

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA CIVIL

"INFLUENCIA DE PET SOBRE LAS PROPIEDADES DE FLUIDEZ, CAPACIDAD DE LLENADO Y RESISTENCIA A LA COMPRESION DE UN CONCRETO AUTOCOMPACTANTE F'C= 210 KG/CM2"

Tesis para optar al título profesional de:

INGENIERO CIVIL

Autores:

Eliana Milagros Perez Abanto Joel Humberto Rios Ballena **Asesor:**

Mg. Ing. Wiston Henry Azañedo Medina https://orcid.org/0000-0003-1737-3500

Trujillo - Perú

JURADO EVALUADOR

Jurado 1	Luis Alberto Alva Reyes	42013371
Presidente(a)	Nombre y Apellidos	DNI

Jurado 2	Alberto Rubén Vásquez Díaz	40385695
	Nombre y Apellidos	DNI

Jurado 3	Gonzalo Hugo Díaz García	40539624
	Nombre y Apellidos	DNI

INFORME DE SIMILITUD

NDIC	4% 15% 1% 7% TRABAJOS DEL ESTUDIANTE	
UENTE	S PRIMARIAS	
1	1library.co Fuente de Internet	6
2	hdl.handle.net Fuente de Internet	4
3	dspace.unitru.edu.pe Fuente de Internet	2
4	repositorio.upn.edu.pe Fuente de Internet	1
5	Submitted to Universidad Privada del Norte Trabajo del estudiante	1
6	Submitted to Submitted on 1693005444259 Trabajo del estudiante	1
5	Submitted to Universidad Privada del Norte Trabajo del estudiante Submitted to Submitted on 1693005444259	

DEDICATORIA

Este trabajo está dedicado a mis amados hijos Adrian y Benjamín, a mis padres; pero en especial a mi madre Alicia Abanto, a mis hermanas Gissele y María, y a mi tía Asteria; por el apoyo y la motivación brindadas.

Eliana Milagros Perez Abanto

Este trabajo está dedicado a mis padres, Agustina Ballena Y Mauro Rios, a mi hija

Thalía Rios, familiares y amigos por todo el apoyo brindado.

Joel Humberto Rios Ballena

AGRADECIMIENTO

Agradecer primeramente a Dios por permitirme llegar hasta donde estoy y guiar cada uno de mis pasos, a mi amada madre, por su atención y cariño; al igual que a mis hermanas, tías y a mi pareja; pero en especial a mis hijos por su amor y comprensión ante mi ausencia y/o cansancio debido a la búsqueda de mis logros personales o proyectos.

Eliana Milagros Perez Abanto

A Dios, por haberme guiado a lo largo de estos años, por darme fortaleza y sabiduría para culminar mi carrera, y por brindarme una vida llena de salud y felicidad. A mis padres por su apoyo y mi hija por ser el motivo incondicional para salir adelante.

Joel Humberto Rios Ballena

Tabla de contenido

JURADO EV	ALUADOR	2
INFORME DI	E SIMILITUD	3
DEDICATOR	IA	4
AGRADECIN	MIENTO	5
TABLA DE C	CONTENIDO	6
ÍNDICE DE T	ABLAS	11
ÍNDICE DE F	TIGURAS	12
RESUMEN		13
CAPÍTULO I	INTRODUCCIÓN	14
1.1.	Realidad Problemática	14
1.2.	Antecedentes Teóricos	19
1.3.	Bases Teóricas	24
1.3.1.	PET	24
1.3.2.	Propiedades del concreto: fluidez, capacidad de llenado y resistencia a la compresión	24
1.3.3.	Concreto Autocompactante	25
1.4.	Justificación	26
1.4.1.	Justificación general	26
1.4.2.	Justificación Teórica	27
1.4.3.	Justificación Práctica	27
1.4.4.	Justificación Metodológica	27
1.4.5.	Justificación Social	27
1.5.	Formulación Del Problema	28
1.5.1.	Problema General	28

1.5.2.	Problemas Específicos	28
1.6.	Objetivos	29
1.6.1.	Objetivo General	29
1.6.2.	Objetivos Específicos	29
1.7.	Hipótesis	30
1.7.1.	Hipótesis General	30
1.7.2.	Hipótesis Especificas	30
CAPÍTULO I	I: METODOLOGÍA	31
2.1.	Enfoque de Investigación	31
2.2.	Tipo de Investigación	31
2.2.1.	Según el Propósito	31
2.2.2.	Según el Diseño de la Investigación	31
2.2.3.	Según el Nivel de la Investigación	32
2.3.	Diseño de Investigación	32
2.4.	Variables	33
2.4.1.	Variables Independientes	33
2.4.2.	Variables Dependientes	33
2.4.3.	Clasificación de las Variables	34
2.4.4.	Operacionalización de Variables	35
2.5.	Población y muestra	37
2.5.1.	Población	37
2.5.2.	Muestra	37
2.6.	Técnicas e instrumentos de recolección y análisis de datos	40
2.6.1.	Técnicas de Recolección de Datos	40
2.6.2.	Instrumentos de Recolección de Datos	40
2.6.3.	Validez del Instrumento de Recolección de Datos	41

2.6.4.	Análisis de Datos	41
2.7.	Procedimientos	43
2.7.1.	Adquisición de Materia prima	44
2.7.2.	Caracterización de Materiales	44
2.7.3.	Diseño de Mezcla	44
2.7.4.	Elaboración de la Mezclas	45
2.7.5.	Concreto en Estado Fresco	45
2.7.6.	Concreto en Endurecido	45
2.7.7.	Análisis de Datos	45
2.8.	Aspectos éticos	46
CAPÍTULO I	II: RESULTADOS	47
3.1.	O.E. 1: Determinar las propiedades físicas del agregado fino y el agregado grueso	47
3.1.1.	Agregado Fino	47
3.1.2.	Agregado Grueso	49
3.2.	O.E 2: Diseñar mezclas de concreto autocompactante con aditivo Sikacem®	
Plastificante y c	on adición de PET al 2 %, 3 %, 4 % y 5 % en proporción al peso del agregado grue	so
por m3, de acue	rdo con la Norma ACI 211.1	52
3.3.	O.E. 3: Determinar los valores de fluidez de la mezcla patrón y las mezclas	
adicionadas con	porcentajes de PET mediante el ensayo T (500) de acuerdo con la ASTM C1611.	53
3.3.1.	Fluidez (ASTM C1611).	53
3.4.	O.E. 4: Determinar los valores de capacidad de llenado de la mezcla patrón y las	
	adas con porcentajes de PET mediante el ensayo de asentamiento de acuerdo con la	l
ASTM C1611	54	
3.4.1.	Capacidad de Llenado (ASTM C1611).	54
3.5.	O.E. 5: Determinar resultados del ensayo de laboratorio sobre la resistencia a la	
compresión del	concreto autocompactante con aditivo Sikacem® Plastificante y PET reciclado,	
mediante el ensa	ayo de resistencia a la compresión de acuerdo con la ASTM C39 / NTP 339.034.	56

3.5.1. Resistencia a compresión (ASTM C39 / NTP 339.034).

_	_
٦.	h
	u

	3.6.	O.E. 6: Analizar los resultados de las pruebas de resistencia a la compresión, fl	uidez y
capac	idad de l	lenado	59
	3.6.	1. Fluidez	59
	3.6.2	2. Capacidad de llenado	60
	3.6	3. Resistencia a compresión	61
CAP	ÍTULO	IV: DISCUSIÓN Y CONCLUSIONES	62
	4.1.	Discusión	62
	4.2.	Conclusiones	66
	4.3.	Recomendaciones	67
REF	ERENC	IAS	69
ANE	XOS		73
	ANEX	O 1: Matriz de consistencia	73
		O 2: Desarrollo de Tesis	
	ANEX	O 3: Ficha técnica de cemento Portland Ico	87
	ANEX	O 4: Ficha técnica del aditivo SikaCem® Plastificante	88
	ANEX	O 5: Especificaciones y directrices del concreto autocompactante – EFNARC	90
	ANEX	O 6: Directrices Europeas para concreto autocompactante, GPE 2006	91
	ANEX	O 7: Ensayo de granulometría del agregado grueso	92
	ANEX	O 8: Ensayo de granulometría para el agregado fino	93
	ANEX	O 9: Ensayo de peso específico del agregado grueso	94
	ANEX	O 10: Ensayo de peso específico del agregado fino	95
	ANEX	O 11: Ensayo de peso unitario suelto del agregado grueso	96
	ANEX	O 12: Ensayo de peso unitario suelto del agregado fino	97
	ANEX	O 13: Ensayo de peso unitario compactado del agregado grueso	98

ANEXO 14: Ensayo de peso unitario compactado del agregado fino	99
ANEXO 15: Ensayo de contenido de humedad del agregado grueso	100
ANEXO 16: Ensayo de contenido de humedad del agregado fino	101
ANEXO 17: Panel fotográfico	102

ÍNDICE DE TABLAS

Tabla 1: Esquema del diseño de la investigación	32
Tabla 2: Clasificación de las variables	34
Tabla 3: Matriz de Operacionalización de variables	35
Tabla 4: Cuadro de resistencia obtenida	38
Tabla 5: Valores promedio y desviación estándar de resistencia	39
Tabla 6: Cantidad de probetas para el ensayo de resistencia a la compresión	40
Tabla 7: Resultados de caracterización del agregado fino	49
Tabla 8: Resultados de caracterización del agregado grueso	51
Tabla 9: Diseños de mezcla patrón y adicionado con PET al 2%, 3%, 4% y 5%	52
Tabla 10: Resultados de viscosidad o caracterización de la fluidez	53
Tabla 11: Resultados de flujo de asentamiento	55
Tabla 12 Resultados de ensayos de resistencia a compresión:	57
Tabla 13: Promedio de los ensayos de resistencia a compresión	57
Tabla 14: Resumen de análisis ANOVA para los resultados de fluidez	60
Tabla 15: Resultados ANOVA al 95 % para los resultados de capacidad de llenado	60
Tabla 16: Resultados ANOVA al 95% en la resistencia a compresión a los 28 días	61

ÍNDICE DE FIGURAS

FIGURA	1: Diseño de la investigación	.32
FIGURA	2: Valores de distribución normalizada	.38
FIGURA	3: Tabla de doble entrada	.42
FIGURA	4 Diagrama de flujo del procedimiento:	.43
FIGURA	5: Curva granulométrica del agregado fino	.48
FIGURA	6: Curva granulométrica del agregado grueso	.50
FIGURA	7: Resultados del ensayo de fluidez	.54
FIGURA	8: Grafica del promedio de la capacidad de llenado	.56
FIGURA	9: Grafica del promedio de resistencia a compresión	.58
FIGURA	10. Comparación de resistencia a compresión	59

RESUMEN

Actualmente, existe una preocupación constante por el cuidado del medio ambiente,

motivo por el cual se busca reciclar todo que sea posible y aminorar el gasto de recursos

naturales. Por ello, se pretende implementar nuevas formas de construir o aprovechar

materiales reciclados que puedan ser usados en el rubro de la construcción. El objetivo

general de este proyecto es estudiar los porcentajes óptimos del PET reciclado para obtener

las mejores propiedades de resistencia a la compresión, fluidez y capacidad de llenado de

un concreto autocompactante con aditivo superplastificante Sikacem® Plastificante, La

metodología será mediante el diseño de la mezcla tanto para la mezcla patrón como para

las mezclas alteradas con porcentajes de PET, ensayos normados de los agregados,

elaboración de la mezcla de concreto y ensayos del concreto en estado fresco para proceder

con la elaboración de las 15 probetas de concreto con aditivo Sikacem® Plastificante, que

es la mezcla patrón, y 60 probetas con aditivo y PET, de las cuales corresponden 15 al 2 %,

15 al 3 %, 15 al 4 % y 15 al 5 %; respecto al porcentaje de PET este está considerado en

proporción al peso del agregado grueso por m³ de la mezcla. Los resultados muestran que,

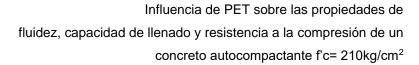
las probetas con 2 % y 3 % de PET presentan valores cercanos a los alcanzados por la

mezcla patrón. En conclusión, el porcentaje de PET adicionado influye sobre las

propiedades de fluidez, capacidad de llenado y resistencia a la compresión en la mezcla de

concreto autocompactante con aditivo Sikacem® Plastificante.

PALABRAS CLAVES: concreto, autocompactante, pet



CAPÍTULO I: INTRODUCCIÓN

1.1. Realidad Problemática

Actualmente, en el mundo se encuentran un sin número de proyectos innovadores que buscan reducir la contaminación ambiental, la cual a lo largo de los últimos años se ha incrementado notablemente, llegando a perjudicar notablemente la flora, fauna y ecosistemas en general. Un gran problema ambiental, por no decir el mayor gran problema o el problema número uno, es el uso de elementos hechos a base de plástico debido a que es un material muy maleable, resistente, ligero, impermeable y puede durar muchos años. Asimismo, es un gran problema la contaminación que genera en el planeta, ante esto se generan ideas innovadoras para contrarrestarlo como son el reciclar, reducir y rehusar ciertos materiales que pueden ser muy contaminantes y/o que demoran demasiado tiempo en degradarse; es ahí donde se empieza a experimentar con la fusión o implementación de plásticos, derivados de plásticos y demás en las mezclas de concreto; con el fin de reutilizar este material reemplazando total o parcialmente la cantidad de agregados y usar menos materia prima. De esta manera, aportar con el objetivo "ciudades y comunidades sostenibles" que es uno de los 17 ODS (Objetivos de Desarrollo Sostenible) acordados en una asamblea para procurar un futuro mejor (Naciones Unidas, 2015).

En México, debido a la resistencia del concreto, su trabajabilidad y durabilidad es el elemento fundamental en la mayoría de sus construcciones ya que resulta adecuado para la construcción de cimientos y superestructuras; además de obras como puentes, presas, canales, etc. Asimismo, el concreto en México es el material más económico con el que se puede construir y obtener estructuras con gran resistencia (Concreto sólido de México, 2020).

En Francia, gracias a la resistencia, fluidez y maleabilidad que presenta el concreto es usado en rubro de la construcción para la creación de elementos estructurales de diversas formas y resistentes al fuego y a la compresión. Gracias a la demanda del concreto en este país se han incrementado las plantas de concreto premezclado, en las cuales no sólo se elaboran mezclas de concreto según la resistencia requerida sino también concretos premezclados que contribuyen a la conservación del medio ambiente (Businesscoot S.A.S., 2023).

En España, el concreto por su resistencia, maleabilidad y durabilidad es usado comúnmente por los arquitectos para elaborar diseños resistentes, pero con formas novedosas e innovadoras que sirven para llevar a cabo grandes proyectos a base de concreto, los cuales son bastante resistentes. Los arquitectos españoles han aprovechado la fluidez del concreto para elaborar piezas estructurales con formas diferentes a las cuadradas o circulares, las cuales crean ambientes elegantes y sofisticados (Maiztegui B., 2020).

En el Perú; existen algunos estudios que se han realizado con material plástico ya sea puro o reciclado para analizar la adherencia entre el material plástico y los componentes de la mezcla del concreto, la fluidez de la mezcla en estado fresco y la resistencia a la compresión de la mezcla en estado de curado; todo ello para dar con una forma más factible de trabajar con el concreto que contiene fibras de plástico. En la mayoría de los estudios realizados se muestran dificultad en la manejabilidad y fluidez al trabajar con esta mezcla.

En Trujillo se han realizado varios proyectos de investigación relacionados con este tema, en su mayoría se puede encontrar tesis de la Universidad Nacional de Trujillo y la

Universidad Privada del Norte, esto debido a la búsqueda constante que se tiene por reciclar material que genera mayor contaminación y que puede impactar de manera positiva con su incorporación.

Ávila et al. (2015) encontraron que, el PET entre sus características y propiedades destaca su durabilidad debido al largo tiempo que demora en degradarse y al mismo tiempo la contaminación que genera por dicha característica, ya que la mayor parte de material es empleado para envases descartables; al enfocarse en reusar este material para elaborar concreto se tuvo en cuenta que los envases hayan sido utilizados para contener bebidas de forma que al limpiarlos no contengan sustancias que pueden afectar la mezcla. En este capítulo se puede observar una diferencia mínima entre los valores obtenidos de la mezcla con PET y los valores de la muestra diseñada originalmente.

Cabarcas y Colcas (2020) encontraron que, emplear PET afecta de manera positiva o mantiene neutral la capacidad de soporte del concreto; si bien la resistencia no se presenta en mayor valor con respecto a la mezcla patrón, el uso de fibras PET en el concreto aporta un mayor control sobre la fisuración por retracción plástica que este presenta.

Silvestre et al. (2015) encontraron que, la falla recurrente que muestran los resultados de la rotura de probetas se debe a la falta de adherencia que existen entre el PET y los materiales que conforman la mezcla de concreto. Mientras mayor es el porcentaje de PET que lleva la mezcla menos resistencia presenta ya que se desprenden los materiales al momento del ensayo de resistencia a la compresión.

De acuerdo con las tesis mostradas se puede evidenciar que existe una influencia positiva del PET sobre la resistencia del concreto, pero esta va a depender de la adherencia

que se establezca con los demás componentes de la mezcla. En el caso del concreto autocompactante, al agregado de PET puede generar que la mezcla sea menos fluida, pero eso no garantiza que sea más resistente; por lo que, se debe analizar la influencia del PET y sobre el concreto autocompactante teniendo en cuenta el aditivo que se emplea para lograr una mezcla superplastificante.

La Planta de Reciclaje de la Municipalidad de Surco empleó ladrillos de concreto con PET para la construcción de viviendas; el PET empleado para la elaboración de estos ladrillos fue recolectado de la basura de los propios vecinos. Las viviendas han sido armadas tipo rompecabezas y cuentan con varios ambientes. Los ladrillos aportan protección térmica, acústica y resistencia a la vivienda (Municipalidad de Santiago de Surco, 2021).

La resistencia del concreto se ve alterada según sea la composición de este, al agregar aditivos el concreto puede aumentar su resistencia, reducir la cantidad de agua, retardar o adelantar el endurecimiento y demás; entre otras causas de la variación de la resistencia del concreto es la adición de materiales reciclados puesto que alteran la unificación y adherencia de la mezcla.

La fluidez del concreto se ve afectada principalmente por la cantidad de agua que contiene la mezcla, a mayor resistencia del concreto la cantidad de agua será menor y con ello será menos fluida la mezcla. Por lo que, existen aditivos que alteran la fluidez del concreto al grado de volver la mezcla superplastificante, lo que quiere decir que la mezcla será mucho más liquida. Gracias a esto, la fluidez no se ve afectada por la menor cantidad de agua que se requiera para una alta resistencia. Otros factores que pueden afectar esta

cualidad del concreto, es la incorporación de materiales reciclados como concreto reciclado, fibras de plástico, ceniza de caña, etc.

La capacidad de llenado del concreto se presenta a través de la velocidad con la que fluye la mezcla; por ende, si la mezcla es más ligera esta va a fluir a una mayor velocidad. Esta característica permite al concreto adaptarse mejor a la forma y al espesor que se desea obtener, pero debido a que no es conveniente realizar una mezcla semi liquida porque pierde resistencia se usa aditivos plastificantes como Aditivo Sikacem® Plastificante, el cual permite obtener una mezcla fluida y resistente.

El PET reciclado está siendo usado en el mundo para elaborar piezas resistentes y duraderas, ya que debido a la tardía degradación que posee genera contaminación en la tierra y en el mar; pues gracias a la poca conciencia ambiental que se posee los desperdicios no son tratados y/o reusados por lo que se expanden, ocasionando en muchos casos la muerte de animales.

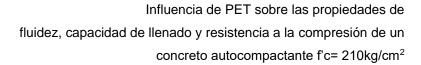
La razón por la cual se lleva a cabo este trabajo de investigación es la problemática relacionada con la falta de trabajos realizados incluyendo material reciclado, de manera que sustenten el uso de PET reciclado como parte de material agregado en la composición de concreto sin afectar la resistencia de este. Siendo mucho más pequeño el grupo que conforman los proyectos de investigación que estudian la influencia del PET en concreto autocompactante; ya que, es menos frecuente el uso de este tipo de concreto pues posee características especiales.

La principal motivación que conlleva la realización de este proyecto es poder hacer uso de PET reciclado como agregado en las mezclas de concreto, de preferencia en concreto autocompactante adicionado con Aditivo Sikacem® Plastificante, el cual brinda

esa fluidez característica del concreto autocompactante. Este proyecto servirá para aportar nuevos conocimientos acerca de la influencia de la implementación del PET reciclado y el plastificante Sikacem® Plastificante sobre la resistencia a la compresión, la fluidez y tiempo de llenado del concreto convencional.

1.2. Antecedentes Teóricos

Costa Del Pozo (2012) en su trabajo de investigación empleó material granuloso reusado de plástico como parte de material pétreo o en reemplazo de una porción de este material en las mezclas de concreto. Este material de investigación nos indica que se inicia con la recolección de datos acerca concreto con agregado de plástico para que se opte por la mezcla que mejor se adecue al estudio, se procede a plantear las características de los materiales que se esperan tener tanto físicas como mecánicas, luego se determinan las cantidades y proporciones a utilizarse para hacer la mezcla del mortero, según lo estudiado; finalmente, luego de 28 días de fraguado someter las probetas a ensayos de laboratorio para ver sus comportamientos según las dosificaciones. Las probetas perdieron propiedades mecánicas, en orden de menor cantidad de plástico a mayor, y de menor densidad cada vez; el mortero con mayor cantidad de plástico posee la capacidad de cambiar más lentamente su temperatura que el medio que lo rodea. Las mezclas con agregado de plástico no mejoraron su resistencia, por el contrario, decrecieron, pero se aprecia un mejor comportamiento térmico y menor peso; lo que nos indica que este tipo de concreto con incorporación de plástico puede ser usado como concreto no estructural con revestimiento aislante. (pág. 100)


Esta investigación aporta información relevante sobre la incorporación de plástico en las mezclas de concreto, las propiedades físicas y mecánicas que poseen los diseños de

mezcla empleados, nos da una idea del uso que se le podría dar a este tipo de concreto, y nos brinda propuestas que pueden aminorar costos contribuyendo a la conservación del medioambiente.

