	1		MOLD	E Nº 02		MOLD	E Nº 03
rene	tracion	D'-1	Carga	Esfuerzo	D. 1	Carga	Esfuerzo	Di-1	Carga	Esfuerzo
mm	Pulg.	Dial	Lb	Lb/pulg2	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43
0.64	0.025	14.0	66.72	21.25	10.0	48.05	15.30	16.0	76.06	24.22
1.27	0.050	20.0	94.73	30.17	34.0	160.03	50.97	43.0	201.99	64.33
1.91	0.075	24.0	113.39	36.11	60.0	281.20	89.55	82.0	383.60	122.17
2.54	0.100	28.0	132.05	42.05	88.0	411.51	131.05	123.0	574.15	182.85
3.18	0.125	32.0	150.71	48.00	109.0	509.13	162.14	174.0	810.63	258.16
3.81	0.150	39.0	183.35	58.39	133.0	620.57	197.63	220.0	1023.42	325.93
4.45	0.175	42.0	197.33	62.84	155.0	722.60	230.13	260.0	1208.06	384.73
5.08	0.200	52.0	243.93	77.69	179.0	833.78	265.54	308.0	1429.14	455.14
7.62	0.300	57.00	267.23	85.10	198.00	921.71	293.54	378.00	1750.60	557.52
10.16	0.400	64.00	299.83	95.49	213.00	991.070	315.63	440.00	2034.39	647.89
12.70	0.500	71.00	332.41	105.86	246.00	1143.476	364.16	503.00	2321.84	739.44

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
famefuns	Villangueck	Julia)	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ,	ING. MERMA GALLARDO LIZBETH MILAGROS


4	LABO	RATORIO DE SUELO	OS - UNIVERSIDAD PRIVAI PROTOCOLO	DA DEL NORTE CAJAMARCA		
	ENSAYO:		PORTE DE CALIFORNIA RATORIO (CBR)	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.	145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:		
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN E		S CANTERAS EDGAR, GUITARRERO Y AS EG-2013, ADICIONANDO ARCILLA EN 2022"		
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 15%				
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023		

INVEST	TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Limphon	Villamak		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS



ESFUERZOS PARA 0.1" DI	E PENETRACIO	ON, CBR Y DE	NSIDAD SECA
MOLDE N°	MOLDE Nº 01	MOLDE Nº 02	MOLDE N° 03
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	92.71	288.92	403.11
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	9.27	28.89	40.31
Ds (gr/cm ³)	2.187	2.236	2.257

OBSERVACIONES:				
INVESTI	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS	
finnefine	Villawandok	Jung Sol	r foff	
	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	NG. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS	

48	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
1	PROTOCOLO								
II	ENSAYO:	RELACIÓN DE SOI EN LABOR	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399	.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC					
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".							
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 15%							
CANTERA:		GUITARRERO	FECHA DE ENSAYO:	18-08-2023					

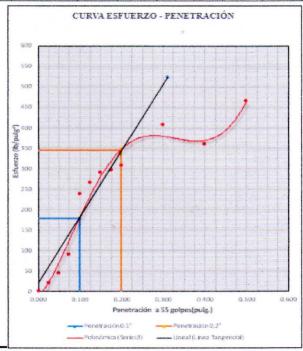
RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.212
CBR 0.1" (%)	19.76 %
Máxima Densidad Seca (gr./cm3)	2.101 kg/cm
CBR 0.2" (%)	28.44 %

OBSERVACIONES:			
INVEST	GADORES	COORDINADOR DE LABORATORIO	ASESOR DETESIS
frimfirmer	Villenal	July 1	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

Anexo N°54

Ensayo de CBR de la cantera Chonta sin adición de arcilla

	LABOR	ATORIO DE S	UELOS				DA DE	L NORT	E CAJA	MARC	A
11					ROTOCO						
	ENSAYO:		ABORA'	TORIO (C	BR)		CE	DIGO D			
NORMA: MTC E		MTC E 132 / NT	C E 132 / NTP 399.145 / ASTM D183 / AASHTO T193								
PRIVADA DEL NORTE	TESIS:	CHONTA, SEG PORCENTAJES	CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDC CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADIC PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"						DGAR, ICIONA	GUITA NDO A	RRERO RCILLA
PO DE MA	TERIAL:	AFIRMADO S	AFIRMADO SIN ADICIÓN DE ARCILLA								
ANTERA:		CHONTA		FECH/	DE ENS	AYO:	07	-08-2023			
		CAL	IFORN	A BEAR	NG RATIO	O - CBR					
	Cantidad de Mues	stra				180	00.00	gr			,
D	ESCRIPCIÓN	UND		1			2			3	
Nº Capas		-		5			5			5	
Nº Golpes p	or Cana	, -		13			27			55	
Condición d			Aı	ntes	Desp.	Ant	tes	Desp.	Ant	es	Desp.
Peso Molde		gr.	7226.00		7226.00	7224	.00	7224.00	7202	.00	7202.00
	ra Húmeda + Mole		118	06.00	11989.00	1193	4.00	11974.00	1208	3.00	12176.00
Peso Muest		gr.	4580.00		4763.00	4710	0.00	4750.00	4881	.00	4974.00
Diámetro de		cm	15.20		15.20	15.	20	15.20	15.	20	15.20
Altura del N		cm	1	7.60	17.60	17.	60	17.60	17.	60	17.60
	Disco Espaciador	cm	5	.00	5.00	5.0	00	5.00	5.0		5.00
	stra Compactada	cm	1	2.60	12.60	12.	60	12.60	12.	60	12.60
	uestra Humeda	cm3	22	86.38	2286.38	2280		2286.38	2286		2286.38
	iumeda (Dh)	gr/cm3		.00	2.08	2.5	06	2.08	2.	13	2.18
			CONT	ENIDO D	E HUMED	AD			,		
Ensayo		N°	1-A	1 - B	1 - C	1-A	1-B	1-C	1-A	1 - B	1 - C
Peso Recipi	iente	gr.	27.20	27.90	28.30	27.80	28.10	28.10	26.90	28.00	28.60
Peso Mues	tra Húmeda + Reci	piente gr.	202.00	217.50	203.70	238.80		210.90		178.50	
Peso Mues	tra Seca + Recipies	nte gr.	189.80	204.80	190.50	223.00		196.60	-	167.90	212.30
Peso del A	gua	gr.	12.20	12.70	13.20	15.80	12.50	14.30	11.00	10.60	15.00
Peso Mues		gr.	162.60	176.90	162.20	_	168.60		-	139.90	-
	de Humedad (W%		7.50	7.18	8.14	8.09	7.41	8.49	8.10	7.58	8.17
Promedio (Contenido de Hum	edad %		7.34	8.14	-	75	8.49	-	84	8.17
Ds (gr./cm	3)	gr/cm3	1	.863	1.923	1.9	912	1.917	1.5	75	2.015


			E	NSAYO	DE HINCH	AMIENT	0				
TIEN	PΟ	МО	LDE Nº	01	МО	MOLDE Nº 02			MOLDE N° 03		
ACUM		Lectura	Hinchamiento		Lectura Hinchamiento		Lectura	Hincha	miento		
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%	
24	01	0.0320	0.813	0.462	0.0270	0.686	0.390	0.0190	0.483	0.274	
48	02	0.0680	1.727	0.981	0.0460	1.168	0.664	0.0420	1.067	0.606	
72	03	0.1120	2.845	1.616	0.1010	2.565	1.458	0.0990	2.515	1.429	
96	04	0.1450	3.683	2.093	0.1320	3.353	1.905	0.1280	3.251	1.847	

OBSERVACIONES:			
INVES	TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Jain fum	Villamente	July 18	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

