

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA CIVIL

"MEJORA DE LOS RENDIMIENTOS Y COSTOS EN LA CONSTRUCCIÓN DE MUROS PANTALLA AL INCORPORAR BENTONITA COMO ESTABILIZANTE DE TALUD EN COMPARACIÓN A LOS MUROS ANCLADOS"

Tesis para optar al título profesional de:

Ingeniero Civil

Autores:

Eli Colunche Caruajulca Joseph Haro Acosta

Asesor:

Mg. Kely Elizabeth Nuñez Vasquez https://orcid.org/0000-0001-7846-2510

Lima - Perú

2023

JURADO EVALUADOR

Jurado 1	CHRISTIAN MARLON ARAUJO CHOQUE
Presidente(a)	Nombre y Apellidos

Jurado 2	SHEYLA YULIANA CORNEJO RODRIGUEZ
	Nombre y Apellidos

Jurado 3	KELY ELIZABETH NUÑEZ VASQUEZ
	Nombre y Apellidos

INFORME DE SIMILITUD

ACOS	STA				
INFORME [DE ORIGINALIDAD				
1 (% DE SIMILITUD	8% FUENTES DE INTERNET	2% PUBLICACIONES	4% TRABAJOS DEL ESTUDIANTE	
FUENTES P	PRIMARIAS				
	infonavit. Fuente de Inter	.janium.net			1%
repositorio.unsm.edu.pe Fuente de Internet			1%		
Submitted to Universidad Tecnológica Centroamericana UNITEC Trabajo del estudiante		1%			
	ewsdata. Fuente de Inter	rightsindevelop _{net}	ment.org		1%

TABLA DE CONTENIDO

JURADO CALIFICADOR	2
INFORME DE SIMILITUD	3
DEDICATORIA	4
AGRADECIMIENTO	5
ÍNDICE DE TABLAS	7
ÍNDICE DE FIGURAS	8
RESUMEN	09
CAPÍTULO I: INTRODUCCIÓN	11
CAPÍTULO II: METODOLOGÍA	27
CAPÍTULO III: RESULTADOS	70
CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES	75
REFERENCIAS	83
ANEXOS	85

Índice de tablas

Tabla 1	Características de suspensión de bentonita	18
Tabla 2	Análisis de rendimientos para la partida excavación	58
Tabla 3	Rendimientos para la partida de armadura	58
Tabla 4	Análisis de rendimiento para la partida de concreto	60
Tabla 5	Costos unitarios de las actividades para muro pantalla	61
Tabla 6	Costos unitarios de las actividades de armadura de acero para muro pantalla	62
Tabla 7	Costos unitarios de las actividades de hormigonado para muro pantalla	62
Tabla 8	Costos unitarios de excavación para muro anclado	63
Tabla 9	Costos unitarios de armadura para muro anclado	63
Tabla 10	Costos unitarios de vertido de concreto para un muro anclado	64
Tabla 11	Costos unitarios de la partida de encofrado y desencofrado de un muro anclado	64
Tabla 12	Análisis de costos muro pantalla MP N°44 Tipo: Inicio	65
Tabla 13	Ubicación del muro pantalla No 44	65
Tabla 14	Análisis de costos muro pantalla MP No 34 Tipo: Avance	65
Tabla 15	Ubicación del muro pantalla No 34	65
Tabla 16	Análisis de costos muro pantalla MP N°47 Tipo: Cierre	66
Tabla 17	Ubicación del muro pantalla No 47	66
Tabla 18	Análisis de costo de muro pantalla	68
Tabla 19	Análisis de costo de muro anclado	68
Tabla 20	Comparación entre muro pantalla y muro anclado en (S/. y Tiempo)	69
Tabla 21	Comparación de rendimientos	70
Tabla 22	Diferencia de días entre muros pantalla y muro anclado	71

