

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA CIVIL

"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"

Tesis para optar el título profesional de:

INGENIERO CIVIL

Autor:

Alex Paul Pastor Ravines

Asesor:

Dr. Ing. Orlando Aguilar Aliaga https://orcid.org/0000-0002-9255-1285

Cajamarca - Perú

2024

JURADO EVALUADOR

Jurado 1	Tulio Guillen Sheen
Presidente(a)	Nombre y Apellidos

Jurado 2	Eduardo Noriega Vidal		
	Nombre y Apellidos		

lurada 2	Orlando Aguilar Aliaga		
Jurado 3	Nombre y Apellidos		

Pastor Ravines A. Pág. 2

INFORME DE SIMILITUD

Informe de tesis Alex Pastor

INFORME DE ORIGINALIDAD

4%
INDICE DE SIMILITUD

0% FUENTES DE INTERNET

4%

U%
TRABAJOS DEL
ESTUDIANTE

ENCONTRAR COINCIDENCIAS CON TODAS LAS FUENTES (SOLO SE IMPRIMIRÁ LA FUENTE SELECCIONADA)

1%

★ Johnny Alor, Juan Alfaro, José Rodríguez, Carlos Eyzaguirre. "Use of Metal-mechanics Waste as an Addition in the Production of an Ecological Concrete", MATEC Web of Conferences, 2019

Publicación

Excluir citas Apagado Excluir bibliografía Apagado Excluir coincidencias Apagado

DEDICATORIA

Dedico esta tesis a Dios por ser mi protector, por mantenerme sano y fuerte en mi día a día. A mis señores padres por su sacrificio y amor incondicional, gracias por creer en mí. A mi hermano por ser mi mentor y recordarme que no hay obstáculo que no pueda superarse. A mi compañera de vida por su apoyo y fortaleza en los momentos más perturbadores. A mis docentes por enriquecer mi formación académica y poder desarrollarme como una gran persona y profesional.

Pastor Ravines A.

AGRADECIMIENTO

A mi familia la cual amo con todo el corazón, agradecerles por su compañía y dedicación en mi desarrollo personal, por inculcarme valores y no abandonarme en los momentos más difíciles.

A mi asesor el Dr. Ing. Orlando Aguilar por iluminar el camino de mi tesis de investigación con su experiencia y sabiduría. Su guía ha sido invaluable.

Pastor Ravines A.

Tabla de contenido

JURAI	JURADO EVALUADOR		
INFOR	INFORME DE SIMILITUD		3
DEDIC	CATOF	RIA	4
AGRA	DECIN	MIENTO	5
TABL	A DE (CONTENIDO	6
ÍNDIC	E DE T	ΓABLAS	8
ÍNDIC	E DE I	FIGURAS	10
RESU	MEN		12
CAPÍT	ULO I	: INTRODUCCIÓN	13
	1.1.	Realidad problemática	13
	1.2.	Antecedentes de la investigación	15
	1.3.	Bases teóricas	19
	1.4.	Definiciones conceptuales	22
	1.5.	Formulación del problema	25
	1.6.	Objetivos	26
	1.7.	Objetivo General	26
	1.8.	Objetivos Específicos	26
	1.9.	Hipótesis	26
	1.10. Hipótesis general		
	1.11.	Justificación	26
	1.12.	Limitaciones	27

CAPÍTULO	II: METODOLOGÍA	28
2.1.	Tipo de investigación	28
2.2.	Variables	31
2.3.	Población y muestra	35
2.4.	Técnicas, instrumentos y métodos	36
2.5.	Aspectos éticos	38
2.6.	Procedimiento	39
CAPÍTULO	III: RESULTADOS	46
3.1.	Resultados de los ensayos físicos y mecánicos de los agregados.	46
3.2.	Diseño de la mezcla de concreto de control	55
3.3.	Resultados de la prueba a compresión axial según edad de rotura	66
CAPÍTULO	IV: DISCUSIÓN Y CONCLUSIONES	76
4.1.	Agregados	76
4.2.	Diseño de mezcla de concreto	76
4.3.	Consistencia del concreto	77
4.4.	Discusión de resultados con respecto a los antecedentes	77
4.5.	Conclusiones	79
RECOMEN	DACIONES	81
REFERENC	CIAS	82
ANEXOS A		87
ANEXOS B		124

Índice de tablas

Tabla 1 Características técnicas del vidrio	25
Tabla 2 Coordenadas de la cantera	29
Tabla 3 Diseño experimental para la fabricación de los testigos de concreto.	30
Tabla 4 Clasificación de variables.	32
Tabla 5 Matriz de operacionalización de la variable dependiente.	33
Tabla 6 Matriz de operacionalización de la variable independiente.	34
Tabla 7 Ensayos de resistencia a compresión-testigos patrón y testigos con adición de partícul VM.	
Tabla 8 Técnicas de recolección de datos e instrumentos.	37
Tabla 9 Ensayo granulométrico del agregado grueso	46
Tabla 10 Ensayo granulométrico del agregado fino.	48
Tabla 11 Curva granulométrica del agregado fino.	49
Tabla 12 Ensayo de contenido de humedad del agregado fino.	50
Tabla 13 Ensayo de contenido de humedad del agregado grueso	50
Tabla 14 Ensayo de peso unitario del agregado fino.	51
Tabla 15 Ensayo de peso unitario del agregado grueso	52
Tabla 16 Ensayo de gravedad específica y absorción del agregado fino	53
Tabla 17 Ensayo de peso específico y absorción del agregado grueso.	54
Tabla 18 Ensayo abrasión de los ángeles	55
Tabla 19 Datos para el diseño de mezcla de concreto	55
Tabla 20 Determinación de la resistencia promedio	56
Tabla 21 Slump	56
Tabla 22 Valores del volumen unitario del agua.	57
Tabla 23 Relación Agua / Cemento de acuerdo con el peso	58
Tabla 24 Interpolación para la relación A/C	58
Tabla 25 Cálculo del factor cemento	59
Tabla 26 Interpolación de la finura respecto al tamaño del agregado grueso	59

Tabla 27 Contenido del agregado grueso.	60
Tabla 28 Cálculo de volúmenes absolutos de los materiales	60
Tabla 29 Contenido de agregado fino	61
Tabla 30 Resumen de los valores obtenidos para el diseño de mezcla	61
Tabla 31 Corrección por humedad del agregado	. 62
Tabla 32 Valores de la Humedad superficial del agregado	. 62
Tabla 33 Aporte de humedad de los agregados	. 63
Tabla 34 Peso de materiales corregidos por humedad del agregado	. 63
Tabla 35 Peso por tanda de un saco	64
Tabla 36 Cantidad de materiales para 18 testigos cilíndricos con muestra patrón	64
Tabla 37 Cantidad de materiales para 18 testigos cilíndricos con 9% de VM	. 64
Tabla 38 Cantidad de materiales para 18 testigos cilíndricos con 11% de VM	. 65
Tabla 39 Cantidad de materiales para 18 testigos cilíndricos con 22% de VM	. 65
Tabla 40 Registro de la resistencia a la compresión axial de testigos patrón a los 7, 14 y 28 días.	. 66
Tabla 41 Registro de la resistencia a la compresión axial de testigos 9% de VM	. 67
Tabla 42 Registro de la resistencia a la compresión axial de testigos 11% de VM	. 68
Tabla 43 Registro de la resistencia a la compresión axial de testigos 22% de VM	. 69
Tabla 44 Comparación de resistencia a la compresión axial alcanzada a la edad de 28 días de cura	ıdo.
	. 75

Índice de figuras

Figura 1 Croquis de Ubicación	29
Figura 2 Procedimiento de la investigación	39
Figura 3 Curva granulométrica de agregado grueso.	47
Figura 4 Resistencia a los 7 días de curado	70
Figura 5 Resistencia a los 14 días de curado	71
Figura 6 Resistencia a los 28 días de curado	72
Figura 7 Evolución de la resistencia a los 7, 14 y 28 días del concreto patrón	73
Figura 8 Evolución de la resistencia a los 7, 14 y 28 días del concreto con 9% de reemplazo	73
Figura 9 Evolución de la resistencia a los 7, 14 y 28 días del concreto con 11% de reemplazo	74
Figura 10 Evolución de la resistencia a los 7, 14 y 28 días del concreto con 22% de reemplazo	74
Figura 11 Matriz de consistencia.	87
Figura 12 Saco de 25 Kg de vidrio molido	88
Figura 13 Tamizado manual del agregado grueso	89
Figura 14 Ingreso de taras para el ensayo de contenido de humedad.	90
Figura 15 Cuarteo del material para el ensayo de peso unitario	91
Figura 16 Ingresando muestra para el ensayo de granulometría en finos	92
Figura 17 Pesaje de moldes para el ensayo de peso unitario volumétrico	93
Figura 18 Pesaje de moldes para el ensayo de peso unitario volumétrico	94
Figura 19 Medida de recipiente.	95
Figura 20 Pesaje de los agregados para el ensayo de peso unitario.	96
Figura 21 Secado superficial de la muestra para peso específico	97
Figura 22 Ensayo de gravedad específica del agregado fino	98
Figura 23 Ensayo de abrasión de los ángeles.	99
Figura 24 Ensayo de abrasión de los ángeles.	00
Figura 25 Muestras para ingresar al horno.	01
Figura 26 Limpieza de moldes para concreto patrón.	02
Figura 27 Limpieza de moldes para concreto con reemplazo de porcentajes 1	103

Figura 28 Material pesado en sacos para elaboración de probetas.	104
Figura 29 Material pesado para elaboración de probetas cilíndricas.	105
Figura 30 Mezcla de los materiales en el trompo.	106
Figura 31 Ingreso de vidrio molido al trompo eléctrico 1.14HP 210 Lt.	107
Figura 32 Ensayo en estado fresco - cono de abrams.	108
Figura 33 Ensayo cono de abrams.	109
Figura 34 Medición del asentamiento o slump.	. 110
Figura 35 Probetas cilíndricas patrón.	. 111
Figura 36 Elaboración de testigos cilíndricos con los 3 porcentajes.	. 112
Figura 37 Desencofrado de probetas cilíndricas.	. 113
Figura 38 Probetas cilíndricas desencofradas con reemplazo 9%, 11% y 22%	. 114
Figura 39 Ingreso de probetas a la poza de curado.	115
Figura 40 Medición de cada probeta cilíndrica con el uso del vernier o pie de rey.	116
Figura 41 Probetas cilíndricas para ensayar con reemplazo del cemento	117
Figura 42 Probetas cilíndricas para ensayar con reemplazo del cemento.	118
Figura 43 Probetas cilíndricas para ensayar con reemplazo del cemento.	119
Figura 44 Ensayo a la compresión axial de testigos cilíndricos.	120
Figura 45 Slump o asentamiento para 9% de reemplazo del cemento.	. 121
Figura 46 Slump o asentamiento para 11% de reemplazo del cemento.	122
Figura 47 Slump o asentamiento para el reemplazo en 22% del cemento.	123
Figura 48 Ficha técnica de cemento Pacasmayo Tipo I.	133
Figura 49 Ficha técnica cemento Pacasmayo Tipo I	134

RESUMEN

El propósito principal de la presente investigación fue analizar la resistencia a la compresión axial de un concreto F'c= 210 Kg/cm² incorporando como material ecológico al vidrio y determinar el porcentaje adecuado según lo evaluado. Para lograr esto, se realizó un reemplazo parcialmente al cemento con los siguientes porcentajes (9%, 11% y 22%) de vidrio molido, a fin de comparar el concreto convencional o estándar con un concreto ecológico explicado anteriormente. El estudio comenzó con el análisis de las propiedades físico - mecánicas de los agregados gruesos y finos, que concluyó con la determinación de su granulometría, peso unitario, contenido de humedad, peso específico y su absorción. Con base en los datos de los ensayos de los agregados, se procede a diseñar la mezcla de concreto según los porcentajes de reemplazo del cemento, en el cual se utilizó un asentamiento de 3-4" (pulgadas) para garantizar una adecuada trabajabilidad del material. Posteriormente, se prepararon un total de 72 pruebas o testigos cilíndricos de 6" x 12" entre concreto convencional y el reemplazo de los tres porcentajes mencionados. El objetivo fue determinar cuál era el porcentaje de reemplazo por vidrio molido óptimo para un f'c = 210 Kg/cm². Las pruebas a la rotura de testigos de concreto se realizaron a los 7, 14 y 28 días de ingresar a la poza de curado. El porcentaje adecuado para el diseño de mezcla tuvo como resultado el 11% de reemplazo de cemento ya que a la edad de 28 días de curado se llegó a registrar 312.64 kg/cm² que significa un aumento de la resistencia de 48.88%.

PALABRAS CLAVES: Compresión axial, testigos cilíndricos, vidrio molido, cemento, reemplazo del cemento.

CAPÍTULO I: INTRODUCCIÓN

1.1. Realidad problemática

La ingeniería desde décadas atrás se viene desarrollado como uno de los pilares para el desarrollo humano, desde las primeras construcciones ejecutadas por los neandertales hace 176 000 años y la construcción de viviendas prehistóricas a base de piedras forman parte de nuestra evolución.

En todo el mundo los diversos materiales de construcción se diseñan con el fin de cubrir una necesidad y con ella la de brindar características estructurales duraderas en el tiempo para así brindar calidad y seguridad en las viviendas. El vidrio es un material antiguo que es utilizado para el almacenamiento y conservación de los alimentos, nos remontamos hace aproximadamente 3.000 años antes de Cristo para la ubicación de su uso. En Siria, los mercaderes de natrón, un mineral que se utiliza para preparar la sosa, fueron quienes descubrieron el vidrio tras una verificación que, al fundirlo y colocarlo en unión con la arena, resultaba un material admirable y brillante (Fundación Integra, 2021)

La problemática mundial relacionada con el incremento de residuos sólidos en los vertederos y su impacto ambiental ha generado una creciente preocupación por la reutilización de un material sólido como es el vidrio. En este sentido, se despierta un gran interés a nivel global en la utilización de este material como alternativa de utilización para el rubro de la construcción civil, especialmente como reemplazo parcial en las mezclas de concreto. El vidrio desechado se ha considerado como una materia prima viable para sustituir parcialmente el cemento y también en los agregados en la producción de concreto. En tal sentido, existen diversas investigaciones significativas en este campo ya sea como paper o tesis de grado.

En Perú, el crecimiento económico y social no ha sido gestionado de manera sostenible, el aumento descontrolado de las actividades industriales y comerciales han resultado en la degradación del entorno natural y la salud de la población. Es clave indicar que la generación de residuos sólidos per cápita es de 0.58 kg/hab/día. Según el INEI en el libro publicado sobre estadísticas ambientales, existe un total de generación de residuos domiciliarios en el 2022 de 16 216,4 T/día es decir 5 919 000,6 por T/año. Solo en la ciudad de Cajamarca se recoge un promedio de 298,1 T/día de residuos sólidos del cual el 3% es vidrio (MINAM, 2023).

La presente investigación se focaliza en el análisis de la resistencia a la compresión axial del concreto f'c = 210 Kg/cm² con reemplazo de vidrio molido (VM), por medio de 3 diferentes porcentajes de vidrio. La hipótesis planteada que con el reemplazo parcial de cemento en 9%, 11% y 22% influye en el incremento de resistencia a la compresión axial planteada de f'c= 210 kg/cm² hasta un 15%.

El diseño de mezcla del concreto seguirá las especificaciones proporcionadas por el Comité ACI 211.1 y por las Normas Técnicas Peruanas, así como investigaciones realizadas similares o complementarias a la investigación.

En esta problemática y con la finalidad de contribuir con el medio ambiente con nuevas tecnologías de la construcción se ha cogido como material de estudio el vidrio molido. En estos se busca determinar la resistencia a compresión axial de testigos cilíndricos de concreto en 9%, 11% y 22% de reemplazo parcial por el cemento.

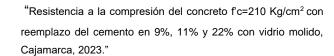
1.2. Antecedentes de la investigación

1.2.1. Internacionales

Según (Mera et al., 2019) en la investigación denominada "Estudio de la resistencia a compresión del hormigón utilizando el vidrio finalmente molido en reemplazo parcial del cemento" tuvo como propósito la búsqueda de una solución para la utilización del cemento, en la cual se eligió al vidrio debido a sus excelentes características de resistencia y durabilidad. Esta investigación indica que fueron evaluados tres porcentajes en un tiempo máximo de 56 días, siendo estos el 5%, 10% y 15%, los cuales fueron comparados con el concreto convencional (21 MPa), a los 28 días de rotura el concreto patrón alcanzó 230.21 Kg/cm², el 5% de reemplazo del cemento se obtuvo 207.29 Kg/cm², con el 10% de reemplazo del cemento alcanzó 201.02 Kg/cm², y por último el 15% de reemplazo del cemento se obtuvo 167.18 Kg/cm², finalmente se reventaron probetas a los 56 días de curado obteniendo los siguientes valores: el concreto patrón alcanzó a tal edad 264.18 Kg/cm², el 5% de reemplazo del cemento obtuvo 258.47 Kg/cm², el 10% de reemplazo alcanzó 245.01 Kg/cm² y el 15% de sustitución del cemento alcanzó 206.33 Kg/cm². La realización del estudio mencionado tuvo efectos positivos en la resistencia a compresión ya que a edades mayores causa una mejor adherencia del vidrio con la mezcla del concreto.

Según (Columbié et al., 2020) en la investigación denominada "Evaluación del uso de vidrio reciclado en la producción de hormigones cubanos" se realizaron ensayos a los 7 días y 28 días de curado en la zona de La Habana empleando vidrio reciclado en reemplazo de la arena y del cemento, el número de probetas ensayadas fue de 42. Los porcentajes que se utilizaron fueron 25%, 50% y 100% para el reemplazo del árido y para el reemplazo del cemento fue de 10%, 20% y 30%. Posteriormente fueron ensayadas a la resistencia a la compresión, a los 7 días se obtuvo una resistencia de 16.43 MPa para la muestra patrón (MP),

16.49 MPa para el reemplazo de la arena en 25% (M1), 16.30 MPa para el reemplazo del 50% de la arena (M2), 16.4 MPa para el reemplazo de la arena en 100% (M3), 16.31 MPa para la sustitución del cemento en 10% (M4), 16.28 MPa se obtuvo sustituyendo al cemento en 20% (M5) y 15.61 MPa en reemplazo del cemento en 30% (M6). A la edad de 28 días los ensayos a compresión dieron como resultado lo siguiente: 32.38 MPa para la muestra patrón, 32.50 MPa para el reemplazo de la arena en 25% (M1), 32.34 MPa para el reemplazo del 50% de la arena (M2), 32.24 MPa para el reemplazo de la arena en 100% (M3), 33.21 MPa para la sustitución del cemento en 10% (M4), 33.28 MPa se obtuvo sustituyendo al cemento en 20% (M5) y 30.28 MPa en reemplazo del cemento en 30% (M6).


Según (Rodriguez & Caturelli, 2016) en la investigación publicada "Evaluación del desempeño de un hormigón con incorporación de vidrio reciclado finalmente molido en reemplazo de cemento mediante ensayos de laboratorio" se utilizaron proporciones de concreto patrón (0%) y concreto con reemplazo parcial de cemento al 20%, la mezcla de concreto como parámetro estándar fue de 25 MPa de resistencia a la compresión axial, el tamaño de las probetas cilíndricas fue de 15 cm x 30 cm. El concreto patrón a los 7 días obtuvo 18.7 MPa y el concreto con reemplazo del 20% fue de 9.7 MPa, a los 28 días el concreto patrón obtuvo 26.9 MPa y el concreto con reemplazo del 20% fue de 21.5 MPa, el concreto base a los 56 días resultó 33.4 MPa y el concreto con reemplazo del 20% fue de 27.2 MPa, a los 120 días el concreto base resultó 38.2 MPa y el concreto con reemplazo del 20% fue de 32.3 MPa, finalmente a los 270 días el concreto base alcanzó 38.5 MPa y el concreto con reemplazo del 20% de cemento fue de 36.8 MPa.

1.2.2. Nacionales

Según (Ramón & Aguirre, 2021) en la investigación denominada "Análisis de la permeabilidad en el concreto, con adiciones de vidrio reciclado molido en reemplazo parcial del cemento en Lima Metropolitana" se realizaron ensayos a compresión axial en porcentajes de 5%, 10% y 15%, los testigos cilíndricos tuvieron dimensiones de 4" x 8". En total se elaboraron 48 testigos para una resistencia 210 Kg/cm², el concreto patrón a los 7 días de curado alcanzó 223.23 Kg/cm², con el reemplazo del 5% de vidrio por cemento fue de 223.00 Kg/cm², el reemplazo del 10% de vidrio por cemento alcanzó 162.17 Kg/cm² y con el reemplazo del 15% de vidrio por cemento se obtuvo 147.90 Kg/cm². El concreto patrón a los 14 días de curado alcanzó 240.93 Kg/cm², con el reemplazo del 5% de vidrio por cemento fue de 242.33 Kg/cm², el reemplazo del 10% de vidrio por cemento alcanzó 208.67 Kg/cm² y con el reemplazo del 15% de vidrio por cemento se obtuvo 182.02 Kg/cm². El concreto patrón a los 28 días de curado alcanzó 263.93 Kg/cm², con el reemplazo del 5% de vidrio por cemento fue de 267.17 Kg/cm², el reemplazo del 10% de vidrio por cemento alcanzó 234.13 Kg/cm² y con el reemplazo del 15% de vidrio por cemento se obtuvo 200.90 Kg/cm². El concreto patrón a los 56 días de curado alcanzó 272.67 Kg/cm², con el reemplazo del 5% de vidrio por cemento fue de 274.75 Kg/cm², el reemplazo del 10% de vidrio por cemento alcanzó 277.43 Kg/cm² y con el reemplazo del 15% de vidrio por cemento se obtuvo 237.04 Kg/cm².

Según (Walhoff, 2017) en la investigación titulada "Influencia del vidrio molido en la resistencia a la compresión del concreto y costos de fabricación, comparado con el concreto convencional, Barranca-2016" se elaboraron 64 testigos cilíndricos para ser ensayados a compresión axial con un concreto de 210 Kg/cm² en los porcentajes de 0%, 5%, 10% y 15%. A los 7 días de curado el concreto base obtuvo 188.64 Kg/cm², con el 5% de

reemplazo de cemento por vidrio fue de 189.13 Kg/cm², el 10% de reemplazo del cemento por vidrio se obtuvo 188.40 Kg/cm², con el 15% de reemplazo del cemento por vidrio fue de 186.15 Kg/cm². A los 14 días de curado el concreto base obtuvo 238.14 Kg/cm², con el 5% de reemplazo de cemento por vidrio fue de 239.15 Kg/cm², el 10% de reemplazo del cemento por vidrio se obtuvo 237.48 Kg/cm², con el 15% de reemplazo del cemento por vidrio fue de 234.75 Kg/cm². A los 21 días de curado el concreto base obtuvo 274.75 Kg/cm², con el 5% de reemplazo de cemento por vidrio fue de 280.29 Kg/cm², el 10% de reemplazo del cemento por vidrio se obtuvo 275.64 Kg/cm², con el 15% de reemplazo del cemento por vidrio fue de 270.34 Kg/cm². A los 28 días de curado el concreto base obtuvo 302.13 Kg/cm², con el 5% de reemplazo de cemento por vidrio fue de 325.19 Kg/cm², el 10% de reemplazo del cemento por vidrio se obtuvo 310.67 Kg/cm², con el 15% de reemplazo del cemento por vidrio fue de 288.35 Kg/cm².

Según (Fajardo & Lopez, 2022) en la investigación denominada "Elaboración de bloques de concreto f'c 75 Kg/cm² adicionando polvo de vidrio de colores reciclado para reducir la emisión de CO2 generado por la producción de cemento" se realizó ensayos a compresión axial para determinar el porcentaje óptimo y posteriormente la realización de los ladrillos de concreto, los porcentajes evaluados fueron 20%, 25% y 30% para un f'c = 210 Kg/cm². Se elaboraron 36 probetas cilíndricas de 4" x 8", a los 7 días el 25% de reemplazo del cemento obtuvo el mayor valor 174.601 Kg/cm², para los 14 días el 25% de reemplazo del cemento fue el mayor valor de los tres porcentajes 214.904 Kg/cm², a los 21 días el 25% de reemplazo del cemento siguió manteniendo la mayor fuerza a compresión 234.352 Kg/cm² y finalmente a los 28 días de curado obtuvo 256.995 Kg/cm². Se determinó según los ensayos que la mejor proporción de vidrio es de 25%.

1.2.3. Locales

Según (Vasquez & Girón, 2019) en la investigación publicada "Análisis de la resistencia del concreto con adición de vidrio pulverizado" se realizó un diseño de mezcla para un f'c= 210 Kg/cm² para un total de 120 testigos cilíndricos de dimensiones 10 cm x 20 cm, los porcentajes utilizados fueron de 0%, 4%, 6% y 8% de reemplazo de vidrio en relación al cemento. El ensayo de resistencia a compresión a los 7 días de curado con 0% de vidrio o también llamado concreto patrón se obtuvo 204.04 Kg/cm², con el reemplazo de 4% se obtuvo 212.39 Kg/cm², con el reemplazo de 6% se obtuvo 219.37 Kg/cm² y con el reemplazo de 8% se obtuvo 224.57 Kg/cm², a los 14 días de curado con 0% de vidrio o también llamado concreto patrón se obtuvo 233.28 Kg/cm², con el reemplazo de 4% se obtuvo 245.68 Kg/cm², con el reemplazo de 6% se obtuvo 253.94 Kg/cm² y con el reemplazo de 8% se obtuvo 263.49 Kg/cm², a los 28 días de curado con 0% de vidrio o también llamado concreto patrón se obtuvo 259.18 Kg/cm², con el reemplazo de 4% se obtuvo 275.01 Kg/cm², con el reemplazo de 6% se obtuvo 287.87 Kg/cm² y con el reemplazo de 8% se obtuvo 304.39 Kg/cm². Para dicha investigación la dosificación con 8% de reemplazo fue la más óptima.

1.3. Bases teóricas

En el presente párrafos de términos vamos a explicar a detalle las características y componentes que van a participar en la elaboración de las mezclas de concreto. Dicha mezcla estará compuesta por pasos dependientes entre sí, los elementos son el cemento portland, los agregados, agua libre de sustancias dañinas y también se utilizará el vidrio molido (VM).

1.3.1. El cemento portland

El cemento es un material creado por la respuesta química de elementos calizos y quebradizos a temperaturas muy altas. Esta nueva sustancia reacciona con el agua y se

endurece al pasar un periodo de tiempo en piedra artificial, ganándose el nombre de cemento hidráulico. Joseph Aspadin, fue un inglés que descubrió el proceso fundamental que permite producir el cemento Portland en 1824. Llamó al cemento Portland porque es similar al cemento endurecido con las canteras en la isla inglesa de Portland. Desde su invención, este cemento se ha establecido como el elemento de construcción elegido, con una amplia gama de usos para sus productos derivados que aún existen en la actualidad (Gómez, 2000).

Se fabrican ocho tipos de cemento Portland y asimismo son utilizados ampliamente en la industria de la construcción. Cada tipo tiene características específicas que lo convierten en el cemento preferido para un conjunto de condiciones de trabajo únicas (Alconz, 2006):

- Tipo I Normal: uso general
- Tipo IA: Se adiciona componentes atrapadores de aire molidos en forma integral con la escoria durante la manufactura.
- Tipo II Moderado: utilizado cuando se requiera un fraguado lento y particularmente en estructuras sólidas de concreto como lo son pilares, apoyos y muros de retención, debido al calor excesivo es propenso a los agrietamientos.
- Tipo IIA: Se adiciona componentes atrapadores de aire entremezclados con la escoria durante la manufactura.
- Tipo III. Alta resistencia temprana: se va a utilizar cuando es indispensable el fraguado rápido y conseguir una alta resistencia en pocas horas.
- Tipo IIIA: cemento portland del Tipo III de alta resistencia temprana con componentes atrapadores de aire entremezclados y molidos con la escoria durante su manufactura.

- Tipo IV. Bajo Calor: Se va a utilizar cuando se requiere un fraguado muy lento y generar muy poco calor, en particular en estructuras de concreto abundante (grandes presas por gravedad) donde debe prevenir el agrietamiento debido al calor.
- Tipo V. Resistencia a los sulfatos: Se va a utilizar cuando existan contactos directos con aguas y suelos alcalinos.

1.3.2. Los agregados

Son empleados en el rubro de la construcción, son derivados de las rocas ígneas, metamórficas y sedimentarias, en las que se conserven las propiedades mecánicas y físicas de la roca madre. Los agregados sean artificiales, naturales, triturados se usan en un gran porcentaje en obras de ingeniería civil, algunas de estas se aplican en rellenos, construcción de filtros en las que es posible la retención de partículas sólidas del agua, así mismo en la fabricación de concretos hidráulicos, utilizados en sub- bases y bases en la línea de carreteras, entre otras (Gómez, 2000)

1.3.3. El Agua para mezcla de concreto

La importancia del agua es significativa porque ella y su relación con el cemento están altamente relacionadas con un amplio número de propiedades del material final que se obtendrá. Por lo general, a medida que se agrega más agua, la mezcla se vuelve más fluida y trabajable, lo que tiene efectos positivos significativos en el proceso de construcción. Sin embargo, a medida que se crea más espacio, la resistencia también comienza a disminuir (NTP 339.088, 2021).

1.3.4. Vidrio molido

La mayor parte de un material como el vidrio está hecho de un fluido con una viscosidad muy alta que parece ser sólido, pero en realidad está hecho de pedernal, cuarzo o

arena. Está formado por una mezcla de óxidos metálicos, con sílice, u óxido de silicio, como componente principal (SiO₄). A pesar de que inicialmente pueda parecer mucho a un cristal, la distinción entre los dos reside en la organización molecular que constituye el cristal, donde los enlaces Si-O se distribuyen de forma errática y sin un patrón claro, haciendo del material un amorfo por definición (Cano & Cruz, 2017)

Desde un punto de vista ambiental, la reutilización tiene más ventajas que el reciclaje porque ahorra energía al permitir un uso más frecuente de un solo contenedor antes de reciclarlo. Los envases de vidrio se pueden reutilizar siguiendo un circuito diferente al de los envases de un solo uso. Para crear nuevos envases con las mismas características que los originales, las botellas de vidrio pueden reciclarse repetidamente. Se entrega un envase retornable al envasador, quien lo limpia y lo vuelve a llenar con el contenido. Este ciclo puede repetirse hasta 20 o 30 veces, según el contenido y la resistencia del vidrio. En la industria del vidrio, los desperdicios de vidrio también se producen en forma de polvo después de un proceso de lavado que forma parte de la fase de producción. Este polvo es desechado y tiene el potencial de convertirse en un proveedor importante para su uso en mezclas de concreto.

1.4. Definiciones conceptuales

1.4.1. Agregado grueso

Se considera al material que queda retenido hasta la malla N° 4 y aquí usualmente se encuentran piedras, gravas o rocas que descomponen y cumplen las dimensiones de retención en el tamiz (Abanto, 2009).

1.4.2. Agregado fino

Los agregados finos se determinan al material como arena o piedra con dimensiones reducidas y pasan por el tamiz 3/8". Pueden ser consideradas las rocas o arenas que han

pasado por un proceso natural de desintegración y que cumplan con las características de dimensiones (Abanto, 2009).

