

FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA CIVIL

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% Y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

Tesis para optar el título profesional de:

INGENIERO CIVIL

Autores:

Carlos Ivan Cojal Aguilar Segundo Jaime Portal Huaccha

Asesor:

Mg. Ing. Kely Elizabeth Nuñez Vasquez https://orcid.org/0000-0001-7846-2510

Cajamarca - Perú

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

JURADO EVALUADOR

Jurado 1	ANITA ELIZABETH ALVA SARMIENTO	26697612		
Presidente(a)	Nombre y Apellidos	Nº DNI		

	LIZBETH MILAGROS MERMA GALLARDO	40012838	
Jurado 2	Nombre y Apellidos	Nº DNI	

horada O	ERLYN GIORDANY SALAZAR HUAMAN	71106769
Jurado 3	Nombre y Apellidos	Nº DNI

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

INFORME DE SIMILITUD

TESIS INFORME DE ORIGINALIDAD INDICE DE SIMILITUD FUENTES DE INTERNET **PUBLICACIONES** TRABAJOS DEL **ESTUDIANTE** FUENTES PRIMARIAS Submitted to Universidad Privada del Norte Trabajo del estudiante repositorio.ucv.edu.pe Fuente de Internet 1library.co Fuente de Internet hdl.handle.net Fuente de Internet repositorio.upn.edu.pe 5 www.redalyc.org

Fuente de Internet

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

DEDICATORIA

A NUESTROS PADRES, por su sacrificio, paciencia y amor, cuyo anhelo de sacarnos adelante. Del mismo modo a nuestros hermanos, familia y amigos.

AGRADECIMIENTO

Agradecemos a Dios. A mis padres, por enseñarnos a luchar y esforzarnos y a nuestros hermanos por apoyarnos cada día para seguir adelante, a nuestros docentes y amigos quienes nos brindaron su apoyo. Y a nuestra familia, amigos, docentes y director de Carrera por todo el apoyo e impartición de conocimientos. Finalmente hacemos extensivo nuestro más sincero agradecimiento a nuestra asesora Ing. Kely Nuñez Vasquez.

Br. Portal Huaccha Segundo Jaime

Rodriguez Agradezco Dios. Α mis padres, María C. Aguilar Saulino Cojal Izquierdo, a mis hermanos Yeison Cojal Aguilar y O. Miguel Cojal Aguilar. Y encarecidamente a N. Yovany Ocas Terrones, a nuestros docentes y amigos quienes nos brindaron su apoyo, a nuestra familia, amigos, docentes y director de Carrera. Finalmente mi más sincero agradecimiento Ing. Kely Nuñez Vasquez. a nuestra asesora Br. Cojal Aguilar Carlos Ivan

TABLA DE CONTENIDO

JURADO EVALUADOR	2
INFORME DE SIMILITUD	3
DEDICATORIA	4
AGRADECIMIENTO	5
TABLA DE CONTENIDO	6
ÍNDICE DE TABLAS	7
ÍNDICE DE FIGURAS	8
ÍNDICE DE ECUACIONES	10
RESUMEN	11
CAPÍTULO I: INTRODUCCIÓN	12
CAPÍTULO II: METODOLOGÍA	26
CAPÍTULO III: RESULTADOS	44
CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES	93
REFERENCIAS	98
ANEXOS	100

ÍNDICE DE TABLAS

Tabla 1 Clasificación de suelos y mezclas de agregados de suelos AASHTO - M 145	19
Tabla 2. Categoría de CBR para subrasante	22
Tabla 3 Numero de muestras y ensayos por cada calicata en estudio	26
Tabla 4 Resultado de estudio físico Químico de ceniza de carbón	35
Tabla 5 Contenido de humedad de la muestra de suelo arcilloso natural de la calicata 01	43
Tabla 6 Contenido de humedad de la muestra de suelo arcilloso natural de la calicata 02	44
Tabla 7 Análisis granulométrico por lavado C-01	44
Tabla 8 Análisis granulométrico por lavado C-02	45
Tabla 9 Análisis granulométrico de la Ceniza	46
Tabla 10 Determinación de límite líquido de la muestra patrón	48
Tabla 11 Determinación de Límite Plástico de la muestra patrón	48
Tabla 12 Clasificación según AASHTO	50
Tabla 13 Determinación de límite líquido de la muestra patrón C-02	51
Tabla 14 Determinación de Límite Plástico de la muestra patrón C-02	51
Tabla 15 Clasificación según AASHTO	53
Tabla 16 Compactación Proctor Modificado (Muestra Patrón) C-01	54
Tabla 17 Compactación Proctor Modificado (Muestra Patrón) C-02	55
Tabla 18 Compactación Proctor Modificado 5% C-01	56
Tabla 19 Compactación Proctor Modificado 5% C-02	57
Tabla 20 Compactación Proctor Modificado 10% C-01	58
Tabla 21 Compactación Proctor Modificado 10% C-02	59
Tabla 22 Compactación Proctor Modificado 15% C-01	60
Tabla 23 Compactación Proctor Modificado 15% C-02	61
Tabla 24 Compactación CBR 0% Cenizas – C-01	62
Tabla 25 Ensayo Hinchamiento 0% Cenizas	62
Tabla 26 Ensayo penetración 0% Cenizas – C-01	63
Tabla 27 Compactación CBR 0% Cenizas – C-02	65
Tabla 28 Ensayo Hinchamiento 0% Cenizas – C02	65
Tabla 29 Ensayo penetración 0% Cenizas – C-02	66
Tabla 30 Compactación CBR con edición de 5% de Cenizas – C-01	68
Tabla 31 Ensayo Hinchamiento con adición de 5% de Cenizas – C-01	68
Tabla 32 Ensayo penetración con adición de 5% de Cenizas – C-01	69
Tabla 33 Compactación CBR con edición de 5% de Cenizas – C-02	71
Tabla 34 Ensayo Hinchamiento con adición de 5% de Cenizas – C-02	71
Tabla 35 Ensayo penetración con adición de 5% de Cenizas – C-02	72
Tabla 36 Compactación CBR con edición de 10% de Cenizas – C-01	74
Tabla 37 Ensayo Hinchamiento con adición de 10% de Cenizas – C-01	74
Tabla 38 Ensayo penetración con adición de 10% de Cenizas – C-01	75
Tabla 39 Compactación CBR con edición de 10% de Cenizas – C-02	77
Tabla 40 Ensayo Hinchamiento con adición de 10% de Cenizas – C-02	77
Tabla 41 Ensayo penetración con adición de 10% de Cenizas – C-02	78
Tabla 42 Compactación CBR con edición de 15% de Cenizas – C-01	80
Tabla 43 Ensayo Hinchamiento con adición de 15% de Cenizas – C-02	80
Tabla 44 Ensayo penetración con adición de 15% de Cenizas – C-02	81
Tabla 45 Compactación CBR con edición de 15% de Cenizas – C-02	83
Tabla 46 Ensayo Hinchamiento con adición de 15% de Cenizas – C-02	83
Tabla 47 Ensayo penetración con adición de 15% de Cenizas – C-02	84
Tabla 48 Análisis de costo unitario por m2 de subrasante, utilizando 10% de residuos de carbón.	90
Tabla 49 Análisis de costo unitario por m2 de subrasante, utilizando 10% de restados de carbon. Tabla 49 Análisis de costo unitario por m2 de subrasante, utilizando 10% de Cal	50
1 aoia 77 Anansis de Costo annario por m2 de suorasante, attizando 1070 de Cat	

ÍNDICE DE FIGURAS

Figura 1 Sistema Unificado de Clasificación de Suelos (SUCS) ASTM D2487	17
Figura 2 Carta de Plasticidad SUCS	18
Figura 3 Carta de Plasticidad AASHTO	19
Figura 4 Georreferenciación calicatas, y horno de extracción de ceniza	26
Figura 5 Residuos de carbón (ceniza), extrayendo de Horno de ladrilos.	36
Figura 6 Ejemplo de protocolo de laboratorio de la Universidad Privada del Norte	37
Figura 7 Procedimiento de Investigación	39
Figura 8 Curva granulométrica de suelo arcilloso natural en tamizado por lavado de Calicata 01.	45
Figura 9 Curva granulométrica de suelo arcilloso natural en tamizado por lavado de Calicata 02.	46
Figura 10 Curva granulométrica de Ceniza, tamizado en seco.	47
Figura 11 Gráfica de Límite Líquido de la muestra patrón + 0% cenizas C-01	49
Figura 12 Carta de Plasticidad AASHTO	49
Figura 13 Carta de Plasticidad de Casagrande	50
Figura 14 Gráfica de Límite Líquido de la muestra patrón + 0% cenizas C-02	52
Figura 15 Carta de Plasticidad AASHTO C-2	52
Figura 16 Carta de Plasticidad de Casagrande	53
Figura 17 Curva de compactación de la muestra patrón + 0% cenizas C-01	54
Figura 18 Curva de compactación de la muestra patrón + 0% cenizas C-02	55
Figura 19 Curva de compactación de la muestra patrón + 5% cenizas C-01	56
Figura 20 Curva de compactación de la muestra patrón + 5% cenizas C-02	57
Figura 21 Curva de compactación de la muestra patrón + 10% cenizas C-01	58
Figura 22 Curva de compactación de la muestra patrón + 10% cenizas C-02	59
Figura 23 Curva de compactación de la muestra patrón + 15% cenizas C-01	60
Figura 24 Curva de compactación de la muestra patrón + 15% cenizas C-02	61
Figura 25 Curva CBR de esfuerzo deformación de la muestra patrón (0% cenizas) – C-01	64
Figura 26 CBR de diseño para muestra patrón (0% cenizas) – C-01	64
Figura 27 CBR de diseño para muestra patrón (0% cenizas) – C-02	67
Figura 28 CBR de diseño para muestra patrón (0% cenizas) – C-01	67
Figura 29 CBR de diseño con adición de 5% de cenizas – C-01	70
Figura 30 CBR de diseño con adición de 5% de cenizas – C-01	70
Figura 31 CBR de diseño con adición de 5% de cenizas – C-01	73
Figura 32 CBR de diseño con adición de 5% de cenizas – C-02	73
Figura 33 CBR de diseño con adición de 10% de cenizas – C-01	76
Figura 34 CBR de diseño con adición de 10% de cenizas – C-01	76
Figura 35 CBR de diseño con adición de 10% de cenizas – C-02	79
Figura 36 CBR de diseño con adición de 10% de cenizas – C-02	79
Figura 37 CBR de diseño con adición de 15% de cenizas – C-01	82
Figura 38 CBR de diseño con adición de 15% de cenizas – C-01	82
Figura 39 CBR de diseño con adición de 15% de cenizas – C-02	85
Figura 40 CBR de diseño con adición de 15% de cenizas – C-02	85
Figura 41 Resumen de resultados de límites de plasticidad de la C-1	86
Figura 42 Resumen de resultados de límites de plasticidad de la C-2	86
Figura 43 Resumen de resultados de Proctor Modificado de la Calicata 01	87
∪ v	

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

Figura 44 Comparación de resultados de Proctor Modificado de la Calicata 02	87
Figura 45 Resumen de resultados de densidades secas máximas de calicata 01	88
Figura 46 Resumen de resultados de densidades secas máximas de calicata 02	88
Figura 47 Resumen de resultados de CBR de la calicata 01	89
Figura 48 Comparación de resultados de CBR de la calicata 02	89

COJAL AGUILAR C.: PORTA HUACCHA J.

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

ÍNDICE DE ECUACIONES

Ecuación 1. Porcentaje retenido sobre cada tamiz.	28
Ecuación 2. Porcentaje parcial retenido en análisis granulométrico.	28
Ecuación 3. Límite Pastico	29
Ecuación 4. Índice de plasticidad	29
Ecuación 5. Densidad húmeda del material	30
Ecuación 6. Densidad seca de material.	30
Ecuación 7. Porcentaje de agua a añadir	32
Ecuación 8. Porcentaje de expansión de CBR.	32
Ecuación 9. Esfuerzo	33
Ecuación 10. Índice de CBR	33

RESUMEN

Actualmente el mejoramiento del CBR de la subrasante se realiza incorporando diferentes materiales químicos, asfálticos o geosintéticos en función al tipo de suelo a estabilizar, por lo que, la presente investigación plantea como objetivo principal, determinar la capacidad portante (CBR) del suelo en subrasante arcillosa, mediante el uso de residuos de carbón (ceniza) en la carretera a Shultin, Baños del Inca - Cajamarca. Esta investigación es de tipo experimental, constituida por 24 muestras de CBR. Los resultados en la calicata 1 obtenidos al adicionar 5% y 10% de residuos de carbón, mejoran considerablemente el comportamiento para la capacidad portante al 95% de la densidad seca máxima, con respecto a la muestra patrón con CBR de 3.37% a 9.75% y 12.13% respectivamente; y para un 15% de aditivo alcanza al 11.74%. En la calicata 02 mejora el CBR también considerablemente de una muestra patrón de 2.42% a 7.99% y 10.99%; y al adicionar en un 15% de aditivo alcanza un CBR de 10.37%. Finalmente se concluye que se valida la hipótesis parcialmente obteniendo resultados mayores al 10% con adición de residuos de carbón (ceniza) al 10% y 15% y con 5% no supera el CBR de acuerdo con la hipótesis planteada.

PALABRAS CLAVES: Suelo Arcilloso, Residuos de Carbón, Subrasante, Pavimentos, CBR.

CAPÍTULO I: INTRODUCCIÓN

A nivel nacional e internacional existen diferentes entidades o constructoras dedicadas a la construcción y mejoramiento de carreteras, los mismos que buscan materiales que permitan la mejora de su resistencia y desempeño, relacionados a sus propiedades mecánicas, brindan una mejor durabilidad y permita el cuidado del medio ambiente. Así mismo la reutilización de materiales.

Robles & Sánchez (2015) afirman que "El pavimento es una estructura constituida por materiales, colocados en capas sobre un terreno natural o relleno nivelado, con el propósito de aumentar la resistencia de carga y brindar serviciabilidad de circulación a personas y/o vehículos" (p. 14).

En el transcurso de los años se ha ido buscando mejorar las vías de conexión para optimizar tiempos de transporte y mejorar la calidad de vida de la población, un claro ejemplo mostraba los romanos quienes fueron célebres por edificar a partir del año 312 a.C. edificaron una amplia red de caminos que les permitió gobernar su inmenso imperio. En un principio, el sistema vial romano fue diseñado con fines militares y políticos, donde el principal objetivo era mantener un control efectivo de las zonas incorporadas al Imperio. Posteriormente, las calzadas adquirieron una importancia económica añadida, ya que al unir distintas regiones facilitaban el comercio y las comunicaciones, que es la función predominante de las carreteras actuales. (Diario Norte, 2012, p. 1)

Según Prefumo & Enrique (2015) Un mal comportamiento de las estructuras viales son los materiales con los que están conformados, sucede mucho en los suelos arcillosos donde en su comportamiento presenta daños en la subrasante de pavimentos, lo cual fue identificada por los especialistas en el estudio de suelos y fundaciones como una de las causas fundamentales de esos daños, hasta fines de 1930. A partir de allí se comienza a reconocer

que muchas de las patologías de las estructuras, que eran atribuidas a asentamientos del suelo u otros problemas, se debían en realidad a un fenómeno de hinchamiento. Por este motivo el tema ha interesado en forma creciente a los especialistas en suelos y construcciones. Se estima que las pérdidas anuales a nivel mundial por daños en las construcciones sobre los suelos expansivos superan los dos billones de dólares (p. 1).

"En nuestro país el tema es de constante preocupación ya que existen muchos daños causados en obras de ingeniería civil: carreteras, canalizaciones y viviendas, siendo las más afectadas por este fenómeno" (Prefumo & Enrique, 2015, p. 2). En muchas de estas obras se encuentran terrenos de fundación de baja capacidad portante, el cual necesita ser mejorado o remplazado por otro material que cumpla los parámetros exigidos por el Ministerio de Transportes y Comunicaciones (MTC), Actualmente para el mejoramiento del CBR de la subrasante se adicionan: cal, cemento, escoria, cloruros de sodio, cloruros de calcio, cloruro de magnesio, productos asfálticos y geosintéticos, según el estudio de suelos. Por lo que, ante la eventual problemática, esto motiva analizar el comportamiento de los residuos de carbón (cenizas) utilizadas en las fábricas de ladrillos artesanales e industriales para la quema de ladrillos, de esta manera mejorar el CBR.

La subrasante y sub base de un pavimento tienen la facultad de resistir los esfuerzos que le son transmitidos, este interviene en el diseño del espesor de las capas del pavimento e influye en el comportamiento de la capa de rodadura. En la actualidad podemos ver, que esto no tiene la funcionalidad requerida y presentan fallas a temprana edad, porque están expuestas a condiciones severas de humedad afectando así la durabilidad del pavimento, causando; grietas, hundimiento y asentamientos y por consecuencia el descontento en los conductores y la población en general (Rebolledo, 2010).

Así mismo Rabanal (2014) afirma que las fallas que se presentan en los pavimentos en la ciudad de Cajamarca, como las fisuras, deformaciones, deterioro de la capa estructural, daños superficiales; se producen por múltiples factores: el resultado de un mal diseño del paquete estructural como; la mala calidad de los materiales, errores constructivos, no hubo un mejoramiento adecuando de CBR, un deficiente sistema de drenaje en caso de precipitaciones, el efecto de solicitaciones eternas como carga vehicular y agentes climáticos, entre otros (p.14).

Como **Estudios Previos** tenemos que la función de un pavimento es la de proveer una superficie de rodadura adecuada al tránsito y distribuir las cargas aplicadas por el mismo, sin sobrepasar las tensiones admisibles de las distintas capas del pavimento y de los suelos de fundación. Un buen diseño debe cumplir con las condiciones enunciadas al menor costo inicial y con un mínimo de conservación durante la vida útil de la estructura del pavimento. El objetivo al diseñar un pavimento y a la vez calcular el espesor del CBR adecuado para cada una de las capas, de tal manera que cumplan con las exigencias del manual de diseño de carreteras sección suelos y pavimentos, teniendo en cuenta los valores técnico-económicos de las mismas para lograr la solución más conveniente. (Fiuba, 2014)

En la investigación titulada "Ceniza de carbón mineral para estabilización de suelos cohesivos en subrasante" donde como objetivo general es evaluar la influencia de la ceniza de carbón en la estabilización de suelos cohesivos (contiene pequeñas partículas y suficiente arcilla para que se adhiera). Siendo la investigación de tipo de investigación aplicada, dicho material fue extraído de la calicata ubicada en el pasaje 30 de Mayo-Jirón Mariátegui. Concluyendo que obtuvo mejores resultados con la adición de 5% y 7% de cenizas de carbón con un resultado de CBR de 6% y 7.5% respectivamente. (Casas, 2020).

En la investigación titulada "Estabilización de suelos arcillosos con ceniza de cáscara de arroz para el mejoramiento de subrasante", como objetivo general busca determinar si la ceniza de cáscara de arroz puede ser usada como material estabilizante de los suelos arcillosos para emplearlos a nivel de subrasante de un pavimento. Los resultados demuestran que la ceniza de cascaras de arroz incremento el CBR de 5% hasta 19.4%, con un contenido del 20% de ceniza de cáscara de arroz. Concluyendo que el uso de ceniza de cascará de arroz como material para la estabilización de suelos arcillosos en obras de pavimento, son favorables cuando se utilizan como estabilizante de suelos. Castro, 2017).

Terrones (2018), en su investigación "Estabilización de suelos tipo arcillosos adicionando cenizas de bagazo de caña, donde busca el mejoramiento de subrasante en el sector Barraza, Trujillo-2018", busca determinar la influencia de adición de ceniza de bagazo de cañas de azúcar en diferentes porcentajes de 5%, 10% y 15%. Encontrando como resultado de los ensayos de la muestra no confinada, se determinó que la muestra patrón cuenta con una máxima resistencia a la compresión entre 13.76KPa y 13.96kPa, y con una adición de 5% valores entre 33.62kPa y 33.84kPa y para 10% presenta una resistencia de 77.91kPa y 80.11kP. Concluyendo que al adicionar 15% se obtiene una mejor resistencia de 150, 60 kPa a comparación de la muestra sin aditivo que tiene una resistencia de 13.76kPa, y en cuanto al CBR de 1.823% sin aditivo a un CBR de 23.267% con aditivo (subrasante muy buena).

El uso de la ceniza volante muestra el mejoramiento de las propiedades de resistencia y de cohesión en la arcilla, según la investigación presentada concluye que, la ceniza volante empleada es una ceniza tipo F, ya que la suma de porcentaje de sus principales constituyentes (Si02, Al203 y Fe203) es mayor a 70%. Estas funcionan como aditivo inhibidor de una de las propiedades expansivas del material, pero este requiere ser adicionado en diferentes porcentajes no excesivos, al menos para el caso de una arcilla que sea expansiva, en promedio

mayor al 20%. En el ensayo CBR la mezcla aumento su resistencia en un 9% con la proporción de 20% de ceniza volante y 80% de arcilla. El ensayo Próctor modificado, presenta mayor grado de compactación que aquella sin ceniza volante. El valor del CBR al 100% de la MDS, aumento considerablemente de 8.3% a 17.3% adicionándole la ceniza volante en la proporción de 20 %. (Pérez, 2012)

Según Tovar (2018), en su investigación titulada "Estabilización de la sub-rasante con la incorporación de ceniza vegetal, Jauja" busca determinar los efectos en la estabilización de la subrasante al incorporar ceniza vegetal en la Av. Huancayo – Jauja. Además de determinar las características físicas de la subrasante e identificar las características químicas de la ceniza vegetal. Donde se realizó el desarrollo de la investigación usando un método científico, para lo cual se elaboró instrumentos de recolección de datos, se ejecutó ensayos en laboratorio; con la finalidad de analizar los efectos de estabilización de la subrasante con incorporación de la ceniza vegetal con 15%, 25% y 35%. Para el caso sin aditivo se obtiene un CBR para la calicata 01 de 16.70% y en la calicata 02 de 18.2%. Y con adición de estos aditivos el CBR mejora, con la adición de un 15% mejora a 23.40% y 21.90% e, para 25% mejora en 23.90% y en 23.40% y al incorporar 35%, obtiene un CBR de 24.7% y de 23.7%. Concluyendo que este material si logra estabilizar la subrasante dando un CBR muy bueno al adicionar el 35% de ceniza.

En la investigación titulada "Estabilización de suelos con ceniza de carbón con fin de pavimentación en centro poblado cascajal Izquierdo, provincia de santa – Ancash –2018". Donde como objetivo general busca utilizar los residuos de ceniza de carbón con cantidades de 4%, 8% y 10% para la estabilización de suelos con el propósito de estabilizar los suelos en pavimentos. La metodología es de estudio no experimental, con una población y muestra de 28 000m2, en el que se usó protocolos estandarizados para recoger los resultados encontrados

de cada ensayo. Obteniendo como mejor resultado al adicionar 10% de cenizas de carbón, un CBR de 13%.

A continuación, las bases teóricas para la investigación:

Suelo

El uso del suelo es un material que proviene de las desintegraciones y transformaciones de partículas. (Open Course ware, 2015)

Suelo Arcillosos

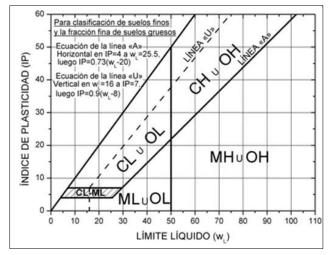
El suelo arcilloso está conformado por minerales de grano muy fino. Estos suelos generalmente se caracterizan por su alto contenido de agua y su baja resistencia in situ. Dicho material contiene en grandes proporciones montmorillonita y bajas proporciones o casi nulas de vermiculita. (Manual de carreteras, suelos y pavimentos, 2014)

CLASIFICACIÓN DE SUELOS UNIFICADOS SUCS (ASTM D2487 / NTP 339.134). a) Definición:

El sistema de clasificación unificado agrupa a los suelos según sus cualidades estructurales y de plasticidad, está orientada al comportamiento con materiales de construcción en ingeniería. Se basa en el porcentaje de grava, arenas y fino que pasa la malla N°200, en la distribución de granulometría del suelo y las características de plasticidad.

El procedimiento que se sigue, es dividir el suelo grano fino; es decir si pasa más de la mitad del material pasa el tamiz N°200 y suelos de grano grueso si más de la mitad del material se retiene en la malla antes mencionada.

Si la clasificación resulta en suelo grano fino, se podrá agrupar en tres secciones, uno si el suelo es altamente orgánico (Pt) y otros dos de limo y arcilla dependiendo de si su límite líquido es menor a 50 se podrá dividir en MH, CH Y OH o mayor de 50 en este caso podrá ser ML, CL y OL.


Figura 1Sistema Unificado de Clasificación de Suelos (SUCS) ASTM D2487

GRUPOS			SIMBOLO DE GRUPO	NOMBRE DE GRUPO		CRITERIOS DE CLASIFICACION		
		Gravas Limpias (menos de 5%	GW	Grava bien gradada	Splic pulpopatria	Cu>4y 1 <cc<3< th=""></cc<3<>		
	GRAVAS	de finos)	GP	Grava pobremente gradada	Granulo.	Cu < 4 y/ó 1 > Cc > 3		
	(mas del 50% de la fracción		GM	Grava limosa	Los finos se ubican en la zona de LIMOS (ML) en la Carta de Plasticidad de Casagrande			
	gruesa es mayor que el tamiz No 4)	Gravas con finos (mas de 12%	GC	Grava arcillosa	Los finos se ubican en la Carta de Plasticidad de C	zona de ARCILLA (CL) en la asagrande		
SUELOS DE		de finos)	GC-GM	Grava limosa arcillosa	Simbolo dual: Finos se ub (CL-ML) de la carta de pla	ican en la zona de signo doble esticidad de Casagrande.		
GRANO	> 50% F.G. ret.		GW-GM	Grava bien gradada con limo	Granulometría/ Cc	Cu) y plasticidad (Carta		
GRUESO	Tamiz N° 4	Gravas con 5 a	GW-GC	Grava bien gradada con arcilla		lasticidad)		
(mas del 50 % es retenido en		12% de finos (simbolo dual)	GP-GM	Grava pobremente gradada con limo	Sími	bolo dual		
el tamiz No			GP-GC	Grava pobremente gradada con arcilla				
200)		Arenas Limpias	sw	Arena bien gradada	sdo dundunatra	Cu > 6 y 1 < Cc < 3		
> 50% Ret.	ARENAS (50% o más de la fracción gruesa pasa el tamiz No 4) ≥50% F.G. Pasa Tamiz N° 4	(poco o ningun fino)	SP	Arena pobremente gradada	Solo Gardon	Cu < 6 y/ó 1 > Cc > 3		
N° 200		Arenas con finos (mas de 12% de finos)	SM	Arena limosa	Los finos se ubican en la zona de LIMOS (ML) en la Carta de Plasticidad de Casagrande			
			sc	Arena arcillosa	Los finos se ubican en la zona de ARCILLA (CL) en la Carta de Plasticidad de Casagrande			
			SC-SM	Arena limosa arcillosa	Simbolo dual: Finos se ubican en la zona de signo doble (CL-ML) de la carta de plasticidad de Casagrande.			
		Arenas con 5 a 12 % de finos (símbolo dual)	SW-SM	Arena bien gradada con limo	Granulometría(Cc, Cu) y plasticidad (Ca de Plasticidad)			
			SW-SC	Arena bien gradada con arcilla				
			SP-SM	Arena pobremente gradada con limo	Símbolo dual			
			SP-SC	Arena pobremente gradada con arcilla				
			CL	Arcilla de baja plasticidad	IP >7 y cae en ó sob	re la línea A		
SUELOS DE GRANO	LIMOS Y ARG	CILLAS	ML	Limo	IP< 4 ó cae bajo la línea A			
FINO	FINO Límite Líquido < 50%		CL-ML	Arcilla limosa	4 ≤ IP ≤ 7, Simbolo dual: Finos se ubican en la zona de signo doble (CL-ML).			
pasa el tamiz			OL	arcilla ó limo orgánico	Ubicar IP en Carta Plasticidad y verificar que : L.L (secado al horno) / L.L (sin secado al horno) < 0.7			
≥50% Pasa			СН	Arcilla de alta plasticidad	IP cae en ó sobre la línea A			
N° 200	LIMOS Y ARG		МН	Limo elástico	IP cae bajo de la línea A			
	Emmo Enquido	_ 50.10	ОН	arcilla ó limo orgánico	Ubicar IP en Carta Plasticidad y verificar que : L.L (secado al horno) / L.L (sin secado al horno) < 0			
Suelos altamer	nte orgánicos		Pt	Turba	Patrón principal de identif olor orgánico, textura fibro ensayos	icación: color oscuro a negro, osa a amorfa. No aplican		

Nota. Clasificación de suelo, Adaptado de «Clasificación SUCS.».

Figura 2
Carta de Plasticidad SUCS

Nota. Clasificación de suelo según índice de plasticidad y limite líquido, adaptado de «Clasificación SUCS.».

SISTEMA DE CLASIFICACIÓN AASHTO

Este sistema de clasificación es ampliamente usado en lo que es la ingeniería de vías, y busca principalmente juzgar la aceptabilidad de un suelo para hacer usado como material de subrasante, sub-base y base en un pavimento, basándose en la medición numérica de la calidad del suelo, determinado el índice de grupo (IG).

La clasificación se basa en buscar la primera columna de izquierda a derecha que haga que todos los requisitos en el suelo, encajen dentro de los rangos definidos, de acuerdo a la granulometría por tamizado y los límites de consistencia.

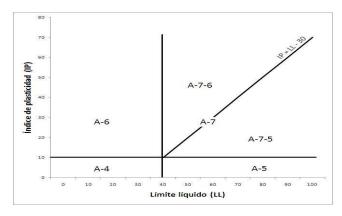


Tabla 1
Clasificación de suelos y mezclas de agregados de suelos AASHTO - M 145
Clasificación de los Suelos - Método AASHTO

Clasificación general	Suelos granulosos 35% máximo que pasa por tamiz de 0.08 mm						Suelos finos más de 35% pasa por el tamiz de 0.08 mm				8 mm	
Grupo	A ²	1	A3		Α	2		A4	A5	A6	A7	
Símbolo	A1-a	A1-b	AS	A2-4	A2-5	A2-6	A2-7	A4	AS	AO	A7-5	A7-6
Análisis granulométrico												
% que pasa por el tamiz de:												
2 mm 0.5 mm 0.08 mm	máx. 50 máx. 30 máx. 15	máx. 50 máx. 25	mín. 50 máx.10	máx. 35	Máx.35	máx. 35	máx. 35	mín. 35	mín. 35	mín. 35	mín. 35	mín. 35
Límites Atterberg				máx. 40	mín. 40	máx. 40	mín.40	máx. 40	máx. 40	máx. 40	mín. 40	mín. 40
límite de líquido índice de plasticidad	máx. 6	máx. 6		máx. 10	máx. 10	max. 40	min. 10	máx. 10	máx. 10	max. 40	mín. 40 mín. 10 IP <ll-30< td=""><td>min. 40 min. 10 IP<ll-30< td=""></ll-30<></td></ll-30<>	min. 40 min. 10 IP <ll-30< td=""></ll-30<>
Índice de grupo	0	0	0	0	0	máx. 4	máx. 4	máx. 8	máx. 12	máx. 16	máx. 20	máx. 20
Tipo de material	Piedras, y are	-	Arena Fina		Gravas j limosas o	y arenas arcillosas		Sue limo	elos osos		Suelos arcillo	os
Estimación general		_						_				

Nota. Tabla de Clasificación de suelos y mezclas de agregados de suelos con fines de construcción de carreteras – AASHTO M 145.

Figura 3
Carta de Plasticidad AASHTO

Nota: Carta de Plasticidad tipo AASHTO - AASHTO M15

Arcilla

La arcilla es una roca sedimentaria descompuesta la misma que se encuentra constituida por agregados silicatos de aluminio hidratados, siendo estos procedentes de la descomposición de rocas que contienen feldespato, por ejemplo el granito. (López, 2018)

Cenizas

La ceniza es el producto de la combustión de algún material, compuesto por sustancias inorgánicas no combustibles, como sales minerales. Parte queda como residuo en forma de polvo depositado en el lugar donde se ha quemado el combustible (madera, basura, etc.) y parte puede ser expulsada al aire como parte del humo. (Redisa, 2013)

Según García, (2019) la ceniza es un material está compuesta por carbono (principalmente), el hidrógeno y el oxígeno son los componentes que predominan del carbón, aunque también tiene azufre, nitrógeno, y otros elementos. Debido a su composición, el carbón es combustible (es decir, se combina con el oxígeno desprendiendo calor).

Ladrillo cerámico

El ladrillo cerámico es un material de construcción, y con forma ortoédrica, cuyas dimensiones permiten que se pueda colocar con una sola mano por parte de un operario. Se emplea en albañilería para la construcción en general. (Montoya, 2019)

Puzolana

La puzolana según la norma ASTM C 618 y N.T.P. 334.090 define a la puzolana como un material silíceo o sílico -aluminoso, que finamente dividido y en presencia de agua, reacciona químicamente con hidróxido de calcio formando compuestos que poseen propiedades hidráulicas. (NTP.334.090,2013)

Puzolana Natural

La puzolana Natural es un material de forma vidriosa formado por lanzamiento violento del magma fundido en contacto con la atmósfera, es más reactiva con la cal, que con las cenizas formadas por erupciones menos que son menos violentas. Los

materiales puzolánicos naturales están constituidos principalmente por rocas eruptivas y en particular efusivas y volcánicas, y dentro de éstas, por extrusivas, salvo las de naturaleza orgánica. (Ramírez, 2019)

Puzolana Artificial

La puzolana artificial son resultado de diversos procesos industriales y agrícolas, generalmente como subproductos. Las puzolanas artificiales más importantes son arcillas cocidas, cenizas de combustible pulverizado, escoria de hornos grandes provenientes de forma granulada y molida, así como las cenizas de cáscaras de arroz. (Ramírez, 2019)

Pavimentos

Es una estructura construida sobre la subrasante de la vía, permitiendo resistir y distribuir los esfuerzos que son originados por los vehículos y de la misma forma mejorar las condiciones de seguridad como comodidad para el tránsito. Por lo general está conformada por capa de rodadura, base y subbase. (MEF, 2015)

Pavimento Rígido

Es un tipo de pavimento que está constituido por tres capas: una subrasante, una base y la capa superior de concreto según diseño, el mismo que tiene la finalidad de absorber las cargas vehiculares y transmitirlas a la base y subrasante. (Revista Ingeniería. Investigación y Tecnología, 2016)

Pavimento Flexible

Es un tipo de pavimento compuesto por cuatro capas: una subrasante, una subbase, una base y la capa superior llamada carpeta asfáltica. Este tipo de pavimento trabaja a flexión, absorbiendo cargas que transitan sobre ella ejerciendo la carga directamente al suelo. (Revista Ingeniería. Investigación y Tecnología, 2016)

Subrasante

La subrasante es una superficie que se encuentra al realizar movimiento de tierras (corte y relleno), sobre la cual se coloca la estructura del pavimento o afirmado. La subrasante es el asiento directo de la estructura del pavimento, que se construye entre el terreno natural allanado o explanada con la estructura de un pavimento. (MEF, 2015)

Según el Ministerio de Transportes y Comunicaciones existen cinco categorías de subrasante:

Tabla 2.Categoría de CBR para subrasante

Categorías de Subrasante	CBR
So: Sub rasante Inadecuada	CBR < 3%
S ₁ : Sub rasante Pobre De	CBR >3% O CBR < 6%
S2: Sub rasante Regular	De CBR > 6% O CBR < 10%
S ₃ : Sub rasante Buena	De CBR > 10% O CBR > 20%
S4: Sub rasante Muy Buena	De CBR > 20% O CBR < 30%
Ss: Sub rasante Excelente	CBR > 30%

Estabilización de Suelos

Según la normativa peruana (MTC, 2013), define a la estabilización de suelos como el mejoramiento que se le da a las propiedades físicas a través de procedimientos mecánicos e incorporación de productos que son químicos, naturales o sintéticos. Tales estabilizaciones, por lo general se realizan en los suelos de subrasante que generalmente son pobres, conocidas como estabilización de suelo cemento, suelo cal, suelo asfalto y diversos productos. (Terrones, 2018)

Estabilización de suelos con incorporación de productos químicos y/o naturales

Consiste en añadir al suelo otros materiales, o productos químicos, que modifican sus propiedades, ya sea por una reacción fisicoquímica, o mediante la creación de una matriz que aglomere las partículas del suelo (Bahar et all, 2004; Billong et all, 2009).