Índice de figuras

Figura 1 Características de suspensión de bentonita	20
Figura 2 Esquema en planta general de la pantalla #58	25
Figura 3 Esquema en perfil de la pantalla #58	25
Figura 4 Esquema en planta general de la pantalla #53	26
Figura 5 Esquema en perfil general de la pantalla #53	26
Figura 6 Esquema en planta general de la pantalla #31	27
Figura 6 Esquema en perfil general de la pantalla #31	27
Figura 8 Ficha de recolección de datos	29
Figura 9 Diagrama de flujo	30
Figura 10 Ubicación del proyecto en el departamento de Lima	32
Figura 11 Estación Elio-08 del proyecto Línea 2 y Ramal Av. Faucett – Av. Gambeta de la Red Bá	
del Metro de Lima y Callao	32
Figura 12 Señalización del plan de desvió vehicular	32
Figura 13 Cerramiento de obra	33
Figura 14 Tanques para almacenamiento de agua	34
Figura 15 Planta de lodos	34
Figura 16 Trazo y Replanteo de murete guía	35
Figura 17 Construcción de murete guía	35
Figura 18 Gráfico de Pantalla de inicio	36
Figura 19 Gráfico de Pantalla de avance	37
Figura 20 Gráfico de Pantalla de cierre	37
Figura 21 Mezclador de lodo	38
Figura 22 Tanques australianos de lodos	39
Figura 23 Excavación de muro pantalla	40
Figura 24 Ensayo de viscosidad	41
Figura 25 Contenido de arena	42
Figura 26 Potencial hidrógeno	42
Figura 27 Densidad	43
Figura 28 Volumen de agua filtrada y espesor de costra	44
Figura 29 Centrado de cuchara bivalva al inicio de la excavación	45
Figura 30 Control de verticalidad a 15 m primer bocado	45
Figura 31 Medición al muro guía	45
Figura 32 Control de verticalidad a 21.70 m. primer bocado	47
Figura 33 Instrumento de medición (Nivel laser level)	47
Figura 34 Armadura y enganche de jaulas	49
Figura 35 Instalación de asas de posicionamiento e izajes	50
Figura 36 Maniobra de Izajes	51
Figura 37 Izaje con poleas	51
Figura 38 Traslado correcto de jaulas	51
Figura 39 Distribución de tubos temie	52
Figura 40 Vaciado de concreto	. 53
Figura 41 Cono de Abrams	62
Figura 42 Control de vaciado de concreto	54
Figura 43 Gráfico de instalación de tubería tremie	. 55
Figura 44 Extracción del tubo junta	
Figura 45 Ficha de recolección de datos para rendimientos	
Figura 46 Ficha de recolección de datos para hormigonado	59
Figura 47 Comparación por tiempo entre muros pantalla y muros anclados	69
Figura 48 Comparación por precio entre muros pantalla y muros anclados	70
Figura 49 Comparación por rendimiento entre muros pantalla y muros anclados	70
Figura 50 Comparación por costo entre muros pantalla y muros anclados	
Figura 51 Optimización de rendimientos	. 79
Figura 52 Comparación de costos	80

RESUMEN

El presente estudio de investigación se realizó en el distrito de Cercado de Lima de la

provincia de Lima, para dar a conocer lo rendimientos y costos que existe entre la comparación

de las metodologías de muros pantalla y muros anclados aplicado en la construcción de la

Estación Nro. 8 – Elio de la Linea 2 del Metro de Lima. En este estudio se utilizó un diseño no

experimental, transversal, descriptivo, la muestra fue no probabilística y la recolección de datos

fue la observación directa, los instrumentos utilizados fueron fichas de control para excavación,

ficha de control de hormigonado, planos, procedimientos constructivos y protocolos de

liberación. La mejor intención de este estudio es comparar otra alternativa de metodología de

proceso constructivo, evaluando y analizando la factibilidad en cuanto a rendimientos y costos

de muros pantalla y muros anclados. Finalmente se concluyó que el muro pantalla tiene un

ahorro de tiempo en su elaboración debido a su ratio de producción, pero a un costo superior

al muro anclado en 17.25% que se hace de conocimiento al público lector para su

discernimiento y criterio de utilización.