Bartolomé y López (2021) en su proyecto tuvieron como objetivo determinar la influencia de la adición de fibras PET recicladas en proporciones indicadas en las propiedades del concreto autocompactante, f'c 280 kg/cm², Huaraz-2021, más un aditivo superplastificante denominado nano sílice. La metodología es experimental mediante ensayos obtener las características de los materiales, elaborar las probetas, someter al concreto en estado fresco al ensayo de cono de Abrams y en estado de curado al ensayo de resistencia a la compresión. Como resultados se obtiene la fluidez dentro del rango 650 mm y 800 mm; el costo se eleva a medida que aumenta el porcentaje del PET siendo S/.998.71 el precio por m³ para un concreto autocompactante con 2.0 % de fibras PET y en cuanto a la resistencia a la compresión, luego de 28 días de curado el concreto con 0.5 % de adición de fibras alcanzó una resistencia de 30.2 kN/m² (302.88 kg/cm²) siendo el más resistente de los concretos adicionado con PET Se llegó a la conclusión que el concreto autocompactante adicionado con 0.5 % obtiene los mejores valores tanto en fluidez, slump, densidad y resistencia de compresión.

Este trabajo de investigación aporta con estudios realizados a una mezcla de concreto autocompactante adicionado con fibras PET estos datos sirven para tener en cuenta este tipo de concreto como una opción debido a que cumple con los estándares establecidos en el NTP y ACI; además, es una alternativa que contribuye a preservación del medioambiente debido a la durabilidad que posee el PET hace que demore hasta 100

años en degradarse, de tal manera que al ser parte de un elemento de concreto ya no será un agente contaminante.

Santos y Vargas (2020) analizaron de qué manera influye el PET y el aditivo plastificante sobre la compresión, asentamiento y densidad del concreto. La metodología empleada en esta investigación es experimental y relaciona la inclusión de PET con la dosificación de aditivo plastificante. La metodología de esta investigación es experimental debido a que se relacionó al concreto la inclusión de porcentaje PET y la dosificación de aditivo plastificante, corroborando mediante ensayos el efecto de PET y el aditivo para obtener respuesta de la resistencia a la compresión, densidad y el asentamiento del concreto, antes de llevar a cabo los ensayos del concreto se analizaron las características de cada material empleado en la mezcla tanto agregados como el PET y el aditivo para de acuerdo ello dosificar las cantidades a emplear. Como resultados, luego de 56 días de curado, en cuanto a resistencia a la compresión se obtuvo 14.7 kN/m² (147 kg/cm²) para el concreto con 5 % de PET al 1.6 % de aditivo, siendo, un 30 % menos al f'c=210 kg/cm² (21.0 kN/m²). Por otro lado, para el concreto con PET al 1 % de fibras y al 0.8 % de aditivo se obtuvo un valor de 322 kg/cm² (32.2 kN/m²), siendo la máxima resistencia, obteniendo un 54 % más de la resistencia mínima para un concreto estructural. En esta investigación se concluyó que agregar fibras de PET influye en el estado fresco del concreto pues a medida que aumenta el porcentaje de fibras plásticas se reduce su trabajabilidad y el concreto que obtiene una resistencia apta para concreto estructural es el concreto que presenta 0.8 % de aditivo y 1 % de fibras PET.

Este trabajo de investigación aporta resultados obtenidos a través de un conjunto de ensayos realizados al concreto autocompactante con fibras PET y aditivo superplastificante

a fin de obtener noción de la influencia de estos materiales sobre este concreto, y optar por la cantidad que mejor se ajuste a nuestros requerimientos. Demostrando que los elementos estructurales pueden contener materiales PET reciclados, obteniendo mejor trabajabilidad al agregar un aditivo superplastificante, sin perder la propiedad de resistencia a la compresión del concreto.

Lugo y Torres (2019) describieron la variación del comportamiento mecánico del concreto simple ante la variación en porcentajes del adicionamiento de fibras PET. En cuanto a la metodología, la investigación es experimental y está regulada por las normas técnicas colombianas que rigen los procesos y establecen los parámetros para la diseño, elaboración, curado y ensayos del concreto; además, se han considerado estudios previos. A través de, los resultados referentes a resistencia se pueden observar que el concreto con PET obtiene valores más altos que el concreto patrón; sin embargo, llega hasta un punto alto y empieza a decaer el soporte lo que indica que el porcentaje de fibras PET modifica la capacidad de resistencia del concreto. En este estudio, los parámetros más adecuados para emplear PET van entre 96 kg y 110 kg, esto según el diseño de resistencia que va a soportar el concreto, dicha cantidad podría ser establecida como un porcentaje respecto al peso total de la muestra. De manera que, ubique el porcentaje dentro de los rangos donde el PET afecta de manera positiva o mantiene neutral la capacidad de resistencia del concreto elaborado.

Este trabajo de investigación aporta con conocimientos acerca de las cantidades o porciones adecuadas para la obtención de un concreto resistente adicionado con material plástico, lo que sirve de antecedente para nuevos proyectos ecológicos con concreto sostenible.

Atoche et al. (2021) estudiaron 50 proyectos sobre el concreto adicionado de fibras PET. En cuanto a la metodología, este estudio se basó en la recolección, selección, revisión, comparación y análisis de proyectos. Resultando que, tras la revisión de los estudios se puede observar que existe una mayor resistencia a la flexión y compresión del concreto con fibras PET, siendo este parte de los materiales pétreos y reemplazando una porción de estos, llegando a ser conveniente el uso de PET para evitar fisuras y agrietamiento de las piezas estructurales. En este estudio, se concluyó que el reemplazo parcial y en porcentajes menores al 5 % respecto al peso total, favorece a la resistencia del concreto; además de ser una alternativa sostenible.

Esta investigación aporta información significativa pues muestra resultados positivos respecto al uso de fibras PET en el concreto; ya que, se han analizado 50 proyectos que llevaron al cabo esta práctica demostrando que se obtiene resistencias superiores, por supuesto, teniendo en cuenta los porcentajes adecuados.

Pinedo (2019) priorizó el determinar si existe una mejora en la resistencia del concreto al adicionar PET. En cuanto a la metodología, se estableció la mezcla a emplear y el porcentaje de PET que va de 5 %, 10 % y 15 %; los tiempos de curado y rompimiento de probetas para la capacidad de resistencia. Resultando que, la mezcla sin PET llegó a 22.0 kN/m² (220 kg/cm²) de capacidad mientras que ninguna de las otras mezclas llegó si quiera a los 20.0 kN/m² (200 kg/cm²). En este estudio, se concluyó que el concreto elaborado con fibras recicladas no puede formar parte de elementos estructurales, pero fácilmente puede emplearse en piezas no estructurales.

Esta investigación aporta información importante; ya que, se ha elaborado concreto con porcentajes mayores al 5 % de PET en proporción al peso total, obteniendo como

resultado que estos concretos no alcanzan los valores del diseño; lo que indica que estos porcentajes no son adecuados para elaborar concreto estructural.

1.3. Bases Teóricas

1.3.1.PET

1.3.1.1 Concepto. Se denomina o se conoce como PET al Polietileno Tereftalato, el cual es un tipo de plástico algo liviano, con el que se elaboran envases de plásticos, piezas de arte e inclusive prendas de vestir. Además, puede ser reciclado en su totalidad llegando a ser un material eco amigable y versátil. (Escuelas verdes, 2014)

1.3.1.2 Uso del PET. Principalmente, el PET es empleado para la elaboración de envases de refrescos, aguas, bebidas gaseosas y demás recipientes con fácil manejo para contener productos alimentarios. La mayoría del contenido de estos envases son productos inofensivos, por ello, sólo basta con lavar los envases con agua y cualquier tipo de detergente para reusar el PET de la forma que se desee.

En la industria de la moda se usa el PET reciclado para la elaboración de prendas de vestir, para ello, los envases reciclados pasan por un proceso de trituración hasta logras obtener fibras similares a las textiles. Mediante este proceso se pueden obtener prendas muy elaboradas como lo son los abrigos y tan simples como un par de medias.

1.3.2. Propiedades del concreto: fluidez, capacidad de llenado y resistencia a la compresión

1.3.2.1 En Estado Fresco. Se puede encontrar, durante la elaboración de la mezcla, las siguientes propiedades:

Fluidez. Establece que tan fluido o que facilidad tiene la mezcla para expandirse. Para clasificar la mezcla según su fluidez se debe realizar conocido como T (50) que

consiste en tomar el tiempo que la mezcla demora en llegar a la periferia de un círculo de 50cm de diámetro, establecido en la norma ASTM C1611. (EFNARC, 2002).

Capacidad de llenado. Se puede determinar este valor mediante la medición de dos diámetros perpendiculares formados de la expansión de la mezcla de concreto luego de retirar el cono de Abrams invertido, siguiendo las pautas establecidas en la norma ASTM C1611.

1.3.2.2 En Estado Endurecido. Se puede encontrar, durante el tiempo de curado, las siguientes propiedades:

Resistencia a la compresión. Propiedad mediante la cual se obtiene la capacidad de carga que presenta el concreto elaborado. Para obtener esta resistencia se somete a las probetas cilíndricas de concreto a un esfuerzo de cargas variables en una prensa hidráulica, esto de acuerdo con lo establecido en la norma NTP 334.039. Se establece que la resistencia alcanzada a los 3 días debe ser el 40 % de la resistencia de diseño y que a los 14 días debe superar el 90 % de la resistencia de diseño. (Pasquel, 1993).

1.3.3. Concreto Autocompactante

1.3.3.1 Concepto. Es un tipo de concreto, el cual gracias a la adición de algún tipo de aditivo; logra una mayor fluidez sin necesidad de contener mayor cantidad de agua a la designada en la dosificación de la mezcla y conserva la resistencia de diseño o en ocasiones la supera (esto no es una generalidad). Este concreto en particular es más versátil y manejable que el concreto convencional.

1.3.3.2 Uso del concreto autocompactante. Este tipo de concreto es usado con mucha frecuencia en la construcción para elaborar piezas de concreto con formas particulares; de manera que, lleguen a la resistencia de diseño sin dejar de ser estético.

Además, se suele usar cuando se requiere de un vaciado rápido debido a que no requiere vibrado ya que, por su fluidez puede extenderse y llegar a cada rincón del encofrado.

1.3.3.3 Aditivo Sikacem® Plastificante. Es un tipo de aditivo plastificante o superplastificante perteneciente a la marca Sika. Este aditivo genera una mayor fluidez de la mezcla de concreto, siendo la dosificación para emplear como plastificante de 200 mL por bolsa de cemento de 42.5 Kg, y como superplastificante de 500 mL por bolsa de cemento de 42.5 Kg. Este aditivo se debe agregar con el agua. (Sika, 2021)

1.4. Justificación

1.4.1. Justificación general

¿Cuáles son las razones por las que se está realizando la investigación? La razón por la cual se lleva a cabo este trabajo de investigación es la problemática relacionada con la falta de trabajos realizados incluyendo material reciclado, de manera que sustenten el uso de PET reciclado como parte de material agregado en la composición de concreto sin afectar la resistencia de este. ¿Para qué sirve resolver el problema de investigación? Resolver el problema servirá para aportar nuevos conocimientos acerca de la influencia de la implementación del PET reciclado en el concreto autocompactante elaborado con aditivo Sikacem® Plastificante sobre la resistencia a la compresión, la fluidez y tiempo de llenado del concreto convencional. ¿Qué se va a lograr al responder la pregunta planteada? Al resolver la pregunta formulada en esta investigación se conocerá la influencia de las fibras PET sobre las propiedades del concreto autocompactante, lo que permitirá la inclusión o desestimación de este material como parte de la mezcla para concreto autocompactante. ¿A quiénes sirve esta solución? Este proyecto de investigación beneficiará a profesionales y demás involucrados que busquen ideas innovadoras y

sostenibles en el rubro de la construcción, pero en especial, a los investigadores que busquen emplear fibras PET en el concreto.

1.4.2. Justificación Teórica

Esta investigación se desarrolla con la finalidad de contribuir a los saberes existentes sobre el uso de fibras PET empleados para la elaboración de concreto autocompactante, los cuales pueden servir de base para futuras investigaciones ya que, se ha comprobado la validez de la capacidad de resistencia a la compresión que presenta este tipo de concreto.

1.4.3. Justificación Práctica

Este trabajo se ha elaborado porque no existen muchos trabajos sobre el uso de fibras PET en concreto autocompactante, y es necesario saber la influencia que estas fibras tienen sobre las particulares propiedades que distinguen a este tipo de concreto; además de corroborar que no se ve afectada su capacidad de carga, alcanzando o superando la resistencia de diseño.

1.4.4. Justificación Metodológica

Este proyecto se ha realizado teniendo en cuenta las normativas correspondientes a la elaboración de concreto y concreto autocompactante, aplicando los ensayos necesarios y de acorde a los objetivos planteados; siendo estos verificables, realizada la demostración de validez y confianza estos estudios podrían ser usados como antecedentes para trabajos de similares características.

1.4.5. Justificación Social

Este estudio de investigación está fundamentado hacia el uso de las fibras PET y de tal forma, aportar con esto a la sostenibilidad en el rubro de la construcción; tal como se

concreto autocompactante f'c= 210kg/cm²

promueve en el 17 ODS (Objetivo de Desarrollo Sostenible) que propone la incorporación de nuevos recursos sostenible y demás. Con el fin de crear comunidades sostenibles y de menor impacto ambiental, tratando de perjudicar en lo menor posible al planeta. La introducción entre 2 % y 5 % de PET en la mezcla de concreto autocompactante es un valor de aporte considerable a partir de 1m³ de concreto, puesto que el agregar 2 % de PET en mezcla de concreto implica el reciclaje de más de 450 botellas de plástico de 600 ml.

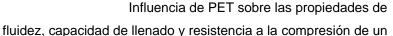
1.5. Formulación Del Problema

1.5.1. Problema General

✓ ¿Cuál es la influencia del PET reciclado sobre la fluidez, capacidad de llenado y la resistencia a la compresión de un concreto autocompactante f'c = 210 Kg/cm² (21.0 kN/m²)?

1.5.2. Problemas Específicos

- ✓ ¿Cuáles son las propiedades físicas del material pétreo a emplear en las mezclas de concreto autocompactante y concreto autocompactante adicionado con PET?
- ✓ ¿Cuáles son los valores de fluidez de las mezclas de concreto autocompactante y concreto autocompactante adicionado con PET?
- ✓ ¿Cuáles son los valores de capacidad de llenado de las mezclas de concreto autocompactante y concreto autocompactante adicionado con PET?
- ✓ ¿Cuáles son los valores de resistencia a la compresión de las mezclas de concreto autocompactante y concreto autocompactante adicionado con PET?
- ✓ ¿Cuál es el resultado del análisis del concreto autocompactante y el concreto autocompactante adicionado PET?


1.6. Objetivos

1.6.1. Objetivo General

✓ Determinar la influencia de la adición del PET reciclado sobre las propiedades de fluide, capacidad de llenado y resistencia a la compresión de un concreto autocompactante.

1.6.2. Objetivos Específicos

- ✓ O.E 1: Determinar las propiedades físicas del agregado fino y el agregado grueso mediante ensayos correspondientes.
- ✓ O.E 2: Diseñar mezclas de concreto autocompactante con aditivo Sikacem® Plastificante y con adición de PET al 2 %, 3 %, 4 % y 5 % en proporción al peso del agregado grueso por m³, de acuerdo con la Norma ACI 211.1.
- ✓ O.E 3: Determinar los valores de fluidez de la mezcla patrón y las mezclas adicionadas con porcentajes de PET mediante el ensayo T (500) de acuerdo con la ASTM C1611.
- ✓ O.E 4: Determinar los valores de capacidad de llenado de la mezcla patrón y las mezclas adicionadas con porcentajes de PET mediante el ensayo de asentamiento de acuerdo con la ASTM C1611.
- ✓ O.E 5: Determinar resultados del ensayo de laboratorio sobre la resistencia a la compresión, del concreto autocompactante con aditivo Sikacem® Plastificante y PET reciclado, mediante el ensayo de resistencia a la compresión de acuerdo con la ASTM C39 / NTP 339.034.
- ✓ O.E 6: Analizar los resultados de las pruebas de resistencia a la compresión, fluidez y capacidad de llenado correspondientes al concreto autocompactante elaborado con

concreto autocompactante f'c= 210kg/cm²

aditivo Sikacem® Plastificante y los concretos autocompactantes elaborados con aditivo Sikacem® Plastificante y PET reciclado.

1.7. Hipótesis

1.7.1. Hipótesis General

La introducción de porcentajes entre 2 % y 5 % de PET respecto al peso del agregado grueso por m³ en la mezcla de concreto influye sobre las propiedades de fluidez, capacidad de llenado y resistencia a la compresión del concreto autocompactante de f'c=210 Kg/cm² (21.0 kN/m²).

1.7.2. Hipótesis Especificas

✓ La caracterización de los agregados fino y grueso establecerá si estos se encuentran dentro de los valores viables para la elaboración de mezclas de concreto, además, permitirá el ajuste del diseño de mezcla para la obtención de las cantidades adecuadas.

✓ El diseño de mezclas con variación de porcentajes de PET permitirá una mejor delimitación de los porcentajes aceptables con respecto al peso del agregado grueso por m³.

✓ Los resultados de los ensayos de T (500), asentamiento y resistencia a la compresión permitirán describir la influencia del PET en el concreto autocompactante.

CAPÍTULO II: METODOLOGÍA

2.1. Enfoque de Investigación

Este trabajo de investigación presenta un enfoque cuantitativo, ya que las propiedades de las variables estudiadas serán medidas mediante ensayos realizados en el laboratorio; está caracterizado por la corroboración y validez de la hipótesis que se propone a través del proceso deductivo; además, cuenta con la precisión más cercana posibles en cuanto a medidas y resultados. Siendo posible la generalización de los resultados.

2.2. Tipo de Investigación

2.2.1. Según el Propósito

Según el propósito, el presente estudio es de tipo aplicada, ya que se ha realizado en base al diseño de mezcla de concreto planteado por el ACI y se modificado la dosificación siguiendo las indicaciones que contiene la ficha técnica del aditivo Sikacem® Plastificante, en el cual se especifican factores, características y parámetros que deben cumplirse al realizarlo de manera adecuada.

2.2.2. Según el Diseño de la Investigación

Según el diseño, a este proyecto le corresponde la clasificación experimental, ya que se estará manipulando de manera intencional y como corresponda a la variable independiente (PET) con el objetivo de obtener resultados en las variables dependientes (fluidez, capacidad de llenado y resistencia a la compresión), pues se desea analizar y comparar si los porcentajes añadidos de PET en la mezcla de concreto generan algún cambio en la mezcla base de concreto autocompactante.

2.2.3. Según el Nivel de la Investigación

Según el nivel, esta investigación es descriptiva, ya que está orientada a describir los efectos y la variación de los resultados que se presentan en los ensayos realizados sobre la fluidez, capacidad de llenado y la resistencia a la compresión, al manipular en ciertos porcentajes de la participación de la variable independiente incluida dentro la muestra.

2.3. Diseño de Investigación

El diseño de la presente investigación es experimental, ya que se busca analizar experimentalmente el efecto que tiene la manipulación de la variable independiente (PET) sobre las variables independientes (resistencia a compresión, fluidez y capacidad de llenado); además, se empleará fichas de recolección de datos para describir y analizar los resultados obtenidos.

FIGURA 1:
Diseño de la investigación

Nota: Fuente propia

Tabla 1:Esquema del diseño de la investigación

Estudio	Tratamiento	Prueba		
GE = Concreto autocompactante con fibras PET	Adición de un porcentaje de PET	O1: Fluidez O2: capacidad de llenado O3: resistencia a la compresión		
GC = Concreto autocompactante	-	O4: Fluidez O5: capacidad de llenado O6: resistencia a la compresión		

Nota: Fuente propia

UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

Donde:

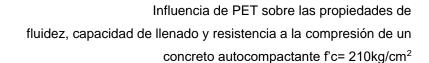
 $\mathbf{GE} = \mathbf{Grupo}$ de estudio

GC = Grupo control

O1, O2, O3, O4, O5, O6 = Post test

2.4. Variables

2.4.1. Variables Independientes


2.4.1.1 PET. Se denomina o se conoce como PET al Polietileno Tereftalato, el cual es un tipo de plástico algo liviano, con el que se elaboran envases de plásticos, piezas de arte e inclusive prendas de vestir. Además, puede ser reciclado en su totalidad llegando a ser un material eco amigable y versátil.

2.4.2. Variables Dependientes

2.4.2.1 Fluidez. Propiedad que establece cuan fluida es la mezcla o que facilidad tiene la mezcla para expandirse. Para clasificar la mezcla según su fluidez se debe realizar conocido como T (50) que consiste en tomar el tiempo que la mezcla demora en llegar a la periferia de un círculo de 50 cm de diámetro, establecido en la norma ASTM C1611.

2.4.2.2 Capacidad de Llenado. Se puede determinar este valor mediante la medición de dos diámetros perpendiculares formados de la expansión de la mezcla de concreto luego de retirar el cono de Abrams invertido, siguiendo las pautas establecidas en la norma ASTM C1611.