-	LABO	RATORIO DE SU	ELOS - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA
1			PROTOCOLO	
	ENSAYO:		SOPORTE DE CALIFORNIA BORATORIO (CBR)	CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	MTC E 132 / NTP	399.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:
PRIVADA DEL NORTE	TESIS: "CALIDAD DEL MATERIAL GRANULAR DE LAS CAN CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".		S EG-2013, ADICIONANDO ARCILLA EN	
TIPO DE MA	TERIAL:	AFIRMADO SIN	ADICIÓN DE ARCILLA	
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023

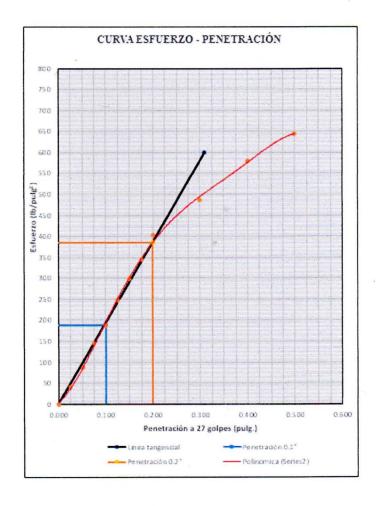
				C	ARGA - P	ENETRACIÓN	ī			
Da	itos	D pisc	on (pulg)=	2.00	A pise	on (pulg ²)=	3.14	F de	carga =	7.5
Danas	tración		MOLDE Nº 0	1	MOLDE N° 02		2		MOLDE	N° 03
Pene	tracion		Carga	Esfuerzo	D: 1	Carga		D: 1	Carga	Esfuerzo
mm	Pulg.	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43
0.64	0.025	8.0	38.71	12.33	28.0	132.05 .	42.05	14.0	66.72	21.25
1.27	0.050	19.0	90.06	28.68	59.0	276.54	88.07	30.0	141.38	45.02
1.91	0.075	33.0	155.37	49.48	97.0	453.36	144.38	60.0	281.20	89.55
2.54	0.100	55.0	257.91	82.14	126.0	588.08	187.29	160.0	745.77	237.51
3.18	0.125	77.0	360.34	114.76	166.0	773.58	246.36	180.0	838.41	267.01
3.81	0.150	98.0	458.01	145.86	201.0	935.59	297.96	196.0	912.46	290.59
4.45	0.175	115.0	537.00	171.02	233.0	1083.47	345.05	200.0	930.96	296.49
5.08	0.200	132.0	615.92	196.15	272.0	1263.38	402.35	208.0	967.96	308.27
7.62	0.300	174	810.63	258.16	330	1530.29	487.35	276	1281.81	408.22
10.16	0.400	190	884.70	281.75	392	1814.76	577.95	243	1129.63	359.76
12.70	0.500	209	972.58	309.74	437	2020.67	643.53	315	1461.33	465.39

OBSERVACIONES:

INVESTIGADORES

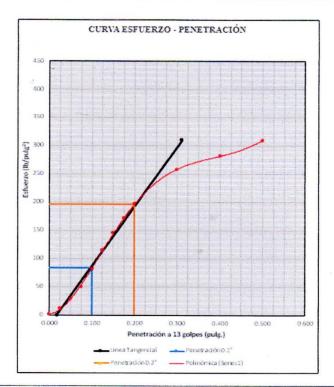
COORDINADOR DE LABORATORIO

ASESOR DE TESIS


LABORATORIO

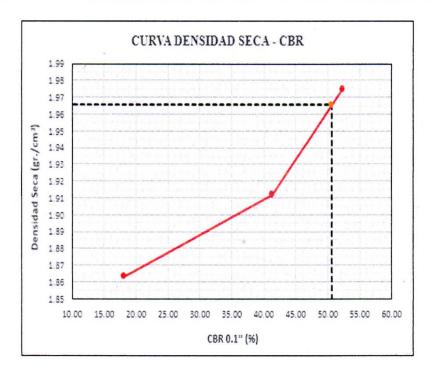
BR. ALARCON BUENO, GHYRAM GEORDAN

BR. VILLAVICENCIO ACUÑA, ING. HOYOS MARTINEZ, ING. MERMÁ GALLARDO, LIZBETH MILAGROS


41	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO							
	ENSAYO:		ORTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	15 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:					
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO S EG-2013, ADICIONANDO ARCILLA I 2022"					
TIPO DE MA	TERIAL:	AFIRMADO SIN ADI	CIÓN DE ARCILLA	-					
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023					

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
fru funs	Villemente		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS

	LABO	RATORIO DE SU	ELOS - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA
AR			PROTOCOLO	
II	ENSAYO:		SOPORTE DE CALIFORNIA BORATORIO (CBR)	CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD	NORMA:	MTC E 132 / NTP	399.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚ		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"
TIPO DE MA	TERIAL:	AFIRMADO SIN	ADICIÓN DE ARCILLA	
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023



MOLDE N°	MOLDE Nº 01	MOLDE Nº 02	MOLDE Nº 03
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	181.08	412.89	523.61
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	18.11	41.29	52.36
Ds (gr/cm ³)	1.863	1.912	1.975

INVEST	TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
frompins	Villagrado	Julle 1	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS

4	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA							
1		PROTOCOLO									
	ENSAYO:	EN LABORATORIO (CBR)									
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	5 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:							
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRER CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCIL PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".									
TIPO DE MATERIAL: AFIRMADO SIN ADICIÓN DE ARCILLA											
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023							

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	1.961
CBR 0.1" (%)	50.54 %
Máxima Densidad Seca (gr./cm3)	1.863 kg/cm
CBR 0.2" (%)	21.15 %

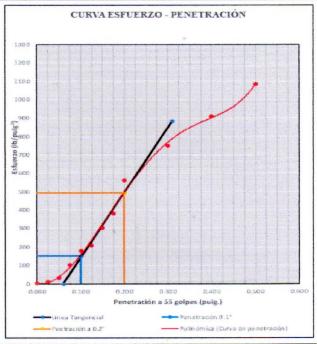
INVEST	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Lumifung	Villauitore do .		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GÁLLARDO LIZBETH MILAGROS

Anexo N°55

Ensayo de CBR de la cantera Chonta adicionando el 5% de arcilla

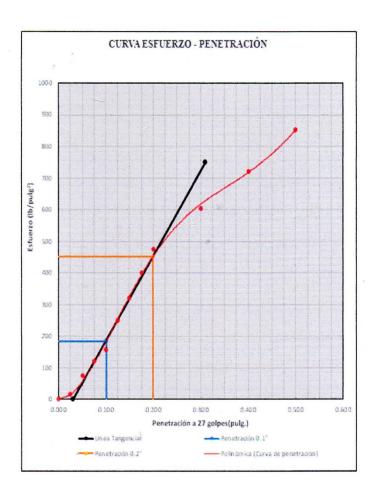
40	LABO	RATORIO DE SUELO		A DEL NORTE CAJAMARCA						
		PROTOCOLO								
	ENSAYO:		ORTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:						
UNIVERSID	NORMA:	MTC E 132 / NTP 399.14	45 / ASTM D183 / AASHTO T193	CBR-L3-UPNC						
PRIVADA DEL NORTE	TESIS:		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"							
TIPO DE MATERIAL: AFIRMADO CON ADICIÓN DE ARCILLA 5%										
CANTER	A:	07-08-2023								