1.4.3. Granulometría

El procedimiento para determinar el tamaño de las partículas se realiza mediante el empleo de una serie de mallas con diferentes aberturas, que funcionan como coladores, denominada "columna de tamices". A través de este ensayo, se va a recopilar datos para el cálculo del módulo de finura del agregado ya sea grueso o fino (Walhoff, 2017).

1.4.4. Tamaño máximo nominal

De acuerdo con la normativa técnica peruana, el tamaño de partícula considerado como el más pequeño es aquel retenido por el tamiz de menor abertura en la serie utilizada. Es importante destacar que este ensayo va a proporcionar datos que se utilizan para determinar el módulo de finura y también en el diseño de mezcla (NTP 400.037, 2018)

1.4.5. Relación A/C

La conexión entre el agua y el cemento desempeña un papel crucial en la formulación del mortero, influyendo en aspectos clave como la resistencia, durabilidad y retracción del concreto. La proporción agua/cemento (a/c) representa el factor distintivo más importante de la tecnología del hormigón, definiendo la resistencia y durabilidad del concreto, junto con los coeficientes de retracción y fluidez (NTP 339.047, 2019).

1.4.6. Slump

Un parámetro esencial en la relación entre el agua y el cemento es determinado mediante un ensayo realizado en la mezcla de concreto fresco para evaluar su fluidez o consistencia, siguiendo los estándares de la normativa peruana vigente. En este ensayo, se introduce la mezcla de concreto en un recipiente de característica troncocónico de metal en

3 capas, cada una de estas capas son sometidas a 25 golpes con una varilla de 5/8". Después de retirar el molde, se mide el slump que experimenta la mezcla de concreto. Además de esto se evalúa la forma en el que el recipiente de hormigón se colapsa al aplicar golpes laterales con la varilla (NTP 339.035, 2009).

1.4.7. Vidrio Sódico – Calcácico

Está hecho principalmente de sodio, sílice y calcio. El Sílice es el componente básico y el calcio le da al vidrio su estabilidad química. Sin calcio, el vidrio se disolvería completamente en reacción con el agua y no sería de utilidad. Esta clase de vidrio es el más fácil de trabajar y el menos costoso.

1.4.8. Fraguado

Aunque se aconseja dejarlo de un día para otro, se debe tener en cuenta que el tiempo de fraguado del específico está entre 4 y 8 horas. Para ello, hay que recordar que el hormigón debe protegerse de la luz solar y de los fuertes vientos por pérdida de agua o secado prematuro (INKA, 2022).

1.4.9. Curado

El propósito del proceso de curado es mantener húmedo el concreto y evitar que se formen grietas durante el proceso de fraguado porque el agua se evapora debido a la alta temperatura de hidratación del proceso de curado. Este curado se puede hacer con agua o con curado químico (NTP 339.183, 2013)

1.4.10. Resistencia a la compresión

Los ingenieros utilizan la resistencia a la compresión como una medida principal de rendimiento al diseñar edificios y otras estructuras. Esta propiedad se evalúa al fracturar probetas cilíndricas de concreto en una máquina de ensayo a compresión axial. La resistencia

a la compresión axial va a calcularse dividiendo un dato de carga de ruptura al fallo por el área de la sección que resiste la misma. Los resultados de los ensayos de resistencia se utilizan principalmente para la elección de un diseño de mezcla si es óptimo, si cumple con las especificaciones mínimas según el factor de resistencia para los cuales ha sido diseñado, la normativa vigente internacional y nacional es la ASTM C39 y NTP 339.034 (Walhoff, 2017).

1.4.11. Vidrio Molido

Se aprecia las propiedades del vidrio molido.

Tabla 1 Características técnicas del vidrio

Prueba	Vidrio
Peso específico	2.22
Densidad aparente (t/m³)	1.34
Contenido de arcilla y polvo fino (%)	0.42
Absorción de agua	0.57

Nota. Adaptado de: Vidrio reciclado como un sustituto parcial del árido fino en hormigón autocompactante, por Esraa & Sherif (2012).

1.5. Formulación del problema

¿Cuál es el comportamiento de la resistencia a compresión axial del concreto f'c= 210 Kg/cm² con el reemplazo del cemento en 9%, 11% y 22% con vidrio molido?

Pastor Ravines A. 25

1.6. Objetivos

1.7. Objetivo General

Determinar la resistencia a la compresión axial del concreto f'c = 210 kg/cm² con el reemplazo del cemento en 9%, 11% y 22% con vidrio molido.

1.8. Objetivos Específicos

Determinar las propiedades físicas y mecánicas de los agregados.

Elaborar un diseño de mezcla utilizando el método de ACI para los distintos porcentajes.

Elaborar testigos con y sin adición de vidrio molido en la mezcla de concreto f'c = 210 Kg/cm², reemplazando al cemento portland.

Determinar y analizar la resistencia a compresión axial del concreto sin adición de vidrio molido y el concreto con reemplazo en 9%, 11% y 22% de vidrio molido, a los 7,14 y 28 días de curado.

1.9. Hipótesis

1.10. Hipótesis general

El reemplazo parcial de cemento en 9%, 11% y 22% influye en el incremento de resistencia a la compresión axial planteada de f'c= 210 kg/cm² hasta un 15%.

1.11. Justificación

Según (Hernández & Mendoza, 2018) menciona que es necesario que justifiquemos el estudio que pretendemos realizar, basándonos en los objetivos y las preguntas de la investigación, lo cual implica exponer las razones por las cuales es importante o necesario llevarlo a cabo (el para qué del estudio) y los beneficios que se derivan de él.

La justificación de la investigación radica en su capacidad para contribuir a futuros diseños de mezclas utilizando una técnica alternativa ecológica. Adicionalmente, existe la

posibilidad de incrementar la resistencia a la compresión en comparación con el concreto estándar, esto aportará tanto un valor teórico como ambiental, ya que tendrá como beneficio en los estudiantes universitarios y en personas dedicados al rubro de la construcción como un método de reemplazo y aplicación.

1.12. Limitaciones

No se tuvo limitaciones para la realización de la investigación.

Pastor Ravines A. Pág. 27

CAPÍTULO II: METODOLOGÍA

Tipo de investigación 2.1.

2.1.1. Según el propósito

Desde la perspectiva del objetivo de la investigación es de tipo aplicada, puesto que

nos va a servir como una alternativa de elaboración de concreto 210 kg/cm² con un material

reciclable como es el vidrio molido y mejorar el impacto que genera este material en el

medioambiente.

2.1.2. Según el diseño

La investigación fue cuantitativa, de diseño experimental de tipo exploratoria.

De diseño experimental porque ha sido manipulada por el investigador.

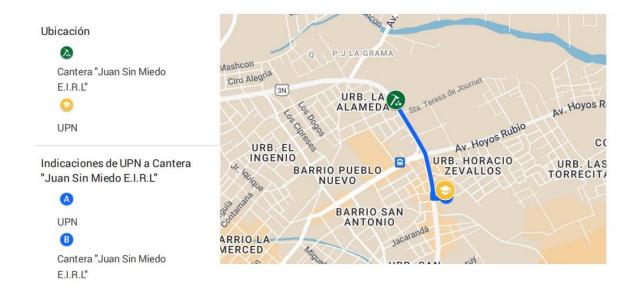
De tipo exploratoria porque tuvo el objetivo de analizar información específica la

cual no ha sido profundamente estudiada.

2.1.3. Diseño de investigación

El presente estudio de investigación se realizó en el Distrito de Cajamarca, Provincia

de Cajamarca y Departamento de Cajamarca en los laboratorios de la Universidad Privada


del Norte donde las variables independientes inciden en las variables dependientes y cómo

influyen.

Figura 1

Croquis de Ubicación

Nota. Fuente: Elaboración propia del autor, 2023.

Tabla 2

Coordenadas de la cantera

COORDENADAS UTM					
Zona	17				
Hemisferio S					
Norte	9209377.70				
Este	775182.60				
Elevación 2696.97 m					
Nota. Fuente: Elaboración propia del autor, 2023.					

Pastor Ravines A. 29

Si se modifica la proporción de cemento en una mezcla, como el concreto simple con una resistencia de 210 kg/cm², mediante el reemplazo o sustitución del Vidrio Molido (VM), este resultado será evaluado en conformidad con los estándares establecidos en Perú, así como con un concreto convencional específico.

El diseño de investigación actual se basa en un enfoque cuasi experimental con un grupo de control, se presenta a detalle en la siguiente tabla:

Tabla 3Diseño experimental para la fabricación de los testigos de concreto.

GE (0)	X0: Concreto f'c= 210 kg/cm ² sin utilizar vidrio molido	O1 (7d)	X0: Concreto f'c= 210 kg/cm² sin utilizar vidrio molido	O2 (14d)	X0: Concreto f'c= 210 kg/cm² sin utilizar vidrio molido	O3 (28d)	X0: Concreto f'c= 210 kg/cm² sin utilizar vidrio molido
GE (1)	X1: Concreto f'c= 210 kg/cm ² con adición de VM en 9%	O1 (7d)	X1: Concreto f'c= 210 kg/cm ² con adición de VM en 9%	O2 (14d)	X1: Concreto f'c= 210 kg/cm ² con adición de VM en 9%	O3 (28d)	X1: Concreto f'c= 210 kg/cm² con adición de VM en 9%
GE (2)	X2: Concreto f'c= 210 kg/cm ² con adición de VM en 11%	O1 (7d)	X2: Concreto f'c= 210 kg/cm ² con adición de VM en 11%	O2 (14d)	X2: Concreto f'c= 210 kg/cm ² con adición de VM en 11%	O3 (28d)	X2: Concreto f'c= 210 kg/cm² con adición de VM en 11%
GE (3)	X3: Concreto f'c= 210 kg/cm ² con adición de VM en 22%	O1 (7d)	X3: Concreto f'c= 210 kg/cm² con adición de VM en 22%	O2 (14d)	X3: Concreto f'c= 210 kg/cm² con adición de VM en 22%	O3 (28d)	X3: Concreto f'c= 210 kg/cm² con adición de VM en 22%

Nota. Fuente: Elaboración propia del autor, 2023.

Pastor Ravines A.

Pag.

30

Donde:

GE: Grupo experimental.

O1-2-3: Medición

X1: Concreto f'c= 210 kg/cm² reemplazando 9% VM.

X2: Concreto f'c= 210 kg/cm² reemplazando 11% VM.

X3: Concreto f'c= 210 kg/cm² reemplazando 22% VM.

2.2. Variables

2.2.1. Reemplazo de cemento con vidrio molido

En cuanto al contenido alto de sílice en su estado amorfo, el vidrio puede comportarse como un material puzolánico cuando es molido y es un indicador interesante para su reutilización, así mismo ser mezclado con el cemento portland (Trezza & Rahhal, 2018)

2.2.2. Resistencia a la compresión axial

La resistencia a compresión axial del concreto es un fenómeno de aplastamiento que ocurre de manera frecuente en todos los materiales utilizados para la elaboración de estructuras, además nos brinda información de las propiedades mecánicas del material y de su comportamiento (Hernandez et al., 2018)

El procedimiento implica someter a los cilindros de prueba a una carga de compresión axial a una velocidad preestablecida hasta que se produzca la falla. La resistencia a la compresión del cilindro se calcula dividiendo la carga máxima alcanzada durante el ensayo por el área de la sección transversal del testigo cilíndrico (NTP 339.034, 2015)

Tabla 4Clasificación de variables.

Clasificación						
Variables	Relación	Naturaleza	Escala de medida	Dimensión	Formas de medida	
Resistencia a la compresión	Dependiente	Cuantitativa Continua	Razón	Multidimensional	Indirecta	
Reemplazo de cemento con vidrio molido	Independiente	Cuantitativa Continua	Razón	Adimensional	Indirecta	

Nota. Fuente: Elaboración propia del autor, 2023.

Tabla 5Matriz de operacionalización de la variable dependiente.

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición	Instrumento
V.D.: Resistencia a la compresión	Es la capacidad del concreto a resistir un fenómeno de aplastamiento que se ve comúnmente en todos los materiales que se utilizan para la elaboración de estructuras, además nos brinda información de las propiedades mecánicas del material y de su comportamiento (Hernandez et al., 2018)	El método consiste en aplicar una carga de compresión axial a los testigos cilíndricos a una velocidad que es encontrada en un rango prescrito hasta la falla. La resistencia a la compresión del testigo será calculada por la división de la carga máxima que es alcanzada durante el ensayo, entre el área de la sección transversal del espécimen (NTP 339.034, 2015).	Caracterización de los agregados Diseño de mezcla Resistencia a la compresión	*Propiedades Físicas. *Contenido de humedad. *Absorción. *Módulo de Finura. *Peso unitario f'c= 210 Kg/cm ²	%h, Abs., m.f., TMN, Pu, Pe, Kg.	Formato guías de observación (Protocolos)

Nota. Fuente: Elaboración propia del autor, 2023.

Tabla 6Matriz de operacionalización de la variable independiente.

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición	Instrumento
V.I.: Reemplazo de cemento con vidrio molido	Se estima la posibilidad del vidrio molido como sustituto en un cierto porcentaje del cemento, a partir de la capacidad puzolánica del vidrio finalmente triturado, debido a su disolución en el medio alcalino durante la hidratación del conglomerante, con posibilidad de desarrollar reacciones similares a las de los silicatos cálcicos del cemento (Flores et al., 2018).	En cuanto al contenido alto de sílice en su estado amorfo, el vidrio puede comportarse como un material puzolánico cuando es molido y es un indicador interesante para su reutilización, así mismo ser mezclado con el cemento portland. (Trezza & Rahhal, 2018). Para la realización del diseño de concreto se reemplazará el cemento por vidrio molido reciclado en 9%, 11% y 22%. Luego se elegirá el porcentaje que aporte la mayor resistencia a compresión.	-	9%, 11% y 22%	Adimensional	-

Nota. Fuente: Elaboración propia del autor, 2023.

2.3. Población y muestra

2.3.1. Población

Según (Hernández & Mendoza, 2018) es el conjunto de todos los casos que concuerdan con una serie de especificaciones, el proceso para determinar la unidad de muestreo y/o análisis van a delimitar a la población o universo.

La población en el trabajo de investigación está conformada por 72 testigos de concreto para un f'c = 210 kg/cm², que son elaborados en los laboratorios de la Universidad Privada del Norte en la ciudad de Cajamarca, para el año 2023.

2.3.2. Muestra

En la (NTP 339.183, 2013) establece que los especímenes cilíndricos a elaborar como mínimo serán de 3, para la presente investigación se requirió 6 testigos cilíndricos y según la nota 8 indica que generalmente las edades de ensayo son a los 7 días y 28 días para el caso del cemento portland tipo 1, en nuestro caso aplicaremos el ensayo a los días 7, 14 y 28 días de curado.

2.3.3. Técnica de muestreo

Se optó por utilizar un enfoque no probabilístico debido a la necesidad de determinar las mezclas de concreto con porcentajes específicos de reemplazo de vidrio molido (VM).

2.3.4. Tamaño de muestra

La muestra está compuesta por 18 y 54 testigos de concreto entre el convencional y con el reemplazo parcial de vidrio molido, en porcentajes de 9%, 11% y 22% respectivamente, el número total de testigos de concreto será de 72 unidades con unas dimensiones de tamaño muestral de 6" x 12".

Tabla 7 Ensayos de resistencia a compresión-testigos patrón y testigos con adición de partículas de VM.

Edades	Sin Adición	9%	11%	22%	Sub Total
7 días	6	6	6	6	24
14 días	6	6	6	6	24
28 días	6	6	6	6	24
	72				

Nota. Fuente: Elaboración propia del autor, 2023.

2.4. Técnicas, instrumentos y métodos

2.4.1. Técnicas de recolección de datos

El momento en el que se utilizan los instrumentos de medición y recopilan los datos brinda al investigador la oportunidad de comparar el trabajo conceptual y la planificación con los hechos observados (Hernández & Mendoza, 2018).

Se empleará la ficha de observación directa, de este modo nos permite ser más metódicos para cumplir con la recolección de datos teniendo una inspección visual de los ensayos realizados.

2.4.2. Instrumentos de recolección de datos

Tanto las variables independientes como las dependientes de esta investigación serán analizadas y evaluadas en los laboratorios especializados de la facultad de ingeniería, especialidad de ingeniería civil siguiendo los protocolos y guías de observación establecidos para llevar a cabo los ensayos correspondientes para la presente investigación de acuerdo con las Normas Técnicas Peruanas (NTP).

Tabla 8 Técnicas de recolección de datos e instrumentos.

Técnicas y recolección de datos	Instrumentos	Fuente
Ensayo de contenido de humedad		NTP 399.127
Ensayo de gravedad específica		NTP 400.022
Ensayo de peso específico	Formatos de ensayos	NTP 400.021
Ensayo de peso unitario	estandarizados y validados.	NTP 400.017
Ensayo de granulometría		NTP 400.012
Diseño de mezcla	Equipos solibrodos	ACI 211.1
Ensayo de resistencia a la compresión axial	Equipos calibrados	NTP 339.034

Nota. Fuente: Elaboración propia del autor, 2023.

2.4.3. Validación del instrumento de recolección de datos

La validación del instrumento de recolección será con una firma y/o sello en el protocolo por parte del ingeniero encargado de laboratorio después de haber revisado cada ensayo y los valores correspondientes, dando conformidad de la información entregada, así mismo por el asesor y el tesista.

2.4.4. Análisis de datos

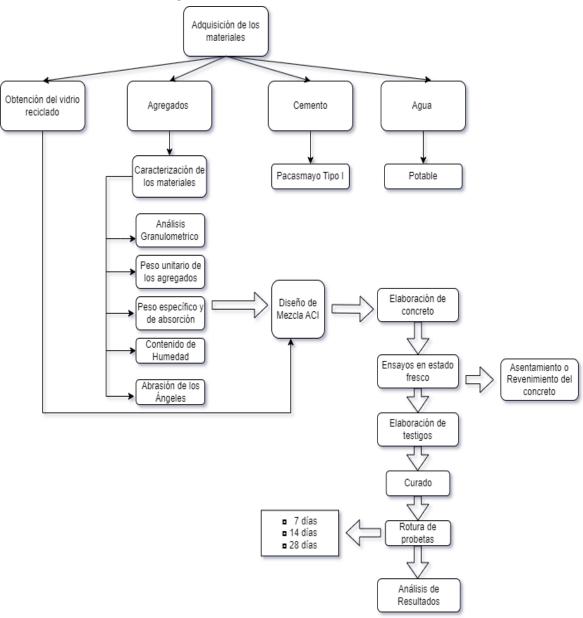
Los resultados obtenidos del ensayo de los especímenes de concreto serán analizados por la estadística descriptiva en el cual existen 4 etapas: recolección, recuento, presentación, síntesis y finalmente la etapa del análisis de la información y la estadística inductiva en la cual con la información sacada de las probetas cilíndricas obtendremos conclusiones del presente trabajo.

Instrumento de análisis de datos

Para el análisis de datos que fueron recogidos en los protocolos de laboratorio de concreto, se utilizará el software Microsoft Excel 2016 para la comprobación de la hipótesis planteada.

2.5. Aspectos éticos

La presente investigación tiene en cuenta lo explicado en el Código de Ética del Investigador Científico UPN, en el cual el investigador realiza un trabajo original, respetando la propiedad intelectual de los autores, citando adecuadamente con la finalidad de fortalecer una cultura de principios, valores y responsabilidad durante todo el proceso de investigación, de esta manera salvaguardamos la integridad de todos.



2.6. Procedimiento

Fuente: Elaboración propia del autor, 2023.

Figura 2

Procedimiento de la investigación

Adquisición de la materia prima

El vidrio molido es obtenido mediante la Empresa Internacional Blasting Expert Inc.

Los agregados tanto fino como grueso son provenientes de la cantera "Agregados Juan Sin Miedo E.I.R.L", el cemento fue de la marca Pacasmayo Tipo I (saco color verde), el agua será extraída de las conexiones existentes en los laboratorios de concreto de la universidad.

Caracterización de los materiales

Se realiza el cuarteo para la obtención de muestras representativas y proceder con los ensayos de laboratorio:

Granulometría en gruesos y finos: La norma (NTP 400.012, 2014) nos indica que la obtención de muestras se realizará por medio del cuarteo y recomienda que el agregado esté completamente mezclado y con una humedad adecuada para evitar una posible pérdida y segregación de finos, el orden para colocar los tamices será mediante el tamaño de la abertura en forma decreciente, se realiza el zarandeo o agitador de tamices de forma manual, el periodo de tiempo aproximado es de 10 minutos por tipo de agregado. Para encontrar la masa de la muestra representativa la cual va a ser retenida en cada tamiz al zarandear, se debe considerar que antes del ensayo se realiza el pesado de los tamices individualmente, luego pesar los tamices con la muestra de agregado retenido y finalmente restaremos el peso de cada tamiz para obtener la masa retenida en cada tamiz. La norma (ASTM C33, 2003) especifica que su módulo de finura del agregado fino no debe ser 2.3 < MF > 3.1.

Ensayo de contenido de humedad: la norma (NTP 339.127, 2019) define como una porción porcentual entre la fase líquida y sólida del suelo. Registrar la masa de la tara

debidamente seco y limpio, en caso se tenga una tapa deberá ser usada luego pesar la muestra del material húmedo. Colocar un recipiente con el material húmedo en el horno y dejarlo por 24 horas a 105 °C, retirar del horno y pesar la muestra seca en el recipiente, luego de ello determinar el peso del agua, el peso de la muestra seca, el contenido de humedad de las 3 taras ingresadas, finalmente calcular el promedio del contenido de húmedas de las muestras 1, 2 y 3.

El ensayo de peso específico y absorción del agregado grueso, según la (NTP 400.021, 2013) se realiza para determinar el peso unitario seco, el peso unitario saturado seco superficial, el peso unitario aparente y la absorción del agregado grueso. Estos valores se utilizan en el cálculo y corrección de diseños de mezcla. El procedimiento comienza secando la muestra se encuentra en peso constante a una temperatura determinada de 110°C ± 5°C, luego a esto se coloca el agregado en un entorno fresco y bien ventilado para que se enfríe a una temperatura cómoda para el tacto humano, lo cual suele tomar alrededor de 25 a 30 minutos; a continuación, sumergimos la muestra en agua a temperatura ambiente durante un tiempo de 24 horas; después de eso, retiramos la muestra saturada y la rodamos sobre un paño grande con propiedad de absorción para eliminar cualquier rastro de agua visible, aunque la superficie de las partículas pueda parecer ligeramente humedad. Luego, separamos la muestra en fragmentos más grandes y nos aseguramos de evitar la evaporación durante el proceso de secado de la superficie. Se registra el peso de la muestra en condición de saturado superficialmente seca y se coloca inmediatamente en la cesta de alambre para determinar su peso en agua a una temperatura entre 23°C ± 1.7 °C. Finalmente, se procede a secar la muestra en el horno a una temperatura de 110°C ± 5°C hasta alcanzar un peso constante, y finalmente se deja enfriar a una temperatura ambiente.

Peso específico y Absorción del Agregado Fino: según la (NTP 400.022, 2013) el ensayo se aplicará para la determinación del peso específico seco y peso específico saturado con superficie seca, el peso específico aparente y la absorción del agregado fino, a fin de usar estos valores en el cálculo y corrección de diseños de mezclas. El procedimiento comienza tomando una muestra de 1 kg de material y secándola en un horno a una temperatura de 100 ± 10°C durante un tiempo promedio de 24 horas. Después de eso, se deja airear durante 25-30 minutos. Luego, el material se coloca en un recipiente y se cubre con agua, dejándolo reposar durante 24 horas. Después de ese tiempo, se retira el material utilizando el proceso de decantación se extiende sobre una superficie plana que es expuesta a una corriente ligeramente suave de aire tibio, removiendo con frecuencia para garantizar un secado uniforme, en este ensayo se puede utilizar un secador de cabello. Este proceso se repite hasta que los granos del agregado no se adhieran entre sí.

A continuación, se coloca la muestra en un recipiente cónico y se procede a apisonar suavemente 25 veces con el pisón pequeño de metal. Luego se levanta el recipiente verticalmente. Se repite esta operación entre un tiempo promedio de 13 a 16 minutos durante el proceso de secado y con el recipiente cónico hasta que el cono con agregado en su interior se desintegre suavemente, lo cual es un indicador que el agregado fino está en estado saturado superficialmente seco. La desintegración debe ocurrir a partir del segundo intento. En caso de que ocurra en el primer intento, se debe colocar el agregado en un recipiente con agua y dejarlo reposar aproximadamente 60 minutos, y luego repetir el proceso de secado hasta que se produzca la desintegración. Una vez que el agregado se encuentra en este estado, se toman 500 gramos y se introducen en un recipiente con agua hasta aproximadamente el 90% de su capacidad para eliminar el aire atrapado. Se agita constantemente y se coloca en un baño de agua a una temperatura entre 21°C y 25°C durante 60 minutos. Luego se llena el

frasco hasta su totalidad (100%), se retira el agregado fino del frasco mediante el proceso de decantación, y se seca a peso constante en un horno a una temperatura de 110°C ± 10°C. Posteriormente, se enfría a una temperatura ambiente durante 20 a 25 minutos y se procede a pesar en la balanza. Para obtener el peso del recipiente más agua, se llena el mismo recipiente utilizando en el ensayo con agua hasta el 90% de su capacidad. Luego se coloca en un baño María a una temperatura constante y se vierte agua a la misma temperatura hasta alcanzar el 100% de capacidad y se pesa.

Peso unitario de los agregados: según (NTP 400.017, 2011) se realiza para determinar el peso suelto unitario y compactado, así como los cálculos de vacíos en los agregados, basados en la misma determinación. Este método se utiliza para obtener el valor del peso unitario en algunos métodos de diseño de mezclas de hormigón.

Para el peso compactado unitario, se procede a colocar el agregado en el recipiente en tres capas de aproximadamente igual medida, hasta llenarlo completamente. Cada capa se nivela con la mano y se apisona con 25 golpes de una varilla de 5/8", distribuidos de manera uniforme en cada capa, utilizando el extremo semiesférico de la varilla. Al realizar el proceso de apisonado en la primera capa, se tiene que evitar que la varilla golpee el fondo del recipiente de metal. En las capas superiore 2 y 3, se tendrá que ejercer una fuerza adecuada para que la varilla atraviese sólo la capa correspondiente. Una vez que el recipiente está lleno, se lleva a cabo el método de enrase de superficie con la varilla, utilizándola como regla y generando movimientos uniformes horizontalmente, y se lleva a la balanza a determinar el peso medidos en kilogramos. Para el peso unitario del agregado suelto, se sigue el mismo procedimiento descrito anteriormente, pero con la diferencia que el método de apisonado no será incluido, y se llevará a pesar en la balanza expresada en kilogramos.

Abrasión de los ángeles: según (NTP 400.019, 2014) el ensayo determina el desgaste, impacto y trituración, en un tambor rotatorio de acero que contiene un número especificado de esferas de acero según la gradación de nuestro material o agregado. Inicialmente se procede a colocar la muestra de ensayo de agregado en la máquina de Abrasión de Los Ángeles y programarla para hacerla girar a una velocidad entre 29 a 33 revoluciones por minuto por 500 revoluciones. Posteriormente y pasado el tiempo de ensayo, efectuamos el retiro del material ensayado y con ayuda del tamiz N° 12 procedemos a tamizar.

Luego de este proceso lavamos cuidadosamente el material que fue más grueso que el tamiz N° 12 y finalmente llevamos a secar al horno a 110 °C ± 5 °C, determinamos la masa con una aproximación de la balanza a 1 gr. Como nota importante la norma nos dice que si el agregado está esencialmente libre de coberturas y polvo el requisito de lavado puede ser soslayado, pero siempre se requiere secar antes del ensayo.

Procedimiento para el diseño de mezclas (ACI 211.1, 2002): Para iniciar con el diseño de mezcla, se debe tener los siguientes datos de los ensayos elaborados previamente que ya fueron explicados a detalle. El procedimiento de diseño de mezclas de concreto se resume en 09 pasos que son: 1)Determinación de la resistencia necesaria, 2) Escoger el slump o revenimiento, 3) Seleccionar el tamaño máximo nominal del agregado grueso, 4) Calcular la cantidad de agua de mezcla y el contenido de aire, 5) Elegir la relación adecuada de a/c, 6) Cálculo del contenido de cemento, 7) Evaluación del contenido de agregado grueso, 8) Evaluación del contenido de agregado fino y, por último paso, 9) Realización del ajuste por humedad del agregado.

Ensayo de Slump o Revenimiento del concreto: este ensayo consiste en rellenar el molde troncocónico de material metálico con dimensiones normalizadas (NTP 339.035, 2009) en tres capas apisonadas con 25 golpes de varilla y luego de retirar el molde se debe

medir el asentamiento que efectúa la masa de hormigón colocada en el interior del molde.

La medición efectuada se complementa con la observación del derrumbamiento del cono de concreto mediante golpes laterales con la varilla de 5/8". De este modo, la medida del asentamiento permite determinar principalmente la fluidez y la consistencia del concreto,

que se resume al término de trabajabilidad del concreto.

Elaboración de testigos: la (NTP 339.183, 2013) indica el procedimiento en el cual elegimos los moldes de 6"x 12", se llena los moldes en dos capas de igual altura y con la varilla lisa de 3/8" se compacta 25 veces, luego con el mazo de goma efectuamos 15 golpes en todo el contorno del molde y finalmente se alisa hasta quedar uniforme y sin excesos de mezcla.

Curado de las probetas: Después de haber transcurrido 24 horas, procedemos a desencofrar los testigos cilíndricos, se identifica y codifica cada espécimen para reconocer que porcentaje contiene de vidrio y fecha de elaboración, y se introduce a una poza de curado.

Rotura de los testigos: según la (NTP 339.034, 2015) consiste en aplicar una carga axial a compresión a los especímenes de concreto cilíndricos a una velocidad que se encuentre dentro del rango especificado antes que ocurra la falla. Este esfuerzo a compresión está calculado por el coeficiente de la máxima carga obtenida durante el ensayo entre toda el área de la sección transversal del testigo.

Pastor Ravines A.

45

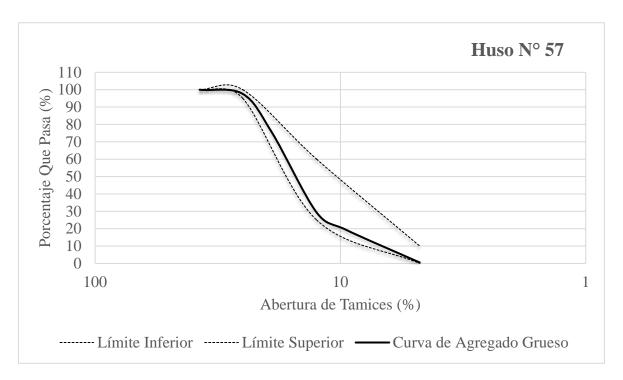
CAPÍTULO III: RESULTADOS

3.1. Resultados de los ensayos físicos y mecánicos de los agregados.

3.1.1. Ensayos de granulometría

Tabla 9Ensayo granulométrico del agregado grueso.