2.4.2.3 Resistencia a la Compresión. mediante la cual se obtiene la capacidad de carga que presenta el concreto elaborado. Para obtener esta resistencia se somete a las probetas cilíndricas de concreto a un esfuerzo de cargas variables en una prensa hidráulica,

esto de acuerdo con lo establecido en la norma NTP 334.039. Se establece que la resistencia alcanzada a los 3 días debe ser el 40 % de la resistencia de diseño, a los 7 días debe ser 65 % de la resistencia de diseño y a los 14 debe alcanzar el 90 % de la resistencia de diseño.

2.4.3. Clasificación de las Variables

 Tabla 2:

 Clasificación de las variables

CLASIFICACIÓN						
VARIABLES	Relación	Naturaleza	Escala de medición	Dimensión	Forma de medición	
Porcentaje de PET	Independiente	Cuantitativa- continua	Razón	Multidimensional	Indirecta	
Fluidez	Dependiente	Cuantitativa- continua	Razón	Multidimensional	Indirecta	
Capacidad de llenado	Dependiente	Cuantitativa- continua	Razón	Multidimensional	Indirecta	
Resistencia a la compresión	Dependiente	Cuantitativa- continua	Razón	Multidimensional	Indirecta	

Nota: Fuente propia

2.4.4. Operacionalización de Variables

Tabla 3: *Matriz de Operacionalización de variables*

VARIABLE		DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ÍTMES
Variable Dependiente	Resistencia a compresión	Es la capacidad de soportar cargas y esfuerzos, siendo su mejor comportamiento en compresión en comparación con la tracción, debido a las propiedades adherentes de la pasta de cemento. (Pasquel, 1993)	El ensayo se realizará con la máquina de compresión de acuerdo con la NTP 339.034:2015	Propiedades mecánicas.	Esfuerzo compresión en probetas de 10 cm x 20 cm	Fuerza (Kg) Área (cm2)
	Fluidez / Viscosidad	La viscosidad es una medida de la resistencia de un material a fluir debido a la fricción interna (EFNARC, 2002).	Esta propiedad es producto del ensayo de T500 (Uso particular del cono de abrams)	Propiedad del concreto en estado fresco.	Tiempo de flujo (T500)	S

	Capacidad de llenado	Es la medida máxima que alcanza la extensión de flujo.	Esta propiedad es producto del ensayo de flujo de asentamiento (Uso particular del cono de abrams).	Propiedad del concreto en estado fresco.	Extensión máxima	mm s
Variable Independiente	Porcentaje de PET reciclado	El polietileno tereftalato (PET) pertenece al grupo de los polímeros, se caracteriza por tener una gran tenacidad y excelente resistencia a la fatiga y al desgarramiento razón por la cual es posible reciclarlo y molerlo.	Según estudios (basándonos en los antecedentes de la presente investigación) el PET de manera porcentual puede sustituir a parte de los agregados.	Propiedades del PET reciclado	3 % y 5 % de PET con respecto al agregado	¿Cuál es el óptimo porcentaje de sustitución?

2.5. Población y muestra

2.5.1. Población

Probetas cilíndricas de concreto autocompactante f'c= 21.0 kN/m2 (210 kg/cm²) elaboradas para evaluar las propiedades de resistencia a la compresión.

2.5.2. Muestra

2.5.2.1 Técnica de Muestreo. El presente proyecto utilizó como técnica de recolección de datos la observación, ya que según En el presente proyecto se optó por un muestreo probabilístico, gracias a que el número de testigos no es un valor alto como para presentar alguna dificultad. Además, se sabe que cada elemento tiene la misma probabilidad de pertenecer a la muestra. Para la muestra se estableció que el porcentaje de PET será en relación con el peso del agregado grueso.

El muestreo establecido para la cantidad de testigos a elaborar se realizó empleando el Manual de estadística de la Universidad Privada del Norte y la fórmula es la siguiente:

$$n_0 = \frac{Z^2 S^2}{E^2} \qquad \qquad \text{Ecuación 1}$$

Donde:

n₀ = tamaño de la muestra

 $Z = Valor \ de \ distribución \ normal \ estandarizada, \ para \ el \ nivel \ de \ confianza$ fijado por el investigador

S = Desviación estándar de la variable fundamental de estudio o interés para el investigador, obtenida por estudios anteriores, muestra piloto, criterio de experto o distribución de la variable de interés.

E = Error de muestreo en porcentaje (%) fijado por el investigador

FIGURA 2: Valores de distribución normalizada

		N NORMAL ESTANDAR	IZADA
ERROR (Tipo I): Puede ser u	ınilateral o bilateral		
Nivel de confianza (1-α)	Error	Va	alor Z
	(a)	Bilateral	Unilateral
90%	0.10	1.64	1.28
95%	0.05	1.96	1.64
99%	0.01	2.57	2.32
ERROR (Tipo II): Siempre es	unilateral		
Poder	Error	Va	alor Z
(1-β)	(β)		
0.80	0.20	0.842	
0.90	0.10	1.282	
0.95	0.05	1.645	
0.99	0.01	2.326	

Nota: Obtenido de Manual de estadística de la Universidad Privada del Norte

Obteniendo los siguientes valores para probetas sometidas a ensayos de resistencia a la compresión:

- Z = El nivel de confianza para el presente proyecto de investigación es de 95 %
 (Z=1.96)
- S = la desviación estándar es tomada en base a estudios realizados anteriormente

Para calcular "S" vamos a usar los datos de la tesis de Bartolomé y López (2021), en la tabla siguiente tabla se muestra los resultados a compresión a los 28 días de curado con 1% de PET.

Tabla 4:

Cuadro de resistencia obtenida

PET (%)	Edad de curado (días)	Resistencia a compresión (kg/cm2)				
1 %	28	289.04	308.92	302.47		

Nota: Obtenido de la tesis de Bartolomé y López (2021)

Usamos la siguiente fórmula

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$$
..... Ecuación 2

Donde:

S = Desviación estándar

X=Valor de un dato

 \square = Valor de la media

n = Número de datos

Tabla 5:Valores promedio y desviación estándar de resistencia

X		х- 🗌	(x-□)^2	Σ (x-□)^2	n-1	S
289.04		-11.10	123.28			
308.92	300.14	8.78	77.03	205.73	2	10.14
302.47		2.33	5.41			

Nota: Fuente propia

Se demostró que tiene una resistencia promedio de 30.0 kN/m2 (300.14 kg/cm2) y una desviación estándar de 10.14.

• E = Se considera un error de 3 % en función del promedio.

$$E = 3\% (\Box) = 0.03*300.14 = 9.004$$

Con los datos obtenidos se reemplaza en la formula y se obtiene el tamaño de muestra:

$$n_0 = \frac{(1.96)^2 (10.14)^2}{(9.004)^2}$$

$$n_0 = 4.87 \approx 5$$
 repeticiones

La cantidad de replicas serán 5 de acuerdo con el tamaño de muestra y también por recomendación del asesor de tesis Ing. Wiston Azañedo Medina. En conclusión, se obtiene como muestra total 75 probetas cilíndricas de concreto como se muestra en la Tabla 6.

Tabla 6:Cantidad de probetas para el ensayo de resistencia a la compresión

Cantida	Cantidad de Probetas para Ensayo de Resistencia a la Compresión								
Tipo de Mezcla									
Días	Patrón	PET al 2%	PET al 3%	PET al 4%	PET al 5%				
7	5	5	5	5	5				
14	5	5	5	5	5				
28	5	5	5	5	5				
Total			75						

Nota: Fuente propia

2.6. Técnicas e instrumentos de recolección y análisis de datos

2.6.1. Técnicas de Recolección de Datos

En el presente estudio se hace uso de la técnica a la observación, puesto que los cambios generados por la manipulación del PET en el experimento se pueden analizar o percibir de esta forma en cada uno de los ensayos correspondientes, tanto para determinar las características de los materiales a emplear en la mezcla como para estudiar el comportamiento de la fluidez del concreto autocompactante, su capacidad de llenado y su resistencia a compresión con los diferentes porcentajes de PET reciclado.

2.6.2. Instrumentos de Recolección de Datos

El instrumento que se ha empleado para recolectar la información es la guía de observación, ya que este instrumento ayuda a registrar la información de manera ordenada y precisa; esto a través de fichas de recolección de datos, elaboradas para cada uno de los ensayos que se realizaron en esta investigación, ensayos realizados de acuerdo a la ASTM C136 / NTP 400.012 para granulometría, ASTM C566 / NTP 339.185 para contenido de

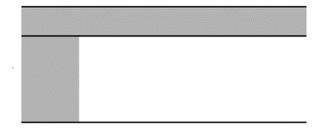
humedad, ASTM C29 / NTP 400.017 para peso unitario, ASTM C127 / NTP 400.022 para peso específico y absorción del agregado grueso, y la ASTM C128 / NTP 400.022 para peso específico y absorción del agregado fino; en cuanto a los ensayos para el concreto en estado fresco se basó en la norma ASTM C1611 para T(500) y asentamiento, finalmente; para el ensayo en estado endurecido de resistencia a la compresión se hizo uso de las normas ASTM C39 / NTP 339.034.

2.6.3. Validez del Instrumento de Recolección de Datos

La validez del instrumento de recolección de datos fue respaldada por las Normas técnicas peruanas y las normas ASTM de acuerdo con el ensayo realizado. Asimismo, para dar mayor validez y conformidad al instrumento las fichas de recolección de datos serán firmadas por el asesor de la presente investigación: Ing. Wiston Henry Azañedo Medina, ingeniero civil de profesión.

2.6.4. Análisis de Datos

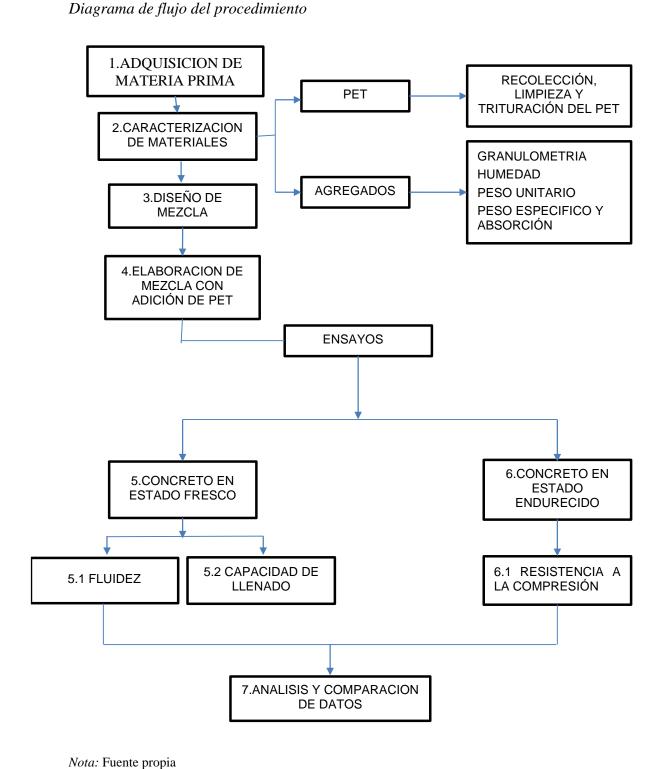
2.6.4.1 Técnica de Análisis de Datos. El presente proyecto utilizó como técnica de recolección de datos la observación, ya que según la guía de investigación UPN la observación es una técnica que implica seleccionar ver y registrar sistemáticamente la conducta y propiedades y/o características de la unidad de estudio (Rubio, 2014). Durante este proceso de investigación se tuvo que observar el comportamiento de todo el proceso de estudio del concreto en estado fresco y endurecido para evaluar las propiedades del concreto autocompactante.


2.6.4.2 Instrumentos de Análisis de Datos. Se mostrarán de los resultados mediante tablas de doble entrada y gráficos estadísticos con el fin de un mejor entendimiento y análisis de los resultados obtenidos a través de los ensayos, lo que

permitirá llegar a conclusiones más precisas y entender la influencia del PET en las propiedades del concreto autocompactante.

FIGURA 3:

Tabla de doble entrada


Nota: Fuente propia

2.4.6.3 Análisis de Varianza. Para un mejor análisis de los resultados se establece un análisis de varianza ANOVA, el cual permite analizar más de 3 grupos de datos dentro de un mismo grupo de estudio. El análisis establecido para este proyecto tiene 5% de significancia.

2.7. Procedimientos

FIGURA 4:

2.7.1. Adquisición de Materia prima

Para la ejecución de esta investigación se utilizó el cemento Extraforte tipo ICo de la empresa Pacasmayo S.A.A por ser un cemento de uso general y el más comercial en la región la Libertad. Además, se usó agregados provenientes de la cantera Bauner S.A., la cual tuvo que pasar por el proceso de eliminación de residuos no deseables y exceso en el tamaño del material. El agua agregada en este proyecto fue agua potable de la red de Trujillo. También se añadió PET reciclado triturado a un tamaño máximo de 8mm, producto de la recolección de botellas y como aditivo se usó Sikacem® Plastificante.

2.7.2. Caracterización de Materiales

Para determinar las propiedades del agregado grueso y fino se somete el material a ensayos según lo indican las normativas ASTM C136 / NTP 400.012 para granulometría, ASTM C566 / NTP 339.185 para contenido de humedad, ASTM C29 / NTP 400.017 para peso unitario, ASTM C127 / NTP 400.022 para peso específico y absorción del agregado grueso, y la ASTM C128 / NTP 400.022 para peso específico y absorción del agregado fino. Asimismo, mediante la trituración en un molino se obtuvo PET en tamaño máximo de 8mm.

2.7.3. Diseño de Mezcla

Una vez realizado la caracterización de los agregados, se procede a realizar el diseño del concreto usando las especificaciones del Instituto Americano del Concreto (ACI) 211.1, realizando una modificación en el diseño para agregar el aditivo superplastificante. Asimismo, se determina las cantidades correspondientes para las mezclas adicionadas con PET.

2.7.4. Elaboración de la Mezclas

Una vez realizado el pesaje de los materiales a emplear se procede a humedecer las herramientas a emplear, luego se vierten los materiales secos y se procede a mezclarlos, al final se agrega el agua y se mezcla de forma constante hasta obtener una masa pastosa. Este proceso se repite para cada una de las mezclas.

2.7.5. Concreto en Estado Fresco

Durante la elaboración de las mezclas se realizan los ensayos T(500) y asentamiento según indica la ASTM C1611. Para ello, las herramientas a emplear para los ensayos durante esta fase del concreto deben estar humedecidos.

2.7.6. Concreto en Endurecido

Luego de la elaboración de las mezclas se procede al vaciado del concreto autocompactante en los moldes de las probetas para posteriormente realizar el ensayo de resistencia a la compresión según las normas ASTM C39 / NTP 339.034. Para ello, los moldes a emplear deben estar preparados antes de realizar la mezcla. La ruptura de probetas está determinada para los 7, 14 y 28 días de curado.

2.7.7. Análisis de Datos

Luego de la obtención de los resultados de los ensayos realizados se procede a trabajar con los valores obtenidos y se les somete a un análisis de varianza, para este proyecto se emplea el ANOVA, con una significancia de 5%. Asimismo, se hace una comparación entre los resultados de la mezcla patrón y las mesclas adicionadas con PET.

La descripción a detalle de cada uno de los procedimientos y ensayos realizados en este proyecto de investigación se puede visualizar en el Anexo 2.

2.8. Aspectos éticos

Este proyecto se llevó a cabo teniendo en consideración y ejecutando la metodología basada en el logro de objetivos, diseño de la investigación, muestras y ensayos; ensayos que son regulados por las normativas vigentes en el rubro de la construcción.

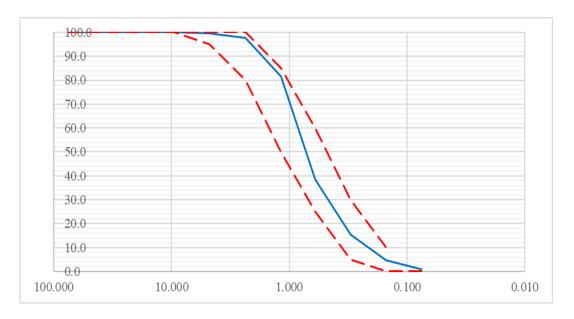
A través de este proyecto se propone una alternativa sostenible como lo es la incorporación de fibras PET para aminorar el gasto de recursos pétreos empleados en las mezclas de concreto autocompactante, contribuyendo al reciclaje de botellas elaboradas con este tipo de plástico; para ello se realizaran ensayos establecidos en la normativa peruana (NTP) y de ser el caso también por las normativas internacionales (ASTM) lo que nos indicará que el concreto cumple con los parámetros permitidos, los resultados serán validados por el responsable del laboratorio de la Universidad Privado del Norte.

La presente investigación está basada en la honestidad y la verdad ya que, las fuentes son confiables y citadas según las Normas de redacción APA (sexta edición) con el fin de no menospreciar ni devaluar el esfuerzo que realizado por investigadores de estudios previos. Asimismo, la presente investigación se somete a la aplicación de un software designado por la universidad con el propósito de evitar algún tipo de plagio, ya sea total o parcial.

CAPÍTULO III: RESULTADOS

3.1. O.E. 1: Determinar las propiedades físicas del agregado fino y el agregado grueso

Para este proyecto se sometió al agregado fino y al agregado grueso a los ensayos correspondientes a la ASTM C136 / NTP 400.012 para granulometría, ASTM C566 / NTP 339.185 para contenido de humedad, ASTM C29 / NTP 400.017 para peso unitario, ASTM C127 / NTP 400.022 para peso específico y absorción del agregado grueso, y la ASTM C128 / NTP 400.022 para peso específico y absorción del agregado fino; con el fin de determinar sus propiedades.


3.1.1. Agregado Fino

3.1.1.1. Análisis granulométrico. En la figura 5 se muestra la gráfica de la granulometría del agregado fino, estos resultados se encuentran dentro de los parámetros establecidos por las normas ASTM C136 / NTP 400.012.

FIGURA 5:

Curva granulométrica del agregado fino

Nota: Se muestra los resultados de granulometría para el agregado fino, donde se aprecia que el material analizado se encuentra dentro del rango de máximos y mínimos.

3.1.1.2. Propiedades Físicas y Mecánicas. Para el agregado fino se muestra los resultados de las propiedades físicas y mecánicas en la tabla 7, estos resultados se encuentran dentro de los rangos establecidos por las normas ASTM C566 / NTP 339.185 para contenido de humedad, ASTM C29 / NTP 400.017 para peso unitario, ASTM C127 / NTP 400.022 para peso específico y absorción del agregado grueso, y la ASTM C128 / NTP 400.022 para peso específico y absorción del agregado fino. Se observa que el módulo de finura se encuentra dentro de los parámetros de control 2.3 y 3.1. Mientras que el contenido de humedad y la absorción son mínimos.

Tabla 7:Resultados de caracterización del agregado fino

Ensayo	Norma	Resultado	Rango
Análisis granulométrico	ASTM C136/NTP	conforme	Ver límites
Analisis grandiometrico	400.012	Comornie	granulométricos
contenido de humedad (%)	ASTM C566/NTP 339.185	0.6	-
Absorción (%)	ASTM 128/NTP 400.022	1.5	-
Peso unitario suelto (Kg/m³)	ASTM C29/NTP 400.017	1521	-
Peso unitario compactado (Kg/m³)	ASTM C29/NTP 400.017	1692	-
Peso específico (Kg/m³)	ASTM C128/NTP 400.022	2472	-
Módulo de finura (pulg)	ASTM 136/NTP 400.037	2.63	-

Nota: Se muestra los resultados de las propiedades del agregado fino y las normas usadas para cada ensayo. Los resultados muestran que el agregado es aceptable para su uso en mezclas de concreto.

3.1.2. Agregado Grueso

3.1.2.1. Análisis Granulométrico. En la figura 6 se muestra el análisis granulométrico del agregado grueso, donde se puede observar que posee una granulometría que favorece la trabajabilidad y resistencia del concreto, debido a que los resultados se encuentran dentro de los rangos establecidos por las normas ASTM C136 / NTP 400.012.

FIGURA 6:

Curva granulométrica del agregado grueso

Nota: Se muestra los resultados de granulometría para el agregado grueso, donde se aprecia que el material analizado se encuentra dentro del rango de máximos y mínimos.

3.1.2.2. Propiedades Físicas y Mecánicas. En la tabla 8 se muestra los resultados de las propiedades de contenido de humedad, absorción, peso unitario, peso específico módulo de finura y tamaño máximo del agregado grueso, los mismos que se usan para el diseño del concreto.

Tabla 8:Resultados de caracterización del agregado grueso

Ensayo	Norma	Resultado	Rango
Análisis granulométrico	ASTM C136/NTP 400.012	conforme	Huso 7
contenido de humedad (%)	ASTM C566/NTP 339.185	0.8	-
Absorción (%)	ASTM 128/NTP 400.022	1.5	-
Peso unitario suelto (Kg/m³)	ASTM C29/NTP 400.017	1517	-
Peso unitario compactado (Kg/m³)	ASTM C29/NTP 400.017	1643	-
Peso específico (Kg/m³)	ASTM C128/NTP 400.022	2643	-
Módulo de finura (pulg)	ASTM C136/NTP 400.037	6.57	-
Tamaño máximo nominal	ASTM C136/NTP 400.012	1/2	-
Tamaño Máximo	ASTM C136/NTP 400.012	3/4	-

Nota: Se muestra los resultados de las propiedades del agregado grueso y las normas usadas para cada ensayo. Los resultados obtenidos son aceptables.

3.2. O.E 2: Diseñar mezclas de concreto autocompactante con aditivo Sikacem® Plastificante y con adición de PET al 2 %, 3 %, 4 % y 5 % en proporción al peso del agregado grueso por m3, de acuerdo con la Norma ACI 211.1

En la Tabla 9 se muestras los diferentes diseños de mezclas empleados en estes proyecto de investigación. Estos diseños de mezcla se basan en la normativa ACI 211.1.