	CA	LIFORN	IA BEAR	NG RATIO	O - CBR					
Cantidad de Muestra					180	00.00	gr			*
DESCRIPCIÓN	UND	D 1			2			3		
Nº Capas			5			5		5		
Nº Golpes por Capa			13			27			55	
Condición de Muestra		A	ntes	Desp.	An	tes	Desp.	An	ites	Desp.
Peso Molde	gr.	723	26.00	7226.00	722	4.00	7224.00	720	2.00	7202.00
Peso Muestra Húmeda + Molde	gr.	122	66.00	12332.00	1238	6.00	12507.00	1259	7.00	12616.00
Peso Muestra Húmeda	gr.	50-	40.00	5106.00	516	2.00	5283.00	539	5.00	5414.00
Diámetro del Molde	cm	1:	5.20	15.20	15.20		15.20	15	.20	15.20
Altura del Molde	cm	17.60 17.6		17.60	17.	.60	17.60	17	.60	17.60
Altura del Disco Espaciador	cm	5.00		5.00	5.0	00	5.00	5.	00	5.00
Altura Muestra Compactada	cm	12	2.60	12.60	12.	.60	12.60	12	.60	12.60
Volumen Muestra Húmeda	cm3	228	86.38	2286.38	228	6.38	2286.38	228	6.38	2286.38
Densidad Húmeda (Dh)	gr/cm3	2	.20	2.23	2.3	26	2.31	2.	36	2.37
		CONT	ENIDO D	E HUMED.	AD					
Ensayo	No	1 - A	1 - B	1 - C	1 - A	1 - B	1 - C	1 - A	1 - B	1 - C
Peso Recipiente	gr.	28.60	28.10	27.20	28.60	28.00	26.90	28.30	26.60	27.90
Peso Muestra Húmeda + Recipiente	gr.	231.40	239.30	210.00	213.80	209.10	199.30	212.10	247.30	181.50
Peso Muestra Seca + Recipiente	gr.	215.90	222.00	195.40	199.50	195.00	185.60	196.50	229.70	168.80
Peso del Agua	gr.	15.50	17.30	14.60	14.30	14.10	13.70	15.60	17.60	12.70
Peso Muestra Seca	gr.	187.30	193.90	168.20	170.90	167.00	158.70	168.20	203.10	140.90
Contenido de Humedad (W%)	96	8.28	8.92	8.68	8.37	8.44	8.63	9.27	8.67	9.01
Promedio Contenido de Humedad	9/6	8	.60	8.68	8.	41	8.63	8.	97	9.01
Ds (gr./cm ³)	gr/cm3	2.	026	2.052	2.0	85	2.126	2.1	66	2.174

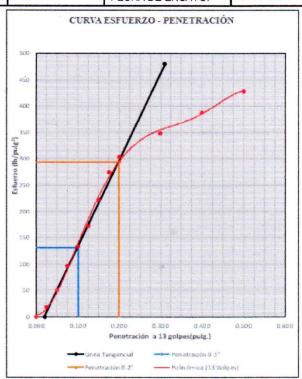

	ENSAYO DE HINCHAMIENTO													
TIEMPO MOLDE N° 01		MOLDE N° 02			MOLDE Nº 03									
ACUMULADO		Lectura Hinch	Hinchamiento Lectura Hinchamiento Lec		Hinchamiento		Lectura Hinchamiento		amiento Lectura Hinchamiento Lectur		Hinchamiento Lectura Hinchamiento Lectura		Hincha	miento
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%				
24	01	0.0590	1.499	0.851	0.0570	1.448	0.823	0.0540	1.372	0.779				
48	02	0.1120	2.845	1.616	0.1030	2.616	1.486	0.0880	2.235	1.270				
72	03	-	-	-	-	-	-	-	-	-				
96	04	0.2760	7.010	3.983	0.2500	6.350	3.608	0.2210	5.613	3.189				

INVES	TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS	
Lumpin	Motormark	June All		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS	

1	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO								
11	ENSAYO:		DRTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	45 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:						
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN EL	CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARI CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARC PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"							
TIPO DE MATERIAL: AFIRMADO CON ADICIÓN DE ARCILLA 5%										
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023						

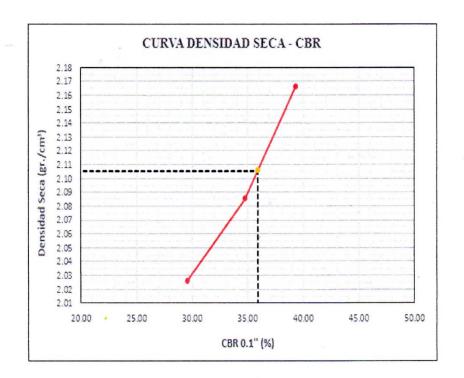

				CAR	GA - PENE	TRACIÓN				
D	atos	D pisón (pulg)= 2.00 A pisón (p		in (pulg²)=	3.14	F de carga =		7.5		
n			MOLDE Nº 0	1	MOLDE N° 02 MOLDE N		MOLDE Nº 0	03		
rene	tración	D: 1	Carga	Esfuerzo	D' I	Carga	Esfuerzo	D:-1	Carga	Esfuerzo
mm -	Pulg.	Dial	Lb	Lb/pulg ²	Dial	Lb	Lh/pulg ²	Dial	Lb	Lb/pulg2
0.00	0.000	0.0	. 1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43
0.64	0.025	12.0	57.39	18.28	10.0	48.05	15.30	8.0	38.71	12.33
1.27	0.050	34.0	160.03	50.97	49.0	229.95	73.23	20.0	94.73	30.17
1.91	0.075	65.0	304.48	96.97	80.0	374.30	119.20	68.0	318.45	101.42
2.54	0.100	90.0	420.81	134.02	106.0	495.19	157.70	120.0	560.22	178.41
3.18	0.125	115.0	537.00	171.02	168.0	782.84	249.31	141.0	657.68	209.45
3.81	0.150	150.0	699.42	222.75	216.0	1004.94	320.04	204.0	949.46	302.38
4.45	0.175	185.0	861.56	274.38	270.0	1254.16	399.41	256.0	1189.61	378.86
5.08	0.200	205.0	954.09	303.85	320.0	1484.33	472.72	380.0	1759.77	560.44
7.62	0.300	235.0	1092.70	347.99	410.00	1897.18	604.20	510.00	2353.73	749.59
10.16	0.400	262.5	1219.58	388.40	490.00	2262.60	720.57	620.00	2853.28	908.69
12.70	0.500	290.0	1346.29	428.76	580.00	2671.95	850.94	740.00	3395.08	1081.24

OBSERVACIONES:								
INVEST	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS					
further	Villestanich	January (19)						
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HÓYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS					


-	LABO	RATORIO DE SUELOS	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA					
1		PROTOCOLO							
	ENSAYO:		ORTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO: CBR-LS-UPNC:					
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	5 / ASTM D183 / AASHTO T193	CBR-LS-UPNC					
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRER CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILI PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"							
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 5%							
CANTERA: CHONTA FECHA DE ENSAYO				11-08-2023					

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS	
finnspinn	Villagional	July (18)	Jeff J	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS	

1	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA			
T	ENSAYO:	RELACIÓN DE SOP EN LABORA	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.1	CBR-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRE CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCI PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"					
TIPO DE MA	TERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 5%					
CANTERA:	11-08-2023						



MOLDE N°	MOLDE Nº 01	MOLDE Nº 02	MOLDE Nº 03
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	295.45	347.67	393.33
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	29.55	34.77	39.33
Ds (gr/cm ³)	2.026	2.085	2.166

INVES	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS	
franchins	Mondones	July 1	Luff	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS	

	LABO	RATORIO DE SUEL		A DEL NORTE CAJAMARCA						
1	PROTOCOLO									
	ENSAYO: RELACIÓN DE SOPORTE DE CALIFORNIA EN LABORATORIO (CBR)									
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.	CBR-LS-UPNC:							
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN E		CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"						
TIPO DE MATERIAL: AFIRMADO CON ADICIÓN DE ARCILLA 5%										
CANTERA: CHONTA FECHA DE ENSAYO: 11-08-2023										