N °	TAM	ΊΖ	PESO RETENID O	% RETENID O (%)	% RETENIDO ACUMULA	% PASANTE ACUMULAD O (%)	Hus Granulo (Depend Revisar ASTM	ométrico le TMN, Norma
	(pulg)	(mm)	(g)	3 (73)	DO (%)	3 (74)	Límite Superio r	Límite Inferio r
1	2 ½"	63.5						
2	2"	50.8						
1	1 ½"	38.1	0.0	0.00	0.00	100	100	100
2	1"	25.0	122.0	2.44	2.44	98	95	100
3	3/4"	19.0	1116.0	22.32	24.76	75	-	-
4	1/2"	12.5	2295.8	45.92	70.68	29	25	60
5	3/8"	9.5	496.0	9.92	80.60	19	-	-
6	N° 4	4.8	943.7	18.87	99.47	1	0	10
7	Bandej a	-	26.5	0.53	100.00	0		
	TOTAL		5000.0		·	·		


Nota. Datos del ensayo granulometría de agregado grueso, se utilizó el HUSO 57.

Pastor Ravines A.

Pag.

46

Figura 3Curva granulométrica de agregado grueso.

Fuente: Elaboración propia del autor, 2023.

Pastor Ravines A.

Pag.

47

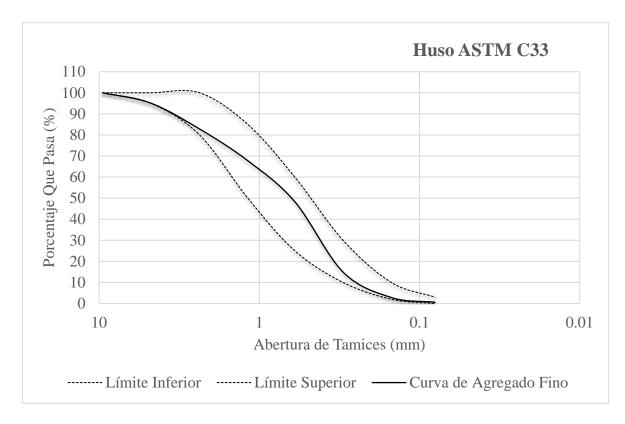
Tabla 10Ensayo granulométrico del agregado fino.

N •			PESO RETENI DO	% RETENI	% RETENIDO ACUMULA	% PASANTE ACUMULA	Granul (Según	lsos lométric o n norma M C33)
	(pulg)	(m m)	(g)	DO (%)	DO (%)	DO (%)	Límit e Inferi or	Límite Superi or
1	N° 4	4.75	74.20	5.00	5.00	95	95	100
2	N° 8	2.36	183.10	12.20	17.20	83	80	100
3	N°10	2.00					-	-
4	N° 16	1.18	225.40	15.10	32.30	68	50	85
5	N° 30	0.60	291.40	19.50	51.80	48	25	60
6	N° 50	0.30	500.10	33.40	85.20	15	10	30
7	N° 100	0.15	180.40	12.00	97.20	3	2	10
8	N° 200	0.07 5	34.00	2.30	99.50	1	0	3
9	Bande ja	0.00	8.60	0.60	100.00	0	-	-
	TOTAI		1497.20					

Nota. Datos del ensayo granulometría de agregado grueso, se utilizó los HUSOS ASTM C33.

$$M.F = \frac{(\Sigma\% \, Retenido \, acumulado \, en \, las \, mallas \, N^{\circ}4,8,16,30,50 \, y \, 100)}{100}$$

Módulo de Finura = 2.88


Pastor Ravines A.

Pag.

48

Tabla 11Curva granulométrica del agregado fino.

Nota. El gráfico representa la curva granulométrica y los límites inferiores y superiores según norma.

Pág.

3.1.2. Ensayo de contenido de humedad de los agregados

Tabla 12

Ensayo de contenido de humedad del agregado fino.

ID	DESCRIPCIÓN	UND	1	2	3
A	Identificación del recipiente o tara	-	T-2	N°08	T-4
В	Peso del recipiente	g	72.20	66.10	79.70
C	Recipiente + material natural	g	888.40	790.80	884.30
D	Recipiente + material seco	g	843.20	750.00	840.60
E	Peso del material húmedo $Wmh = C - B$	g	816.20	724.70	804.60
F	Peso del material seco $Ws = D - B$	g	771.00	683.90	760.90
W%	Porcentaje de humedad	%	5.86	5.97	5.74
Н	PROMEDIO PORCENTAJE DE HUMEDAD	%		5.86	

$$W\% = \frac{Wmh - Ws}{Ws} * 100$$

Tabla 13

Ensayo de contenido de humedad del agregado grueso.

ID	DESCRIPCIÓN	UND	1	2	3
A	Identificación del recipiente o tara	-	T-5	N°16	T-13
В	Peso del recipiente	g	81.20	88.20	153.20
C	Recipiente + material natural	g	684.70	683.50	925.10

D	Recipiente + material seco	g	670.00	667.50	907.40
${f E}$	Peso del material húmedo $Wmh = C - B$	g	603.50	595.30	771.90
F	Peso del material seco $Ws = D - B$	g	588.80	579.30	754.20
W%	Porcentaje de humedad	%	2.50	2.76	2.35
Н	PROMEDIO PORCENTAJE DE HUMEDAD	%		2.54	

Nota. Fuente: Elaboración propia del autor, 2023.

$$W\% = \frac{Wmh - Ws}{Ws} * 100$$

3.1.3. Ensayo de peso unitario de los agregados

Tabla 14

Ensayo de peso unitario del agregado fino.

AGREGADO FINO		\mathbf{M}	TAMAÑO MÁX. NOMINAL		VOLUMEN MOLDE	0.0094
ID	DESCRIPCIÓN	UND	1	2	3	PROMEDIO
A	Peso del Molde + AF Compactado	Kg	22.04	22.06	22.08	22.06
В	Peso del Molde	Kg	5.40	5.40	5.40	5.40
C	Peso del AF Compactado, C = A - B	Kg	16.64	16.66	16.68	16.66
D	PESO UNITARIO COMPACTADO D= C / Vol.Molde	Kg/m ³	1770.21	1772.34	1774.47	1772.34
E	Peso del Molde + AF Suelto	Kg	21.18	21.04	21.00	21.07

F	Peso del AF Suelto, $\mathbf{F} = \mathbf{E} - \mathbf{B}$	Kg	15.78	15.64	15.60	15.67
G	PESO UNITARIO SUELTO, G = F / Vol. Molde	Kg/m ³	1678.72	1663.83	1659.57	1667.38

Nota. Fuente: Elaboración propia del autor, 2023

Tabla 15Ensayo de peso unitario del agregado grueso

AGREGADO GRUESO		M	TAMAÑO MÁX. NOMINAL		VOLUMEN MOLDE	0.0093
ID	DESCRIPCIÓN	UND	1	2	3	PROMEDIO
A	Peso del Molde + AF Compactado	Kg	18.60	18.46	18.76	18.61
В	Peso del Molde	Kg	4.78	4.78	4.78	4.78
C	Peso del AF Compactado, C = A - B	Kg	13.82	13.68	13.98	13.83
D	PESO UNITARIO COMPACTADO D= C / Vol.Molde	Kg/m ³	1486.02	1470.97	1503.23	1486.74
E	Peso del Molde + AF Suelto	Kg	17.36	17.46	17.38	17.40
F	Peso del AF Suelto, $\mathbf{F} = \mathbf{E} - \mathbf{B}$	Kg	12.58	12.68	12.60	12.62
G	PESO UNITARIO SUELTO, G = F / Vol. Molde	Kg/m ³	1352.69	1363.44	1354.84	1356.99

3.1.4. Ensayo de gravedad específica y absorción del agregado fino

Tabla 16Ensayo de gravedad específica y absorción del agregado fino

ID	DESCRIPCIÓN	UND	1	2	PROMEDIO
A	Peso al aire de la muestra desecada.	g	492.20	492.40	N.A.
В	Peso del picnómetro aforado lleno de agua.	g	1301.70	1306.00	N.A.
C	Peso total del picnómetro aforado con la muestra y lleno de agua.	g	1618.00	1618.00	N.A.
D	Peso de la Muestra Saturada Superficie Seca.	g	500.10	500.00	N.A.
E	Peso especifíco aparente (Seco) $P. e. a(Seco) = \frac{A}{B + S - C}$ Peso especifíco aparente (SSS)	g/cm ³	2.68	2.62	2.65
\mathbf{F}	Peso especifíco aparente (SSS) $P. e. a(SSS) = \frac{S}{B + S - C}$	g/cm ³	2.72	2.66	2.69
G	Peso específíco nominal (Seco) $P.e.n(Seco) = \frac{A}{B + A - C}$	g/cm ³	2.80	2.73	2.76
Н	Absorción $Abs (\%) = \frac{S-A}{A} * 100$	(%)	1.58	1.52	1.55

3.1.5. Ensayo de peso específico y absorción del agregado grueso

Tabla 17Ensayo de peso específico y absorción del agregado grueso.

ID	DESCRIPCIÓN	UND	1	2	PROMEDIO
A	Peso en el aire de la muestra seca	g	1964.70	1979.50	N.A.
В	Peso en el aire de la muestra saturada con superficie seca	g	2022.10	2027.20	N.A.
C	Peso sumergido en agua de la muestra saturada. (Utilizando canasta)	g	1268.70	1232.90	N.A.
D	Peso específico aparente (Seco) $P. e. a(Seco) = \frac{A}{B - C}$	g/cm ³	2.61	2.49	2.55
E	Peso específico aparente (SSS) $P. e. a(SSS) = \frac{B}{B - C}$	g/cm ³	2.68	2.55	2.62
F	Peso específico nominal $P.e.n(SSS) = \frac{A}{A - C}$	g/cm ³	2.82	2.65	2.74
G	Absorción $Abs (\%) = \frac{B-A}{A} * 100$	g/cm ³	2.92	2.41	2.67

3.1.6. Ensayo de abrasión de los ángeles

Tabla 18Ensayo abrasión de los ángeles

	DESGASTE A LA ABRASIÓN		
ID	DESCRIPCIÓN	UND	1
${f A}$	Peso muestra total	g	5001.1
В	Peso retenido en tamiz Nº 12	g	3556.1
D	Desgaste a la abrasión Los Ángeles $D = (A - B) * 100 / A$	%	29%

Nota. Fuente: Elaboración propia del autor, 2023

3.2. Diseño de la mezcla de concreto de control

Tabla 19Datos para el diseño de mezcla de concreto

CARACTERÍSTICAS - DATOS		
Peso específico de masa agregado fino	2.69	g/cm³
Peso específico de masa agregado grueso	2.74	g/cm³
Contenido de humedad del agregado fino	5.86	%
Contenido de humedad del agregado grueso	2.54	%
Absorción del AF	1.55	%
Absorción del AG	2.67	%
Módulo de finura agregado fino	2.88	
Peso seco compactado del agregado fino	1772.34	Kg/m^3
Peso seco compactado del agregado grueso	1486.74	Kg/m^3
Tamaño máximo nominal del agregado grueso	3/4"	
Peso específico del cemento	3.15	g/cm³

Tabla 20

Determinación de la resistencia promedio

SIN REGISTI	ROS			
f'c	f'cr	f'c	f'cr	
< 210	70	0	70	Kg/cm²
210 a 350	84	210	294	Kg/cm²
> 350	98	0	98	Kg/cm²

Nota. Fuente: Elaboración propia del autor, 2023

Selección del Tamaño Máximo Nominal A.G:

• Tamaño máximo nominal del agregado grueso – 3/4"

Selección del Asentamiento o Slump:

Tabla 21

Slump

DENSIDAD	ASENTAMIENTO (pulg.)
Seca	0" a 2"
Plástica	3" a 4"
Fluida	>5 "

Tabla 22
Valores del volumen unitario del agua.

Slump (pulg.)	Agua			-	los tamañ y consister			ninales
	3/8	1/2	3/4	1	1 1/2	2	3	6
	C	oncreto	SIN aire	incorpo	rado			
1 a 2	207	199	190	179	166	154	130	113
3 a 4	228	216	205	193	181	169	145	124
6 a 7	243	228	216	202	190	178	160	-
Aire atrapado aproximado (%)	3	2.5	2	1.5	1	0.5	0.3	0.2
	Concreto CON aire incorporado							
1 a 2	181	175	168	160	150	142	122	107
3 a 4	202	193	184	175	165	157	133	119
6 a 7	216	205	197	174	174	166	154	-
Promedio reco	mendad	o de aire	a inclu	ir según	el tipo de o	exposici	ón (%)	
Exposición Ligera	4.5	4	3.5	3	2.5	2	1.5	1
Exposición Moderada	6	5.5	5	4.5	4.5	4	3.5	3
Exposición Severa	7.5	7	6	6	5.5	5	4.5	4

Nota. Extraído de ACI 211.1-91 – Tabla 6.3.3: Diseño de mezclas de concreto – IMCYC

Contenido de aire

• 2% de contenido de aire.

Tabla 23Relación Agua / Cemento de acuerdo con el peso

Resistencia a la	Relación A/C de acuerdo con el peso				
Compresión a —					
los 28 días (Kgf/cm²)	Concreto SIN aire incluido	Concreto Con aire incluido			
140	0.82	0.74			
210	0.68	0.59			
280	0.57	0.48			
350	0.48	0.4			
420	0.41	-			

Nota. Extraído ACI 211.1 – 91 – Tabla 6.3.4 (a); Diseño de mezclas de concreto – IMCYC

Tabla 24Interpolación para la relación A/C

f'cr	Sin aire incorporado	Con aire incorporado
250	0.62	0.53
294	0.5584	0.4684
300	0.55	0.46
	X	0.5584

Nota. Se interpola según la tabla 05 de valores elaborada por el comité 211 del ACI, donde nos dan f'c desde el 150 al 450 kg/cm².

La cantidad de cemento necesaria se calculará dividiendo el contenido estimado de agua de la mezcla entre la proporción agua/cemento correspondiente al valor de resistencia deseado.

$$Contenido de cemento(\frac{kg}{m^3}) = \frac{Agua de mezclado (\frac{kg}{m^3})}{Relación a/c}$$

Tabla 25Cálculo del factor cemento

EACTOR CEMENTO	367.120	Kg/m³
FACTOR CEMENTO	8.638	Bolsa/m³

Nota. Fuente: Elaboración propia del autor, 2023

• Contenido de agregado grueso $\left(\frac{kg}{m^3}\right) = \left(\frac{b}{bo}\right) \times$ densidad de masa seca

Tabla 26

Interpolación de la finura respecto al tamaño del agregado grueso

Finura	3/4"
2.8	0.62
2.88	0.612
3.0	0.60

Tabla 27

Contenido del agregado grueso.

VOLUMEN DE A.G	0.612	m^3
PESO DEL AGREGADO GRUESO SECO	909.885	Kg/m³

Nota. Fuente: Elaboración propia del autor, 2023

Cálculo de volúmenes absolutos:

 Volumen absoluto del agregado fino es igual a la diferencia entre el volumen unitario del hormigón y la suma de los volúmenes absolutos.

Tabla 28Cálculo de volúmenes absolutos de los materiales

CEMENTO	0.117	m^3
AGUA	0.205	m^3
AIRE	0.020	m^3
AG	0.332	m³
TOTAL	0.674	m³

Tabla 29

Contenido de agregado fino

Volumen absoluto de agregado fino 0.326 m^3

PESO DEL AGREGADO FINO SECO 877.960 Kg/m^3

Nota. Fuente: Elaboración propia del autor, 2023

Valores del diseño de mezcla:

Tabla 30 Resumen de los valores obtenidos para el diseño de mezcla

CEMENTO	367	Kg/m³
AGUA EFECTIVA	205	l/m^3
AGREGADO FINO	878	Kg/m^3
AGREGADO GRUESO	910	Kg/m³

Tabla 31

Corrección	por hum	edad del	agregado

AGREGADO FINO	929	Kg/m³
AGREGADO GRUESO	933	Kg/m³
Nota. Fuente: Elaboración propia del autor, 2023		
Tabla 32		
Valores de la Humedad superficial del agregado		
AGREGADO FINO	4.31	%
AGREGADO GRUESO	-0.13	%

Nota. Para ambos valores se restan el porcentaje de humedad de los agregados y el porcentaje de absorción, dando como resultado la humedad superficial del agregado.

Tabla 33

Aporte de	humedad	de los a	gregados

AF	37.84	l/m³
	-1.18	l/m³
AG	36.66	l/m^3
Agua Efectiva	168	l/m^3

Nota. Esta tabla muestra los valores de aporte de humedad para el agregado fino como para el grueso, para el agua efectiva se resta volumen unitario de agua menos el aporte de humedad de ambos agregados.

Tabla 34Peso de materiales corregidos por humedad del agregado

Cemento	367	Kg/m³
Agua Efectiva	168	l/m^3
AF	929	Kg/m³
AG	933	Kg/m³

Tabla 35

Peso por tanda de un saco

Cemento	42.5	Kg/saco
Agua Efectiva	19.5	l/saco
AF	107.6	Kg/saco
AG	108.0	Kg/saco

Nota. Fuente: Elaboración propia del autor, 2023

Tabla 36Cantidad de materiales para 18 testigos cilíndricos con muestra patrón

Cemento	39.59	Kg
Agua efectiva	18.15	1
AF	100.22	Kg
AG	100.61	Kg

Nota. Esta tabla muestra la cantidad de mezcla con 13% de desperdicio.

Tabla 37

Cantidad de materiales para 18 testigos cilíndricos con 9% de VM

Porcentaje 9%				
Cemento	36.02	Kg		
Vidrio	3.24	Kg		
Agua	18.15	1		
Af	100.22	Kg		
Ag	100.61	Kg		

Nota. Esta tabla muestra la cantidad de mezcla con 13% de desperdicio.

Pastor Ravines A.

Pág.

64

Tabla 38Cantidad de materiales para 18 testigos cilíndricos con 11% de VM

Porcentaje 11%				
Cemento	35.23	Kg		
Vidrio	3.88	Kg		
Agua	18.15	1		
Af	100.22	Kg		
Ag	100.61	Kg		

Nota. Esta tabla muestra la cantidad de mezcla con 13% de desperdicio.

Tabla 39Cantidad de materiales para 18 testigos cilíndricos con 22% de VM

Porcentaje	Porcentaje 22%				
Cemento	30.88	Kg			
Vidrio	6.79	Kg			
Agua	18.15	1			
Af	100.22	Kg			
Ag	100.61	Kg			

Nota. Esta tabla muestra la cantidad de mezcla con 13% de desperdicio.

Pastor Ravines A.

Pastor Ravines A.

65

3.3. Resultados de la prueba a compresión axial según edad de rotura

Tabla 40

Registro de la resistencia a la compresión axial de testigos patrón a los 7, 14 y 28 días

Código	Diámetro Promedio (cm)	Altura Promedio (cm)	Área (cm²)	Volumen (cm ³)	Fuerza última (Kg)	F'c (kg/cm ²)	Promedio f'c	Tipo de Falla
P01PR-07	15.14	30.50	179.91	5486.35	32117.00	178.52		3
P02PR-07	15.22	30.55	181.82	5553.59	31588.00	173.74		3
P03PR-07	14.87	30.15	173.55	5231.61	32038.00	184.61	176 10	2
P04PR-07	14.96	30.05	175.66	5278.46	31452.00	179.05	176.10	5
P05PR-07	15.28	30.60	183.25	5606.64	31700.00	172.98		5
P06PR-07	15.43	30.67	186.87	5730.38	31337.00	167.69		3
P07PR-14	15.21	30.56	181.70	5551.76	37234.00	204.92		5
P08PR-14	15.46	30.24	187.72	5676.63	36726.00	195.64		3
P09PR-14	15.41	30.92	186.51	5765.86	36785.00	197.23	202.06	2
P10PR-14	15.00	29.95	176.60	5289.07	37187.00	210.58	202.96	3
P11PR-14	15.24	30.84	182.30	5621.98	37822.00	207.48		5
P12PR-14	14.96	30.04	175.66	5275.82	35471.00	201.93		5
P13PR-28	15.49	30.83	188.33	5805.18	39753.00	211.09		3
P14PR-28	14.82	30.13	172.50	5197.39	39491.00	228.93		3
P15PR-28	14.88	30.03	173.90	5222.17	38786.00	223.04	217.77	3
P16PR-28	14.88	29.76	173.90	5175.22	37752.00	217.09	217.77	2
P17PR-28	14.91	29.55	174.60	5159.44	38147.00	218.48		5
P18PR-28	15.48	30.84	188.21	5804.25	39143.00	207.98		2

Nota. Fuente: Elaboración propia del autor, 2023

Pastor Ravines A.

Pág.

66

Tabla 41Registro de la resistencia a la compresión axial de testigos 9% de VM

Código	Diámetro Promedio (cm)	Altura Promedio (cm)	Área (cm²)	Volumen (cm ³)	Fuerza última (Kg)	F'c (kg/cm ²)	Promedio f'c	Tipo de Falla
P01PR-07	15.22	30.10	181.94	5476.28	29746.00	163.50		2
P02PR-07	15.17	30.37	180.62	5484.64	28883.00	159.91		5
P03PR-07	14.99	30.37	176.48	5358.79	25022.00	141.78	146.57	5
P04PR-07	14.90	29.81	174.37	5196.99	23215.00	133.14	146.57	5
P05PR-07	15.05	30.06	177.89	5347.51	24575.00	138.14		5
P06PR-07	14.99	29.85	176.36	5263.50	25211.00	142.95		2
P07PR-14	15.13	30.15	179.79	5419.80	34907.00	194.15		5
P08PR-14	15.10	30.25	178.96	5413.54	34581.00	193.23		2
P09PR-14	15.15	30.04	180.27	5414.31	40554.00	224.97	200.74	2
P10PR-14	15.39	30.05	185.90	5586.37	41822.00	224.97	208.74	2
P11PR-14	15.07	30.85	178.37	5501.75	35472.00	198.87		2
P12PR-14	15.44	30.15	187.23	5644.17	40487.00	216.24		2
P13PR-28	15.27	30.06	183.01	5501.39	47247.00	258.16		3
P14PR-28	15.00	30.42	176.60	5371.19	42448.00	240.37		5
P15PR-28	15.14	30.19	179.91	5430.58	50968.00	283.30	262.17	5
P16PR-28	15.17	30.22	180.74	5462.05	49582.00	274.32	263.17	2
P17PR-28	15.00	29.79	176.60	5259.94	49475.00	280.16		5
P18PR-28	15.05	30.30	177.89	5390.21	43178.00	242.72		2

Nota. Fuente: Elaboración propia del autor, 2023

Pastor Ravines A. Pág. 67

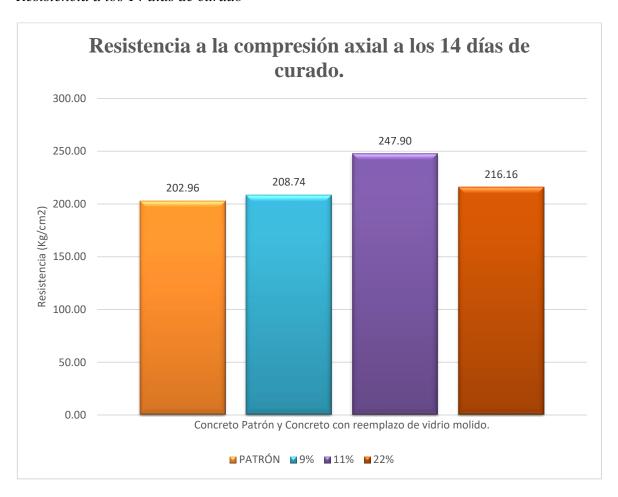
Tabla 42Registro de la resistencia a la compresión axial de testigos 11% de VM

Código	Diámetro Promedio (cm)	Altura Promedio (cm)	Área (cm²)	Volumen (cm ³)	Fuerza última (Kg)	F'c (kg/cm ²)	Promedio f'c	Tipo de Falla
P01PR-07	15.21	30.24	181.70	5493.62	30589.00	168.35		5
P02PR-07	14.95	29.86	175.54	5240.70	28956.00	164.96		5
P03PR-07	14.93	29.63	175.07	5187.30	30099.00	171.93	160.05	5
P04PR-07	14.99	29.72	176.36	5240.58	31851.00	180.60	169.95	5
P05PR-07	14.99	29.93	176.48	5281.14	30148.00	170.83		5
P06PR-07	15.05	29.85	177.78	5306.63	28987.00	163.05		5
P07PR-14	15.37	30.12	185.54	5587.54	54532.00	293.91		2
P08PR-14	14.93	29.82	175.07	5219.69	44423.00	253.75		5
P09PR-14	15.13	30.28	179.67	5440.47	46907.00	261.07	247.00	5
P10PR-14	14.92	29.64	174.72	5177.75	39552.00	226.38	247.90	2
P11PR-14	15.37	29.53	185.54	5478.07	41457.00	223.44		2
P12PR-14	15.06	29.92	178.01	5325.25	40736.00	228.84		2
P13PR-28	15.16	30.01	180.39	5412.47	54701.00	303.24		5
P14PR-28	15.36	30.24	185.30	5603.43	54547.00	294.37		2
P15PR-28	14.92	29.80	174.83	5209.20	58166.00	332.69	212.64	2
P16PR-28	15.09	30.33	178.72	5420.67	55995.00	313.31	312.64	1
P17PR-28	15.02	29.83	177.07	5281.06	54684.00	308.83		2
P18PR-28	14.61	29.96	167.53	5018.37	54178.00	323.39		2

Tabla 43Registro de la resistencia a la compresión axial de testigos 22% de VM

Código	Diámetro Promedio (cm)	Altura Promedio (cm)	Área (cm²)	Volumen (cm ³)	Fuerza última (Kg)	F'c (kg/cm ²)	Promedio f'c	Tipo de Falla
P01PR-07	15.26	30.12	182.89	5508.76	28126.00	153.78	127.16	5
P02PR-07	15.45	30.26	187.48	5672.10	16354.00	87.23		5
P03PR-07	14.94	29.74	175.19	5210.04	23792.00	135.81		2
P04PR-07	14.89	29.61	174.02	5152.59	21166.00	121.63		2
P05PR-07	14.95	30.11	175.54	5285.46	22478.00	128.05		2
P06PR-07	14.89	29.89	174.02	5200.45	23740.00	136.42		5
P07PR-14	15.05	30.01	177.89	5337.73	42592.00	239.42		5
P08PR-14	15.40	30.16	186.27	5617.75	44742.00	240.21	216.16	5
P09PR-14	14.96	29.81	175.66	5236.30	36249.00	206.36		2
P10PR-14	14.91	29.59	174.48	5162.09	41495.00	237.82		5
P11PR-14	14.94	30.00	175.30	5259.11	32916.00	187.77		5
P12PR-14	14.93	29.94	174.95	5237.18	32438.00	185.41		2
P13PR-28	15.36	30.31	185.30	5616.40	51316.00	276.94		2
P14PR-28	15.41	30.05	186.39	5599.97	49030.00	263.06	282.93	3
P15PR-28	15.38	30.47	185.66	5657.08	57336.00	308.82		2
P16PR-28	15.16	30.24	180.39	5453.96	51284.00	284.30		2
P17PR-28	15.00	29.66	176.71	5241.35	49147.00	278.12		2
P18PR-28	15.28	29.85	183.25	5470.12	52472.00	286.34		2

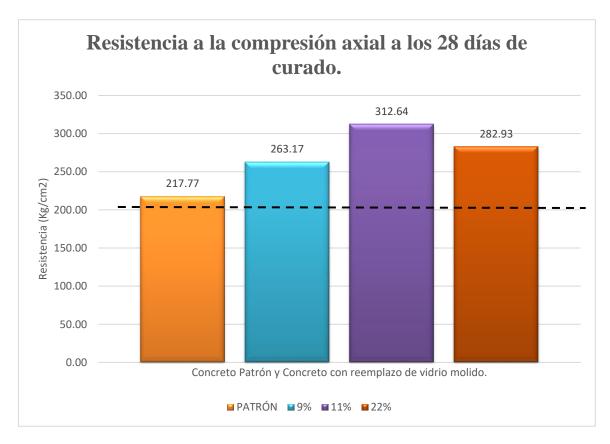
Figura 4Resistencia a los 7 días de curado


Nota. Fuente: Elaboración propia del autor, 2023

Los resultados obtenidos para un tiempo de curado de 7 días que son presentados en la figura 4 nos indica que la resistencia a compresión axial alcanzada fue de 176.10 kg/cm² para el concreto patrón, 146.57 kg/cm² para el concreto con reemplazo del cemento en 9%, 169.95 kg/cm² para el concreto con reemplazo del cemento en 11% y finalmente 127.16 kg/cm² para el concreto con reemplazo del cemento en 22%. Se presencia una disminución de los porcentajes reemplazados respecto a los testigos patrones.

Pastor Ravines A. 70

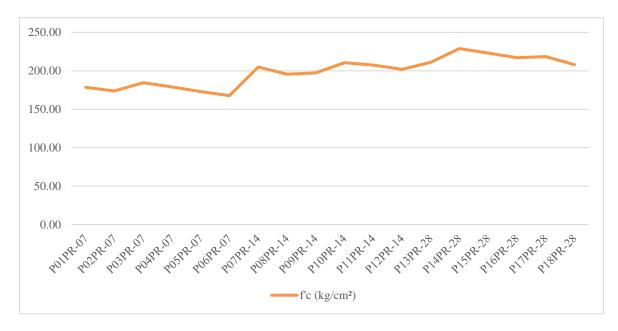
Figura 5Resistencia a los 14 días de curado


Nota. Fuente: Elaboración propia del autor, 2023

Los resultados obtenidos para un tiempo de curado de 14 días que son presentados en la figura 5 nos indica que la resistencia a compresión axial alcanzada fue de 202.96 kg/cm² para el concreto patrón, 208.74 kg/cm² para el concreto con reemplazo del cemento en 9%, 247.90 kg/cm² para el concreto con reemplazo del cemento en 11% y finalmente 216.16 kg/cm² para el concreto con reemplazo del cemento en 22%. Se presencia un aumento de la resistencia en los porcentajes 11% y 22%, siendo el primero de estos dos que mayor resistencia a ganado con respecto al concreto patrón.

Pastor Ravines A. Pág. 71

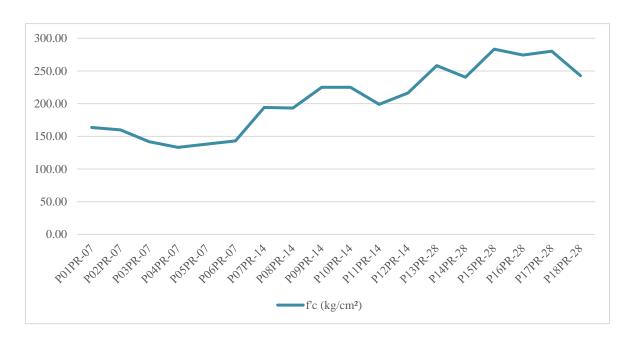
Figura 6Resistencia a los 28 días de curado


Nota. Fuente: Elaboración propia del autor, 2023

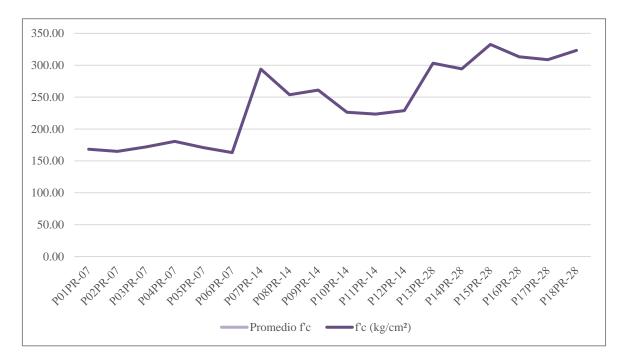
Pastor Ravines A.