Tabla 9:Diseños de mezcla patrón y adicionado con PET al 2%, 3%, 4% y 5%

	Diseños de mezcla										
V 7-1	Pa	trón	PET	PET al 2%		al 3%	PET	al 4%	PET a	al 5%	
Material	Vol. Abs (m3)	P. Hum (kg/m3)	Para 0.024 m3 (kg)	P. Hum (kg/m3)	Tanda 0.024 m3 (kg)	P. Hum (kg/m3)	Tanda 0.024 m3 (kg)	P. Hum (kg/m3)	Tanda 0.024 m3 (kg)	P. Hum (kg/m3)	Tanda 0.024 m3 (kg)
Cemento	0.1	387	9.11	387	9.11	387	9.11	387	9.11	387	9.11
Agua	0.2	225	5.30	225	5.30	225	5.30	225	5.30	225	5.30
Agregado Grueso	0.3	944	22.25	925	22.25	916	22.25	906	22.25	897	22.25
Agregado Fino	0.3	741	17.45	741	17.45	741	17.45	741	17.45	741	17.45
Aire	0.0	2	0.05	2	0.05	2	0.05	2	0.05	2	0.05
PET				19	0.45	28	0.68	38	0.91	47	1.13
Aditivo (L)		5	0.00	5	0.11	5	0.11	5	0.11	5	0.11
Total	1.0	2303	_	2303	_	2303		2303		2303	

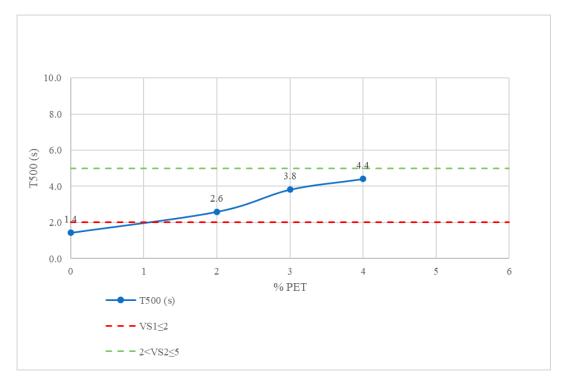
Nota: Se muestra las cantidades respectivas a cada diseño de mezcla.

3.3. O.E. 3: Determinar los valores de fluidez de la mezcla patrón y las mezclas adicionadas con porcentajes de PET mediante el ensayo T (500) de acuerdo con la ASTM C1611.

3.3.1. Fluidez (ASTM C1611).

En este ensayo se evaluó la fluidez del concreto, observándose en la tabla 10 que, al aumentar el porcentaje de PET, la velocidad del flujo de asentamiento también aumenta. Con respecto a los datos del concreto con 5 % de PET, no se muestra debido a que el diámetro de asentamiento no pasa los 500 mm.

Tabla 10:Resultados de viscosidad o caracterización de la fluidez


PROBETA				T500 (s)			
PET %	Muestra 1	Muestra 2	Muestra 3	Muestra 4	Muestra 5	Promedio	Clase
0	1.2	1.4	1.5	1.4	1.8	1.4	VS1
2	2.4	3.0	3.1	2.6	2.0	2.6	VS2
3	3.6	3.5	4.1	3.8	4.1	3.8	VS2
4	4.7	4.8	3.9	4.9	3.8	4.4	VS1
5	-	-	-	-	-	-	

Nota: Se muestra los resultados del ensayo de viscosidad obtenidos en laboratorio para cada uno de los porcentajes de PET.

Se puede observar en la figura 7 que a medida que aumenta el porcentaje de PET aumenta la cantidad de tiempo de fluido.

FIGURA 7:
Resultados del ensayo de fluidez

Nota: Resultados del ensayo de fluidez de las muestras patrón (0 % de PET) y los diferentes porcentajes de PET incorporado. Además, se muestra la clasificación de cada uno de los resultados.

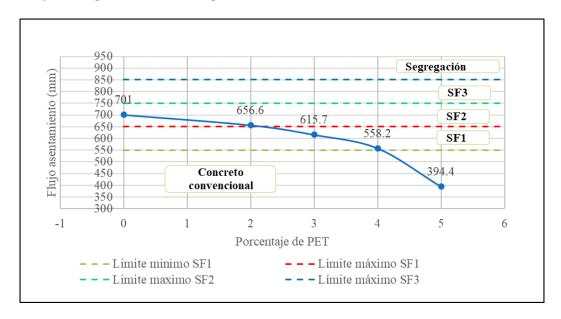
3.4. O.E. 4: Determinar los valores de capacidad de llenado de la mezcla patrón y las mezclas adicionadas con porcentajes de PET mediante el ensayo de asentamiento de acuerdo con la ASTM C1611

3.4.1. Capacidad de Llenado (ASTM C1611).

En la tabla 11 se observa los resultados de la capacidad de llenado, el promedio y la clasificación de cada uno de los ensayos, donde se puede apreciar que mientras mayor porcentaje de PET se agregue, menor es el diámetro de asentamiento. Con respecto al concreto con 5 % de PET, se muestra que se comporta como cualquier concreto convencional debido que el flujo de asentamiento se menor a un concreto considerado autocompactante.

Tabla 11:Resultados de flujo de asentamiento

ADICIÓN	Mues	tra 1	Mue	estra 2	Mues	stra 3	Mues	stra 4	Mue	stra 5	· Promedio	Class
PET %	d1	d2	d1	d2	d1	d2	d1	d2	d1	d2	Promedio	Clase
0	685	725	672	653	698	692	726	708	721	730	701	SF2
U	70	5	66	52.5	69	95	7	17	72	5.5	701	SFZ
2	655	680	634	615	660	620	650	675	682	695	657	SF2
2	667	7.5	624.5		64	40	66	2.5	68	8.5	037	S 1.72
3	604	615	603	630	606	610	632	620	601	636	616	SF1
3	609	0.5	61	16.5	60	98	62	26	61	8.5	010	51.1
4	550	585	540	550	525	530	592	586	560	564	558	SF1
4	567	7.5	5	345	52	7.5	58	89	50	52	336	51.1
5	330	350	375	415	358	400	446	441	409	420	394	_
	34	0	3	95	37	79	44	3.5	41	4.5	374	


Nota: Se muestra los resultados del ensayo de capacidad de llenado para cada uno de los porcentajes añadidos de PET de un concreto autocompactante.

En la figura 8 se puede observar el campo en el que se encuentran las mezclas con respecto a su capacidad de llenado.

FIGURA 8:

Grafica del promedio de la capacidad de llenado

Nota: Grafica del promedio de la capacidad de llenado de las muestras patrón (0 % de PET) y para cada uno de los porcentajes de PET incorporado. Además, se muestra la clasificación de cada uno de los resultados.

3.5. O.E. 5: Determinar resultados del ensayo de laboratorio sobre la resistencia a la compresión del concreto autocompactante con aditivo Sikacem® Plastificante y PET reciclado, mediante el ensayo de resistencia a la compresión de acuerdo con la ASTM C39 / NTP 339.034.

3.5.1. Resistencia a compresión (ASTM C39 / NTP 339.034).

En la tabla 12 se observa los resultados de la resistencia a compresión a los 7, 14 y 28 días de curado, donde se puede notar un incremento de la resistencia con el paso de los días; asimismo, en la tabla 13 se muestra el promedio obtenido por cada mezcla; esto se puede corroborar más detalladamente con la figura 9. Con respecto a la muestra patrón sin adición del PET se aprecia una resistencia mayor comparado con los demás ensayos, debido a la influencia del PET.

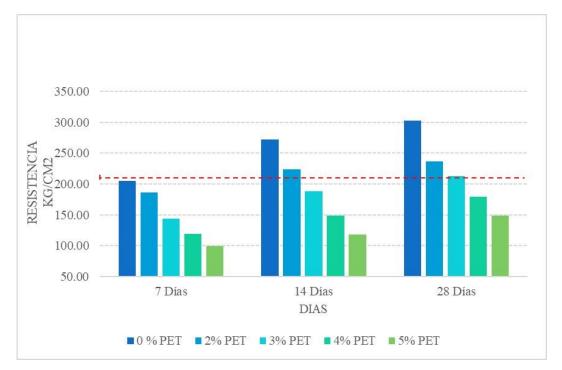
Tabla 12:Resultados de ensayos de resistencia a compresión

Resitencia a		ón de PET				
compresión (Kg/mc2)	Probeta	Patron (0 %)	2%	3%	4%	5%
	P1	206	173	152	125	100
	P2	214	198	139	127	91
7 días	Р3	194	200	141	120	110
	P4	215	190	135	114	106
	P5	195	171	152	109	88
	P1	272	206	172	145	111
	P2	262	223	194	138	110
14 días	Р3	282	237	186	161	124
	P4	285	233	210	144	129
	P5	259	218	176	154	116
	P1	292	222	201	199	111
	P2	309	237	211	173	110
28 días	Р3	311	244	201	149	124
	P4	319	249	218	187	129
	P5	285	231	233	187	116

Nota: Se muestra los resultados de los ensayos de resistencia a compresión a los 7, 14 y 28 días de curado para cada uno de los porcentajes de PET añadidos.

Asimismo, en la tabla 13 se aprecia el promedio de los ensayos para cada uno de los porcentajes de PET añadidos.

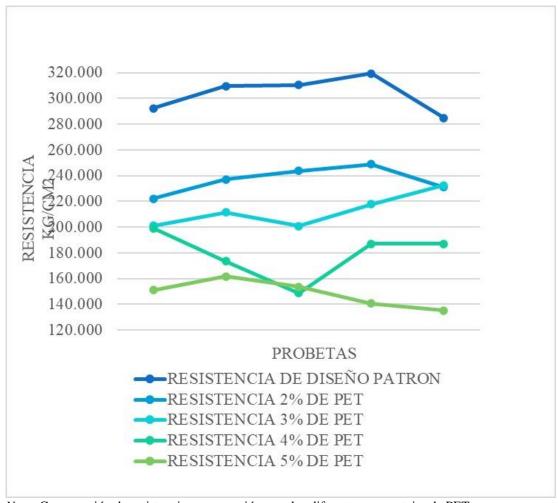
Tabla 13:Promedio de los ensayos de resistencia a compresión


Tiempo		Por	centaje de P	et	
Тетро	0 % PET	2% PET	3% PET	4% PET	5% PET
7 Días	205	186	144	119	99
14 Días	272	224	188	148	118
28 Días	303	237	213	179	148

Nota: Se muestra el promedio de los ensayos de resistencia a compresión a los 7, 14 y 28 días de curado para cada uno de los porcentajes de PET añadidos.

En la figura 8 se muestra un comparativo sobre las resistencias alcanzadas por las mezclas de concreto autocompactante.

FIGURA 9:
Grafica del promedio de resistencia a compresión


Nota: Grafica comparativa del promedio de resistencia a compresión según avance del curado.

Mientras que en la figura 10 se muestra una gráfica comparativa de los resultados de los ensayos a compresión a los 28 días de curado, donde podemos apreciar que el concreto patrón (0 % de PET), el concreto con 2 % y 3 % de PET pasan la resistencia de diseño.

FIGURA 10:

Comparación de resistencia a compresión

Nota: Comparación de resistencia a compresión para los diferentes porcentajes de PET.

3.6. O.E. 6: Analizar los resultados de las pruebas de resistencia a la compresión, fluidez y capacidad de llenado

3.6.1. Fluidez

Análisis estadístico de los datos experimentales del ensayo de fluidez, donde:

 ${
m H0}={
m Al}$ aumentar el porcentaje de PET en el concreto autocompactante, no influye la extensión de flujo.

H1 = Al aumentar el porcentaje de PET en el concreto autocompactante, influye en la extensión de flujo.

Tabla 14:Resumen de análisis ANOVA para los resultados de fluidez.

Origen de las variaciones	Suma de cuadr	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	25.484	4	6.370945	17.53651293	0.00	3.055568276
Dentro de los grupos	5.4494	15	0.363296			
Total	30.933	19				

Nota: Se observa que $F_o > F$ crítico, entonces se rechaza la hipótesis nula de manera que, el porcentaje de PET influye en el flujo de asentamiento en un concreto autocompactante.

3.6.2. Capacidad de llenado

Análisis estadístico de los datos experimentales del ensayo de capacidad de llenado de un concreto autocompactante, donde:

H0 = Al aumentar el porcentaje de PET en el concreto autocompactante, no influye en la capacidad de llenado.

H1 = Al aumentar el porcentaje de PET en el concreto autocompactante, influye en la capacidad de llenado.

Tabla 15:Resultados ANOVA al 95 % para los resultados de capacidad de llenado

Origen de las variaciones	Suma de cuadrados	Grados	Promedio				
		de	de los	F	Probabilidad	Valor crítico para F	
		libertad	cuadrados				
Entre grupos	282857.44	4	70714.36	106.67425	0.00	2.866081402	
Dentro de los grupos	13258	20	662.9				
Total	296115.44	24					

Nota: Se observa que $F_o > F$ crítico, entonces se rechaza la hipótesis nula de manera que, el porcentaje de PET influye en la capacidad de paso de un concreto autocompactante.

3.6.3. Resistencia a compresión

Análisis estadístico de los datos experimentales del ensayo de resistencia a compresión, donde:

 H0 = Al aumentar el porcentaje de PET en el concreto autocompactante, no influye en la resistencia a compresión.

H1 = Al aumentar el porcentaje de PET en el concreto autocompactante, influye en la resistencia a compresión.

Tabla 16:Resultados ANOVA al 95% en la resistencia a compresión a los 28 días

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos Dentro de los	69960.06279 3875.863744	4 20	17490.0157 193.7931872	90.25093168	0.00	2.8660814
Total	73835.92653	24				

Nota: Se observa que F_o >F crítico, entonces se rechaza la hipótesis nula de manera que, el porcentaje de PET influye en la resistencia a la compresión de un concreto autocompactante.

CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES

4.1. Discusión

En consideración a la pregunta planteada para el presente proyecto de investigación sobre la influencia del PET sobre las propiedades de fluidez, capacidad de llenado y resistencia a la compresión del concreto autocompactante f'c= 21.0 kN/m² se confirma la hipótesis, puesto que los resultados obtenidos de las mezclas modificadas con PET muestran variaciones significativas en comparación con la mezcla patrón; respecto a los resultados correspondientes a la propiedad de fluidez, obtenidos mediante el ensayo T (500), las mezclas que lograron resultados óptimos son las que presentan una adición de 2 % y 3 % puesto que alcanzaron tiempos menores a los 4 segundos. Los valores aceptables para la capacidad de llenado, obtenidos a través del ensayo de flujo de asentamiento, son los presentados por las mezclas con 2 %, 3 % de PET que se encuentran entre 600 mm y 700 mm. La resistencia de diseño para las mezclas es de 21.0 kN/m², siendo las mezclas con 2 % y 3 % de PET las que obtuvieron una resistencia superior a la de diseño. Si bien la mezcla adicionada con PET al 4% cumple con los valores mínimos en cuanto a las propiedades de fluidez y capacidad de llenado, los valores que ha alcanzado no son los esperados para esta investigación.

Se ha estudiado las características de los agregados pétreos como parte del material componente de las mezclas de concreto, los cuales se encuentran dentro de los valores permitidos como se puede apreciar en los resultados mostrados en la Figura 5 y Tabla 7 para el agregado fino, y en la Figura 6 y Tabla 8 para el agregado grueso. En cuanto a los ensayos realizados al concreto en estado fresco según lo indicado en el ASTM C1611 se muestran los resultados del ensayo de T (500) en la Tabla 10 y en la Figura 7, lo cuales

indican que los tiempos aceptables para estos ensayos lo presentan las mezclas adicionadas con 2 % y 3 % de PET con un tiempo promedio de 2.59 s y 3.82 s respectivamente, si bien la mezcla con adición de PET al 4% está dentro del tiempo según la norma su valor se encuentra muy alejado de la mezcla patrón que presenta un tiempo de 1.4seg, claramente es una mezcla con mayor fluidez; mientras que la mezcla adicionada con 5 % de PET no llegó a los 500 mm. Asimismo, se ha realizado el ensayo de flujo de asentamiento o viscosidad según indica la ASTM C1611, se puede apreciar los resultados en la Tabla 11 y Figura 8, siendo las mezclas adicionadas con 2 % y 3 % de PET las que presentan un mejor flujo de asentamiento pues sus diámetros promedio son 656.6 mm y 615.7 mm respectivamente, la mezcla adicionada con 4 % de PET presenta un valor muy alejado a lo esperado y la mezcla con 5 % se encuentra fuera del rango. Respecto al ensayo realizado al concreto en estado endurecido se ha regido de acuerdo a lo establecido en la normativa ASTM C39 / NTP 339.034, se presentan los resultados del ensayo de resistencia a la compresión en la Tabla 12, Tabla 13, Figura 9 y Figura 10 donde se aprecia el aumento de resistencia de las probetas con el pasar de los días; sin embargo, se puede observar que las probetas elaboradas con PET presentan una menor resistencia que la mezcla patrón siendo las mezclas con 2 % y 3 % de PET las que cumplen con la resistencia esperada alcanzando una resistencia promedio de 236.51 kg/cm² y 212.72 kg/cm², respectivamente. La Tabla 14 presenta el análisis de varianza correspondiente a los datos del ensayo T (500), la cual indica que existe una influencia del porcentaje de PET sobre la fluidez del concreto autocompactante. La Tabla 15 presenta el análisis de varianza correspondiente a los datos del ensayo de flujo de asentamiento, donde se puede apreciar que existe una influencia del porcentaje de PET en la capacidad de llenado del concreto autocompactante. La Tabla 16 presenta el análisis de varianza correspondiente a los datos del ensayo de resistencia a la

compresión, la cual nos indica que el porcentaje de PET influye en la resistencia a la compresión del concreto autocompactante.

Costa Del Pozo (2012) pudo identificar mediante los ensayos realizados en su proyecto de investigación que al agregar un mayor porcentaje de PET en las mezclas de concreto estas iban perdiendo sus propiedades mecánicas, para ser más específicos su resistencia, lo que concuerda sus los resultados encontrados en este proyecto puesto que las resistencias encontradas van mostrando una disminución a medida que el porcentaje de PET aumenta.

Bartolomé et al. (2021) en su estudio sobre la influencia del PET sobre las propiedades del concreto autocompactante determinó que el porcentaje adecuado era 0.5 % para que no se vean afectadas las propiedades de este; sin embargo, en el presente proyecto se está comprobando la factibilidad de la adición del PET hasta un 3 % sin afectar de manera notoria las propiedades del concreto autocompactante.

Santos y Vargas (2020) en su proyecto sobre la influencia del PET en concreto estructural determinaron la combinación entre la cantidad de aditivo plastificante y el porcentaje de PET en la mezcla, de manera que se obtenga la mezcla con mejores características; de igual manera en el presente proyecto se ha considerado los porcentajes que tienen mejores resultados o los más cercanos a lo esperado.

Lugo y Torres (2019) en su investigación establecieron un rango entre 96 kg y 110 kg de PET por m³, dependiendo del diseño de la mezcla y estos valores corresponden a menos del 1 % del peso total de la mezcla; sin embargo, en el presente proyecto se ha determinado que el rango estimado es entre 14 kg/m³ y 22 kg/m³ para que se mantengan las propiedades del concreto autocompactante y el porcentaje va en reemplazo de un

material pétreo puesto que se trata de contribuir a la disminución de agentes contaminantes, pero sin perder la calidad del concreto autocompactante.

Atoche et al. (2021) en su proyecto recogió información de suma importancia sobre estudios o proyectos acerca de la influencia del PET sobre las propiedades del concreto donde se demuestra que existe una influencia, lo que coincide con lo analizado en el presente proyecto; asimismo, concuerdan que las propiedades se van a ver alteradas de acuerdo con el porcentaje de PET añadido.

Pinedo (2019), en su trabajo de investigación estudió principalmente la influencia de las fibras PET sobre la resistencia a la compresión del concreto donde los resultados arrojaron valores por debajo de lo esperado, esto sucede también en el presente proyecto al adicionar más del 3 % del PET respecto al peso del agregado puesto que la resistencia promedio obtenida no alcanza los 210 kg/m³.

Entre las limitaciones se ha podido apreciar que en las investigaciones previas no se han considerado las propiedades de fluidez, capacidad de llenado y resistencia a la compresión, estudiadas en el presente informe, de manera conjunta sino de forma parcial, siendo complicada la comparación entre algunos resultados. Otro factor limitante es el clima, puesto durante la elaboración de la mezcla la temperatura del ambiente puede generar el aceleramiento del secado de la mezcla y dificultar el vaciado de probetas, no homogenizar bien la mezcla al momento de vaciar genera vacíos lo que provoca que las probetas pierdan resistencia.

Con fundamentos podemos asegurar que los resultados presentados en este proyecto son verdaderos y válidos, además de que concuerdan con los parámetros de investigaciones previas. Los procedimientos se realizaron de manera correcta y se pudo

demostrar con los resultados la influencia del PET en porcentajes de 2 %, 3 %, 4 % y 5%, respecto al peso del agregado grueso por m³, en las mezclas de concreto autocompactante f'c= 21.0 kN/m²; identificando que la adición del PET debe ser menor al 4 % respecto al peso del agregado grueso de la mezcla o menor al 0.5 % del peso de la mezcla total, de esta manera no se ven afectadas las propiedades del concreto autocompactante.

De igual manera, el uso de fibras PET en las mezclas de concreto tiene implicancias considerables en el rubro de la construcción. Al determinarse los porcentajes con respecto al peso del del agregado grueso por m³ se puede implementar el uso del PET como parte de material para la elaboración de mezclas de concreto autocompactante. Asimismo, el reciclaje del PET tiene implicancias importantes respecto a sostenibilidad puesto que, por kg se reciclan 30 botellas aproximadamente lo que genera un menor impacto para el medio ambiente. Por otro lado, si se demuestra que a los resultados de la investigación se pueden aplicar en zonas de similares características a las de Trujillo, esta replica se consideraría una implicancia de replicabilidad.