PALABRAS CLAVES: Muros pantalla, Muros anclados, bentonita, Procedimiento

constructivo, Excavaciones profundas

Pág.

ABSTRACT

The present research study was carried out in the Cercado de Lima district of the

province of Lima, to reveal the performance and costs that exist between the comparison of the

methodologies of diaphragm walls and anchored walls applied in the construction of Station

No. 8 – Elio of Line 2 of the Lima Metro. In this study, a non-experimental, transversal,

descriptive design was used, the sample was non-probabilistic and data collection was direct

observation, the instruments used were control sheets for excavation, concreting control sheet,

plans, construction procedures and release protocols. The best intention of this study is to

compare another alternative construction process methodology, evaluating and analyzing the

feasibility in terms of performance and costs of diaphragm walls and anchored walls. Finally,

it was concluded that the screen wall saves time in its production due to its production ratio,

but at a cost higher than the anchored wall by 17.25%, which is made known to the reading

public for their discernment and criteria for use.

KEYWORDS: Diaphragm walls, Anchored walls, bentonite, Construction procedure,

Deep excavations

NOTA

El contenido de la investigación no se encuentra disponible en **acceso abierto**, por determinación de los propios autores amparados en el Texto Integrado del Reglamento RENATI, artículo 12.

Referencias

Pinares Escalante, W.J. (2021) Factibilidad técnico - económica de la construcción de muro anclado y muro diafragma como sistema de contención en obras civiles sometidas a carga vertical tomando como referencia al edificio insignia de la USIL [Tesis, Universidad San Ignacio de Loyola]. https://repositorio.usil.edu.pe/entities/publication/cf4f6e6a-dfaa-4226-9cf7-2de3c60928f3

Mozó Vergara, D.E. (2012) analisis y diseño de muros pantalla en suelos arenosos [Tesis, Universidad Católica de la Santísima Concepción].

http://www.civil.ucsc.cl/investigacion/memorias/2012DavidEMozo.pdf

Sanhueza Plaza, C.X. (2008) Criterios y parámetros de diseño para pantallas continuas en Madrid. [Tesis Doctoral, Universidad Politécnica de Madrid E.T.S. de Ingenieros de caminos, canales y puertos]. https://doi.org/10.20868/UPM.thesis.1167

Rincón Chisino, S.L. y Santacruz Pachón, P. A. (2020) Comparación de empujes horizontales sobre muros pantallas construidos en arcillas blandas bogotanas por medio de metodologías analíticas y simulación 2D en elementos finitos. [Tesis, Pontificia Universidad Javeriana].

https://repository.javeriana.edu.co/handle/10554/16796

Ander-Egg, E. (2003), Métodos y Técnicas de Investigación Social. Buenos Aires: Lumen Humanitas

Universitat Politécnica de Valencia (5 de diciembre 2018). Fluidos bentoniticos como estabilizador de excavaciones. https://victoryepes.blogs.upv.es/2018/12/05/fluidos-bentoniticos-como-estabilizador-de-excavaciones/

Rayan Barragán, Israel. 2018. "Procedimiento de Excavación Para La Construcción de La Cimentación de Un Edificio de Departamentos Ubicado En Camino Al Recreo No. 111." Instituto Politécnico Nacional.

https://larepublica.pe/datos-lr/2022/08/09/ingenieria-civil-innovacion-y-tecnologia-en-el-sector-construccion

https://web.soletanche-bachy.pe/ciclos/muros-diafragma-para-sotanos-con-presencia-de-nivel-freatico/

https://web.soletanche-bachy.pe/ciclos/sotano-edificio-insignia-universidad-sanignacio-de-loyola