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.106
CBR 0.1" (%)	35.49 %
Máxima Densidad Seca (gr./cm3)	2.001 kg/cm
CBR 0.2" (%)	28.22 %

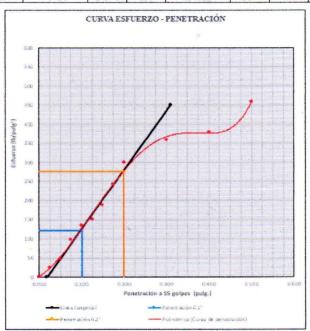
OBSERVACIONES:			
INVEST	IGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Jamepine	Villationer	Julia	Jeeg /
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

Anexo N°56

Ensayo de CBR de la cantera Chonta adicionando el 10% de arcilla

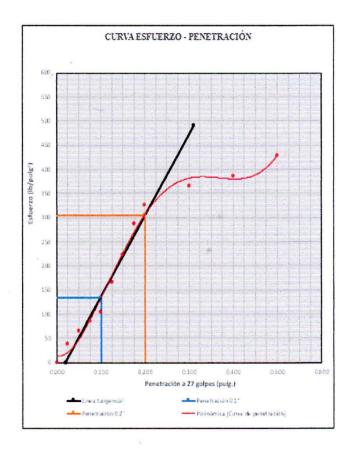
40		LABO	RATORIO DE SUELOS		A DEL NORTE CAJAMARCA	
				PROTOCOLO		
		ENSAYO:		RTE DE CALIFORNIA TORIO (CBR)	CÓDIGO DEL DOCUMENTO:	
	UNIVERSIDAD NORMA		MTC E 132 / NTP 399.14	5 / ASTM D183 / AASHTO T193	CBR-LS-UPINC	
PRIVADA DEL NOR	18	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO Y EG-2013, ADICIONANDO ARCILLA EN 022"	
TIPO DE MATERIAL: AFIRMADO CON ADICIÓN DE ARCILLA 10%					-	
CANTE	RA:	RA: CHONTA FECHA DE ENSAYO: 07-08-2023				

		CAL	LIFORNIA	BEARING	RATIO - C	BR				
Cantidad de Muestra						18000.00 g	7			
DESCRIPCIÓN	UND	1			2		3			
Nº Capas			5			5			5	
N° Golpes por Capa	0		13			27			55	
Condición de Muestra		Ante	25	Desp.	An	tes	Desp.	Ant	es	Desp.
Peso Molde	gr.	7226.	00	7226.00	722	4.00	7224.00	7202	.00	7202.00
Peso Muestra Húmeda + Molde	gr.	12546	.00	12638.00	1270	4.00	12772.00	1292	7.00	12946.00
Peso Muestra Húmeda	gr.	5320.00 5412.00				5548.00	5725	.00	5744.00	
Diametro del Molde	cm	15.20 15.20		15.	20	15.20	15.3	20	15.20	
Altura del Molde	cm	17.60		17.60	17.	60	17.60	17.6	50	17.60
Altura del Disco Espaciador	cm	5.00		5.00	5.0	00	5.00	5.0	0	5.00
Altura Muestra Compactada	cm	12.6	12.60		12.	60	12.60	12.6	50	12.60
Volumen Muestra Hümeda	cm3	2286.	38	2286.38	2286.38		2286.38	2286.38		2286.38
Densidad Húmeda (Dh)	gr/cm3	2.33	3	2.37	2.40 2.43		2.50		2.51	
			CONTEN	NIDO DE HI	MEDAD					
Ensayo	N°	1 - A	1 - B	1-C	1-A	1-B	1-C	1-A	1-B	1-C
Peso Recipiente	gr.	27.60	28.00	28.00	28.30	26.60	27.90	26.90	28.00	27.90
Peso Muestra Húmeda + Recipiente	gr.	205.70	247.80	198.40	257.10	219.70	202.40	200.70	193.40	217.40
Peso Muestra Seca + Recipiente	gr.	192.60	230.10	184.90	238.70	204.60	188.10	186.80	179.90	201.70
Peso del Agua	gr.	13.10	17.70	13.50	18.40	15.10	14.30	13.90	13.50	15.70
Peso Muestra Seca	gr.	165.00	202.10	156.90	210.40	178.00	160.20	159.90	151.90	173.80
Contenido de Humedad (W%)	%	7.94	8.76	8.60	8.75	8.48	8.93	8.69	8.89	9.03
Promedio Contenido de Humedad	96	8.35	;	8.60	8.	62	8.93	8.7	9	9.03
Ds (gr./cm³)	gr/cm3	2.15	0	2.182	2.2	10	2.231	2.2	98	2.302

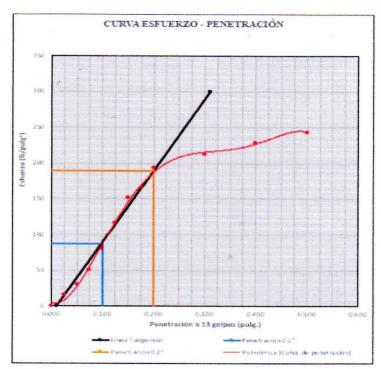

	ENSAYO DE HINCHAMIENTO									
TIEN	PO	PO MOLDE N° 01		MC	DLDE No	02	MO	MOLDE N° 03		
ACUMULADO		Lectura	Hinchamiento		Lectura	Lectura Hinchamiento		Lectura	Hincha	miento
Horas	Dias	Deforma.	mm	96	Deforma.	mm	96	Deforma.	mm	96
24	01	0.1240	3.150	1.790	0.1120	2.845	1.616	0.0880	2.235	1.270
48	02	0.2120	5.385	3.060	0.2080	5.283	3.002	0.1920	4.877	2.771
72	03	0.3050	7.747	4.402	0.2850	7.239	4.113	0.2800	7.112	4.041
96	04	0.4240	10.770	6.119	0.4010	10.185	5.787	0.3740	9.500	5.398

OBSERVACIONES:			
INVEST	IGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
firmufun	Villassantist	Anni Per	recei
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

Universidad Privada DEL NORTE	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA						
	PROTOCOLO							
	ENSAYO:		SOPORTE DE CALIFORNIA BORATORIO (CBR)	CÓDIGO DEL DOCUMENTO:				
	NORMA:	MTC E 132 / NTP 3	399.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:				
	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARREF CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCIL PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022".						
TIPO DE MATERIAL: AFIRMADO CON ADICIÓN DE ARCILLA 10%								
CANTERA:	ANTERA: CHONTA FECHA DE ENSAYO: 11-08-2023							