Según lo expuesto anteriormente, se puede decir que el problema en su mayoría es por un mal tratamiento, con cantidades inadecuadas. Es por ello que se busca la utilización de cantidades correctas y aprovechar los recursos reutilizables. La zona de estudio está situada en la carretera a Shultin-Baños del Inca, provincia de Cajamarca, al norte del Perú.

La investigación cuenta con **justificación teórica**, ya que toma como base diferentes estudios previos acerca de las variables consideradas, así mismo se basa en definiciones conceptuales y norma técnica para proporcionar una alternativa en el mejoramiento de los suelos arcillosos dentro de nuestra ciudad.

Justificación Práctica. La finalidad de este estudio servirá para verificar si el uso de residuos de carbón, mejorará el CBR del suelo arcilloso en subrasante de pavimentos de la carretera Shultin – Baños del Inca Cajamarca.

Delimitación

La presente investigación, hace uso de la ceniza generada de los residuos de carbón usado en la quema de ladrillos. Dichos residuos son extraídos de los hornos una vez usado para quemar ladrillos, dicho material va cayendo a un costado y al final de la pila de ladrillos. Estos son recolectados para su uso y a la vez pasadas por el tamiz n°4 para su uso como estabilizante de suelos.

COJAL AGUILAR C.: PORTA HUACCHA J.

Formulación del problema

¿El uso de residuos de carbón(ceniza) mejora el CBR de la subrasante arcillosa de la carretera a Shultin - Baños del Inca, Cajamarca?

Objetivos

El objetivo general es determinar la capacidad portante (CBR) del suelo en subrasante arcillosa, mediante el uso de residuos de carbón en la carretera a Shultin, Baños del Inca - Cajamarca.

Los objetivos específicos para esta investigación son los siguientes:

Determinar las propiedades físicas y mecánicos para clasificar el suelo natural y con la adición de 5%, 10% y 15% de residuos de carbón en la carretera a Shultin - Baños del Inca, Cajamarca.

Determinar el porcentaje óptimo de residuos de carbón de 5%, 10% y 15% que mejore el CBR en la carretera a Shultin - Baños del Inca, Cajamarca

Realizar el costo unitario por m2, para el tratamiento de subrasante con el porcentaje óptimo de residuos de carbón

Hipótesis

El uso de residuos de carbón en 0%, 5%, 10% y 15% mejora en 10% el CBR de la subrasante arcillosa en la carretera a Shultin-Baños del Inca, Cajamarca

CAPÍTULO II: METODOLOGÍA

El tipo de investigación será de tipo experimental por que se basa en la manipulación de variables que es dependiente de tipo cuantitativa (residuos de carbón provenientes de las fábricas de ladrillo cerámico) ya que representa un conjunto de procesos secuenciales y probatorios y el estudio se determinará en base a datos obtenidos de ensayos de laboratorio de mecánica de suelos en la Universidad Privada del Norte. (Hernández, 2014).

La Unidad de Estudio es el suelo arcilloso natural extraído de calicatas con incorporación de residuos de carbón, proveniente de las fábricas de ladrillo cerámico, en la carretera Shultin Baños del Inca - Cajamarca.

La población viene a ser el suelo arcilloso natural ubicada en la carretera Shultin Baños del Inca - Cajamarca (783m).

La muestra está constituida por dos calicatas del suelo arcilloso natural ubicada en la carretera Shultin Baños del Inca − Cajamarca de 783m de longitud. La carretera es de bajo Volumen de tránsito con IMD≤200veh/día según el cuadro 4.1 del Manual de Carreteras MTC RDN°10-2014-MTC/14 el número de calicatas por km mínimo es igual a 1, optando por 2 calicatas para un mejor análisis de estudio de dicho tramo de suelo arcilloso natural. Con un número de 24 muestras de CBR.

La ubicación geográfica de las calicatas se encuentra según coordenadas UTM: La primera en la WGS 84 al Este: 776087.00m, al Norte: 9211107.00m, a una Altitud de 2712m.s.n.m y la segunda calicata al este 776098.00 m, al Norte: 9211304.00 m, con una Altitud de 2710 m.s.n.m

Tabla 3

Numero de muestras y ensayos por cada calicata en estudio

MUESTRA	0%	5%	10%	15%		
CALICATA 01	3	3	3	3		
CALICATA 02	3	3	3	3		
TOTAL	24					

Esta tabla corresponde a los diferentes ensayos donde se determina las características físico mecánica de la muestra del suelo arcilloso natural con la adición de residuos de carbón en diferentes porcentajes.

Figura 4

Georreferenciación calicatas, y horno de extracción de residuos de carbón

UPN UNIVERSIDAD PRIVADA PRIVADA

Materiales e Instrumentos. Las pruebas se realizan con 5%, 10% y 15% de residuos de carbón (ceniza). Se comprueba que esta mezcla con el suelo arcilloso, presenta mejor comportamiento para su uso como capa de sub-rasante mejorada de los pavimentos. Los diseños de la estructura típica de pavimento, se aplican a suelo natural arcilloso y suelo estabilizado, mediante el método mecanístico o empírico.

Cuando los residuos se mezclan con el suelo arcilloso, las características de compactación (densidad y óptimo contenido de humedad) de los suelos cambian. El proceso de hidratación se produce durante el contacto entre el suelo, el carbón y el agua hace que la unión y cementación generen altos valores de densidad.

La determinación de la capacidad de soporte de los suelos, responde a la realización de ensayos sujetos a las recomendaciones de las Normas de uso general. La determinación del valor de CBR se realiza de acuerdo a las recomendaciones de las referencias en la cual requieren de los resultados del ensayo de Próctor para hallar el CBR a una determinada densidad.

Materiales

- Residuos de carbón
- Suelo arcilloso
- Papel filtro

Instrumentos/equipos

- Pala
- Pico
- Equipos de laboratorio

Ensayos de laboratorio a realizar

a) ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO EN SECO

El principal objetivo de dicho ensayo es determinar de forma cuantitativamente la distribución del tamaño de las partículas del suelo en estudio. (Manual de Ensayos de Materiales MTC, 2016).

% Pasa = 100 - % Retenido acumulado

Ecuación 1. Porcentaje retenido sobre cada tamiz.

$$\% \text{ Retenido} = \frac{\text{Peso Retenido en el Tamiz}}{\text{Peso Total}} \times 100$$

Ecuación 2. Porcentaje parcial retenido en análisis granulométrico.

Para hallar el porcentaje total que pasa por cada tamiz, se resta el porcentaje total (100%), con el porcentaje acumulado retenido en cada tamiz. Utilizando los siguientes materiales:

- Juego de mallas
- Balanza con aproximación de 0.1 gr
- Taras Procedimiento

b) LIMITES DE CONSISTENCIA

Este método se utiliza para caracterizar la fracción de grano fino del suelo en estudio; y nos especifica la fracción de partículas de los materiales de construcción. Utilizando los siguientes materiales. (Manual de Ensayos de Materiales MTC, 2016).

- Malla Na 40

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

- Copa de Casagrande
- Ranurador o acanalador
- Balanza con aproximación de 0.01 gr
- Estufa con control de temperatura
- Espátula
- Probeta de 100 ml
- Cápsula de porcelana

Límite Líquido. Es el contenido de humedad, que es expresado en porcentaje, en el que el suelo se encuentra en el límite entre su estado líquido y estado plástico. (Manual de Ensayos de Materiales MTC, 2016).

Límite Plástico. Es el contenido mínimo de humedad en tiras de suelo de aproximadamente 3,2 mm de diámetro, estas se pueden formar haciendo rodar el suelo entre la palma de la mano y una superficie lisa (vidrio) que no se desmorone. Siendo el porcentaje de humedad, calculándose según la siguiente ecuación. (Manual de Ensayos de Materiales MTC, 2016).

$$L\text{\'imite Pl\'astico} = \frac{Peso \, de \, agua}{Peso \, de \, suelo \, secado \, al \, horno} \, x \, 100$$

Ecuación 3. Límite Pastico

Definiendo se el límite de plasticidad de un suelo entre la diferencia de límite líquido y límite plástico.

Índice de Plastecida = Límite Liquido -Limite de Plasticidad.

Ecuación 4. Índice de plasticidad

COJAL AGUILAR C.: PORTA HUACCHA J.

Teniendo en cuenta que, si el límite liquido o plástico, y el índice de plasticidad no puedan determinarse será No Plástico. Y si el límite plástico es mayo que límite liquido entonces el límite de plasticidad será como No Plástico. (Manual de Ensayos de Materiales MTC, 2016).

c) COMPACTACIÓN PROCTOR MODIFICADO

Este ensayo determina la relación entre elpeso unitario del suelo seco y contenido de agua, y tambien el diámetro a utilizar de 4pulg o 6 pulg. Utilizando diferentes cantidades de agua para determina el contenido óptimo y el peso unitario seco máximo. (Manual de Ensayos de Materiales MTC, 2016). Valores que son determinadas según las siguientes ecuaciones.

$$\rho m = 1000 \times \frac{(M_t - M_{md})}{V}$$

Ecuación 5. Densidad húmeda del material

Donde:

ρm = Densidad húmeda del suelo compactado (g/cm3)

Mt = Masa del suelo húmedo más molde (g)

Mmd = Masa del molde (g)

V = Volumen del molde (cm3)

$$rd = \frac{p_m}{1 + \frac{w}{100}}$$

Ecuación 6. Densidad seca de material.

Donde:

ρd = Densidad seca del suelo compactado (g/Cm3)

w = Contenido de humedad (%)

Dicho ensayo se utilizará los siguientes materiales y herramientas

- Equipo proctor modificado (molde cilíndrico, placa de base y anillo de extensión).
- Pisón proctor modificado
- Balanza con aproximación de 0.01 gr
- Estufa con control de temperatura
- Probeta de 1000 ml
- Recipiente de 6 kg, de capacidad
- Espátula
- Recipientes identificados o taras identificadas

d) CALIFORNIA BEARING RATIO - CBR

Este ensayo permite determinar el índice de resistencia del suelo, usualmente en suelos de subrasante, capa subbase y capa base. Esta consta de tres etapas ensayo de compactación CBR, hinchamiento y ensayo de cara de penetración Donde dicho valor permitirá el diseño de pavimentos, carreteras y pistas de aterrizaje. Los instrumentos y materiales para realizar dicho ensayo son los siguientes.

- Equipo CBR (modelos cilíndricos con placa de base y collar de extensión,
 3 discos espaciadores,
 3 placas de expansión,
 3 sobrecargas cada una de 4.5
 kg de peso y 3 trípode).
- Pisón proctor modificado
- Balanza con precisión de 1 gr
- 3 diales de expansión con divisiones de 0.01 mm
- Estufa con control de temperatura
- Probeta de 1000 ml
- Recipiente de 6 kg de capacidad

IN UPN
UNIVERSIDAD
PRIVADA

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

- Espátula
- Taras identificadas

Compactación de CBR. Consiste en compactar las muestras de suelo dentro del molde utilizando la fuerza de compactación dinámica del proctor estándar o modificada. Se utilizará 3 moldes por cada muestra, y se realizará con diferentes rangos de compactación dependiendo al tipo granular o cohesivo del suelo. Utilizando la cantidad de agua óptima para conseguir la humedad de compactación óptima.

% de agua a añadir
$$=\frac{\text{H-h}}{100+h} \times 100$$
 CBR.

Ecuación 7. Porcentaje de agua a añadir

Donde,

H: Humedad optima H: humedad natural

Hinchamiento o expansión. Se calcula de acuerdo a la diferencia de lecturas del deformímetro durante 4 días (96 horas) sumergidas en el agua.

% de expansión =
$$\frac{\text{L2-L1}}{127} \times 100$$

Ecuación 8. Porcentaje de expansión de CBR.

Donde:

L1: Lectura inicial en mm L2: Lectura final en mm

Índice Resistente de CBR. La relación de soporte valor patrón es para el caso de penetración de 2.54mm (1pulg), la presión de 70.31kgf/cm2 o 1 lb/pulg2 y de 5.08mm(0.2pulg) 105.46kgf/cm2 o 1.5 lb/pulg2.

$$\sigma = \frac{P}{A}$$

Ecuación 9. Esfuerzo

Donde: $\int = \text{Esfuerzo } P = \text{Carga aplicada}$ A = Área del pistón de carga

Finalmente, el CBR se calculará según lo siguiente.

$$CBR = \frac{Esfuerzo unitario ensayado}{Esfuerzo unitario patrón} \times 100$$

Ecuación 10. Índice de CBR

Los especímenes son compactados con un número de golpes de 56, 25 y 10 golpes por capa. La penetración se realizará en cada espécimen. (NTP 339.145, 1999).

Técnicas e instrumentos de recolección y análisis de datos

Técnica de experimento. El tipo de investigación es de tipo experimental aplicada, porque se realizaron diversos ensayos en laboratorio de suelos para conocer cómo es el comportamiento del suelo con el uso de residuos de carbón. Según Sandí (2016), nos dice que: en términos resumidos un experimento es un estudio o investigación donde se hace la variación o se manipula de manera intencional a las variables independientes las mismas que se analizan y se ven las consecuencias cuando las variables independientes influyen en las variables dependientes. Con la finalidad de comprobar la hipótesis por medio de los ensayos establecidos en la matriz de operacionalización de la variable.)

Técnicas de la observación. Mediante esta técnica el investigador puede realizar un análisis de la situación en la que se encuentra. La participación y la observación del autor de forma similar a los entornos visuales con una mayor interacción y dinamismo que incluye la observación del autor. (Sandí, 2016)

Teniendo una conceptualización clara acerca de la técnica de observación se plantea que es de uso prioritario al realizar diversos ensayos en laboratorio. Debido a que se debe observar los cambios de subrasante con la adición de cenizas en porcentajes de 0%, 5%, 10% y 15%.

Instrumentos de Recolección. Para realizar la recopilación de datos, basados en conocimientos de expertos, profesionales y colegiados en la rama de la ingeniería civil para resultados más confiables y según el criterio que este necesite. Dichos instrumentos se utilizan para diversos tipos de investigación y para cada tema de investigación, en esta investigación se utilizarán los *Protocolos de Laboratorio de la Universidad Privada del Norte y la confiabilidad será las firmas de los expertos de laboratorio*. Según la definición por parte de Cárdenas; se considera un instrumento de medición a los instrumentos que ayudan a la recopilación de la información debido a que estos datos dependen de cada instrumento. Debe ser adecuado o empleado de manera consistente por el investigador, para posteriormente ser procesados; obtener resultados y conclusiones. (Tamayo, 2019)

Protocolos de laboratorio de los siguientes ensayos:

- Contenido de Humedad MTC E 108 / ASTM D2216 / NTP 339.127
- Análisis granulométrico mediante tamizado en seco. MTC E107/ASTM D421
- Análisis granulometría mediante tamizado por lavado ASTM D421
- Límites de plasticidad NTP E339.130 / MTC E111 / ASTM D4318
- Compactación proctor modificado MTC E115 / ASTM D1557 / NTP 339.141

California bearing ratio – CBR MTC E132 / ASTM D1883 / ASTM D4429

RESIDUOS DE CARBÓN (CENIZA)

Los residuos de carbón (ceniza) utilizados en esta investigación se obtendrán de Horno de una ladrillera ubicado dentro de la zona de estudio a espaldas del aeropuerto de Cajamarca. Son extraídos y transportados en sacos para ser tamizados por la malla nº4, posteriormente para ser utilizado como estabilizantes de subrasante. Las propiedades físico químicas de los residuos de carbón (ceniza) que sirven como aditivos para estabilizar suelos son las siguientes (Villanueva,2023):

Tabla 4 *Resultado de estudio físico Químico de ceniza de carbón*

Propiedades de ceniza de carbón			
Nomenclatura	Símbolo	Cantidad (%) Villanueva 2023	Cantidad (%) Moreno 2020
Humedad		1.61	1.81
Pérdida por Calcinación		2.05	2.12
Óxido de Silício	SiO2	40.18	42.55
Óxido de Aluminio	AI2O3	14.2	15.54
Óxido de Hierro	Fe2O3	4.59	8.46
Óxido de Calcio	CaO	15.77	13.25
Óxido de Magnesio	MgO	1.25	2.52
Óxido combinado	SiO2+AI2O3+Fe2O3	58.97	66.55

Resultados de estudios químicos de ceniza de carbón tomado de Evaluación de la ceniza de carbón como aditivo estabilizador en suelos arcillosos con fines de pavimento, por Moreno,2020. Donde muestra una mayor concentración de óxido de silicio a un 42.55%.

Figura 5 *Residuos de carbón (ceniza), extrayendo de Horno de ladrilos.*

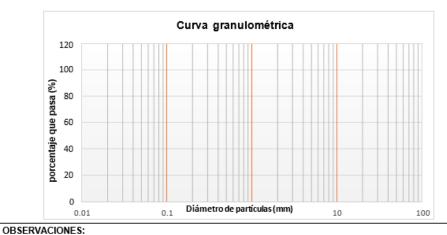

Los instrumentos utilizados en esta investigación para la recolección de datos, son los protocolos de laboratorio de Mecánica de Suelos de la Universidad Privada del Norte, que se muestra a continuación: "MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

Figura 6 Ejemplo de protocolo de laboratorio de la Universidad Privada del Norte

LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAM										
1	PROTOCOLO									
	ENSAYO:			JLOMETRIA MEDIANTE O POR LAVADO	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:		AS	TM D421	AGTE-ES-UPING					
PRIVADA DEL NORTE	TESIS:				DIANTE EL USO DE RESIDUOS DE CARBÓN EN N - BAÑOS DEL INCA, CAJAMARCA 2023"					
CALICATA:		% ADITIVO		TIPO DE MATERIAL:						
UBICACIÓN:				COLOR DE MATERIAL:						
FECHA DE MUESTREO:			RESPONSABLE:							
FECHA DE ENSAYO:		REVISADO POR:								

Peso de muestra seca; Ws		gr	١
--------------------------	--	----	---

,	ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO POR LAVADO										
Tamiz	Abertura	Peso Retenido (gr)	% RP	%RA	% que pasa						
№ 4	4,76										
N°10	2										
N°20	0,84										
N°30	0,59										
N°40	0,42										
N°60	0,25										
N°200	0,074										
Perdida	Lavado										
Total											

RESPONSABLES DEL ENSAYO COORDINADOR DE LABORATORIO ASESOR

ANÁLISIS DE DATOS

Según García (2017) menciona que el análisis de datos es una metodología de descubrimiento del uso. Conocimiento del desarrollo de un trabajo o un proyecto de investigación y en algunos casos estas técnicas son genéricas. En general este método destaca porque involucra diversos procesos iterativos buscando parámetros y patrones, en mayoría de los casos estos son innovadores, nuevos y potencialmente útiles para la sociedad por lo que es necesario hacer la evaluación de la validez. El objetivo principal de un estudio es incorporar el conocimiento adquirido al alcance de los demás, por lo cual estos deben ser reales.

La confiablidad de los datos será mediante la firma de responsables de laboratorio de la Universidad Privada del Norte.

Los diseños de la estructura típica de pavimento, se aplican a suelo natural arcilloso y suelo estabilizado, según lo refiere el Manual de Carreteras suelos-geologiageotecnia y pavimentos — Sección suelos y pavimentos R.D.N° 10-2014-MTC/14. Mediante el método mecanístico o empírico. La determinación de la capacidad de soporte de los suelos, responde a la realización de ensayos sujetos a las recomendaciones de las Normas: ANÁLISIS GRANULOMÉTRICO MEDIANTE TAMIZADO EN SECO (MTC E 107 / ASTM D421), CALIFORNIA BEARING RATIO — CBR (MTC E132 / ASTM D1883 / ASTM D4429, COMPACTACION PROCTOR MODIFICADO (MTC 115 / ASTM D1557) y LIMITES DE PLASTICIDAD (NTP E339.130 — NTP E111 / ASTM D4318). La determinación del valor de CBR se realiza de acuerdo a las referencias en la cual requieren de los resultados del ensayo de Proctor modificado para hallar el CBR a una determinada densidad.

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

Procedimientos

Figura 7 Procedimiento de Investigación

ASPECTOS ÉTICOS. En toda nuestra investigación se ha citado y referenciado de acuerdo a los principios de autenticidad. Las citas corresponden a teorías y estudios previos considerando como referencia el título año y autor; según las normativas vigentes como Resolución Rectoral N° 104-2016-UPN-SAC y la normativa ISO 690-2010

La confiabilidad de esta investigación los datos obtenidos de las 2 muestras o calicatas son plenamente confiables debido a que se desarrolló dentro de las instalaciones del laboratorio de mecánica de suelos y bajo la supervisión de los encargados de laboratorio y nuestra asesora de la Universidad Privada del Norte y según las normas vigentes de Suelos, lo cual luego de trasladar el material desde dos calicatas ubicada en el centro poblado Santa Bárbara carretera a Shultin. Además, que se realizaron las calicatas a un costado de la carretera sin dañar la estructura actual de esta vía de comunicación.

El procedimiento de recolección de datos:

Paso 01: Ubicación de puntos para calicatas. Se realizó según el IMD; Posterior de haber realizado un conteo se tuvo un resultado de bajo Volumen de tránsito con IMD≤200veh/día de acuerdo a la normativa del cuadro 4.1 del Manual de Carreteras MTC RDN°10-2014-MTC/14 el número de calicatas por km mínimo es igual a 1, optando por 2 calicatas para un mejor análisis de estudio de dicho tramo en la calle denominada carretera a Shultin.

Paso 02: Extracción de material de Calicatas. Se realizó mediante la excavación manual para obtener el material de cada calicata, el material obtenido es de 150kg por cada una.

COJAL AGUILAR C.: PORTA HUACCHA J.

investigación.

Paso 03: Obtención de residuos de carbón (ceniza): Este material carbón como tal ha sido colocado por capas dentro de los ladrillos, y posteriormente a la combustión se convierte en residuos de carbón (ceniza). Es donde que para su extracción de dicho material se realiza una vez enfriado el horno, y posteriormente al haber quitado los ladrillos ya que se encuentran apilado sobre otros; para así extraer el material acumulado que se encuentra en la base separando otras partículas extrañas pedazos de ladrillos, con el uso de una palana en un costal para posteriormente llevarla a laboratorio y tamizarla para su uso correspondiente. Material

que ha sido extraído de la ladrillera Shultin, ya que este se encuentra dentro del tramo en

Paso 04: Realización de ensayos en laboratorio UPN de muestra Patrón, son:

Contenido de humedad del suelo natural el mismo día e inmediatamente luego de la extracción de la muestra, trasladándolo en bolsas impermeables para determinar el porcentaje de agua que contenga, este ensayo se realizó según la norma NTP 339.160 – 2001.

- Análisis granulométrico del suelo según la norma NTP 339.128 1999.
- Límites de Attenberg (Límite líquido, límite plástico e índice de plasticidad) de la muestra patrón y combinado con 5%, 10% y 15% de residuos de carbón (Cenizas) del peso total de la muestra según la norma NTP 339.129 – 1999.
- Compactación mediante Proctor Modificado de la muestra patrón para determinar la curva de compactación. Según la norma: MTC E115 / ASTM D1557 / NTP 339.141

- CBR de la muestra patrón de acuerdo al contenido óptimo de humedad determinado en el ensayo de Proctor Modificado. Ensayo se realizado en sus tres etapas: compactación, hinchamiento y penetración. Según la norma: MTC E132 / ASTM D188.

Paso 05: Realización de ensayos en laboratorio UPN de muestra con adición de residuos de carbón (ceniza) en 5%, 10% y 15%

- Análisis granulométrico del suelo según la norma NTP 339.128 1999.
- Compactación mediante Proctor Modificado de la muestra patrón y con adición de 5%, 10% y 15% de Cenizas del peso total de la muestra y determinar la curva de compactación. Según la norma: MTC E115 / ASTM D1557 / NTP 339.141
- CBR de la muestra patrón y con la adición de 5%, 10% y 15% de residuos de carbón (Cenizas) del peso total de acuerdo al contenido óptimo de humedad determinado en el ensayo de Proctor Modificado. Ensayo se realizado en sus tres etapas: compactación, hinchamiento y penetración. Según la norma: MTC E132 / ASTM D188

COJAL AGUILAR C.: PORTA HUACCHA J.

CAPÍTULO III: RESULTADOS

Propiedades Físicas y mecánicas de los Suelos

Respondiendo al primer objetivo específico planteado, se muestran tablas y gráficos los cuales ayudaron a ejemplificar las propiedades físicas y mecánicas, cabe destacar que los ensayos fueron en el Laboratorio de mecánica de suelos de la Universidad Privada del Norte.

Ensayo de contenido de humedad. Los resultados del contenido de humedad se muestran en la siguiente tabla, donde las muestras de suelo analizadas arrojaron en promedio un contenido de humedad del 11.57%.

Tabla 5 *Contenido de humedad de la muestra de suelo arcilloso natural* de la calicata 01

ID	DESCRIPCIÓN	UND	1	2	3
A	N° Recipiente (Tara)		N° 01	N° 02	N° 03
В	Peso del Recipiente	gr	26.9	26.8	26.9
C	Recipiente + Suelo Húmedo	gr	199.6	152.2	186.7
D	Recipiente + Suelo Seco	gr	181.3	139.4	170.7
E	Peso del Suelo Húmedo (Ww) C - D	gr	18.3	12.8	16
F	Peso Suelo Seco (Ww) D - B	gr	154.4	112.6	143.8
W%	W% Porcentaje de humedad (E/F)*100		11.85	11.37	11.13
	PROMEDIO W (%)		11	57%	

Nota. Según el ensayo de contenido de humedad de suelo natural nos da un valor de 11.57%, con una desviación estándar de 0.35%.

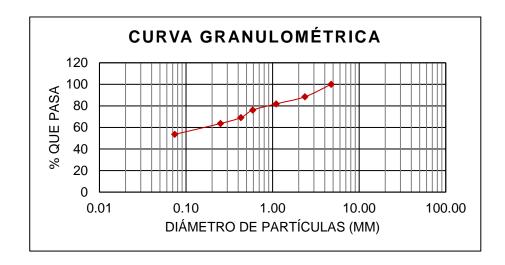
Tabla 6Contenido de humedad de la muestra de suelo arcilloso natural de la calicata 02

ID	DESCRIPCIÓN	UND	1	2	3
A	N° Recipiente (Tara)		N° 01	N° 02	N° 03
В	Peso del Recipiente	gr	27.2	26.9	27.1
C	Recipiente + Suelo Húmedo	gr	198.5	151.9	191.5
D	Recipiente + Suelo Seco	gr	178.9	138.2	173.3
E	Peso del Suelo Húmedo (Ww) C - D	gr	19.6	13.7	18.2
F	Peso Suelo Seco (Ww) D - B	gr	151.7	111.3	146.2
W%	Porcentaje de humedad (E/F)*100	%	12.92	12.31	12.45
	PROMEDIO W (%)		12.	79%	

Nota. Según el ensayo de contenido de humedad de suelo natural nos da un valor de 12.79%, con una desviación estándar de 0.45%.

3.1.2. Análisis granulométrico mediante tamizado por lavado (NTP 339.128-1999):

El peso de la muestra seca de cada uno es: Ws=500gr. Los datos obtenidos en laboratorio se muestran a continuación:

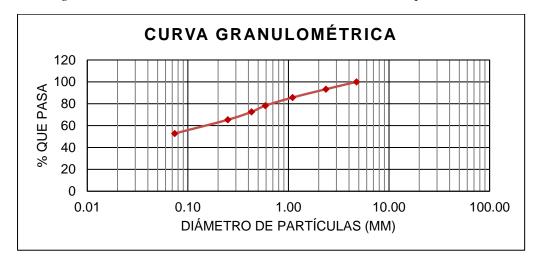

Tabla 7 *Análisis granulométrico por lavado C-01*

TAMIZ A	ASTM	PESO RETENIDO		% ACUMULADO	
Malla	mm	GRAMOS	%	RETENIDO	% Q' PASA
N° 4	4.75	0.00	0.00	=	100.00 %
N° 10	2.36	57.91	11.58	11.58	88.42 %
N° 20	1.10	32.81	6.56	18.14	81.86 %
N° 30	0.59	28.70	5.74	23.88	76.12 %
N° 40	0.43	34.90	6.98	30.86	69.14 %
N° 60	0.25	27.52	5.50	36.37	63.63 %
N° 200	0.074	50.15	10.03	46.40	53.60 %
PERDI	IDA		268.01	53.60	100.00

Nota. Se muestra la granulometría por lavado de la muestra patrón de la calicata 01, con una desviación estándar de 84.79%.

Figura 8Curva granulométrica de suelo arcilloso natural en tamizado por lavado de Calicata 01.

La gráfica muestra los resultados de la granulometría de suelo de la muestra patrón de la calicata 01; según los porcentajes que pasa por cada tamiz de acuerdo a los diámetros de partículas del material.

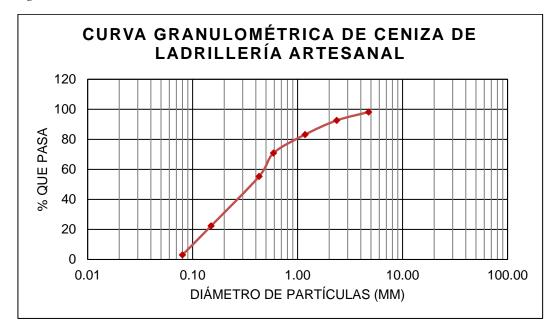

Tabla 8 *Análisis granulométrico por lavado C-02*

TAMIZ A	ASTM	PESO RETENIDO		% ACUMULADO	
Malla	mm	GRAMOS	% RETENIDO		% Q' PASA
N° 4	4.75	0.00	0.00	-	100.00 %
N° 10	2.36	33.39	6.68	6.68	93.32 %
N° 20	1.10	38.14	7.63	14.31	85.69 %
N° 30	0.59	37.08	7.42	21.72	78.28 %
N° 40	0.43	28.42	5.68	27.41	72.59 %
N° 60	0.25	36.18	7.24	34.64	65.36 %
N° 200	0.074	62.73	12.55	47.19	52.81 %
PÉRDI	DA		264.06	52.81	100.00

Nota. Se muestra la granulometría por lavado de la muestra patrón de la calicata 02, con una desviación estándar de 83.22%.

Figura 9Curva granulométrica de suelo arcilloso natural en tamizado por lavado de Calicata 02.

La gráfica muestra los resultados de la granulometría de suelo de la muestra patrón de la calicata 02; según los porcentajes que pasa por cada tamiz de acuerdo a los diámetros de partículas del material.


Tabla 9 *Análisis granulométrico de la Ceniza*

TAMIZ A	ASTM	PESO RETE	NIDO	% ACUN	IULADO
Malla	mm	GRAMOS	S % RETEN		% Q' PASA
N° 4	4.75	18.20	1.82	1.82	98.18 %
N° 8	2.36	55.70	5.57	7.39	92.61 %
N° 16	1.18	94.10	9.41	16.80	83.20 %
N° 30	0.59	123.10	12.31	29.11	70.89 %
N° 40	0.43	155.70	15.57	44.68	55.32 %
N° 100	0.15	329.80	32.98	77.66	22.34 %
N° 200	0.08	193.10	19.31	96.97	3.03 %
CAZOL	ETA		30.30	3.03	100.00

Nota. Los resultados de granulometría de ceniza muestra una deviación estándar de 102.58%.

Figura 10 Curva granulométrica de Ceniza, tamizado en seco.

La gráfica muestra los resultados de la granulometría del material ceniza; según los porcentajes que pasa por cada tamiz de acuerdo al diámetro de partículas del material.

Ensayo de índice de plasticidad Los resultados de los límites de Attemberg se presentan en las siguientes tablas; donde se puede apreciar un comportamiento diferente en los límites plásticos los cuales aumentaron ligeramente en proporción directa a la muestra patrón con contenido de ceniza para porcentajes de 0%, 5%, 10% y15%.

Ensayo de Plasticidad para muestra patrón

Tabla 10Determinación de límite líquido de la muestra patrón

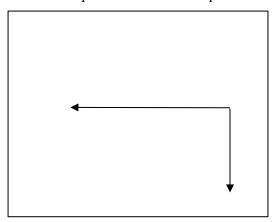
	DETERMINACIÓN LÍMITE LÍQUIDO (LL)									
ID	DESCRIPCIÓN	UND	1	2	3					
A	Identificación de Recipiente	N°	4	5	6					
В	Suelo Húmedo + Recipiente	gr	61.99	58.15	63.59					
C	Suelo Seco + Recipiente	gr	52.10	48.50	52.90					
D	Peso de Recipiente	gr	28.79	26.35	28.06					
E	Peso del Agua	gr	9.89	9.65	10.69					
F	Peso Suelo Seco(C-D)	gr	23.31	22.15	24.84					
G	Número de Golpes	N	26	17	22					
Н	Contenido de Humedad (E/F) *100	%	42.43	43.57	43.04					

Nota. La tabla muestra los datos y resultados del ensayo de límite líquido del suelo sin adición de cenizas donde obtenemos un contenido de humedad promedio de 43.01 %. Con una Desviación Estándar de 0.57% %

Tabla 11Determinación de Límite Plástico de la muestra patrón

	DETERMINACIÓN LÍMITE PLÁSTICO (LP)									
ID	DESCRIPCIÓN	UND	1	2	3					
A	Identificación de Recipiente	N°	1	2	3					
В	Suelo Húmedo + Recipiente	gr	44.20	44.88	40.19					
C	Suelo Seco + Recipiente	gr	40.60	40.90	36.80					
D	Peso de Recipiente	gr	28.50	28.48	27.27					
E	Peso del Agua	gr	3.60	3.98	3.39					
F	Peso Suelo Seco	gr	12.10	12.42	9.53					
G	Contenido de Humedad	%	27.75	30.05	33.57					
Н	PROMEDIO LÍMITE PLASTICO	%		30.46 %						

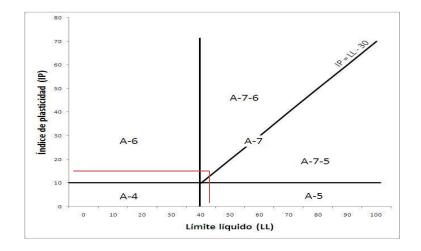
Nota. Se muestra el promedio de límite plástico del suelo natural sin adición de ceniza lo cual nos da un valor de 30.46%. Con una Desviación Estándar de 2.93%


Cuadro Resumen. Límites de Atterberg.