4.2. Conclusiones

Se determinó mediante ensayos que el porcentaje de PET, respecto al peso de agregado grueso, en las mezclas de concreto autocompactante tiene una influencia directa proporcional sobre las propiedades de fluidez, capacidad de llenado y resistencia a la compresión. Se estableció que el porcentaje recomendable de PET es no mayor al 3 %.

Los materiales pétreos empleados para la mezcla corresponden a la cantera Bauner S.A., la caracterización de los agregados ensayados cumple con los estándares requeridos para ser empleados en las mezclas de concreto según lo establecido por las normativas ASTM C136 / NTP 400.012 para granulometría, ASTM C566 / NTP 339.185 para

contenido de humedad, ASTM C29 / NTP 400.017 para peso unitario, ASTM C127 / NTP 400.022 para peso específico y absorción del agregado grueso, y la ASTM C128 / NTP 400.022 para peso específico y absorción del agregado fino.

La fluidez que tiene la mezcla patrón de un concreto autocompactante con aditivo Sikacem® Plastificante es superior a la fluidez que presentan la misma mezcla adicionada con 2%, 3%, 4% y 5% de PET, las mezclas con PET que presentan una fluidez aceptable son las que contienen un porcentaje de 2 % y 3 %.

La capacidad de llenado de un concreto autocompactante con aditivo Sikacem® Plastificante se ve alterada debido a la influencia del porcentaje del PET en la mezcla, siendo el porcentaje admisible menor al 3 % de PET.

La propiedad de resistencia a la compresión de un concreto autocompactante con aditivo Sikacem® Plastificante se ve afectada de manera considerable al agregarse a la mezcla un porcentaje de PET mayor al 3 %.

El análisis de datos y comparaciones entre las mezclas que contienen un porcentaje de PET determinó que existe una influencia del porcentaje administrado en la mezcla sobre las propiedades de fluidez, capacidad de llenado y resistencia a la compresión del concreto autocompactante. Asimismo, existe una proporción directa entre el aumento del PET en la mezcla y la alteración de las propiedades del concreto.

4.3. Recomendaciones

Finalizados los ensayos y tras los resultados obtenidos, se recomienda el análisis de la influencia de los aditivos sobre el secado de las mezclas de concreto puesto que en este proyecto se ha observado un secado precoz de la mezcla lo que dificulta su manejabilidad;

asimismo, se recomienda realizar un correcto vaciado de las probetas de concreto para evitar cangrejeras ya que esto afecta de manera directa la resistencia del concreto.

Por otro lado, se recomienda seguir un orden en cuanto al registro de datos para evitar equivocaciones o errores en los resultados y emplear la herramienta que mejor se adapte a los estudios realizados puesto que los análisis de varianza sirven para descartar una hipótesis nula o confirmar una hipótesis planteada.

REFERENCIAS

concreto autocompactante f'c= 210kg/cm²

- Aquino Castro, Y. J. (2019). Estudio comparativo de la Influencia del plástico (PET) en la resistencia a la compresión y durabilidad del concreto reciclado y concreto convencional. Trujillo, La Libertad, Perú.
- Avila Cordoba, L., Martínez Barrera G., Barrera Diaz, E., Ureña Núñez, F., y Loza Yáñez, A. (2015). PET de desecho y su uso en concreto en: materiales sustentables y reciclados en la construcción. OmniaScience. Barcelona, España.
- ASTM C1611. (2017). Standard Test Method for Slump Flow of Self-Consolidating Concrete. USA.
- ASTM C39. (2009). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. USA.
- Saucedo Rodríguez, J., Atoche Zamora, J., y Muñoz Pérez, S. P. (2021). *Uso de los agregados PET en la elaboración del concreto: Revisión de la literatura*. https://doi.org/10.18041/1794-4953/avances.2.6942
- Bartolomé Salinas, N. J., y López Carranza, M. (2021). *Influencia de la adición de fibras pet en las propiedades mecánicas del concreto autocompactante, fc 280 kg/cm2, Huaraz-2021*. Huaraz, Ancash, Peru
- Businnescoot S.A.S. (2023). El mercado del concreto premezclada en Francia. https://www.businesscoot.com/es/estudio/el-mercado-del-concreto-premezclado-francia

Cabarcas Caipa, L. M. y Colpas Macias, J. D. (2020) Evaluación de la resistencia a la flexión y compresión de un concreto estructural ecológico con fibras pet propuesto conforme a la norma nsr-10.

https://repositorio.cuc.edu.co/bitstream/handle/11323/7835/EVALUACI%C3%93N%20D E%20LA%20RESISTENCIA%20A%20LA%20FLEXI%C3%93N%20Y%20COMPRESI %C3%93N.pdf?sequence=1&isAllowed=y

Concreto sólido de México. (10 de marzo de 2020). La importancia del concreto en los proyectos de construcción. https://normas-apa.org/wp-content/uploads/Guia-Normas-APA-7ma-edicion.pdf

Costa Del Pozo, A. (2012). *Estudio de hormigones y morteros aligerados con agregados*. Barcelona, España.

EFNARC. (2002). Especificaciones y directrices para el Hormigón autocompactable. Federación Europea.

Escuelas verdes (2014). ¿Qué es el PET? https://prezi.com/6yxeizv6jsvc/que-es-el-pet/

Lugo, J. y Torres, Y. (2019). Caracterización del comportamiento mecánico del concreto simple con adición de fibras poliméricas recicladas PET [Trabajo de grado, Universidad Católica de Colombia].

https://repository.ucatolica.edu.co/server/api/core/bitstreams/718c2a76-ef3d-4c90-a87b-c75e0c36b46b/content

Maiztegui B. (12 abril de 2020). *Casas de hormigón en España: proyectos que exploran las posibilidades técnicas del concreto*. ArchDaily Colombia. https://www.archdaily.co/co/937257/casas-de-hormigon-en-espana-proyectos-que-exploran-las-posibilidades-tecnicas-del-concreto> ISSN 0719-8914

Municipalidad de surco. (2021). *Ladrillos ecológicos hechos a base de basura*. https://www.madeintingomaria.com/2021/12/ladrillos-ecologicos-hechos-base-de.html?m=1

Organización de las Naciones Unidas. (2015). *Objetivos de Desarrollo Sostenible*. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/

NTP 334.034. (2015). CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndricas. Perú.

NTP 339.185. (2013). AGREGADOS. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. Perú.

- NTP 400.012. (2018). AGREGADOS. Análisis granulométrico del agregado fino, grueso y global. Perú.
- NTP 400.017. (2011). AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario) y los vacíos en los agregados. Perú.
- NTP 400.022. (2013). AGREGADOS. Métodos de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino. Perú.
- Pasquel, E. (1993). *Tópicos de tecnología del concreto en el Perú*. Colegio de ingenieros del Perú.
- Pinedo, J. (2019), Estudio de resistencia a la compresión del concreto f'c=210 kg/cm2, con adición de plástico reciclado (PET), en la ciudad de Tarapoto, 2018 [Tesis de grado, Universidad Nacional de San Martin].
- Rabanal Gonzales, D. C., y Su Chaqui, A. R. (abril de 2017). *Diseño de un concreto Autocompactable*. Pimentel, Lambayeque, Perú.
- Ramos Gonzales, I. D., y Sáenz Acosta, H. R. (2021). *Plástico pead reciclado molido como agregado fino para un concreto f'c* = 210 kg/cm2. Huancavelica, Perú.
- Rubio, L. (2014). Manual de estadística. Universidad Privada del Norte.
- Santos, N., y Vargas, R. (2020). *Influencia del PET y aditivo plastificante sobre la compresión, asentamiento y densidad del concreto estructural*. Trujillo, La Libertad, Perú.
- Saucedo Rodríguez, J. A., Atoche Zamora, J. J., y Muñoz Pérez, (s. f.). Uso de los agregados PET en la elaboración del concreto: Revisión de la literatura. Avances: Investigación En Ingeniería, 18(2). https://doi.org/10.18041/1794-4953/avances.2.6942.
- Silvestre A., Muñoz A. y Castaño M. (2015). Análisis del concreto con tereftalato de polietileno (PET) como aditivo para aligerar elementos estructurales. Universidad Libre Seccional Pereira.

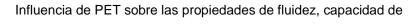
Sika Perú. (2021). SIKA. Obtenido de Superplastificantes para el concreto:

https://per.sika.com/es/construccion/aditivos-concreto/aditivos-concretopremezclado/superplastificantes-concreto.html

ANEXOS

ANEXO 1: Matriz de consistencia

MATRIZ DE CONSISTENCIA


AUTOR: ELIANA MILAGROS PEREZ ABANTO & JOEL HUMBERTO RIOS BALLENA

FECHA: 10 / 12 /

2022

TÍTULO: INFLUENCIA DE PET SOBRE LAS PROPIEDADES DE FLUIDEZ, CAPACIDAD DE LLENADO Y RESISTENCIA A LA COMPRESIONDE UN CONCRETO AUTOCOMPACTANTE F'C=210KG/CM2

PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	METODOLOGÍA
1. Problema General:	1. Objetivo General:	1. Hipótesis General:	V. Independiente	
¿Cuál es la influencia del PET reciclado sobre la compresión, fluidez y capacidad de llenado de un concreto autocompactante?	Estudiar los porcentajes óptimos del PET reciclado para obtener las mejores propiedades de resistencia a la compresión, fluidez y capacidad de llenado de un concreto autocompactante con aditivo superplastificante Sikacem® Plastificante	La introducción de porcentajes entre 2% y 5% de PET en la mezcla de concreto autocompactante de f'c=210 kg/cm2 no afectará de forma considerable las propiedades del concreto, tanto en estado fresco como endurecido, por lo contrario, aportará mayor resistencia a la compresión debido a la resistencia del PET a la descomposición.	-Porcentaje de plástico PET	1. Tipo de Investigación Aplicada con enfoque cuantitativo 2. Nivel de Investigación Descriptiva 3. Método: Deductivo - Análisis 4. Diseño de la
2. Problemas Específicos:	2. Objetivos Específicos	2. Hipótesis Específicas (opcional):	V. Dependiente:	Investigación: Experimental

llenado y resistencia a la compresión de un concreto autocompactante f'c= 210kg/cm²

- ¿Cuál será el diseño de mezcla a emplear para un concreto autocompactante f'c=210kg/cm2?
- ¿Qué características presentarán los materiales para elaborar las mezclas?
- ¿ Cómo será la elaboración de las mezclas de concreto?
- ¿Qué comportamiento tendrán los concretos respecto a los ensayos de fluidez, capacidad de llenado y resistencia a la compresión?
- ¿Qué valores presentará la fluidez, capacidad de llenado y resistencia a la compresión los concretos a elaborar?
- ¿Cuál sería el resultado de la comparación de los concretos elaborados?

- OE1: Establecer el diseño de mezcla y las cantidades de materiales a emplear para el concreto convencional.
- OE2: Caracterizar los agregados para elaborar la mezclas de concreto convencional y que incluyan PET reciclado con aditivo.
- OE3: Elaborar mezcla de concreto convencional y mezclas que incluyan PET reciclado con aditivo.
- OE4: Realizar pruebas de resistencia a la compresión, fluidez y capacidad de llenado al concreto convencional a los concretos con aditivo Sikacem® Plastificante y PET reciclado.
- OE5: Analizar los resultados de las pruebas de resistencia a la compresión, fluidez y capacidad de llenado al concreto convencional a los concretos con aditivo Sikacem® Plastificante y PET reciclado.
- OE6: Comparar los resultados de las pruebas de resistencia a la compresión, fluidez y capacidad de llenado al concreto convencional a los concretos con aditivo Sikacem® Plastificante y PET reciclado.

- -La caracterización de los agregados fino y grueso establecerá si estos se encuentran dentro de los valores viables para la elaboración de mezclas de concreto, además, permitirá el ajuste del diseño de mezcla para la obtención de las cantidades adecuadas.
- El diseño de mezclas con variación de porcentajes de PET permitirá una mejor delimitación de los porcentajes aceptables con respecto al peso del agregado grueso por m3.
- -Los resultados de los ensayos de T (500), asentamiento y resistencia a la compresión permitirán describir la influencia del PET en el concreto autocompactante.

- -Fluidez -Capacidad de llenado -Resistencia a la compresión
- **V. Intervinientes:**

- 5. Marco Muestral: Calculo de muestra
 - 6. Población: Concreto autocompactante.
- 6. Muestra: Probetas de concreto autocompactante elaboradas con PET y aditivo Sikacem, 2022.
 - 7. Técnicas: a) Observación
 - 8. Instrumentos: a) Ficha de registro de datos
 - 9. Indicadores: Ver cuadro

ANEXO 2: Desarrollo de tesis

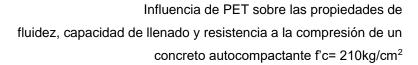
1. Materia prima

Para la ejecución de esta investigación se utilizó el cemento Extraforte tipo ICo de la empresa Pacasmayo S.A.A por ser un cemento de uso general y el más comercial en la región la Libertad. Además, se usó agregados provenientes de la cantera Bauner S.A., la cual tuvo que pasar por el proceso de eliminación de residuos no deseables y exceso en el tamaño del material. El agua agregada en este proyecto fue agua potable de la red de Trujillo, lo cual previamente se verificó que esté libre de impurezas que puedan alterar los resultados de cada uno de los ensayos realizados. También se añadió PET reciclado triturado a un tamaño máximo de 8mm, producto de la recolección de botellas y como aditivo se usó SikaCem, un aditivo superplastificante para mejorar la resistencia y fluidez en un concreto.

2. Caracterización

2.1. Recolección, limpieza y trituración del PET

Para la recolección de PET se recaudó todo tipo de botellas y se procedió a separar y eliminar los plásticos que no son tereftalato de polietileno (PET), luego procedimos a separar manualmente de acuerdo con el tipo de botellas y color. Además, realizamos la limpieza, retiramos las etiquetas y tapas, para posteriormente lavarlos y almacenarlos hasta el momento de la trituración. Mediante la trituración en un molino se obtuvo PET en tamaño máximo de 8mm.


2.2. Agregados

El procedimiento de caracterización de los agregados se realizó según las NTP y las normas ASTM. Se realizaron 3 repeticiones para cada agregado con el fin de asegurar la correcta evaluación de los ensayos y evitar errores en el diseño del concreto.

2.2.1. Granulometría de los agregados (ASTM C136/NTP 400.012)

Materiales y equipos

- ➤ Balanza, con aproximación y exactitud de 0.1 g ó 0.1% de la masa de la muestra del agregado a ensayar.
- Tamices, deberá cumplir con la NTP 350.001.

- \triangleright Horno, capaz de mantener la temperatura 110 °C \pm 5 °C.
- > Tamizador mecánico.

Procedimiento de ensayo

Este procedimiento se realizó por separado para el agregado fino y agregado grueso.

- > Se realizó el muestreo de los agregados dividiendo la muestra en cuatro partes iguales, y se seleccionó las muestras provenientes de los cuartos opuestos.
- Se colocó la muestra en una bandeja y se dejó secar en un horno a una temperatura 110° C \pm 5 durante 24 horas.
- ➤ Se seleccionó los tamices de acuerdo con el Huso granulométrico para cada agregado. Se apilaron de manera ascendente, colocando la tapa superior y el recipiente al fondo de los tamices. Además, se usaron tamices adicionales de manera que se pueda obtener el módulo de finura o el tamaño máximo nominal.
- Se colocó la muestra en el tamiz superior y se agitó durante un tiempo determinado de 5 minutos.
- > Se concluyó el proceso de tamizado y se registró la masa de cada uno de los tamices.
- ➤ También se determinó el módulo de finura para ambos agregados, para el agregado grueso se determinó el tamaño máximo nominal y tamaño máximo; con las siguientes ecuaciones.

Ecuación 1: Modulo de finura

$$\mathit{MF} = \frac{\mathit{\Sigma\% Peso retenido acumulado hasta el tamiz N° 100}}{100}$$

2.2.2. Contenido de humedad (ASTM C566 / NTP 339.185)

Materiales y equipos

- ➤ Balanza, con aproximación y exactitud de 0.1 g ó 0.1% de la masa de la muestra del agregado a ensayar.
- > Recipientes para las muestras.
- \triangleright Horno, capaz de mantener la temperatura 110 °C \pm 5 °C.

Procedimiento de ensayo

Este procedimiento se realizó por separado para el agregado fino y agregado grueso.

- Se colocó la muestra en recipientes y se pesó la muestra descontando el peso del recipiente.
- ightharpoonup Luego se colocó los recipientes en el horno a una temperatura de 110 °C \pm 5 °C durante 24 horas.
- > Se dejó enfriar y se registró la masa de las muestras secas.
- ➤ Se realizó los cálculos del contenido de humedad con la siguiente ecuación y se anotaron los resultados en las fichas de recolección de datos.

Ecuación 2: Contenido de humedad

$$p\% = 100 \text{ x } \frac{W-D}{D}$$

Donde:

p = Contenido de humedad

W= Masa de la muestra natural

D = Masa de la muestra seca

2.2.3. Peso unitario (ASTM C29 / NTP 400.017)

Materiales y equipos

- ➤ Balanza, con exactitud de 0.1% de la carga de ensayo.
- > Varilla de apisonado, lisa de acero redondeada.
- > Recipiente, cilindro de metal con asas.
- Pala o cucharon.

Calibración del recipiente

- > Se determinó la masa del recipiente y placa de vidrio.
- Se llenó el recipiente con agua a temperatura ambiente, se determinó la masa del recipiente, vidrio y agua.

- > Se midió la temperatura del agua y se determinó la densidad.
- Por último, se calculó el volumen del recipiente.

Procedimiento de ensayo

Peso unitario suelto

- \triangleright Se secaron las muestras de los agregados en un horno a temperatura de 110 °C \pm 5 °C durante 24 horas.
- ➤ Se llenó el recipiente con la muestra hasta el rebose manteniendo unos 5 cm por encima de la parte superior del cilindro.
- Se enrazó la superficie del recipiente y se registró el peso del recipiente más la muestra.
- > Se calcularon los resultados con la siguiente ecuación y se anotaron los resultados en las fichas de recolección de datos.

Ecuación 3: Peso unitario suelto seco (PUSS)

$$PUSS = \frac{Ps - Pm}{Vm}$$

Donde:

Pm = Peso del recipiente (Kg)

Vm = Volumen del recipiente (m3)

Ps = Peso de la muestra suelta (Kg)

Peso unitario compactado

- > Se secó la muestra durante 24 horas.
- > Se llenó el recipiente en 3 capas iguales, en cada capa se emparejó y con una varilla se apisonó 25 veces y después se enrazó la superficie con la varilla.
- > Se registró el peso del recipiente más la muestra.
- > Se calculó los resultados con la siguiente ecuación y se anotaron los resultados en las fichas de recolección de datos.

Ecuación 4:Peso unitario compactado seco (PUCS)

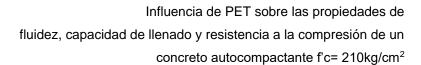
$$PUCS = \frac{Pc - Pm}{Vm}$$

Donde:

Pm = Peso del recipiente (Kg)

Vm = Volumen del recipiente (m3)

Pc = Peso de la muestra compactada (Kg)


2.2.4. Peso específico y absorción del agregado grueso (ASTM C127 / NTP 400.022)

Equipos

- Balanza con una precisión de 0.1 g.
- Horno, capaz de mantener una temperatura a 110 °C \pm 5 °C.
- Canasta metálica.
- Bandejas metálicas

Procedimiento:

- \triangleright Se secó la muestra en el horno a temperatura de 110 °C ± 5 °C.
- \triangleright En una bandeja metálica se sumer*gió* la muestra durante 24 ± horas.
- Se procedió a retirar la muestra y con ayuda de papel absorbente se secó el agregado hasta garantizar un secado uniforme.
- > Se proced*ió* a pesar la cantidad necesaria de agregado grueso en condición SSS y se registró el peso "B".
- ➤ Inmediatamente se colocó la muestra de agregado grueso en la canasta metálica y se determinó su peso en el agua "C".
- ➤ Retiramos el agregado del agua y se *procedió a secar* la muestra en un horno a temperatura constante.
- Luego se registró su peso final "A"
- ➤ Por último, se realizaron los cálculos con las siguientes ecuaciones y se registraron los resultados en las fichas de recolección de datos.

Ecuación 5: Peso específico de masa (Pem) del agregado grueso

$$Pem = \frac{A}{B - C}$$

Ecuación 6: Peso específico SSS (PeSSS)

$$PeSSS = \frac{B}{B - C}$$

Ecuación 7: Peso específico aparente (PeA)

$$PeA = \frac{A}{A - C}$$

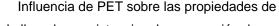
Ecuación 8: Absorción del agregado grueso (%)

$$Ab\% = 100x \frac{B - A}{A}$$

Donde:

A= Peso de la muestra seca en el horno

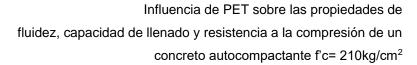
B = Peso de la muestra SSS en el aire


C = Peso de la muestra SSS en el agua

2.2.5. Peso específico y absorción del agregado fino (ASTM C128 / NTP 400.022)

Equipos

- > Balanza con una precisión de 0.1 g.
- \blacktriangleright Horno, capaz de mantener una temperatura a 110 °C \pm 5 °C.
- ➤ Molde cónico, metálico de 75 mm ± 3 mm de altura y diámetro superior e inferior de 40 mm ± 3 y 90 mm ± 3 mm respectivamente.
- \blacktriangleright Barra compactadora con un peso de 340 g ± 15 g y 25 mm ± 3 mm de diámetro.
- Frasco volumétrico de 500 cm3 de capacidad.