Los resultados obtenidos para un tiempo de curado de 28 días que son presentados en la figura 6 nos indica que la resistencia a compresión axial alcanzada fue de 217.77 kg/cm² para el concreto patrón, 263.17 kg/cm² para el concreto con reemplazo del cemento en 9%, 312.64 kg/cm² para el concreto con reemplazo del cemento en 11% y finalmente 282.93 kg/cm² para el concreto con reemplazo del cemento en 22%. Se presencia un aumento considerable de la resistencia en el reemplazo del 11%, dando un resultado positivo para nuestra investigación.

Figura 7

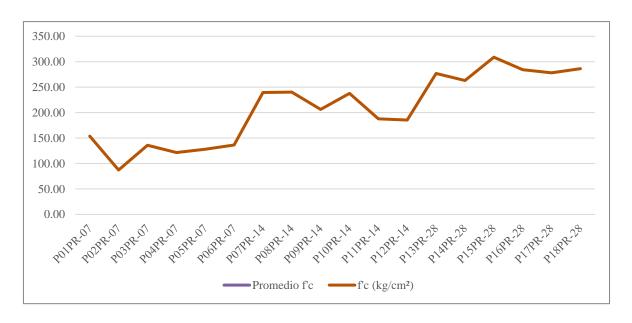

Evolución de la resistencia a los 7, 14 y 28 días del concreto patrón.

Nota. Fuente: Elaboración propia del autor, 2023


Figura 8

Evolución de la resistencia a los 7, 14 y 28 días del concreto con 9% de reemplazo.

Nota. Fuente: Elaboración propia del autor, 2023


Figura 9Evolución de la resistencia a los 7, 14 y 28 días del concreto con 11% de reemplazo

Nota. Fuente: Elaboración propia del autor, 2023

Figura 10

Evolución de la resistencia a los 7, 14 y 28 días del concreto con 22% de reemplazo.

Nota. Fuente: Elaboración propia del autor, 2023

Tabla 44

Comparación de resistencia a la compresión axial alcanzada a la edad de 28 días de curado.

Descripción	Concreto de diseño	Muestra patrón	Muestra con reemplazo del 9%	Muestra con reemplazo del 11%	Muestra con reemplazo del 22%
Resistencia a la compresión promedio (Kg/cm²)	210	217.77	263.17	312.64	282.93
Resistencia a la compresión promedio (%)	100.00%	103.70%	125.32%	148.88%	134.73%
Incremento de la resistencia (%)	0.00%	3.70%	25.32%	48.88%	34.73%

Nota. En la tabla se observa que el mejor porcentaje de reemplazo del cemento fue del 11%, obteniendo un incremento de la resistencia base 210 kg/cm² en un 48.88%.

CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES

En este capítulo se procede a presentar, de acuerdo con los objetivos que fueron planteados en este estudio. Por lo tanto, estos análisis se realizan basados en los resultados obtenidos en la fase experimental, así como consolidarlos con los conceptos de investigación.

4.1. Agregados

Las propiedades relacionadas con el tamaño de partículas tanto del agregado grueso como del agregado fino satisfacen los requisitos mínimos establecidos por la normativa, lo que demuestra que la distribución de tamaño de partículas se encuentra dentro de los límites adecuados.

En la curva granulométrica del agregado fino se evidencia que cumple con el M.F de 2.88, que según la norma ASTM C33 no debe exceder a 2.3 ni inferior a 3.1.

El módulo de fineza obtenido es el recomendado para la elaboración de concretos con buena trabajabilidad.

El contenido de humedad de los agregados fino y grueso son de 5.86 % y 2.54% respectivamente, de estos valores depende si obtendremos el fraguado lento o rápido del concreto.

4.2. Diseño de mezcla de concreto

El diseño de la mezcla de concreto se realizó de acuerdo con los criterios establecidos por el comité ACI 211.

4.3. Consistencia del concreto

El slump de concreto patrón es de 3.69 pulgadas, siendo diseñado para 3-4 pulgadas. Lo cual corresponde a una consistencia plástica.

El slump de concreto con el reemplazo de 9%, 11% y 22% de vidrio molido son 3.38, 3.44 y 3.63 pulgadas respectivamente, todas las mediciones fueron de una consistencia plástica por lo tanto el concreto cumple con una buena trabajabilidad.

4.4. Discusión de resultados con respecto a los antecedentes

Según (Mera et al., 2019) en su investigación ya indicada anteriormente, realizó su estudio con 36 probetas cilíndricas de dimensiones 10 cm x 20 cm con porcentajes de 5%, 10% y 15%, a la edad de 28 días de curado el porcentaje que alcanzó mayor resistencia fue del 10% con 201.02 Kg/cm², su estudio finalizó a la edad de 56 días de curado que sirvió para una mejor data de la evolución de la resistencia, siendo así el 5% el mejor porcentaje ya que alcanzó una resistencia de 258.47 Kg/cm², en comparación con la presente investigación a la edad de 28 días de curado el 11% de reemplazo de cemento fue el óptimo con una resistencia de 312.64 Kg/cm² incrementando en un 48.88% la resistencia base de 210 Kg/cm².

Según (Columbié et al., 2020) en su investigación ya mencionada en los antecedentes, realizó su estudio con 42 muestras de dimensiones 6" x 12", con un reemplazo del 10%, 20% y 30% del cemento. A la edad de 7 días de curado el porcentaje que mejor se comportó respecto a su resistencia fue 10% obtenido 166.32 Kg/cm², mientras que a la edad de 28 días de curado el porcentaje que mejor reaccionó respecto a su resistencia fue 20% obtenido 339.36 Kg/cm², en comparación de los resultados con esta investigación el porcentaje más próximo es de 22% que obtuvo de resistencia a la edad de 7 días 127.16

Kg/cm² y a los 28 días de curado 282.93 Kg/cm² superando de igual manera a la resistencia a compresión axial base.

Según (Rodriguez & Caturelli, 2016) en su investigación va indicada en los antecedentes, se llegaron a utilizar proporciones del 0% (concreto patrón) y 20% de reemplazo parcial de cemento, con probetas cilíndricas de 15 cm x 30 cm. Las edades evaluadas fueron 7, 28, 56, 120, 270 días de curado, el parámetro estándar o base fue de 25 MPa o 254.93 Kg/cm². A los 7 días el 20% de reemplazo obtuvo 9.7 MPa, mientras que a los 28 días alcanzó 21.5 MPa, el incremento es notable un aproximado de 121%, en comparación con la presente investigación el 9%, 11% y 22% de reemplazo se obtiene que aumenta su resistencia en más de 25% para cada porcentaje evaluado, lo que es beneficioso para el estudio ya que se podría considerar como una alternativa de reemplazo parcial del cemento, cabe resaltar que Rodriguez & Caturelli realizan el estudio a 270 días profundizando la investigación empleando el vidrio molido y además obteniendo resultados positivos de 36.8 MPa o 375.26 Kg/cm².

Según (Ramón & Aguirre, 2021) en su investigación ya mencionada en los antecedentes, en este estudio la muestra fue de 48 testigos cilíndricos de dimensiones 4" x 8", con porcentajes de 5%, 10% y 15%. A los 28 días de curado el porcentaje que mayor resistencia alcanzó fue del 5% de reemplazo obteniendo 267.17 Kg/cm², mientras que a los 56 días de curado fue del 10% de reemplazo obteniendo 277.43 Kg/cm², en comparación con esta investigación se puede deducir que el porcentaje óptimo para el diseño de mezcla está entre 10% y 11% de reemplazo de cemento, ya que con este porcentaje se obtuvo el mayor incremento de la resistencia de las 3 muestras (9%, 11% y 22%).

Según (Walhoff, 2017) en su investigación ya indicada en los antecedentes, la muestra fue de 64 probetas cilíndricas reemplazando en 5%, 10% y 15% del cemento

Portland, a los 28 días de curado el mayor porcentaje de resistencia obtenida fue del 5% de reemplazo de cemento obteniendo 325.19 Kg/cm² y en segundo lugar el 10% de reemplazo con 310.67 Kg/cm². En comparación de los resultados con esta investigación el 11% y 22% de reemplazo son lo más favorable para un diseño de mezcla ya que alcanzó 148.88% y 134.73% respectivamente de resistencia a la compresión promedio.

Según (Fajardo & Lopez, 2022) en su investigación ya indicada en los antecedentes, la muestra fue de 36 probetas cilíndricas de dimensiones 4" x 8" con porcentajes de reemplazo del 20%, 25% y 30% para una resistencia base de 210 Kg/cm² utilizando el cemento Portland, a la edad de 28 días de curado el 25% obtuvo 256.995 Kg/cm², siendo el porcentaje óptimo para su estudio. En comparación con la presente investigación no se llega a la misma conclusión ya que con 22% de reemplazo obtuvimos de resistencia a la compresión 282.93 Kg/cm², un 10% de incremento respecto al estudio de Fajardo y Lopez.

Según (Vasquez & Girón, 2019) en su investigación ya indicada en los antecedentes, la muestra fue de 120 testigos cilíndricos con dimensiones de 10 cm x 20 cm reemplazando en 4%, 6% y 8% del cemento Portland, a los 28 días de curado el mayor porcentaje de resistencia obtenida fue del 8% de reemplazo de cemento obteniendo 304.39 Kg/cm². En contraste con el estudio actual, se observa que al aumentar la proporción de vidrio en relación con el peso del cemento resulta en un aumento de la resistencia a la compresión

Conclusiones 4.5.

Las características físicas y mecánicas de los agregados cumplen con los estándares establecidos por las normas correspondientes, lo que indica que son adecuados y aceptables para su utilización en el diseño de mezclas de concreto.

El agregado fino y grueso procede de la cantera "Agregados Juan Sin Miedo E.I.R.L" y presenta condiciones óptimas que fueron evidenciadas en los ensayos correspondientes, por lo que es apto para el diseño de mezclas de concreto.

Se elaboró un diseño de mezcla mediante el método ACI 211.1 para un concreto base de f'c= 210 Kg/cm² y con reemplazo del cemento en porcentajes de 9%, 11% y 22%.

Al sustituir un porcentaje en el cemento, se llega a reducir la producción de este material, siendo así la reducción de quema de combustible en las fábricas de cemento ya que disminuiría su demanda.

La calidad de los agregados en su forma y granulometría impactan en el comportamiento del concreto.

A los 28 días de curado del concreto patrón se obtuvo como promedio de todos los testigos el valor de 217.77 kg/cm², el concreto que fue con reemplazo del 9% de vidrio molido con 263.17 kg/cm², el concreto que fue con reemplazo del 11% de vidrio molido con 312.64 kg/cm² y finalmente el concreto con reemplazo del 22% de vidrio molido con 282.93 kg/cm².

Según los datos adquiridos a la edad de 28 días de resistencia a compresión se concluye que conforme vayamos aumentando el porcentaje de reemplazo de vidrio molido, la resistencia tiene una tendencia a reducir su resistencia. Es así como el porcentaje óptimo para la presente investigación es del reemplazo del cemento en un 11%.

La hipótesis planteada en la presente investigación supera el 15%, debido a que con el porcentaje óptimo del 11% de reemplazo se obtuvo un incremento del 48.88%.

RECOMENDACIONES

Se recomienda la búsqueda o fabricación local de una máquina trituradora de vidrio estandarizada para optimizar el tiempo y la correcta uniformidad de partículas del material.

Para futuras investigaciones se podría realizar ensayos del concreto con vidrio molido y adicionar aditivos, verificando su comportamiento mediante la resistencia a compresión axial a la edad de 3, 7, 14, 28 y 56 días.

REFERENCIAS

- Abanto Castillo, F. (2009). Tecnologia Del Concreto—Flavio Abanto | PDF | Cemento | Hormigón. https://es.scribd.com/doc/306087568/Tecnologia-Del-Concreto-Flavio-Abanto
- ACI 211.1. (2002). NORMA ACI 211.1 DOSIFICACIÓN DE MEZCLAS DE CONCRETO.
- Alconz Ingala, W. P. (2006). "Material de apoyo didáctico para la enseñanza y aprendizaje de la asignatura materiales de construcción (guía de las prácticas de campo y normas de calidad)". https://civilgeeks.com/2012/08/21/manual-de-materiales-deconstruccion-guia-de-las-practicas-de-campo-y-normas-de-calidad/
- ASTM C33. (2003). Especificación estándar para AGREGADOS PARA CONCRETO.
- Cano Cano, J. D., & Cruz Pulgarín, C. M. (2017). Análisis de mezclas de concreto con proporciones de vidrio molido, tamizado y granular como aditivo a fin de aumentar la resistencia la compresión del hormigón. a https://repository.unilibre.edu.co/handle/10901/17082
- Cemento INKA. (2022, octubre 3). Fraguado, secado y curado del concreto. Inka. https://www.cementosinka.com.pe/blog/fraguado-secado-y-curado-del-concreto/
- Columbié Lamorú, L. de los Á., Crespo Castillo, R., Rodríguez Suárez, L., González Batista, Y., Columbié-Lamorú, L. de los Á., Crespo Castillo, R., Rodríguez Suárez, L., & González Batista, Y. (2020). Evaluación del uso de vidrio reciclado en la producción de hormigones cubanos. Minería y Geología, 36(2), 218-233.

- Esraa, A., & Sherif, A.-T. (2012). Recycled glass as a partial replacement for fine aggregate in self compacting concrete. Construction and Building Materials, 35, 785-791. https://doi.org/10.1016/j.conbuildmat.2012.04.117
- Fajardo Castro, C. R., & Lopez Huaycho, S. (2022). Elaboración de bloques de concreto f'c 75 kg/cm2 adicionando polvo de vidrio de colores reciclado para reducir la emisión de CO2 generado por la producción de cemento [Universidad Peruana de Ciencias Aplicadas (UPC)]. https://repositorioacademico.upc.edu.pe/handle/10757/660938
- Flores Alés, V., Jiménez Bayarri, V., & Pérez Fargallo, A. (2018). Influencia de la incorporación de vidrio triturado en las propiedades y el comportamiento a alta temperatura de morteros de cemento. Boletín de la Sociedad Española de Cerámica y Vidrio, 57(6), 257-265. https://doi.org/10.1016/j.bsecv.2018.03.001
- Fundación Integra. (2021). Cultura material medieval—El Vidrio—Región de Murcia Digital. https://www.regmurcia.com/servlet/s.Sl?sit=c,522,m,2613&r=ReP-20327-DETALLE_REPORTAJES
- Gómez Domínguez, J. (2000). Materiales de construcción. ITESM, Departamento de Ingeniería Civil. https://books.google.com.pe/books/about/Materiales_de_construcci%C3%B3n.html ?id=99GPrgEACAAJ&redir esc=y
- Hernandez, L., Gómez, P., Contreras, C., Liseth, B., Padilla, S., & Contreras, A. (2018). Resistencia la Compresión del Concreto. https://doi.org/10.13140/RG.2.2.16390.63044

- Hernández Sampieri, R., & Mendoza Torres, C. P. (2018). METODOLOGÍA DE LA INVESTIGACIÓN: LAS RUTAS CUANTITATIVA, CUALITATIVA Y MIXTA. McGrawHill Education.
- Mera, S. M. A., Soledispa, A. G. V., Párraga, W. E. R., Hernández, E. H. O., & Castro, C. M. J. (2019). Estudio de la resistencia a compresión del hormigón utilizando el vidrio finamente molido en reemplazo parcial del cemento. Revista de Investigaciones en Energía Medio Ambiente y Tecnología RIEMAT ISSN 2588-0721, 4(2), Article 2. https://doi.org/10.33936/riemat.v4i2.2187
- MINAM. (2023).Perú: Anuario deEstadísticas *Ambientales* 2023. https://cdn.www.gob.pe/uploads/document/file/5588186/4963255-peru-anuario-deestadisticas-ambientales-2023%282%29.pdf?v=1706036917
- NTP 339.034 (Ed.). (2015). CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto en muestras cilíndrica.
- NTP 339.035. (2009). HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento Portland.
- NTP 339.047. (2019). CONCRETO. Definiciones y terminología relativas al concreto y agregados.
- NTP 339.088. (2021). CONCRETO. Agua de mezcla utilizada en la producción de concreto de cemento hidráulico. Especificaciones. 4a Edición.
- NTP 339.127. (2019). MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO.

- NTP 339.183 (Ed.). (2013). CONCRETO. Práctica normalizada para la elaboración ycurado de especímenes de concreto en el laboratorio.
- NTP 400.012. (2014). AGREGADOS. Análisis granulométrico del agregado fino, grueso y global.
- NTP 400.017. (2011). AGREGADOS. Método de ensayo para determinar el peso unitario del agregado.
- NTP 400.019. (2014). AGREGADOS. Método de ensayo normalizado para ladeterminación de la resistencia a la degradación enagregados gruesos de tamaños menores por abrasión eimpacto en la máquina de Los Ángeles.
- NTP 400.021. (2013). AGREGADOS. Método de ensayo normalizado para la densidad, ladensidad relativa(peso específico) y absorción del agregado grueso.
- NTP 400.022. (2013). AGREGADOS. Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino.
- NTP 400.037 (Ed.). (2018). Agregados para concreto.
- Ramón Quiroz, I. L., & Aguirre Oré, R. D. M. (2021). Análisis de la permeabilidad en el concreto, con adiciones de vidrio reciclado molido en reemplazo parcial del cemento en Lima Metropolitana. Universidad Peruana de Ciencias Aplicadas (UPC). https://repositorioacademico.upc.edu.pe/handle/10757/660654
- Rodriguez, M., & Caturelli, M. E. R. (2016). Evaluación del desempeño de un hormigón con incorporación de vidrio reciclado finamente molido en reemplazo de cemento mediante ensayos de laboratorio. Revista de la Facultad de Ciencias Exactas, Físicas y Naturales, 3(2), Article 2.

- Trezza, M. A., & Rahhal, V. F. (2018). Comportamiento del residuo de vidrio molido en cementos mezcla: Estudio comparativo con microsilice. *Matéria (Rio de Janeiro)*, 23, e. https://doi.org/10.1590/S1517-707620170001.0311
- Vasquez Silva, Y. F., & Girón Gavidia, Y. C. (2019). *Análisis de la Resistencia del Concreto*con Adición de Vidrio Pulverizado [Universidad Nacional de Jaén].

 http://repositorio.unj.edu.pe/jspui/handle/UNJ/244
- Walhoff Tello, G. M. (2017). INFLUENCIA DEL VIDRIO MOLIDO EN LA RESISTENCIA

 A LA COMPRESION DEL CONCRETO Y COSTOS DE FABRICACIÓN,

 COMPARADO CON EL CONCRETO CONVENCIONAL, BARRANCA-2016

 [Universidad nacional "Santiago Antúnez de Mayolo"].

 https://repositorio.unasam.edu.pe/bitstream/handle/UNASAM/2120/T033_4691045

 3_T.pdf?sequence=1&isAllowed=y

Pastor Ravines A.

ANEXOS A

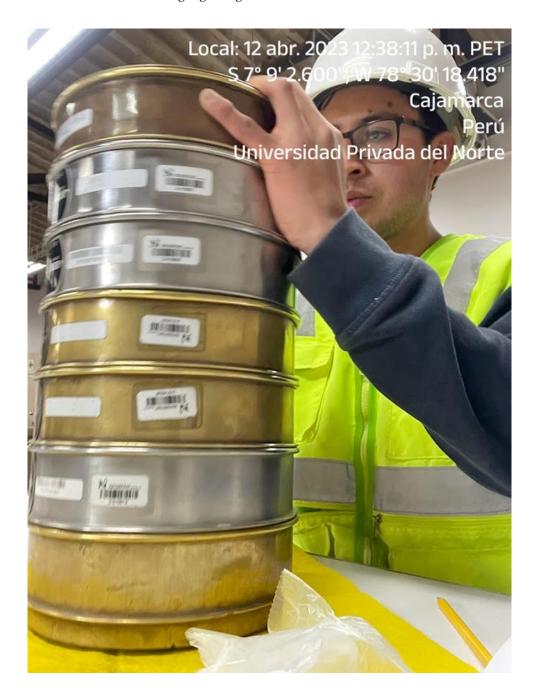
Figura 11

Matriz de consistencia.

ZO DEL CEMENTO EN 9%, 11% Y	METODOLOGÍA	MÉTODO:	Ficha de registro	TIPO DE INVESTIGACIÓN: Tipo: Investigación Básica (Aplicada) Nivel: Investigación Explicativa POBLACIÓN Y MUESTRA. Conformada por 18 probetas de concreto por cada diseño de mezcla de concreto, haciendo un total de 72 probetas de concreto. La muestra está compuesta por 18 y 54			testigos de concreto entre el convencional y con el reemplazo parcial de vidrio molido, en porcentajes de 9%, 11% y 22% respectivamente.	TÉCNICAS E INSRUMENTOS DE RECOLECCION DE DATOS:	Protocolos y/o guías de observación para realizar los ensayos correspondientes en función a la NTP.	
"RESISTENCIA A LA COMPRESIÓN AXIAL DEL CONCRETO F'C=210 Kg/cm² CON REEMPLAZO DEL CEMENTO EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"	VARIABLE	VARIABLE A RELACIONAR 1:	Resistencia a la compresión	Es la capacidad del concreto a resistir un fenómeno de aplastamiento que se ve comúnmente en todos los materiales que se utilizan para la elaboración de estructuras, además nos brinda información de las propiedades mecánicas del material y de su comportamiento (Hernandez et al., 2018)		mecánicas del material y de su comportamiento (Hernandez et al., 2018) concreto por cada diseño de mez concreto, haciendo un total de 77 probetas de concreto.	VARIABLE A RELACIONAR 2: convencional y con el reemplazo parcia convencional y con el reemplazo parcia de vidrio molido, en porcentajes de 9% 11% y 22% respectivamente.	Se estima la posibilidad del vidrio molido como sustituto en un cierto porcentaje del cemento, a partir de la capacidad puzolánica del vidrio finalmente triturado, debido a su disolución en el medio alcalino durante la hidratación del conglomerante, con posibilidad de desarrollar reacciones similares a las de los silicatos cálcicos del cemento (Flores et al., 2018).		
	HIPÓTESIS	HIPOTESIS GENERAL:		El reemplazo parcial de cemento en 9%, 11% y 22% influye en el incremento de resistencia a la compresión axial planteada de f'c=210 kg/cm2 hasta un	15%.	HIPÓTESIS ESPECIFICOS.	Las propiedades físicas - mecánicas y químicas de los agregados es de beneficio para el diseño de mezclas.	Diseñar testigos sin reemplazo de vidrio molido Los testigos sin reemplazo de vidrio en la mezcla de concreto molido alcanza una resistencia de $210 \mathrm{F}$ 'c = $210 \mathrm{Kg/cm}^2$.	Diseñar testigos con reemplazo de vidrio molido Los testigos con reemplazo de vidrio reciclado en 9%, 11% y molido aumentan la resistencia en las 22% en la mezcla de mezclas de concreto.	Existe una variación de la resistencia entre los testigos sin reemplazo de VM vs los testigos con reemplazo de VM en los distintos días de curado.
	OBJETIVOS	OBJETIVO GENERAL:		Evaluar la resistencia a la compresión axial del concreto f c = 210 kg/cm^2 con el reemplazo del cemento en 9% 11% v	22% con vidrio molido.	OBJETIVOS ESPECIFICOS:	Determinar las propiedades físicas - mecánicas de los agregados finos y gruesos.	Diseñar testigos sin reemplazo de vidrio molido en la mezcla de concreto F'c = 210 Kg/cm².	Diseñar testigos con reemplazo de vidrio molido reciclado en 9%, 11% y 22% en la mezcla de concreto F'c = 210 Kg/cm²	Determinar y analizar la resistencia a compresión axial del concreto sin reemplazo de VM y el concreto con reemplazo en 9%, 11% y 22% de VM, a los 7, 14 y 28 días de curado.
TITULO DE LA TESIS:	PROBLEMA	PROBLEMA GENERAL:		¿Cuál es el comportamiento de la resistencia a la compression axial del concreto f'c= 210 Kg/cm² con el reemplazo del remento en 9%, 11%, v, 27%,	con vidrio molido?	PROBLEMAS ESPECIFICOS:	¿Cuáles son las propiedades físicas - mecánicas de los agregados finos y gruesos?	¿Cuál es el diseño de mezcla para testigos sin reemplazo de vidrio molido?	¿Cuál es el diseño de mezcla para testigos con reemplazo de vidrio molido?	¿Cuál es la resistencia a compresión axial de los testigos sin reemplazo de VM y con reemplazo de VM?

Nota. Fuente: Elaboración propia del autor, 2023.

Figura 12Saco de 25 Kg de vidrio molido


Nota. Material adquirido de la empresa Blasting Expert Inc.

Pastor Ravines A.

88

Figura 13Tamizado manual del agregado grueso

Nota. Fuente: Elaboración propia del autor, 2023.

Pastor Ravines A.

89

Figura 14

Ingreso de taras para el ensayo de contenido de humedad.

Nota. Fuente: Elaboración propia del autor, 2023.

Figura 15

Cuarteo del material para el ensayo de peso unitario

Nota. Fuente: Elaboración propia del autor, 2023.

Pastor Ravines A.

91

Figura 16

Ingresando muestra para el ensayo de granulometría en finos

Nota. Fuente: Elaboración propia del autor, 2023.

Figura 17

Pesaje de moldes para el ensayo de peso unitario volumétrico

Nota. Fuente: Elaboración propia del autor, 2023.

Pastor Ravines A.

93

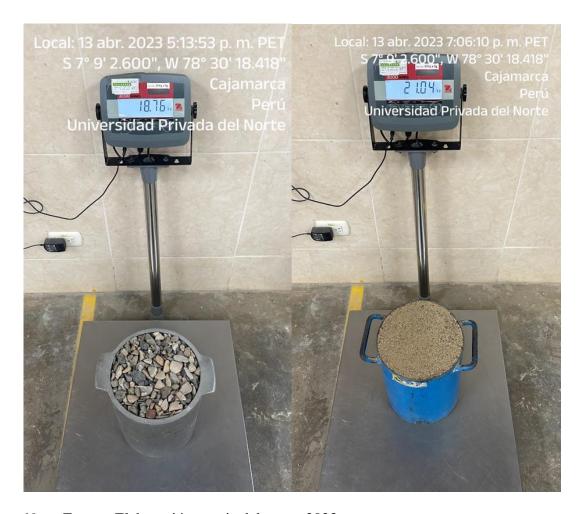
Figura 18

Pesaje de moldes para el ensayo de peso unitario volumétrico.

Nota. Fuente: Elaboración propia del autor, 2023.

Figura 19

Medida de recipiente.



Nota. Fuente: Elaboración propia del autor, 2023

Figura 20

Pesaje de los agregados para el ensayo de peso unitario.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 21
Secado superficial de la muestra para peso específico

Nota. Fuente: Elaboración propia del autor, 2023

Figura 22

Ensayo de gravedad específica del agregado fino

Nota. Fuente: Elaboración propia del autor, 2023

Figura 23

Ensayo de abrasión de los ángeles.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 24

Ensayo de abrasión de los ángeles.

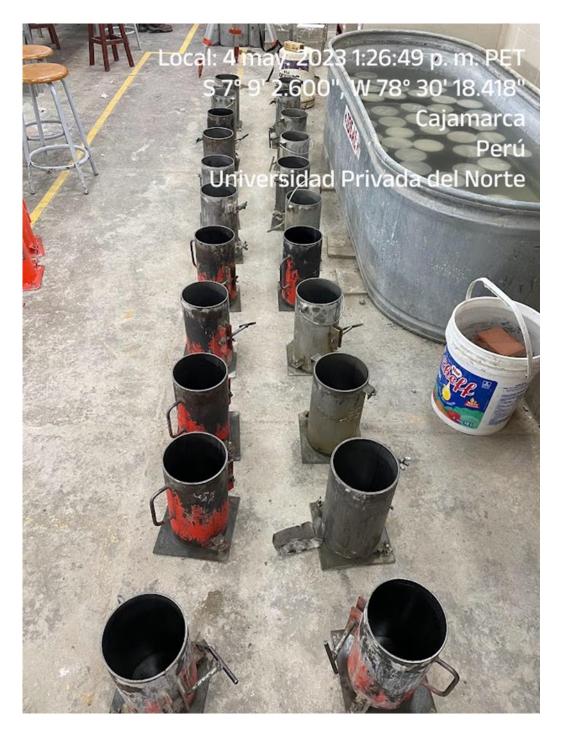
Nota. Fuente: Elaboración propia del autor, 2023

Pastor Ravines A.

100

Figura 25

Muestras para ingresar al horno.



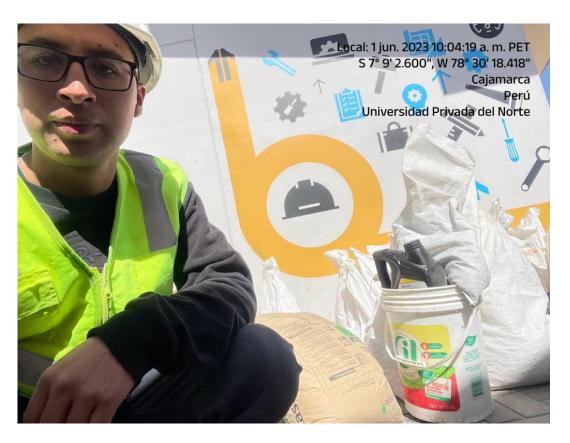
Nota. Fuente: Elaboración propia del autor, 2023

Figura 26

Limpieza de moldes para concreto patrón.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 27


Limpieza de moldes para concreto con reemplazo de porcentajes.

Nota. Fuente: Elaboración propia del autor, 2023

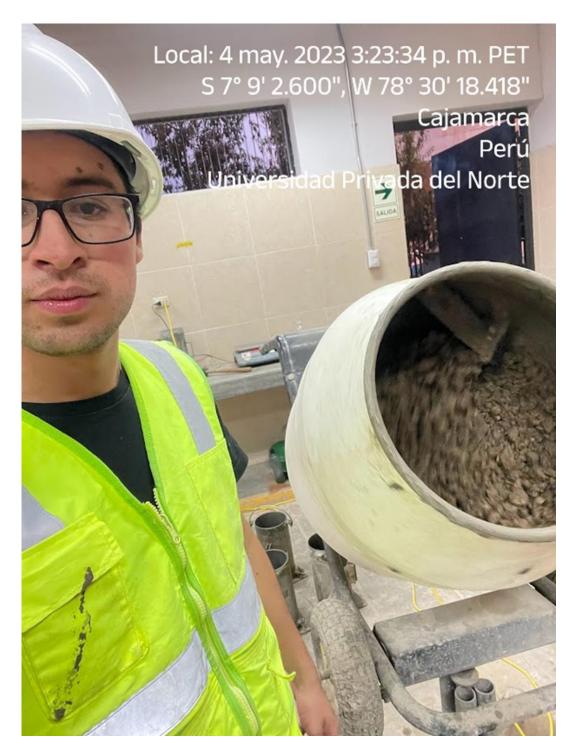
Figura 28

Material pesado en sacos para elaboración de probetas.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 29

Material pesado para elaboración de probetas cilíndricas.