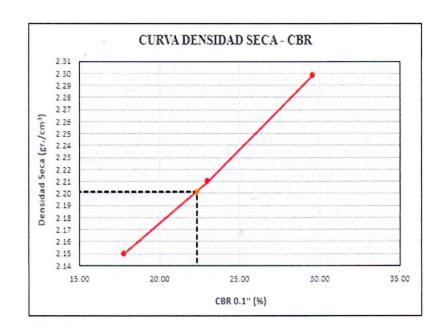

	CARGA - PENETRACIÓN										
D	atos	D pis	ón (pulg)=	2.00	A pise	in (pulg²)=	3.14	Fde	carga =	7.5	
Dana	MOI	Penetración	MOLDE		1		MOLDE Nº 0	2		MOLDE Nº 0	3
rene	tracton	D: 1	Carga	Esfuerzo	D: 1	Carga	Esfuerzo	D: 1	Carga	Esfuerzo	
mm	Pulg.	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg2	
0.00	0.000	0.0	1.35	0.43	0.0	1.35	0.43	0.0	1.35	0.43	
0.64	0.025	10.0	48.05	15.30	26.0	122.72	39.08	16.0	76.06	24.22	
1.27	0.050	20.0	94.73	30.17	43.0	201.99	64.33	32.0	150.71	48.00	
1.91	0.075	34.0	160.03	50.97	58.0	271.88	86.59	66.0	309.14	98.45	
2.54	0.100	54.0	253.25	80.65	70.0	327.76	104.38	90.0	420.81	134.02	
3.18	0.125	78.0	364.99	116.24	112.0	523.06	166.58	102.0	476.60	151.78	
3.81	0.150	102.0	476.60	151.78	150.0	699.42	222.75	126.0	588.08	187.29	
4.45	0.175	112.0	523.06	166.58	193.0	898.58	286.17	164.0	764.31	243.41	
5.08	0.200	130.0	606.64	193.20	220.0	1023.42	325.93	202.0	940.21	299.43	
7.62	0.300	143	666.96	212.41	246	1143.48	364.16	243	1129.63	359.76	
10.16	0.400	154	717.96	228.65	261	1212.67	386.20	256	1189.61	378.86	
12.70	0.500	164	764.31	243.41	290	1346.29	428.76	310	1438.34	458.07	

INVEST	IGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Jame Jame	Villationnels	July (18)	Sur
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS


41	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO					
	ENSAYO:	RELACIÓN DE SO EN LABO	CÓDIGO DEL DOCUMENTO: CBR-LS-UPNC:			
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.145 / ASTM D183 / AASHTO T193				
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚN		CANTERAS EDGAR, GUITARRERO S EG-2013, ADICIONANDO ARCILLA EI 2022"		
TIPO DE MATERIAL:		AFIRMADO CON ADICIÓN DE ARCILLA 10%				
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023		

OBSERVACIONES:			
INVESTI	GADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
finn funn	Villagensto	Tunffills	
	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

41	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO						
II	ENSAYO:		SOPORTE DE CALIFORNIA BORATORIO (CBR)	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD NORMA:		MTC E 132 / NTP 399.145 / ASTM D183 / AASHTO T193		CBR-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:	CHONTA, SEGÚI	MATERIAL GRANULAR DE LAS N EL MANUAL DE CARRETERA DE 5%, 10% Y 15%, CAJAMARCA	6 CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"				
TIPO DE MA	TERIAL:	AFIRMADO CO	AFIRMADO CON ADICIÓN DE ARCILLA 10%					
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023				



MOLDE N°	MOLDE Nº 01	MOLDE Nº 02	MOLDE Nº 03
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	177.81	230.12	295.45
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	17.78	23.01	29.55
Ds (gr/cm ³)	2.150	2.210	2.298

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
franching	Valleringende	Sull Sol	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO

1	•	LABO	RATORIO DE SUI	ELOS - UNIVERSIDAD PRIVAD	DA DEL NORTE CAJAMARCA			
П	AR			PROTOCOLO				
	11	ENSAYO:		SOPORTE DE CALIFORNIA SORATORIO (CBR)	CÓDIGO DEL DOCUMENTO:			
П	UNIVERSIDAD	NORMA:	MTC E 132 / NTP 3	399.145 / ASTM D183 / AASHTO T193	CBK-LS-UPNC:			
	PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"					
П	TIPO DE MAT	ERIAL:	AFIRMADO CON ADICIÓN DE ARCILLA 10%					
ı	CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023			

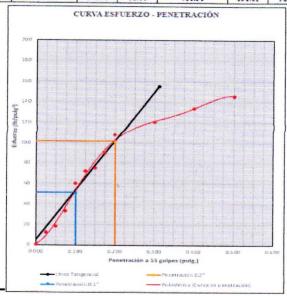
RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.201
CBR 0.1" (%)	22.00 %
Máxima Densidad Seca (gr./cm3)	2.091 kg/cm
CBR 0.2" (%)	13.29 %

OBSERVACIONES:			
INVES	TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
Immefmu.	Villaconor		Jel
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

Ensayo de CBR de la cantera Chonta adicionando el 15% de arcilla

4	LABO	RATORIO DE SUELOS	PROTOCOLO	A DEL NORTE CAJAMARCA			
	ENSAYO:	RELACIÓN DE SOPO EN LABORA	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.145 / ASTM D183 / AASHTO T193		CBR-LS-UPNC:			
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"					
TIPO DE MATERIAL:		AFIRMADO CON ADICIÓN DE ARCILLA 15%					
CANTERA:		CHONTA	FECHA DE ENSAYO:	07-08-2023			

	C.A	LIFOR	NIA BEARI	NG RATIO	- CBR					
Cantidad de Muestra					180	00.00 g	r			
DESCRIPCIÓN	UND		1		2			3		
N° Capas			5			5			5	
N° Golpes por Capa			13			27			55	-
Condición de Muestra		A	intes	Desp.	An	tes	Desp.	An	tes	Desp.
Peso Molde	gr.	72	26.00	7226.00	722	1.00	7224.00	720	2.00	7202.00
Peso Muestra Húmeda + Molde	gr.	12	676.00	12681.00	1281	3.00	12904.00	1286	00.8	12888.00
Peso Muestra Húmeda	gr.	54	150.00	5455.00	5589	9.00	5680.00	566	6.00	5686.00
Diametro del Molde	cm	1	5.20	15.20	15.	20	15.20	15	.20	15.20
Altura del Molde	cm		7.60	17.60	17.	60	17.60	17	.60	17.60
Altura del Disco Espaciador	cm		5.00	5.00	5.0	00	5.00	5.	00	5.00
Altura Muestra Compactada	cm		2.60	12.60	12.	60	12.60	12	.60	12.60
Volumen Muestra Húmeda	cm3	22	86.38	2286.38	228	5.38	2286.38	228	6.38	2286.38
Densidad Húmeda (Dh)	gr/cm3		2.38	2.39	2.4	14	2.48	2.	48	2.49
		CON	TENIDO D	E HUMED.	AD					
Ensayo	N°	1 - A	1 - B	1-C	1 - A	1 - B	1-C	1 - A	1 - B	1 - C
Peso Recipiente	gr.	27.60	28.10	28.00	27.80	28.20	28.20	28.00	26.50	26.50
Peso Muestra Húmeda + Recipiente	gr.	151.00	192.50	198.60	194.80	199.70	132.00	151.60	138.20	151.00
Peso Muestra Seca + Recipiente	gr.	141.50	179.10	184.40	180.60	185.80	122.90	141.80	128.80	140.60
Peso del Agua	gr.	9.50	13.40	14.20	14.20	13.90	9.10	9.80	9.40	10.40
Peso Muestra Seca	gr.	113.90	151.00	156.40	152.80	157.60	94.70	113.80	102.30	114.10
Contenido de Humedad (W%)	%	8.34	8.87	9.08	9.29	8.82	9.61	8.61	9.19	9.11
Promedio Contenido de Humedad	96		8.61	9.08	9.	06	9.61	8.	90	9.11
Ds (gr./cm³)	gr/cm3	1	2.191	2.191	2.2	37	2.263	2.3	277	2.282


			E	NSAYO	DE HINCH	LAMIENT	О			
TIEN	PO	MO	LDE Nº	01	MO	LDE Nº	02	MC	LDE N°	03
ACUM	LADO	Lectura	Hincha	miento	Lectura	Hincha	miento	Lectura	Hincha	miento
Horas	Días	Deforma.	mm	96	Deforma.	mm	96	Deforma.	mm	96
24	01	0.1430	3.632	2.064	0.1320	3.353	1.905	1.1180	28.397	16.135
48	02	0.2780	7.061	4.012	0.2300	5.842	3.319	0.2080	5.283	3.002
72	03	-	-	-	-	-	-	-	•	-
96	04	0.5800	14.732	8.370	0.5660	14.376	8.168	0.5420	13.767	7.822