Procedimiento

fluidez, capacidad de llenado y resistencia a la compresión de un concreto autocompactante f'c= 210kg/cm²

- \triangleright Se secó la muestra en el horno a temperatura de 110 °C \pm 5 °C.
- \triangleright En una bandeja metálica se sumergió la muestra durante 24 ± horas.
- ➤ Se procedió a retirar la muestra, se extendió el material sobre una superficie plana (expuesta a una corriente de aire) y se removió con frecuencia con el fin de garantizar un secado uniforme.
- ➤ Luego, se colocó la muestra en el molde cónico y se golpearon 25 veces con la barra de metal.
- ➤ Si al retirar el cono, el material mantiene su forma cónica es indicativo de que aún hay humedad, por lo tanto, se debe repetir el ensayo. Si el agregado se desmorona al levantar el molde, se ha logrado conseguir el estado SSS deseado.
- Se introdujo en el frasco de 500 g el agregado fino en condición SSS y se registró "S"
- Luego, se llenó el frasco con agua hasta los 500 cm3, se movió cuidadosamente el frasco con el agua y arena a fin de que los materiales se homogenicen. Se eliminaron las burbujas mediante el rolado.
- > Se dejó reposar y se rellenó hasta la marca de 500 cm³
- Luego se registrará el peso "C".
- La muestra extraída del frasco se colocó en el horno por un periodo de 24 horas, se retiró y dejó enfriar a temperatura ambiente. Después se pesó la muestra (A)
- Se determinó la masa del picnómetro lleno a su capacidad de calibración con agua y se registró su peso "B"
- Por último, se realizaron los cálculos con las siguientes ecuaciones y se registraron los resultados en las fichas de recolección de datos.

Ecuación 9: Peso específico de masa (Pem) del agregado fino

$$Pem = \frac{A}{B + S - C}$$

Ecuación 10: Peso específico SSS (PeSSS)

$$PeSSS = \frac{B}{B + S - C}$$

Ecuación 11: Peso específico aparente (PeA)

$$PeA = \frac{A}{B + A - C}$$

Ecuación 12: Absorción del agregado fino (%)

$$Ab\% = 100x \frac{S - A}{A}$$

Donde:

S= Peso de la muestra SSS

B = Peso del frasco lleno de agua hasta la marca llena de calibración (g)

C = Peso del frasco + arena + agua

A = Peso de la muestra secada al horno

3. Diseño de mezcla según (ACI 211.1)

Una vez realizado la caracterización de los agregados, se procedió a realizar el diseño del concreto usando las especificaciones del Instituto Americano del Concreto (ACI) 211, realizando una modificación en el diseño para agregar el aditivo superplastificante, lo cual nos permite recalcular la cantidad de cemento y agregados que deben cumplir con las especificaciones del grupo de proyecto europeo (GPE,2005). Asimismo, las especificaciones EFNARC (2002) nos dicen que al diseñar una mezcla debemos tener en cuenta las proporciones relativas de los componentes en cuanto al volumen y no a la masa.

Teniendo en cuenta lo anterior, se procedió a elaborar un diseño de mezcla fluida para un f'c=210 Kg/cm2, con agregado grueso de TMN ½"

Para este proyecto se estimó una cantidad de **0.024m3** de mezcla de concreto, para ello se ha determinado las siguientes cantidades:

	37-1	Patrón			
Material	Vol. Abs (m3)	P. Hum (kg/m3)	Para 0.024 m3 (kg)		
Cemento	0.1	387	9.11		
Agua	0.2	225	5.30		
Agregado Grueso	0.3	944	22.25		
Agregado Fino	0.3	741	17.45		
Aire	0.0	2	0.05		
PET					
Aditivo (L)		5	0.00		
Total	1.0	2303			

4. Elaboración de mezcla adicional con PET

Se procedió a elaborar la mezcla según el diseño obtenido, teniendo en cuenta el intercambio de agregado por fibras de PET, las cantidades a incorporar serán medidas y contenidas dentro los recipientes adecuados dentro de un laboratorio de concreto. Para este proyecto se estimó una cantidad de **0.024m3** de mezcla de concreto, para ello se ha determinado las siguientes cantidades:

-					Diseños	de mezcl	a				
	37.1	Pa	trón	PET	al 2%	PET a	al 3%	PET	al 4%	PET	al 5%
Material	Vol. Abs (m3)	P. Hum (kg/m3)	Para 0.024 m3 (kg)	P. Hum (kg/m3)	Tanda 0.024 m3 (kg)	P. Hum (kg/m3)	Tanda 0.024 m3 (kg)	P. Hum (kg/m3)	Tanda 0.024 m3 (kg)	P. Hum (kg/m3)	Tanda 0.024 m3 (kg)
Cemento	0.1	387	9.11	387	9.11	387	9.11	387	9.11	387	9.11
Agua	0.2	225	5.30	225	5.30	225	5.30	225	5.30	225	5.30
Agregado Grueso	0.3	944	22.25	925	22.25	916	22.25	906	22.25	897	22.25
Agregado Fino	0.3	741	17.45	741	17.45	741	17.45	741	17.45	741	17.45
Aire	0.0	2	0.05	2	0.05	2	0.05	2	0.05	2	0.05
PET				19	0.45	28	0.68	38	0.91	47	1.13
Aditivo (L)		5	0.00	5	0.11	5	0.11	5	0.11	5	0.11
Total	1.0	2303	•	2303	•	2303		2303		2303	

5. Ensayos de concreto en estado fresco (ASTM C1611)

5.1. Fluidez

Equipos y materiales

- ➤ **Molde** (uso particular del cono de Abrams).
- Placa base, debe ser no absorbente, lisa y rígida.
- > Barra niveladora

Procedimiento

El ensayo se realizó de acuerdo con los siguientes pasos

- Esta prueba se realizó en una placa base plana, nivelada y no absorbente. Se colocó la placa base de manera que quedó apoyada y nivelada.
- > Se marcó la base trazando un diámetro de 500 mm y el diámetro menor del cono.
- Se humedeció y colocó el molde, con la abertura más pequeña hacia abajo, en el centro de la placa.
- ➤ Luego de mantener el molde firmemente en su lugar se procedió a realizar el llenado del concreto de manera continua sin apisonar.
- ➤ Se enrasó la superficie con la barra de enrasado mediante un movimiento de aserrado. Se retiró el concreto del área que rodea la base del cono para evitar interferencias con el desplazamiento del concreto.
- ➤ Se retiró el molde del concreto levantándolo verticalmente a una distancia de 225 mm ± 75 mm en 3 ± 1 segundos mediante una elevación constante hacia arriba sin movimientos laterales. Se completará la prueba desde el inicio del llenado hasta el momento de levantar el cono en un tiempo de 2.5 minutos.
- ➤ Se tomó el tiempo que tardó el concreto en alcanzar el radio de 500 mm contando desde el tiempo del levantamiento del molde y se expresó con una precisión de ± 2 segundos.

5.2. Capacidad de llenado

Equipos y materiales

- ➤ **Molde** (uso particular del cono de Abrams)
- Placa base, debe ser no absorbente, lisa y rígida

fluidez, capacidad de llenado y resistencia a la compresión de un concreto autocompactante f'c= 210kg/cm²

> Barra niveladora

Procedimiento

El ensayo se realizó de acuerdo con los siguientes pasos

- Esta prueba se realizó en una placa base plana, nivelada y no absorbente. Se colocó la placa base de manera que quedó apoyada y nivelada.
- ➤ Se marcó la base trazando un diámetro de 550 mm, 650 mm, 750 mm y 850 mm y el diámetro menor del cono.
- Se humedeció y coloca el molde, con la abertura más pequeña hacia abajo, en el centro de la placa.
- ➤ Luego de mantener el molde firmemente en su lugar se procedió a realizar el llenado del concreto de manera continua sin apisonar.
- ➤ Se enrasó la superficie con la barra de enrasado mediante un movimiento de aserrado. Se retiró el concreto del área que rodea la base del cono para evitar interferencias con el desplazamiento del concreto.
- ➤ Se retiró el molde del concreto levantándolo verticalmente a una distancia de 225 mm ± 75 mm en 3 ± 1 segundos mediante una elevación constante hacia arriba sin movimientos laterales. Se completó la prueba desde el inicio del llenado hasta el momento de levantar el cono en un tiempo de 2.5 minutos.
- ➤ Se esperó a que el concreto deje de fluir y luego se mide el diámetro más grande de la extensión circular de concreto resultante al ¼ de pulgadas (5mm) más cercano. Se midió un segundo diámetro de la extensión circular en un ángulo aproximadamente perpendicular al diámetro original medido.
- Los cálculos se realizaron a través de la siguiente ecuación:

Ecuación 13: Flujo de asentamiento

$$SF = \frac{(d1 + d2)}{2}$$

Donde:

SF = flujo de asentamiento

d1 = Diámetro mayor de la extensión circular del concreto

Influencia de PET sobre las propiedades de

fluidez, capacidad de llenado y resistencia a la compresión de un

concreto autocompactante f'c= 210kg/cm²

d2 = La extensión circular del hormigón en un ángulo aproximadamente perpendicular a d1.

6. Ensayos de concreto en estado endurecido

6.1. Resistencia a compresión (ASTM C39 / NTP 339.034)

Se realizarán los ensayos que nos permiten analizar el concreto autocompactante en su estado endurecido.

- Las pruebas de compresión de los especímenes curados se realizaron lo más pronto después de retirarlo del lugar almacenado en humedad.
- ➤ Se colocaron los bloques de concreto con su cara endurecida hacia arriba, sobre la mesa de la máquina de ensayo. Se limpiaron las caras de apoyo de los bloques y se alinearon con mucho cuidado el eje de la muestra con el centro de empuje de la máquina.
- Antes de realizar el ensayo se verificó que el indicador de carga este en cero.
- Luego, se aplicó la carga y se registró la lectura de la carga máxima (kN) en las fichas de recolección de datos.
- Los resultados se determinaron a través de la siguiente ecuación.

Ecuación 14: Resistencia a compresión

$$F'C = \frac{F}{A}$$

Donde:

f'c = resistencia a la compresión (MPa)

F = Carga máxima de rotura (kN)

A =Área de la probeta (m2)

ANEXO 3: Ficha técnica de cemento Portland Ico

Cemento Extraforte

Cemento Portland Tipo ICo

Requisitos normalizados - NTP 334.090

REQUISITOS QUÍMICOS

0	ENSAYOS	TIPO	VALOR	UNIDAD	NORMAS DE ENSAYO	RESULTADOS" 🗊 🕖
	SO,	Máximo	4.0	%	NTP 334.086	2.1
	MgO	Máximo	6.0	%	NTP 334.086	2.4

REQUISITOS FÍSICOS

ENSAYOS	TIPO	VALOR	UNIDAD	NORMAS DE ENSAYO	RESULTADOS"	a ∂ (2)
Contenido de aire	Máximo	12.0	%	NTP 334.048	5	
Finura						
Superficie específica	-	-	ani/g	NTP 334.002	5750	
Reterido M325	-	-	%	NTP 334.045	2.2	
Expansión en autoclave	Máximo	0.80	%	NTP 334.004	0.04	
Contracción en autoclave	Máximo	0.20	%	NTP 334.004	-	
Resistencia a la compresión						
3 dias	Minimo	13.0 (1890)	MPa (ps)	NTP 334.051	22.4 (3250)	
7 dias	Minimo	20.0 (2900)	MPa (ps)	NTP 334.051	30.1 (43.70)	
28 dias	Minimo	25.0 (3420)	MPa (ps)	NTP 334.051	36.5 (5290)	
Tiempo de Fraguado Vicat						
Fraguado inicial	Minimo	45	Minutos	NTP 334.006	153	
Fraguado final	Máximo	420	Minutos	NTP 334.006	270	

[&]quot;Valores promedios referenciales de lotes despachados

El cemento descrito amba, al tiempo del envío, cumple con los requisitos químicos y físicos de la NTP 334.090

Pacasmayo

ANEXO 4: Ficha técnica del aditivo SikaCem® Plastificante

HOJA DE DATOS DEL PRODUCTO

SikaCem® Plastificante

Aditivo plastificante y reductor de agua para morteros y hormigones

DESCRIPCIÓN DEL PRODUCTO

SikaCem® Plastificante es un aditivo líquido para elaborar morteros y hormigones fluidos. Reduce agua del concreto incrementando la resistencia; NO CONTIENE CLORUROS, de modo que no corroe los metales.

USOS

SikaCem® Plastificante es recomendable para:

- Estructuras en general canales, diques, estructuras de fundación, columnas, vigas, tanques elementos prefabricados, losas, etc.)
- Cualquier tipo de estructura, cuando se desee aumentar las resistencias mecánicas o dar mayor fluidez al hormigón.

CARACTERÍSTICAS / VENTAJAS

En el hormigón fresco:

- Mejora la trabajabilidad del hormigón (plastifica), facilitando su colocación y compactación.
- Permite una reducción en la cantidad de agua de amasado en un 15% aproximadamente, lo que se manifiesta en un aumento de las resistencias mecánicas del hormigón endurecido.
- Aumento de la cohesión interna en el hormigón fresco, tendiendo a evitar la segregación de los áridos.
- Disminuye la exudación.

En el hormigón endurecido:

- Posibilita un incremento de las resistencias mecánicas a la compresión del orden de más del 15%.
- Reduce la contracción.
- · Aumenta la adherencia al acero.

CERTIFICADOS / NORMAS

SikaCem[®] Plastificante cumple con la Norma ASTM C 494, tipo A y Tipo D

INFORMACIÓN DEL PRODUCTO

Base Química	Mezcla de lignosulfonatos y polímeros orgánicos.
Empaques	Envase PET x 4 L Balde x 20 L
Apariencia / Color	Líquido marrón oscuro
Vida Útil	1 año
Condiciones de Almacenamiento	En sus envases de origen, bien cerrados y no deteriorados, en lugares frescos y secos, a temperaturas entre + 5°C y + 30°C. Protegido del congelamiento, del calor excesivo y de la radiación solar directa.
Densidad	1.20 +/- 0.02
INFORMACIÓN TÉCNICA	
Guía de Vaciado de Concreto	Mezclar los materiales componentes del hormigón o mortero con parte de

agua de mezclado, incorpore el contenido del DoyPack de SikaCem® Plastificante al pastón y complete con la menor cantidad de agua hasta lograr la fluidez requerida.

Para asegurar la homogeneidad del hormigón o mortero, se recomienda mezclardurante 3 minutos adicionales luego de incorporar todos los materiales componentes a la mezcladora.

Para mejorar el desempeño de morteros y hormigones se recomienda mantener la dosificación y proporción de los materiales componentes, Utilizar la menor cantidad de agua de mezclado hasta alcanzar la fluidez necesaria para la obra.

Cuidar que se cumplan las correctas condiciones de elaboración, colocación, compactación y curado.

La sobre-dosificación de SikaCem® Plastificante puede causar retardo de fragile.

El desempeño de los aditivos pueden variar si se modifican los materiales componentes o sus cantidades.

INFORMACIÓN DE APLICACIÓN

Dosificación Recomendada

Como plastificante: 250 mL por bolsa de cemento de 42.5 Kg.

truida.

Como superplastificante: hasta 500 mL por bolsa de cemento de 42.5 Kg.

NOTAS

Todos los datos técnicos recogidos en esta hoja técnica se basan en ensayos de laboratorio. Las medidas de los datos actuales pueden variar por circunstancias fuera de nuestro control.

LIMITACIONES

Temperatura Ambiente +5°C mín. / +30°C máx.

ECOLOGÍA, SALUD Y SEGURIDAD

Para información y asesoría referente al transporte, manejo, almacenamiento y disposición de productos químicos, los usuarios deben consultar la Hoja de Seguridad del Material actual, la cual contiene información médica, ecológica, toxicológica y otras relacionadas con la seguridad

RESTRICCIONES LOCALES

Nótese que el desempeño del producto puede variar dependiendo de cada país. Por favor, consulte la hoja técnica local correspondiente para la exacta descripción de los campos de aplicación del producto

NOTAS LEGALES

La información y en particular las recomendaciones sobre la aplicación y el uso final de los productos Sika son proporcionadas de buena fe, en base al conocimiento y experiencia actuales en Sika respecto a sus productos, siempre y cuando éstos sean adecuadamente almacenados, manipulados y transportados; así como aplicados en condiciones normales. En la práctica, las diferencias en los materiales, sustratos y condiciones de la obra en donde se aplicarán los productos Sika son tan particulares que de esta información, de alguna recomendación escrita o de algún asesoramiento técnico, no se puede deducir ninguna garantía respecto a la comercialización o adaptabilidad del producto a una finalidad particular, así como ninguna responsabilidad contractual. Los derechos de propiedad de las terceras partes deben ser respetados. Todos los pedidos aceptados por Sika Perú S.A.C. están sujetos a Cláusulas Generales de Contratación para la Venta de Productos de Sika Perú S.A.C. Los usuarios siempre deben remitirse a la última edición de la Hojas Técnicas de los productos; cuyas copias se entregarán a solicitud del interesado o a las que pueden acceder en Internet a través de nuestra página web www.sika.com.pe. La presente edición anula y reemplaza la edición anterior, misma que deberá ser des-

ANEXO 5: Especificaciones y directrices del concreto autocompactante – EFNARC

'lograr los más altos estándares'

Especificaciones y Directrices por Concreto Autocompactante

febrero de 2002

EFNARC, Casa de la Asociación, 99 West Street, Farnham, Surrey GU9 7EN, Reino Unido tel: +44 (0)1252 739147 fax: +44 (0)1252 739140 www.efnarc.org

ANEXO 6: Directrices Europeas para concreto autocompactante, GPE 2006

Directrices Europeas para el Hormigón Autocompactante

Especificaciones, Producción y Uso

Febrero 2006

ANEXO 7: Ensayo de granulometría del agregado grueso

CALIDAD DE LOS AGREGADOS

Análisis Granulométrico de Agregados

ANALISIS GRANULOMETRICO DE AGREGADOS

(NORMA DE ENSAYO: NTP 400.012)

Autores: Perez Abanto, Eliana Fecha:

Rios Ballena, Joel

Investigación: TESIS Asesor:

DATOS DE LA MUESTRA

Indentificación: Agregado grueso Peso inicial seco: 2000.0

Procedencia: Cantera Bauner S.A.

Tomiz	Abert. (mm)	Peso	%Ret	% Rt	%Que	NTP 4	100.037	Descripción de la
Таних	Abert. (IIIII)	Ret. (gr)	(%)	Acum.	pasa	Mínimo	Máximo	muestra
3"	75.000	0.0	0.0	0.0	100.0	100.0	100.0	Muestreo realizado en
2"	50.000	0.0	0.0	0.0	100.0	100.0	100.0	laboratorio UPN
1 1/2"	37.500	0.0	0.0	0.0	100.0	100.0	100.0	Características
1'	25.000	0.0	0.0	0.0	100.0	100.0	100.0	Módulo de finura
3/4"	19.000	48.0	2.4	2.4	97.6	100.0	100.0	6.574
1/2"	12.500	368.0	18.4	20.8	79.2	90.0	100.0	
3/8"	9.500	408.0	20.4	41.2	58.8	40.0	70.0	Parametros de
N°4	4.750	1050.0	52.5	93.7	6.3	0.0	15.0	Control Huso 7
N°8	2.360	120.0	6.0	99.7	0.3	0.0	5.0	Mf min: 6.1
N° 16	1.180	4.0	0.2	99.9	0.1	0.0	0.0	Mf max: 6.6
N°30	0.600	0.0	0.0	99.9	0.1	0.0	0.0	% error de la
N°50	0.300	0.0	0.0	99.9	0.1	0.0	0.0	ERROR:(< 0,3)
N°100	0.150	0.0	0.0	99.9	0.1	0.0	0.0	EKKOK.(< 0,3)
N°200	0.075	0.0	0.0	99.9	0.1	0.0	0.0	2000.0 1998.0
	Fondo	0.0	0.0	99.9	0.1	0	0	0.10%

ANEXO 8: Ensayo de granulometría para el agregado fino

CALIDAD DE LOS AGREGADOS

Análisis Granulométrico de Agregados

ANALISIS GRANULOMETRICO DE AGREGADOS

(NORMA DE ENSAYO: NTP 400.012)

Autores: Perez Abanto, Eliana Fecha:

Rios Ballena, Joel

Investigación: TESIS Asesor:

DATOS DE LA MUESTRA

Indentificación: Agregado fino Tamaño Max: 4.75

Procedencia: Cantera Bauner S.A. Tamaño Min:

Peso inicial seco: 1000.0

Tomiz	Abert. (mm)	Peso	%Ret	% Rt	%Que	NTP 4	100.037	Descripción de la
Talliz	Abert. (IIIII)	Ret. (gr)	(%)	Acum.	pasa	Mínimo	Máximo	muestra
3"	75.000	0.0	0.0	0.0	100.0	100.0	100.0	Muestreo realizado en
2"	50.000	0.0	0.0	0.0	100.0	100.0	100.0	laboratorio UPN
1 1/2"	37.500	0.0	0.0	0.0	100.0	100.0	100.0	Características
1'	25.000	0.0	0.0	0.0	100.0	100.0	100.0	Módulo de finura
3/4"	19.000	0.0	0.0	0.0	100.0	100.0	100.0	2.628
1/2"	12.500	0.0	0.0	0.0	100.0	100.0	100.0	
3/8"	9.500	0.0	0.0	0.0	100.0	100.0	100.0	Parametros de
N°4	4.750	4.0	0.4	0.4	99.6	95.0	100.0	Control Huso 7
N°8	2.360	20.0	2.0	2.4	97.6	80.0	100.0	Mf min: 2.3
N° 16	1.180	160.0	16.0	18.4	81.6	50.0	85.0	Mf max: 3.1
N°30	0.600	432.0	43.2	61.6	38.4	25.0	60.0	% error de la
N°50	0.300	230.0	23.0	84.6	15.4	5.0	30.0	ERROR:(< 0,3)
N°100	0.150	108.0	10.8	95.4	4.6	0.0	10.0	EKKOK.(< 0,5)
N°200	0.075	36.0	3.6	99.0	1.0	0.0	0.0	1000.0 998.0
I	Fondo	8.0	0.8	99.8	0.2	0	0	0.20%

ANEXO 9: Ensayo de peso específico del agregado grueso

CALIDAD DE LOS AGREGADOS

Peso Unitario Específico del Agregado

Asesor: Wiston Azañedo

DETERMINACIÓN DEL PESO APARENTE Y REAL DEL AGREGADO (NORMA ENSAYO: NTP 400.021)

Autores: Perez Abanto, Eliana

Rios Ballena, Joel

Investigación: TESIS

DATOS DE LA MUESTRA

Indentificación: Agregado grueso Peso Natural: 2000 g

Procedencia: Cantera Bauner S.A.