LL = 43.01 % LP = 30.46 % IP = 12.56 %

Figura 11

Gráfica de Límite Líquido de la muestra patrón + 0% cenizas C-01

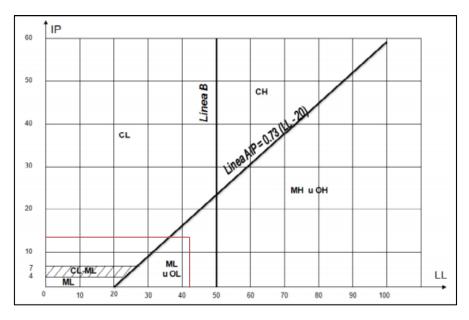


Se observa la gráfica de Límite Líquido de la muestra patrón de la Calicata 01, un valor de 43.01%

Los valores obtenidos de Límites de consistencia e índice de grupo:

<u>DETERMINACIÓN DEL TIPO DE SUELO - CLASIFICACIÓN DE AASHTO</u>

Figura 12 Carta de Plasticidad AASHTO


Tabla 12Clasificación según AASHTO

CLASIFICACIÓN AASHTO								
Parámetros Usados				Deter	minación	del Índice de Grupo IG		
% Que Pasa la Malla N° 200				53.60) %			
% Que Pasa la Malla N° 40				69.1	4 %			
% Que Pasa la Malla N° 10				88.4	2 %			
Límite Líquido	LL =	43.019	%					
Límite Plástico	LP =	30.469	%					
Índice de Plasticidad:	IP =	12.569	%					
Tipo de Suelo:				Arcillo	oso			
Clasificación de Suelos:			A7-6					
Suelo:			A7-6					
Tipo de Material:				Suelo	Arcilloso			

Nota. Se detalla la clasificación de la muestra de suelo según AASHTO, lo cual se tiene que es un tipo A-7-6 por la baja plasticidad que posee.

- CLASIFICACIÓN SEGÚN SUCS

Figura 13 *Carta de Plasticidad de Casagrande*

Nota. De acuerdo a la carta de plasticidad de Casagrande según la granulometría y límites de consistencia se determina que la muestra de suelo se clasifica en un OL.

Fuente. Carta de Plasticidad de Casagrande, por ASTM D2487

La clasificación de suelos unificados (SUCS), se obtuvo un OL es decir Suelo Arcilloso según la carta de plasticidad de casa grande.

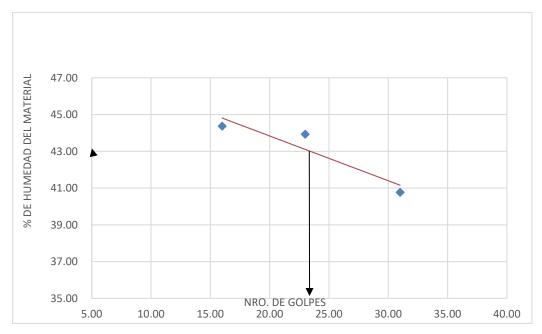
Tabla 13Determinación de límite líquido de la muestra patrón C-02

	DETERMINACIÓN LÍMITE LÍQUIDO (LL)										
ID	DESCRIPCIÓN	UND	1	2	3						
A	Identificación de Recipiente	N°	1	2	3						
В	Suelo Húmedo + Recipiente	gr	47.45	44.10	48.12						
C	Suelo Seco + Recipiente	gr	42.70	38.70	42.00						
D	Peso de Recipiente	gr	31.05	26.53	28.07						
E	Peso del Agua	gr	4.75	5.40	6.12						
F	Peso Suelo Seco(C-D)	gr	11.65	12.17	13.93						
G	Número de Golpes	N	31.00	16.00	23.00						
Н	Contenido de Humedad (E/F) *100	%	40.77	44.37	43.93						

Nota. La tabla muestra los datos y resultados del ensayo de límite líquido del suelo sin adición de cenizas donde obtenemos un contenido de humedad promedio de 43.02%. Con una Desviación Estándar de 1.96 %.

Tabla 14Determinación de Límite Plástico de la muestra patrón C-02

	DETERMINACIÓN LÍMITE PLÁSTICO (LP)							
ID	DESCRIPCIÓN	UND	1	2	3			
A	Identificación de Recipiente	N°	1	2	3			
В	Suelo Húmedo + Recipiente	gr	45.28	37.71	37.30			
C	Suelo Seco + Recipiente	gr	41.80	35.37	35.10			
D	Peso de Recipiente	gr	28.44	28.65	26.66			
E	Peso del Agua	gr	3.48	2.34	2.20			
F	Peso Suelo Seco	gr	13.36	6.72	8.44			
G	Contenido de Humedad	%	26.05	34.82	26.07			
Н	PROMEDIO LÍMITE PLASTICO	%		28.98 %				


Nota. Se muestra el promedio de límite plástico del suelo natural sin adición de ceniza lo cual nos da un valor de 28.98. Con una Desviación Estándar de 5.06 %.

Cuadro Resumen. Límites de Atterberg.

$$LL = 43.02 \%$$
 $LP = 28.98 \%$ $IP = 14.04 \%$

Figura 14Gráfica de Límite Líquido de la muestra patrón + 0% cenizas C-02

Nota. Se observa la gráfica de Límite Líquido de la muestra patrón de la Calicata 01, un valor de 43.01%

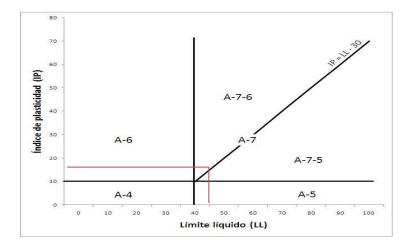
Los valores obtenidos de Límites de consistencia e índice de grupo:

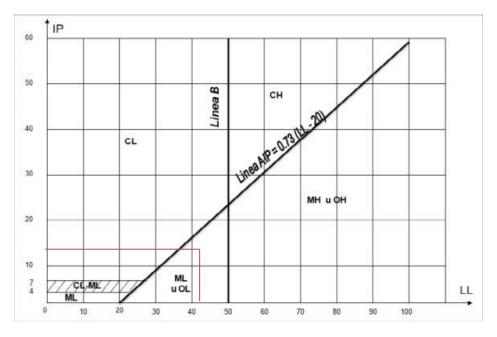
$$LL = 43.02 \%$$
 $LP = 28.98 \%$ $IP = 14.04 \%$

<u>DETERMINACIÓN DEL TIPO DE SUELO</u>

- CLASIFICACIÓN DE AASHTO

Figura 15
Carta de Plasticidad AASHTO C-2




Tabla 15 Clasificación según AASHTO

CLASIFICACIÓN AASHTO								
Parámetros Usados				Detei	minaci	ión d	el Índice de Grupo IG	
% Que Pasa la Malla N° 200				52.8	1 %			
% Que Pasa la Malla N° 40				72.5	9 %			
% Que Pasa la Malla N° 10				93.3	2 %			
Límite Líquido	LL =	43.02	%					
Límite Plástico	LP =	28.98	%					
Índice de Plasticidad:	IP =	14.04	%					
Tipo de Suelo:	Tipo de Suelo:			Arcillo	oso			
Clasificación de Suelos:			A7-6					
Suelo:			A7-6					
Tipo de Material:				Suelo	Arcillo	so		

Nota. Se detalla la clasificación de la muestra de suelo según AASHTO, lo cual se tiene que es un tipo A-7-6 por la baja plasticidad que posee.

- CLASIFICACIÓN SEGÚN SUCS

Figura 16 Carta de Plasticidad de Casagrande

Nota. De acuerdo a la carta de plasticidad de Casagrande según la granulometría y límites de consistencia se determina que la muestra de suelo se clasifica en un OL. **Fuente.** Carta de Plasticidad de Casagrande, por ASTM D2487

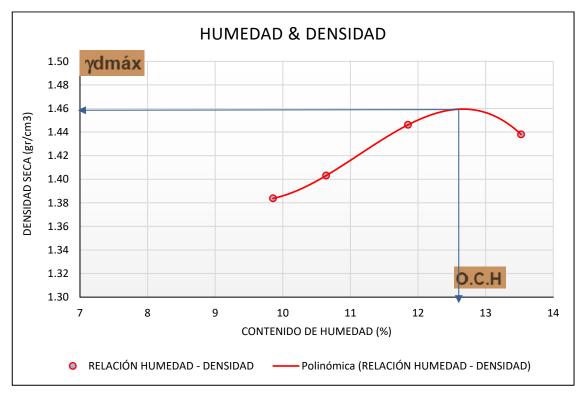

Ensayo de compactación Proctor modificado (NTP 339.141-1999)

Tabla 16Compactación Proctor Modificado (Muestra Patrón) C-01

COMPACTACIÓN PROCTOR MODIFICADO (MUESTRA PATRÓN) C-01						
MOLDE N° MOLDE N° MOLDE N° MOLDE N° MOLDE N°						
	01	02	03	04		
Ds (gr/cm3)	1.38	1.40	1.45	1.44		

Nota. En esta tabla se detalla los datos de laboratorio de la muestra patrón lo cual nos permite hallar el óptimo contenido de humedad y la densidad seca máxima mediante el grafico siguiente

Figura 17Curva de compactación de la muestra patrón + 0% cenizas C-01

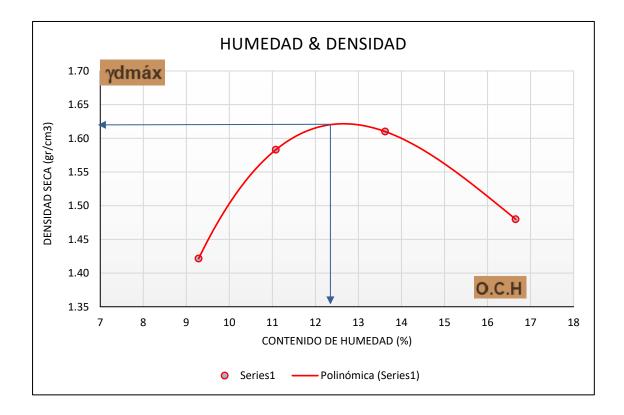

Ds max =	1.46	g/cm ³
Wo pro =	12.70	%

Tabla 17Compactación Proctor Modificado (Muestra Patrón) C-02

COMPACTACIÓN PROCTOR MODIFICADO (MUESTRA PATRÓN) C-02						
MOLDE N° MOLDE N° MOLDE N° MOLDE N° 01 02 03 04						
Ds (gr/cm3)	1.42	1.58	1.61	1.48		

Figura 18
Curva de compactación de la muestra patrón + 0% cenizas C-02

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

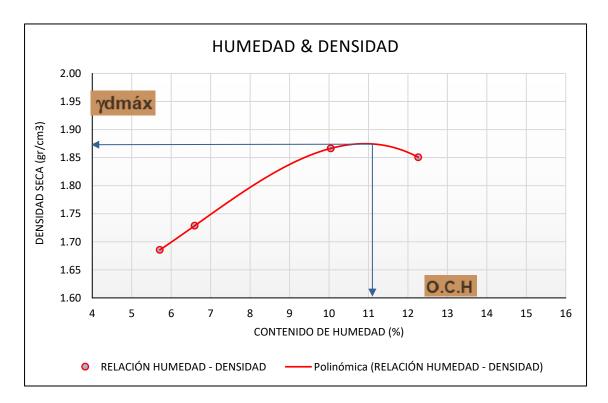

Ds max =	1.63	g/cm ³
Wo pro =	12.50	%

Tabla 18Compactación Proctor Modificado 5% C-01

COMPACTACIÓN PROCTOR MODIFICADO (5% DE CENIZAS) C-01						
MOLDE N°	MOLDE N°MOLDE N°MOLDE N°MOLDE N°					
	01	02	03	04		
W prom (%)	5.71	6.60	10.05	12.26		
Ds (gr/cm3)	1.69	1.73	1.87	1.85		

En esta tabla se detalla los datos de laboratorio de la muestra patrón lo cual nos permite hallar el óptimo contenido de humedad y la densidad seca máxima mediante el grafico siguiente

Figura 19Curva de compactación de la muestra patrón + 5% cenizas C-01

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

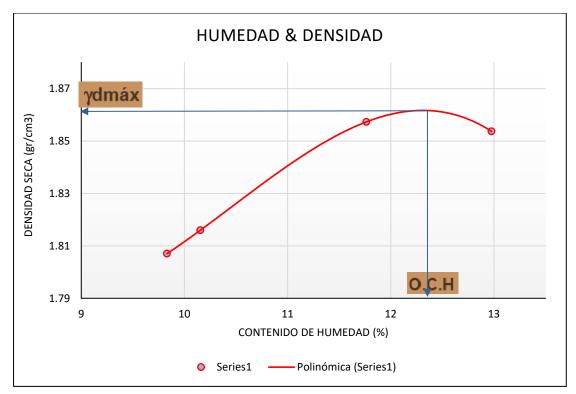
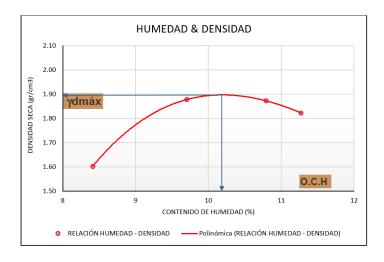

Ds max =	1.88	g/cm ³
Wo pro =	11.10	%

Tabla 19Compactación Proctor Modificado 5% C-02

COMPACTACIÓN PROCTOR MODIFICADO (5% DE CENIZAS) C-02						
MOLDE N° MOLDE N° 02 MOLDE N° MOLDE N°						
	01		03	04		
Ds (gr/cm3)	1.81	1.82	1.86	1.85		

Nota. En esta tabla se detalla los datos de laboratorio de la muestra patrón lo cual nos permite hallar el óptimo contenido de humedad y la densidad seca máxima mediante el grafico siguiente

Figura 20Curva de compactación de la muestra patrón + 5% cenizas C-02

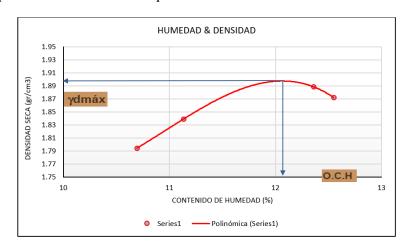


Ds max =	1.86	g/cm ³
Wo pro =	12.45	%

Tabla 20Compactación Proctor Modificado 10% C-01

COMPACTACIÓN PROCTOR MODIFICADO (10% DE CENIZAS - C01)					
MOLDE N°	MOLDE N° 01 MOLDE N° MOLDE N° 03 MOLDE N°				
		02		04	
Ds (gr/cm3)	1.60	1.88	1.87	1.82	

Figura 21Curva de compactación de la muestra patrón + 10% cenizas C-01



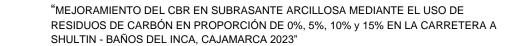
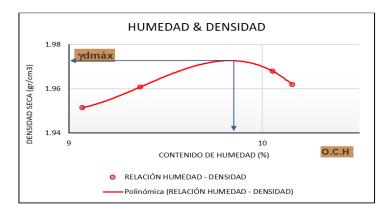

Ds max =	1.89	g/cm ³
Wo pro =	10.15	%

Tabla 21Compactación Proctor Modificado 10% C-02

COMPACTACIÓN PROCTOR MODIFICADO (10% DE CENIZAS - C02)										
MOLDE N° MOLDE N° MOLDE N° MOLDE N° MOLI										
	01	02	03	04						
Ds (gr/cm3)	1.79	1.84	1.87	1.89						

Figura 22Curva de compactación de la muestra patrón + 10% cenizas C-02



Ds max =	1.90	g/cm ³
Wo pro =	12.15	%

Tabla 22Compactación Proctor Modificado 15% C-01

MOLDE N°	MOLDE N° 01	MOLDE N° 02	MOLDE N° 03	MOLDE N° 04
Ds (gr/cm3)	1.95	1.96	1.97	1.96

Figura 23Curva de compactación de la muestra patrón + 15% cenizas C-01

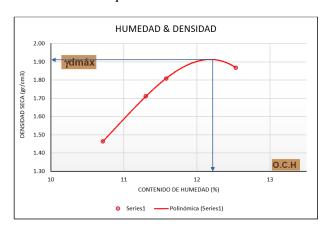

Ds max =
$$1.97$$
 g/cm³
Wo pro = 9.90 %

Tabla 23Compactación Proctor Modificado 15% C-02

COMPACTACIÓN PROCTOR MODIFICADO (15% DE CENIZAS - C02)									
MOLDE N°	MOLDE N° MOLDE N° 02 MOLDE N° MOLDE								
	01		03	04					
Ds (gr/cm3)	1.46	1.71	1.81	1.87					

Figura 24Curva de compactación de la muestra patrón + 15% cenizas C-02

Ds max =	1.92	g/cm ³
Wo pro =	12.11	%

Ensayo CBR (NTP 339.145-1999)

Tabla 24Compactación CBR 0% Cenizas – C-01

	CALIFORNIA BEARING RATIO CBR PATRON - 0%										
DESCRIPCIÓN	UND	1	2	3							
N° Capas		5	5	5							
N° Golpes por capa		13	27	56							
Molde		M17	M26	M11							
Promedio Contenido de Humedad	%	16.39	16.63	15.66							
Densidad Máxima Seca; Ds	gr/cm3	1.294	1.344	1.478							

La tabla muestra los resultados de laboratorio en el ensayo de compactación CBR de

la muestra patrón para 13, 27 y 56 golpes respectivamente

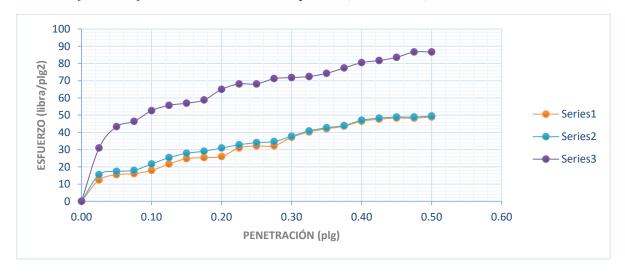
Tabla 25Ensayo Hinchamiento 0% Cenizas

	ENSAYO DE HINCHAMIENTO												
TIEM	TIEMPO MOLDE N°01				MOLDE N°02			MOLDE °03					
ACUMU	LADO	Lectura	Hincha	miento	Lectura	Hincha	miento	Lectura	Hincha	miento			
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%			
0.00	0.00	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000			
24.00	1.00	4.0650	4.065	2.243	0.1600 plg	4.064	2.237	0.4500	0.450	0.253			
48.00	2.00	4.1000	4.100	2.262	0.1670 plg	4.242	2.335	0.4200	0.420	0.236			
72.00	3.00	4.1710	4.171	2.302	0.1800 plg	4.572	2.516	0.4450	0.445	0.250			
96.00	4.00	4.2200	4.220	2.329	0.1850 plg	4.699	2.586	0.4650	0.465	0.261			

Resultados de laboratorio en el ensayo de Hinchamiento de la muestra patrón para 13,

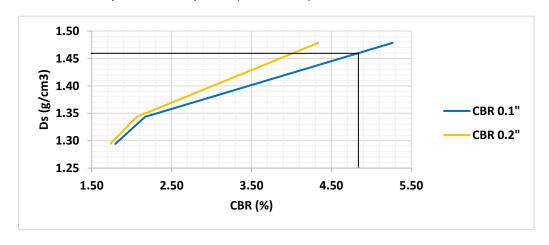
27 y 56 golpes respectivamente

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"


Tabla 26Ensayo penetración 0% Cenizas – C-01

				CARGA - P	ENETRACIÓ	N PATRON	0%			
PENETR	ACIÓN	М	OLDE N° 0	1	М	OLDE N° 0	2	М	OLDE N° 0	3
		Carga	Esfu	erzo	Carga	Esfu	erzo	Carga	Esfu	erzo
mm	Pulg	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl ²
0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.635	0.025	50.8000	2.6186	12.3859	63.5000	3.2732	15.4824	127.0000	6.5464	30.9648
1.270	0.050	63.5000	3.2732	15.4824	71.1200	3.6660	17.3403	177.8000	9.1649	43.3507
1.905	0.075	66.0400	3.4041	16.1017	73.6600	3.7969	17.9596	190.5000	9.8196	46.4472
2.540	0.100	73.6600	3.7969	17.9596	88.9000	4.5825	21.6753	215.9000	11.1289	52.6401
3.175	0.125	88.9000	4.5825	21.6753	104.1400	5.3680	25.3911	228.6000	11.7835	55.7366
3.810	0.150	101.6000	5.2371	24.7718	114.3000	5.8918	27.8683	233.6800	12.0454	56.9752
4.445	0.175	104.1400	5.3680	25.3911	119.3800	6.1536	29.1069	241.3000	12.4381	58.8331
5.080	0.200	106.6800	5.4990	26.0104	127.0000	6.5464	30.9648	266.7000	13.7474	65.0260
5.715	0.225	127.0000	6.5464	30.9648	134.6200	6.9392	32.8227	279.4000	14.4021	68.1225
6.350	0.250	132.0800	6.8082	32.2034	139.7000	7.2010	34.0613	279.4000	14.4021	68.1225
6.985	0.275	132.0800	6.8082	32.2034	142.2400	7.3320	34.6806	292.1000	15.0567	71.2190
7.620	0.300	152.4000	7.8557	37.1577	154.9400	7.9866	37.7770	294.6400	15.1876	71.8383
8.255	0.325	165.1000	8.5103	40.2542	167.6400	8.6412	40.8735	297.1800	15.3186	72.4576
8.890	0.350	172.7200	8.9031	42.1121	175.2600	9.0340	42.7314	304.8000	15.7113	74.3155
9.525	0.375	180.3400	9.2959	43.9700	180.3400	9.2959	43.9700	317.5000	16.3660	77.4120
10.160	0.400	190.5000	9.8196	46.4472	193.0400	9.9505	47.0665	330.2000	17.0206	80.5084
10.795	0.425	195.5800	10.0814	47.6858	198.1200	10.2124	48.3051	335.2800	17.2825	81.7470
11.430	0.450	198.1200	10.2124	48.3051	200.6600	10.3433	48.9244	342.9000	17.6753	83.6049
12.065	0.475	198.1200	10.2124	48.3051	200.6600	10.3433	48.9244	355.6000	18.3299	86.7014
12.700	0.500	200.6600	10.3433	48.9244	203.2000	10.4742	49.5437	355.6000	18.3299	86.7014

La tabla muestra los resultados de laboratorio en el ensayo de penetración de la muestra patrón para 13, 27 y 56 golpes respectivamente


Figura 25Curva CBR de esfuerzo deformación de la muestra patrón (0% cenizas) – C-01

Se muestra la curva esfuerzo vs penetración del suelo natural sin adición de cenizas de13, 27 y 56 golpes.

Figura 26

CBR de diseño para muestra patrón (0% cenizas) – C-01

Ds Max: Ds Proctor 1.46%

CBR al 100% de compactación 4.81%

CBR al 95% de compactación 3.37

El gráfico muestra la curva CBR –Ds Máxima del suelo natural sin adición de cenizas para 13, 27 y 56 golpes respectivamente, de tal manera que al intersectar para 0.1" nemos un CBR de 1.46%.

Tabla 27

Compactación CBR 0% Cenizas – C-02

CALIFORNIA BEARING RATIO CBR PATRON - 0%										
DESCRIPCIÓN	UND	1	2	3						
N° Capas		5	5	5						
N° Golpes por capa		13	27	56						
Molde		M17	M26	M11						
Promedio Contenido de Humedad	%	17.40	16.83	16.48						
Densidad Máxima Seca; Ds	gr/cm3	1.173	1.257	1.641						

La tabla muestra los resultados de laboratorio en el ensayo de compactación CBR de

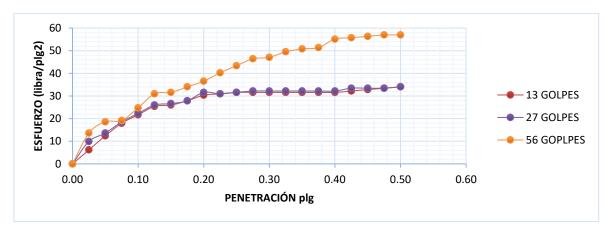
la muestra patrón para 13, 27 y 56 golpes respectivamente.

Tabla 28Ensayo Hinchamiento 0% Cenizas – C02

	ENSAYO DE HINCHAMIENTO												
TIEM	TIEMPO MOLDE N°01				MOI	DE N°02	2	MOLDE °03					
ACUMU	LADO	Lectura	Hincha	miento	Lectura	Hincha	miento	Lectura	Hincha	miento			
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%			
0.00	0.00	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000	0.00000	0.000	0.000			
24.00	1.00	0.0830 plg	2.108	1.163	0.1785 plg	4.534	2.495	4.44000	4.440	2.495			
48.00	2.00	0.0850 plg	2.159	1.191	0.1775 plg	4.509	2.481	4.76500	4.765	2.677			
72.00	3.00	0.0880 plg	2.235	1.233	0.1820 plg	4.623	2.544	5.39000	5.390	3.029			
96.00	4.00	0.0870 plg	2.210	1.219	0.1850 plg	4.699	2.586	5.62500	5.625	3.161			

Resultados de laboratorio en el ensayo de Hinchamiento de la muestra patrón para 13,

27 y 56 golpes respectivamente.


Tabla 29Ensayo penetración 0% Cenizas – C-02

	<u> </u>	reneiracion			PENETRACIÓ	N PATRON	0%			
PENETR	RACIÓN	M	OLDE N° 01	L	M	IOLDE N° 02	2	N	IOLDE N° 03	3
		Carga	Esfuerzo		Carga	Esfu	erzo	Carga	Esfu	erzo
mm	Pulg	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²
0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.635	0.025	25.4000	1.3093	6.1930	40.6400	2.0948	9.9087	55.8800	2.8804	13.6245
1.270	0.050	50.8000	2.6186	12.3859	55.8800	2.8804	13.6245	76.2000	3.9278	18.5789
1.905	0.075	73.6600	3.7969	17.9596	76.2000	3.9278	18.5789	78.7400	4.0588	19.1982
2.540	0.100	88.9000	4.5825	21.6753	91.4400	4.7134	22.2946	101.6000	5.2371	24.7718
3.175	0.125	104.1400	5.3680	25.3911	106.6800	5.4990	26.0104	127.0000	6.5464	30.9648
3.810	0.150	106.6800	5.4990	26.0104	109.2200	5.6299	26.6297	129.5400	6.6773	31.5841
4.445	0.175	114.3000	5.8918	27.8683	114.3000	5.8918	27.8683	139.7000	7.2010	34.0613
5.080	0.200	124.4600	6.4155	30.3455	129.5400	6.6773	31.5841	149.8600	7.7247	36.5384
5.715	0.225	127.0000	6.5464	30.9648	127.0000	6.5464	30.9648	165.1000	8.5103	40.2542
6.350	0.250	129.5400	6.6773	31.5841	129.5400	6.6773	31.5841	177.8000	9.1649	43.3507
6.985	0.275	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	190.5000	9.8196	46.4472
7.620	0.300	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	193.0400	9.9505	47.0665
8.255	0.325	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	203.2000	10.4742	49.5437
8.890	0.350	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	208.2800	10.7361	50.7822
9.525	0.375	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	210.8200	10.8670	51.4015
10.16	0.400	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	226.0600	11.6526	55.1173
0										
10.79	0.425	132.0800	6.8082	32.2034	137.1600	7.0701	33.4420	228.6000	11.7835	55.7366
5										
11.43	0.450	134.6200	6.9392	32.8227	137.1600	7.0701	33.4420	231.1400	11.9144	56.3559
0										
12.06	0.475	137.1600	7.0701	33.4420	137.1600	7.0701	33.4420	233.6800	12.0454	56.9752
5										
12.70	0.500	139.7000	7.2010	34.0613	139.7000	7.2010	34.0613	233.6800	12.0454	56.9752
0										

La tabla muestra los resultados de laboratorio en el ensayo de penetración de la muestra patrón para 13, 27 y 56 golpes respectivamente

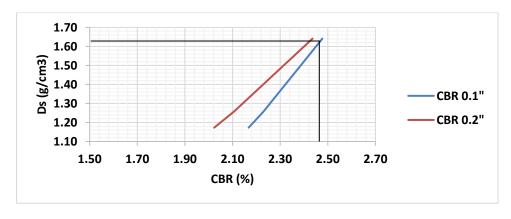


Figura 27 *CBR de diseño para muestra patrón (0% cenizas) – C-02*

El gráfico muestra la curva esfuerzo vs penetración del suelo natural sin adición de cenizas para 13, 27 y 56 golpes respectivamente

Figura 28 *CBR de diseño para muestra patrón (0% cenizas) – C-01*

Ds Max: Ds Proctor 1.63%
CBR al 100% de compactación 2.47%
CBR al 95% de compactación 2.42%

El gráfico muestra la curva CBR –Ds Máxima del suelo natural sin adición de cenizas para 13, 27 y 56 golpes respectivamente, de tal manera que al intersectar para 0.1" tenemos un CBR de 2.42%

Tabla 30Compactación CBR con edición de 5% de Cenizas – C-01

		CALIF	ORNIA BE	ARING RA	TIO CBR	- 5%				
DESCRIPCIÓN	UND		1			2			3	
N° Capas			5		5			5		
N° Golpes por capa			13			27		56		
Molde			M17			M26			M11	
Condición de muestra		Ar	ntes	Desp.	Aı	ntes	Despu.	Aı	Antes	
Peso Molde	gr	79	905	7905	80	070	8070	79	928	7928
Peso Muestra húmeda + Molde	gr	12	968	13077	13	590	13652	13	13830	
Peso Muestra húmeda	gr	50	063	5172	5!	520	5582	59	902	5962
Volumen Muestra húmeda	cm3	31	69.7	3211.5	32	11.8	3260.0	31	3199.7	
Densidad húmeda; Dh	gr/cm3	1.	597	1.6	1.	819	1.8	1.995		2.01
CONTENIDO DE HUMEDAD			109.0			62.0			60.0	
Ensayo	N°	1 - A	1 - B	1 - C	2 - A	2 - B	2 - C	3 - A	3 - B	3 - C
Tara		T1	Ts-1	Ti-1	T2	ts-2	ti-2	Т3	Ts-3	Ti-3
Peso Recipiente	gr	29.11	27.60	26.39	28.18	28.34	26.72	27.77	29.05	31.10
Peso Muestra húmeda + Recipiente	gr	66.67	163.37	157.38	47.40	150.65	177.36	71.23	179.62	172.69
Peso Muestra Seca + Recipiente	gr	60.25	159.84	135.48	43.83	148.71	151.99	64.01	172.91	146.46
Peso del Agua	gr	6.42	3.53	21.90	3.57	1.94	25.37	7.22	6.71	26.23
Peso Muestra Seca	gr	31.14	132.24	109.09	15.65	120.37	125.27	36.24	143.86	115.36
Contenido de Humedad ; W%	%	11.64 20.08 12.21 20.25 12.29		2.29	22.74					
Promedio Contenido de Humedad	%		15.86			16.23			17.52	
Densidad Máxima Seca; Ds	gr/cm3		1.581			1.771			1.926	

Nota. La tabla muestra los resultados de laboratorio en el ensayo de compactación CBR de la muestra de 5%

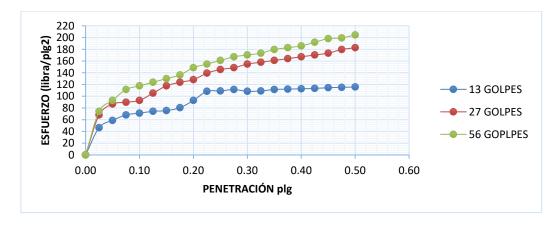
Tabla 31Ensayo Hinchamiento con adición de 5% de Cenizas – C-01

ENSAYO DE HINCHAMIENTO							
TIEMPO	MOL	DE N°01	MOI	DE N°02	MOLDE °03		
ACUMULADO	Lectura	Hinchamiento	Lectura	Hinchamiento	Lectura	Hinchamiento	

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.0000	0.000	0.000	0.0000 plg	0.000	0.000	0.0000	0.000	0.000
24.00	1.00	2.21000	2.210	1.232	0.0193 plg	0.490	0.273	0.0072	0.0072	0.004
48.00	2.00	2.2700	2.270	1.266	0.0199 plg	0.505	0.281	0.0990	0.0990	0.056
72.00	3.00	2.3000	2.300	1.283	0.1020 plg	2.591	1.442	0.1100	0.1100	0.062
96.00	4.00	2.3350	2.335	1.302	0.1045 plg	2.654	1.477	0.1190	0.1190	0.067

Nota. Resultados de laboratorio en el ensayo de Hinchamiento de la muestra de 5%.


Tabla 32 *Ensayo penetración con adición de 5% de Cenizas – C-01*

CARGA - PENETRACIÓN - 5%												
PENETI	RACIÓ	N	MOLDE N° 01			MOLDE N	° 02	M	MOLDE N° 03			
N		Carga		fuerzo	Carga	Esfuerzo		Carga	Esfu	ierzo		
mm	Pulg	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²	kg	kg/cm ²	Lb/pl ²		
0.000	0.000	0.00	0.0000	0.0000	-	0.0000	0.0000	-	0.0000	0.0000		
0.635	0.025	190.50	9.8196	46.4472	279.40	14.4021	68.1225	304.80	15.7113	74.3155		
1.270	0.050	241.30	12.4381	58.8331	355.60	18.3299	86.7014	381.00	19.6392	92.8944		
1.905	0.075	279.40	14.4021	68.1225	368.30	18.9845	89.7979	457.20	23.5670	111.4732		
2.540	0.100	292.10	15.0567	71.2190	381.00	19.6392	92.8944	482.60	24.8763	117.6662		
3.175	0.125	304.80	15.7113	74.3155	431.80	22.2577	105.2803	508.00	26.1856	123.8591		
3.810	0.150	309.88	15.9732	75.5541	482.60	24.8763	117.6662	533.40	27.4948	130.0521		
4.445	0.175	330.20	17.0206	80.5084	508.00	26.1856	123.8591	558.80	28.8041	136.2451		
5.080	0.200	381.00	19.6392	92.8944	525.78	27.1021	128.1942	609.60	31.4227	148.6310		
5.715	0.225	444.50	22.9124	108.3767	571.50	29.4588	139.3415	635.00	32.7320	154.8239		
6.350	0.250	447.04	23.0433	108.9960	596.90	30.7680	145.5345	660.40	34.0412	161.0169		
6.985	0.275	457.20	23.5670	111.4732	609.60	31.4227	148.6310	685.80	35.3505	167.2098		
7.620	0.300	444.50	22.9124	108.3767	635.00	32.7320	154.8239	698.50	36.0052	170.3063		
8.255	0.325	447.04	23.0433	108.9960	647.70	33.3866	157.9204	711.20	36.6598	173.4028		
8.890	0.350	457.20	23.5670	111.4732	660.40	34.0412	161.0169	736.60	37.9691	179.5958		
9.525	0.375	459.74	23.6979	112.0925	673.10	34.6959	164.1134	749.30	38.6237	182.6922		
10.160	0.400	462.28	23.8289	112.7118	685.80	35.3505	167.2098	762.00	39.2784	185.7887		
10.795	0.425	464.82	23.9598	113.3311	698.50	36.0052	170.3063	787.40	40.5876	191.9817		
11.430	0.450	469.90	24.2216	114.5697	711.20	36.6598	173.4028	812.80	41.8969	198.1746		
12.065	0.475	472.44	24.3526	115.1890	736.60	37.9691	179.5958	817.88	42.1588	199.4132		
12.700	0.500	474.98	24.4835	115.8083	749.30	38.6237	182.6922	838.20	43.2062	204.3676		

Nota. La tabla muestra los resultados de laboratorio en el ensayo de penetración de la muestra de 5%.