OBSERVACIONES:			
INVES	TIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
fromfine	Vallationer	The state of the s	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, * ROSA CAROLINA	ING. HOYO'S MARTINEZ, JORGE LUIS	ING. MERMA SALLARDO, LIZBETH MILAGROS

1	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD PROTOCOLO	A DEL NORTE CAJAMARCA
	ENSAYO:	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	45 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MAT CHONTA, SEGÚN EL PORCENTAJES DE 5%	CANTERAS EDGAR, GUITARRERO Y S EG-2013, ADICIONANDO ARCILLA EN 2022"-	
TIPO DE MAT	ΓERIAL:		DICIÓN DE ARCILLA 5%	
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023

				CA	ARGA - P	ENETRACIÓN				-
Da	itos	D pis	ón (pulg)=	2.0	00	A pisón (pulg²)=	3.14	Fde	carga =	7.5
Penetración MOLDE Nº 01			MOLDE Nº 02		MOLDE Nº 03					
- CHCC	Lucion	Dial	Carga	Esfuerzo	D: 1	Carga	Esfuerzo		Carga	Esfuerzo
mm	Pulg.	Diai	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg ²	Dial	Lb	Lb/pulg2
0.00	0.000	0.0	1.35	0.43	0.00	1.35	0.43	0.00	1.35	0.43
0.64	0.025	7.0	34.04	10.84	6.00	29.37	9.35	8.00	38.71	12.33
1.27	0.050	11.0	52.72	16.79	8.00	38.71	12.33	12.00	57.39	18.28
1.91	0.075	18.0	85.39	27.19	18.00	85.39	27.19	22.00	104.06	33.14
2.54	0.100	24.0	113.39	36.11	31.00	146.04	46.51	40.00	188.01	59.87
3.18	0.125	30.0	141.38	45.02	46.00	215.97	68.78	48.00	225.29	71.75
3.81	0.150	40.0	188.01	59.87	50.00	234.61	74.72	50.00	234.61	74.72
4.45	0.175	51.0	239.27	76.20	58.00	271.88	86.59	60.00	281.20	89.55
5.08	0.200	58.0	271.88	86.59	64.00	299.83	95.49	72.00	337.07	107.35
7.62	0.300	77.00	360.34	114.76	72.00	337.07	107.35	81.00	378.95	120.68
10.16	0.400	98.00	458.01	145.86	80.00	374.30	119.20	90.00	420.81	134.02
12.70	0.500	120.00	560.22	178.41	88.00	411.51	131.05	98.00	458.01	145.86

OBSERVACIONES:

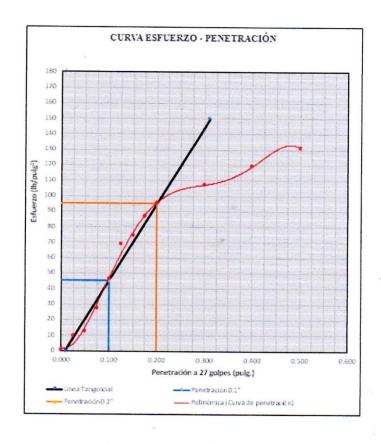
INVESTIGADORES

COORDINADOR DE LABORATORIO

ASESOR DE TESIS

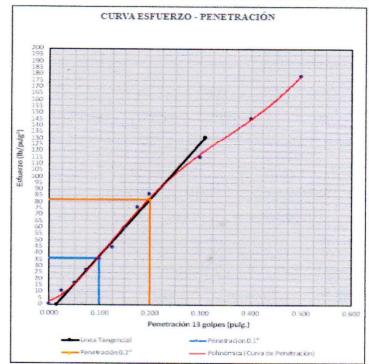
LABORATORIO

BR. ALARCON BUENO, GHYRAM GEORDAN


BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA

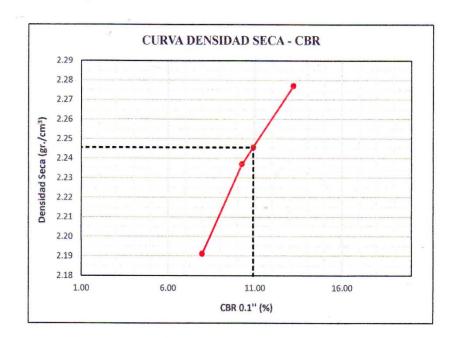
INS. HOYOS MARTINEZ, JORGE/LUIS

ING. MERMA GALLARDO, LIZBETH MILAGROS


UNIVERSIDAD PRIVADA DEL NORTS			PROTOCOLO	DA DEL NORTE CAJAMARCA			
	ENSAYO:	RELACIÓN DE : EN LAE	SOPORTE DE CALIFORNIA BORATORIO (CBR)	CÓDIGO DEL DOCUMENTO:			
	NORMA:	MTC E 132 / NTP 3	399.145 / ASTM D183 / AASHTO T193	CBR-LS-UPNC:			
	TESIS:	CHONTA, SEGUI	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, A PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022"				
TIPO DE MA	TERIAL:		N ADICIÓN DE ARCILLA 15%				
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023			

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS	
finifine	Villavarielo	July 12	July 1	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS	

4	LABO	RATORIO DE SUE		DA DEL NORTE CAJAMARCA					
	PROTOCOLO								
UNIVERSIDAD PRIVADA DEL NORTE	ENSAYO:		OPORTE DE CALIFORNIA DRATORIO (CBR)	CÓDIGO DEL DOCUMENTO: CBR-LS-UPNC:					
	NORMA:	MTC E 132 / NTP 39	MTC E 132 / NTP 399.145 / ASTM D183 / AASHTO T193						
	TESIS:	"CALIDAD DEL M CHONTA, SEGÚN PORCENTAJES DI	6 CANTERAS EDGAR, GUITARRERO 8 EG-2013, ADICIONANDO ARCILLA E 2022"						
TIPO DE MA	TERIAL:	AFIRMADO CON	ADICIÓN DE ARCILLA 15%						
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023					



MOLDE N°	MOLDE N° 01	MOLDE Nº 02	MOLDE Nº 03
Penetración (Pulg.)	0.1"	0.1"	0.1"
Esfuerzo del suelo (lb/pulg²)	79.61	102.54	132.00
Esfuerzo patrón (lb/pulg²)	1000	1000	1000
CBR (%)	7.96	10.25	13.20
Ds (gr/cm ³)	2.191	2.237	2.277

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE TESIS
fromfins	Villautione &	July 1	Legel
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

-	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA						
1	PROTOCOLO									
	ENSAYO:	CÓDIGO DEL DOCUMENTO:								
UNIVERSIDAD	NORMA:	MTC E 132 / NTP 399.14	CBR-LS-UPNC:							
PRIVADA DEL NORTE	TESIS:	"CALIDAD DEL MATERIAL GRANULAR DE LAS CANTERAS EDGAR, GUITARRERO CHONTA, SEGÚN EL MANUAL DE CARRETERAS EG-2013, ADICIONANDO ARCILLA PORCENTAJES DE 5%, 10% Y 15%, CAJAMARCA 2022">								
TIPO DE MA	TERIAL:	AFIRMADO CON AD	ICIÓN DE ARCILLA 15%							
CANTERA:		CHONTA	FECHA DE ENSAYO:	11-08-2023						

RESULTADOS	
Máxima Densidad Seca (gr./cm3)	2.244
CBR 0.1" (%)	11.02 %
Máxima Densidad Seca (gr./cm3)	2.132 kg/cm ³
CBR 0.2" (%)	4.21 %

OBSERVACIONES:			
INVEST	IGADORES	COORDINADOR DE LABØRATORIØ	ASESOR DE TESIS
Simplim	Vellamonialo	July 10	Jan .
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	MG. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