Nota. Fuente: Elaboración propia del autor, 2023

Figura 30

Mezcla de los materiales en el trompo.

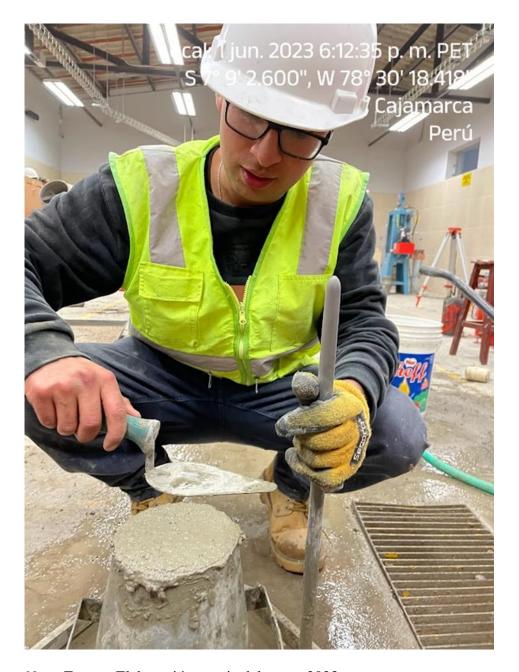
Nota. Fuente: Elaboración propia del autor, 2023

Pastor Ravines A.

106

Figura 31

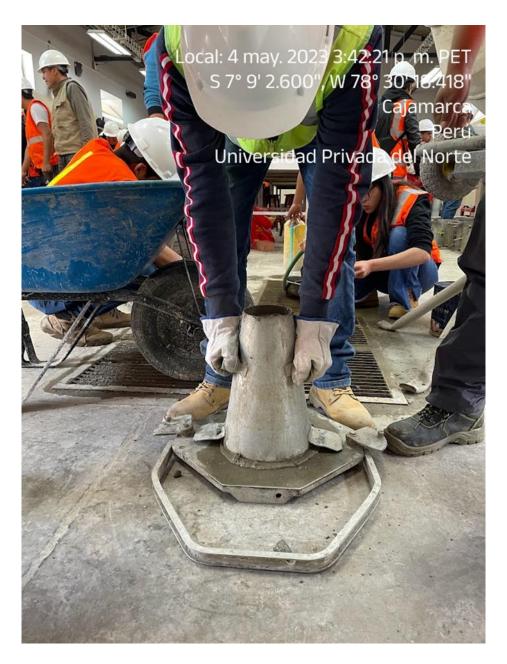
Ingreso de vidrio molido al trompo eléctrico 1.14HP 210 Lt.



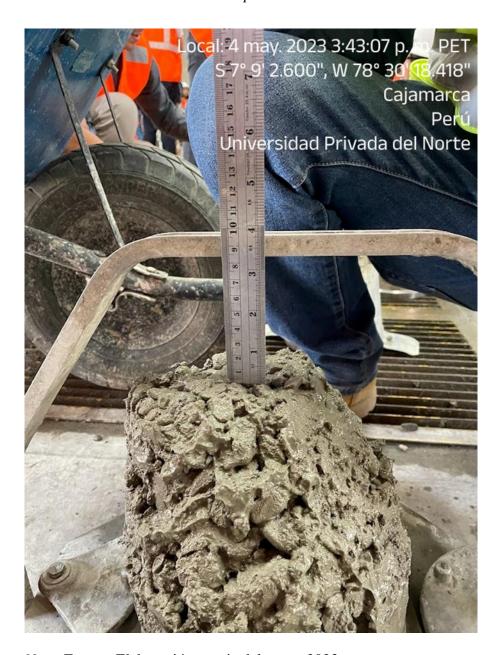
Nota. Fuente: Elaboración propia del autor, 2023

Figura 32

Ensayo en estado fresco - cono de abrams.



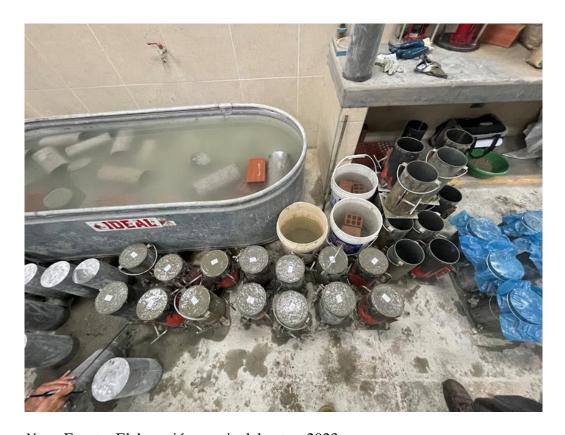
Nota. Fuente: Elaboración propia del autor, 2023


Figura 33

Ensayo cono de abrams.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 34 *Medición del asentamiento o slump.*



Nota. Fuente: Elaboración propia del autor, 2023

Figura 35

Probetas cilíndricas patrón.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 36

Elaboración de testigos cilíndricos con los 3 porcentajes.

Nota. Fuente: Elaboración propia del autor, 2023

Cajamarca, 2023."

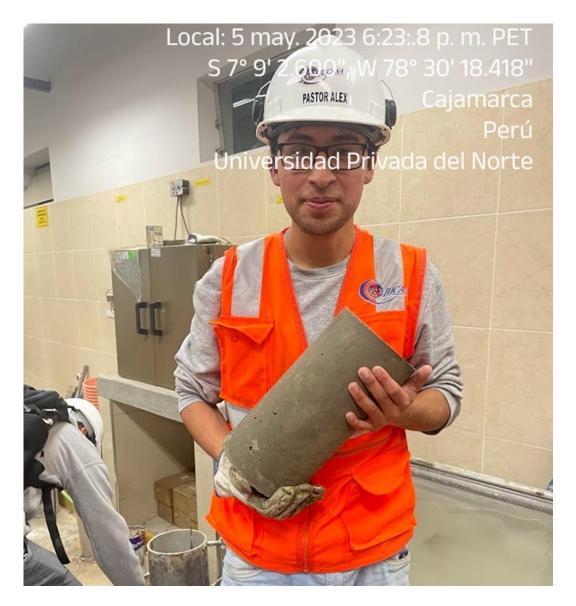
Figura 37

Desencofrado de probetas cilíndricas.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 38

Probetas cilíndricas desencofradas con reemplazo 9%, 11% y 22%.



Nota. Fuente: Elaboración propia del autor, 2023

Figura 39

Ingreso de probetas a la poza de curado.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 40


Medición de cada probeta cilíndrica con el uso del vernier o pie de rey.

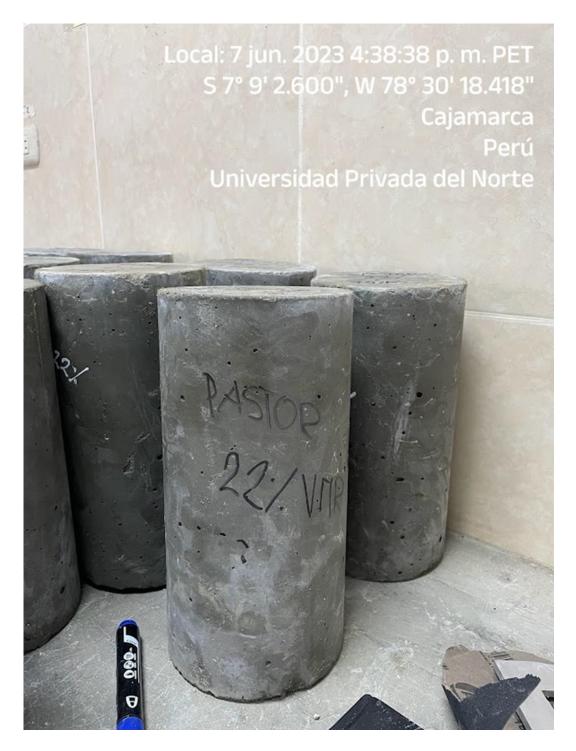
Nota. Fuente: Elaboración propia del autor, 2023

Figura 41

Nota. Fuente: Elaboración propia del autor, 2023

Figura 42

Probetas cilíndricas para ensayar con reemplazo del cemento.



Nota. Fuente: Elaboración propia del autor, 2023

Figura 43

Probetas cilíndricas para ensayar con reemplazo del cemento.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 44

Ensayo a la compresión axial de testigos cilíndricos.

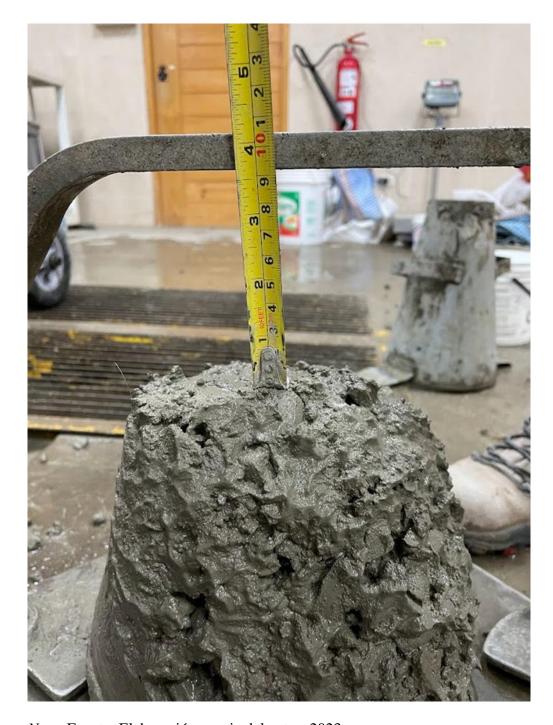
Nota. Fuente: Elaboración propia del autor, 2023

Figura 45

Slump o asentamiento para 9% de reemplazo del cemento.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 46


Slump o asentamiento para 11% de reemplazo del cemento.

Nota. Fuente: Elaboración propia del autor, 2023

Figura 47
Slump o asentamiento para el reemplazo en 22% del cemento.

Nota. Fuente: Elaboración propia del autor, 2023

ANEXOS B

"Resistencia a la compresión del concreto f'c=210 Kg/cm² con reemplazo del cemento en 9%, 11% y 22% con vidrio molido, Cajamarca, 2023."

ANEXO N.º 1. Protocolos de análisis granulométricos

	PROTOCOLO								
UNIVERSIDAD PRIVADA DEL NORTE	ENSAYO	ANÁLISIS GRANULOMÉTRICO DE AGREGADOS GRUESOS Y FINOS MTC E204 – ASTM C136 – NTP 400.012							
	NORMA								
	TESIS	EN 9%,	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENT EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"						
CANTERA:		Agregados Juan Sin Mied E.I.R.L.	O TM:	1 1/2"					
UBICACIÓN:		Cajamarca	TMN:	3/4"					
FECHA DE MU	ESTRA:	12/04/2023	Nº HUSO	57					
FECHA DE ENS	SAYO:	18/04/2023	RESPONSABLE:	Alex Paul Pastor Ravines					
TIPO DE MATE	RIAL:	Agregado Grueso	REVISADO POR:	Jorge Luis Hoyos Martinez					

AGREGADO GRUESO

Peso i	nicial:	5	000 g					
								O 57
N°	TAMIZ	пz	PESO RETENIDO	% RETENIDO (%)	% RETENIDO ACUMULAD	% PASANTE ACUMULADO (%)	Hus Granulor (Depende Revisar ASTM	nétricos e TMN, Norma
	(pulg)	(mm)	(g)	(70)	O (%)		Límite Superior	Límite Inferior
1	2 1/2"	63.5						
2	2"	50.8						
1	1 1/2"	38.1	0.0	0.00	0.00	100	100	100
2	1"	25.0	122.0	2.44	2.44	98	95	100
3	3/4"	19.0	1116.0	22.32	24.76	75	-	-
4	1/2"	12.5	2295.8	45.92	70.68	29	25	60
5	3/8"	9.5	496.0	9.92	80.60	19		-
6	Nº 4	4.8	943.7	18.87	99.47	1	0	10
7	Bandeja	-	26.5	0.53	100.00	0		
	TOTAL		5000.0			•		•

Nota: El tamaño máximo (TM), se calcula como el menor tamiz en el que pasa el 100% y el tamaño máximo nominal(TMN), se calcula como el tamiz superior al que retiene mayor o igual del 10% retenido acumulado. Norma ASTM C33

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Churanta	July //	Aguiton J.
NOMBRE: Alex Paul Pastor Ravines	NOMBRE: Jorge Luis Hoyos Martinez	NOMBRE: Dr. Ing. Orlando Aguilar Aliaga
ECHA:	FECHA:	FECHA:

NOMBRE: Dr. Ing. Orlando Aguilar Aliaga

FECHA:

ENSAYO ANÁLISIS GRANULOMÉTRICO DE AGREGADOS GRUESOS Y FINOS MTC E204 – ASTM C136 – NTP 400.012 TESIS "RESISTENCIA A LA COMPRESIÓN F'C"=210 KG/CM² CON EL REEMPLAZO DEL CEI EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023" ANTERA: Agregados Juan Sin Miedo EL L EL A L ECHA DE ENSAYO: 18/04/2023 RESPONSABLE: Agregado Grueso CURVA GRANULOMÉTRICA CURVA GRANULOMÉTRICA CURVA GRANULOMÉTRICA AGREGADO GRUESO CURVA GRANULOMÉTRICA AGREGADO GRUESO CURVA GRANULOMÉTRICA AGREGADO GRUESO CURVA GRANULOMÉTRICA DE LIIS Hoyos Martinez CURVA GRANULOMÉTRICA AGREGADO GRUESO CURVA GRA		LAB	ORATORIO DE CONCRI	ETO – UNIVERSIDAD PRIVA PROTOCOLO	ADA DEL NORTE CAJAMARCA		
DRIVERSIDAD UNIVERSIDAD UNIVER		ENSAVO	ANÁI ISIS		SPECADOS GRUESOS V FINOS		
TESIS "RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEI EN 994, 11% Y 2294 CON VIDRIO MOLIDO, CAJAMARCA, 2023" NATERA: Agregados Juan Sin Miedo EL RL. Cajamarca TM: 1 1/2" BICACCIÓN: Cajamarca TMN: 3/4" CHA DE MUESTRA: 12/04/2023 N° HUSO 57 CHA DE ENSAYO: 18/04/2023 RESPONSABLE: Alex Paul Pastor Ravines PO DE MATERIAL: Agregado Grueso CURVA GRANULOMÉTRICA 110 100 AGREGADO GRUESO CURVA GRANULOMÉTRICA 110 100 Abertura de Tamices (%) Abertura de Agregado Grueso BSERVACIONES: BSERVACIONES:			ANALISIS				
TESIS TIM:		NORMA	7				
INTERC. E.I.R.L. INTERC. Cajamarca TMN: 3/4" 12/04/2023 N° HUSO 57 CHA DE ENSAYO: 18/04/2023 RESPONSABLE: Alex Paul Pastor Ravines PO DE MATERIAL: Agregado Grueso CURVA GRANULOMÉTRICA 110 Grade G	TESIS "RESISTENCIA A LA COMPRESION F'C=210 KG/CM" CON EL REEMPLAZO DEL EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"						
CHA DE MUESTRA: 12/04/2023 N° HUSO 57 CHA DE ENSAYO: 18/04/2023 RESPONSABLE: Alex Paul Pastor Ravines PO DE MATERIAL: Agregado Grueso CURVA GRANULOMÉTRICA 110 100 90 50 100 100 100 100	TERA:	-		do TM:	1 1/2"		
CHA DE ENSAYO: 18/04/2023 RESPONSABLE: Alex Paul Pastor Ravines PO DE MATERIAL: Agregado Grueso CURVA GRANULOMÉTRICA 110 100 90 80 80 80 80 80 80 80 100 100 100 Abertura de Tamices (%) Limite Inferior Limite Supertor Curva de Agregado Grueso BSERVACIONES:					3/4"		
Agregado Grueso CURVA GRANULOMÉTRICA 110 100 90 80 80 80 80 80 80 100 100 Abertura de Tamices (%) Limite Inferior Limite Superior Curva de Agregado Grueso			1	16M 0130003MN0	57		
CURVA GRANULOMÉTRICA 110 100 90 80 80 80 90 100 100 Abertura de Tamices (%)Limite InferiorLimite Superior					Alex Paul Pastor Ravines		
CURVA GRANULOMÉTRICA 110 100 90 80 80 80 90 40 30 20 10 Abertura de Tamices (%)	DE MATER	RIAL:	Agregado Grueso	REVISADO POR:	Jorge Luis Hoyos Martinez		
90 80 70 80 60 60 90 40 90 10 10 Abertura de Tamices (%)	110		CURV	A GRANULOMÉTRICA			
110 100 90 80 80 87 70 88 60 90 40 30 20 10 10 Abertura de Tamices (%)Limite Inferior							
90 80 70 80 60 90 90 40 30 20 10 Abertura de Tamices (%)	110		CURV	A GRANULOMÉTRICA			
90 80 70 888 60 50 90 10 10 Abertura de Tamices (%) Límite Inferior	100						
SERVACIONES:							
To see a good of the see of the s	90		111				
20 10 0 100 Abertura de Tamices (%) Límite Inferior Curva de Agregado Grueso BSERVACIONES:	80		1//				
20 10 10 Abertura de Tamices (%) Limite Inferior	€ 70						
20 10 10 Abertura de Tamices (%) Limite Inferior	Pasa		//				
20 10 10 Abertura de Tamices (%) Limite Inferior	and and		//				
20 10 0 100 Abertura de Tamices (%) Límite Inferior Curva de Agregado Grueso BSERVACIONES:	os je		· · · · · · · · · · · · · · · · · · ·				
20 10 0 100 Abertura de Tamices (%)	9 40			11 /			
20 10 0 100 Abertura de Tamices (%)							
10 10 Abertura de Tamices (%) Límite Inferior Límite Superior Curva de Agregado Grusso BSERVACIONES:							
0 10 Abertura de Tamices (%)Límite InferiorLímite Superior	20			11			
100 Abertura de Tamices (%) Límite Inferior Límite Superior	10			1			
100 Abertura de Tamices (%) Límite Inferior Límite Superior	0						
Limite Inferior Limite Superior —— Curva de Agregado Grueso BSERVACIONES:	10	00			1		
BSERVACIONES:				Abertura de Tamices (%)			
			Limite Inferior	Límite Superior ——— Curva de Ag	gregado Grueso		
	EDM OVC	TEC					
RESPONSABLE DEL ENSAVO COORDINADOR DE LABORATORIO ASESOR	ERVACION	NES:					
RESPONSABLE DEL ENSAVO COORDINADOR DE LABORATORIO ASESOR							
		LE DEL ENSAYO	COORDINADOR D	E LABORATORIO	ASESOR		
	SPONSABI						

NOMBRE. Jorge Luis Hoyos Martinez

FECHA:

NOMBRE: Alex Paul Pastor Ravines

FECHA:

		LABORATORIO DE CONCRE	TO - UNIVERSIDAD PRI	IVADA DEL NORTE CAJAMARCA				
1			PROTOCOLO					
	ENSAYO	ANÁLISIS	ANÁLISIS GRANULOMÉTRICO DE AGREGADOS GRUESOS Y FINOS					
	NORMA		MTC E204 – ASTM	C136 - NTP 400.012				
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM ² CON EL REEMPLAZO DEL CEMENTO: 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"						
CANTERA:		Agregados Juan Sin Miedo E.I.R.L.	TM:	-				
UBICACIÓN:		Cajamarca	TMN:	-				
FECHA DE MU	ESTRA:	12/04/2023	M.F:	2.88				
FECHA DE ENS	AYO:	13/04/2023	RESPONSABLE:	Alex Paul Pastor Ravines				
TIPO DE MATE	RIAL:	Agregado Fino	REVISADO POR:	Jorge Luis Hoyos Martinez				

AGREGADO FINO

Peso inicial:	1497.20	g
		0

Minimo:	500	gr.

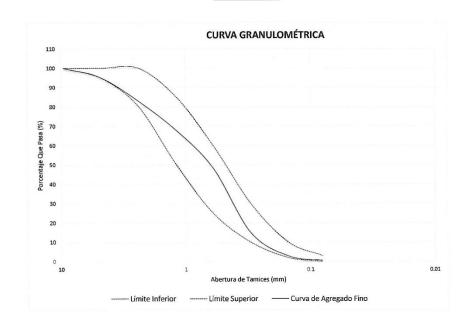
N°	TAN	MIZ	PESO RETENIDO	% RETENIDO	% RETENIDO ACUMULAD	% PASANTE ACUMULADO (%)	Granulo (Según nor	isos métricos rma ASTM 33)
	(pulg)	(mm)	(g)	(%)	O (%)		Limite Inferior	Límite Superior
1	Nº 4	4.75	74.20	5.00	5.00	95	95	100
2	Nº 8	2.36	183.10	12.20	17.20	83	80	100
3	N°10	2.00					-	-
4	Nº 16	1.18	225.40	15.10	32.30	68	50	85
5	N° 30	0.60	291.40	19.50	51.80	48	25	60
6	N° 50	0.30	500.10	33.40	85.20	15	10	30
7	Nº 100	0.15	180.40	12.00	97.20	3	2	- 10
8	N° 200	0.075	34.00	2.30	99.50	1	0	3
9	Bandeja	0.00	8.60	0.60	100.00	0	-	-
	TOTAL		1497 20				ds -	

Nota: Para calcular la granulometría, utilizar todas las mallas, para el caso del módulo de finura no utilizar la malla Nº 10 y Nº 200. Con la siguiente fórmula podemos determinar:

M.F. = (2.96 Retenido acumulado en las mallas Nº 4, 8, 16, 30, 50 y 100)

100

100


M.F. = 2.88

OBSERVACIONES:		*
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A langung y	Julie (1)	Aguiter Z
NOMBRE: Alex Paul Pastor Ravines	NOMBRE: Jorge Luis Hoyos Martinez	NOMBRE: Dr. Ing. Orlando Aguilar Aliaga
FECHA:	FECHA:	FECHA:

	LABORATORIO DE CONCRETO - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
11			PROTOCOLO						
	ENSAYO	ANÁLISIS	ANÁLISIS GRANULOMÉTRICO DE AGREGADOS GRUESOS Y FINOS						
	NORMA		MTC E204 – ASTM C	136 - NTP 400.012					
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENT 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"							
CANTERA:		Agregados Juan Sin Miedo E.I.R.L.	TM:	-					
UBICACIÓN:		Cajamarca	TMN:	-					
FECHA DE MU	ESTRA:	12/04/2023	M.F:	2.88					
FECHA DE ENS	SAYO:	13/04/2023	RESPONSABLE:	Alex Paul Pastor Ravines					
TIPO DE MATE	RIAL:	Agregado Fino	REVISADO POR:	Jorge Luis Hoyos Martinez					

AGREGADO FINO

RESPONSABLE DEL ENSAYO

COORDINADOR DE LABORATORIO

ASESOR

OMBRE: Alex Paul Pastor Ravines

NOMBRE: Jorge Luis Hoyos Martinez

NOMBRE: Dr. Ing. Orlando Aguilar Aliaga

FECHA:

FECHA:

ANEXO N.º 2. Protocolos de peso específico y absorción

	LA	ABORATORIO DE CONCRET			A DEL NOR	TE CA.	JAMARCA
	ENGANO	DD00 F	PROTOCOL				W000
	ENSAYO	PESO E	ESPECÍFICO Y ABS				JESOS
VERSIDAD	NORMA		MTC E206 – A				
VADA NORTE	TESIS		MPRESIÓN F'C=210 6 Y 22% CON VIDR	KG/CM ² CO IO MOLIDO	ON EL REEN), CAJAMAR	MPLAZO RCA, 202	DEL CEMENTO EN 23"
TERA:		Agregados Juan Sin Miedo . E.I.R.L.	TIPOS DE CANTER	A:			Río
CACIÓN:			TIPOS DE MATERI	AL:		Agre	gado Grueso
IA DE MUI			RESPONSABLE:			Alex Par	ıl Pastor Ravines
IA DE ENS	AYO:	18/04/2023	REVISADO POR:		J	orge Lui	s Hoyos Martinez
	Peso inicial:	PESO ESPECÍFICO Y ABS	SORCIÓN DE AGR	EGADOS G	RUESOS		
1	ID	DESCRIPCIÓN	UND	1	2	3	PROMEDIO
	A Peso en el aire	e de la muestra seca	g	1964.70	1979.50		N.A.
	seca	de la muestra saturada con supe	g	2022.10	2027.20		N.A.
	(Utilizando ca		a. g	1268.70	1232.90		N.A.
		o aparente (Seco) $a(Seco) = \frac{A}{B - C}$	g/cm ³	2.61	2.49		2.55
	Peso especific P. e.	o aparente (SSS) $a(SSS) = \frac{B}{B - C}$	g/cm ³	2.68	2.55		2.62
	reso especific	o nominal $n(SSS) = \frac{A}{A - C}$	g/cm ³	2.82	2.65		2.74
	Absorción	$\%) = \frac{B-A}{A} * 100$	g/cm³	2.92	2.41		2.67
	: NO APLICA						
ERVACIO	NES:						
ESPONSAI	BLE DEL ENSAYO	COORDINADO	R DE LABORATOR	uo			ASESOR
May	mu ful	June				6	Equilor 3
MBRE: Alex Paul Pastor Ravines NOMBRE: Jorge Luis Hoyos M			os Martinez		NOMBRE: Dr. Ing. Orlando Aguilar Aliaga		

ANEXO N.º 3. Protocolos de gravedad específica y absorción.

					PROTOCOL	.0			
	EN	SAYO	GRAVE	DAD E			N DE AGRI	FGADO	S FINOS
Ш	NO	RMA	Oldiva	GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE AGREGADOS FINOS MTC E205 – ASTM C128 – NTP 400.022					
UNIVERSIDA PRIVADA	ID		"RESISTENCIA A LA CO				SNEW DEC SECONDARY	(GEOGL)	DEL CEMENTO E
DEL NORTE	TE	SIS		% Y 22	% CON VIDR	IO MOLIDO			
CANTERA:			E.I.R.L.	TIPOS	DE CANTER	A:			Río
JBICACIÓN	f:		Cajamarca	TIPOS	DE MATERIA	AL:		Ag	regado Fino
FECHA DE I	MUESTR	A:	17/04/2023	RESPO	ONSABLE:			Alex Pa	al Pastor Ravines
FECHA DE I	ENSAYC	:	18/04/2023	REVIS	SADO POR:			lorge Lui	s Hoyos Martinez
[. 00/1	nicial:	GRAVEDAD ESPECÍFICA	Y ABS	ORCIÓN DE	AGREGAL	OS FINOS		
	ID		DESCRIPCIÓN		UND	1	2	3	PROMEDIO
	A	Peso al aire de l	a muestra desecada.		g	492.20	492.40		N.A.
	В	Peso del picnón	picnómetro aforado lleno de agua.		g	1301.70	1306.00		N.A.
	C	Peso total del pi lleno de agua	cnómetro aforado con la mues	stra y	g	1618.00	1618.00		N.A.
	D		stra Saturada Superficie Seca.		g	500.10	500.00		N.A.
	E	Peso especifico	aparente (Seco) $(Seco) = \frac{A}{B + S - C}$		g/cm ³	2.68	2.62		2.65
	F		$(SSS) = \frac{S}{B + S - C}$		g/cm³	2.72	2 66		2.69
	G	Peso especifico P. e. n	nominal (Seco) $Seco) = \frac{A}{B + A - C}$		g/cm ³	2.80	2.73		2.76
	Н	lAbsorción	$(6) = \frac{S-A}{A} * 100$		(%)	1.58	1.52		1.55
OBSERVAC		APLICA							
RESPON	SABLE	DEL ENSAYO	COORDINADO	R DE I	ABORATOR	uo		2	ASESOR
N	uspu	Paysi	Luin	ul	18			C	Equi los
NOMBRE: A	lex Paul	Pastor Ravines	NOMBRE: Jorge Luis Ho	yos Mai	rtinez		NOMBRE:	Dr. Ing.	Orlando Aguilar Alia

ANEXO N.º 4. Protocolos de peso unitario y vacío de los agregados.

11	LABORATORIO DE CONCRETO – UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO									
	ENSAYO		PESO UNITARIO DE LOS AGREGADOS							
	NORMA		MTC E203 – ASTM C029 – NTP 400.017							
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA CON	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"							
CANTERA:		Agregados Juan Sin Miedo E.I.R.L.	TIPOS DE CANTERA:	Río						
UBICACIÓN:		Cajamarca	TIPOS DE MATERIAL:	Agregado Fino						
FECHA DE MU	ESTRA:	STRA: 12/04/2023 RESPONSABLE:		Alex Paul Pastor Ravines						
FECHA DE ENSAYO:		13/04/2023	REVISADO POR:	Jorge Luis Hoyos Martinez						

PESO UNITARIO DE LOS AGREGADOS

	PESO UNITARIO VOLUM	IÉTRICO DEI	AGREGA	DO FINO		
	AGREGADO FINO	TAMAÑO NOMI		-	VOLUMEN MOLDE (m³)	0.0094
ID	DESCRIPCIÓN	UND	1	2	3	PROMEDIC
A	Peso del Molde + AF Compactado	Kg	22.04	22.06	22.08	22.06
В	Peso del Molde	Kg	5.40	5.40	5.40	5.40
C	Peso del AF Compactado, C = A - B	Kg	16.64	16.66	16.68	16.66
D	PESO UNITARIO COMPACTADO D= C / Vol.Molde	Kg/m ³	1770.21	1772.34	1774.47	1772.34
E	Peso del Molde + AF Suelto	Kg	21.18	21.04	21.00	21.07
F	Peso del AF Suelto, F = E - B	Kg	15.78	15.64	15.60	15.67
G	PESO UNITARIO SUELTO, G = F / Vol. Molde	Kg/m ³	1678.72	1663.83	1659.57	1667.38

OBSERVACIONES:

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Vingrendas		Aguilen 9
OMBRE: Alex Paul Pastor Ravines	NOMBRE: Jorge Lais Hoyos Martinez	NOMBRE: Dr. Ing. Orlando Aguilar Aliaga
FECHA:	FECHA:	FECHA:

		LABORATORIO DE CONCRETO - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA									
			PROTOCOLO								
	ENSAYO		PESO UNITARIO DE LOS AGREGADOS								
	NORMA	MTC E203 – ASTM C029 – NTP 400.017									
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	And the second of the processing of the second of the seco	Y 22% CON VIDRIO MOLIDO,	N EL REEMPLAZO DEL CEMENTO EN 9%, 11% CAJAMARCA, 2023"							
CANTERA:		Agregados Juan Sin Miedo E.I.R.L.	TIPOS DE CANTERA:	Río							
UBICACIÓN:		Cajamarca	TIPOS DE MATERIAL:	Agregado Grueso							
ECHA DE MU	ESTRA:	12/04/2023	RESPONSABLE:	Alex Paul Pastor Ravines							
ECHA DE ENSAYO:		13/04/2023	REVISADO POR:	Jorge Luis Hoyos Martinez							

PESO UNITARIO DE LOS AGREGADOS

PESO UNITARIO VOLUMÉ AGREGADO GRUESO		TAMAÑO NOMI	O MÁX.	-	VOLUMEN MOLDE (m³)	0.0093
ID	DESCRIPCIÓN	UND	1	2	3	PROMEDIC
A	Peso del Molde + AF Compactado	Kg	18.60	18.46	18.76	18.61
В	Peso del Molde	Kg	4.78	4.78	4.78	4.78
C	Peso del AF Compactado, C = A - B	Kg	13.82	13.68	13.98	13.83
D	PESO UNITARIO COMPACTADO D= C / Vol.Molde	Kg/m³	1486.02	1470.97	1503.23	1486.74
E	Peso del Molde + AF Suelto	Kg	17.36	17.46	17.38	17.40
F	Peso del AF Suelto, F = E - B	Kg	12.58	12.68	12.60	12.62
G	PESO UNITARIO SUELTO, G = F/Vol. Molde	Kg/m ³	1352.69	1363.44	1354.84	1356.99

OBSERVACIONES:

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Alingments	July 1/2	Aguita J
NOMBRE: Alex Paul Pastor Ravines	NOMBRE: Jorge Luis Hoyos Martinez	NOMBRE: Dr. Ing. Orlando Aguilar Aliaga
FECHA:	FECHA:	FECHA:

ANEXO N.º 5. Protocolos de abrasión de los ángeles.