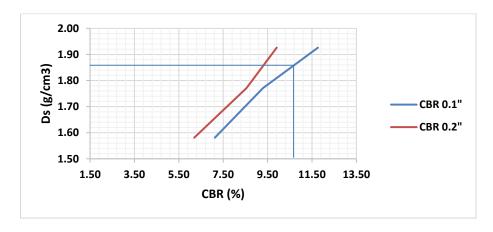


Figura 29 *CBR de diseño con adición de 5% de cenizas – C-01*

Nota. El gráfico muestra la curva esfuerzo vs penetración del suelo natural sin adición de cenizas de 5%.

Figura 30 CBR de diseño con adición de 5% de cenizas – C-01

Ds Max: Ds Proctor 1.88%

CBR al 100% de compactación 11.01%

CBR al 95% de compactación 9.75%

Nota. El gráfico muestra la curva CBR –Ds Máxima del suelo natural sin adición de cenizas para 13, 27 y 56 golpes respectivamente, de tal manera que al intersectar para 0.1" tenemos un CBR de 9.75%

"MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

Tabla 33

Compactación CBR con edición de 5% de Cenizas – C-02

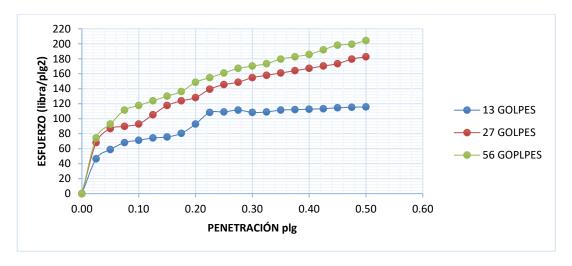
CALIFORNIA BEARING RATIO CBR - 5%									
DESCRIPCIÓN	UND	1	2	3					
N° Capas		5	5	5					
N° Golpes por capa		13	27	56					
Molde		M17	M26	M11					
Densidad Máxima Seca; Ds	gr/cm3	1.745	1.897	1.916					

Nota. La tabla muestra los resultados de laboratorio en el ensayo de compactación CBR de la muestra de 5%.

Tabla 34Ensayo Hinchamiento con adición de 5% de Cenizas – C-02

ENSAYO DE HINCHAMIENTO											
TIEM	TIEMPO MOL		DE N°01		MOL	MOLDE °03					
ACUMULADO		Lectura Hinchamiento		Lectura	Hinchamiento		Lectura	Hinchamiento			
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%	
0.00	0.00	0.00000	0.000	0.000	0.0000 plg	0.000	0.000	0.0000	0.000	0.000	
24.00	1.00	2.67000	2.670	1.489	0.0550 plg	1.397	0.778	0.7150	0.715	0.403	
48.00	2.00	2.7350	2.735	1.525	0.0690 plg	1.753	0.976	0.9200	0.920	0.518	
72.00	3.00	2.7700	2.770	1.545	0.0750 plg	1.905	1.060	1.0400	1.040	0.586	
96.00	4.00	2.7900	2.790	1.556	0.0780 plg	1.981	1.103	1.1300	1.130	0.636	

Nota. Resultados de laboratorio en el ensayo de Hinchamiento de la muestra de 5%.


Tabla 35 *Ensayo penetración con adición de 5% de Cenizas – C-02*

		F		CARGA	A - PENETRA					
PENETR	ACIÓN		MOLDE N°	01		MOLDE N°	02	r	MOLDE N° 0	3
		Carga	Es	fuerzo	Carga	Es	fuerzo	Carga	Esfu	erzo
mm	Pulg	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²
0.000	0.000	0.00	0.0000	0.0000	-	0.0000	0.0000	-	0.0000	0.0000
0.635	0.025	152.40	7.8557	37.1577	381.00	19.6392	92.8944	431.80	22.2577	105.2803
1.270	0.050	203.20	10.4742	49.5437	482.60	24.8763	117.6662	533.40	27.4948	130.0521
1.905	0.075	266.70	13.7474	65.0260	508.00	26.1856	123.8591	558.80	28.8041	136.2451
2.540	0.100	292.10	15.0567	71.2190	533.40	27.4948	130.0521	584.20	30.1134	142.4380
3.175	0.125	304.80	15.7113	74.3155	546.10	28.1495	133.1486	609.60	31.4227	148.6310
3.810	0.150	317.50	16.3660	77.4120	558.80	28.8041	136.2451	635.00	32.7320	154.8239
4.445	0.175	355.60	18.3299	86.7014	584.20	30.1134	142.4380	647.70	33.3866	157.9204
5.080	0.200	381.00	19.6392	92.8944	596.90	30.7680	145.5345	660.40	34.0412	161.0169
5.715	0.225	393.70	20.2938	95.9908	609.60	31.4227	148.6310	673.10	34.6959	164.1134
6.350	0.250	396.24	20.4247	96.6101	622.30	32.0773	151.7274	685.80	35.3505	167.2098
6.985	0.275	396.24	20.4247	96.6101	635.00	32.7320	154.8239	698.50	36.0052	170.3063
7.620	0.300	431.80	22.2577	105.2803	647.70	33.3866	157.9204	711.20	36.6598	173.4028
8.255	0.325	431.80	22.2577	105.2803	660.40	34.0412	161.0169	723.90	37.3144	176.4993
8.890	0.350	431.80	22.2577	105.2803	673.10	34.6959	164.1134	736.60	37.9691	179.5958
9.525	0.375	431.80	22.2577	105.2803	685.80	35.3505	167.2098	741.68	38.2309	180.8343
10.160	0.400	436.88	22.5196	106.5189	685.80	35.3505	167.2098	749.30	38.6237	182.6922
10.795	0.425	444.50	22.9124	108.3767	698.50	36.0052	170.3063	762.00	39.2784	185.7887
11.430	0.450	457.20	23.5670	111.4732	711.20	36.6598	173.4028	774.70	39.9330	188.8852
12.065	0.475	482.60	24.8763	117.6662	723.90	37.3144	176.4993	787.40	40.5876	191.9817
12.700	0.500	482.60	24.8763	117.6662	736.60	37.9691	179.5958	792.48	40.8495	193.2203

Nota. La tabla muestra los resultados de laboratorio en el ensayo de penetración de la muestra de 5%.

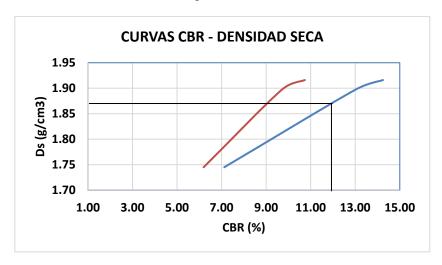


Figura 31 CBR de diseño con adición de 5% de cenizas – C-01

Nota. El gráfico muestra la curva esfuerzo vs penetración del suelo natural sin adición de cenizas de 5%.

Figura 32 *CBR de diseño con adición de 5% de cenizas – C-02*

Ds Max: Ds Proctor 1.86%

CBR al 100% de compactación 11.75%

CBR al 95% de compactación 7.99 %

Nota. El gráfico muestra la curva CBR –Ds Máxima del suelo natural sin adición de cenizas para 13, 27 y 56 golpes respectivamente, de tal manera que al intersectar para 0.1" tenemos un CBR de 7.99%

Tabla 36

Compactación CBR con edición de 10% de Cenizas – C-01

CALIFORNIA BEARING RATIO CBR - 5%										
DESCRIPCIÓN	UND	1	2	3						
N° Capas		5	5	5						
N° Golpes por capa		13	27	56						
Molde		M17	M26	M11						
Promedio Contenido de Humedad	%	17.14	16.52	17.24						
Densidad Máxima Seca; Ds	gr/cm3	1.760	1.917	1.997						

Nota. La tabla muestra los resultados de laboratorio en el ensayo de compactación CBR de la muestra de 10%.

Tabla 37Ensayo Hinchamiento con adición de 10% de Cenizas – C-01

				ENSAY	O DE HINCH	AMIENT	О			
TIEM	TIEMPO MOLDE N°01				MOLDE N°02			MOLDE °03		
ACUMULADO L		Lectura	Hincha	miento	Lectura	Hincha	miento	Lectura	Hincha	miento
Horas	Días Deforma.		mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000
24.00	1.00	0.0545 plg	0.055	0.031	0.0255 plg	0.026	0.014	1.8590 plg	1.859	1.068
48.00	2.00	0.0552 plg	0.055	0.031	0.0290 plg	0.029	0.016	2.0000 plg	2.000	1.149
72.00	3.00	0.0560 plg	0.056	0.031	0.3100 plg	0.310	0.169	2.0650 plg	2.065	1.186
96.00	4.00	0.0565 plg	0.057	0.032	0.3200 plg	0.320	0.175	2.1050 plg	2.105	1.209

Nota. Resultados de laboratorio en el ensayo de Hinchamiento de la muestra de 10%.

Tabla 38Ensayo penetración con adición de 10% de Cenizas – C-01

				CARGA	- PENETRA	CIÓN -10%				
PENETR	ACIÓN	ľ	MOLDE N°	01		MOLDE N°	02	ľ	MOLDE N° 0	3
		Carga	Es	fuerzo	Carga	Es	fuerzo	Carga	Esfu	erzo
mm	Pulg	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl ²
0.000	0.000	0.00	0.0000	0.0000	-	0.0000	0.0000	-	0.0000	0.0000
0.635	0.025	279.40	14.4021	68.1225	482.60	24.8763	117.6662	533.40	27.4948	130.0521
1.270	0.050	355.60	18.3299	86.7014	508.00	26.1856	123.8591	584.20	30.1134	142.4380
1.905	0.075	444.50	22.9124	108.3767	558.80	28.8041	136.2451	685.80	35.3505	167.2098
2.540	0.100	457.20	23.5670	111.4732	635.00	32.7320	154.8239	711.20	36.6598	173.4028
3.175	0.125	482.60	24.8763	117.6662	635.00	32.7320	154.8239	736.60	37.9691	179.5958
3.810	0.150	508.00	26.1856	123.8591	635.00	32.7320	154.8239	774.70	39.9330	188.8852
4.445	0.175	508.00	26.1856	123.8591	635.00	32.7320	154.8239	787.40	40.5876	191.9817
5.080	0.200	533.40	27.4948	130.0521	635.00	32.7320	154.8239	825.50	42.5515	201.2711
5.715	0.225	538.48	27.7567	131.2907	660.40	34.0412	161.0169	850.90	43.8608	207.4641
6.350	0.250	546.10	28.1495	133.1486	673.10	34.6959	164.1134	889.00	45.8247	216.7535
6.985	0.275	558.80	28.8041	136.2451	685.80	35.3505	167.2098	914.40	47.1340	222.9465
7.620	0.300	538.48	27.7567	131.2907	690.88	35.6124	168.4484	939.80	48.4433	229.1394
8.255	0.325	546.10	28.1495	133.1486	698.50	36.0052	170.3063	965.20	49.7526	235.3324
8.890	0.350	558.80	28.8041	136.2451	711.20	36.6598	173.4028	990.60	51.0619	241.5253
9.525	0.375	571.50	29.4588	139.3415	723.90	37.3144	176.4993	1,003.30	51.7165	244.6218
10.160	0.400	584.20	30.1134	142.4380	736.60	37.9691	179.5958	1,041.40	53.6804	253.9112
10.795	0.425	589.28	30.3753	143.6766	749.30	38.6237	182.6922	1,054.10	54.3351	257.0077
11.430	0.450	596.90	30.7680	145.5345	762.00	39.2784	185.7887	1,066.80	54.9897	260.1042
12.065	0.475	609.60	31.4227	148.6310	812.80	41.8969	198.1746	1,092.20	56.2990	266.2971
12.700	0.500	614.68	31.6845	149.8696	863.60	44.5155	210.5605	1,104.90	56.9536	269.3936

Nota. La tabla muestra los resultados de laboratorio en el ensayo de penetración de la muestra de 10%.

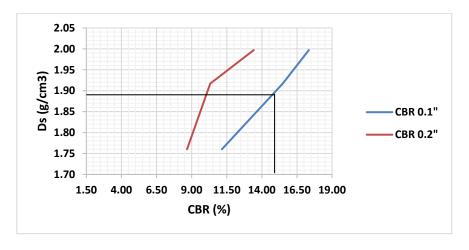


Figura 33 *CBR de diseño con adición de 10% de cenizas – C-01*

Nota. El gráfico muestra la curva esfuerzo vs penetración del suelo natural sin adición de cenizas de 10%.

Figura 34 *CBR de diseño con adición de 10% de cenizas – C-01*

Ds Max: Ds Proctor 1.89%

CBR al 100% de compactación 14.62%

CBR al 95% de compactación 12.13 %

Nota. El gráfico muestra la curva CBR –Ds Máxima del suelo natural sin adición de cenizas para 13, 27 y 56 golpes respectivamente, de tal manera que al intersectar para 0.1" tenemos un CBR de 12.13%

Tabla 39

Compactación CBR con edición de 10% de Cenizas – C-02

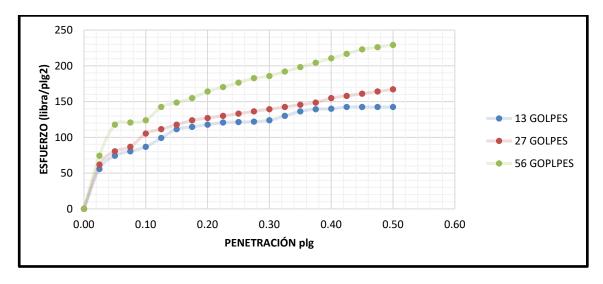
	CALIFORNIA BEARING RATIO CBR - 10%										
DESCRIPCIÓN	UND	1	2	3							
N° Capas		5	5	5							
N° Golpes por capa		13	27	56							
Molde		M17	M26	M11							
Promedio Contenido de Humedad	%	18.22	17.67	17.93							
Densidad Máxima Seca; Ds	gr/cm3	1.636	1.738	1.928							

Nota. La tabla muestra los resultados de laboratorio en el ensayo de compactación CBR de la muestra de 10%.

Tabla 40Ensayo Hinchamiento con adición de 10% de Cenizas – C-02

Litsu,	Ensayo Tinchamento con aacton de 1070 de Centzas C 02												
				ENSAY(DE HINCHA	AMIENT	O						
TIEM	PO .	MOL	DE N°01		MOL	MOLDE N°02 MOLD							
ACUMULADO Lectu		Lectura	Hincha	miento	Lectura	Hincha	amiento	Lectura	Hincha	amiento			
Horas	Horas Días Deforma.		mm	%	Deforma.	mm	%	Deforma.	mm	%			
0.00	0.00	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000			
24.00	1.00	2.0000 plg	2.000	1.149	0.0065 plg	0.006	0.004	1.1005 plg	1.101	0.632			
48.00	2.00	2.0700 plg	2.070	1.189	0.0870 plg	0.087	0.050	2.4100 plg	2.410	1.384			
72.00	3.00	2.1100 plg	2.110	1.212	0.0980 plg	0.098	0.056	2.6900 plg	2.690	1.545			
96.00	4.00	2.1600 plg	2.160	1.241	0.1040 plg	0.104	0.060	2.9250 plg	2.925	1.680			

Nota. Resultados de laboratorio en el ensayo de Hinchamiento de la muestra de 10%.


Tabla 41Ensayo penetración con adición de 10% de Cenizas – C-02

					- PENETRA	CIÓN -10%				
PENETR	ACIÓN		MOLDE N°	01		MOLDE N°	° 02	ľ	MOLDE N° 0	3
		Carga	Es	fuerzo	Carga	Es	fuerzo	Carga	Esfu	erzo
mm	Pulg	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²
0.000	0.000	0.00	0.0000	0.0000	-	0.0000	0.0000	-	0.0000	0.0000
0.635	0.025	228.60	11.7835	55.7366	254.00	13.0928	61.9296	304.80	15.7113	74.3155
1.270	0.050	304.80	15.7113	74.3155	330.20	17.0206	80.5084	482.60	24.8763	117.6662
1.905	0.075	330.20	17.0206	80.5084	355.60	18.3299	86.7014	495.30	25.5309	120.7627
2.540	0.100	355.60	18.3299	86.7014	431.80	22.2577	105.2803	508.00	26.1856	123.8591
3.175	0.125	406.40	20.9485	99.0873	457.20	23.5670	111.4732	584.20	30.1134	142.4380
3.810	0.150	457.20	23.5670	111.4732	482.60	24.8763	117.6662	609.60	31.4227	148.6310
4.445	0.175	469.90	24.2216	114.5697	508.00	26.1856	123.8591	635.00	32.7320	154.8239
5.080	0.200	482.60	24.8763	117.6662	520.70	26.8402	126.9556	673.10	34.6959	164.1134
5.715	0.225	495.30	25.5309	120.7627	533.40	27.4948	130.0521	698.50	36.0052	170.3063
6.350	0.250	497.84	25.6619	121.3820	546.10	28.1495	133.1486	723.90	37.3144	176.4993
6.985	0.275	500.38	25.7928	122.0013	558.80	28.8041	136.2451	749.30	38.6237	182.6922
7.620	0.300	508.00	26.1856	123.8591	571.50	29.4588	139.3415	762.00	39.2784	185.7887
8.255	0.325	533.40	27.4948	130.0521	584.20	30.1134	142.4380	787.40	40.5876	191.9817
8.890	0.350	558.80	28.8041	136.2451	596.90	30.7680	145.5345	812.80	41.8969	198.1746
9.525	0.375	571.50	29.4588	139.3415	609.60	31.4227	148.6310	838.20	43.2062	204.3676
10.160	0.400	574.04	29.5897	139.9608	635.00	32.7320	154.8239	863.60	44.5155	210.5605
10.795	0.425	584.20	30.1134	142.4380	647.70	33.3866	157.9204	889.00	45.8247	216.7535
11.430	0.450	584.20	30.1134	142.4380	660.40	34.0412	161.0169	914.40	47.1340	222.9465
12.065	0.475	584.20	30.1134	142.4380	673.10	34.6959	164.1134	927.10	47.7887	226.0429
12.700	0.500	584.20	30.1134	142.4380	685.80	35.3505	167.2098	939.80	48.4433	229.1394

Nota. La tabla muestra los resultados de laboratorio en el ensayo de penetración de la muestra de 10%.

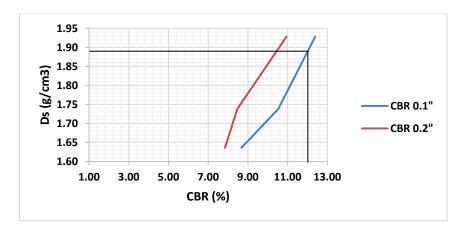


Figura 35 *CBR de diseño con adición de 10% de cenizas – C-02*

Nota. El gráfico muestra la curva esfuerzo vs penetración del suelo natural sin adición de cenizas de 10%.

Figura 36 *CBR de diseño con adición de 10% de cenizas – C-02*

Ds Max: Ds Proctor 1.90%

CBR al 100% de compactación 12.17%

CBR al 95% de compactación 10.99 %

Nota. El gráfico muestra la curva CBR –Ds Máxima del suelo natural sin adición de cenizas para 13, 27 y 56 golpes respectivamente, de tal manera que al intersectar para 0.1" tenemos un CBR de 10.99%

Tabla 42

Compactación CBR con edición de 15% de Cenizas – C-01

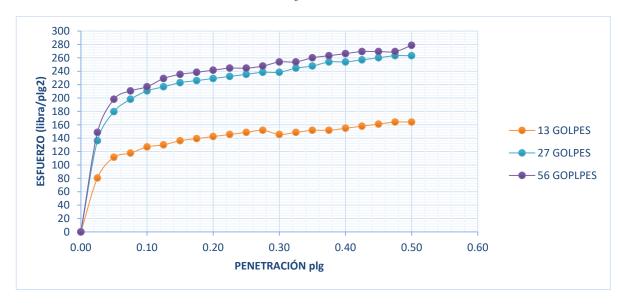
		CALIFORNIA BEARING R	ATIO CBR - 10%	
DESCRIPCIÓN	UND	1	2	3
N° Capas		5	5	5
N° Golpes por capa		13	27	56
Molde		M17	M26	M11
Promedio Contenido de Humedad	%	18.25	18.69	18.99
Densidad Máxima Seca; Ds	gr/cm3	1.806	1.956	1.994

Nota. La tabla muestra los resultados de laboratorio en el ensayo de compactación CBR de la muestra de 15%.

Tabla 43Ensayo Hinchamiento con adición de 15% de Cenizas – C-02

				ENSAY	O DE HINCH	AMIENT	Ю			
TIEM	TIEMPO MOI		DE N°01		MOI	DE N°02	;	MOLDE °03		
ACUMU	ACUMULADO Lectura		Hincha	miento	Lectura	Hincha	miento	Lectura	Hincha	miento
Horas	Horas Días Deforma.		mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.0000	0.000	0.000	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000
24.00	1.00	0.4350	0.435	0.244	0.0060 plg	0.152	0.085	0.0012 plg	0.030	0.017
48.00	2.00	0.5100	0.510	0.286	0.0085 plg	0.216	0.120	0.0020 plg	0.051	0.029
72.00	3.00	0.5500	0.550	0.308	0.0090 plg	0.229	0.128	0.0022 plg	0.056	0.031
96.00	4.00	0.5900	0.590	0.330	0.0095 plg	0.241	0.135	0.0024 plg	0.061	0.034

Nota. Resultados de laboratorio en el ensayo de Hinchamiento de la muestra de 15%.


Tabla 44Ensayo penetración con adición de 15% de Cenizas – C-01

				CARGA	A - PENETRA	CIÓN -10%				
PENETR	ACIÓN		MOLDE N°	01		MOLDE N	° 02	ſ	MOLDE N° 0	3
		Carga	Es	fuerzo	Carga	Es	fuerzo	Carga	Esfu	ierzo
mm	Pulg	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²
0.000	0.000	0.00	0.0000	0.0000	-	0.0000	0.0000	-	0.0000	0.0000
0.635	0.025	330.20	17.0206	80.5084	558.80	28.8041	136.2451	609.60	31.4227	148.6310
1.270	0.050	457.20	23.5670	111.4732	736.60	37.9691	179.5958	812.80	41.8969	198.1746
1.905	0.075	482.60	24.8763	117.6662	812.80	41.8969	198.1746	863.60	44.5155	210.5605
2.540	0.100	520.70	26.8402	126.9556	863.60	44.5155	210.5605	889.00	45.8247	216.7535
3.175	0.125	533.40	27.4948	130.0521	889.00	45.8247	216.7535	939.80	48.4433	229.1394
3.810	0.150	558.80	28.8041	136.2451	914.40	47.1340	222.9465	965.20	49.7526	235.3324
4.445	0.175	571.50	29.4588	139.3415	927.10	47.7887	226.0429	977.90	50.4072	238.4288
5.080	0.200	584.20	30.1134	142.4380	939.80	48.4433	229.1394	990.60	51.0619	241.5253
5.715	0.225	596.90	30.7680	145.5345	952.50	49.0979	232.2359	1,003.30	51.7165	244.6218
6.350	0.250	609.60	31.4227	148.6310	965.20	49.7526	235.3324	1,003.30	51.7165	244.6218
6.985	0.275	622.30	32.0773	151.7274	977.90	50.4072	238.4288	1,016.00	52.3711	247.7183
7.620	0.300	596.90	30.7680	145.5345	977.90	50.4072	238.4288	1,041.40	53.6804	253.9112
8.255	0.325	609.60	31.4227	148.6310	1,003.30	51.7165	244.6218	1,041.40	53.6804	253.9112
8.890	0.350	622.30	32.0773	151.7274	1,016.00	52.3711	247.7183	1,066.80	54.9897	260.1042
9.525	0.375	622.30	32.0773	151.7274	1,041.40	53.6804	253.9112	1,079.50	55.6443	263.2007
10.160	0.400	635.00	32.7320	154.8239	1,041.40	53.6804	253.9112	1,092.20	56.2990	266.2971
10.795	0.425	647.70	33.3866	157.9204	1,054.10	54.3351	257.0077	1,104.90	56.9536	269.3936
11.430	0.450	660.40	34.0412	161.0169	1,066.80	54.9897	260.1042	1,104.90	56.9536	269.3936
12.065	0.475	673.10	34.6959	164.1134	1,079.50	55.6443	263.2007	1,104.90	56.9536	269.3936
12.700	0.500	673.10	34.6959	164.1134	1,079.50	55.6443	263.2007	1,143.00	58.9175	278.6831

Nota. La tabla muestra los resultados de laboratorio en el ensayo de penetración de la muestra de 10%.

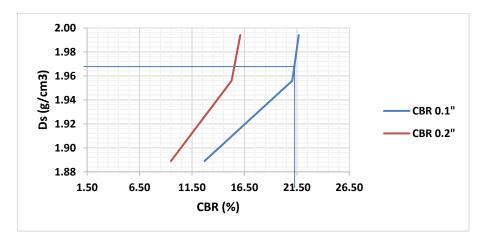


Figura 37 *CBR de diseño con adición de 15% de cenizas – C-01*

Nota. El gráfico muestra la curva esfuerzo vs penetración del suelo natural sin adición de cenizas de 15%.

Figura 38 *CBR de diseño con adición de 15% de cenizas – C-01*

Ds Max: Ds Proctor 1.97% CBR al 100% de compactación 20.61%

CBR al 95% de compactación 11.74 %

Nota. El gráfico muestra la curva CBR –Ds Máxima del suelo natural sin adición de cenizas para 13, 27 y 56 golpes respectivamente, de tal manera que al intersectar para 0.1" tenemos un CBR de 11.74%

Tabla 45Compactación CBR con edición de 15% de Cenizas – C-02

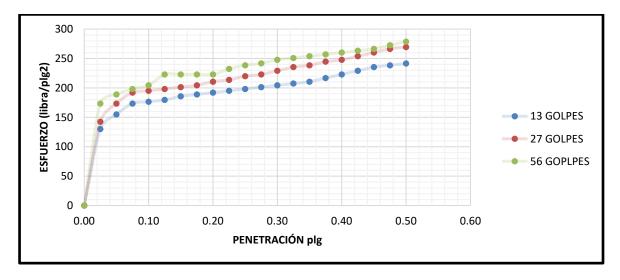
CALIFORNIA BEARING RATIO CBR - 15%										
DESCRIPCIÓN	UND	1	2	3						
N° Capas		5	5	5						
N° Golpes por capa		13	27	56						
Molde		M17	M26	M11						
Promedio Contenido de Humedad	%	17.49	17.97	18.56						
Densidad Máxima Seca; Ds	gr/cm3	1.910	1.931	1.943						

Nota. La tabla muestra los resultados de laboratorio en el ensayo de compactación CBR de la muestra de 15%.

Tabla 46Ensayo Hinchamiento con adición de 15% de Cenizas – C-02

	ENSAYO DE HINCHAMIENTO												
TIEM	(PO	MOL	DE N°01		MOI	DE N°02		MOLI	E °03	E °03			
ACUMULADO		Lectura	Hincha	miento	Lectura	Hincha	miento	Lectura	Hincha	miento			
Horas			mm	%	Deforma.	mm	%	Deforma.	mm	%			
0.00	0.00	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000 plg	0.000	0.000			
24.00	1.00	0.5000	0.500	0.280	0.3750	0.375	0.209	0.0235 plg	0.597	0.336			
48.00	2.00	0.5550	0.555	0.311	0.4400	0.440	0.245	0.0280 plg	0.711	0.401			
72.00	3.00	0.5950	0.595	0.333	0.4850	0.485	0.271	0.0300 plg	0.762	0.429			
96.00	4.00	0.6100	0.610	0.342	0.5200	0.520	0.290	0.0320 plg	0.813	0.458			

Nota. Resultados de laboratorio en el ensayo de Hinchamiento de la muestra de 15%.


Tabla 47Ensayo penetración con adición de 15% de Cenizas – C-02

	CARGA - PENETRACIÓN -15%										
PENETR	ACIÓN		MOLDE N°	01		MOLDE N° 02			MOLDE N° 03		
		Carga	Es	fuerzo	Carga	Es	fuerzo	Carga	Esfu	erzo	
mm	Pulg	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²	
0.000	0.000	-	0.0000	0.0000	-	0.0000	0.0000	-	0.0000	0.0000	
0.635	0.025	533.40	27.4948	130.0521	584.20	30.1134	142.4380	711.20	36.6598	173.4028	
1.270	0.050	635.00	32.7320	154.8239	711.20	36.6598	173.4028	774.70	39.9330	188.8852	
1.905	0.075	711.20	36.6598	173.4028	787.40	40.5876	191.9817	812.80	41.8969	198.1746	
2.540	0.100	723.90	37.3144	176.4993	800.10	41.2423	195.0781	838.20	43.2062	204.3676	
3.175	0.125	736.60	37.9691	179.5958	812.80	41.8969	198.1746	914.40	47.1340	222.9465	
3.810	0.150	762.00	39.2784	185.7887	825.50	42.5515	201.2711	914.40	47.1340	222.9465	
4.445	0.175	774.70	39.9330	188.8852	838.20	43.2062	204.3676	914.40	47.1340	222.9465	
5.080	0.200	787.40	40.5876	191.9817	863.60	44.5155	210.5605	914.40	47.1340	222.9465	
5.715	0.225	800.10	41.2423	195.0781	876.30	45.1701	213.6570	952.50	49.0979	232.2359	
6.350	0.250	812.80	41.8969	198.1746	901.70	46.4794	219.8500	977.90	50.4072	238.4288	
6.985	0.275	825.50	42.5515	201.2711	914.40	47.1340	222.9465	991.87	51.1273	241.8350	
7.620	0.300	838.20	43.2062	204.3676	939.80	48.4433	229.1394	1,016.00	52.3711	247.7183	
8.255	0.325	850.90	43.8608	207.4641	965.20	49.7526	235.3324	1,028.70	53.0258	250.8148	
8.890	0.350	863.60	44.5155	210.5605	977.90	50.4072	238.4288	1,041.40	53.6804	253.9112	
9.525	0.375	889.00	45.8247	216.7535	1,003.30	51.7165	244.6218	1,054.10	54.3351	257.0077	
10.160	0.400	914.40	47.1340	222.9465	1,016.00	52.3711	247.7183	1,066.80	54.9897	260.1042	
10.795	0.425	939.80	48.4433	229.1394	1,041.40	53.6804	253.9112	1,079.50	55.6443	263.2007	
11.430	0.450	965.20	49.7526	235.3324	1,066.80	54.9897	260.1042	1,092.20	56.2990	266.2971	
12.065	0.475	977.90	50.4072	238.4288	1,092.20	56.2990	266.2971	1,117.60	57.6082	272.4901	
12.700	0.500	990.60	51.0619	241.5253	1,104.90	56.9536	269.3936	1,143.00	58.9175	278.6831	

Nota. La tabla muestra los resultados de laboratorio en el ensayo de penetración de la muestra de 15%.

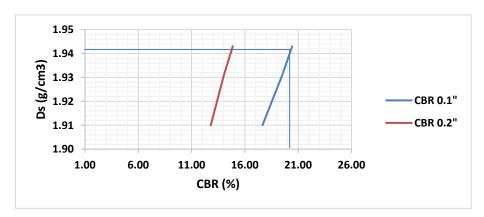
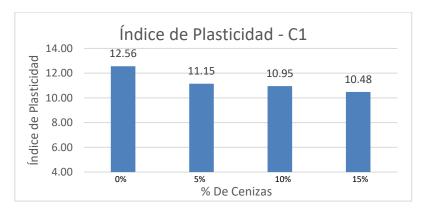


Figura 39 *CBR de diseño con adición de 15% de cenizas – C-02*

Nota. El gráfico muestra la curva esfuerzo vs penetración del suelo natural sin adición de cenizas de 15%.

Figura 40 *CBR de diseño con adición de 15% de cenizas – C-02*

Ds Max: Ds Proctor 1.92%
CBR al 100% de compactación 18.52%


CBR al 95% de compactación 10.37 %

Nota. El gráfico muestra la curva CBR –Ds Máxima del suelo natural sin adición de cenizas para 13, 27 y 56 golpes respectivamente, de tal manera que al intersectar para 0.1" tenemos un CBR de 10.37%

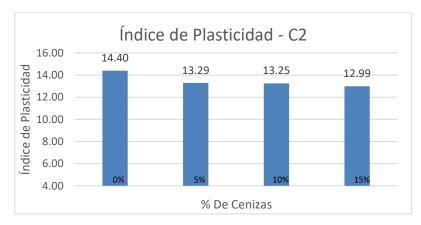
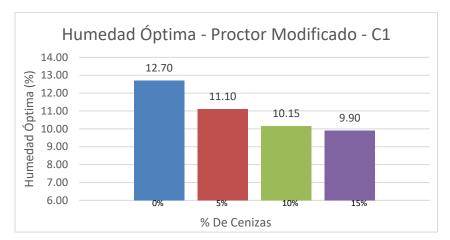

RESUMEN DE RESULTADOS

Figura 41 *Resumen de resultados de límites de plasticidad de la C-1*

Nota. El índice de plasticidad va reduciendo al agregar más residuos de carbón (ceniza) de la Calicata 1.


Figura 42 *Resumen de resultados de límites de plasticidad de la C-2*

Nota. El índice de plasticidad va reduciendo al agregar más residuos de carbón (ceniza) de la Calicata 2.

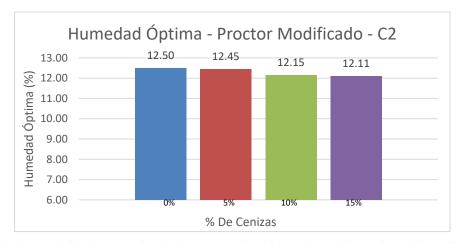
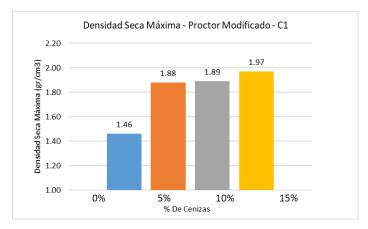


Figura 43Resumen de resultados de Proctor Modificado de la Calicata 01

Nota. El índice de plasticidad va reduciendo al agregar más residuos de carbón (ceniza) de la Calicata 1.


Figura 44Comparación de resultados de Proctor Modificado de la Calicata 02

Nota. El índice de plasticidad va reduciendo al agregar más residuos de carbón (ceniza) de la Calicata 2.

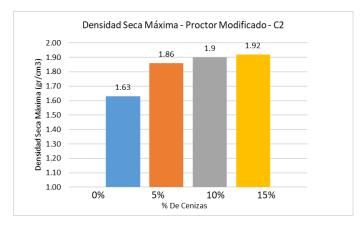
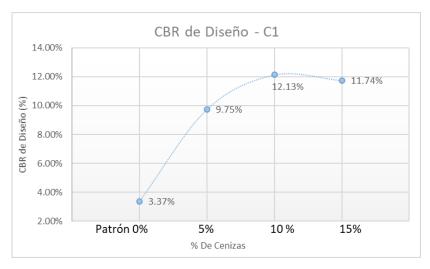


Figura 45Resumen de resultados de densidades secas máximas de calicata 01

Nota. La densidad máxima secas van aumentando al agregar más residuos de carbón (ceniza) de la Calicata 1.