Ensayo de Abrasión los Ángeles de la cantera Edgar

	LAB	ORATOR	IO DE SUELOS				VADA	DEL NO	RTECA	JAMARCA
						COLO				
	ENSAYO:	DESGAS	SION LOS STE DE LOS OS MENORES	ANGE AGREG DE 37.5 r	ADOS	AL S DE / ^{1/2} ")				DOCUMENT
DAD	NORMA:		MTC E 207 / AST		-					
ITE	TESIS:	CHONTA	D DEL MATER , SEGÚN EL M TAJES DE 5%,1	IANUAL I	DE CA	RRETE	RAS E	G-2013,		
E MAT	ERIAL:	AFIRMA	DO SIN ADICIO	ÓN DE AR	CILL	A				
RA:		EDGAR		FECHA	DE E	NSAYO):	01-08-20	23	
			GRANUL	OMETRÍ	A DE	ENSAY	0			
	GRADACIÓ	N	"A"	T	"B"	T	d	Ĉ"	T	"D"
	ARGA ABRA de esferas de		(12)		11			8		6
т.	GR ımiz (pasa)	1	ETRÍA DE LA N miz (retiene)	MUESTRA "A" ((gr)	1	(gr)	"D" (gr)
10	1 1/2"	I di	1"			-	(91)	+	(81)	D (gi)
	1"		3/4"	1250 ±				-		
		_		1250 ±		2500		-		
	3/4"		1/2"	1250 ±		-) ± 10	-		
	1/2"		3/8"	1250 ±	10	2500) ± 10	+		
	3/8"		1/4"						± 10	
	1/4"	_	N° 4	-				2500	± 10	F222 42
	N° 4		N° 8	5000		5000			- 10	5000 ± 10
	10	TALES		5000 ±	: 10	5000) ± 10	5000	± 10	5000 ± 10
			DESG	ASTE A LA	ABRA	SIÓN			,	
ID		DESCR	IPCIÓN	U	ND	1		2	3	P R
A		Peso mue	estra total		gr	5010.	00	5005.00	5012.00	M
В		Pesi retenido	o en tamiz N°12		gr	2693.	30	2685.70	2698.10	E D I O
D	Desg		asión Los Angeles *100/ A		%	46.2	4	46.34	46.17	46.25
RVACI	ONES:				10					
· · AOI		STIGADO	ORES					OR DE	ASE	SOR DETE
unfin	n	T	V.M.	26	G	THE THE PERSON NAMED IN COLUMN TO TH	PRATO			
/		1	Moureon			1/	10		1	Dep

Ensayo de Abrasión los Ángeles de la cantera Guitarrero

	LAB	ORATOR	IO DE SUELOS		RSIDA		A DEL NO	RTE CAJ	AMARCA
	ENSAYO:	ABRA DESGAS TAMAÑO	SION LOS STE DE LOS OS MENORES D	ANGE	LES	AL DE		DEL DO	CUMENTO
SIDAO A RTE	NORMA:		TC E 207 / ASTM						
	TESIS:	CHONTA PORCEN	D DEL MATERI , SEGÚN EL M TAJES DE 5%, 10	ANUAL I 0% Y 15%	DE CAF , CAJAI	RRETERAS	EG-2013,		
E MATE	ERIAL:		DO SIN ADICIÓ	N DE AR	CILLA				
RA:		GUITAR	RERO	FECHA	DE EN	SAYO:	02-08-20	23	
			GRANUL	OMETR	ÍA DE E	NSAYO			
	GRADACIÓ	N	"A"	T	"B"		"C"		"D"
	RGA ABRA e esferas de		12	-	11		8		6
	GR	ANULOM	ETRÍA DE LA N	NUESTR	A DE A	GREGADO	PARA E	VSAYO	
Tan	niz (pasa)	Tar	miz (retiene)	"A" ((gr)	"B" (gr)	"C	" (gr)	"D" (gr)
	1 1/2"		1"	1250	± 25				
	1"		3/4"	1250	± 25				
200-00-00-00-00-00	3/4"		1/2"	1250	± 10	2500 ± 1	0		
	1/2"		3/8"	1250	± 10	2500 ± 1	0		
	3/8"		1/4"				250	00 ± 10	
	1/4"		N° 4				250	0 ± 10	
	N° 4		N° 8						5000 ± 10
	TO	OTALES	Andrew Company of the	5000	± 10	5000 ± 1	0 500	00 ± 10	5000 ± 10
		*	. DESG	ASTE A LA	ABRA	SIÓN	-		
ID		DESCR	RIPCIÓN		UND	1	2	3	P R
А		Peso mu	estra total		gr	5012	5010	5001	0 M E
В		Pesi retenid	o en tamiz N°12		gr	2979.40	2981.50	2972.60	D
D	Des	_	rasión Los Angeles s)*100/ A		%	40.55	40.49	40.56	40.53
RVACIO	NES:								
	INVE	STIGADO	ORES		С	OORDINAL LABORAT		ASES	OR DE TES
10			/11	6			MI		

Ensayo de Abrasión los Ángeles de la cantera Chonta

	LAB	DRATOR	IO DE SUELOS				DAI	DEL NO	RTECA	JAMARCA
		ABRA	SION LOS	ANGE		AL				
EI	NSAYO:	DESGAS	STE DE LOS	AGREG	ADOS	S DE				OCUMENTO
NOAD	ORMA:		OS MENORES				- 1	ILA-LC-U	PNC: .	
TE	ESIS:	"CALIDA	D DEL MATER	IAL GRA	NULA	R DE LAS				
1"	=313:		., SEGÚN EL M TAJES DE 5%, 1					G-2013, A	DICION	NANDO ARC
E MATER	IAL:		DO SIN ADICIO							
RA:		CHONT	A	FECHA	DE E	NSAYO:	0	03-08-202	23	
			GRANUL	OMETRÍ	A DE I	ENSAYO				
GI	RADACIÓ	N	"A"		"B"		"0	"		"D"
	SA ABRAS sferas de		(12)		11		8	3		6
(IA GE E	Sieras de	aceroj								
						1 -				
	GR	ANULOM	ETRÍA DE LA I	MUESTRA	DEA	GREGAD	O PA	RA ENS	AYO	
Tamiz	(pasa)	Tar	niz (retiene)	"A" (gr)	"B" (gr	r)	"C"	(gr)	"D" (gr)
1	1/2"		1"	1250 ±	25		-			
	1"		3/4"	1250 ±	25					
3	V4"		1/2"	1250 ±	10	2500 ± 1	10			
1	1/2"		3/8"	1250 ±	10	2500 ±				
	/8"		1/4"		-			2500	± 10	***************************************
	V4"		N° 4					2500	± 10	
	l° 4	+	N° 8					-		5000 ± 10
		TALES		5000 ±	10	5000 ±	10	5000	+ 10	5000 ± 10
				1 0000	- 10			-		
			DESG	ASTE A LA	ABRA	SIÓN				
ID.		DESCE	RIPCIÓN		JND	1		2	3	P
						-	+			R
A		Peso mu	estra total		gr	5008		5010	5005	0
										M E
			,							D
В	F	esi retenid	o en tamiz Nº12		gr	3295.40		3297.70	3290.3	0 1
										0
	Desg	aste a la ab	rasión Los Angeles							
D)*100/A		%	34.20		34.18	34.26	34.21
RVACION	ES:									
***************************************		STIGADO	ORES			COORDIN	ADC	OR DE	ASE	SOR DE TE
						LABOR				100
1	0	-	,				11	1441	1	FILL
11	from	.	Villato Carle	10		711/16	1	111		MIV
		1	111/2 Stranger							