Fórmula

 $Pea = \left[\frac{\textit{Peso de la muestra sacada del horno}}{\textit{Peso de la muestra sacada del horno -peso de la muestra S}}\right]$

PES	O ESPECÍFICO Y A	BSORCIÓN			
MUESTRA	MUESTRA 1	MUESTRA 2	MUESTRA 3		
(B) : PESO DE LA MUESTRA SSS (Kg)	2000.000	2000.000	2000.000		
(C): PESO EN EL AGUA DE LA MUESTRA S (Kg)	1255.000	1260.000	1255.000		
(A): PESO EN EL AIRE DE LA MUESTRA SECA AL HORNO (Kg)	1969.300	1969.600	1969.900		
Pem = A/(B-C)	2636.747	2654.968	2637.551		
Pem = Promedio	2643.089				
PeSSS = B/(B-C)	2677.852	2695.946	2677.852		
PeSSS Promedio		2683.884			
Pea = A/(A-C)	2750.072	2768.709	2748.602		
Pea Promedio		2755.794			
%ABS = ((B-A)/A*100)	1.559	1.543	1.528		
Promedio ABS	Promedio ABS 1.543				

ANEXO 10: Ensayo de peso específico del agregado fino

CALIDAD DE LOS AGREGADOS

Peso Específico del Agregado

DETERMINACIÓN DEL PESO APARENTE Y REAL DEL AGREGADO FINO YABSORCIÓN

(NORMA ENSAYO: NTP 400.022)

Autores: Perez Abanto, Eliana Asesor: Wiston Azañedo

Rios Ballena, Joel

Investigación: TESIS

DATOS DE LA MUESTRA

Indentificación: Agregao fino

Procedencia: Cantera Bauner S.A. Peso Natural: 500

PES	O ESPECÍFICO Y A	PESO ESPECÍFICO Y ABSORCIÓN								
MUESTRA	MUESTRA 1	MUESTRA 2	MUESTRA 3							
S = Peso de arena SSS, (g)	500.000	500.000	500.000							
B = Peso del frasco lleno de agua hasta la marca de calibración, (g)	665.300	678.600	643.300							
C = Peso de frasco + arena + agua (g)	962.000	981.100	947.600							
A = Peso de arena secada al horno (g)	494.500	492.400	491.000							
Peso Específico de masa (PeM), (Kg/m3)	2426.285	2486.932	2502.670							
PeM promedio		2471.962								
Peso Especifico SSS (PeSSS), (Kg/m3)	2453.271	2525.316	2548.544							
PeSSS promedio		2509.044								
Peso Especifíco Aparente (PeA), (Kg/m3)	2493.750	2586.461	2623.313							
PeA promedio		2567.841								
Absorción Ab=((S- A)*100)/A	1.112	1.543	1.833							
Abs. Promedio		1.496								

ANEXO 11: Ensayo de peso unitario suelto del agregado grueso

CALIDAD DE LOS AGREGADOS

Peso Unitario Seco Suelto (PUSS)

DETERMINACIÓN DEL PESO UNITARIO VOLUMETRICO (NORMA ENSAYO: NTP 400.017)

Autores: Perez Abanto, Eliana

Rios Ballena, Joel Asesor: Wiston Azañedo

Investigación: TESIS

DATOS DE LA MUESTRA

Indentificación: Agregado Grueso **Procedencia:** Cantera Bauner SA

VOLUMEN DEL MOLDE CILINDRICO						
				FACTOR	VOLUMEN	
MUESTRA	PESO DEL	PESO DEL MOLDE	PESO DEL	CALIBRACIO	DEL	
WIOLSTRA	MOLDE (Kg)	+ AGUA	AGUA	N DEL AGUA	MOLDE	
				(K o/M3)	(m3)	
VOLUMEN DEL MOLDE	4.79	14.35	9.56	1000	0.00956	

$PUC = \left[\frac{Peso}{Volumen del molde}\right]$

	PESO UNITAR	IO SUELTO	
Ensayo	Muestra #1	Muestra #2	Muestra #3
PESO DEL MOLDE (Kg)	4.790	4.790	4.790
PESO DEL MOLDE+PIEDRA (Kg)	19.320	19.315	19.255
PESO (Kg)	14.530	14.525	14.465
VOLUMEN DEL MOLDE (m3)	0.010	0.010	0.010
PUC (Kg/m3)	1519.874	1519.351	1513.075
PROMEDIO PUSS		1517.434	

ANEXO 12: Ensayo de peso unitario suelto del agregado fino

CALIDAD DE LOS AGREGADOS

Peso Unitario Seco Suelto (PUSS)

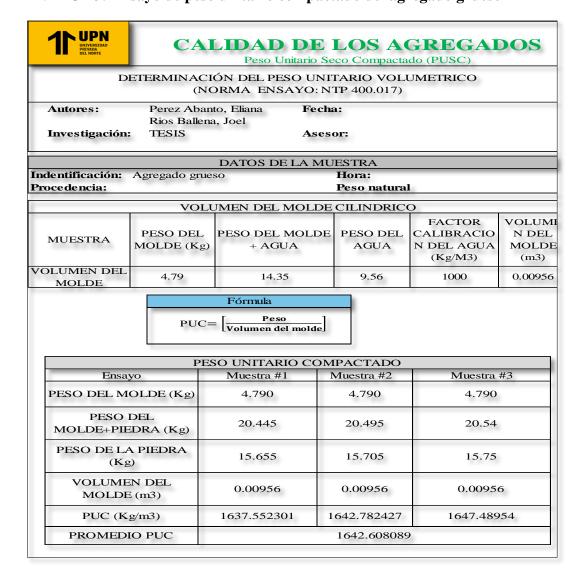
DETERMINACIÓN DEL PESO UNITARIO VOLUMETRICO (NORMA ENSAYO: NTP 400.017)

Autores: Perez Abanto, Eliana

Rios Ballena, Joel Asesor: Wiston Azañedo

Investigación: TESIS


DATOS DE LA MUESTRA


Indentificación: Agregado finoProcedencia: Cantera Bauner SA

VOLUMEN DEL MOLDE CILINDRICO										
MUESTRA	PESO DEL	PESO DEL MOLDE	PESO DEL	FACTOR	VOLUMEN					
MUESTRA	MOLDE (Kg)	+ AGUA	AGUA	CALIBRACIO	DEL					
VOLUMEN DEL	4.79		9.56	1000	0.00956					
MOLDE	4.79	14.55	9.30	1000	0.00936					

Fórmula	
$PUC = \left[\frac{Peso}{Volumen \ del \ molde} \right]$	

	PESO UNITARIO SUELTO									
Ensayo	Muestra #1	Muestra #2	Muestra #3							
PESO DEL MOLDE (Kg)	4.790	4.790	4.790							
PESO DEL MOLDE+ARENA (Kg)	19.280	19.240	19.460							
PESO (Kg)	14.490	14.450	14.670							
VOLUMEN DEL MOLDE (m3)	0.010	0.010	0.010							
PUC (Kg/m3)	1515.690	1511.506	1534.519							
PROMEDIO PUSS		1520.572								

ANEXO 14: Ensayo de peso unitario compactado del agregado fino

CALIDAD DE LOS AGREGADOS

Peso Unitario Seco Compactado (PUSC)

DETERMINACIÓN DEL PESO UNITARIO VOLUMETRICO (NORMA ENSAYO: NTP 400.017)

Autores: Perez Abanto, Eliana

Abanto, Eliana Asesor: Wiston Azañedo

Rios Ballena, Joel

Investigación: TESIS

DATOS DE LA MUESTRA

Indentificación: Agregado fino **Procedencia:** Cantera Bauner

VOLUMEN DEL MOLDE CILINDRICO										
	DECO DEI	DECO DEL MOLDE	DESO DEI	FACTOR	VOLUME					
MUESTRA	PESO DEL PESO DEL MOLD			CALIBRACIO	N DEL					
	MOLDE (Kg)	+ AGUA AGUA		N DEL AGUA	MOLDE					
VOLUMEN DEL	4 79	14.35	9.56	1000	0.00956					
MOLDE	4.79	14.33	9.50	1000	0.00930					

$PUC = \left[\frac{Peso}{Volumen del molde}\right]$

PESO UNITARIO COMPACTADO									
Ensayo	Muestra #1	Muestra #2	Muestra #3						
PESO DEL MOLDE (Kg)	4.790	4.790	4.790						
PESO DEL MOLDE+ARENA (Kg)	20.975	20.905	21.02						
PESO DE LA PIEDRA (Kg)	16.185	16.115	16.23						
VOLUMEN DEL MOLDE (m3)	0.00956	0.00956	0.00956						
PUC (Kg/m3)	1692.991632	1685.669456	1697.698745						
PROMEDIO PUC	1692.119944								

ANEXO 15: Ensayo de contenido de humedad del agregado grueso

CALIDAD DE LOS AGREGADOS

Contenido de humedad

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD NATURAL (NORMA ENSAYO: NTP 339.185)

Autores: Perez Abanto, Eliana

Rios Ballena, Joel Asesor: Wiston Azañedo

Investigación: TESIS

DATOS DE LA MUESTRA

Indentificación: Agregado grueso

Procedencia: Cantera Bauner SA Peso natural: 2000 g

Fórmula

$$\% W = \left[\frac{PH - PS}{p_{PS}} \right] \times 100$$

Ensayo	Muestra #1	Muestra #2	Muestra #3
Peso de la tara	88	352	288
Peso de la tara + muestra humeda (Kg)	2088	2352	2288
Peso de la tara + muestra seca (Kg)	2072	2335	2271
Peso de la muestra humeda	2000	2000	2000
Peso de la muestra seca	1984	1983	1983
%W	0.806	0.857	0.857
Promedio %W		0.840	

ANEXO 16: Ensayo de contenido de humedad del agregado fino

CALIDAD DE LOS AGREGADOS

Contenido de humedad

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD NATURAL (NORMA ENSAYO: NTP 339.185)

Autores: Perez Abanto, Eliana

Rios Ballena, Joel Asesor: Wiston Azañedo

Investigación: TESIS

DATOS DE LA MUESTRA

Indentificación: Agregado fino

Procedencia: Cantera Bauner SA **Peso natural:** 500 g

Fórmula

$$\% \, W = \left[\frac{PH - PS}{p_{PS}} \right] \times 100$$

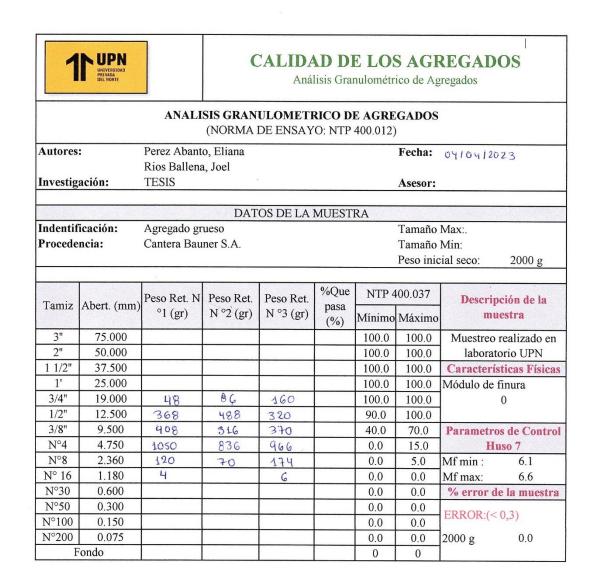
Ensayo	Muestra #1	Muestra #2	Muestra #3
Peso de la tara	98	86	36
Peso de la tara + muestra humeda (Kg)	598	586	536
Peso de la tara + muestra seca (Kg)	595.8	583.3	532.5
Peso de la muestra humeda	500	500	500
Peso de la muestra seca	497.8	497.3	496.5
%W	0.442	0.543	0.705
Promedio %W		0.563	

ANEXO 17: Ensayo de resistencia a compresión a los 7 días de curado

1 UPN BYTHEEN PRIME SEL NOTE	MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NTP 334.039)										
AUTORES:	Pérez Abanto, Eliana Milagros Rios Ballena, Joel Humberto										
LUGAR:	Laboratorio de concreto de la Universidad Privada del Norte - San Isidro										
CIUDAD:	Frujillo, La Libertad										
OBJETIVO	RESISTENCIA IGUAL SUPERIOR A 136.5 KG/CM2 QUE CORRESPONDE AL 65% DE LA CARGA DE DISEÑO 210 KG/CM2										
PROBETA	CÓDIGO DE IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ENSAYO	EDAD (días)	DIAMETRO (cm)	CARGA (KN)	F'C	Promedio			
	P1	18/04/2023	26/04/2023	7	10.20	165.02	205.93				
	P2	18/04/2023	26/04/2023	7	10.20	171.20	213.65				
PATRON	Р3	18/04/2023	26/04/2023	7	10.30	158.40	193.85	204.57			
	P4	18/04/2023	26/04/2023	7	10.30	175.29	214.52				
	P5	18/04/2023	26/04/2023	7	10.30	159.25	194.89				
PET AL 2%	P1	18/04/2023	26/04/2023	7	10.30	141.59	173.28	186.37			
	P2	18/04/2023	26/04/2023	7	10.00	152.68	198.23				
	Р3	18/04/2023	26/04/2023	7	10.20	160.05	199.73				
	P4	18/04/2023	26/04/2023	7	10.10	148.90	189.51				
	P5	18/04/2023	26/04/2023	7	10.30	139.80	171.09				
	P1	18/04/2023	26/04/2023	7	10.30	123.95	151.69				
	P2	18/04/2023	26/04/2023	7	10.30	113.60	139.03				
PET AL 3%	Р3	18/04/2023	26/04/2023	7	10.20	112.75	140.70	143.82			
	P4	18/04/2023	26/04/2023	7	10.10	106.20	135.17				
	P5	18/04/2023	26/04/2023	7	10.00	117.45	152.49				
	P1	18/04/2023	26/04/2023	7	10.30	102.10	124.95				
	P2	18/04/2023	26/04/2023	7	10.10	99.90	127.15				
PET AL 4%	P3	18/04/2023	26/04/2023	7	10.20	96.25	120.11	119.02			
	P4	18/04/2023	26/04/2023	7	10.10	89.25	113.60				
	P5	18/04/2023	26/04/2023	7	10.10	85.85	109.27				
	P1	18/04/2023	26/04/2023	7	10.10	78.80	100.29				
	P2	18/04/2023	26/04/2023	7	10.00	70.05	90.95				
PET AL 5%	P3	18/04/2023	26/04/2023	7	10.00	84.95	110.29	99.16			
	P4	18/04/2023	26/04/2023	7	10.10	83.60	106.40				
	P5	18/04/2023	26/04/2023	7	10.20	70.40	87.85				

ANEXO 18: Ensayo de resistencia a compresión a los 14 días de curado

1 UPN UNTERSORD POCNOR OLL WOTE	MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NTP 334.039)										
AUTORES:	Pérez Abanto, Eliana Milagros Rios Ballena, Joel Humberto										
LUGAR:	Laboratorio de c	oncreto de la Univers	idad Privada de	l Norte - San	Isidro						
CIUDAD:	Trujillo, La Liber	Trujillo, La Libertad									
OBJETIVO	RESISTENC	CIA IGUAL SUPER		/CM2 QUE (EÑO 210 KG/		DE AL 90%	DE LA C	ARGA DE			
PROBETA	IDENTIFICACI ÓN	FECHA DE ELABORACIÓN	FECHA DE ENSAYO	EDAD (días)	DIAMETRO (cm)	CARGA (KN)	F'C	Promedio			
	P1	18/04/2023	03/05/2023	14	10.00	209.12	271.51				
PATRON	P2	18/04/2023	03/05/2023	14	10.20	210.12	262.21				
	Р3	18/04/2023	03/05/2023	14	10.20	225.80	281.78	271.91			
	P4	18/04/2023	03/05/2023	14	10.30	233.21	285.41				
	P5	18/04/2023	03/05/2023	14	10.10	203.21	258.64				
PET AL 2%	P1	18/04/2023	03/05/2023	14	10.10	162.23	206.48	223.53			
	P2	18/04/2023	03/05/2023	14	10.20	178.31	222.52				
	Р3	18/04/2023	03/05/2023	14	10.00	182.35	236.75				
	P4	18/04/2023	03/05/2023	14	10.20	187.08	233.46				
	P5	18/04/2023	03/05/2023	14	10.10	171.61	218.42				
	P1	18/04/2023	03/05/2023	14	10.00	132.45	171.97				
	P2	18/04/2023	03/05/2023	14	10.20	155.65	194.24				
PET AL 3%	Р3	18/04/2023	03/05/2023	14	10.00	143.21	185.94	187.72			
	P4	18/04/2023	03/05/2023	14	10.00	161.90	210.20				
	P5	18/04/2023	03/05/2023	14	10.10	138.50	176.28				
	P1	18/04/2023	03/05/2023	14	10.20	116.05	144.82				
	P2	18/04/2023	03/05/2023	14	10.20	110.80	138.27				
PET AL 4%	Р3	18/04/2023	03/05/2023	14	10.10	126.50	161.00	148.34			
	P4	18/04/2023	03/05/2023	14	10.20	115.00	143.51				
	P5	18/04/2023	03/05/2023	14	10.10	121.05	154.07				
	P1	18/04/2023	03/05/2023	14	10.00	85.56	111.09				
	P2	18/04/2023	03/05/2023	14	10.20	87.80	109.57				
PET AL 5%	Р3	18/04/2023	03/05/2023	14	10.20	99.22	123.82	118.04			
	P4	18/04/2023	03/05/2023	14	10.20	103.65	129.35				
	P5	18/04/2023	03/05/2023	14	10.10	91.45	116.39				


ANEXO 18: Ensayo de resistencia a compresión a los 28 días de curado

1 UPN UPN UPTESIDAD POPUMA DEL MORTE		ENSAYO NORMA MPRESIÓN DEL CO						A A LA			
AUTORES:	Pérez Abanto, Eliana Milagros Rios Ballena, Joel Humberto										
LUGAR:	aboratorio de concreto de la Universidad Privada del Norte - San Isidro										
CIUDAD:	Frujillo, La Libertad										
OBJETIVO	RESISTENCIA IGUAL O SUPERIOR A 210 KG/CM2 QUE CORRESPONDE AL 100% DE LA CARGA DE DISEÑO 210 KG/CM2										
PROBETA	CÓDIGO DE IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ENSAYO	EDAD (días)	DIAMETRO (cm)	CARGA (KN)	F'C	Promedio			
	P1	18/04/2023	17/05/2023	28	10.00	225.21	292.40				
PATRON	P2	18/04/2023	17/05/2023	28	10.10	243.12	309.43				
	Р3	18/04/2023	17/05/2023	28	10.00	239.18	310.54	303.32			
	P4	18/04/2023	17/05/2023	28	10.20	255.89	319.33				
	P5	18/04/2023	17/05/2023	28	10.00	219.42	284.88				
PET AL 2%	P1	18/04/2023	17/05/2023	28	10.00	171.05	222.08				
	P2	18/04/2023	17/05/2023	28	10.20	189.84	236.91	236.51			
	Р3	18/04/2023	17/05/2023	28	10.15	193.40	243.73				
	P4	18/04/2023	17/05/2023	28	10.25	201.25	248.70				
	P5	18/04/2023	17/05/2023	28	10.10	181.60	231.13				
	P1	18/04/2023	17/05/2023	28	10.00	154.85	201.05				
	P2	18/04/2023	17/05/2023	28	10.20	169.45	211.46	-			
PET AL 3%	Р3	18/04/2023	17/05/2023	28	10.00	154.65	200.79	212.72			
	P4	18/04/2023	17/05/2023	28	10.10	171.08	217.74				
	P5	18/04/2023	17/05/2023	28	10.15	184.53	232.55				
	P1	18/04/2023	17/05/2023	28	10.00	153.37	199.13				
	P2	18/04/2023	17/05/2023	28	10.00	133.55	173.39				
PET AL 4%	Р3	18/04/2023	17/05/2023	28	10.20	119.10	148.63	179.02			
	P4	18/04/2023	17/05/2023	28	10.10	147.01	187.11				
	P5	18/04/2023	17/05/2023	28	10.20	149.73	186.85				
	P1	18/04/2023	17/05/2023	28	10.00	116.25	150.93				
	P2	18/04/2023	17/05/2023	28	10.10	127.05	161.70				
PET AL 5%	Р3	18/04/2023	17/05/2023	28	10.00	118.35	153.66	148.41			
	P4	18/04/2023	17/05/2023	28	10.20	112.65	140.58				
	P5	18/04/2023	17/05/2023	28	10.00	104.10	135.16				