Figura 46Resumen de resultados de densidades secas máximas de calicata 02

Nota. La densidad máxima secas van aumentando al agregar más residuos de carbón (ceniza) de la Calicata 2.

Figura 47 *Resumen de resultados de CBR de la calicata 01*

Nota. El CBR con mejor resultado se aprecia al adicionar residuos de carbón (ceniza) en 10%.

Figura 48Comparación de resultados de CBR de la calicata 02

Nota. Resultados de CBR de diseño al 95% de la densidad seca máxima de muestra patrón de calicata 02 y con aditivos en diferentes porcentajes.

Tabla 48Análisis de costo unitario por m2 de subrasante, utilizando 10% de residuos de carbón.

Descripción	Und	Cuadrilla	Cant.	Precio	Parcial
MANO DE OBRA					
Operario	hh	4	0.0457	26.06	1.19
				-	
MATERIALES					
10% de Residuos de Carbón	M3		0.02	10.00	0.20
EQUIPOS					
Herramientas Manuales	%MO		3	0.39	0.01
Motoniveladora de 125 HP	hm	1	0.0053	340.00	1.80
Camión Volquete 15 m3	hm	1	0.0053	150.00	0.80
Camión Cisterna x 2000 gl	hm	0.25	0.0013	120.00	0.16
Rodillo Liso Vibratorio 8-10	hm	0.5	0.0027	160.00	0.43
tn					
					4.62

Nota. El costo directo equivale a S/. 4.62 por m2 de subrasante mejorada con residuo de carbón con un rendimiento de 700 m2/día.

El costo de la ceniza o residuos de carbón es de S/ 10.00 por m3 sin IGV. Para el caso del carguío, se entrega cargado por parte de los dueños de los hornos. El sustento de los costos se puede visualizar en el anexo 2.

Tabla 49 *Análisis de costo unitario por m2 de subrasante, utilizando 10% de Cal.*

Descripción	Und	Cuadrilla	Cant.	Precio	Parcial
MANO DE OBRA					
Operario	hh	4	0.0457	26.06	1.19
MATERIALES					
10% de Cal	M3		0.02	758.47	15.17
EQUIPOS					
Herramientas Manuales	%MO		3	0.39	0.01
Motoniveladora de 125 HP	hm	1	0.0053	340.00	1.80

Camión Volquete 15 m3	hm	1	0.0053	150.00	0.80
Camión Cisterna x 2000 gl	hm	0.25	0.0013	120.00	0.16
Rodillo Liso Vibratorio 8-10	hm	0.5	0.0027	160.00	0.43
tn					
					19.59

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

En esta investigación ha tenido limitantes como: El origen de residuos de carbón (ceniza), únicamente se trabajó con carbón mineral. Otra limitante es el tipo de suelo usado solo ha sido de tipo arcilla.

Como discusión de esta tesis se tiene una comparación con los antecedentes, como es el caso de; Casas (2020), donde obtuvo en su investigación usando 5% de cenizas de carbón un CBR de 6% y con 7% un CBR de 7.5% respecto a la muestra patrón un CBR de 2.2%. En la presente investigación se obtuvo una mejora de CBR respecto a la muestra patrón de la calicata 01, al usar adición de residuos de carbón (ceniza), para 5% un CBR de 9.75%, para 10% un CBR de 12.13% y para 15% un CBR de 11.74%. Y de la calicata 02, al usar adición de residuos de carbón (ceniza) para 5% un CBR de 7.99%, para 10% un CBR de 10.99% y para 15% un CBR de 10.37%. Deduciendo que existe mejores resultados usando residuos de carbón en relación al antecedente mencionado, para ambos puntos en estudio con una adición de 5% se obtiene un mejor CBR en suelos arcillosos, dando como resultado una mejor subrasante de acuerdo al Manual de carreteras - Suelos, Geología, Geotecnia y Pavimentos - MTC(2014).

Según la investigación de Castro (2017) donde utilizando la ceniza de cascaras de arroz en un 20% mejora el suelo arcilloso de 5% de CBR a 19.4%. Y en la presente investigación se obtuvo una mejora de CBR respecto a la muestra patrón de la calicata 01, al usar adición de residuos de carbón (ceniza), para 5% un CBR de 9.75%, para 10% un CBR de 12.13% y para 15% un CBR de 11.74%. Y de la muestra patrón de la calicata 02, al usar adición de residuos de carbón (ceniza) para 5% un CBR de 7.99%, para 10% un CBR de 10.99% y para 15% un CBR de 10.37%. Deduciendo que existe una mejora de resultados usando en ambos

diferentes porcentajes de aditivos de residuos de carbón (ceniza) logrando mejorar el CBR en suelos arcillosos.

Para la investigación de realizada por Torres (2018), en su investigación donde hace uso de la ceniza de bagazo de caña en suelos arcilloso en porcentajes de 5%, 10% y 15% concluyen que estos aditivos si logran mejorar el suelo, obteniendo mejores resultados al adicionar 15% obteniendo un CBR de 23.267% a comparación de la muestra patrón que fue de 1.823%. En nuestra Investigación al agregar porcentajes de 5%, 10% y 15% de residuos de carbón(ceniza) se logra mejores resultados al adicionar 10% de un CBR de 3.37% a 12.13% en la primera calicata y en la segunda de 2.42% a 10.99%,

Para el caso de Pérez (2012) en su investigación donde hace uso de ceniza volante muestra mejoramiento de suelos arcillosos, incorporando un porcentaje de 20% de aditivo. Logrando así un mejoramiento de 8.13% a 17.3% de CBR. En nuestro estudio se hace uso de una adición de 5%,10% y 15% y logra mejorar el suelo arcilloso, deduciendo que en menores cantidades de los residuos de carbón (ceniza) mejoran el suelo arcilloso de subrasante, logrando así un costo menor en su uso.

En la investigación realizada por Tovar (2018), donde hace uso de ceniza vegetal en porcentajes de 15%, 25% y 35%, obtiene mejores resultados al incorporar el 35% logrando así mejorar el CBR en sus diferentes porcentajes; para un 15% mejora a 23.40% y 21.90% e, para 25% mejora en 23.90% y en 23.40% y al incorporar 35%, obtiene un CBR de 24.7% y de 23.7%. Donde la muestra patrón el CBR para la calicata 01 de 16.70% y en la calicata 02 de 18.2%. En el caso de nuestra investigación el porcentaje utilizado para la adición de aditivo o residuos de carbón (ceniza) de 5%,10% 15% en ambas investigaciones logran mejorar el suelo arcilloso. Es así para el caso de 15% mejoran en ambas investigaciones su CBR.

Como implicancia de esta investigación se tiene lo siguiente. Como es el caso de Implicancias teóricas, donde los residuos de carbón (ceniza) son un aditivo para el diseño en la estabilización de suelos. Según R.D. N°10-2014-MTC/14 y a la vez tenemos, Implicancias prácticas, para estabilizar suelos arcillosos, donde se utiliza los residuos de carbón obtenidos de una ladrillera ubicado en la zona de estudio, lo cual demuestra que mejora el CBR de la subrasante arcillosa. Implicancias económicas, se puede utilizar a nivel de Ingeniería para reducir costos en el mejoramiento de subrasante en pavimentos, cimentaciones y otros.

Como **aporte a la ingeniería** se tiene un nuevo aditivo que no solo servirá para ser aplicado a carreteras, sino para mejoramiento de diferentes obras civiles. Esta investigación deja abierta la posibilidad para seguir investigando sobre residuos de carbón de diferentes procedencias y con arcillas de alta plasticidad, el porcentaje óptimo para mejorar el suelo arcilloso en subrasantes es el 10 % de residuos de carbón, es así que se realiza un costo unitario con este % para un análisis y comparar con un material convencional como es la cal, tal como se detalla en la tabla N° 48 y 49. donde se obtiene un costo de S/. 4.62 y S/. 19.59 por m2 respectivamente. Lo cual se realiza en una capa máxima de 8" removiendo el suelo natural con el Ripper de la motoniveladora, añadiendo la cantidad optima de residuos de carbón, agua necesaria según su humedad en campo y compactando con rodillo vibratorio.

Del presente estudio se **concluye** que se valida la hipótesis parcialmente para el caso de la adición de residuos de carbón (ceniza) en un 5%, 10% y 15% obteniendo resultados satisfactorios con la adición de 10% ya que con este % supera el 10% de la hipótesis.

Se determinó las propiedades físicas y mecánicas del suelo natural sin adición de residuos de carbón. Donde, el contenido de humedad promedio es de 11.57% para la muestra

de la calicata 01 y 12.79% de humedad natural para la calicata 02. Según AASHTO M145 se clasifica en un tipo de suelo A-7-6 es decir es un suelo arcilloso, tanto para la calicata 01 como para la calicata 02, con un índice de plasticidad de la muestra de suelo natural de la Calicata 01 de 12.56 y Calicata 02 de 14.40. También se determinó la densidad seca máxima de las muestras de suelo natural y la muestra incorporada en 5%, 10% y 15% de residuos de carbón mediante el ensayo de proctor modificado. Para el caso de la muestra patrón de la calicata 01 se tiene un valor de 1.46gr/cm3, con adición de para 5% un valor de 1.88 gr/cm3, con adición de para 10% un valor de 1.89 gr/cm3 y con adición de para 15% un valor de 1.97 gr/cm3.Y para la muestra patrón de la calicata 02 se tiene un valor de 1.63gr/cm3, con adición de para 5% un valor de 1.90 gr/cm3 y con adición de para 15% un valor de 1.86gr/cm3, con adición de para 10% un valor de 1.90 gr/cm3 y con adición de para 15% un valor de 1.92 gr/cm3.

Se determinó la capacidad portante (CBR) del suelo en subrasante arcillosa, mediante el uso de residuos de carbón en la carretera a Shultin, Baños del Inca — Cajamarca, para la calicata 01 con adición de 5% se obtuvo un CBR de 9.75%, para 10% un CBR de 12.13% y para 15% un CBR de 11.74%. Y la calicata 02, al usar adición de residuos de carbón (ceniza) para 5% obtuvo un CBR de 7.99%, para 10% un CBR de 10.99% y para 15% un CBR de 10.37%.

Se determinó el porcentaje óptimo de residuos de carbón, para mejorar el CBR en la carretera a Shultin - Baños del Inca es de 10% mejorando, para la calicata 01 hasta 12.13% y para la calicata 02, se obtiene un CBR de 10.99%.

Se realizó el presupuesto con 10% de residuos de carbón donde se obtiene un costo de S/. 4.62 por m2 de subrasante mejorada lo cual existe una diferencia considerable con relación a estabilizar con cal lo cual nos dio un costo de S/. 19.59 por m2.

Como **recomendaciones** se tiene que se debe continuar la investigación, adicionando porcentajes menores al 5% de residuos de carbón(cenizas), para optimizar o reducir los porcentajes de este aditivo ya que con esta cantidad ya se obtiene una mejora considerable en el CBR según la variación de la resistencia portante al añadir el aditivo estudiado.

Se sugiere extender esta investigación con la finalidad de encontrar el porcentaje óptimo para un buen tratamiento de la subrasante de pavimentos ya que en este estudio el porcentaje óptimo es el 10% y continúa ganando resistencia, pero al 15% disminuye ligeramente.

Se recomienda que se realicen estudios con suelos arcilloso de alta plasticidad para analizar el comportamiento de la ceniza en el CBR y la influencia de la plasticidad en otro tipo de suelos.

REFERENCIAS

- Apolinarez Tovar , A. E. (2018). Estabilización de la sub-rasante con la incorporación de ceniza vegetal, Jauja.

 Perú.
- Blanco, T., Brango, Y., & Rivera, J. (2012). Reutilización del desecho de PVC como agente estabilizador de subbases granulares. (tesis de grado), Universidad de la Costa, CUC, Barranquilla. Obtenido de http://repositorio.cuc.edu.co/handle/11323/1480
- Casas Garay, J. S. (2020). *Ceniza de carbón mineral para estabilización de suelos cohesivos en subrasante.*Huancayo.
- Castro Cuadra, A. F. (2017). Estabilización de suelos arcillosos con ceniza de cascara de arroz para el mejoramiento de subrasante. Perú.
- Cusquisibán, W. (2014). *Mejoramiento de suelos arcillosos utilizando caucho granular de neumáticos para fines constructivos de pavimento.* (tesis de grado), Universidad Nacional de Cajamarca, Cajamarca. Obtenido de http://repositorio.unc.edu.pe/handle/UNC/685
- Diario Norte. (27 de Setiembre de 2012). Caminos a traves de la historia. *Diario Norte,* pág. 1. Obtenido de http://www.diarionorte.com/article/77093/los-caminos-a-traves-de-la-historia
- Díaz, G. (2018). *Mejoramiento del CBR de un suelo arcilloso con cloruro de sodio.* (tesis de grado), Universidad Privada del Norte, Cajamarca. Obtenido de http://hdl.handle.net/11537/14062
- Garcia, C. (2017). *Informe de Caminos I.* Universidad Nacional de Cajamarca, cajamarca. Obtenido de https://es.scribd.com/document/355360083/Informe-de-Caminos-I
- Guzmán, A. (5 de Diciembre de 2015). La red vial es imprescindible para el desarrollo y crecimiento de un país. (Tesis de grado), Universidad de Piura, Piura. Obtenido de http://udep.edu.pe/hoy/2015/la-red-vial-es-imprescindible-para-el-desarrollo-y-crecimiento-de-un-pais/
- Hernandez, J., Mejia, & Zelaya. (2016). *Propuesta de estabilización de suelos arcillosos para su aplicación en pavimentos rígidos en la facultad multidisciplinaria oriental de la Universidad de El Salvador*. (tesis de grado), El Salvador. Obtenido de http://ri.ues.edu.sv/id/eprint/14342/
- Higuera, C., Gómez, J., & Pardo, O. (2012). Caracterización de un suelo arcilloso tratado con hidróxido de calcio. *Revista Ingeniería uptc*, 21. Obtenido de https://revistas.uptc.edu.co/index.php/ingenieria/article/view/1431
- López, T., Bosco, J., Horta, J., Coronado, A., & Castaño, V. (2010). Polímeros para la estabilización volumétrica de arcillas expansivas. *Revista Iberoamericana de Polímeros, 11*(3), 168. Obtenido de http://www.ehu.eus/reviberpol/pdf/MAY10/lopez.pdf
- Orobio, A. (febrero de 2011). Consideraciones para el diseño y construcción de vías en afirmado estabilizadas con cloruro de calcio. *Science Open*. Obtenido de https://www.scienceopen.com/document?vid=c2f8abf4-a5cc-4ba7-a64a-60f1d3a234b6
- Pérez Collantes, C. A. (2014). Estabilización de suelos arcillosos con cenizas de carbón para su uso como subrasante mejorada. Lima.
- Prefumo, & Patrone. (2015). La acción de los suelos expansivos sobre las cimentaciones. Método de prevención y control. *Memoria de trabajos de difusión científica y técnica*, 1. Obtenido de https://dialnet.unirioja.es/servlet/articulo?codigo=3058000

- Quezada, S. (2017). Estudio comparativo de la estabilización de suelos arcillosos con valvas de moluscos para pavimentación. *Tesis*. Universidad de Piura, Piura, Perù. Obtenido de https://hdl.handle.net/11042/3207
- Rabanal, J. (2014). Analisis del Estado de Conservacion del Pavimento Flexible de la Via de Evitamiento Norte, utilizando el Metodo del Indice de Condición del Pavimento. (Tesis de grado), Universidad Privada del Norte, Cajamarca. Obtenido de http://repositorio.upn.edu.pe/handle/11537/5511
- Rebolledo, R. (2010). *Deterioros en pavimentos flexibles y rígidos.* (tesis de grado), Universidad Austral, Chile. Obtenido de http://cybertesis.uach.cl/tesis/uach/2010/bmfcim672d/doc/bmfcim672d.pdf
- Robles, R., & Sánchez, J. (2015). Evaluación de pavimentos rígidos mediante la determinación de correlaciones entre el módulo de rotura a la flexión y la resistencia a la compresión para el centro poblado San Cristóbal de chupán Huaraz. (tesis de grado), Universidad Ricardo Palma, Lima. Obtenido de http://cybertesis.urp.edu.pe/handle/urp/1350
- Rodriguez, M., & Hidalgo, C. (6 de Junio de 2008). Comportamiento de suelos residuales de diorita estabilizados con cal y su evolución en el tiempo. *Revista Ingenierías Universidad de Medellín, 4*(6), 111-122. Obtenido de http://www.redalyc.org/pdf/750/75040608.pdf
- Rondón, H. (2011). Evaluación del comportamiento de arcillas sometidas a diferentes tiempos de exposición a altas temperaturas. *Revista EIA*(11), 186. Obtenido de http://www.scielo.org.co/pdf/eia/n16/n16a14.pdf
- Sepúlpeda, A. (2014). *Efecto de la combinación de cal y puzolana natural*. (tesis de grado), Lima. Obtenido de https://prezi.com/wtd9wkcijpzp/efecto-de-la-combinacion-de-cal-y-puzolana-natural-en-la-com/
- Solicitaciones de Cargas. (22 de Noviembre de 2015). *Elementos amovibles y fijos no estructurales*. Obtenido de http://amoviblesio.blogspot.com/2015/11/compresion-traccion-flexion-torsion.html
- Terrones Cruz, A. T. (2018). Estabilización de suelos arcillosos adicionando cenizas de bagazo de caña para el mejoramiento de subrasante en el Sesctor Barraza, Trujillo 2018. Perú.
- Velez, M. A. (2014). Elaboración del inventario para el análisis de ciclo de vida de suelos adicionados con polímeros y su aplicación para la estabilización de vías terciarias. (tesis de grado), Universidad de Medellin, Medellín. Obtenido de https://repository.udem.edu.co/handle/11407/1235?show=full

ANEXOS

Anexo I: PROTOCOLOS DE ENSAYOS

1	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO							
	ENSAYO:	CONTENII	DO DE HUMEDAD	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	MTC E 108 / AST	M D2216 / NTP 339.127	CH-LS-UPNT:				
PRIVADA DEL NORTE	TESIS:			ILLOSA MEDIANTE EL USO DE RESIDUOS DE A CARRETERA A SHULTIN - BAÑOS DEL INCA,				
CALICATA:	01	% ADITIVO	TIPO DE MATERIAL:	Arcilla				
UBICACIÓN: Sonto Borbasa		Santa Barbara	COLOR DE MATERIAL:	Marron				
FECHA DE M	UESTREO:	19-05-2023	RESPONSABLE:	COSSI AGULAR C. 1.4 DORTAL HUXCOMS. 3				
FECHA DE ENSAYO:		20-05-2023	REVISADO POR:	2085 Herrera Teron				

Temperatura de Secado

<u>Método</u>

 $60~^{\circ}\text{C}$ / $110~^{\circ}\text{C}$ /Ambiente

Horno 110 ± 5 °C

	CONTENIDO DE HU	MEDAD			
ID	ID DESCRIPCIÓN A Identificación del recipiente o Tara		1	2	3
Α			28.17	28.29	28.53
В	B Peso del Recipiente		199.6	152.2	186.7
С	Recipiente + Suelo Húmedo	gr	181.3	139.4	170.7
D	Recipiente + Suelo Seco	gr	18.3	12.8	16
E	E Peso del Agua (Ww) C - B		153.13	111.11	142.17
F	Peso Suelo Seco (Ws) D - B	gr	11.95	11.52	11.25
W%	Porcentaje de humedad (E / F) * 100	%	28.17	28.29	28.53
G	Promedio Porcentaje Humedad	%		11.57	

$$(W\%) = \frac{Ww}{Ws} * 100$$

CARLOS COJAL AGUILAR Y JAIME PORTAL HUACCHA

NOMBRE: 2495 Herrero Teron

NOMBRE: 109 Kely Nuñez Vasquez

FECHA: 07/12/2023

FECHA: 07/12/2023

1	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO						
	ENSAYO:	CONTENIE	OO DE HUMEDAD	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	MTC E 108 / ASTI	M D2216 / NTP 339.127	CH-LS-UPNT:				
PRIVADA DEL NORTE	TESIS:		TESIS: "MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO E CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% Y 15% EN LA CARRETERA A SHULTIN - B, CAJAMARCA 2023"					
CALICATA:	02	% ADITIVO	TIPO DE MATERIAL:	Socilla				
UBICACIÓN:		Santa Badara	COLOR DE MATERIAL:	Marron				
FECHA DE MUESTREO:		14-05-2023 RESPONSABLE:		Cojal Squilarcy Portal Huardias				
FECHA DE ENSAYO:		20-05-2023 REVISADO POR:		Luis Henren Teran				

Temperatura de Secado

Método

60 °C / 110 °C /Ambiente

Horno 110 ± 5 °C

	CONTENIDO DE HUMEDAD							
ID			1	2	3			
Α			30.99	27.37	30.83			
В	B Peso del Recipiente		198.5	151.9	191.5			
С	C Recipiente + Suelo Húmedo		178.9	138.2	173.3			
D	Recipiente + Suelo Seco	gr	19.6	13.7	18.2			
E	Peso del Agua (Ww) C - B	gr	147.91	110.83	142.47			
F	Peso Suelo Seco (Ws) D - B	gr	13.25	12.36	12.77			
W%	Porcentaje de humedad (E / F) * 100	%	30.99	27.37	30.83			
G	Promedio Porcentaje Humedad	%		12.79				

$$(W\%) = \frac{Ww}{Ws} * 100$$

CARLOS CÓJAL AGUILAR Y JAIME PORTAL HUACCHA

RESPONSABLES DEL ENSAYO

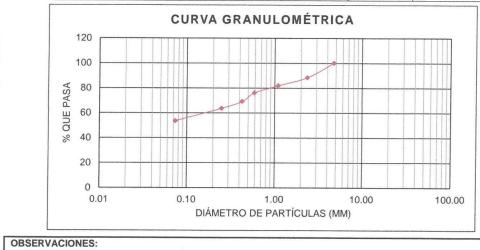
COORDINADOR DE LABORATORIO

LIGHT

LIGHT

CARLOS CÓJAL AGUILAR Y JAIME PORTAL HUACCHA

NOMBRE: LOS SECTION

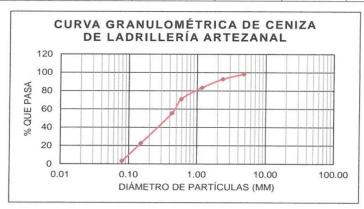

FECHA: 07/12/2023

FECHA: 07/12/2023

	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA						
AD			PROTOCOLO				
ENSAYO:			LOMETRIA MEDIANTE D POR LAVADO	CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD	NORMA:	AS	TM D421	AGTL-LS-UPNC:			
PRIVADA DEL NORTE	PROYECTO:			EDIANTE EL USO DE RESIDUOS DE CARBÓN EN N - BAÑOS DEL INCA, CAJAMARCA 2023"			
CALICATA:	C-01	% ADITIVO 0%	TIPO DE MATERIAL:	Arcilla			
UBICACIÓN:		SANTA BARBARA	COLOR DE MATERIAL:	Marrón			
FECHA DE M	IUESTREO:	19/05/2023	RESPONSABLE:	COJAL AGUILAR CA PLOS GUARO PORTAL HUDCCHA SCEWIDO LAMRE			
FECHA DE ENSAYO:		20/05/2023	REVISADO POR:	LUIS HERRED TERAN			

Peso de muestra seca; Ws	500	gr
	and the second second	1 9

Tamiz	Abertu ra	Peso Reteni do (gr)	% RP	%RA	% que pasa
N° 4	4.75	0.00	0.00	-	100.00 %
N° 10	2.36	57.91	11.58	11.58	88.42 %
N° 20	1.10	32.81	6.56	18.14	81.86 %
N° 30	0.59	28.70	5.74	23.88	76.12 %
N° 40	0.43	34.90	6.98	30.86	69.14 %
N° 60	0.25	27.52	5.50	36.37	63.63 %
N° 200	0.074	50.15	10.03	46.40	53.60 %
PERDIDA		268.01	53.60	100.00	0.00 %
Total		500.00	100.00		

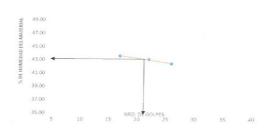

RESPONSABLES DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Comming Juffel	Jan Franço	
CARLOS COJAL AGUILAR Y JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRERA TERAN	NOMBRE: (NG. Kely Nonez Vasque
FECHA 07-02-2023	FECHA: 07-62-2023	FECHA: 07-62-2023

FECHA 07 - 12 - 2023	FECHA: 07-12-2023	FECHA: 07-12-2023

	LABO	PRATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA				
AD		PROTOCOLO						
	ENSAYO:		IULOMETRIA MEDIANTE DO EN SECO	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	A	STM D421	AGTL-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:		TESIS: "MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDI PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJA					
CALICATA:		% ADITIVO 0%	TIPO DE MATERIAL:	CENIZA				
UBICACIÓN:		SANTA BARBARA	COLOR DE MATERIAL:	Palo rosa				
FECHA DE M	UESTREO:	19/05/2023	RESPONSABLE:	COUAL AGUILDE CARLOS, PORTAL HUACO				
FECHA DE E	NSAYO:	20/05/2023	REVISADO POR:	LUIS HERRERA TERAN				

Peso de muestra seca; Ws	1000	gr
--------------------------	------	----

Tamiz	Abertura	Peso Retenido (gr)	% RP	%RA	% que pasa
Nº 4	4,76	18.20	1.82	1.82	98.18 %
Nº10	2	55.70	5.57	7.39	92.61 %
Nº20	0,84	94.10	9.41	16.80	83.20 %
Nº30	0,59	123.10	12.31	29.11	70.89 %
Nº40	0,42	155.70	15.57	44.68	55.32 %
Nº60	0,25	329.80	32.98	77.66	22.34 %
Nº200	0,074	193.10	19.31	96.97	3.03 %
Perdida	Lavado	30.30	3.03	100.00	
Total		1000.00	100.00		

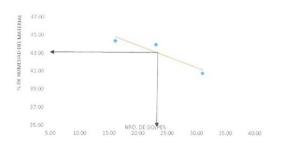

RESPONSABLES DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Comercial Juffeeld	mind the party	Negro
CARLOS COJAL AGUILAR Y JAIME PORTAL HUACCHA	NOMBRE: /Luis Herrera Teron	NOMBRE: INC. Kely Neñez Vasque
FECHA 07/12/12023	FECHA: 07/12/2023	FECHA: 07/12/2023

OBSERVACIONES:

11	LABO	DRATORIO DE SUELO	OS - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA			
	ENSAYO:	LÍMITES	LÍMITES DE PLASTICIDAD CÓDIGO DEL DOCU				
UNIVERSIDAD	NORMA:	NTP E339.130 /	MTC E111 / ASTM D4318	LP-LS-UPNC:			
PRIVADA DEL NORTE	TESIS:	"TESIS: "MEJORAMIENTO I PROPORCIÓN DE 0%, 5%,	DEL CBR EN SUBRASANTE ARCILLOSA ME 10% y 15% EN LA CARRETERA A SHULTIN	EDIANTE EL USO DE RESIDUOS DE CARBÓN EN I - BAÑOS DEL INCA, CAJAMARCA 2023"			
CALICATA:	C-01	% ADITIVO 0%	TIPO DE MATERIAL:	Arcilla			
UBICACIÓN:	:	SANTA BÁRBARA	COLOR DE MATERIAL:	Harrón			
FECHA DE N	MUESTREO:	19-05-2023	RESPONSABLE:	CONAL DOUTAR C. I. Y POETAL HURCHAS			
FECHA DE E	ENSAYO:	20/05/2023	REVISADO POR:	LUIS HERRERA TERAN			

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	4	5	6
В	Suelo Húmedo + Recipiente	gr	61.99	58.15	63.59
С	Suelo Seco + Recipiente	gr	52.10	48.50	52.90
D	Peso de Recipiente	gr	28.79	26.35	28.06
E	Peso del Agua (B - C)	gr	9.89	9.65	10.69
F	Peso Suelo Seco (C - D)	gr	23.31	22.15	24.84
G	Número de Golpes	N	26	17	22
Н	Contenido de Humedad (E/F)*100	%	42.43	43.57	43.04

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	1	2	3
В	Suelo Húmedo + Tara	gr	44.20	44.88	40.19
С	Suelo Seco + Tara	gr	40.60	40.90	36.80
D	Peso de Tara	gr	28.50	28.48	27.27
E	Peso del Agua (B – C)	gr	3.60	3.98	3.39
F	Peso Suelo Seco (C - D)	gr	12.10	12.42	9.53
G	Contenido de Humedad (E/F)*100	%	27.75	30.05	33.57
Н	Promedio Límite Plástico		30.46 %		

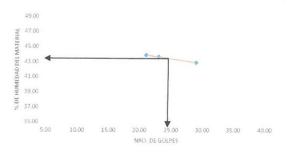


OBSERVACIONES:		
RESPONSABLES DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Curiting Inflight	Land Track	Adama
CARLOS COJAL AGUILAR Y JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRERA TERAN	NOMBRE: ING. KELY ELIZABETH NÚÑEZ VÁSQUEZ
FECHA 07-12-2023	FECHA: 07-12 -2023	FECHA: 07-12-2023

11	LABO	RATORIO DE S	UELOS	S - UNIVERSIDAD PRIVADA PROTOCOLO	DEL NORTE CAJAMARCA	
	ENSAYO:	LÍN	/ITES [DE PLASTICIDAD	CÓDIGO DEL DOCUMENTO:	
UNIVERSIDAD	NORMA:	NTP E339	.130 / N	MTC E111 / ASTM D4318	LP-LS-UPNC:	
PRIVADA DEL NORTE	TESIS:			L CBR EN SUBRASANTE ARCILLOSA MED % y 15% EN LA CARRETERA A SHULTIN -	DIANTE EL USO DE RESIDUOS DE CARBÓN EN - BAÑOS DEL INCA, CAJAMARCA 2023"	
CALICATA:	C-02	% ADITIVO	0%	TIPO DE MATERIAL:	Arcilla	
UBICACIÓN:		SANTA BÁRBA	RA	COLOR DE MATERIAL:	Mairón	
FECHA DE MUESTREO:		19-05-20	23	RESPONSABLE:	COJAL KENTLAR C. I. Y PORTAL HULACH S. J.	
FECHA DE E	FECHA DE ENSAYO: 20/05/20			REVISADO POR:	LOIS HERREED TERAN	

ID	DESCRIPCIÓN	UND	1	2	3
A Identificación de Recipiente		Identificación de Recipiente N°	1	2	3
В	Suelo Húmedo + Recipiente	gr	47.45	44.10	48.12
С	Suelo Seco + Recipiente	gr	42.70	38.70	42.00
D	Peso de Recipiente	gr	31.05	26.53	28.07
E	Peso del Agua (B - C)	gr	4.75	5.40	6.12
F	Peso Suelo Seco (C - D)	gr	11.65	12.17	13.93
G	Número de Golpes	N	31.00	16.00	23.00
Н	Contenido de Humedad (E/F)*100	%	40.77	44.37	43.93

ID	DESCRIPCIÓN	UND	1	2	3	
Α	A Identificación de Recipiente		1	2	3	
В	Suelo Húmedo + Tara	gr	45.28	37.71	37.30	
С	Suelo Seco + Tara	gr	41.80	35.37	35.10	
D	Peso de Tara	gr	28.44	28.65	26.66	
E	Peso del Agua (B - C)	gr	3.48	2.34	2.20	
F	Peso Suelo Seco (C - D)	gr	13.36	6.72	8.44	
G	Contenido de Humedad (E/F)*100	%	26.05	34.82	26.07	
Н	Promedio Límite Plástico		28.98 %			


RESPONSABLES DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Current Jufferf	I mult record	Agrico (Agrico)
CARLOS COJAL AGUILAR Y JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRERO TERAN	NOMBRE: ING. KELY ELIZABETH NÚÑEZ VÁSQUEZ
FECHA 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

OBSERVACIONES:

41	LABO	RATORIO DE SUELO	S - UNIVERSIDAD PRIVADA PROTOCOLO	A DEL NORTE CAJAMARCA		
ENSAYO: LÍMITES DE PLASTICIDAD				CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD			MTC E111 / ASTM D4318	LP-LS-UPNC:		
PRIVADA DEL NORTE	TESIS:		TESIS: "MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"			
CALICATA:	C-01	% ADITIVO 5%	TIPO DE MATERIAL:	Arcilla		
UBICACIÓN:		SANTA BÁRBARA	COLOR DE MATERIAL:			
FECHA DE N	IUESTREO:	19-05-2023	RESPONSABLE:	COM AGUNAR CAPLOS IVAN		
FECHA DE E	NSAYO:	20/05/2023	REVISADO POR:	LUIS HERRERA TERAN		

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	1	2	3
В	Suelo Húmedo + Recipiente	gr	37.90	40.10	37.80
С	Suelo Seco + Recipiente	gr	34.70	36.50	33.70
D	Peso de Recipiente	gr	27.40	28.10	24.30
E	Peso del Agua (B - C)	gr	3.20	3.60	4.10
F	Peso Suelo Seco (C - D)	gr	7.30	8.40	9.40
G	Número de Golpes	N	21.00	29.00	23.00
Н	Contenido de Humedad (E/F)*100	%	43.84	42.86	43.62

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	1	2C	3
В	Suelo Húmedo + Tara	gr	40.00	36.50	38.20
С	Suelo Seco + Tara	gr	37.30	34.00	35.60
D	Peso de Tara	gr	27.60	27.30	27.40
E	Peso del Agua (B - C)	gr	2.70	2.50	2.60
F	Peso Suelo Seco (C - D)	gr	9.70	6.70	8.20
G	Contenido de Humedad (E/F)*100	%	19.84	29.31	23.71
Н	Promedio Límite Plástico		24.29 %		

FECHA:

CARLOS COJAL AGUILAR Y JAIME PORTAL HUACCHA

NOMBRE: LUIS HERRERA TERAN

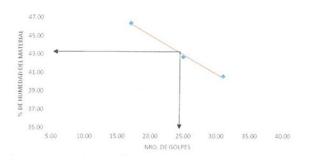
NOMBRE: ING. KELY ELIZABETH

NÚÑEZ VÁSQUEZ

07-12-2023

07-12-2023

OBSERVACIONES:

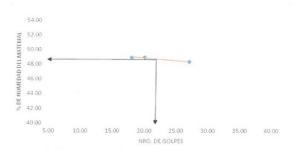

FECHA

FECHA: 07-12-2023

11	LABO	PRATORIO DE SUELOS	S - UNIVERSIDAD PRIVADA PROTOCOLO	DEL NORTE CAJAMARCA	
ENSAYO:		LÍMITES	DE PLASTICIDAD	CÓDIGO DEL DOCUMENTO:	
UNIVERSIDAD	NORMA:	NTP E339.130 / N	MTC E111 / ASTM D4318	LP-LS-UPNC:	
PRIVADA DEL NORTE	TESIS:		TESIS: "MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN E PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"		
CALICATA:	C-02	% ADITIVO 5%	TIPO DE MATERIAL:	Arcilla	
UBICACIÓN:	UBICACIÓN: SANTA		COLOR DE MATERIAL:		
FECHA DE MUESTREO:		19-05-2023	RESPONSABLE:	COUDL DOUBLE CORLOS LUND PORTAL HUACCHO SERVODO JAINE	
FECHA DE E	NSAYO:	20/05/2023	REVISADO POR:	LUIS HERRERD TERM	