					PROTO	COLO					
	NODMA				ABRASION LOS ANGELES AL DESGASTE DE LOS AGREGADOS DE TAMAÑO MENORES DE 37.5 mm (1 ½°)						
UNIVERSIDAL	VADA NORTE TESIS			MTC E207 / ASTM C 131 / NTP 400.019							
PRIVADA DEL NORTE					CIA A LA COM						
ANTERA:				Agregados.	O EN 9%, 11% Juan Sin Miedo		DE CANT		DO, CAJA	Río	
BICACIÓN:			-		I.R.L.		DE MATE	octor tamble	1	regado (Smano
ECHA DE M			-		04/2023		SABLE:	idru.	-		
			-			0.0000000000000000000000000000000000000			-		or Ravin
ECHA DE E	NSAYO:			20/0	04/2023	REVISA	DO POR:		Jorge Li	uis Hoyo	os Martii
Г											
_					METRÍA DE EN	SAYO					
		DACIÓN	",	A"	"B"		"	C"	"D"	•	
L		ABRASIVA eras de acero)	1	12	11			8	6		
Γ		CPANIII O	METDI A	DEIAM	JESTRA DE AG	PECADO	DADA E	NEAVO			
F	Tamiz (pasa)	Tamiz		' (g)	"B" (g)			" (g)	"D" (g)	
r	1 ½"	(retiene)	1250	± 25							
	1"	3/4"	1250	± 25							
	3/4"	1/2"	1250	± 10	2500 ± 1	0					
	V2"	3/8"	1250	± 10	2500 ± 1	0					
	3/8"	1/4"					2500	0 ± 10			
	1/4"	Nº 4					2500	0 ± 10			
	Nº 4	No 8							5000 ±	10	
	то	TALES	5000	± 10	5000 ± 1	0	5000	0 ± 10	5000 ±	10	
Г				DESCAS	TE A LA ABRAS	rós.				_	
-	ID		DESC	RIPCIÓN	E A LA ABRAS	UND	1	2	3	P	
	A			uestra total		g	5001.1	-	+-	R	
	В	Pes	o retenide	o en tamiz N	₽ 12	g	3556.1			M	
	D			orasión Los B) * 100 / A		%	29%			-	
BSERVACI											
RESP	TOTABLE	DEL ENSAYO	,	COORD	DINADOR DE I	MIN.	CRIO			SOR vila 1	
OMBRE: AI	ex Paul Pas	stor Ravines		NOMBRE;	Jorge Lois Hoyo	s Martinez			RE Dr. Ing	111	lo Aguil
CHA:	,			FECHA:	,			Aliaga FECHA			

Figura 48

Ficha técnica de cemento Pacasmayo Tipo I.

Nota. Recuperado de la página web de cementos Pacasmayo.

Figura 49

Ficha técnica cemento Pacasmayo Tipo I.

"Resistencia a la compresión del concreto f'c=210 Kg/cm² con reemplazo del cemento en 9%, 11% y 22% con vidrio molido, Cajamarca, 2023."

Cemento Tipo I Estructural

Cemento Portland Tipo I

Requisitos normalizados - NTP 334.009 / ASTM C150

REQUISITOS QUÍMICOS

ENSAYOS	TIPO	VALOR	UNIDAD	NORMAS DE ENSAYO	RESULTADOS*
MgO	Máximo	6.0	%	NTP 334.086	2.1
SO ₃	Máximo	3.0	%	NTP 334.086	2.8
Pérdida por ignición	Máximo	3.5	%	NTP 334.086	3.1
Residuo insoluble	Máximo	1.5	%	NTP 334.086	0.6

REQUISITOS FÍSICOS

ENSAYOS	TIPO	VALOR	UNIDAD	NORMAS DE ENSAYO	RESULTADOS*	
Contenido de aire	Máximo	12	%	NTP 334.048	8	
Finura, Superficie específica	Mínimo	2,600	cm²/g	NTP 334.002	4000	
Expansión en autoclave	Máximo	0.80	%	NTP 334.004	0.07	8
Resistencia a la compresión						
3 días	Minimo	12.0 (1740)	MPa (psi)	NTP 334.051	29.4 (4260)	
7 días	Mínimo	19.0 (2760)	MPa (psi)	NTP 334.051	36.6 (5310)	
28 días"	Minimo	28.0 (4060)	MPa (psi)	NTP 334.051	45.3 (6570)	
Tiempo de Fraguado Vicat						
Fraguado inicial	Minimo	45	Minutos	NTP 334.006	139	
Fraguado final	Máximo	375	Minutos	NTP 334.006	250	

^{*}Valores promedios referenciales de lotes despachados / **Requisito opcional.

VENTAJAS

Presentaciones: Bolsas de 42.5 kg, granel y big bag de

Fecha Recomendada de Uso: para aprovechar de mejor manera sus propiedades

Fecha de Producción: para que utilices el cemento más

El cemento descrito arriba, al tiempo del envio, cumple con los requisitos químicos y físicos de la NTP 334.009.

Pacasmayo

Nota. Recuperado de la página web de cementos Pacasmayo.

ANEXO N.º 6. Hoja de seguridad y ficha técnica del vidrio molido.

Pág. Pastor Ravines A. 134

1

HOJA DE DATOS DE SEGURIDAD

Fecha de Emisión: 04/02/2015 SDS No: 2014-01 Fecha de Revisión: 09/09/2015 Versión No: 3

1. IDENTIFICACIÓN DEL PRODUCTO Y DE LA COMPAÑÍA

USO GENERAL: Abrasivos y Productos para Tejado y Otros Usos Agregados.

DESCRIPTION DEL PRODUCTO: BLACK BEAUTY® GLASS

NOMBRE FORMULACIÓN PRODUCTO: Abrasivo NOMBRE GENÉRICO: BLACK BEAUTY® GLASS

FABRICANTE

TELÉFONO DE EMERGNECIA 24 HR

Harsco Corporation 855-393-9889

Metals & Minerals Código de Acceso 13793

5000 Ritter Road Suite 205

Mechanicsburg, PA 17055

Contacto de Emergencia: EHS Manager

Teléfono de Contacto en caso de Emergencia: 717-506-4666

Teléfono de Contacto en caso de Emergencia Alternativo: 888-733-3646

E-mail: reedcs@harsco.com

2. IDENTIFICACIÓN DE PELIGROS

CLASIFICACIÓN GHS

Salud

No Clasificada

Ambiental

No Clasificada

Físicas

No Clasificada

REVISION DE EMERGENCIAS

APARIENCIA FÍSICA: Sólido

PREOCUPACIÓN INMEDIATA: Vidrio Molido consiste en vidrio fragmentado no flamable, combustible o explosivo y no posee peligro inusuales en inusuales condiciones. Durante su uso de limpieza de chorro de abrasivo, el polvo puede irritar el tracto respiratorio, piel y ojos y puede causar inflamación y fibrosis pulmonar.

3. COMPOSICIÓN / INFORMACIÓN SOBRE LOS INGREDIENTES

Nombre Químico	% Peso	CAS
Silice, Amorfo	70 - 80	60676-86-0
Oxido de Sodio	10 - 15	1313-59-3

Blasting Experts

Distribuidor autorizado para Latinoamérica y el Caribe ucursales en Colombia, México, Chile, Perú, Ecuador, Brasil, Argentina y Panar Oficina Principal:

Oficina Principal: Toronto, Ontario, CANADA - Tel.+1-905-541-0997

Pág.

2

Oxido de Calcio	5 - 10	1305-78-8
Oxido de Aluminio	1 - 2	1344-28-1
Oxido de Potasio	0,1 - 1	12136-45-7
Oxido de Magnesio	0,1 - 1	1309-37-1
Silice, Cristalina	<1	14808-60-7

4. MEDIDAS DE PRIMEROS AUXILIOS

CONTACTO OCULAR: No frotarse los ojos. Quítense las lentes de contacto. Enjuague los ojos cuidadosamente con agua, procurando lavar bien debajo de los párpados. Si persiste la irritación, continúe el lavado durante 15 minutos, enjuagando debajo de los párpados de tanto en tanto. Si persiste la irritación, acúdase a un médico.

CONTACTO CUTÁNEO: Lavar con jabón y agua. Buscar atención médica si la irritación aumenta o persiste.

INGESTIÓN: Enjuagar a fondo la boca en caso de ingestión de polvo. No inducir el vómito. Conseguir atención médica si continúa cualquier malestar.

INHALACIÓN: Traslade al aire libre. Busque atención médica si el malestar persiste.

NOTAS PARA EL MÉDICO: Tratamiento sintomático.

COMENTARIOS: Muéstrele esta ficha de seguridad al doctor que esté de servicio.

5. MEDIDAS PARA COMBATIR INCENDIOS

PROPIEDADES INFLAMABLES: Este material no es combustible.

PELIGROS GENERALES: No conocidos

MEDIOS DE EXTINCIÓN: Seleccione el medio de extinción más apropiado, teniendo en cuenta la posible presencia de otros químicos.

PROCEDIMIENTO PARA PREVENCIÓN DE INCENDIOS: Mover los recipientes del área del incendio, sin exponerse a riesgos. Enfríe los recipientes con grandes cantidades de agua hasta mucho después de que el fuego haya sido extinguido.

RIESGOS GENERALES DE INCENDIO: Este material no es combustible.

6. MEDIDAS DE LIBRACIÓN ACCIDENTAL

GRANDES DERRAMES: Evitar el escurrimiento en alcantarillas y zanjas que conducen a vías fluviales. Recoger el derrame utilizando una aspiradora equipada con un filtro HEPA. Si no es posible, humedezca con cuidado antes de recoger con pala y escoba. Deseche los materiales recogidos de acuerdo con regulaciones federales, estatales y locales

PROCEDIMIENTO GENERAL: Nunca regrese el producto derramado y marteriales de limpieza al envase original para reutilizarlo.

COMUNICADO: En la forma no utilizada, el material no es peligroso según se define en las regulaciones estatales y federales.

COMENTARIOS: Asegúrese que la limpieza se lleve a cabo por personal capacitado que usen protección respiratoria adecuada. Evitar la inhalación de polvo y el contacto con la piel y los ojos. Ventilar el área si hay polvo en el aire excesivo

7. MANEJO Y ALMACENAMIENTO

PROCEDIMIENTO GENERAL: Evite la inhalación de polvo y el contacto con la piel y los ojos. Úsese solamente

Blasting Experts

Sucursi

www.blastingexperts.com com

Distribuidor autorizado para Latinoamérica y el Caribe ucursales en Colombia, México, Chile, Perú, Ecuador, Brasil, Argentina y Panam Oficina Principal: Toronto, Ontario, CANADA - Tel.+1-905-541-0997

BLACK BEAUTY GLAS

Pág.

136

Atención y Soporte Técnico:
experts.com comercial@blastingexperts.com ingenieria@blastingexperts.com

Traducción al Español - Blasting Experts

3

con la ventilación adecuada. Utilice métodos de trabajo que reduzcan al mínimo la producción de polvo. Mantenga limpio el lugar de trabajo. Respete las buenas prácticas de higiene industrial.

MANEJO: Siga las precauciones de la hoja de seguridad y la etiqueta.

ALMACENAMIENTO: Mantenga el recipiente bien cerrado. Consérvese alejado de materiales incompatibles.

8. CONTROLES DE EXPOSICIÓN Y PROTECCIÓN PERSONAL

NORMAS DE EXPOSICIÓN

C	COMPONENTES PELIGROSOS OSHA (29 CFR 1910.1200)									
		LIMITES DE EXPOSICIÓN								
		OSI	HA PEL	ACC	GIH TLV					
NOMBRE QUÍN	NICO	ppm	mg/m³	ppm	mg/m³					
Silica, Amorfa	TWA	20 mpp [1]	80 / %SiO ₂ [1]	[2]	10 [2]					
Oxido de Calcio	TWA		5	/	2					
Oxido de Aluminio	TWA	[3]	15 [3]		1R como metal de aluminio					
Oxido de Manganeso	TWA		15 como humo de óxido de magnesio		10 I					
Oxido de Hierro	TWA		10 como humo de óxido de hierro		5					
Silica, Cristalina	TWA	[4]	10 / %SiO ₂ [4]	19	0,025R					

Notas al pie:

- 1. mpp es millones de partículas por ft3
- 2. ACGIH TLV para partículas no especificado es 10 mg/m³ para partículas inhalables y 3 mg/m³ para partículas
- 3. PEL es 15 mg/m³ de polvo total y de 5 mg/m³ partículas respirables (como metal de aluminio)
- 4. respirable PEL = 10 mg/m³ / (% SiO₂ + 2) y Polvo total PEL = 30 mg/m³ / (% SiO₂ + 2)

CONTROLES DE INGENIERÍA: Aísle el proceso, use ventilación mecánica local o cualquier método de ingeniería de control para mantener los niveles en el aire por debajo de los límites de exposición recomendados.

EQUIPO DE PROTECCION PERSONAL

OJOS Y ROSTRO: Use gafas de seguridad con protección lateral. Usar gafas de protección ajustadas, si el material genera polvo.

PROTECCIÓN CUTANEA: Usar guantes protectores. Úsese indumentaria protectora adecuada.

PROTECCIÓN RESPIRATORIA: La selección y uso del equipo de protección respiratoria debe estar en conformidad con el estándar general para la industria 29 CFR 1910.134 de OSHA; o en Canadá con el estándar CSA Z94.4

PRÁCTICAS HIGIENICAS LABORALES: Lávese las manos después del uso. Lave la ropa de trabajo y el equipo de protección de forma regular. Manipúlelo con las precauciones de higiene industrial adecuadas, y respete las prácticas de seguridad.

COMENTARIOS: El uso correcto y seguro del material es responsabilidad exclusiva del comprador. El

Blasting Experts

Distribuidor autorizado para Latinoamérica y el Caribe ursales en Colombia, México, Chile, Perú, Ecuador, Brasil, Argentina y Panamá.

Toronto, Ontario, CANADA - Tel.1-905-541-0997
Atención y Soporte Técnico:
comercial@blastingexperts.com - ingenieria@blastingexperts.com

4

fabricante no extiende ninguna garantía y no hace ninguna representación en cuanto a la idoneidad del producto para el uso previsto del comprador o las consecuencias de las acciones del comprador.

9. PROPIEDADES FÍSICAS Y QUÍMICAS

OLOR: Inodoro.

APARIENCIA: Vidrio Molido.

COLOR: Variable. Vidrio Multi-color

PH: No se conoce

PUNTO DE INFLAMACIÓN: No se conoce

LÍMITE DE INFLAMABILIDAD: No se conoce

PRESIÓN DE VAPOR: Aproximadamente Cero

DENSIDAD DE VAPOR: NA = No Aplica
PUNTO DE EBULLICIÓN: No se conoce
PUNTO DE CONGELACIÓN: No se conoce
PUNTO DE FUSIÓN: 1580 grados C

SOLUBILIDAD EN AGUA: Practicamente insoluble TASA DE EVAPORACIÓN: NA = No Aplica

GRAVEDAD ESPECIFICA: 2.5 VISCOSIDAD: No se conoce

COMENTARIOS: Para información adicional contacte al fabricante

10. ESTABILIDAD Y REACTIVIDAD

ESTABILIDAD: Este producto es estable y no reactivo en condiciones normales de uso, almacenamiento y

transporte.

CONDICIONES A EVITAR: Ninguno conocido

POSIBILIDAD DE REACCIONES PELIGROSAS: Ninguno

PRODUCTOS DE DESCOMPOSICIÓN PELIGROSOS: Ninguno conocido

MATERIALES INCOMPATIBLES: Ácido fluorhídrico

11. INFORMACIÓN TOXICOLÓGICA

AGUDO

NOTAS: Agentes abrasivos pueden causar inflamación y fibrosis pulmonar. La ingestión de polvo generado durante la operación puede causar náuseas y vómitos.

EFECTOS EN LOS OJOS: Puede causar irritación en los ojos.

EFECTOS CUTANEOS: Puede causar irritación de la piel.

CRÓNICA: La inhalación frecuente de polvo durante un largo período de tiempo aumenta el riesgo de desarrollar enfermedades pulmonares.

CARCINOGENICIDAD

IARC: Vidrio (CAS No. 60676-86-0) aparece como Grupo 3 - no hay indicios de causa de cáncer.

NTP: Vidrio (CAS No. 60676-86-0) no aparece por el Programa Nacional de Toxicología en su Informe Anual.

Blasting Experts

Distribuidor autorizado para Latinoamérica y el Caribe acursales en Colombia, México, Chile, Perú, Ecuador, Brasil, Argentina y Panam

Toronto, Ontario, CANADA - Tel.+1-905-541-0997
Atención y Soporte Técnico:
rcial@blastingexperts.com - ingenieria@blastingexperts.com

BLACK BEAUTY GLASS

www.blastingexperts.com

omercial@blastingexperts.com - ingenieria@blastingexper

Traducción al Español - Blasting Exper

5

OSHA: Vidrio (CAS No. 60676-86-0) no aparece por NIOSH en su Lista de cáncer profesional.

Notas:

ACGIH Carcinógenos

Óxido de aluminio (CAS 1344-28-1) A4 No clasificable como carcinógeno humano.

Vidrio (CAS 60676-86-0) no enlistado por la ACGIH.

Óxido de hierro (CAS 1309-37-1) A4 No clasificable como carcinógeno humano.

Óxido de magnesio (CAS 1309-48-4) A4 No clasificable como carcinógeno humano.

Dióxido de silicio cristalino (CAS 14808-60-7) A2 Sospechoso carcinógeno humano.

Monografías IARC. Evaluación general de carcinogenicidad

Óxido de hierro (CAS 1309-37-1) 3 No clasificable en cuanto a carcinogenicidad en seres humanos.

Dióxido de silicio (CAS 7631-86-9) 3 No clasificable en cuanto a carcinogenicidad en seres humanos.

Dióxido de silicio, cristalino (CAS 14808-60-7) Grupo 1. Monografías 68 y 100C (2012).

EE.UU. NTP Informe sobre carcinógenos: Cancerígeno Conocido

Dióxido de silicio, cristalino (CAS 14808-60-7) Conocido como carcinógeno humano.

CORROSIVIDAD: Ninguna conocido

SENSIBILIZACIÓN: No es un sensibilizador de piel o respiratoria.

NEUROTOXICIDAD: Ninguna conocido
EFECTOS GENÉTICOS: Ninguna conocido
EFECTOS REPRODUCTIVOS: Ninguna conocido

ÓRGANOS OBJETIVO: Irritación de nariz y garganta. Irritación de los ojos y las membranas mucosas. Puede

causar irritación de las vías respiratorias. Dificultad para respirar.

EFECTOS TERATÓGENOS: No se conocen **MUTAGENICIDAD:** Ninguna conocido

COMENTARIOS: Aunque fabricante ha tomado un cuidado razonable en la preparación de esta Hoja de datos de seguridad, no hay garantías hechas. Fabricante no asume la responsabilidad y no asume ninguna responsabilidad sobre la exactitud o idoneidad de la hoja de datos de seguridad para las aplicaciones previstas por el comprador.

12. INFORMACIÓN ECOLÓGICA

DATOS AMBIENTALES: como peligro para el medio ambiente no puede ser excluida en el caso de una manipulación o eliminación no profesional.

INFORMACIÓN ECOTOXICOLÓGICA: Este producto no está clasificado como peligroso para el medio ambiente. Sin embargo, esto no excluye la posibilidad de que los derrames grandes o frecuentes puedan tener un efecto nocivo o perjudicial en el medio ambiente.

BIOACUMULACIÓN / ACUMULACIÓN: Este producto no es bioacumulativo.

DISTRIBUCIÓN: No disponible

TOXICIDAD ACUÁTICA (AGUDA): Ninguna conocida

Blasting Experts

Distribuidor autorizado para Latinoamérica y el Caribe
Sucursales en Colombia, México, Chile, Perù, Ecuador, Brasil, Argentina y Panamá.
Oficina Principal:
Toronto, Ontario, CANADA - Tel.+1-905-541-0997
Atención y Soporte Técnico:
comercial@blastingexperts.com ingenieria@blastingexperts.com

6

DESTINO QUÍMICO INFORMACIÓN: No disponible

13. CONSIDERACIÓN DE ELIMINACIÓN

MÉTODO DE ELIMINACIÓN: Dispóngase de acuerdo con todas las regulaciones aplicables.

COMENTARIOS GENERALES: prueba TCLP de producto no utilizado indica que no es un residuo peligroso

14. INFORMACIÓN DE TRANSPORTE

DOT (DEPARTAMENTO DE TRANSPORTE)

OTRA INFORMACIÓN DE ENVÍO: No está regulado como material peligroso por el DOT.

COMENTARIOS: El producto no usado no está regulado como producto peligroso por la Asociación de Transporte Aéreo Internacional (IATA), Código Marítimo Internacional de Mercancías Peligrosas (IMDG) o Transporte de Canadá (TDG).

15. INFORMACIÓN SOBRE LA REGLAMENTACIÓN

ESTADOS UNIDOS

SARA TÍTULO III (ENMIENDAS Y REAUTORIZACIÓN DEL SUPERFONDO)

311/312 CATEGORÍAS DE PELIGRO: Producto químico peligroso.

FUEGO: No GENERACIÓN DE PRESIÓN: No REACTIVIDAD: No Agudo: N Crónico: Sí

INGREDIENTES INFORMABLES 313: Óxido de aluminio (CAS 1344-28-1)

302/304 PLANIFICACIÓN DE EMERGENCIA

PLAN DE EMERGENCIA: Ninguno

CERCLA (INTEGRAL AMBIENTAL DE RESPUESTA, COMPENSACIÓN Y RESPONSABILIDAD ACT)

CERCLA RQ: Ninguno

TSCA (LEY DE CONTROL DE SUSTANCIAS TÓXICAS)

Nombre Químico	CAS
Sílice, amorfa	60676-86-0
Óxido de Sodio	1313-59-3
Óxido de Calcio	1305-78-8
Óxido de Aluminio	1344-28-1
Óxido de Potasio	12136-45-7
Óxido de Magnesio	1309-48-4
Óxido de Hierro	1309-37-1
Sílice, Cristalina	14808-60-7

TSCA: Vidrio (CAS No. 60676-86-0) aparece en el Inventario de Sustancias Químicas de TSCA.

LEY DE AIRE LIMPIO

PARTE DE GESTIÓN DE RIESGOS 68 --- 40 CFR PARA QUÍMICO DE ACCIDENTE DE LIBERACIÓN DE

PREVENCIÓN: Ninguno

SEGURIDAD Y ADMINISTRACIÓN DE LA SALUD (OSHA)

29 CFR1910.119 --- GESTIÓN DE LA SEGURIDAD DEL PROCESO QUÍMICOS ALTAMENTE

PELIGROSOS: Ninguno

Blasting Experts

Distribuidor autorizado para Latinoamérica y el Caribe Irsales en Colombia, México, Chile, Perú, Ecuador, Brasil, Argentina y Pana

Oncina Principal:
Toronto, Ontario, CANADA - Tel.+1-905-541-0997
Atencion y Soporte Técnico:
ercial@blastingexperts.com - ingenieria@blastingexperts.com

Pág. Pastor Ravines A. 140

PROPUESTA DE CALIFORNIA 65: ADVERTENCIA: Este producto contiene sustancias químicas que el Estado de California como causante de cáncer y los defectos de nacimiento y otros daños reproductivos.

ESTADO RCRA: No regulado.

OSHA COMM PELIGRO. REGLA: Regulado.

LEY DE AGUA LIMPIA: No está cubierto por cualquier criterio de calidad del agua bajo la Sección 304.

CARCINÓGENO: Vidrio (CAS No. 60676-86-0) no está listado por IARC, NIOSH o NTP como un carcinógeno conocido o sospechado. Sin embargo con base a la presencia de sílice cristalina, el producto sería clasificado como carcinógeno de categoría 2 de conformidad al Sistema de Clasificación GHS.

CANADÁ

WHMIS RIESGO DE CLASIFICACIÓN Y SÍMBOLOS

No controlado.

WHMIS (SISTEMA DE INFORMACIÓN DE MATERIALES PELIGROSOS): No controlado. WHMIS CLASS: Este producto ha sido clasificado de acuerdo con los criterios de riesgo de la

hoja de seguridad contiene toda la información requerida por el CPR.

LISTA DE SUSTANCIAS DOMÉSTICAS (INVENTARIO): Mencionado en el Inventario.

MÉXICO Esta Hoja de Datos de Seguridad ha sido preparada de acuerdo con la Norma Oficial Mexicana (NOM-018-STPS-2000).

16. OTRAS INFORMACIÓN

Fecha Revisado: 09/09/2015

RESUMEN DE REVISIÓN: Esta Ficha de Seguridad reemplaza los 09/09/2015 SDS. Revisado:

Sección 16:

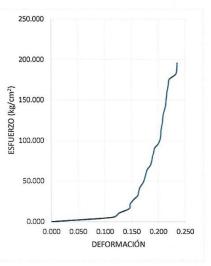
CLASIFICACIÓN HMIS - SALUD

Blasting Experts

Distribuidor autorizado para Latinoamérica y el Caribe Irsales en Colombia, México, Chile, Perù, Ecuador, Brasil, Argentina y Pani

Oficina Principal: Toronto, Ontario, CANADA - Tel.+1-905-541-0997 Atención y Soporte Técnico: rcial@blastingexperts.com - ingenieria@blastingexperts.co

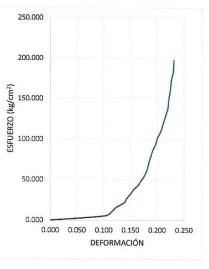
ANEXO N.º 7. Protocolos de probetas cilíndricas - deformación


Pág. Pastor Ravines A. 141

AR			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTIO	GOS CILÍNDRICOS
	NORMA	MTC	C E704 / ASTM C39 / NTP 339	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	EMPLAZO DEL CEMENTO EN 9%, ARCA, 2023"
ID. PROB	ETA:	P02PR-14	Diámetro Probeta (cm):	15.46
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.24
FECHA D	E ENSAYO:	18/05/2023	ÁREA (cm²)	187.72
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
1	0		0.000	0.000
2	1000	3.45	5.327	0.114
3	2000	3.82	10.654	0.126
4	3000	4.39	15.981	0.145
5	4000	4.44	21.308	0.147
6	5000	4.62	26.635	0.153
7	6000	4.87	31.962	0.161
8	7000	4.93	37.290	0.163
9	8000	5.01	42.617	0.166
10	9000	5.18	47.944	0.171
11	10000	5.27	53.271	0.174
12	11000	5.34	58.598	0.177
13	12000	5.41	63.925	0.179
14	13000	5.59	69.252	0.185
15	14000	5.67	74.579	0.188
16	15000	5.71	79.906	0.189
17	16000	5.79	85.233	0.191
18	17000	5.84	90.560	0.193
19	18000	6.04	95.887	0.200
20	19000	6.15	101.215	0.203
21	20000	6.19	106.542	0.205
22	21000	6.2	111.869	0.205
23	22000	6.24	117.196	0.206
24	23000	6.29	122.523	0.208
25	24000	6.31	127.850	0.209
26	25000	6.34	133.177	0.210
27	26000	6.41	138.504	0.212
28	27000	6.47	143.831	0.214
29	28000	6.49	149.158	0.215
30	29000	6.52	154.485	0.216
31	30000	6.54	159.812	0.216
32	31000	6.59	165.140	0.218
33	32000	6.63	170.467	0.219
34	33000	6.68	175.794	0.221
35	34000	7.01	181.121	0.232
36	35000	7.1	186.448	0.235
37	36726	7.12	195.642	0.235
38				
39				
40				

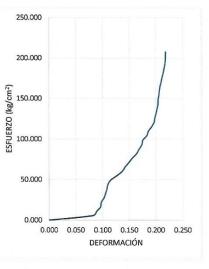
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				V11-3-5-5-0-0
43				
44			7-2-2	
45				
46				
47				
48				
49				
50				E-004 134
51				
52				
53				


ASESOR
Clquit-3

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA D	EL NORTE - CAJAMARCA
			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TEST	IGOS CILÍNDRICOS
UNITED TO A D	NORMA	MTC	E704 / ASTM C39 / NTP 33	39.034
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓ	N F'C=210 KG/CM2 CON EL R	EEMPLAZO DEL CEMENTO EN 9%,
DEL NORTE		11% Y 22% C	CON VIDRIO MOLIDO, CAJAN	MARCA, 2023"
ID. PROB	ETA:	P03PR-14	Diámetro Probeta (cm):	15.41
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.92
FECHA D	E ENSAYO:	18/05/2023	ÁREA (cm²)	186.51
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
1	0		0.000	0.000
2	1000	3.18	5.362	0.103
3	2000	3.57	10.723	0.115
4	3000	3.83	16.085	0.124
5	4000	4.27	21.447	0.138
6	5000	4.42	26.808	0.143
7	6000	4.64	32.170	0.150
8	7000	4.81	37.531	0.156
9	8000	5.08	42.893	0.164
10	9000	5.24	48.255	0.169
11	10000	5.41	53.616	0.175
12	11000	5.54	58.978	0.179
13	12000	5.63	64.340	0.182
14	13000	5.69	69.701	0.184
15	14000	5.75	75.063	0.186
16	15000	5.84	80.425	0.189
17	16000	5.92	85.786	0.191
18	17000	6.05	91.148	0.196
19	18000	6.14	96.510	0.199
20	19000	6.21	101.871	0.201
21	20000	6.34	107.233	0.205
22	21000	6.44	112.594	0.208
23	22000	6.51	117.956	0.211
24	23000	6.59	123.318	0.213
25	24000	6.67	128.679	0.216
26	25000	6.75	134.041	0.218
27	26000	6.81	139.403	0.220
28	27000	6.83	144.764	0.221
29	28000	6.86	150.126	0.222
30	29000	6.91	155.488	0.223
31	30000	6.94	160.849	0.224
32	31000	6.97	166.211	0.225
33	32000	6.99	171.573	0.226
34	33000	7.04	176.934	0.228
35	34000	7.11	182.296	0.230
36	35000	7.12	187.657	0.230
37	36785	7.14	197.228	0.231
38				
39				
40				