ANEXO 20: Fichas de ensayos firmadas

1 UPN UNIVERSIDAD PRIVADA DEL NORTE CALIDAD DE LOS AGREGADOS Análisis Granulométrico de Agregados										
		ANALI		ULOMETI DE ENSAY						
Autores	:	Perez Abant	100				Fecha:	04/04/2023		
Investig	ación:	Rios Ballena TESIS	., Joei				Asesor:			
			DAT	OS DE LA	MUEST	RA				
Indentif Procede	ïcación: encia:	Agregado fir Cantera Bau					Tamaño Tamaño Peso inic	Min:		
Tamiz	Abert. (mm)	Peso Ret. N °1 (gr)	Peso Ret. N°2 (gr)	Peso Ret. N °3 (gr)	%Que pasa		100.037 Máximo	Descripción de la muestra		
3"	75.000	Kinner and the			(%)	100.0	100.0	Muestreo realizado en		
2"	50.000					100.0	100.0	laboratorio UPN		
1 1/2"	37.500					100.0	100.0	Características Física		
1'	25.000					100.0	100.0	Módulo de finura		
3/4"	19.000					100.0	100.0	0		
1/2"	12.500					100.0	100.0			
3/8"	9.500					100.0	100.0	Parametros de Contro		
N°4	4.750	4	2	2		95.0	100.0	Huso 7		
N°8	2.360	20	20	20		80.0	100.0	Mf min: 2.3		
N° 16	1.180	160	900	192		50.0	85.0	Mf max: 3.1		
N°30	0.600	432	434	456		25.0	60.0	% error de la muestra		
N°50	0.300	230	218	906		5.0	30.0	ERROR:(< 0,3)		
N°100	0.150	108	96	92		0.0	10.0			
N°200	0.075	36	24	26		0.0	0.0	500g 0.0		

Res	sponsable del Ensayo		Responsable del Laboratorio	Asesor
Firma:	AR.	Firma:	livhu buil	Firma:
Nombre:	Elichna Pesez Abaute	Nombre:	Wasley Lanaide Carrasco	Nombre:
Fecha:	26/06/2023	Fecha:	26/06/2023	Fecha:

Responsable del Ensayo	Responsable del Laboratorio	Asesor
Firma:	Firma: When fame	Firma:
Nombre: Eliana Perez Abanto	Nombre: Weslay Lapraga Canasa	Nombre:
Fecha: 26/06/2023	Fecha: 26/06/2013	Fecha:

CALIDAD DE LOS AGREGADOS

Peso Unitario Seco Suelto (PUSS)

DETERMINACIÓN DEL PESO UNITARIO VOLUMETRICO (NORMA ENSAYO: NTP 400.017)

Autores:

Perez Abanto, Eliana Fecha: 11/04/2023

Rios Ballena, Joel

Investigación: **TESIS**

Asesor:

DATOS DE LA MUESTRA

Indentificación:

Agregado fino

Hora:

Procedencia:

Peso natural

VOLUMEN DEL MOLDE CILINDRICO					
MUESTRA	PESO DEL MOLDE (Kg)	PESO DEL MOLDE +	W. Charlesope Committee on the	FACTOR CALIBRAC	
VOLUMEN DEL MOLDE	4.79	14.35	9.56	1000	0.00956

Fórmula
$PUC = \left[\frac{Peso}{Volumen del molde} \right]$

PESO UNITARIO SUELTO			
Ensayo	Muestra #1	Muestra #2	Muestra #3
PESO DEL MOLDE (Kg)	4.790	4.790	4.790
PESO DEL MOLDE+ARENA (Kg)	19.280	19.240	19.460
PESO (Kg)	14.490	14.450	14.670
VOLUMEN DEL MOLDE (m3)	0.010	0.010	0.010
PUC (Kg/m3)	1515.690	1511.506	1534.519
PROMEDIO PUSS			

Responsable del Ensayo	Responsable del Laboratorio	Asesor
Firma:	Firma:	Firma:
Nombre: Eliana Poiez Ah	into Nombre: Waslay Luongi & Carre	Nombre:
Fecha: 20/06/2023	Fecha: 26/06/2023	Fecha:

CALIDAD DE LOS AGREGADOS

Peso Unitario Seco Suelto (PUSS)

DETERMINACIÓN DEL PESO UNITARIO VOLUMETRICO (NORMA ENSAYO: NTP 400.017)

Autores:

Perez Abanto, Eliana Fecha: 11/04/2023

Rios Ballena, Joel

Investigación: TESIS

Asesor:

DATOS DE LA MUESTRA

Indentificación:

Agregado Grueso

Hora:

Procedencia:

Peso natural

	VOLUMEN D	EL MOLDE CI	LINDRICO		
MUESTRA	PESO DEL MOLDE (Kg)	PESO DEL MOLDE + AGUA	PESO DEL AGUA	FACTOR CALIBRAC ION DEL AGUA	VOLUMEN DEL MOLDE (m3)
VOLUMEN DEL MOLDE	4.79	14.35	9.56	1000	0.00956

	Fórmula	
DI IC-	Peso	
PUC=	Volumen del molde	

PESO UNITARIO SUELTO			
Ensayo	Muestra #1	Muestra #2	Muestra #3
PESO DEL MOLDE (Kg)	4.790	4.790	4.790
PESO DEL MOLDE+PIEDRA (Kg)	19.320	19.315	19.255
PESO (Kg)	14.530	14.525	14.465
VOLUMEN DEL MOLDE (m3)	0.010	0.010	0.010
PUC (Kg/m3)	1519.874	1519, 351	1513.075
PROMEDIO PUSS		1517.434	

Responsable de	el Ensayo	Responsable	del Laboratorio	Asesor
Firma:	In family	Firma:	Cupu Luce	Firma:
Nombre:	Eliana Perez Abanto	Nombre: /	Vaslay Lacraide Come	Nombre:
Fecha:	26/06/2023	Fecha:	26/06/2023	Fecha:

CALIDAD DE LOS AGREGADOS

Peso Unitario Seco Compactado (PUCS)

DETERMINACIÓN DEL PESO UNITARIO VOLUMETRICO (NORMA ENSAYO: NTP 400.017)

Autores:

Perez Abanto, Eliana Fecha: 13 /04 / 2023

Rios Ballena, Joel

Investigación:

TESIS Asesor:

DATOS DE LA MUESTRA

Indentificación:

Agregado Grueso

Hora:

Procedencia:

Peso natural

		VOLUMEN D	EL MOLDE CI	LINDRICO		
MUES	ΓRA	PESO DEL MOLDE (Kg)	PESO DEL MOLDE + AGUA	PESO DEL AGUA	FACTOR CALIBRAC ION DEL AGUA	VOLUMEN DEL MOLDE (m3)
VOLUME MOLI		4.79	14.35	9.56	1000	0.00956

	Fórmula	
PUC=	Peso	1
ruc-	Volumen del mo	lde

PESO UNITARIO SUELTO				
Ensayo	Muestra #1	Muestra #2	Muestra #3	
PESO DEL MOLDE (Kg)	4.790	4.790	4.790	
PESO DEL MOLDE+PIEDRA (Kg)	20.445	20.495	20.540	
PESO (Kg)	15.655	15.705	15.750	
VOLUMEN DEL MOLDE (m3)	0,00956	0.00956	0.00956	
PUC (Kg/m3)	1637.552	1642.782	1647.490	
PROMEDIO PUCS		16 42.608		

Responsable del Ensayo	Responsable del Laboratorio	Asesor
Firma:	Firma:	Firma:
Nombre: Cliana Perez Abanto	Nombre: Waslay Langile Camas	Nombre:
Fecha: 96/06/2023	Fecha: 26/66/2023	Fecha:

1 UPN
UNITYERSIDAD
PRIVADA
DEL HORTE **CALIDAD DE LOS AGREGADOS** Peso Unitario Seco Compactado (PUCS) DETERMINACIÓN DEL PESO UNITARIO VOLUMETRICO (NORMA ENSAYO: NTP 400.017) Perez Abanto, Eliana Fecha: 13 104 | 2023 Autores: Rios Ballena, Joel

Investigación: **TESIS** Asesor:

DATOS DE LA MUESTRA

Indentificación: Agregado fino Hora:

Procedencia: Peso natural

	VOLUMEN D	EL MOLDE CI	LINDRICO			
MUESTRA	MUESTRA PESO DEL PESO DEL FACTOR VOLUM MOLDE (Kg) MOLDE + AGUA CALIBRAC DEL					
VOLUMEN DEL MOLDE	4.79	14.35	9.56	1000	0.00956	

Fórmula Peso PUC= Volumen del molde

PESO UNITARIO SUELTO				
Ensayo	Muestra #1	Muestra #2	Muestra #3	
PESO DEL MOLDE (Kg)	4.790	4.790	4.790	
PESO DEL MOLDE+ARENA (Kg)	20,975	20,905	91.020	
PESO (Kg)	16.485	16.115	16.230	
VOLUMEN DEL MOLDE (m3)	0.00956	0.00956	0.00956	
PUC (Kg/m3)	1692.992	1685.669	1697.699	
PROMEDIO PUCS	1692.120			

Responsable	e del Ensayo	Responsable del Laboratorio	Asesor
Firma:	yh fr	Firma:	Firma:
Nombre:	Eliana Perez Abanto	Nombre: Wesley Luchard Cama	Nombre:
Fecha:	26/06/2023	Fecha: 26/06/2023	Fecha:

1 UPN
UNIVERSIDAD
PRIVADA
DEL NORTE

CALIDAD DE LOS AGREGADOS

Peso Unitario Específico del Agregado

DETERMINACIÓN DEL PESO APARENTE Y REAL DEL AGREGADO (NORMA ENSAYO: NTP 400.021)

Autores:

Perez Abanto, Eliana

Fecha:

11/04/2023

Rios Ballena, Joel TESIS

.

Investigación:

Asesor:

DATOS DE LA MUESTRA

Indentificación: Procedencia: Agregado Grueso Cantera Bauner S.A.

Hora: Peso Natural:

20009

	Fórmula	
Pea =	Peso de la muestra sacada del horno	
rea –	Peso de la muestra sacada del horno –peso de la muestra S	

PESO ESPECÍFICO Y ABSORCIÓN			
MUESTRA	MUESTRA 1	MUESTRA 2	MUESTRA 3
(B): PESO DE LA MUESTRA SSS (Kg)	2000.000	2000.000	2000.000
(C): PESO EN EL AGUA DE LA MUESTRA S (Kg)	1255.000	1260.000	1255.000
(A): PESO EN EL AIRE DE LA MUESTRA SECA AL HORNO (Kg)	1969.300	1969.600	£169.900
Pem = A/(B-C)	2636.747	2654.968	2637.551
Pem = Promedio	2643.089		
PeSSS = B/(B-C)	2617. 852	2695.946	26 77.852
PeSSS Promedio	26 83 . 884		
Pea = A/(A-C)	2750.072	2768.709	2748.602
Pea Promedio	2755.794		
%ABS = ((B-A)/A*100)	1.559	1.543	1.528
Promedio ABS		1.543	

Responsable del Ensayo		Re	sponsable del Laboratorio	Asesor	
Firma:	If the	Firma:	(when lake	Firma:	
Nombre:	Eliamo Perez Albani	Nombre: [way Luonardo Carrasco	Nombre:	
Fecha:	96/06/2023	Fecha:	26/06/2023	Fecha:	

CALIDAD DE LOS AGREGADOS

Peso Específico del Agregado

DETERMINACIÓN DEL PESO APARENTE Y REAL DEL AGREGADO FINO YABSORCIÓN (NORMA ENSAYO: NTP 400.022)

Autores:

Perez Abanto, Eliana

Cantera Bauner S.A.

Fecha: 11/04/2023

Rios Ballena, Joel

Investigación:

Indentificación:

Procedencia:

TESIS

Asesor:

DATOS DE LA MUESTRA Agregado Fino

Hora:

Peso Natural: 5009

PESO ESPECÍFICO Y ABSORCIÓN			
MUESTRA	MUESTRA 1	MUESTRA 2	MUESTRA 3
S = Peso de arena SSS, (g)	500.000	500.000	\$00.000
B = Peso del frasco lleno de agua hasta la marca de calibración, (g)	665.300	678,600	643.300
C = Peso de frasco + arena + agua (g)	962.000	981.100	947.600
A = Peso de arena secada al horno (g)	494.500	492.400	491.000
Peso Específico de masa (PeM), (Kg/m3)	2426.285	2486.932	2502.670
PeM promedio	2471.962		
Peso Especifico SSS (PeSSS), (Kg/m3)	2453. 271	2825.316	2548.544
PeSSS promedio		2509.044	
Peso Especifíco Aparente (PeA), (Kg/m3)	2493.750	2586.461	2623. 313
PeA promedio	2567.841		•
Absorción Ab=((S-A)*100)/A	1.112	1.543	1.833
Abs. Promedio	1.496		

Responsable del Ensayo			Responsable del Laboratorio	Asesor
Firma:	of h	Firma:	Wien Laux	Firma:
Nombre:	/Eliana Perez Abanto	Nombre:	Wasley Lacrarde Coma sue	Nombre:
Fecha:	26/06/2023	Fecha:	26/06/2023	Fecha:

CALIDAD DE LOS AGREGADOS

Contenido de humedad

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD NATURAL (NORMA ENSAYO: NTP 339.185)

Autores:

Perez Abanto, Eliana

Fecha: 18/04/2023

Rios Ballena, Joel

Investigación:

TESIS

Asesor:

DATOS DE LA MUESTRA

Indentificación: Agregado grueso

Hora:

Procedencia:

Peso natural: 2000 g

Fórmula					
%W=	$\left[\frac{\text{PH-PS}}{\text{p}_{\text{PS}}}\right] \times 100$				

Ensayo	Muestra #1	Muestra #2	Muestra #3
Peso de la tara	88.00	352 .00	288.00
Peso de la tara + muestra humeda (Kg)	2688.00	2352.00	2 2 8 8 . 0 0
Peso de la tara + muestra seca (Kg)	2072.00	2335.00	2271.00
Peso de la muestra humeda	2000.00	2000.00	2000.00
Peso de la muestra seca	1984.00	1983.00	1983,00
%W	0.806	0, 857	0.857
Promedio %W		0.840	

	Responsable del Ensayo	Responsable del Labor	atorio Asesor
Firma:	J. f.	Firma:	Firma:
Nombre:	Eliana Perez Abanto	Nombre: Was a Lionar	& Camasa Nombre:
Fecha:	26/06/9023	Fecha: 26/06/2023	Fecha:

1 UPN	MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NTP 334.039)
-------	--

AUTORES: Pérez Abanto, Eliana Milagros Rios Ballena, Joel Humberto

LUGAR: Laboratorio de concreto de la Universidad Privada del Norte - San Isidro

CIUDAD: Trujillo, La Libertad

OBJETIVO

PROBETA	CÓDIGO DE IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ENSAYO	EDAD (días)	DIAMETRO (cm)	CARGA (KN)
	P1				10.20	165.02
	P2	23	23		10.20	171.90
PATRON	Р3	18/04/19023	2610412023	7	10.30	158.40
	P4	7810.	26/00		10.30	175.99
	P5				10.30	159.25
	P1				10.30	141.59
	P2	18/04/2023	26/04/2023		10.00	152.68
PET AL 2%	Р3	104/20	104/20	7	10.20	160.05
	P4	1810	2610		10.10	148.90
	P5				10.30	139.80
	P1	18104 19023	26/04/2023	7	10.30	423.95
	P2				10.30	113.60
PET AL 3%	Р3				20.20	112 .75
	P4				10.10	106.20
	P5				10.00	117.45
	P1	1810412023	96/04/2023	7	10.30	102.10
	P2				10.10	99.90
PET AL 4%	Р3				10.20	96.25
	P4				10.10	89.25
	P5	-			10.10	85.85
	P1		4		10.10	78.80
	P2	18/04/2023	1202	7	10.00	70.05
PET AL 5%	P3		26104/2023	+	10.00	84.93
	P4	181	,		10.10	83.60
	P5				10,20	70.40

F	Responsable del Ensayo	Responsable del Laboratorio	Asesor
Firma:	ef fr	Firma:	Firma:
Nombre:	Eliana Perez Abanto	Nombre: Was ay Louras de Comesco	Nombre:
Fecha:	26/06/2023	Fecha: \(\lambda \lam	Fecha:

MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NTP 334.039)
Pérez Abanto, Eliana Milagros Rios Ballena, Joel Humberto
Laboratorio de concreto de la Universidad Privada del Norte - San Isidro
Trujillo, La Libertad
Tolling, S.A. Dicertud

PROBETA	CÓDIGO DE IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ENSAYO	EDAD (dias)	DIAMETRO (cm)	CARGA (KN)
	PI				10.00	209.12
	P2	23	12023		10.20	210.12
PATRON	P3	18/04/2023	03/05/2023	14	10.30	225.80
	P4	18/091	031	J 1	10.30	233.21
	P5				10.10	203.21
	P1				10.10	162.23
	P2	18/04/2023	23		10.20	178.31
PET AL 2%	Р3	104/202	105/201		10.00	182.35
	P4	181011	03/05/2023	14	10.20	187.08
	P5				10.10	171.61
	P1	18/04/2023	03/05/2023		10.00	132.45
	P2			14	10.20	155.65
PET AL 3%	Р3				10.00	143.21
	P4				10.00	161.90
	P5				10.10	138.50
1	P1		03/05/2023		10.20	116.05
	P2	18/04/2023		14	10.20	110.80
PET AL 4%	P3				10.10	126.50
	P4				10.20	115.00
	P5				10.10	121.05
	P1	2	2		10.00	85.56
	P2	38/04/2023	1002		10.20	87.80
PET AL 5%	P3		03105 12023	14	10.20	99.20
	P4		0310	- 1	10.20	103.65
	P5				10.10	91.45

Responsable del Ensayo		Responsable del Laboratorio		Asesor	
Firma:	f-	Firma:	(who face	Firma:	
Nombre: Elica	na Perez Abanto	Nombre:	Waslay Launois de Carrasco	Nombre:	
Fecha: 9	610612023	Fecha:	26/06/2023	Fecha:	

1 UPN	MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NTP 334.039)
AUTORES:	Pérez Abanto, Eliana Milagros Rios Ballena, Joel Humberto
LUGAR:	Laboratorio de concreto de la Universidad Privada del Norte - San Isidro
CIUDAD:	Trujillo, La Libertad
OBJETIVO	

PROBETA	CÓDIGO DE IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ENSAYO	EDAD (dias)	DIAMETRO (cm)	CARGA (KN)
	Pl				10.00	225.21
	P2	23	13		10.10	243.12
PATRON	P3	1,120	1200	28	10.00	239.18
	P4	1810412023	17/05/2023	0	10.20	255.89
	P5		711		10.00	219.42
	P1				10.00	171.05
	P2	.3	23		10.20	189.84
PET AL 2%	Р3	11/202	5/20		10.15	193.40
	P4	18/04/2023	37105/2023	28	10. 25	201.25
	P5		,		10.10	181.60
	P1				10.00	154.85
	P2	-23	12023		10.20	169.45
PET AL 3%	P3	18/04/2023	37/05/2023	28	10.00	154.65
	P4				10.10	171.08
	P5				10.15	184.53
	Pl				10.00	153.37
	P2	23	2023		10.00	133.55
PET AL 4%	Р3	18/04/2023	17/05/2023	28	10.20	119.10
	P4	18/04	177	20	10.10	147.01
	P5				10.20	149,73
	Pl				10.00	116.25
	P2	18104/2023	A7/05/2023		10.00	127.05
PET AL 5%	P3		17/05/	0.0	10.10	118.35
	P4	18		28	10.00	112.65
	P5				10.20	104. 10

Responsable del Ensaye	0	Responsable del Laboratorio	Asesor
Firma:	Firma:	Weg kind	Firma:
Nombre: Elicma Perez	Abouto Nombre:	Viles lay Lac no Coc Cames co	Nombre:
	023 Fecha:	26/06/2023	Fecha:

CALIDAD DE LOS AGREGADOS

Contenido de humedad

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD NATURAL (NORMA ENSAYO: NTP 339.185)

Autores:

Perez Abanto, Eliana Rios Ballena, Joel

Fecha: 1810412023

Investigación:

TESIS

Asesor:

DATOS DE LA MUESTRA

Indentificación: Agregado fino

Hora:

Procedencia:

Peso natural: 500 g

Fórmula	

Ensayo	Muestra #1	Muestra #2	Muestra #3
Peso de la tara	98.00	86.00	36.00
Peso de la tara + muestra humeda (Kg)	598 .00	586 .00	536.00
Peso de la tara + muestra seca (Kg)	595.80	583.3	532.5
Peso de la muestra humeda	500.06	200.00	\$00.00
Peso de la muestra seca	497.80	497,30	496.50
%W	0.442	0.543	0.705
Promedio %W		0.563	

	Responsable del Ensayo	Responsable del Laboratorio	Asesor
Firma:	yh Pa	Firma:	Firma:
Nombre:	Eliana Perez Abanto	Nombre: Waslay Lunare Camasa	Nombre:
Fecha:	26/06/2023	Fecha: 26/06/2023	Fecha:

ANEXO 21: Panel fotográfico

IMAGEN 1: Ensayo de granulometría, peso específico, contenido de humedad y absorción de los agregados.

IMAGEN 2: Ensayo de granulometría, peso específico, contenido de humedad y absorción de los agregados.

IMAGEN 3: Ensayo de granulometría, peso específico, contenido de humedad y absorción de los agregados.

concreto autocompactante f'c= 210kg/cm²

IMAGEN 4: Ensayo de granulometría, peso específico, contenido de humedad y absorción de los agregados.

IMAGEN 5: Ensayo de T(500) y flujo de asentamiento.

IMAGEN 6: Ensayo de T(500) y flujo de asentamiento.

IMAGEN 7: Ensayo de T(500) y flujo de asentamiento.

IMAGEN 8: Ensayo de T(500) y flujo de asentamiento.

IMAGEN 9: Ensayo de resistencia a la compresión.

IMAGEN 10: Ensayo de resistencia a la compresión.

IMAGEN 11: Ensayo de resistencia a la compresión.

IMAGEN 12: Ensayo de resistencia a la compresión.