ID	DESCRIPCIÓN	UND	1	2	3
A	Identificación de Recipiente	N°	3	4	5
В	Suelo Húmedo + Recipiente	gr	37.40	38.80	44.70
С	Suelo Seco + Recipiente	gr	34.20	35.60	40.20
D	Peso de Recipiente	gr	27.30	28.10	29.10
E	Peso del Agua (B - C)	gr	3.20	3.20	4.50
F	Peso Suelo Seco (C - D)	gr	6.90	7.50	11.10
G	Número de Golpes	N	17.00	25.00	31.00
Н	Contenido de Humedad (E/F)*100	%	46.38	42.67	40.54

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	3	4	5
В	Suelo Húmedo + Tara	gr	42.30	43.20	44.70
С	Suelo Seco + Tara	gr	39.30	39.10	40.20
D	Peso de Tara	gr	30.90	27.20	29.10
Е	Peso del Agua (B - C)	gr	3.00	4.10	4.50
F	Peso Suelo Seco (C - D)	gr	8.40	11.90	11.10
G	Contenido de Humedad (E/F)*100	%	28.71	27.45	33.54
Н	Promedio Límite Plástico		29.90 %		

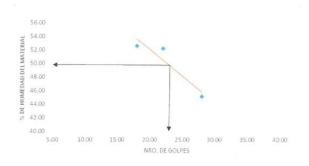


OBSERVACIONES:		
RESPONSABLES DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Carried IAB	July some	Algun
CARLOS COJAL AGUILAR Y JAIME PORTAL HUACCHA	NOMBRE: LUIS HERREED TERAN	NOMBRE: ING. KELY ELIZABETH NÚÑEZ VÁSQUEZ
FECHA 07-12-2023	FECHA: 07 - 12 - 2023	FECHA: 07-12-2023

11	LABO	RATORIO DE SUE	PROTOCOLO	DA DEL NORTE CAJAMARCA	
11	ENSAYO:	LÍMIT	ES DE PLASTICIDAD	CÓDIGO DEL DOCUMENTO:	
UNIVERSIDAD	NORMA:	NTP E339.13	O / MTC E111 / ASTM D4318	LP-LS-UPNC:	
PRIVADA DEL NORTE	TESIS:		TESIS: "MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL IN		
CALICATA:	C-01	% ADITIVO 10%	TIPO DE MATERIAL:	Arcilla	
UBICACIÓN:		SANTA BÁRBARA	COLOR DE MATERIAL:		
FECHA DE N	MUESTREO:	19-05-2023	RESPONSABLE:	COLAL BOULDE CARLOS WAN	
FECHA DE E	NSAYO:	20/05/2023	REVISADO POR:	LUIS HERRERA TERM	

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	T1	T2	T3
В	Suelo Húmedo + Recipiente	gr	38.13	39.38	37.81
С	Suelo Seco + Recipiente	gr	34.28	36.65	33.95
D	Peso de Recipiente	gr	26.41	31.00	26.06
E	Peso del Agua (B - C)	gr	3.85	2.73	3.86
F	Peso Suelo Seco (C - D)	gr	7.87	5.65	7.89
G	Número de Golpes	N	18.00	27.00	20.00
Н	Contenido de Humedad (E/F)*100	%	48.92	48.32	48.92

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	T1	T2	Т3
В	Suelo Húmedo + Tara		34.29	36.07	35.03
C	Suelo Seco + Tara	gr	32.93	34.28	33.27
D	Peso de Tara	gr	28.30	28.12	26.96
E	E Peso del Agua (B – C)		1.36	1.79	1.76
F	Peso Suelo Seco (C - D)	gr	4.63	6.16	6.31
G	Contenido de Humedad (E/F)*100	%	38.37	38.06	36.89
Н	Promedio Límite Plástico		37.77 %		

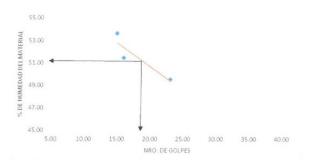


OBSERVACIONES:		
RESPONSABLES DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Continued July	The strang	Abyte
CARLOS COJAL AGUILAR Y JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRERA TERAN	NOMBRE: ING. KELY ELIZABETH NÚÑEZ VÁSQUEZ
FECHA 07 - 12 - 2023	FECHA: 07-12-2023	FECHA: 07-12-2023

AL	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO						
	ENSAYO:	LÍMITES DE PLASTICIDAD			CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD	NORMA:	NTP E339.130 / MTC E111 / ASTM D4318			LP-LS-UPNC:			
PRIVADA DEL NORTE	TESIS:				EDIANTE EL USO DE RESIDUOS DE CARBÓN EN N - BAÑOS DEL INCA, CAJAMARCA 2023"			
CALICATA:	C-02	% ADITIVO 1	0%	TIPO DE MATERIAL:	Arcilla			
UBICACIÓN:	:	SANTA BÁRBAR	:A	COLOR DE MATERIAL:	Marrón			
FECHA DE N	MUESTREO:	19-05-202:	3	RESPONSABLE:	COSAL AGUILAR CARLOS LUAN BORTAL HUACCHA SERONDO JAINE			
FECHA DE E	NSAYO:	20/05/2023		REVISADO POR:	LUIS HERRERA TERAN			

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	T4	T5	T6
В	Suelo Húmedo + Recipiente	gr	40.51	41.83	45.69
С	Suelo Seco + Recipiente	gr	36.64	37.02	39.86
D	Peso de Recipiente	gr	28.06	27.87	28.70
E	Peso del Agua (B - C)	gr	3.87	4.81	5.83
F	Peso Suelo Seco (C - D)	gr	8.58	9.15	11.16
G	Número de Golpes	N	28.00	18.00	22.00
Н	Contenido de Humedad (E/F)*100	%	45.10	52.57	52.24

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	T4	T5	T6
B Suelo Húmedo + Tara		gr	36.32	33.25	35.00
C Suelo Seco + Tara		gr	34.43	31.81	33.68
D	D Peso de Tara		27.92	26.16	28.14
E	E Peso del Agua (B – C)		1.89	1.44	1.32
F	Peso Suelo Seco (C - D)	gr	6.51	5.65	5.54
G Contenido de Humedad (E/F)*100		%	39.63	36.09	34.43
Н	Promedio Límite Plástico	36.72 %			

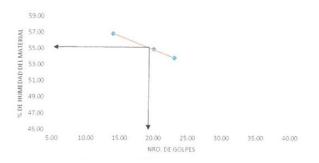


OBSERVACIONES:		
RESPONSABLES DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Contidues Folk	The property of the property o	Allena
CARLOS COJAL AGUILAR Y JAÍME PORTAL HUACCHA	NOMBRE: LUIS HERRERA TERM	NOMBRE: ING. KELY ELIZABETH NÚÑEZ VÁSQUEZ
FECHA 07-12-2023	FECHA: 07-12-2023	FECHA: 07 - 12 - 2023

11	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO						
II	ENSAYO:	LÍMITES DE PLASTICIDAD			CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD	NORMA:	NTP E339.130 / MTC E111 / ASTM D4318			LP-LS-UPNC:			
PRIVADA DEL NORTE	TESIS:			EL CBR EN SUBRASANTE ARCILLOSA ME 0% y 15% EN LA CARRETERA A SHULTIN	EDIANTE EL USO DE RESIDUOS DE CARBÓN EN I - BAÑOS DEL INCA, CAJAMARCA 2023"			
CALICATA:	C-01	% ADITIVO	15%	TIPO DE MATERIAL:	Arcilla			
UBICACIÓN:		SANTA BÁRBA	RA	COLOR DE MATERIAL:	Harrion			
FECHA DE N	MUESTREO:	19-05-202	3	RESPONSABLE:	COLAL AGULAR CARLOS IVAN			
FECHA DE E	NSAYO:	20/05/2023		REVISADO POR:	LUIS HERRERA TERAN			

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	44.64	44.46	40.89
В	Suelo Húmedo + Recipiente	gr	38.78	38.85	36.04
С	Suelo Seco + Recipiente	gr	27.39	27.52	27.32
D	Peso de Recipiente	gr	5.86	5.61	4.85
E Peso del Agua (B - C)		gr	11.39	11.33	8.72
F	Peso Suelo Seco (C - D)	gr	16.00	23.00	15.00
G	Número de Golpes	N	51.45	49.51	53.62
Н	Contenido de Humedad (E/F)*100	%	44.64	44.46	40.89

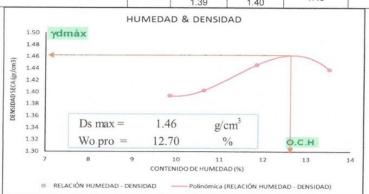
ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	T1	T2	T3
B Suelo Húmedo + Tara		gr	35.70	35.00	32.50
C Suelo Seco + Tara		gr	33.98	33.45	31.37
D	Peso de Tara	gr	28.84	28.70	27.95
E	E Peso del Agua (B – C)		1.72	1.55	1.13
F	Peso Suelo Seco (C - D)	gr	5.14	4.75	3.42
G	Contenido de Humedad (E/F)*100	%	41.46	40.63	41.04
Н	Promedio Límite Plástico	41.05 %			



OBSERVACIONES:		
RESPONSABLES DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Cunting Junglet	Junit muy	Algen
CARLOS COJAL AGUILAR Y JAIME PÓRTAL HUACCHA	NOMBRE: LUIS HERRERD TERAN	NOMBRE: ING. KELY ELIZABETH NÚÑEZ VÁSQUEZ
FECHA 07-12- 2023	FECHA: 07-12-2023	FECHA:

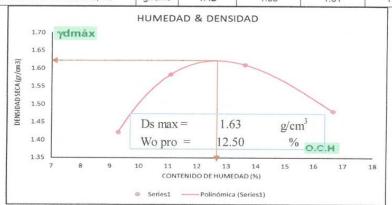
41	LABO	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO						
	ENSAYO:	LÍMITES	DE PLASTICIDAD	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	NTP E339.130 / MTC E111 / ASTM D4318		LP-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:		EL CBR EN SUBRASANTE ARCILLOSA ME 0% y 15% EN LA CARRETERA A SHULTIN	DIANTE EL USO DE RESIDUOS DE CARBÓN EN - BAÑOS DEL INCA, CAJAMARCA 2023"				
CALICATA:	C-02	% ADITIVO 15%	TIPO DE MATERIAL:	Arcilla				
UBICACIÓN:		SANTA BÁRBARA	COLOR DE MATERIAL:	Marrón				
FECHA DE N	MUESTREO:	19-05-2023	RESPONSABLE:	PORTAL HUBECHA BEGUNDO ANIMO				
FECHA DE E	ENSAYO:	20/05/2023	REVISADO POR:	LUIS HERRERA TERAN				

ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	T4	T5	T6
B Suelo Húmedo + Recipiente		gr	41.13	45.24	48.12
C Suelo Seco + Recipiente		gr	36.37	38.99	41.15
D	D Peso de Recipiente		27.99	27.60	28.19
E	E Peso del Agua (B - C)		4.76	6.25	6.97
F	Peso Suelo Seco (C - D)	gr	8.38	11.39	12.96
G	Número de Golpes	N	14.00	20.00	23.00
Н	Contenido de Humedad (E/F)*100	%	56.80	54.87	53.78


ID	DESCRIPCIÓN	UND	1	2	3
Α	Identificación de Recipiente	N°	T4	T5	T6
B Suelo Húmedo + Tara		gr	33.79	35.01	33.53
C Suelo Seco + Tara		gr	32.36	32.86	32.20
D	D Peso de Tara		27.98	26.06	28.07
E	E Peso del Agua (B - C)		1.43	2.15	1.33
F	Peso Suelo Seco (C - D)	gr	4.38	6.80	4.13
G Contenido de Humedad (E/F)*100		%	42.65	41.62	42.20
Н	Promedio Límite Plástico	42.16 %			

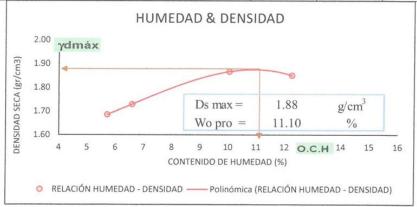
OBSERVACIONES:		
RESPONSABLES DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Cayoung July	Martine Paris	Holen
CARLOS COJAL AGUILAR Y JAIME PORTAL HUACCHA	NOMBRE: LUS HERRERA TERAN	NOMBRE: ING. KELY ELIZABETH NÚÑEZ VÁSQUEZ
FECHA 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

				NORTE CAJAMARCA INGENIERÍA CIVIL					
UNIVERSIDAD PRIVADA	USO DE	MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% Y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"							
	ENSAYO:	COMPACTACIÓN PROCTOR MODIFICADO							
DEL NORTE	NORMA:	MTC E115 / ASTM	M D1557 / NTP 339.	141					
CALICATA:		01	TIPO DE MATERIAL:	Arcilla					
FECHA DE MU	ESTREO:	19-05-2023	COLOR:	Marron					
FECHA DE EN	SAYO:	08-07-2023	% DE ADITIVO:	0%					


	COMPAC	TACIÓN	PROC	TOR	MODIF	ICADO)				
ID	DESCRIPCIÓN	UND	1			2		3		4	
Α	Peso Molde	gr	417	7.00	417	7.00	417	77.00	417	7.00	
В	Peso Muestra Húmeda + Molde	gr	561	2.00	563	2.00	569	93.00	570	7.00	
C	Peso Muestra Húmeda	gr	143	5.00	145	5.00	151	16.00	153	0.00	
D	Volumen Muestra húmeda	cm3	937	7.22	937	937.22		7.22	937.22		
F	Densidad húmeda; Dh	gr/cm3	1.	53	1.55		1	1.62		1.63	
G	Recipiente	N°	a	b	а	b	a	b	а	b	
Н	Peso Recipiente	gr	28.80	26.05	28.09	28.68	26.93	27.93	26.90	28.80	
1	Peso Muestra húmeda + Recipiente	gr	106.80	81.90	81.40	99.70	62.00	91.58	63.00	91.58	
J	Peso Muestra Seca + Recipiente	gr	101.70	75.60	76.40	92.70	58.70	84.10	58.70	84.10	
K	Peso del Agua	gr	5.10	6.30	5.00	7.00	3.30	7.48	4.30	7.48	
L	Peso Muestra seca	gr	72.90	49.55	48.31	64.02	31.77	56.17	31.80	55.30	
M	Contenido de Humedad W%	%	7.00	12.71	10.35	10.93	10.39	13.32	13.52	13.53	
N	Promedio Contenido de humedad Óptimo	%	9.8	86	10.	.64	11	.85	13.	.52	
0	Densidad Seca Máxima; Ds	gr/cm3	1.3	39	1.4	40	1.	45	1.4	44	

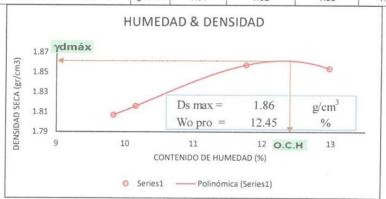
TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Capital Juff	Junus roup	Newman
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRERA TERRA	NOMBRE ING. Kely E. Noñez Vasquez
FECHA: 07-12-2023	FECHA: 07 - 12 - 2023	FECHA: 07-12-2023

1				NORTE CAJAMARCA EINGENIERÍA CIVIL					
N	USO DE I	RESIDUOS DE CAF	BÓN EN PROPOR	ASANTE ARCILLOSA MEDIANTE EL CIÓN DE 0%, 5%, 10% Y 15% EN LA L INCA, CAJAMARCA 2023"					
UNIVERSIDAD PRIVADA	ENSAYO:	COMPACTACIÓN PROCTOR MODIFICADO							
DEL NORTE	NORMA:	MTC E115 / ASTM	1 D1557 / NTP 339.	141					
CALICATA:		02	TIPO DE MATERIAL:	Arcilla					
FECHA DE MU	ESTREO:	19-05-2023	COLOR:	Marcin					
FECHA DE EN	SAYO:	08-07-2023	% DE ADITIVO:	0%					


	COMPAG	CTACIÓN	N PRO	CTOR	MODIF	ICADO)			
ID	DESCRIPCIÓN	UND	T	1	2	2	F	3		4
Α	Peso Molde	gr	417	7.00	417	7.00	41	77.00	417	77.00
В	Peso Muestra Húmeda + Molde	gr	563	3.00	572	1.00	578	85.00	579	5.00
С	Peso Muestra Húmeda	gr	145	6.00	1544	4.00	160	08.00	161	8.00
D	Volumen Muestra húmeda	cm3	93	7.22	937	.22	93	7.22	937.22	
F	Densidad húmeda; Dh	gr/cm3	1.	.55	1.6	35	1	.72	1.	.73
G	Recipiente	N°	а	b	а	b	a	b	а	b
Н	Peso Recipiente	gr	28.22	27.93	28.68	27.90	28.20	28.05	27.20	28.25
I	Peso Muestra húmeda + Recipiente	gr	77.91	76.98	109.59	84.40	86.10	115.78	91.70	92.80
J	Peso Muestra Seca + Recipiente	gr	73.70	72.80	102.80	77.90	81.20	102.40	81.70	84.40
K	Peso del Agua	gr	4.21	4.18	6.79	6.50	4.90	13.38	10.00	8.40
L	Peso Muestra seca	gr	45.48	44.87	74.12	50.00	53.00	74.35	54.50	56.15
M	Contenido de Humedad W%	%	9.26	9.32	9.16	13.00	9.25	18.00	18.35	14.96
N	Promedio Contenido de humedad Óptimo	%	9.:	29	11.0	08	13	3.62	16	.65
0	Densidad Seca Máxima; Ds	gr/cm3	1.	42	1.5	8	1	.61	1.	48

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Continued Juff	muy lower	Agrico
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE:	NOMBRE Ing. Kely F. Nunez Vasquez
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

1				NORTE CAJAMARCA INGENIERÍA CIVIL					
N	USO DE	MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% Y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"							
UNIVERSIDAD PRIVADA	ENSAYO:	COMPACTACIÓN PROCTOR MODIFICADO							
DEL NORTE	NORMA:	MTC E115 / ASTM	1 D1557 / NTP 339.	141					
CALICATA:		01	TIPO DE MATERIAL:	Arcilla					
FECHA DE MU	ESTREO:	19-05-2023	COLOR:	Harren					
FECHA DE EN	SAYO:	08-07-2023	% DE ADITIVO:	5%					


	COMPAG	CTACIÓN	N PRO	CTOR	MODIF	ICADO)			
ID	DESCRIPCIÓN	UND		1	2	2		3		4
Α	Peso Molde	gr	395	8.00	3958	3.00	395	58.00	395	8.00
В	Peso Muestra Húmeda + Molde	gr	562	8.00	5685	5.00	588	33.00	590	5.00
С	Peso Muestra Húmeda	gr	167	0.00	1727	7.00	192	25.00	1947.00	
D	Volumen Muestra húmeda	cm3	937	7.22	937	.22	93	7.22	93	7.22
F	Densidad húmeda; Dh	gr/cm3	1.	78	1.8	34	2	.05	2.	.08
G	Recipiente	N°	а	b	a	b	a	b	a	b
Н	Peso Recipiente	gr	27.96	27.98	27.34	26.42	26.16	28.14	27.50	28.14
I	Peso Muestra húmeda + Recipiente	gr	61.10	79.22	104.45	93.00	55.87	49.15	54.17	49.15
J	Peso Muestra Seca + Recipiente	gr	58.90	77.10	98.00	90.40	52.40	47.80	51.20	46.90
K	Peso del Agua	gr	2.20	2.12	6.45	2.60	3.47	1.35	2.97	2.25
L	Peso Muestra seca	gr	30.94	49.12	70.66	63.98	26.24	19.66	23.70	18.76
M	Contenido de Humedad W%	%	7.11	4.32	9.13	4.06	13.22	6.87	12.53	11.99
N	Promedio Contenido de humedad Óptimo	%	5.	71	6.6	60	10	.05	12	.26
0	Densidad Seca Máxima; Ds	gr/cm3	1.6	69	1.7	3	1.	87	1.	85

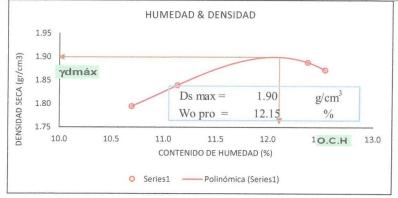
TESISTA	COORDINADOR DE LABORATORIO	ASESOR
and July	Jump James	Maria
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRERS TERM	NOMBRE ING Kely E. NUTEZ Vasguez
FECHA: 07-12-2023	FECHA: 07-/2-2023	FECHA: 07 - 12 - 2023

1.				NORTE CAJAMARCA E INGENIERÍA CIVIL						
N	USO DE	RESIDUOS DE CAF	MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% Y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"							
UNIVERSIDAD PRIVADA	ENSAYO:	COMPACTACIÓN PROCTOR MODIFICADO								
DELNORTE	NORMA:	MTC E115 / ASTM	1 D1557 / NTP 339.	141						
CALICATA:		02	TIPO DE MATERIAL:	Arcilla						
FECHA DE MU	ESTREO:	19-05-2023	COLOR:	Marron						
FECHA DE EN	SAYO:	08-07-2023	% DE ADITIVO:	5%						

	COMPA	CTACIÓ	N PRO	OCTOR	R MODI	FICADO)			
ID	DESCRIPCIÓN	UND		1		2		3	T	4
Α	Peso Molde	gr	395	8.00	395	8.00	395	8.00	395	8.00
В	Peso Muestra Húmeda + Molde	gr	581	8.10	583	2.80	590	3.50	592	0.80
С	Peso Muestra Húmeda	gr	186	0.10	187	4.80	194	5.50	196	2.80
D	Volumen Muestra húmeda	cm3	937	7.22	937	7.22	937	.22	937.22	
F	Densidad húmeda; Dh	gr/cm3	1.	98	2.	00	2.0	08	2.	09
G	Recipiente	N°	a	b	а	b	a	b	а	b
Н	Peso Recipiente	gr	27.70	28.90	27.20	28.80	28.10	28.90	29.10	30.10
ı	Peso Muestra húmeda + Recipiente	gr	93.20	92.20	133.20	102.20	102.40	99.30	95.40	83.80
J	Peso Muestra Seca + Recipiente	gr	85.80	88.10	121.40	96.90	92.40	94.10	88.20	77.30
K	Peso del Agua	gr	7.40	4.10	11.80	5.30	10.00	5.20	7.20	6.50
L	Peso Muestra seca	gr	58.10	59.20	94.20	68.10	64.30	65.20	59.10	47.20
M	Contenido de Humedad W%	%	12.74	6.93	12.53	7.78	15.55	7.98	12.18	13.77
N	Promedio Contenido de humedad Óptimo	%	9.8	83	10.	15	11.	76	12	.98
0	Densidad Seca Máxima; Ds	gr/cm3	1.8	31	1.8	32	1.8	6	1.	85

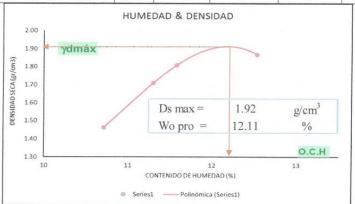
TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Custoff Juff	James James	Maria
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRECO TERAN	NOMBRE ING. Kelp Nonez Vasquez
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

16				NORTE CAJAMARCA EINGENIERÍA CIVIL						
N	USO DE	RESIDUOS DE CAF	MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% Y 15% EN LA PARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"							
UNIVERSIDAD PRIVADA	ENSAYO:	COMPACTACIÓN PROCTOR MODIFICADO								
DEL NORTE	NORMA:	MTC E115 / ASTM	1 D1557 / NTP 339.	141						
CALICATA:		01	TIPO DE MATERIAL:	Arcilla						
FECHA DE MU	ESTREO:	19-05-2023	COLOR:	Marron						
FECHA DE EN	SAYO:	10-09-2023		10%						


	COM	PACTACI	ON PRO	OCTOR	MODI	FICAD	0			
ID	DESCRIPCIÓN	UND		1		2		3		4
A	Peso Molde	gr	396	9.60	397	70.60	397	0.60	397	0.60
В	Peso Muestra Húmeda + Molde	gr	569	9.20	590	1.30	596	6.90	597	5.70
С	Peso Muestra Húmeda	gr	172	9.60	193	80.70	199	6.30	200	5.10
D	Volumen Muestra húmeda	cm3	937	7.22	93	7.22	93	7.22	93	7.22
F	Densidad húmeda; Dh	gr/cm3	1.	85	2.	.06	2.	13	2.	14
G	Recipiente	N°	a	b	a	b	а	b	а	b
Н	Peso Recipiente	gr	28.00	28.00	28.00	28.00	27.80	27.80	29.80	26.70
1	Peso Muestra húmeda + Recipiente	gr	120.80	120.80	96.30	96.30	107.70	106.30	97.60	89.70
J	Peso Muestra Seca + Recipiente	gr	113.60	113.60	88.80	91.20	99.80	98.90	91.30	82.80
K	Peso del Agua	gr	7.20	7.20	7.50	5.10	7.90	7.40	6.30	6.90
L	Peso Muestra seca	gr	85.60	85.60	60.80	63.20	72.00	71.10	61.50	56.10
M	Contenido de Humedad W%	%	8.41	8.41	11.34	8.07	10.97	10.41	10.24	12.30
N	Promedio Contenido de humedad Óptimo	%	8.4	41	9.	70	10	.79	11	.27
0	Densidad Seca Máxima; Ds	gr/cm3	1.6	30	1.	88	1.	37	1.	82

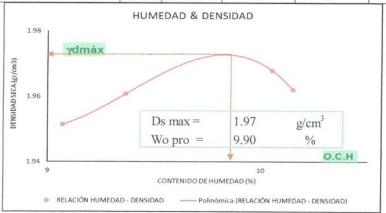
TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Communical Supple	Lung France	Agrico
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS KERRERD TERAN	NOMBRE Ing. Kely Nonez Vasquez
FECHA: 07-12 -2023	FECHA: 67-12-2023	FECHA: 07-12-2023

1				NORTE CAJAMARCA EINGENIERÍA CIVIL					
N	USO DE F	MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% Y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023''							
UNIVERSIDAD PRIVADA	ENSAYO:	COMPACTACIÓN PROCTOR MODIFICADO							
DEL NORTE	NORMA:	MTC E115 / ASTM	1 D1557 / NTP 339.	141					
CALICATA:		02	TIPO DE MATERIAL:	Arcilla					
FECHA DE MU	ESTREO:	19-05-2023	COLOR:	Marron					
FECHA DE EN	SAYO:	10-09-2023	% DE ADITIVO:	10%					


	COMPA	CTACIÓ	N PRO	OCTOR	R MODI	FICADO)			
ID	DESCRIPCIÓN	UND		1		2		3		4
Α	Peso Molde	gr	394	0.00	394	0.00	394	0.00	394	0.00
В	Peso Muestra Húmeda + Molde	gr	583	0.00	585	6.00	591	5.00	592	9.00
С	Peso Muestra Húmeda	gr	189	0.00	191	6.00	197	5.00	198	9.00
D	Volumen Muestra húmeda	cm3	93	7.22	93	7.22	937	7.22	93	7.22
F	Densidad húmeda; Dh	gr/cm3	1.	99	2.04		2.	11	2.	12
G	Recipiente	N°	а	b	а	b	а	b	а	b
Н	Peso Recipiente	gr	27.90	27.90	31.15	31.15	27.47	27.47	27.47	27.47
9	Peso Muestra húmeda + Recipiente	gr	93.22	93.22	76.93	76.50	90.05	89.95	96.50	91.35
J	Peso Muestra Seca + Recipiente	gr	86.86	86.96	72.15	72.15	83.89	82.19	89.38	83.87
K	Peso del Agua	gr	6.36	6.26	4.78	4.35	6.16	7.76	7.12	7.48
L	Peso Muestra seca	gr	58.96	59.06	41.00	41.00	56.42	54.72	61.91	56.40
M	Contenido de Humedad W%	%	10.79	10.60	11.66	10.61	10.92	14.18	11.50	13.26
N	Promedio Contenido de humedad Óptimo	%	10	.69	11	.13	12.	55	12	.38
0	Densidad Seca Máxima; Ds	gr/cm3	1.	79	1.5	84	1.8	37	1.	89

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Carried Jeffel	Junia Junia	Adjun
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE:	NOMBRE ING Kely NUTTER VOSquer
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

16				NORTE CAJAMARCA EINGENIERÍA CIVIL						
N	USO DE	RESIDUOS DE CAR	MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL MESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% Y 15% EN LA MARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"							
UNIVERSIDAD PRIVADA	ENSAYO:	COMPACTACIÓN PROCTOR MODIFICADO								
DEL NORTE	NORMA:	MTC E115 / ASTM	1 D1557 / NTP 339.	141						
CALICATA:		02	TIPO DE MATERIAL:	Arcilla						
FECHA DE MU	ESTREO:	19-05-2023	COLOR:	Marron						
FECHA DE EN	SAYO:	28-09-2023	% DE ADITIVO:	15%						


	COMPA	CTACIÓ	N PRO	OCTOR	R MODI	FICADO)			
ID	DESCRIPCIÓN	UND		1		2	;	3		4
Α	Peso Molde	gr	394	0.00	394	0.00	394	0.00	394	0.00
В	Peso Muestra Húmeda + Molde	gr	556	2.30	562	0.00	583	2.00	591	0.00
С	Peso Muestra Húmeda	gr	162	2.30	168	0.00	189	2.00	197	0.00
D	Volumen Muestra húmeda	cm3	937	7.22	937	7.22	937	.22	93	7.22
F	Densidad húmeda; Dh	gr/cm3	1.	73	1.79		2.02		2.	10
G	Recipiente	N°	а	b	a	b	а	b	a	b
Н	Peso Recipiente	gr	28.10	28.10	28.60	27.70	28.30	28.40	28.30	28.40
I	Peso Muestra húmeda + Recipiente	gr	73.60	86.30	104.50	102.80	90.50	94.75	93.50	97.60
J	Peso Muestra Seca + Recipiente	gr	69.90	79.80	98.80	93.30	84.20	87.70	85.50	90.70
K	Peso del Agua	gr	3.70	6.50	5.70	9.50	6.30	7.05	8.00	6.90
L	Peso Muestra seca	gr	41.80	51.70	70.20	65.60	55.90	59.30	57.20	62.30
M	Contenido de Humedad W%	%	8.85	12.57	8.12	14.48	11.27	11.89	13.99	11.08
N	Promedio Contenido de humedad Óptimo	%	10	.71	11.	.30	11.	58	12	.53
0	Densidad Seca Máxima; Ds	gr/cm3	1.4	46	1.	71	1.8	31	1.	87

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Carmid SH	Think town	The same of the sa
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE:	nombre
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

4				NORTE CAJAMARCA EINGENIERÍA CIVIL					
N	USO DE I	RESIDUOS DE CAR	EJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL ESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% Y 15% EN LA ARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"						
UNIVERSIDAD PRIVADA	ENSAYO:	CC	MPACTACIÓN PR	OCTOR MODIFICADO					
DEL NORTE	NORMA:	MTC E115 / ASTM D1557 / NTP 339.141							
CALICATA:		01	TIPO DE MATERIAL:	Arcilla					
FECHA DE MU	ESTREO:	19-05-2023	COLOR:	Harren					
FECHA DE EN	SAYO:	28-09-2023	% DE ADITIVO:	15%					

	COMPA	ACTACI	ÓN PR	OCTO	R MOD	IFICAD	0			
ID	DESCRIPCIÓN	UND		1		2		3	Π	4
Α	Peso Molde	gr	394	0.00	394	0.00	394	0.00	394	10.00
В	Peso Muestra Húmeda + Molde	gr	593	4.80	593	9.60	595	9.50	596	55.50
С	Peso Muestra Húmeda	gr	199	4.80	199	9.60	201	9.50	202	25.50
D	Volumen Muestra húmeda	cm3	93	7.22	937	7.22	937	7.22	93	7.22
F	Densidad húmeda; Dh	gr/cm3	2.	13	2.	13	2.	15	2.	.16
G	Recipiente	N°	а	b	a	b	а	b	а	b
Н	Peso Recipiente	gr	28.33	28.33	28.85	28.95	28.15	28.15	28.45	28.25
I	Peso Muestra húmeda + Recipiente	gr	85.32	85.32	112.35	110.45	111.28	108.28	85.18	94.38
J	Peso Muestra Seca + Recipiente	gr	79.60	81.60	104.83	103.83	102.54	102.10	79.99	88.24
K	Peso del Agua	gr	5.72	3.72	7.52	6.62	8.74	6.18	5.19	6.14
L	Peso Muestra seca	gr	51.27	53.27	75.98	74.88	74.39	73.95	51.54	59.99
M	Contenido de Humedad W%	%	11.16	6.98	9.90	8.84	11.75	8.36	10.07	10.24
N	Promedio Contenido de humedad Óptimo	%	9.	07	9.3	37	10.	.05	10	.15
0	Densidad Seca Máxima; Ds	gr/cm3	1.5	95	1.9	96	1.9	97	1.5	96

TESISTA	COORDINADOR DE LABORATORIO	ASESOR				
Canada Sent of	Jump Trans	Astriu				
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRÉ:	NOMBRE 199 Lely Nunez Vosquez				
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023				

1	LABOR			SUE	LOS	- UNI	VERS	IDAD	PRIVA	ADA I	DEL	NORTE		
N	TESIS USO D	E RES	IDUOS E	ECAF	RBÓN	BR EN SU EN PROI - BAÑOS	PORCI	ÓN DE	0%, 5%	6, 10%	Y 15%	ITE EL EN LA		
UNIVERSIDAD PRIVADA	ENSAY	0: 0	CALIFORNIA BEARING RATIO - CBR											
DEL NORTE	NORMA	NORMA: MTC E132				2 / ASTM D188								
CALICATA:		01 TIPO DE				MATER	RIAL:		Arcil	la				
FECHA DE MUES	STREO:	10	1-05-	2025	3	COLOR:			- 1	Harrón	2			
FECHA DE ENSA	AYO:	-	5-11-		-	% DE CE	NIZAS:		- '	id i O	0%			
UBICACIÓN:						- Corr	ash	oitio						
		CAL	IFORNIA	BEAR	ING RA	ATIO CBR	PATR	ON - 0%						
DESCR	RIPCIÓN		UND		1			2			3			
N° Capas					5			5			5			
N° Golpes por ca Molde	ра		1		13		27 M26				56			
Condición de mu	ontro		+	Α	M1		Α.	M26		1	M1	T		
Peso Molde	estra				54.4	7954.4		106 106	7806		ntes 905	Despu.		
Peso Muestra hún	neda + Mold	e	gr		54.4	12666		629	12739		867	7905 12963		
Peso Muestra húm	neda		gr	45	594	4712	-	323	4933	-	962	5058		
Volumen Muestra	húmeda		Cm ³	316	59.7	3245.3	3211.8		3297.1	31	99.7	3208.1		
Densidad húmeda	; Dh		gr/cm ³	1.	45	1.45	1.	50	1.50 1.60		.60	1.63		
CONTENIDO DE I	HUMEDAD				118.	0	110.0		E	96.0				
Ensayo	-		N°	1 - A	1-B	1 - C	2 - A	2 - B	2 - C	3 - A	3 - B	3 - C		
Tara				T1	T2	Ts-1	Т3	T4	Ts-2	T5	Т6	Ts-3		
Peso Recipiente			gr	28.30	27.80	27.69	28.60	30.90	27.81	28.10	28.10	28.33		
Peso Muestra húm	ieda + Recip	iente	gr	51.30	50.60	69.74	55.20	51.40	70.93	61.30	76.30	68.48		
Peso Muestra Seca + Recipiente		te	gr	48.80	48.20	62.50	53.00	48.80	63.30	56.30	73.40	62.00		
Peso del Agua	Peso del Agua		gr	2.50	2.40	7.24	2.20	2.60	7.63	5.00	2.90	6.48		
Peso Muestra Sec	Muestra Seca		gr	20.50	20.40	34.81	24.40	17.90	35.49	28.20	45.30	33.67		
ontenido de Humedad ; W%		%	11.	.98	20.80	11	.77	21.50	12	.07	19.25			
Promedio Contenio	lo de Hume	dad	%		16.39	9	16.63			15.66				
Densidad Máxima	Seca; Ds		gr/cm ³		1.294	1	1.344			1.478				