Anexo N°61

Ensayo de Partículas planas y alargadas en agregado grueso de la cantera Edgar

41	LAD	OKATORIO DE SUELOS	PROTOCOLO	DA DEL NORTE CAJAMARCA
UNIVERSIDAD	ENSAYO:		AS PLANAS Y AGREGADO GRUESO	CÓDIGO DEL DOCUMENTO: AGTS-LS-UPNC:
PRIVADA DEL NORTE	NORMA:	ASTN	Л D4 791	
	TESIS:	CHONTA, SEGÚN EL M		CANTERAS EDGAR, GUITARRERO S EG-2013, ADICIONANDO ARCILLA 22"
TIPO DE MA	TERIAL:	AFIRMADO SIN ADICIO	ON DE ARCILLA	
	TERIAL:	AFIRMADO SIN ADICIÓ EDGAR	ON DE ARCILLA FECHA DE ENSAYO:	17-08-2023
	TERIAL:		FECHA DE ENSAYO:	
TIPO DE MA CANTERA:			FECHA DE ENSAYO: Identificación de la	muestra: Cantera Edgar

		Ident	ificación d	e la muestr	a: Cantera l	Edgar		
Particulas p	lanas y alargadas ASTM		Fecha de	ensayo: 17	/08/2023			
	D4791		Método t	tilizado:	Por masa			
				Relacion:				
	Resultados		ENSAYO					
(A) Masa	inicial de la muestra g	59958.00						
	Tamiz mm	1 1/2	1	3/4	1/2	3/8		
(B) Masa	otal de cada fracción g	5919.00	16624.00	16474.00	16365.00	4573.00		
(C) R	etenido parcial %	9.87	27.73	27.48	27.29	7.63		
	nsayar de cada fracción g oplica reducción)	591.9	1662.4	1647.4	1636.5	457.3		
Masas	(E) Planas y alargadas	301.70	-1089.50	986.30	1662.40	263.40		
individuales g	(F) Ni planas, ni alargadas	289.10	535.30	657.70	667.80	191.80		
Planas y alargadas por	(G) = (E/D) * 100	50.97	65.54	59.87	101.58	57.60		
tamiz %	(H) = G*C / 100	5.03	18.17	16.45	27.72	4.39		
Σ de reten	ido parcial (Total C) %			100 %				
Σ de planas	y alargadas (Total H) %			71.77 %				
	s planas y alargadas % l H/Total C * 100)			71.77%				
Particulas pla	ınas y alargadas promedio			71,77				

INVE	INVESTIGADORES		ASESOR DE TESIS
Jana from	Villatinghate	Junille	Jan
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO, LIZBETH MILAGROS

Ensayo de Partículas planas y alargadas en agregado grueso de la cantera Guitarrero

			PROTOCOLO	
UNIVERSIDAD	ENSAYO:	PARTÍCUI ALARGADAS EN	CÓDIGO DEL DOCUMENTO: AGTS-LS-UPNC:	
PRIVADA	NORMA:	AST	M D4 791	
DEL NORTE	TESIS:	CHONTA, SEGÚN EL		CANTERAS EDGAR, GUITARRERO EG-2013, ADICIONANDO ARCILLA 22"
TIPO DE MA	TERIAL:	AFIRMADO SIN ADIC	IÓN DE ARCILLA	

~		Identifi	cación de 1	a muestra:	Cantera Gui	tarrero		
Particulas p	lanas y alargadas ASTM			ensayo: 17				
	D4791	Método utilizado: Por masa Relación:						
	Resultados			ENSAYO				
(A) Masa	inicial de la muestra g	39096.00						
	Tamiz mm	1 1/2	1	3/4	1/2	3/8		
(B) Masa	total de cada fracción g	4095.00	8623.00	9123.00	11443.00	5814.00		
(C) R	etenido parcial %	10.47	22.06	23.33	29.27	14.87		
	(D) Masa a ensayar de cada fracción g (si aplica reducción)		962.30	1112.30	1144.30	581.40		
Masas	(E) Planas y alargadas	251.00	504.30	754.30	897.50	421.60		
individuales g	(F) Ni planas, ni alargadas	158.50	458.00	358.00	246.80	159.80		
Planas y	(G) = (E/D) * 100	61.29	52.41	67.81	78.43	72.51		
alargadas por tamiz %	(H) = G*C / 100	6.42	11.56	15.82	22.96	10.78		
Σ de reten	ido parcial (Total C) %			100.00				
Σ de planas	y alargadas (Total H) %			67.54				
	s planas y alargadas % l H/Total C * 100)			67.54				
Particulas pla	anas y alargadas promedio			67.54				

INVE	STIGADORES	COORDINADOR DE LABORATORIO	ASESOR DE LESIS	
firm Any	Villamore	Thurs II		
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYO'S MARTINEZ, JORGE LUIS	ING. MERMA GALLARDO LIZBETH MILAGROS	

Ens

45	LAB	ORATORIO DE SUELOS			DA DEL	NORTE CA	JAMARCA	
1			PRO	LOCOLO				
UNIVERSIDAD	ENSAYO:		PARTÍCULAS PLANAS Y ALARGADAS EN AGREGADO GRUESO			CÓDIGO DEL DOCUMEN AGTS-LS-UPNC:		
PRIVADA DEL NORTE	NORMA:	ASTM	D4 791					
DEL NORTE	TESIS:	"CALIDAD DEL MATERI CHONTA, SEGÚN EL M PORCENTAJES DE 5%, 10	ANUAL DE	CARRETERA	S EG-201			
TIPO DE MA	TERIAL:	AFIRMADO SIN ADICIÓ	N DE ARCI	LLA				
CANTERA:		CHONTA	FECHA DE	ENSAYO:	17-08-	2023		
_								
F		nas y alargadas ASTM D4791	Identifi		nsayo: 1 ilizado: F lelación:	7/08/2023	Chonta	
F	R	D4791 esultados	Identifi	Fecha de e Método u F	nsayo: 1 ilizado: P lelación: NSAYO	7/08/2023 or masa	Chonta	
F	R	D4791	Identifi	Fecha de e Método u F	nsayo: 1 ilizado: F lelación:	7/08/2023 or masa	Chonta	

Particular	lanas y alargadas ASTM	ident	-	e la muestra		SHORINA	
r anticulas p	D4791			e ensayo: 1			
	D4131		Método	utilizado: F	or masa		
				Relación:			
	Resultados			ENSAYO			
(A) Masa	inicial de la muestra g			37822.00	1		
	Tamiz mm	11/2	1	3/4	1/2	3/8	
(B) Masa to	otal de cada fracción g			3144.00	22553.00	12125.00	
(C) R	etenido parcial %			8.31	59.63	32.06	
	nsayar de cada fracción g plica reducción)		2-	314.40	40 2255.30 1212.50		
Masas	(E) Planas y alargadas		-	231.20	1482.90	779.80	
individuales g	(F) Ni planas, ni alargadas			83.20	772.40	432.70	
Planas y alargadas	(G) = (E/D) * 100			73.54	65.75	64.31	
por tamiz %	(H) = G*C / 100			6.11	39.21	20.62	
Σ de reter	nido parcial (Total C)%			100%			
Σ de planas	y alargadas (Total H) %			65.94%			
	s planas y alargadas % al H/Total C * 100)			65.94%			
Partícula	as planas y alargadas promedio			65.94			

INVESTIGADORES		COORDINADOR DE LABORATORIO	ASESOR DE TESIS
famfam	Villanomok	Sulf // b	
BR. ALARCON BUENO, GHYRAM GEORDAN	BR. VILLAVICENCIO ACUÑA, ROSA CAROLINA	ING. HOYOS MARTINEZ, JORGÉ LUIS	ING. MERMA GALLARDO LIZBETH/MILAGROS