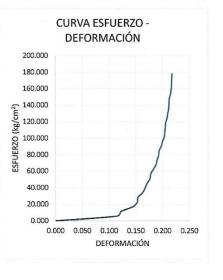
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43	- 10110			
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Temperatur	Tuind 14	Clawing
ADEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR AL

	LABOI	RATORIO DE CONCRETO - UN	IVERSIDAD PRIVADA D	EL NORTE - CAJAMARCA
			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TEST	IGOS CILÍNDRICOS
	NORMA	MTC	E704 / ASTM C39 / NTP 33	39.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL R CON VIDRIO MOLIDO, CAJAN	EEMPLAZO DEL CEMENTO EN 9%, MARCA, 2023"
ID. PROB	ETA:	P05PR-14	Diámetro Probeta (cm):	15.24
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.84
FECHA D	E ENSAYO:	18/05/2023	ÁREA (cm²)	182.30
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.51	5.485	0.081
3	2000	2.74	10.971	0.089
4	3000	2.97	16.456	0.096
5	4000	3.01	21.942	0.098
6	5000	3.17	27.427	0.103
7	6000	3.26	32.913	0.106
8	7000	3.34	38.398	0.108
9	8000	3.39	43.884	0.110
10	9000	3.56	49.369	0.115
11	10000	3.92	54.855	0.127
12	11000	4.23	60.340	0.137
13	12000	4.4	65.826	0.143
14	13000	4.62	71.311	0.150
15	14000	4.82	76.796	0.156
16	15000	5.06	82.282	0.164
17	16000	5.2	87.767	0.169
18	17000	5.36	93.253	0.174
19	18000	5.41	98.738	0.175
20	19000	5.64	104.224	0.183
21	20000	5.73	109.709	0.186
22	21000	5.92	115.195	0.192
23	22000	6.07	120.680	0.197
24	23000	6.11	126.166	0.198
25	24000	6.18	131.651	0.200
26	25000	6.24	137.137	0.202
27	26000	6.29	142.622	0.204
28	27000	6.3	148.108	0.204
29	28000	6.34	153.593	0.206
30	29000	6.37	159.078	0.207
31	30000	6.41	164.564	0.208
32	31000	6.47	170.049	0.210
33	32000	6.52	175.535	0.211
34	33000	6.59	181.020	0.214
35	34000	6.64	186.506	0.215
36	35000	6.69	191.991	0.217
37	36000	6.72	197.477	0.218
38	37822	6.73	207.471	0.218
39				
40				

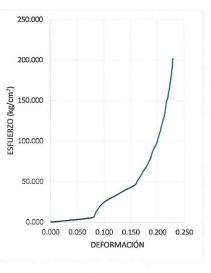
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Musimut 11	Amid (182)	Clause of

	LABO	RATORIO DE CONCRETO - UNI	VERSIDAD PRIVADA D	DEL NORTE - CAJAMARCA			
		P	ROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO EN 9%,					
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P04PR-14	Diámetro Probeta (cm):	15			
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	29.95			
FECHA D	E ENSAYO:	18/05/2023	ÁREA (cm²)	176.60			
RESPONS	ABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	3.45	5.663	0.115
3	2000	3.66	11.325	0.122
4	3000	4.32	16.988	0.144
5	4000	4.58	22.650	0.153
6	5000	4.61	28.313	0.154
7	6000	4.87	33.975	0.163
8	7000	5.01	39.638	0.167
9	8000	5.13	45.300	0.171
10	9000	5.29	50.963	0.177
11	10000	5.33	56.625	0.178
12	11000	5.48	62.288	0.183
13	12000	5.63	67.950	0.188
14	13000	5.69	73.613	0.190
15	14000	5.78	79.275	0.193
16	15000	5.81	84.938	0.194
17	16000	5.94	90.600	0.198
18	17000	6	96.263	0.200
19	18000	6.1	101.925	0.204
20	19000	6.13	107.588	0.205
21	20000	6.16	113.250	0.206
22	21000	6.18	118.913	0.206
23	22000	6.26	124.575	0.209
24	23000	6.3	130.238	0.210
25	24000	6.35	135.900	0.212
26	25000	6.37	141.563	0.213
27	26000	6.38	147.225	0.213
28	27000	6.45	152.888	0.21:
29	28000	6.49	158.550	0.21
30	29000	6.51	164.213	0.21
31	30000	6.52	169.875	0.213
32	31452	6.54	178.097	0.218
33				
34				
35				
36				
37				
38				
39				
40				

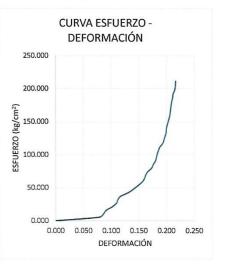
			220	
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				en 57580
47				
48				
49				
50				
51				
52				
53	110000			


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A longunt y	Muint las	Classin Z
ALEX PAUL PASTOR RAVINES	JONGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR AL

4	LABOI	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA D	EL NORTE - CAJAMARCA	
			PROTOCOLO		
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TEST	IGOS CILÍNDRICOS	
	NORMA	MTC	E704 / ASTM C39 / NTP 33	39.034	
UNIVERSIDAD PRIVADA	TESIS			EEMPLAZO DEL CEMENTO EN 9%,	
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"			
ID. PROB	ETA:	P06PR-14	Diámetro Probeta (cm):	14.96	
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.04	
FECHA D	E ENSAYO:	18/05/2023	ÁREA (cm²)	175.66	
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez	

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm ²)	€u
1	0		0.000	0.000
2	1000	2.34	5.693	0.078
3	2000	2.51	11.386	0.084
4	3000	2.68	17.078	0.089
5	4000	2.89	22.771	0.096
6	5000	3.27	28.464	0.109
7	6000	3.75	34.157	0.125
8	7000	4.21	39.850	0.140
9	8000	4.72	45.543	0.157
10	9000	4.88	51.235	0.162
11	10000	5.06	56.928	0.168
12	11000	5.19	62.621	0.173
13	12000	5.38	68.314	0.179
14	13000	5.51	74.007	0.183
15	14000	5.63	79.699	0.187
16	15000	5.7	85.392	0.190
17	16000	5.81	91.085	0.193
18	17000	5.96	96.778	0.198
19	18000	6.03	102.471	0.201
20	19000	6.11	108.163	0.203
21	20000	6.19	113.856	0.206
22	21000	6.25	119.549	0.208
23	22000	6.31	125.242	0.210
24	23000	6.39	130.935	0.213
25	24000	6.44	136.628	0.214
26	25000	6.48	142.320	0.216
27	26000	6.51	148.013	0.217
28	27000	6.59	153.706	0.219
29	28000	6.64	159.399	0.221
30	29000	6.69	165.092	0.223
31	30000	6.72	170.784	0.224
32	31000	6.76	176.477	0.225
33	32000	6.8	182.170	0.226
34	33000	6.82	187.863	0.227
35	34000	6.86	193.556	0.228
36	35471	6.88	201.930	0.229
37				
38				
39				
40				

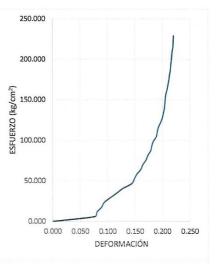
. 131	DOTOR.	Jorge	Jorge Edis Hoyos Martinez		
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu	
41					
42					
43					
44					
45					
46					
47					
48					
49					
50					
51					
52				Wo (present	
53		100100			


RESPONSABLE DE ENSAYO	COORDINADOR DE	ASESOR
TEST STORBER DE ENSATS	LABORATORIO	
L lugure U		Close to B
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

	LABC	PRATORIO DE CONCRETO - UN		EL NORTE - CAJAMARCA		
			PROTOCOLO			
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS				
UNITED OF DATE	NORMA	MTG	C E704 / ASTM C39 / NTP 33	9.034		
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO EN 9%, 11%				
DEL NORTE		Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	ETA:	P01PR-28	Diámetro Probeta (cm):	15.49		
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.83		
FECHA D	E ENSAYO:	1/06/2023	ÁREA (cm²)	188.33		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.42	5.310	0.078
3	2000	2.66	10.620	0.086
4	3000	2.81	15.929	0.091
5	4000	3.15	21.239	0.102
6	5000	3.38	26.549	0.110
7	6000	3.46	31.859	0.112
8	7000	3.62	37.169	0.117
9	8000	4.04	42.479	0.131
10	9000	4.33	47.788	0.140
11	10000	4.58	53.098	0.149
12	11000	4.81	58.408	0.156
13	12000	4.94	63.718	0.160
14	13000	5.01	69.028	0.163
15	14000	5.13	74.338	0.166
16	15000	5.34	79.647	0.173
17	16000	5.43	84.957	0.176
18	17000	5.55	90.267	0.180
19	18000	5.61	95.577	0.182
20	19000	5.65	100.887	0.183
21	20000	5.72	106.197	0.186
22	21000	5.8	111.506	0.188
23	22000	5.96	116.816	0.193
24	23000	6.03	122.126	0.196
25	24000	6.09	127.436	0.198
26	25000	6.15	132.746	0.199
27	26000	6.17	138.056	0.200
28	27000	6.2	143.365	0.201
29	28000	6.26	148.675	0.203
30	29000	6.31	153.985	0.205
31	30000	6.36	159.295	0.206
32	31000	6.39	164.605	0.207
.33	32000	6.41	169.915	0.208
34	33000	6.44	175.224	0.209
35	34000	6.47	180.534	0.210
36	35000	6.52	185.844	0.211
37	36000	6.54	191.154	0.212
38	37000	6.62	196.464	0.215
39	38000	6.67	201.773	0.216
40	39753	6.69	211.082	0.217

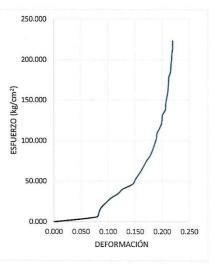
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Alous sunt	Juin 196	(lgwiles?
AVEX PAUL/PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR

	LABO	RATORIO DE CONCRETO – UN	IIVERSIDAD PRIVADA DE	EL NORTE - CAJAMARCA			
			PROTOCOLO				
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTION	GOS CILÍNDRICOS			
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO					
DEL NORTE		11% Y 22% C	ON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	ETA:	P02PR-28	Diámetro Probeta (cm):	14.82			
EDAD PROBETA:		28 DÍAS DE CURADO	Altura(cm)	30.13			
FECHA D	E ENSAYO:	1/06/2023	ÁREA (cm²)	172.50			
RESPONS	ABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	сu
1	0		0.000	0.000
2	1000	2.29	5.797	0.076
3	2000	2.42	11.594	0.080
4	3000	2.67	17.391	0.089
5	4000	2.81	23.188	0.093
6	5000	3.15	28.986	0.105
7	6000	3.51	34.783	0.116
8	7000	3.85	40.580	0.128
9	8000	4.33	46.377	0.144
10	9000	4.48	52.174	0.149
11	10000	4.61	57.971	0.153
12	11000	4.83	63.768	0.160
13	12000	4.94	69.565	0.164
14	13000	5.12	75.362	0.170
15	14000	5.22	81.159	0.173
16	15000	5.38	86.957	0.179
17	16000	5.44	92.754	0.181
18	17000	5.52	98.551	0.183
19	18000	5.69	104.348	0.189
20	19000	5.75	110.145	0.191
21	20000	5.81	115.942	0.193
22	21000	5.93	121.739	0.197
23	22000	6.03	127.536	0.200
24	23000	6.09	133.333	0.202
25	24000	6.14	139.130	0.204
26	25000	6.17	144.928	0.205
27	26000	6.19	150.725	0.205
28	27000	6.22	156.522	0.206
29	28000	6.29	162.319	0.209
30	29000	6.34	168.116	0.210
31	30000	6.39	173.913	0.212
32	31000	6.42	179.710	0.213
33	32000	6.47	185.507	0.215
34	33000	6.49	191.304	0.215
35	34000	6.52	197.101	0.216
36	35000	6.54	202.899	0.217
37	36000	6.57	208.696	0.218
38	37000	6.61	214.493	0.219
39	38000	6.63	220.290	0.220
40	39491	6.65	228.933	0.221

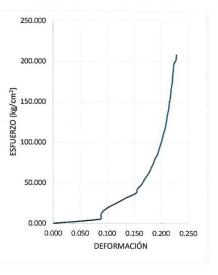
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	15			
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A lewes punct.	diniel Ho	Clquibof

			PROTOCOLO			
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TEST	IGOS CILÍNDRICOS		
UNIVERSIDAD PRIVADA DEL NORTE	NORMA	MTC E704 / ASTM C39 / NTP 339.034				
	TESIS	"RESISTENCIA À LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 99 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	ETA:	P03PR-28	Diámetro Probeta (cm):	14.88		
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.03		
FECHA DE ENSAYO:		1/06/2023	ÁREA (cm²)	173.90		
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.34	5.750	0.078
3	2000	2.49	11.501	0.083
4	3000	2.61	17.251	0.087
5	4000	2.86	23.002	0.095
6	5000	3.14	28.752	0.105
7	6000	3.55	34.503	0.118
8	7000	3.81	40.253	0.127
9	8000	4.35	46.003	0.145
10	9000	4.51	51.754	0.150
11	10000	4.68	57.504	0.156
12	11000	4.85	63.255	0.162
13	12000	4.99	69.005	0.166
14	13000	5.13	74.756	0.171
15	14000	5.31	80.506	0.177
16	15000	5.44	86.256	0.181
17	16000	5.53	92.007	0.184
18	17000	5.62	97.757	0.187
19	18000	5.69	103.508	0.189
20	19000	5.72	109.258	0.190
21	20000	5.86	115.009	0.195
22	21000	5.97	120.759	0.199
23	22000	6.01	126.509	0.200
24	23000	6.04	132.260	0.201
25	24000	6.19	138.010	0.206
26	25000	6.2	143.761	0.206
27	26000	6.24	149.511	0.208
28	27000	6.29	155.262	0.209
29	28000	6.33	161.012	0.211
30	29000	6.35	166.763	0.211
31	30000	6.37	172.513	0.212
32	31000	6.38	178.263	0.212
33	32000	6.47	184.014	0.215
34	33000	6.49	189.764	0.216
35	34000	6.51	195.515	0.217
36	35000	6.54	201.265	0.218
37	36000	6.55	207.016	0.218
38	37000	6.59	212.766	0.219
39	38786	6.6	223.036	0.220
40				

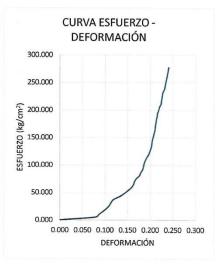
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				o-west o
47				
48				
49				
50				
51				
52				
53			200200000000000000000000000000000000000	


RESPONSABLE DE ENSAYO	LABORATORIO	ASESOR
Alourerumtu	Linul X2	Classife of

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
	PROTOCOLO						
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS			
	NORMA	MTC	9.034				
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9% 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P06PR-28	Diámetro Probeta (cm):	15.48			
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.84			
FECHA D	E ENSAYO:	1/06/2023	ÁREA (cm²)	188.21			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
1	0		0.000	0.000
2	1000	2.68	5.313	0.087
3	2000	2.72	10.626	0.088
4	3000	2.89	15.940	0.094
5	4000	3.27	21.253	0.106
6	5000	3.75	26.566	0.122
7	6000	4.2	31.879	0.136
8	7000	4.72	37.192	0.153
9	8000	4.81	42.506	0.156
10	9000	5.04	47.819	0.163
11	10000	5.18	53.132	0.168
12	11000	5.34	58.445	0.173
13	12000	5.5	63.759	0.178
14	13000	5.61	69.072	0.182
15	14000	5.73	74.385	0.186
16	15000	5.81	79.698	0.188
17	16000	5.96	85.011	0.193
18	17000	6.03	90.325	0.196
19	18000	6.11	95.638	0.198
20	19000	6.19	100.951	0.201
21	20000	6.25	106.264	0.203
22	21000	6.31	111.577	0.205
23	22000	6.39	116.891	0.207
24	23000	6.44	122.204	0.209
25	24000	6.48	127.517	0.210
26	25000	6.51	132.830	0.211
27	26000	6.57	138.144	0.213
28	27000	6.61	143.457	0.214
29	28000	6.63	148.770	0.215
30	29000	6.68	154.083	0.217
31	30000	6.71	159.396	0.218
32	31000	6.73	164.710	0.218
33	32000	6.77	170.023	0.220
34	33000	6.81	175.336	0.221
35	34000	6.82	180.649	0.221
36	35000	6.84	185.962	0.222
37	36000	6.87	191.276	0.223
38	37000	6.89	196.589	0.223
39	38000	7.01	201.902	0.227
40	39143	7.04	207.975	0.228

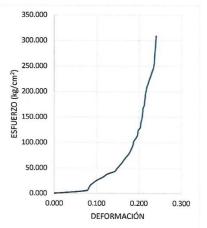
. 101	DOTOR.	30180	Luis Hoyos IVI	ar timez
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


ERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A live puntal		Clquibos ?
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

UNIVERSIDAD PRIVADA DEL NORTE	PROTOCOLO						
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC	9.034				
	TESIS		"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	ETA:	P01PR-28	Diámetro Probeta (cm):	15.36			
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.31			
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	185.30			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.41	5.397	0.080
3	2000	2.64	10.793	0.087
4	3000	2.91	16.190	0.096
5	4000	3.16	21.587	0.104
6	5000	3.34	26.983	0.110
7	6000	3.45	32.380	0.114
8	7000	3.62	37.777	0.119
9	8000	4.04	43.173	0.133
10	9000	4.33	48.570	0.143
11	10000	4.58	53.967	0.151
12	11000	4.81	59.363	0.159
13	12000	4.94	64.760	0.163
14	13000	5.01	70.157	0.165
15	14000	5.13	75.553	0.169
16	15000	5.34	80.950	0.176
17	16000	5.43	86.346	0.179
18	17000	5.55	91.743	0.183
19	18000	5.61	97.140	0.185
20	19000	5.65	102.536	0.186
21	20000	5.72	107.933	0.189
22	21000	5.82	113.330	0.192
23	22000	5.95	118.726	0.196
24	23000	6.02	124.123	0.199
25	24000	6.1	129.520	0.201
26	25000	6.15	134.916	0.203
27	26000	6.17	140.313	0.204
28	27000	6.2	145.710	0.205
29	28000	6.26	151.106	0.207
30	29000	6.31	156.503	0.208
31	30000	6.36	161.900	0.210
32	31000	6.39	167.296	0.211
33	32000	6.41	172.693	0.211
34	33000	6.44	178.090	0.212
35	34000	6.47	183.486	0.213
36	35000	6.52	188.883	0.215
37	36000	6.54	194.280	0.216
38	37000	6.62	199.676	0.218
39	38000	6.67	205.073	0.220
40	39000	6.78	210,470	0.224

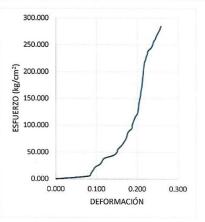
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	6.81	215.866	0.225
42	41000	6.84	221.263	0.226
43	42000	6.87	226.659	0.227
44	43000	6.91	232.056	0.228
45	44000	7.01	237.453	0.231
46	45000	7.05	242.849	0.233
47	46000	7.09	248.246	0.234
48	47000	7.13	253.643	0.235
49	48000	7.17	259.039	0.237
50	49000	7.21	264.436	0.238
51	50000	7.25	269.833	0.239
52	51316	7.29	276.935	0.241
53				
54				
55				


BSERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO,	ASESOR
A humpurta	-fulled	Clgwilos 3
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAG

	LABC	PRATORIO DE CONCRETO - U	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
1			PROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9%, 11 Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P03PR-28	Diámetro Probeta (cm):	15.38			
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.47			
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	185.66			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	eu
1	0		0.000	0.000
2	1000	2.34	5.386	0.077
3	2000	2.49	10.772	0.082
4	3000	2.61	16.159	0.086
5	4000	2.86	21.545	0.094
6	5000	3.14	26.931	0.103
7	6000	3.55	32.317	0.117
8	7000	3.81	37.703	0.125
9	8000	4.35	43.090	0.143
10	9000	4.51	48.476	0.148
11	10000	4.68	53.862	0.154
12	11000	4.85	59.248	0.159
13	12000	4.99	64.634	0.164
14	13000	5.13	70.020	0.168
15	14000	5.31	75.407	0.174
16	15000	5.44	80.793	0.179
17	16000	5.53	86.179	0.181
18	17000	5.62	91.565	0.184
19	18000	5.69	96.951	0.187
20	19000	5.72	102.338	0.188
21	20000	5.86	107.724	0.192
22	21000	5.97	113.110	0.196
23	22000	6.01	118.496	0.197
24	23000	6.04	123.882	0.198
25	24000	6.19	129.269	0.203
26	25000	6.2	134.655	0.203
27	26000	6.24	140.041	0.205
28	27000	6.29	145.427	0.206
29	28000	6.33	150.813	0.208
30	29000	6.35	156.200	0.208
31	30000	6.37	161.586	0.209
32	31000	6.38	166.972	0.209
33	32000	6.47	172.358	0.212
34	33000	6.49	177.744	0.213
35	34000	6.51	183.130	0.214
36	35000	6.54	188.517	0.215
37	36000	6.55	193.903	0.215
38	37000	6.59	199.289	0.216
39	38000	6.63	204.675	0.218
40	39000	6.67	210.061	0.219

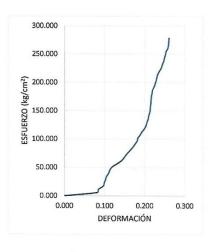
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	6.75	215.448	0.222
42	41000	6.81	220.834	0.223
43	42000	6.88	226.220	0.226
44	43000	6.94	231.606	0.228
45	44000	7.01	236.992	0.230
46	45000	7.08	242.379	0.232
47	46000	7.15	247.765	0.235
48	47000	7.18	253.151	0.236
49	48000	7.2	258.537	0.236
50	49000	7.21	263.923	0.237
51	50000	7.23	269.309	0.237
52	51000	7.24	274.696	0.238
53	52000	7.26	280.082	0.238
54	53000	7.27	285.468	0.239
55	54000	7.29	290.854	0.239
56	55000	7.30	296.240	0.240
57	56000	7.32	301.627	0.240
58	57336	7.33	308.823	0.241
59				


BSERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Alengund a	July 183	Agwilo [
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAGA

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
UNIVERSIDAD PRIVADA			PROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO					
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P04PR-28	Diámetro Probeta (cm):	15.16			
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.24			
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	180.39			
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
1	0		0.000	0.000
2	1000	2.48	5.544	0.082
3	2000	2.61	11.087	0.086
4	3000	2.79	16.631	0.092
5	4000	2.93	22.174	0.097
6	5000	3.29	27.718	0.109
7	6000	3.44	33.261	0.114
8	7000	3.62	38.805	0.120
9	8000	4.31	44.348	0.143
10	9000	4.54	49.892	0.150
11	10000	4.61	55.435	0.152
12	11000	4.84	60.979	0.160
13	12000	5.01	66.523	0.166
14	13000	5.15	72.066	0.170
15	14000	5.26	77.610	0.174
16	15000	5.31	83.153	0.176
17	16000	5.42	88.697	0.179
18	17000	5.65	94.240	0.187
19	18000	5.67	99.784	0.188
20	19000	5.74	105.327	0.190
21	20000	5.83	110.871	0.193
22	21000	5.92	116.414	0.196
23	22000	6.07	121.958	0.201
24	23000	6.11	127.502	0.202
25	24000	6.14	133.045	0.203
26	25000	6.16	138.589	0.204
27	26000	6.2	144.132	0.205
28	27000	6.24	149.676	0.206
29	28000	6.29	155.219	0.208
30	29000	6.31	160.763	0.209
31	30000	6.34	166.306	0.210
32	31000	6.38	171.850	0.211
33	32000	6.41	177.393	0.212
34	33000	6.43	182.937	0.213
35	34000	6.45	188.481	0.213
36	35000	6.48	194.024	0.214
37	36000	6.5	199.568	0.215
38	37000	6.53	205.111	0.216
39	38000	6.55	210.655	0.217
40	39000	6.58	216.198	0.217

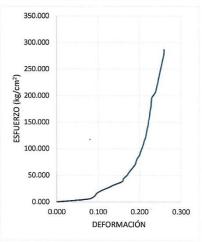
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	6.67	221.742	0.221
42	41000	6.72	227.285	0.222
43	42000	6.81	232.829	0.225
44	43000	6.85	238.372	0.227
45	44000	7.08	243.916	0.234
46	45000	7.19	249.460	0.238
47	46000	7.25	255.003	0.240
48	47000	7.38	260.547	0.244
49	48000	7.47	266.090	0.247
50	49000	7.59	271.634	0.251
51	50000	7.70	277.177	0.255
52	51284	7.81	284.295	0.258
53				
54				
55				
56				-110011


SERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A lever present 1	Linds	Clauser 3
ALEX PAUL PASTOR RAVINES	JØRGE LØIS HOYOS MARTINEZ	Dr. Ing. ORLANDOLAGUILAR ALIAG

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA
			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
UNIVERSIDAD	NORMA	MTC	C E704 / ASTM C39 / NTP 33	9.034
PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RI CON VIDRIO MOLIDO, CAJAM	EEMPLAZO DEL CEMENTO EN 9%,
ID. PROB	ETA:	P05PR-28	Diámetro Probeta (cm):	15
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	29.66
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	176.71
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.41	5.659	0.081
3	2000	2.5	11.318	0.084
4	3000	2.87	16.977	0.097
5	4000	2.95	22.636	0.099
6	5000	3.04	28.295	0.102
7	6000	3.11	33.954	0.105
8	7000	3.27	39.613	0.110
9	8000	3.36	45.272	0.113
10	9000	3.53	50.931	0.119
11	10000	3.91	56.590	0.132
12	11000	4.24	62.249	0.143
13	12000	4.43	67.908	0.149
14	13000	4.61	73.567	0.155
15	14000	4.82	79.226	0.163
16	15000	5.04	84.885	0.170
17	16000	5.2	90.544	0.175
18	17000	5.37	96.203	0.181
19	18000	5.43	101.862	0.183
20	19000	5.6	107.521	0.189
21	20000	5.74	113.180	0.194
22	21000	5.93	118.839	0.200
23	22000	6.04	124.498	0.204
24	23000	6.11	130.157	0.206
25	24000	6.19	135.816	0.209
26	25000	6.23	141.475	0.210
27	26000	6.31	147.134	0.213
28	27000	6.34	152.793	0.214
29	28000	6.36	158.452	0.214
30	29000	6.39	164.111	0.215
31	30000	6.4	169.770	0.216
32	31000	6.42	175.429	0.216
33	32000	6.47	181.088	0.218
34	33000	6.51	186.747	0.219
35	34000	6.64	192.406	0.224
36	35000	6.71	198.065	0.226
37	36000	6.79	203.724	0.229
38	37000	6.84	209.383	0.231
39	38000	6.91	215.042	0.233
40	39000	7.04	220.701	0.237

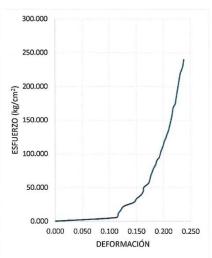
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.18	226.360	0.242
42	41000	7.24	232.019	0.244
43	42000	7.34	237.678	0.247
44	43000	7.39	243.337	0.249
45	44000	7.47	248.996	0.252
46	45000	7.51	254.655	0.253
47	46000	7.64	260.314	0.258
48	47000	7.68	265.972	0.259
49	48000	7.71	271.631	0.260
50	49147	7.72	278.122	0.260
51				
52				
53				
54				
55				


BSERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Aliexpunts	- Swings (Se)	Clquibs A
ALEX PAUL PASTOR RAVINES	DORGE LOIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

	LABO	RATORIO DE CONCRETO - UN		EL NORTE - CAJAMARCA			
	PROTOCOLO						
	ENSAYO	RESISTENCIA A LA	A COMPRESIÓN DE TESTI	IGOS CILÍNDRICOS			
THE RESERVE TO THE RE	NORMA	MTC	E704 / ASTM C39 / NTP 33	9.034			
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓN	F'C=210 KG/CM2 CON EL R	EEMPLAZO DEL CEMENTO EN 9%,			
DEL NORTE		11% Y 22% C	ON VIDRIO MOLIDO, CAJAN	MARCA, 2023"			
ID. PROB	ETA:	P06PR-28	Diámetro Probeta (cm):	15.28			
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	29.85			
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	183.25			
RESPONS	ABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.32	5.457	0.078
3	2000	2.72	10.914	0.091
4	3000	2.89	16.371	0.097
5	4000	3.27	21.828	0.110
6	5000	3.75	27.285	0.126
7	6000	4.2	32.742	0.141
8	7000	4.72	38.199	0.158
9	8000	4.81	43.656	0.161
10	9000	5.04	49.113	0.169
11	10000	5.18	54.570	0.174
12	11000	5.34	60.027	0.179
13	12000	5.52	65.484	0.185
14	13000	5.66	70.941	0.190
15	14000	5.73	76.398	0.192
16	15000	5.81	81.855	0.195
17	16000	5.96	87.312	0.200
18	17000	6.03	92.769	0.202
19	18000	6.11	98.226	0.205
20	19000	6.19	103.683	0.207
21	20000	6.25	109.141	0.209
22	21000	6.31	114.598	0.211
23	22000	6.39	120.055	0.214
24	23000	6.44	125.512	0.216
25	24000	6.48	130.969	0.217
26	25000	6.51	136.426	0.218
27	26000	6.57	141.883	0.220
28	27000	6.61	147.340	0.221
29	28000	6.63	152.797	0.222
30	29000	6.68	158.254	0.224
31	30000	6.71	163.711	0.225
32	31000	6.73	169.168	0.225
33	32000	6.77	174.625	0.227
34	33000	6.81	180.082	0.228
35	34000	6.82	185.539	0.228
36	35000	6.84	190.996	0.229
37	36000	6.87	196.453	0.230
38	37000	7.02	201.910	0.235
39	38000	7.14	207.367	0.239
40	39000	7.19	212.824	0.241

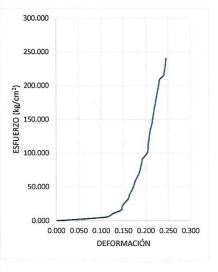
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.24	218.281	0.243
42	41000	7.29	223.738	0.244
43	42000	7.33	229.195	0.246
44	43000	7.38	234.652	0.247
45	44000	7.42	240.109	0.249
46	45000	7.47	245.566	0.250
47	46000	7.51	251.023	0.252
48	47000	7.56	256.480	0.253
49	48000	7.60	261.937	0.255
50	49000	7.65	267.394	0.256
51	50000	7.70	272.851	0.258
52	51000	7.74	278.308	0.259
53	52472	7.75	286.341	0.260
54				
55				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Cienquento	Tuniul	Clgwiloo Z