			EN	ISAYO D	E HINCHAM	IENTO				
TIEMPO ACI	LIMILII A DO	МО	LDE N°0	1	MO	LDE N°0	2	MOLDE N°03		
TIEWIFO AC	DIVIOLADO	Lectura	Hincha	miento	Lectura	Hinchamiento		Lectura	Hinchamie	
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000	0.000	0.000
24.00	1.00	4.0650	4.065	2.243	0.1600 plg	4.064	2.237	0.4500	0.450	0.253
48.00	2.00	4.1000	4.100	2.262	0.1670 plg	4.242	2.335	0.4200	0.420	0.236
72.00	3.00	4.1710	4.171	2.302	0.1800 plg	4.572	2.516	0.4450	0.445	0.250
96.00	4.00	4.2200	4.220	2.329	0.1850 plg	4.699	2.586	0.4650	0.465	0.261

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Country Just	July Trave	Heria
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS HERLERS TERSN	NOMBRE ING. KELY HONER VASQUES
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

1	LABOR			S - UNIVERSIDAD	PRIVADA D	EL NORTE		
Universidad	TESIS: USO D	ERE	SIDUOS DE CARBÓI	CBR EN SUBRASANTE A N EN PROPORCIÓN DE (N - BAÑOS DEL INCA, CA	0%, 5%, 10% Y	15% EN LA		
PRIVADA	ENSAY	0:	CALIFORNIA BEA	RING RATIO - CBR				
DEL NORTE	NORMA	:	MTC E132 / ASTM	D188				
CALICATA:	1	01		TIPO DE MATERIAL:	Arci	lla		
FECHA DE MUE	STREO:	1	9-05-2023	COLOR:	Moure	50		
FECHA DE ENSA	AYO:	C	5-11-2023	% DE CENIZAS:	1000	0%		
UBICACIÓN:		Santa Barbara - Correterce a Shultin						

			CARG	A - PENETRA	ACIÓN PATR	ON 0%				
PENET	RACIÓN	MC	OLDE N° 01		N	NOLDE N°	02	N	OLDE N°)3
1 21421	IOCIOIV	Carga	Esf	uerzo	Carga	Esf	uerzo	Carga	Esfuerz	
mm	Pulg	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl
0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.635	0.025	50.8000	2.6186	12,3859	63.5000	3.2732	15.4824	127.0000	6.5464	30.964
1.270	0.050	63.5000	3.2732	15.4824	71.1200	3.6660	17.3403	177.8000	9.1649	43.350
1.905	0.075	66.0400	3.4041	16.1017	73.6600	3.7969	17.9596	190.5000	9.8196	46.447
2.540	0.100	73.6600	3.7969	17.9596	88.9000	4.5825	21.6753	215.9000	11.1289	52.640
3.175	0.125	88.9000	4.5825	21.6753	104.1400	5.3680	25.3911	228.6000	11.7835	55.736
3.810	0.150	101.6000	5.2371	24.7718	114.3000	5.8918	27.8683	233.6800	12.0454	56.975
4.445	0.175	104.1400	5.3680	25.3911	119.3800	6.1536	29.1069	241.3000	12.4381	58.833
5.080	0.200	106.6800	5.4990	26.0104	127.0000	6.5464	30.9648	266.7000	13.7474	65.026
5.715	0.225	127.0000	6.5464	30.9648	134.6200	6.9392	32.8227	279.4000	14.4021	68.122
6.350	0.250	132.0800	6.8082	32.2034	139.7000	7.2010	34.0613	279.4000	14.4021	68.122
6.985	0.275	132.0800	6.8082	32.2034	142.2400	7.3320	34.6806	292.1000	15.0567	71.2190
7.620	0.300	152.4000	7.8557	37.1577	154.9400	7.9866	37.7770	294.6400	15.1876	71.8383
8.255	0.325	165.1000	8.5103	40.2542	167.6400	8.6412	40.8735	297.1800	15.3186	72.4576
8.890	0.350	172.7200	8.9031	42.1121	175.2600	9.0340	42.7314	304.8000	15.7113	74.3155
9.525	0.375	180.3400	9.2959	43.9700	180.3400	9.2959	43.9700	317.5000	16.3660	77.4120
10.160	0.400	190.5000	9.8196	46.4472	193.0400	9.9505	47.0665	330.2000	17.0206	80.5084
10.795	0.425	195.5800	10.0814	47.6858	198.1200	10.2124	48.3051	335.2800	17.2825	81.7470
11.430	0.450	198.1200	10.2124	48.3051	200.6600	10.3433	48.9244	342.9000	17.6753	83.6049
12.065	0.475	198.1200	10.2124	48.3051	200.6600	10.3433	48.9244	355.6000	18.3299	86.7014
12.700	0.500	200.6600	10.3433	48.9244	203,2000	10.4742	49.5437	355.6000	18.3299	86.7014

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Courses July	Junit many	Agran
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS HELPERA TERAN	NOMBRE ING. KELY NONEZ VAGAGE
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

	LABOR CAJAM	and the second	RIO DE	SUE	LOS	- UNI	VERS	DAD	PRIVA	DA [DEL	NORTE	
UNIVERSIDAD		RESI	RAMIENT DUOS DE RRETERA	CARB	ÓN EN	PROPO	RCIÓN	DE 0%	6, 5%, 10	% Y 15	5% EN		
PRIVADA	ENSAY	0:	CALIFOR	NIA E	BEARI	NG RAT	10 - C	BR					
DEL NORTE	NORMA	: 1	MTC E132 / ASTM D188										
CALICATA:		02		Т	IPO DE M	MATERIA	AL:	1)	scillo				
FECHA DE MUE	STREO:	REO: 19-05-2023			-	COLOR:				Harren			
FECHA DE ENSA	AYO:	19-00 20			9	6 DE CEN	IZAS:			1001.01	0%		
UBICACIÓN:			enta Bo			acreta	.50	~ 5	sitlud.	1	THE PERSON		
		C	ALIFORNIA	BEAR	ING RA	TIO CBR	PATRO	ON - 0%					
DESC	RIPCIÓN		UND		1			2			3		
N° Capas					5			5			5		
N° Golpes por ca	ipa				13	13 27			56		6		
Molde					M19		M04				M18	3	
Condición de mu	iestra			-	ites	Despu.		ntes	Despu.	-	ntes	Despu	
Peso Molde			gr	-	757	7757	-	067	8067	-	923	7923	
Peso Muestra húr		9	gr	-	948	12066	1	603	12779	1	767	12863	
Peso Muestra húr			gr	41	191	4309	45	536	4712	48	344	4940	
Volumen Muestra			Cm ³	31	69.7	3209.3	32	11.8	3297.1	31	99.7	3301.1	
Densidad húmeda	; Dh		gr/cm ³	1.	32	1.3	1.	41	1.4	1.	.66	1.6	
CONTENIDO DE	HUMEDAD				118.0)		176.0	1		96.0		
Ensayo			N°	1 - A	1 - B	1 - C	2 - A	2 - B	2 - C	3 - A	3 - B	3 - C	
Tara				T1	T2	Ts-4	Т3	T4	Ts-5	T5	T6	Ts-6	
Peso Recipiente			gr	30.72	27.83	29.00	27.90	27.56	27.83	28.16	28.31	26.39	
Peso Muestra hún	neda + Recip	iente	gr	69.66	88.36	85.41	93.42	94.17	82.01	56.47	56.46	81.60	
Peso Muestra Sec	a + Recipien	te	gr	63.74	84.16	75.20	84.34	88.86	72.50	52.91	53.91	72.10	
Peso del Agua	eso del Agua		gr	5.92	4.20	10.21	9.08	5.31	9.51	3.56	2.55	9.50	
Peso Muestra Sec	а		gr 33.02 56.		56.33	46.20	56.44	61.30	44.67	24.75	25.60	45.71	
Contenido de Hu	medad ; W%	,	% 12.69		.69	22.10	12.38 21		21.29	12.17		20.78	
Promedio Conteni	do de Humeo	iad	%		17.40			16.83		16.48			
Densidad Máxima	Seca; Ds		gr/cm ³		1.173			1.257		1.641			

			EN	ISAYO D	E HINCHAMI	ENTO				
TIEMPO ACI	LIMILII A DO	MOL	DE N°01	ı	MOL	DE N°02	2	MOLDE N°03		
TIENIPO ACI	UNULADO	Lectura	Hincha	miento	Lectura	Hincha	miento	Lectura	Hincha	miento
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.0000	0.000	0.000	0.00000	0.000	0.000	0.00000	0.000	0.000
24.00	1.00	0.0830 plg	2.108	1.163	0.1785 plg	4.534	2.495	4.44000	4.440	2.495
48.00	2.00	0.0850 plg	2.159	1.191	0.1775 plg	4.509	2.481	4.76500	4.765	2.677
72.00	3.00	0.0880 plg	2.235	1.233	0.1820 plg	4.623	2.544	5.39000	5.390	3.029
96.00	4.00	0.0870 plg	2.210	1.219	0.1850 plg	4.699	2.586	5.62500	5.625	3.161

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Comp Suffer	January Amure	A de fision
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE:	NOMBRE Ing- Kely Nonez Vasquez
FECHA: 07-12-2023	FECHA: 07 - 12-2023	FECHA: 07-12-2023

14	LABOR		DE SUEL	OS - UNIVERSIDAD	PRIVADA	DEL NORTE
UNIVERSIDAD PRIVADA		E RESID CARRE	UOS DE CARB ETERA A SHUL	L CBR EN SUBRASANTE ÓN EN PROPORCIÓN DE TIN - BAÑOS DEL INCA, (EARING RATIO - CBR	0%, 5%, 109	% Y 15% EN LA
DEL NORTE	NORMA	: МТ	C E132 / AST	M D188		
CALICATA:			02	TIPO DE MATERIAL:	b	ccilla
FECHA DE MUE	STREO:	19-	05-2023	COLOR:	N	lorion
FECHA DE ENSA	AYO:	05-	11-2023	% DE CENIZAS:		0%
UBICACIÓN:		So	unta Bas'	bara - Carrete	ran S	haltin

				CARGA -	PENETRACIÓ	N PATRON	0%			
DENET	RACIÓN	N	NOLDE N° 0	1	n	NOLDE N° 0	2		MOLDE N° 0	3
PENET	RACION	Carga	Esf	uerzo	Carga	Esf	uerzo	Carga	Esfuerzo	
mm	Pulg	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl ²
0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.635	0.025	25.4000	1.3093	6.1930	40.6400	2.0948	9.9087	55.8800	2.8804	13.624
1.270	0.050	50.8000	2.6186	12.3859	55.8800	2.8804	13.6245	76.2000	3.9278	18.578
1.905	0.075	73.6600	3.7969	17.9596	76.2000	3.9278	18.5789	78.7400	4.0588	19.1982
2.540	0.100	88.9000	4.5825	21.6753	91.4400	4.7134	22.2946	101.6000	5.2371	24.771
3.175	0.125	104.1400	5.3680	25.3911	106.6800	5.4990	26.0104	127.0000	6.5464	30.964
3.810	0.150	106.6800	5.4990	26.0104	109.2200	5.6299	26.6297	129.5400	6.6773	31.584
4.445	0.175	114.3000	5.8918	27.8683	114.3000	5.8918	27.8683	139.7000	7.2010	34.0613
5.080	0.200	124.4600	6.4155	30.3455	129.5400	6.6773	31.5841	149.8600	7.7247	36.5384
5.715	0.225	127.0000	6.5464	30.9648	127.0000	6.5464	30.9648	165.1000	8.5103	40.2542
6.350	0.250	129.5400	6.6773	31.5841	129.5400	6.6773	31.5841	177.8000	9.1649	43.3507
6.985	0.275	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	190.5000	9.8196	46.4472
7.620	0.300	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	193.0400	9.9505	47.0665
8.255	0.325	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	203.2000	10.4742	49.5437
8.890	0.350	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	208.2800	10.7361	50.7822
9.525	0.375	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	210.8200	10.8670	51.4015
10.160	0.400	129.5400	6.6773	31.5841	132.0800	6.8082	32.2034	226.0600	11.6526	55.1173
10.795	0.425	132.0800	6.8082	32.2034	137.1600	7.0701	33.4420	228.6000	11.7835	55.7366
11.430	0.450	134.6200	6.9392	32.8227	137.1600	7.0701	33.4420	231.1400	11.9144	56.3559
12.065	0.475	137.1600	7.0701	33.4420	137.1600	7.0701	33.4420	233.6800	12.0454	56.9752
12.700	0.500	139.7000	7.2010	34.0613	139,7000	7.2010	34.0613	233.6800	12.0454	56.9752

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Comming Juffet	Limited frame	Adjus
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRÉ: LUIS HERRERA TERAN	NOMBRE Ing. Kely Nunez lasquez
FECHA: 07/12/2023	FECHA: 07-12 = 2023	FECHA: 07-12-2023

	LABOR CAJAM		O DE	SU	ELOS	- UN	IVERS	SIDAD	PRIVA	DA	DEL	NORTE	
UNIVERSIDAD	TESIS: " DE	RESIDU	JOS DE	CAR	BÓN EN	EN SUB N PROPO I - BAÑO	RCIÓ	N DE 09	%, 5%, 1	0% Y 1	5% EN	EL USO LA	
PRIVADA	ENSAY	D: C/	CALIFORNIA BEARING RATIO - CBR										
DEL NORTE	NORMA	: M	MTC E132 / ASTM D188										
CALICATA:			01			TIPO DE	MATER	IAL:		Acci	2/10		
FECHA DE MUESTREO: /Q			05-	202	3	COLOR:				Mari			
FECHA DE ENSA	AYO:		-11-			% DE CEI	VIZAS:			1 .00	5%		
UBICACIÓN:		50	nta	Bask	ara.	- carro	tero	as	hultin				
			CAL	IFORN	IA BEA	RING RAT	по свя	2					
DESCR	RIPCIÓN		UND		1		2				3		
N° Capas				5			5				5		
N° Golpes por ca	pa				13			27			56		
Molde					M11			M04			M18		
Condición de mu	estra				ntes	Despu.	A	ntes	Despu.	A	ntes	Despu.	
Peso Molde			gr		905	7905	-	070	8070	_	928	7928	
Peso Muestra húm Peso Muestra húm		9	gr	12968 5063		13077 5172	-	520 520	13652	-	8830	13890	
Volumen Muestra		-	gr Cm3	5063 3169.7		3211.5	-	11.8	5582 3260.0		902 99.7	5962 3201.9	
Densidad húmeda			gr/cm3		597	1.6		819	1.8	-	99.7	2.01	
CONTENIDO DE I	HUMEDAD	,			109.0			62.0			60.0	2.02	
Ensayo			N°	1 - A	1 - B	1 - C	2 - A	2 - B	2 - C	3 - A	3 - B	3 - C	
Tara				T1	Ts-1	Ti-1	T2	ts-2	ti-2	Т3	Ts-3	Ti-3	
Peso Recipiente			gr	29.11	27.60	26.39	28.18	28.34	26.72	27.77	29.05	31.10	
Peso Muestra húm	eda + Recip	iente	gr	66.67	163.37	157.38	47.40	150.65	177.36	71.23	179.62	172.69	
Peso Muestra Seca + Recipiente		te	gr	60.25	159.84	135.48	43.83	148.71	151.99	64.01	172.91	146.46	
Peso del Agua			gr	6.42	3.53	21.90	3.57	1.94	25.37	7.22	6.71	26.23	
Peso Muestra Seca			gr	31.14	132.24	109.09	15.65	120.37	125.27	36.24	143.86	115.36	
Contenido de Hun	nedad ; W%		%	11	.64	20.08	12	.21	20.25	12	.29	22.74	
Promedio Contenido de Humedad		lad	%		15.86			16.23		17.52			
Densidad Máxima Seca; Ds gr			1.581			1.771			1.926				

				ENSA	YO DE HINCI	HAMIENT	0				
TIEN	PO	MOLDE N°01			MOI	DE N°02		MOLDE N°03			
ACUMU	LADO	Lectura	ectura Hinchamiento Lectura Hinchamiento		miento	Lectura	Hinchamiento				
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%	
0.00	0.00	0.0000	0.000	0.000	0.0000 plg	0.000	0.000	0.0000	0.000	0.000	
24.00	1.00	2.21000	2.210	1.232	0.0193 plg	0.490	0.273	0.0072	0.0072	0.004	
48.00	2.00	2.2700	2.270	1.266	0.0199 plg	0.505	0.281	0.0990	0.0990	0.056	
72.00	3.00	2.3000	2.300	1.283	0.1020 plg	2.591	1.442	0.1100	0.1100	0.062	
96.00	4.00	2.3350	2.335	1.302	0.1045 plg	2.654	1.477	0.1190	0.1190	0.067	

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Commende Juffer	Think your	A de file
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRERO TERON	NOMBRE Ing. Kely Nonez Vasquez
FECHA: 07 - 12-2023	FECHA: 07-12-2023	FECHA: 07 - 12 - 2023

4	CAJAMA		S - UNIVERSIDAD P	RIVADA DEL NORTE					
UNIVERSIDAD	USO DE	RESIDUOS DE CARBÓ	CBR EN SUBRASANTE AR N EN PROPORCIÓN DE 0% N - BAÑOS DEL INCA, CAJ	%, 5%, 10% Y 15% EN LA					
PRIVADA	ENSAYO	CALIFORNIA BEARING RATIO - CBR							
DEL NORTE	NORMA:	MTC E132 / ASTM D188							
CALICATA:		01	TIPO DE MATERIAL:	Arcilla					
FECHA DE MUESTREO:		19-05-2023	COLOR:	Marron					
FECHA DE ENSA	AYO:	19-11-2023	% DE CENIZAS:	5%					
UBICACIÓN: Santa Basbara - Carretera a Strullia									

				(CARGA - PENE	TRACIÓN					
DENIETI	RACIÓN		MOLDE N°)1		MOLDE N° ()2	MOLDE N° 03			
PENETI	RACION	Carga Esfuerzo		Carga	Carga Esfuerzo			Esfuerzo			
mm	Pulg	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl ²	
0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.635	0.025	190.5000	9.8196	46.4472	279.4000	14.4021	68.1225	304.8000	15.7113	74.3155	
1.270	0.050	241.3000	12.4381	58.8331	355.6000	18.3299	86.7014	381.0000	19.6392	92.8944	
1.905	0.075	279.4000	14.4021	68.1225	368.3000	18.9845	89.7979	457.2000	23.5670	111.4732	
2.540	0.100	292.1000	15.0567	71.2190	381.0000	19.6392	92.8944	482.6000	24.8763	117.6662	
3.175	0.125	304.8000	15.7113	74.3155	431.8000	22.2577	105.2803	508.0000	26.1856	123.8591	
3.810	0.150	309.8800	15.9732	75.5541	482.6000	24.8763	117.6662	533.4000	27.4948	130.0521	
4.445	0.175	330.2000	17.0206	80.5084	508.0000	26.1856	123.8591	558.8000	28.8041	136.2451	
5.080	0.200	381.0000	19.6392	92.8944	525.7800	27.1021	128.1942	609.6000	31.4227	148.6310	
5.715	0.225	444.5000	22.9124	108.3767	571.5000	29.4588	139.3415	635.0000	32.7320	154.8239	
6.350	0.250	447.0400	23.0433	108.9960	596.9000	30.7680	145.5345	660.4000	34.0412	161.0169	
6.985	0.275	457.2000	23.5670	111.4732	609.6000	31.4227	148.6310	685.8000	35.3505	167.2098	
7.620	0.300	444.5000	22.9124	108.3767	635.0000	32.7320	154.8239	698.5000	36.0052	170.3063	
8.255	0.325	447.0400	23.0433	108.9960	647.7000	33.3866	157.9204	711.2000	36.6598	173.4028	
8.890	0.350	457.2000	23.5670	111.4732	660.4000	34.0412	161.0169	736.6000	37.9691	179.5958	
9.525	0.375	459.7400	23.6979	112.0925	673.1000	34.6959	164.1134	749.3000	38.6237	182.6922	
10.160	0.400	462.2800	23.8289	112.7118	685.8000	35.3505	167.2098	762.0000	39.2784	185.7887	
10.795	0.425	464.8200	23.9598	113.3311	698.5000	36.0052	170.3063	787.4000	40.5876	191.9817	
11.430	0.450	469.9000	24.2216	114.5697	711.2000	36.6598	173.4028	812.8000	41.8969	198.1746	
12.065	0.475	472.4400	24.3526	115.1890	736.6000	37.9691	179.5958	817.8800	42.1588	199.4132	
12.700	0.500	474.9800	24.4835	115.8083	749.3000	38.6237	182.6922	838.2000	43.2062	204.3676	

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Cranswels Jeff	January Harrison	Agric
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRERD TERAN	NOMBRE Ing. Kely Niñez Vasquez
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2623

1.	LABOR			E SL	JELOS	- UN	IIVERS	IDAD	PRIVA	DA	DEL	NORTE
UNIVERSIDAD	TESIS: DE	RESI	DUOS D	E CAR	BÓN E	R EN SUE N PROP N - BAÑO	ORCIÓ	V DE 09	6, 5%, 10	0% Y 1	5% EN	EL USO LA
PRIVADA	ENSAY	0:	CALIFO	RNIA	BEAR	ING RA	TIO - O	CBR				
DEL NORTE	NORMA	\ :	MTC E1	32 / A	STM D	0188						
CALICATA: 02						TIPO DE	MATER	AL:	Δ	cilla		
FECHA DE MUE	HA DE MUESTREO: 19			- 20	23	COLOR:				orron		
17			3-11-			% DE CE	NIZAS:				5%	
UBICACIÓN:			anta		base	- Cas	reter	0 0	Shult	in		
			CA	LIFOR	NIA BEA	RING RA	TIO CBF	2				
DESCI	RIPCIÓN		UND		1			2			3	
N° Capas					5			5		5		
N° Golpes por ca	ра				13	27					56	7
Molde					M26			M11			M18	3
Condición de mu	iestra			A	ntes	Despu.	Ar	ntes	Despu.	A	ntes	Despu
Peso Molde			gr	7	806	7806	79	905	7905	7	924	7924
Peso Muestra húr	neda + Mold	е	gr	13692		13787	13	717	13808	13	3820	13895
Peso Muestra húr	-		gr	5886		5981	58	312	5903	5	896	5971
Volumen Muestra	The second secon		Cm ³	3169.7		3219.7		01.3	3136.4		.99.7	3220.1
Densidad húmeda CONTENIDO DE	10-00		gr/cm ³	1.	907 95.0	1.9	2.0	024	2.0	1.	.993	2.0
Ensayo	HUMEDAD		N°	1-A	1 - B	1-C	2 - A	91.0 2 - B	2 - C	3 - A	75.0	3 - C
			IN		-							-
Tara			-	T1	Ts-1	Ti-1	T2	Ts-2	Ti-2	T3	Ts-3	Ti-3
Peso Recipiente			gr	27.89	27.43	27.61	27.79	28.69	26.26	28.67	26.39	27.11
Peso Muestra hún	neda + Recip	iente	gr	85.07	123.83	135.06	110.76	108.20	88.26	92.15	115.70	112.98
Peso Muestra Sec	a + Recipien	ite	gr	75.56	119.18	116.22	102.30	98.51	77.23	83.97	106.97	97.63
Peso del Agua		gr	9.51	4.65	18.84	8.46	9.69	11.03	8.18	8.73	15.35	
Peso Muestra Sec	а		gr	47.67	91.75	88.61	74.51	69.82	50.97	55.30	80.58	70.52
Contenido de Hu	medad ; W%	ó	%	12	2.51	21.26	12	.62	21.64	12.81		21.77
Promedio Conteni	do de Humeo	dad	%		16.89			17.13			17.29	
Densidad Máxima	Seca; Ds		gr/cm ³		1.745			1.897		1.916		

			ENS	AYO DE	HINCHAMIEN	OTA				
TIEMPO ACUMULADO MOLDE N°01				МО	LDE N°02	2	MOLDE N°03			
IIEWPO ACI	DIVIOLADO	Lectura	Hincha	miento	Lectura	Hincha	miento	Lectura	Hinchamiento	
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.00000	0.000	0.000	0.0000 plg	0.000	0.000	0.0000	0.000	0.000
24.00	1.00	2.67000	2.670	1.489	0.0550 plg	1.397	0.778	0.7150	0.715	0.403
48.00	2.00	2.7350	2.735	1.525	0.0690 plg	1.753	0.976	0.9200	0.920	0.518
72.00	3.00	2.7700	2.770	1.545	0.0750 plg	1.905	1.060	1.0400	1.040	0.586
96.00	4.00	2.7900	2.790	1.556	0.0780 plg	1.981	1,103	1.1300	1.130	0.636

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Court Juff	Juni Trave	Magin
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS HERRERS TERAN	nombre Ing. Kely Noner lasquer
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07 - (2 - 2023

14	LABOR			S - UNIVERSIDAD	PRIVADA DEL NORTE			
Universidad		ERE	ESIDUOS DE CARBÓ		RCILLOSA MEDIANTE EL 0%, 5%, 10% Y 15% EN LA AJAMARCA 2023"			
PRIVADA	ENSAY	SAYO: CALIFORNIA BEARING RATIO - CBR						
DEL NORTE	NORMA	<i>V</i> :	MTC E132 / ASTM	M D188				
CALICATA:		02		TIPO DE MATERIAL:	Secilla			
FECHA DE MUESTREO: 19-05-20		19-05-2023	COLOR:	Marrón				
FECHA DE ENSA	SAYO: 13-1.1-2023		3-1.1-2023	% DE CENIZAS:	5%			
UBICACIÓN:		8	ianta Barbara -	corretera a She	1620			

				C	ARGA - PENE	TRACIÓN					
DENIET	RACIÓN		MOLDE N°	01		MOLDE N° (02	MOLDE N° 03			
PENETI	RACION	Carga	Est	fuerzo	erzo Carga E			Carga	Esfuerzo		
mm	Pulg	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl²	
0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.635	0.025	152.4000	7.8557	37.1577	381.0000	19.6392	92.8944	431.8000	22.2577	105.280	
1.270	0.050	203.2000	10.4742	49.5437	482.6000	24.8763	117.6662	533.4000	27.4948	130.052	
1.905	0.075	266.7000	13.7474	65.0260	508.0000	26.1856	123.8591	558.8000	28.8041	136.245	
2.540	0.100	292.1000	15.0567	71.2190	533.4000	27.4948	130.0521	584.2000	30.1134	142.4380	
3.175	0.125	304.8000	15.7113	74.3155	546.1000	28.1495	133.1486	609.6000	31.4227	148.6310	
3.810	0.150	317.5000	16.3660	77.4120	558.8000	28.8041	136.2451	635.0000	32.7320	154.8239	
4.445	0.175	355.6000	18.3299	86.7014	584.2000	30.1134	142.4380	647.7000	33.3866	157.9204	
5.080	0.200	381.0000	19.6392	92.8944	596.9000	30.7680	145.5345	660.4000	34.0412	161.0169	
5.715	0.225	393.7000	20.2938	95.9908	609.6000	31.4227	148.6310	673.1000	34.6959	164.1134	
6.350	0.250	396.2400	20.4247	96.6101	622.3000	32.0773	151.7274	685.8000	35.3505	167.2098	
6.985	0.275	396.2400	20.4247	96.6101	635.0000	32.7320	154.8239	698.5000	36.0052	170.3063	
7.620	0.300	431.8000	22.2577	105.2803	647.7000	33.3866	157.9204	711.2000	36.6598	173.4028	
8.255	0.325	431.8000	22.2577	105.2803	660.4000	34.0412	161.0169	723.9000	37.3144	176.4993	
8.890	0.350	431.8000	22.2577	105.2803	673.1000	34.6959	164.1134	736.6000	37.9691	179.5958	
9.525	0.375	431.8000	22.2577	105.2803	685.8000	35.3505	167.2098	741.6800	38.2309	180.8343	
10.160	0.400	436.8800	22.5196	106.5189	685.8000	35.3505	167.2098	749.3000	38.6237	182.6922	
10.795	0.425	444.5000	22.9124	108.3767	698.5000	36.0052	170.3063	762.0000	39.2784	185.7887	
11.430	0.450	457.2000	23.5670	111.4732	711.2000	36.6598	173.4028	774.7000	39.9330	188.8852	
2.065	0.475	482.6000	24.8763	117.6662	723.9000	37.3144	176.4993	787.4000	40.5876	191.9817	
12.700	0.500	482.6000	24.8763	117.6662	736.6000	37.9691	179.5958	792.4800	40.8495	193.2203	

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Continue Juffel	number up	Algreen .
NOMBRE:	NOMBRE:	NOMBRE
CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	LUIS HERREED TEEDEN	Ing. Kely Nonez Vosques
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

4	CAJAMAR		SUI	ELOS	- UN	IVERS	SIDAD	PRIVA	DA	DEL	NORTI	
UNIVERSIDAD	TESIS: "ME DE RES	JORAMIEN SIDUOS DI CARRETER	ECARE	ON EN	PROPO	DRCIÓ	N DE 09	%, 5%, 10	0% Y 1	5% EN		
PRIVADA	ENSAYO:	CALIFO	CALIFORNIA BEARING RATIO - CBR									
DEL NORTE	NORMA:	MTC E132 / ASTM D188										
CALICATA:		01			TIPO DE I	MATER	IAL:		Δς	alla		
FECHA DE MUE	STREO:	19-05	-202	3	COLOR:					σενόι		
		13-11-			% DE CEI	NIZAS:		-	1/1	10%		
		0 1	2020	1 -				01 11	10	1070		
ODIONOION.		Santa				-		- swil	CII			
		CAI	IFORNI	A BEA	RING RAT	IO CBF	?		20.000			
DESC	RIPCIÓN	UND		1			2			3		
N° Capas				5			5			5		
N° Golpes por ca	ра			13			27			56		
Molde				M04			M19			M17	65	
Condición de mu	estra		An	tes	Despu.	A	ntes	Despu.	A	ntes	Despu	
Peso Molde		gr	8066		8066	7	761	7761		955	7955	
Peso Muestra hún	neda + Molde	gr	13	791	13883	13874		13965	13833		13923	
Peso Muestra hún	neda	gr	57	25	5817	6113		6204	5.	878	5968	
Volumen Muestra	húmeda	cm ³	323	0.0	3231.0	33	17.1	3322.9	30	39.5	3076.7	
Densidad húmeda	; Dh	gr/cm ³	1.	87	1.90	1	.99	2.02	2	.08	2.09	
CONTENIDO DE	HUMEDAD			92.0			91.0			90.0		
Ensayo		N°	1 - A	1 - B	1 - C	2 - A	2 - B	2 - C	3 - A	3 - B	3 - C	
Tara			T4	Ts-4	Ti-4	T5	Ts-5	Ti-5	T6	Ts-6	Ti-6	
Peso Recipiente		gr	27.16	31.15	27.80	26.40	27.89	26.65	27.43	29.03	28.17	
Peso Muestra húmeda + Recipiente		gr	113.03	98.17	90.31	85.98	100.44	97.55	76.84	105.01	128.61	
Peso Muestra Seca + Recipiente		gr	105.43	89.49	79.04	78.45	93.19	85.61	68.53	101.11	110.72	
Peso del Agua		gr	7.60	8.68	11.27	7.53	7.25	11.94	8.31	3.90	17.89	
Peso Muestra Seca		gr	78.27	58.34	51.24	52.05	65.30	58.96	41.10	72.08	82.55	
Contenido de Hui	medad ; W%	%	12.	29	21.99	12	.78	20.25	12	.81	21.67	
Promedio Contenio	do de Humedad	%		17.14		16.52			17.24			
Densidad Máxima	Seca: Ds	gr/cm ³		1,760		1.917		1,997				

			EN	ISAYO D	E HINCHAMI	ENTO				
TIEMPO ACI	IMIII ADO	MOL	DE N°01	1	MOL	DE N°02	2	MOLDE N°03		
TIEWFO ACT	UMULADO	Lectura	Hincha	miento	Lectura	Hincha	miento	Lectura	Hincha	miento
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000
24.00	1.00	0.0545 plg	0.055	0.031	0.0255 plg	0.026	0.014	1.8590 plg	1.859	1.068
48.00	2.00	0.0552 plg	0.055	0.031	0.0290 plg	0.029	0.016	2.0000 plg	2.000	1.149
72.00	3.00	0.0560 plg	0.056	0.031	0.3100 plg	0.310	0.169	2.0650 plg	2.065	1.186
96.00	4.00	0.0565 plg	0.057	0.032	0.3200 plg	0.320	0.175	2.1050 plg	2.105	1.209

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
actives Juffle	Juni Harry	Adaption
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: LUIS HERDELA TERON	NOMBRE log. Kely Noner Vasquer
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

.4	LABOR		OS - UNIVERSIDAD PR	RIVADA DEL NORTE						
Universidad		E RESIDUOS DE CARBO	CBR EN SUBRASANTE ARC DN EN PROPORCIÓN DE 0% TN - BAÑOS DEL INCA, CAJ.	, 5%, 10% Y 15% EN LA						
PRIVADA	ENSAY	CALIFORNIA BE	CALIFORNIA BEARING RATIO - CBR							
DEL NORTE	NORMA	MTC E132 / ASTI	MTC E132 / ASTM D188							
CALICATA:		01	TIPO DE MATERIAL:	Arcilla						
FECHA DE MUE	STREO:	19-05-2023	COLOR:	Marrón						
FECHA DE ENSAYO: 13~11 - 20.23 % DE CENIZAS: 10%										
UBICACIÓN:		Santa Basbara - Corretera a Shulting								

				CARGA	- PENETRACIO	ÓN PATRON	10%				
DENIET	2461611		MOLDE N° ()1		MOLDE N° ()2		MOLDE N° 0	3	
PENEII	RACIÓN	Carga	Esf	uerzo	Carga	Est	uerzo	Carga	Esfuerzo		
mm	Pulg	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl²	
0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.635	0.025	279.4000	14.4021	68.1225	482.6000	24.8763	117.6662	533.4000	27.4948	130.052	
1.270	0.050	355.6000	18.3299	86.7014	508.0000	26.1856	123.8591	584.2000	30.1134	142.4380	
1.905	0.075	444.5000	22.9124	108.3767	558.8000	28.8041	136.2451	685.8000	35.3505	167.2098	
2.540	0.100	457.2000	23.5670	111.4732	635.0000	32.7320	154.8239	711.2000	36.6598	173.4028	
3.175	0.125	482.6000	24.8763	117.6662	635.0000	32.7320	154.8239	736.6000	37.9691	179.5958	
3.810	0.150	508.0000	26.1856	123.8591	635.0000	32.7320	154.8239	774.7000	39.9330	188.8852	
4.445	0.175	508.0000	26.1856	123.8591	635.0000	32.7320	154.8239	787.4000	40.5876	191.981	
5.080	0.200	533.4000	27.4948	130.0521	635.0000	32.7320	154.8239	825.5000	42.5515	201.271	
5.715	0.225	538.4800	27.7567	131.2907	660.4000	34.0412	161.0169	850.9000	43.8608	207.464	
6.350	0.250	546.1000	28.1495	133.1486	673.1000	34.6959	164.1134	889.0000	45.8247	216.7535	
6.985	0.275	558.8000	28.8041	136.2451	685.8000	35.3505	167.2098	914.4000	47.1340	222.9465	
7.620	0.300	538.4800	27.7567	131.2907	690.8800	35.6124	168.4484	939.8000	48.4433	229.1394	
8.255	0.325	546.1000	28.1495	133.1486	698.5000	36.0052	170.3063	965.2000	49.7526	235.3324	
8.890	0.350	558.8000	28.8041	136.2451	711.2000	36.6598	173.4028	990.6000	51.0619	241.5253	
9.525	0.375	571.5000	29.4588	139.3415	723.9000	37.3144	176.4993	1003.3000	51.7165	244.6218	
10.160	0.400	584.2000	30.1134	142.4380	736.6000	37.9691	179.5958	1041.4000	53.6804	253.9112	
10.795	0.425	589.2800	30.3753	143.6766	749.3000	38.6237	182.6922	1054.1000	54.3351	257.0077	
11.430	0.450	596.9000	30.7680	145.5345	762.0000	39.2784	185.7887	1066.8000	54.9897	260.1042	
L2.065	0.475	609.6000	31.4227	148.6310	812.8000	41.8969	198.1746	1092.2000	56.2990	266.2971	
12.700	0.500	614.6800	31.6845	149.8696	863.6000	44.5155	210.5605	1104.9000	56.9536	269.3936	

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Carrier Juff	July Frank	
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: Luis Horrera Tosan	Ing. Le Mon Vosquez
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

	LABOR			E SU	ELOS	- UN	IVERS	SIDAD	PRIVA	ADA	DEL	NORTE	
UNIVERSIDAD		RESI	DUOS DI	E CAR	BÓN E	R EN SUE N PROPO N - BAÑO	ORCIÓ	N DE 0	%, 5%, 1	0% Y 1	5% EN		
PRIVADA	ENSAY	0:	CALIFO	RNIA	BEAF	RING RA	TIO -	CBR					
DEL NORTE	NORMA	\:	MTC E132 / ASTM D188										
CALICATA:		02		TIPO DE			MATER	IAL:		scille	ic.		
FECHA DE MUESTREO:			9-05	- 200	23	COLOR:			-	Hasro			
			9-11-		_	% DE CE	NIZAS:			-ICGI C	10%		
			_	Barbo		Correto	ira	0- 51	miles	\			
			CAI	IFORN	IIA BEA	RING RAT	го свя	3					
DESCR	RIPCIÓN		UND		1			2			3		
N° Capas					5			5			5		
N° Golpes por ca	ра				13			27		56			
Molde					M26	3		M19			M17		
Condición de mu	estra			A	ntes	Despu.	A	ntes	Despu.	A	ntes	Despu	
Peso Molde			gr	7	806	7806	7	760	7760	7	954	7954	
Peso Muestra hún	neda + Molde	9	gr	13	3638	13761	13	3711	13803	13	3902	13987	
Peso Muestra hún	neda		gr	5832		5955	5	951	6043	5	948	6033	
Volumen Muestra			Cm ³		69.7	3208.4			3213.7	7 3199.7		3252.5	
Densidad húmeda	; Dh		gr/cm ³	1.	840	1.9	1.	903	1.9	2.01		2.05	
CONTENIDO DE I	HUMEDAD				123.0)	92.0			85.0			
Ensayo			N°	1 - A	1 - B	1 - C	2 - A	2 - B	2 - C	3 - A	3 - B	3 - C	
Tara				T4	Ts-4	Ti-4	T5	Ts-5	Ti-5	Т6	Ts-6	Ti-6	
Peso Recipiente			gr	26.80	26.58	28.14	27.94	27.76	27.65	28.35	28.26	28.69	
Peso Muestra húmeda + Recipiente		gr	64.33	103.22	120.92	79.62	108.16	113.69	70.49	108.09	89.74		
Peso Muestra Seca + Recipiente		gr	57.88	100.17	102.97	72.33	101.49	97.83	63.59	103.29	78.38		
Peso del Agua		gr	6.45	3.05	17.95	7.29	6.67	15.86	6.90	4.80	11.36		
Peso Muestra Seca		gr	31.08	73.59	74.83	44.39	73.73	70.18	35.24	75.03	49.69		
Contenido de Hur	medad ; W%	,	%	12	2.45	23.99	12	.73	22.60	12	2.99	22.86	
Promedio Contenio	do de Humeo	dad	%		18.22			17.67		17.93			
Densidad Máxima	Seca; Ds		gr/cm ³		1.636			1.738			1.928		

			ENS	AYO DE	HINCHAMIE	OTM				
TIEMPO ACI	IMILI ADO	MO	LDE N°01	1	MO	LDE N°02	2	MOLDE N°03		
I LEWIPO ACT	DIVIOLADO	Lectura	Hincha	miento	Lectura	Hinchamiento		Lectura	Hincha	miento
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000
24.00	1.00	2.0000 plg	2.000	1.149	0.0065 plg	0.006	0.004	1.1005 plg	1.101	0.632
48.00	2.00	2.0700 plg	2.070	1.189	0.0870 plg	0.087	0.050	2.4100 plg	2.410	1.384
72.00	3.00	2.1100 plg	2.110	1.212	0.0980 plg	0.098	0.056	2.6900 plg	2.690	1.545
96.00	4.00	2.1600 plg	2.160	1.241	0.1040 plg	0.104	0.060	2.9250 plg	2.925	1.680

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Casicalan Jeff	Jump frage	Agric
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: Lois Heirera teran	Ing help Nonez Vasque
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

4	LABOR CAJAM		S - UNIVERSIDAD P	RIVADA DEL NORTE					
N		RESIDUOS DE CARBÓ	CBR EN SUBRASANTE AF N EN PROPORCIÓN DE 0' N - BAÑOS DEL INCA, CA	%, 5%, 10% Y 15% EN LA					
UNIVERSIDAD PRIVADA	ENSAY	CALIFORNIA BEA	CALIFORNIA BEARING RATIO - CBR						
DEL NORTE	NORMA	MTC E132 / ASTM	M D188						
CALICATA:		02	TIPO DE MATERIAL:	Socilla					
FECHA DE MUE	STREO:	19-05- 2023	COLOR:	Marron					
FECHA DE ENS	AYO:	19-11-2023	% DE CENIZAS: 10%						
UBICACIÓN:	Santa Barbara - Carr. a Shultin								

				C	ARGA - PENE	rración					
DENET	RACIÓN		MOLDE N° 0	1		MOLDE N° 0)2		MOLDE N° 0	3	
PENEII	KACION	Carga	Esf	uerzo	Carga	Esf	uerzo	Carga	Esfuerzo		
mm	Pulg	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl²	
0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.635	0.025	228.6000	11.7835	55.7366	254.0000	13.0928	61.9296	304.8000	15.7113	74.315	
1.270	0.050	304.8000	15.7113	74.3155	330.2000	17.0206	80.5084	482.6000	24.8763	117.666	
1.905	0.075	330.2000	17.0206	80.5084	355.6000	18.3299	86.7014	495.3000	25.5309	120.762	
2.540	0.100	355.6000	18.3299	86.7014	431.8000	22.2577	105.2803	508.0000	26.1856	123.859	
3.175	0.125	406.4000	20.9485	99.0873	457.2000	23.5670	111.4732	584.2000	30.1134	142.438	
3.810	0.150	457.2000	23.5670	111.4732	482.6000	24.8763	117.6662	609.6000	31.4227	148.631	
4.445	0.175	469.9000	24.2216	114.5697	508.0000	26.1856	123.8591	635.0000	32.7320	154.823	
5.080	0.200	482.6000	24.8763	117.6662	520.7000	26.8402	126.9556	673.1000	34.6959	164.113	
5.715	0.225	495.3000	25.5309	120.7627	533.4000	27.4948	130.0521	698.5000	36.0052	170.306	
6.350	0.250	497.8400	25.6619	121.3820	546.1000	28.1495	133.1486	723.9000	37.3144	176.499	
6.985	0.275	500.3800	25.7928	122.0013	558.8000	28.8041	136.2451	749.3000	38.6237	182.692	
7.620	0.300	508.0000	26.1856	123.8591	571.5000	29.4588	139.3415	762.0000	39.2784	185.788	
8.255	0.325	533.4000	27.4948	130.0521	584.2000	30.1134	142.4380	787.4000	40.5876	191.981	
8.890	0.350	558.8000	28.8041	136.2451	596.9000	30.7680	145.5345	812.8000	41.8969	198.174	
9.525	0.375	571.5000	29.4588	139.3415	609.6000	31.4227	148.6310	838.2000	43.2062	204.367	
10.160	0.400	574.0400	29.5897	139.9608	635.0000	32.7320	154.8239	863.6000	44.5155	210.560	
10.795	0.425	584.2000	30.1134	142.4380	647.7000	33.3866	157.9204	889.0000	45.8247	216.753	
11.430	0.450	584.2000	30.1134	142.4380	660.4000	34.0412	161.0169	914.4000	47.1340	222.946	
12.065	0.475	584.2000	30.1134	142.4380	673.1000	34.6959	164.1134	927.1000	47.7887	226.042	
12.700	0.500	584.2000	30.1134	142.4380	685.8000	35.3505	167.2098	939.8000	48.4433	229.139	

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Carriage John	Training to some	Agrin
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: Lois Herrera teran	lng. Kely Winez lasque
FECHA: 07-12-2023	FECHA: 07-12 - 2023	FECHA: 07-12-2023

1	LABOR			SU	ELOS	- UN	IIVER	SIDAD	PRIVA	DA [DEL	NORTE
UNIVERSIDAD		RESID	UOS DE	CARE	BÓN E	R EN SUE N PROPO N - BAÑO	ORCIÓ	N DE 0	%, 5%, 1	0% Y 15	5% EN	
PRIVADA	ENSAY	0: 0	CALIFO	RNIA	BEAR	ING RA	TIO -	CBR				
DEL NORTE	NORMA	/: V	TC E132 / ASTM D188									
CALICATA:			01		T	TIPO DE	MATER	IAL:	1	Livillo	_	
FECHA DE MUES	STREO:	19	1-05-	202	3	COLOR:			1	Harrion		
FECHA DE ENSA UBICACIÓN:	YO:	23	3-11-	202	3	% DE CE	NIZAS:				15%	
			CAL	IFORN	IA BEA	RING RA	тю св	2				
DESCR	RIPCIÓN		UND		1			2			3	
N° Capas				5			5		5			
N° Golpes por ca	ра				13		27			56		
Molde											-	
Condición de mu	estra			Ar	ites	Despu.	A	ntes	Despu.	An	tes	Despu
Peso Molde			gr	7:	183	7183	7	229	7229	76	53	7653
Peso Muestra húm	neda + Molde	9	gr	13715		13790	13	781	13824	139	906	13960
Peso Muestra húm	neda		gr	65	32	6607	6552		6595	62	53	6307
Volumen Muestra I	húmeda		Cm ³	323	30.0	3240.7	32	26.8	3231.1	324	2.1	3243.2
Densidad húmeda;	Dh		gr/cm ³	2.	02	2.04	2	.08	2.09	2.0	08	2.09
CONTENIDO DE H	HUMEDAD				75.0			43.0			54.0	
Ensayo			N°	1 - A	1 - B	1 - C	2 - A	2 - B	2 - C	3 - A	3 - B	3 - C
Tara				T1	Ts-1	Ti-1	T2	Ts-2	Ti-2	ТЗ	Ts-3	Ti-3
Peso Recipiente			gr	29.11	28.20	28.70	28.46	30.80	28.00	16.40	27.50	27.90
Peso Muestra húmeda + Recipiente		gr	59.02	85.33	102.33	92.64	113.32	103.05	102.18	79.78	101.10	
Peso Muestra Seca + Recipiente		gr	54.98	80.92	87.84	85.28	105.02	87.89	98.85	70.84	86.16	
Peso del Agua		gr	4.04	4.41	14.49	7.36	8.30	15.16	3.33	8.94	14.94	
Peso Muestra Seca	3		gr	25.87	52.72	59.14	56.82	74.22	59.89	82.45	43.34	58.26
Contenido de Hun	nedad ; W%)	%	11	.99	24.50	12	.07	25.31	12.	33	25.64
Promedio Contenid	lo de Humeo	dad	%		18.25			18.69			18.99	
Densidad Máxima	Seca; Ds		gr/cm ³		1.806			1.956		1.994		

			EN	NSAYO D	E HINCHAM	IENTO				
TIEMPO AC	LIMILII ADO	MO	LDE N°0	1	MO	LDE N°0	2	MOLDE N°03		
HEWIPO AC	UNIOLADO	Lectura	Hincha	miento	Lectura Hinchamiento		Lectura Hir		miento	
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.0000	0.000	0.000	0.0000 plg	0.000	0.000	0.0000 plg	0.000	0.000
24.00	1.00	0.4350	0.435	0.244	0.0060 plg	0.152	0.085	0.0012 plg	0.030	0.017
48.00	2.00	0.5100	0.510	0.286	0.0085 plg	0.216	0.120	0.0020 plg	0.051	0.029
72.00	3.00	0.5500	0.550	0.308	0.0090 plg	0.229	0.128	0.0022 plg	0.056	0.031
96.00	4.00	0.5900	0.590	0.330	0.0095 plg	0.241	0.135	0.0024 plg	0.061	0.034

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Continued Justiff	Thing was	
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: Luis Herrera teran	Ing. Kely Notice Vasques
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

1	CAJAM	ATORIO DE SUELO ARCA	S - UNIVERSIDAD	PRIVADA DEL	NORTE
UNIVERSIDAD	USO DE		N EN PROPORCIÓN DE N - BAÑOS DEL INCA, C	0%, 5%, 10% Y 15	% EN LA
PRIVADA	ENSAYO	CALIFORNIA BEA	RING RATIO - CBR		
DEL NORTE	NORMA	MTC E132 / ASTM	D188		
CALICATA:		01	TIPO DE MATERIAL:	Aralla	
FECHA DE MUE	STREO:	19-05-2023	COLOR:	Marrón	
FECHA DE ENSA	AYO:	23-11-2023	% DE CENIZAS:	15%	
UBICACIÓN:					

					CARGA - PENE	TRACIÓN					
DENET	RACIÓN		MOLDE N° ()1		MOLDE N° 0	2	MOLDE N° 03			
PENEII	RACION	Carga	Esf	uerzo	Carga	Carga Esfuerzo		Carga	Esfuerzo		
mm	Pulg	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl ²	kg	kg/cm²	Lb/pl ²	
0.000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.635	0.025	330.2000	17.0206	80.5084	558.8000	28.8041	136.2451	609.6000	31.4227	148.631	
1.270	0.050	457.2000	23.5670	111.4732	736.6000	37.9691	179.5958	812.8000	41.8969	198.1746	
1.905	0.075	482.6000	24.8763	117.6662	812.8000	41.8969	198.1746	863.6000	44.5155	210.5605	
2.540	0.100	520.7000	26.8402	126.9556	863.6000	44.5155	210.5605	889.0000	45.8247	216.7535	
3.175	0.125	533.4000	27.4948	130.0521	889.0000	45.8247	216.7535	939.8000	48.4433	229.1394	
3.810	0.150	558.8000	28.8041	136.2451	914.4000	47.1340	222.9465	965.2000	49.7526	235.3324	
4.445	0.175	571.5000	29.4588	139.3415	927.1000	47.7887	226.0429	977.9000	50.4072	238.4288	
5.080	0.200	584.2000	30.1134	142.4380	939.8000	48.4433	229.1394	990.6000	51.0619	241.5253	
5.715	0.225	596.9000	30.7680	145.5345	952.5000	49.0979	232.2359	1003.3000	51.7165	244.6218	
6.350	0.250	609.6000	31.4227	148.6310	965.2000	49.7526	235.3324	1003.3000	51.7165	244.6218	
6.985	0.275	622.3000	32.0773	151.7274	977.9000	50.4072	238.4288	1016.0000	52.3711	247.7183	
7.620	0.300	596.9000	30.7680	145.5345	977.9000	50.4072	238.4288	1041.4000	53.6804	253.9112	
8.255	0.325	609.6000	31.4227	148.6310	1003.3000	51.7165	244.6218	1041.4000	53.6804	253.9112	
8.890	0.350	622.3000	32.0773	151.7274	1016.0000	52.3711	247.7183	1066.8000	54.9897	260.1042	
9.525	0.375	622.3000	32.0773	151.7274	1041.4000	53.6804	253.9112	1079.5000	55.6443	263.2007	
10.160	0.400	635.0000	32.7320	154.8239	1041.4000	53.6804	253.9112	1092.2000	56.2990	266.2971	
10.795	0.425	647.7000	33.3866	157.9204	1054.1000	54.3351	257.0077	1104.9000	56.9536	269.3936	
11.430	0.450	660.4000	34.0412	161.0169	1066.8000	54.9897	260.1042	1104.9000	56.9536	269.3936	
12.065	0.475	673.1000	34.6959	164.1134	1079.5000	55.6443	263.2007	1104.9000	56.9536	269.3936	
12.700	0.500	673.1000	34.6959	164.1134	1079.5000	55.6443	263.2007	1143.0000	58.9175	278.6831	

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Cienting Juff	The supple	Negran
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: Luis Heirera teran	NOMBRE Ing. Kely Warter Vasquer
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

1.	LABOR			SU	ELOS	- UI	VIVERS	SIDAD	PRIV	ADA I	DEL N	NORTE	
N	TESIS: DE	RESID	DUOS DE	CAR	BÓN E	R EN SUI N PROP N - BAÑO	ORCIÓ	N DE 09	6, 5%, 1	0% Y 15	5% EN I		
UNIVERSIDAD PRIVADA	ENSAY	0: 0	CALIFORNIA BEARING RATIO - CBR										
DEL NORTE	NORMA	i: N	MTC E1	32 / A	STM [0188	38						
CALICATA:		02			TIPO DE	MATER	IAL:		Arcill	0			
FECHA DE MUESTREO: 16			7-05	-202	7	COLOR			_	arroa			
FECHA DE ENSA	YO:	-	3- 11-			% DE CE	NIZAS:		110	a	15%		
UBICACIÓN:		- 4)- "	202						/2 _ 1 _			
			CA	LIFOR	NIA BE	ARING RA	тіо св	R					
DESCR	RIPCIÓN		UND		1			2			3		
N° Capas	N° Capas			5			5			5			
N° Golpes por capa					13			27			56		
Molde													
Condición de mu	estra				ites	Despu.		ites	Despu.	-	ntes	Despi	
Peso Molde Peso Muestra húm	anda i Malda		gr	- 22.5	209	7209	1000	96	7996	(77.5	311	7811	
Peso Muestra hún		,	gr gr	-	658 149	13731 6522	-	809	13878 5882		982 171	14028 6217	
Volumen Muestra			Cm3	-	87.6	3198.5	3004.2				3216.2		
Densidad húmeda	; Dh		gr/cm3	2.	07	2.09	2.	2.03 2.10		2.07		2.07	
CONTENIDO DE I	HUMEDAD				73.0			69.0			46.0		
Ensayo			N°	1 - A	1 - B	1 - C	2 - A	2 - B	2 - C	3 - A	3 - B	3 - C	
Tara				T4	Ts-4	Ti-4	T5	Ts-5	Ti-5	Т6	Ts-6	Ti-6	
Peso Recipiente			gr	28.27	27.80	31.00	26.46	27.20	28.30	27.72	27.90	28.20	
Peso Muestra húm	eda + Recip	iente	gr	98.65	99.19	117.74	140.78	114.02	87.59	114.02	111.87	129.05	
Peso Muestra Seca + Recipiente		gr	88.10	95.32	101.35	124.79	107.42	76.23	104.46	101.87	109.44		
Peso del Agua		gr	10.55	3.87	16.39	15.99	6.60	11.36	9.56	10.00	19.61		
Peso Muestra Seca		gr	59.83	67.52	70.35	98.33	80.22	47.93	76.74	73.97	81.24		
Contenido de Hur	nedad ; W%		%	11	.68	23.30	12.	24	23.70	12	.99	24.14	
Promedio Contenio	do de Humed	lad	%	17.49			17.97			18.56			
Densidad Máxima Seca; Ds gr/cm			mulama?	1.910			1.931			1.943			

			EN	SAYO D	E HINCHAM	IENTO				
TIEMPO AC	LIMILII ADO	MO	LDE N°0	1	MO	LDE N°0	2	MOLDE N°03		
TIEWPO AC	UNIULADO	Lectura	Hincha	miento	Lectura	Hincha	miento	Lectura	Hincha	miento
Horas	Días	Deforma.	mm	%	Deforma.	mm	%	Deforma.	mm	%
0.00	0.00	0.0000	0.000	0.000	0.0000	0.000	0.000	0.0000 plg	0.000	0.000
24.00	1.00	0.5000	0.500	0.280	0.3750	0.375	0.209	0.0235 plg	0.597	0.336
48.00	2.00	0.5550	0.555	0.311	0.4400	0.440	0.245	0.0280 plg	0.711	0.401
72.00	3.00	0.5950	0.595	0.333	0.4850	0.485	0.271	0.0300 plg	0.762	0.429
96.00	4.00	0.6100	0.610	0.342	0.5200	0.520	0.290	0.0320 plg	0.813	0.458

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Carring Jeff	I will have	Adjus
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: Wis Herrera Teran	NOMBRE lng. Kely Noñez Vasquez
FECHA: 07 - 12 - 2023	FECHA: 07-12-2023	FECHA: 07-12-2023

	CAJAMA		S - UNIVERSIDAD F	PRIVADA DEL NORTE						
N		RESIDUOS DE CARBÓ	CBR EN SUBRASANTE AI ON EN PROPORCIÓN DE O TN - BAÑOS DEL INCA, CA	%, 5%, 10% Y 15% EN LA						
UNIVERSIDAD PRIVADA	ENSAYO	CALIFORNIA BE	CALIFORNIA BEARING RATIO - CBR							
DEL NORTE	NORMA:	MTC E132 / ASTN	TM D188							
CALICATA:		02	TIPO DE MATERIAL:	Arcilla						
FECHA DE MUE	STREO:	19-05-2023	COLOR:	Marrian						
FECHA DE ENS.	AYO:	23-11-2023	% DE CENIZAS:	15%						
UBICACIÓN:										

				CA	ARGA - PENET	RACIÓN				
DENIET	RACIÓN		MOLDE N° 0)1	1	MOLDE N° 02	2	1	MOLDE N° 03	3
PENEII	RACION	Carga	Esfu	ierzo	Carga	Carga Esfuerzo			Esfu	ierzo
mm	Pulg	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl²	kg	kg/cm²	Lb/pl
0.000	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.635	0.025	533.40	27.49	130.05	584.20	30.11	142.44	711.20	36.66	173.4
1.270	0.050	635.00	32.73	154.82	711.20	36.66	173.40	774.70	39.93	188.8
1.905	0.075	711.20	36.66	173.40	787.40	40.59	191.98	812.80	41.90	198.1
2.540	0.100	723.90	37.31	176.50	800.10	41.24	195.08	838.20	43.21	204.3
3.175	0.125	736.60	37.97	179.60	812.80	41.90	198.17	914.40	47.13	222.9
3.810	0.150	762.00	39.28	185.79	825.50	42.55	201.27	914.40	47.13	222.9
4.445	0.175	774.70	39.93	188.89	838.20	43.21	204.37	914.40	47.13	222.9
5.080	0.200	787.40	40.59	191.98	863.60	44.52	210.56	914.40	47.13	222.9
5.715	0.225	800.10	41.24	195.08	876.30	45.17	213.66	952.50	49.10	232.2
6.350	0.250	812.80	41.90	198.17	901.70	46.48	219.85	977.90	50.41	238.4
6.985	0.275	825.50	42.55	201.27	914.40	47.13	222.95	991.87	51.13	241.8
7.620	0.300	838.20	43.21	204.37	939.80	48.44	229.14	1016.00	52.37	247.7
8.255	0.325	850.90	43.86	207.46	965.20	49.75	235.33	1028.70	53.03	250.8
8.890	0.350	863.60	44.52	210.56	977.90	50.41	238.43	1041.40	53.68	253.9
9.525	0.375	889.00	45.82	216.75	1003.30	51.72	244.62	1054.10	54.34	257.0
10.160	0.400	914.40	47.13	222.95	1016.00	52.37	247.72	1066.80	54.99	260.10
10.795	0.425	939.80	48.44	229.14	1041.40	53.68	253.91	1079.50	55.64	263.20
11.430	0.450	965.20	49.75	235.33	1066.80	54.99	260.10	1092.20	56.30	266.30
12.065	0.475	977.90	50.41	238.43	1092.20	56.30	266.30	1117.60	57.61	272.49
12.700	0.500	990.60	51.06	241.53	1104.90	56.95	269.39	1143.00	58.92	278.68

TESISTA	COORDINADOR DE LABORATORIO	ASESOR
Ostupur Juft	Jump of Land	Media
NOMBRE: CARLOS COJAL AGUILAR JAIME PORTAL HUACCHA	NOMBRE: Lugs Herrera teran	lng Kely Noñez lasquer
FECHA: 07-12-2023	FECHA: 07-12-2023	FECHA: 07-12-2023

Anexo II: COTIZACIONES

TRANSPORTES Y CONSTRUCCION L&M BARUCH S.R.L RUC: 20606906227

Cajamarca 25 de noviembre de 2023

COTIZACIÓN N°103 - 2023/L&M-BARUCH

Señor/Cliente: Carlos Cojal y Jaime Portal

Tesis: "MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

De nuestra consideración: En atención a vuestro requerimiento, hacemos llegar nuestra propuesta económica.

Según la referencia

Maquinaria a todo costo

ITEM	EQUIPO	UNIDAD	PRECIO/HORA
1	Motoniveladora de 125 HP	Hora	S/ 340.00
2	Camión Volquete 15 m3	Hora	S/ 150.00
3	Camión Cisterna x 2000 gal	Hora	S/ 120.00
4	Rodillo Liso Vibratorio 8-10 tn	Hora	S/ 160.00

- Los precios mencionados no incluyen IGV (18%).
- Los precios mencionados no incluyen pago de operador.
- > Los precios mencionados incluyen costos de combustibles.
- > Forma de Pago: Valorización mensual.
- > Tipo de moneda: soles
- Vigencia de la cotización: (30 días)
- La empresa contratista deberá brindar las facilidades para mantenimientos preventivos y correctivos a personal autorizado de la contratada mediante comunicado.

RUC: 20606906227 - JR. EL INCA 616 - CAJAMARCA

Esperando ser considerados, nos suscribimos de ustedes.

ATENTAMENTE

TRAISPORTES Y CONSTRUCCIÓN LAM BARUCH SRL RUG 20606905227

Luciano Portal Cusquisiban'

TRANSPORTES Y CONSTRUCCION L&M BARUCH S.R.L - RUC: 20606906227 - JR. EL INCA 616 - CAJAMARCA CORREO: LYM.BARUCH@GMAIL.COM CELULAR: 999 571 306 - 970038275

GRUPO SAN AGUSTIN A&B CHOTA SAC

Fecha, 22 de diciembre de 2023.

COTIZACIÓN Nº 025-2023

Señor: Carlos Cojal y Jaime Portal

Tesis: "MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBON EN PROPORCION DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BANOS DEL INCA, CAJAMARCA 2023"

ITEM	EQUIPO	UNIDAD	costo
1	Motoniveladora de 125 HP	Hora	S/ 340.00
2	Camión Volquete 15 m3	Hora	S/ 160.00
3	Camión Cisterna x 2000 gal	Hora	S/ 140.00
4	Rodillo Liso Vibratorio 8-10 tn	Hora	S/ 160.00

Atentamente.

ALADINO BAUTISTA ESPINOZA DNI: 41423910 GERENTE GENERAL

Los precios NO incluyen el IGV de 18% Vigencia de la cotización: 15 dias

AV. Todos los santos N° 414—chota

CEL: 939317502, 986149127

RUC: 20600619391

LADRILLERA SHULTIN

Cajamarca 14 de noviembre de 2023

COTIZACIÓN DE LA CENIZA

Señor: Carlos Cojal Aguilar y Jaime Portal Huaccha

Tesis: "MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL

USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023"

Según solicitud:

			PRECIO
CANTIDAD	DESCRIPCIÓN	UNIDAD	(No incluye IGV)
1	Venta incluye cargado en unidad de transporte	m3	S/ 10.00
1	Venta al por menor empacado en sacos	Saco o Lata	S/ 2.00

Forma de Pago: Contado.

Tipo de moneda: soles

Vigencia de la cotización: (30 días)

Ubícanos en carretera a Shultin CP. Santa Barbara – (referencia cabecera del Aeropuerto)

Atentamente:

José Catalino Mantilla Sánchez PROPIETARIO

COJAL AGUILAR C.: PORTA HUACCHA J.

Anexo III: CÁLCULO DE IMD

	PROYECTO MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESDUOS DE CARBÓN EN PROPORCIÓN DE U%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN - BAÑOS DEL INCA, CAJAMARCA 2023												ESTACION : Día			1 LUNES A DOMINGO						
	SENTIDO E 🕳				\$ →						CODIGO DE	LA ESTACION	l:			E-1		MTC	i. h			
RESULTADO	DEIMD																			Of the sale formation of the sale of		
	VEHICULOS LIGEROS BUS CAMIONES UNITARIOS											SEMITRAILER				TRAILER						
	Autos	STATION Wagon	Pick up	C. Rural	Combi	Micros	2E	3E	2E	3E	4E	281/282	2\$3	3\$1/3\$2	>=3\$3	2T2	2T3	3172	3T3			
Sent.		The state of the s			0.00															TOTAL	%	
Е	122	114	35	1	55	0	1	0	23	96	0	0	0	0	0	0	0	0	0	447	54.3%	
S	75	75	24	2	68	1	7	0	18	99	7	0	0	0	0	0	0	0	0	376	45.7%	
TOTAL	197	189	59	3	123	1	8	0	41	195	7	0	0	D	0	0	D	D	D	823		
%	23.94%	22.96%	7.17%	0.36%	14.95%	0.12%	0.97%	0.00%	4.98%	23.69%	0.85%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.0%		
IMD	28.1	27.0	8.4	0.4	17.6	0.1	1.1		5.9	27.9	1.0			-		-				117.6		
K	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
VAL. DE IMD	28.1	27.0	8.4	0.4	17.6	0.1	1.1		5.9	27.9	1.0		-							117.6		
IMD	28	27	8		18		1		6	28	1									117		

	PROYECTO MEJORAMIENTO DEL CBR EN SUBRASANTE ARCILLOSA MEDIANTE EL USO DE RESIDUOS DE CARBÓN EN PROPORCIÓN DE 0%, 5%, 10% y 15% EN LA CARRETERA A SHULTIN- BAÑOS DEL NCA, CAJAMARCA 2023 SENTDO E ← S							23			ESTACION : DÍA CODIGO DE	LA ESTACION		LUNES A DO	1 MINGO	MTC.					
RESULTADO	DEIMD	VE	HICULOS LIGER	108			BUS		CAMIONES UN	ITARIOS		SEMITRALE	R			TRAILER					
Sent.	Autos	STATION Wagon	Pick up	C. Rural	Combi	Micros	2E	3E	Æ	3E	4E	281/282	283	3\$1/3\$2	>=383	2172	2T3	3T2	3T3	TOTAL	%
E	122.0	114.0	35.0	1.0	55.0		1.0		23.0	96.0		•		-						447.0	0.5
S	75.0	75.0	24.0	2.0	68.0	1.0	7.0		18.0	99.0	7.0	٠								376.0	0.5
TOTAL	197.0	189.0	59.0	3.0	123.0	1.0	8.0		41.0	195.0	7.0			-	-			-	-	823.0) -
%	0.2	0.2	0.1	0.0	0.1	0.0	0.0		0.0	0.2	0.0			-	-					1.0) -
IMD	28.1	27.0	8.4	0.4	17.6	0.1	1.1		5.9	27.9	1.0	•		-	-		-	-		117.6	į
K	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
VAL. DE IMD	28.1	27.0	8.4	0.4	17.6	0.1	1.1	•	5.9	27.9	1.0	-		-	-		-	-		117.6	ί
IMD	28	27	8		18		1		6	28	1	-		-					-	117	/ -

PANEL FOTOGRAFICO

Fotografía 1 Excavación de Calicata 01

Nota. Se muestra la excavación de calicata 01

Fotografía 2

Excavación de Calicata 02

Nota. Se muestra la excavación de calicata 02

Secado de las muestras de las 02 calicatas

Nota. Se realiza el secado del material en el Horno; para obtener el contenido de Humedad.

Fotografía 4

Ensayo de Granulometría

Nota. Se realiza granulometría de las calicatas y de la ceniza.

Ensayo de Plasticidad

Nota. Se realiza el ensayo de plasticidad de muestras patrón y con adición de ceniza en 5%, 10% y 15%

Fotografía 6

Ensayo de Plasticidad

Nota. Se pesa cada una de las taras para obtener el peso seco para límite líquido y limite plástico, Con las muestras patrón y muestras con adición de ceniza en 5%, 10% y 15%,

Ensayo de Proctor Modificado

Nota. Preparación del material con adición de agua y ceniza según corresponda para las muestras patrón y muestras con adición de ceniza en 5%, 10% y 15%

Fotografía 8

Ensayo de Proctor Modificado

Nota. Se realiza el ensayo de proctor para la muestra patrón y muestras con adición de ceniza en 5%, 10% y 15%

Fotografía 9

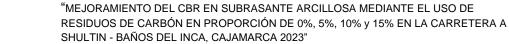
Ensayo de Proctor

Nota. Una vez completada se enrasa para pesar el molde + material, para la muestra patrón y muestras con adición de ceniza en 5%, 10% y 15%

Fotografía 10

Secado de muestras de Proctor

Nota. Una vez completada se retira proporciones de la parte superior e inferior para llevarlas al horno a secar; para la muestra patrón y muestras con adición de ceniza en 5%, 10% y 15%


Ensayo de CBR

Nota. Una vez completado los ensayos de proctor, se inicia considerando la cantidad de agua obtenida para preparar con una muestra de suelo de 12kg ideal para 5 capas de CBR, las mismas que se colocarán en 5 capas para cada molde, estos serán 3 con golpes de 13, 27 y 56 golpes, para la muestra patrón y muestras con adición de ceniza en 5%, 10% y 15%

Fotografía 12

Ensayo de CBR

Nota. Una vez completado los ensayos de compactación de cbr serán pesados cada molde. Posteriormente se procede a sumergirlas en agua completamente para obtener el hinchamiento durante 4 días . Para la muestra patrón y muestras con adición de ceniza en 5%, 10% y 15%.

Fotografía 13

Ensayo de CBR

Nota. Una vez sumergido durante los 4 días se procede a sacarlos, Y posteriormente pesarlos y llevarlos para el ensayo de penetración, ensayo que se será para la muestra patrón y muestras con adición de ceniza en 5%, 10% y 15%.

Fotografía 14

Carbón listo para ser quemado en los hornos de ladrillo cerámico

Fotografía 15

Extracción de Residuos de Carbón en los hornos de ladrillo cerámico

Nota. Obtención de material ceniza como residuo posterior al quemado de ladrillos