			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
	NORMA	MTC	E704 / ASTM C39 / NTP 33	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	EMPLAZO DEL CEMENTO EN 9%, ARCA, 2023"
ID. PROB	ETA:	P01PR-14	Diámetro Probeta (cm):	15.05
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.01
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	177.89
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єц
1	0		0.000	0.000
2	1000	3.38	5.621	0.113
3	2000	3.49	11.243	0.116
4	3000	3.64	16.864	0.121
5	4000	3.81	22.486	0.127
6	5000	4.35	28.107	0.145
7	6000	4.51	33.729	0.150
8	7000	4.76	39.350	0.159
9	8000	4.88	44.972	0.163
10	9000	4.91	50.593	0.164
11	10000	5.16	56.215	0.172
12	11000	5.24	61.836	0.175
13	12000	5.29	67.457	0.176
14	13000	5.37	73.079	0.179
15	14000	5.45	78.700	0.182
16	15000	5.57	84.322	0.186
17	16000	5.63	89.943	0.188
18	17000	5.78	95.565	0.193
19	18000	5.84	101.186	0.195
20	19000	5.91	106.808	0.197
21	20000	5.99	112.429	0.200
22	21000	6.05	118.050	0.202
23	22000	6.14	123.672	0.205
24	23000	6.21	129.293	0.207
25	24000	6.29	134.915	0.210
26	25000	6.34	140.536	0.211
27	26000	6.39	146.158	0.213
28	27000	6.44	151.779	0.215
29	28000	6.48	157.401	0.216
30	29000	6.51	163.022	0.217
31	30000	6.55	168.644	0.218
32	31000	6.66	174.265	0.222
33	32000	6.69	179.886	0.223
34	33000	6.73	185.508	0.224
35	34000	6.76	191.129	0.225
36	35000	6.80	196.751	0.227
37	36000	6.83	202.372	0.228
38	37000	6.87	207.994	0.229
39	38000	6.90	213.615	0.230
40	39000	6.94	219.237	0.231

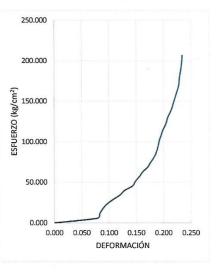
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41	40000	7.02	224.858	0.234
42	41000	7.09	230.480	0.236
43	42592	7.14	239.429	0.238
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				
54				
55				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Alum number.	Mullill	Clquilos J

UNIVERSIDAD PRIVADA DEL NORTE	LABORATORIO DE CONCRETO - UNIVERSIDAD PRIVADA DEL NORTE - CAJAMARCA PROTOCOLO						
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 99 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P02PR-14	Diámetro Probeta (cm):	15.4			
EDAD PROBETA:		14 DÍAS DE CURADO	Altura(cm)	30.16			
FECHA DE ENSAYO:		15/06/2023	ÁREA (cm²)	186.27			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	3.34	5.369	0.111
3	2000	3.82	10.737	0.127
4	3000	4.39	16.106	0.146
5	4000	4.44	21.474	0.147
6	5000	4.62	26.843	0.153
7	6000	4.84	32.211	0.160
8	7000	4.92	37.580	0.163
9	8000	5.04	42.948	0.167
10	9000	5.17	48.317	0.171
11	10000	5.25	53.686	0.174
12	11000	5.33	59.054	0.177
13	12000	5.45	64.423	0.181
14	13000	5.58	69.791	0.185
15	14000	5.65	75.160	0.187
16	15000	5.7	80.528	0.189
17	16000	5.77	85.897	0.191
18	17000	5.81	91.265	0.193
19	18000	6.02	96.634	0.200
20	19000	6.16	102.002	0.204
21	20000	6.19	107.371	0.205
22	21000	6.2	112.740	0.206
23	22000	6.24	118.108	0.207
24	23000	6.27	123.477	0.208
25	24000	6.31	128.845	0.209
26	25000	6.34	134.214	0.210
27	26000	6.41	139.582	0.213
28	27000	6.47	144.951	0.215
29	28000	6.5	150.319	0.216
30	29000	6.54	155.688	0.217
31	30000	6.59	161.057	0.219
32	31000	6.62	166.425	0.219
33	32000	6.68	171.794	0.221
34	33000	6.71	177.162	0.222
35	34000	6.76	182.531	0.224
36	35000	6.805	187.899	0.226
37	36000	6.85	193.268	0.227
38	37000	6.895	198.636	0.229
39	38000	6.94	204.005	0.230
40	39000	6.985	209.373	0.232

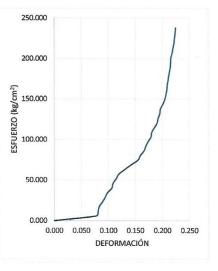
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.25	214.742	0.240
42	41000	7.3	220.111	0.242
43	42000	7.34	225.479	0.243
44	43000	7.38	230.848	0.245
45	44742	7.41	240.200	0.246
46				S of Records Carea No.
47				
48				
49				
50				
51				
52				
53	11 30001			S


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Juen audu.	Aniul 189	Clavilor ?

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
TR	PROTOCOLO						
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
UNIVERSIDAD PRIVADA DEL NORTE	NORMA	MTC E704 / ASTM C39 / NTP 339.034 "RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
	TESIS						
ID. PROB	ETA:	P03PR-14	Diámetro Probeta (cm):	14.96			
EDAD PROBETA:		14 DÍAS DE CURADO	Altura(cm)	29.81			
FECHA DE ENSAYO:		15/06/2023	ÁREA (cm²)	175.66			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
1	0		0.000	0.000
2	1000	2.34	5.693	0.078
3	2000	2.47	11.386	0.083
4	3000	2.62	17.078	0.088
5	4000	2.84	22.771	0.095
6	5000	3.18	28.464	0.107
7	6000	3.57	34.157	0.120
8	7000	3.83	39.850	0.128
9	8000	4.27	45.543	0.143
10	9000	4.42	51.235	0.148
11	10000	4.64	56.928	0.156
12	11000	4.81	62.621	0.161
13	12000	5.08	68.314	0.170
14	13000	5.24	74.007	0.176
15	14000	5.41	79.699	0.181
16	15000	5.54	85.392	0.186
17	16000	5.63	91.085	0.189
18	17000	5.69	96.778	0.191
19	18000	5.75	102.471	0.193
20	19000	5.84	108.163	0.196
21	20000	5.92	113.856	0.199
22	21000	6.05	119.549	0.203
23	22000	6.14	125.242	0.206
24	23000	6.21	130.935	0.208
25	24000	6.34	136.628	0.213
26	25000	6.44	142.320	0.216
27	26000	6.51	148.013	0.218
28	27000	6.59	153.706	0.221
29	28000	6.67	159.399	0.224
30	29000	6.75	165.092	0.226
31	30000	6.81	170.784	0.228
32	31000	6.83	176.477	0.229
33	32000	6.86	182.170	0.230
34	33000	6.91	187.863	0.232
35	34000	6.94	193.556	0.233
36	35000	6.97	199.249	0.234
37	36249	6.99	206.359	0.234
38				
39				W. T. Wallet Dr. Trans
40				

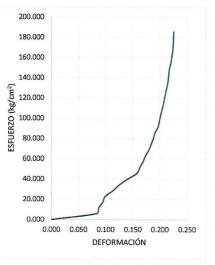
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41				
42				
43				20000
44				
45				
46				7
47				
48		-		
49				
50				
51				
52				
53				


OBSERVACIONES:	SERVACIONES:					
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR				
Stevermente	Juin///	Clguibs S				
ALEX PAUL PASTOR RAVINES	JORGELLUS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAGA				

UNIVERSIDAD PRIVADA DEL NORTE			PROTOCOLO	9				
	ENSAYO	RESISTENCIA A L	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034						
	TESIS	"RESISTENCIA A LA COMPRESION F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO EN 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"						
ID. PROBETA:		P04PR-14	Diámetro Probeta (cm):	14.91				
EDAD PROBETA:		14 DÍAS DE CURADO	Altura(cm)	29.59				
FECHA DE ENSAYO:		15/06/2023	ÁREA (cm²)	174.48				
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez				

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.28	5.731	0.077
3	2000	2.39	11.463	0.081
4	3000	2.45	17.194	0.083
5	4000	2.62	22.925	0.089
6	5000	2.78	28.657	0.094
7	6000	2.91	34.388	0.098
8	7000	3.15	40.119	0.106
9	8000	3.21	45.851	0.108
10	9000	3.39	51.582	0.115
11	10000	3.53	57.313	0.119
12	11000	3.87	63.044	0.131
13	12000	4.21	68.776	0.142
14	13000	4.58	74.507	0.155
15	14000	4.71	80.238	0.159
16	15000	4.91	85.970	0.166
17	16000	5.01	91.701	0.169
18	17000	5.13	97.432	0.173
19	18000	5.29	103.164	0.179
20	19000	5.33	108.895	0.180
21	20000	5.48	114.626	0.185
22	21000	5.63	120.358	0.190
23	22000	5.69	126.089	0.192
24	23000	5.78	131.820	0.195
25	24000	5.81	137.552	0.196
26	25000	5.94	143.283	0.201
27	26000	6.05	149.014	0.204
28	27000	6.11	154.746	0.206
29	28000	6.16	160.477	0.208
30	29000	6.18	166.208	0.209
31	30000	6.22	171.939	0.210
32	31000	6.26	177.671	0.212
33	32000	6.31	183.402	0.213
34	33000	6.35	189.133	0.215
35	34000	6.37	194.865	0.215
36	35000	6.38	200.596	0.216
37	36000	6.45	206.327	0.218
38	37000	6.49	212.059	0.219
39	38000	6.55	217.790	0.221
40	39000	6.57	223.521	0.222

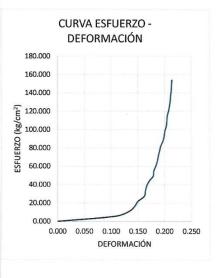
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
41	40000	6.61	229.253	0.223
42	41495	6.64	237.821	0.224
43				
44				
45				
46				00-00-00-
47				
48				
49	1			
50				
51				
52				
53				


OBSERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Leurneuter	Junil 180	Clquilos 7
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAGA

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA D	EL NORTE - CAJAMARCA			
			PROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P06PR-14	Diámetro Probeta (cm):	14.93			
EDAD PROBETA:		14 DÍAS DE CURADO	Altura(cm)	29.94			
FECHA DE ENSAYO:		15/06/2023	ÁREA (cm²)	174.95			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0	,	0.000	0.000
2	1000	2.48	5.716	0.083
3	2000	2.61	11.432	0.087
4	3000	2.84	17.148	0.095
5	4000	2.97	22.864	0.099
6	5000	3.41	28.580	0.114
7	6000	3.75	34.296	0.125
8	7000	4.21	40.011	0.141
9	8000	4.72	45.727	0.158
10	9000	4.88	51.443	0.163
11	10000	5.06	57.159	0.169
12	11000	5.19	62.875	0.173
13	12000	5.38	68.591	0.180
14	13000	5.51	74.307	0.184
15	14000	5.63	80.023	0.188
16	15000	5.72	85.739	0.191
17	16000	5.89	91.455	0.197
18	17000	5.96	97.171	0.199
19	18000	6.03	102.887	0.201
20	19000	6.11	108.602	0.204
21	20000	6.19	114.318	0.207
22	21000	6.25	120.034	0.209
23	22000	6.31	125.750	0.211
24	23000	6.39	131.466	0.213
25	24000	6.44	137.182	0.215
26	25000	6.48	142.898	0.216
27	26000	6.51	148.614	0.217
28	27000	6.59	154.330	0.220
29	28000	6.64	160.046	0.222
30	29000	6.69	165.762	0.223
31	30000	6.72	171.478	0.224
32	31000	6.73	177.193	0.225
33	32438	6.75	185.413	0.225
34				2 to 10000000
35				
36				
37				
38				
39				
40				

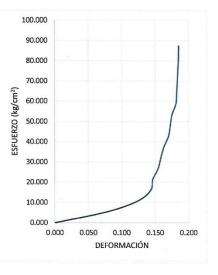
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	eu
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


ERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Quencusto	Swirth 6	Clquites ??
(ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

HNTVERSTRAD	LADO	RATORIO DE CONCRETO - UN	PROTOCOLO	E NORTE - CASAMARCA			
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9%, 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
DEL NORTE							
ID. PROB	ETA:	P01PR-07	Diámetro Probeta (cm):	15.26			
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.12			
FECHA DE ENSAYO:		8/06/2023	ÁREA (cm²)	182.89			
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	3.24	5.468	0.108
3	2000	4.03	10.936	0.134
4	3000	4.34	16.403	0.144
5	4000	4.53	21.871	0.150
6	5000	4.88	27.339	0.162
7	6000	4.94	32.807	0.164
8	7000	5.01	38.274	0.166
9	8000	5.15	43.742	0.171
10	9000	5.38	49.210	0.179
11	10000	5.41	54.678	0.180
12	11000	5.53	60.145	0.184
13	12000	5.62	65.613	0.187
14	13000	5.67	71.081	0.188
15	14000	5.74	76.549	0.191
16	15000	5.81	82.017	0.193
17	16000	5.94	87.484	0.197
18	17000	6.01	92.952	0.200
19	18000	6.05	98.420	0.201
20	19000	6.13	103.888	0.204
21	20000	6.16	109.355	0.205
22	21000	6.18	114.823	0.205
23	22000	6.26	120.291	0.208
24	23000	6.31	125.759	0.209
25	24000	6.35	131.226	0.211
26	25000	6.37	136.694	0.211
27	26000	6.41	142.162	0.213
28	27000	6.42	147.630	0.213
29	28126	6.44	153.786	0.214
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

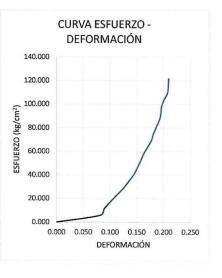
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49	100000000000000000000000000000000000000			
50				
51				
52				
53				


SERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Alexpunt	Amiel So	Aguitor 7
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

UNIVERSIDAD PRIVADA DEL NORTE	PROTOCOLO						
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROBETA:		P02PR-07	Diámetro Probeta (cm):	15.45			
EDAD PROBETA:		7 DÍAS DE CURADO	Altura(cm)	30.26			
FECHA DE ENSAYO:		8/06/2023	ÁREA (cm²)	187.48			
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
1	0	(ama)	0.000	0.000
2	1000	2.35	5.334	0.078
3	2000	3.74	10.668	0.124
4	3000	4.34	16.002	0.143
5	4000	4.43	21.336	0.146
6	5000	4.68	26.670	0.155
7	6000	4.8	32.003	0.159
8	7000	4.94	37.337	0.163
9	8000	5.15	42.671	0.170
10	9000	5.23	48.005	0.173
11	10000	5.31	53.339	0.175
12	11000	5.49	58.673	0.181
13	12000	5.52	64.007	0.182
14	13000	5.55	69.341	0.183
15	14000	5.57	74.675	0.184
- 16	15000	5.6	80.009	0.185
17	16354	5.61	87.231	0.185
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

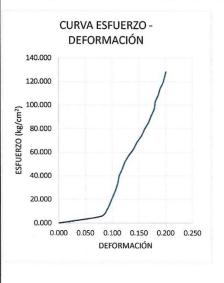
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	200 - 100 - 1			
42				
43				
44				
45				
46				
47	L-ACTION OF			
48				
49				
50				
51				
52				
53				


RVACIONES: RESPONSABLE DE ENSAYO	COORDINADOR DE	ASESOR
Alien pund.	Shing The	Equilos p
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

1			PROTOCOLO	EL NORTE - CAJAMARCA	
	ENSAYO	RESISTENCIA A LA	COMPRESIÓN DE TESTIGOS CILÍNDRICOS		
UNIVERSIDAD PRIVADA DEL NORTE	NORMA	MTC	MTC E704 / ASTM C39 / NTP 339.034		
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CE 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"			
ID. PROB	ETA:	P04PR-07	Diámetro Probeta (cm):	14.89	
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.61	
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	174.02	
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez	

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
1	0		0.000	0.000
2	1000	2.41	5.746	0.081
3	2000	2.64	11.493	0.089
4	3000	2.98	17.239	0.101
5	4000	3.34	22.986	0.113
6	5000	3.71	28.732	0.125
7	6000	3.99	34.479	0.135
8	7000	4.28	40.225	0.145
9	8000	4.47	45.972	0.151
10	9000	4.65	51.718	0.157
11	10000	4.81	57.465	0.162
12	11000	5.02	63.211	0.170
13	12000	5.24	68.958	0.177
14	13000	5.36	74.704	0.181
15	14000	5.51	80.451	0.186
16	15000	5.69	86.197	0.192
17	16000	5.78	91.943	0.195
18	17000	5.81	97.690	0.196
19	18000	5.94	103.436	0.201
20	19000	6.14	109.183	0.207
21	20000	6.18	114.929	0.209
22	21166	6.21	121.630	0.210
23				
24				
25				
26			- verane	
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38		La superior		
39				
40				

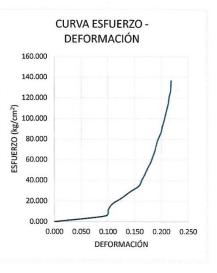
		•		artinoz
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41				
42				
43				
44				
45				
46				
47				
48				
49	No-sec			
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A luxpuntel	Livill 193	Aguitor A
ALEX PAUL PASTOR RAVINES	JORGE LAS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALI

	LABO	RATORIO DE CONCRETO - UN	IIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
			PROTOCOLO				
	ENSAYO	RESISTENCIA A L	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS				
HINTVERSTRAD	NORMA	MTC	704 / ASTM C39 / NTP 339.034				
	TESIS	"RESISTENCIA A LA COMPRESIÓ	N F'C=210 KG/CM2 CON EL RE	EEMPLAZO DEL CEMENTO EN 9%,			
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P05PR-07	Diámetro Probeta (cm):	14.95			
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.11			
FECHA DE ENSAYO:		8/06/2023	ÁREA (cm²)	175.54			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
1	0		0.000	0.000
2	1000	2.38	5.697	0.079
3	2000	2.72	11.393	0.090
4	3000	2.9	17.090	0.096
5	4000	3.07	22.787	0.102
6	5000	3.22	28.484	0.107
7	6000	3.34	34.180	0.111
8	7000	3.41	39.877	0.113
9	8000	3.58	45.574	0.119
10	9000	3.72	51.270	0.124
11	10000	3.94	56.967	0.131
12	11000	4.22	62.664	0.140
13	12000	4.41	68.360	0.146
14	13000	4.67	74.057	0.155
15	14000	4.85	79.754	0.161
16	15000	5.07	85.451	0.168
17	16000	5.22	91.147	0.173
18	17000	5.39	96.844	0.179
19	18000	5.44	102.541	0.181
20	19000	5.61	108.237	0.186
21	20000	5.72	113.934	0.190
22	21000	5.9	119.631	0.196
23	22478	6.05	128.051	0.201
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

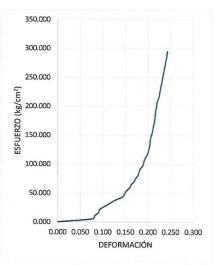
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				1.50
53				1111


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Allur munth	Aniul (MS)	Aguilan A

		RATORIO DE CONCRETO - UN	PROTOCOLO		
UNIVERSIDAD PRIVADA DEL NORTE	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS	
	NORMA	MTC	9.034		
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"			
ID. PROB	ETA:	P06PR-07	Diámetro Probeta (cm):	14.89	
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.89	
FECHA DE ENSAYO:		8/06/2023	ÁREA (cm²)	174.02	
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez	

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.89	5.746	0.097
3	2000	3.01	11.493	0.101
4	3000	3.24	17.239	0.108
5	4000	3.77	22.986	0.126
6	5000	4.21	28.732	0.141
7	6000	4.72	34.479	0.158
8	7000	4.88	40.225	0.163
9	8000	5.06	45.972	0.169
10	9000	5.21	51.718	0.174
11	10000	5.38	57.465	0.180
12	11000	5.5	63.211	0.184
13	12000	5.62	68.958	0.188
14	13000	5.7	74.704	0.191
15	14000	5.81	80.451	0.194
16	15000	5.96	86.197	0.199
17	16000	6.03	91.943	0.202
18	17000	6.13	97.690	0.205
19	18000	6.21	103.436	0.208
20	19000	6.29	109.183	0.210
21	20000	6.37	114.929	0.213
22	21000	6.41	120.676	0.214
23	22000	6.49	126.422	0.217
24	23740	6.52	136.421	0.218
25				
26				
27				
28				
29				
30				0.7
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

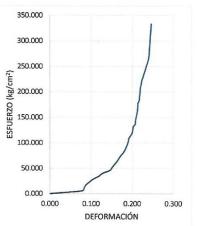
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				14.7
46				
47				
48				
49				
50				
51				
52				
53				


BSERVACIONES:					
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR			
Alweguely		Clquitor 3			
ALEX PAUL PASTOR RAVINES	JORGE LIAS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAGA			

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA				
	PROTOCOLO							
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	ESIÓN DE TESTIGOS CILÍNDRICOS				
	NORMA	MTC	9.034					
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		ON F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	EEMPLAZO DEL CEMENTO EN 9%, IARCA, 2023"				
ID. PROB	ETA:	P02PR-28	Diámetro Probeta (cm):	15.36				
EDAD PR	ROBETA:	28 DÍAS DE CURADO	Altura(cm)	30.24				
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	185.30				
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez				

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	сu
1	0		0.000	0.000
2	1000	2.34	5.397	0.077
3	2000	2.48	10.793	0.082
4	3000	2.73	16.190	0.090
5	4000	2.81	21.587	0.093
6	5000	3.15	26.983	0.104
7	6000	3.51	32.380	0.116
8	7000	3.85	37.777	0.127
9	8000	4.33	43.173	0.143
10	9000	4.48	48.570	0.148
11	10000	4.61	53.967	0.152
12	11000	4.83	59.363	0.160
13	12000	4.92	64.760	0.163
14	13000	5.12	70.157	0.169
15	14000	5.22	75.553	0.173
16	15000	5.38	80.950	0.178
17	16000	5.44	86.346	0.180
18	17000	5.52	91.743	0.183
19	18000	5.69	97.140	0.188
20	19000	5.75	102.536	0.190
21	20000	5.81	107.933	0.192
22	21000	5.93	113.330	0.196
23	22000	6.03	118.726	0.199
24	23000	6.09	124.123	0.201
25	24000	6.14	129.520	0.203
26	25000	6.17	134.916	0.204
27	26000	6.19	140.313	0.205
28	27000	6.22	145.710	0.206
29	28000	6.29	151.106	0.208
30	29000	6.34	156.503	0.210
31	30000	6.39	161.900	0.211
32	31000	6.42	167.296	0.212
33	32000	6.47	172.693	0.214
34	33000	6.49	178.090	0.215
35	34000	6.52	183.486	0.216
36	35000	6.54	188.883	0.216
37	36000	6.57	194.280	0.217
38	37000	6.61	199.676	0.219
39	38000	6.63	205.073	0.219
40	39000	6.7	210,470	0.222

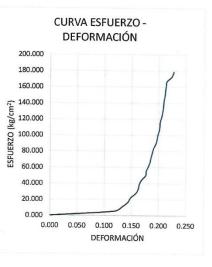
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	6.78	215.866	0.224
42	41000	6.82	221.263	0.226
43	42000	6.86	226.659	0.227
44	43000	6.9	232.056	0.228
45	44000	6.94	237.453	0.229
46	45000	6.98	242.849	0.231
47	46000	7.02	248.246	0.232
48	47000	7.06	253.643	0.233
49	48000	7.10	259.039	0.235
50	49000	7.14	264.436	0.236
51	50000	7.18	269.833	0.237
52	51000	7.22	275.229	0.239
53	52000	7.26	280.626	0.240
54	53000	7.30	286.023	0.241
55	54547	7.34	294.371	0.243


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Dun paul no	Think 1960	Clquilon7
ALEX PAUL PASTOR RAVINES	JORGE LOIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

AN		RATORIO DE CONCRETO - UN	PROTOCOLO	337.17.47.30.31.		
	ENSAYO	RESISTENCIA A L	COMPRESIÓN DE TESTIGOS CILÍNDRICOS			
	NORMA	MTC	MTC E704 / ASTM C39 / NTP 339.034			
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	EEMPLAZO DEL CEMENTO EN 9%, IARCA, 2023"		
ID. PROB	ETA:	P03PR-28	Diámetro Probeta (cm):	14.92		
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	29.8		
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	174.83		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.34	5.720	0.079
3	2000	2.49	11.440	0.084
4	3000	2.61	17.160	0.088
5	4000	2.86	22.879	0.096
6	5000	3.14	28.599	0.105
7	6000	3.55	34.319	0.119
8	7000	3.81	40.039	0.128
9	8000	4.35	45.759	0.146
10	9000	4.51	51.479	0.151
11	10000	4.68	57.198	0.157
12	11000	4.85	62.918	0.163
13	12000	4.99	68.638	0.167
14	13000	5.13	74.358	0.172
15	14000	5.31	80.078	0.178
16	15000	5.44	85.798	0.183
17	16000	5.53	91.517	0.186
18	17000	5.62	97.237	0.189
19	18000	5.69	102.957	0.191
20	19000	5.72	108.677	0.192
21	20000	5.86	114.397	0.197
22	21000	5.97	120.117	0.200
23	22000	6.01	125.837	0.202
24	23000	6.04	131.556	0.203
25	24000	6.19	137.276	0.208
26	25000	6.2	142.996	0.208
27	26000	6.24	148.716	0.209
28	27000	6.29	154.436	0.211
29	28000	6.33	160.156	0.212
30	29000	6.35	165.875	0.213
31	30000	6.37	171.595	0.214
32	31000	6.38	177.315	0.214
33	32000	6.47	183.035	0.217
34	33000	6.49	188.755	0.218
35	34000	6.51	194.475	0.218
36	35000	6.54	200.194	0.219
37	36000	6.55	205.914	0.220
38	37000	6.59	211.634	0.221
39	38000	6.63	217.354	0.222
40	39000	6.67	223.074	0.224

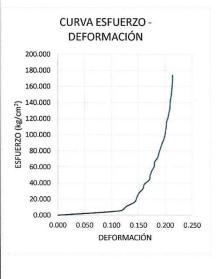
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
41	40000	6.75	228.794	0.227
42	41000	6.81	234.514	0.229
43	42000	6.88	240.233	0.231
44	43000	6.94	245.953	0.233
45	44000	7.01	251.673	0.235
46	45000	7.08	257.393	0.238
47	46000	7.15	263.113	0.240
48	47000	7.18	268.833	0.241
49	48000	7.2	274.552	0.242
50	49000	7.21	280.272	0.242
51	50000	7.23	285.992	0.243
52	51000	7.24	291.712	0.243
53	52000	7.26	297.432	0.244
54	53000	7.27	303.152	0.244
55	54000	7.29	308.871	0.245
56	55000	7.30	314.591	0.245
57	56000	7.32	320.311	0.246
58	57000	7.33	326.031	0.246
59	58166	7.35	332.700	0.247


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A luis princed is	- Luind 156)	- Equitors
ALEX PAUL ASTOR RAVINES	JORGE LUISHOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

7	PROTOCOLO							
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS MTC E704 / ASTM C39 / NTP 339.034						
UNIVERSIDAD	NORMA							
PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN I Y 22% COI	F'C=210 KG/CM² CON EL REE N VIDRIO MOLIDO, CAJAMA	MPLAZO DEL CEMENTO EN 9%, 119 RCA, 2023"				
ID. PROB	ETA:	P01PR-07	Diámetro Probeta (cm):	15.14				
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.5				
FECHA D	E ENSAYO:	11/05/2023	ÁREA (cm²)	179.91				
RESPONS	ABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez				

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm ²)	€u
1	0	(0.000	0.000
2	1000	3.62	5.558	0.119
3	2000	4.08	11.117	0.134
4	3000	4.39	16.675	0.144
5	4000	4.54	22.233	0.149
6	5000	4.83	27.792	0.158
7	6000	4.97	33.350	0.163
8	7000	5.02	38.908	0.165
9	8000	5.15	44.467	0.169
10	9000	5.38	50.025	0.176
11	10000	5.41	55.583	0.177
12	11000	5.53	61.142	0.181
13	12000	5.62	66.700	0.184
14	13000	5.67	72.258	0.186
15	14000	5.74	77.817	0.188
16	15000	5.81	83.375	0.190
17	16000	5.94	88.933	0.195
18	17000	6.01	94.492	0.197
19	18000	6.05	100.050	0.198
20	19000	6.13	105.608	0.201
21	20000	6.16	111.167	0.202
22	21000	6.18	116.725	0.203
23	22000	6.26	122.283	0.205
24	23000	6.31	127.842	0.207
25	24000	6.35	133.400	0.208
26	25000	6.37	138.958	0.209
27	26000	6.4	144.517	0.210
28	27000	6.45	150.075	0.211
29	28000	6.47	155.633	0.212
30	29000	6.51	161.192	0.213
31	30000	6.55	166.750	0.215
32	31000	6.82	172.308	0.224
33	32117	6.93	178.517	0.227
34				
35				
36				
37				
38				
39				
10				

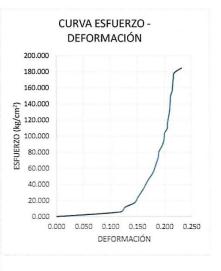
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	eu
41				
42				
43				-
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A leux puryly	Sand May	Clarita A
AVEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing ORLANDO AGUILAR ALIAC

	TARO	DATORIO DE CONCRETO AT	WINTERGIN AR PRIVATE A	NEW MODEL CLAIMING		
1	LABO	RATORIO DE CONCRETO - U	PROTOCOLO	DEL NORTE - CAJAMARCA		
	ENSAYO RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MT	339.034			
UNIVERSIDAD PRIVADA DEL NORTE	TESIS			F'C=210 KG/CM ² CON EL REEMPLAZO DEL CEMENTO EN 9%, ON VIDRIO MOLIDO, CAJAMARCA, 2023"		
ID. PROB	ETA:	P02PR-07	Diámetro Probeta (cm):	15.22		
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.5		
FECHA D	E ENSAYO:	11/05/2023	ÁREA (cm²)	181.82		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

No	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€ш
1	0		0.000	0.000
2	1000	3.51	5.500	0.115
3	2000	3.89	11.000	0.128
4	3000	4.36	16.500	0.143
5	4000	4.48	22.000	0.147
6	5000	4.6	27.500	0.151
7	6000	4.83	33.000	0.158
8	7000	4.91	38.500	0.161
9	8000	5.19	44.000	0.170
10	9000	5.24	49.500	0.172
11	10000	5.33	54.999	0.175
12	11000	5.47	60.499	0.179
13	12000	5.5	65.999	0.180
14	13000	5.67	71.499	0.186
15	14000	5.74	76.999	0.188
16	15000	5.82	82.499	0.191
17	16000	5.9	87.999	0.193
18	17000	6.01	93.499	0.197
19	18000	6.08	98.999	0.199
20	19000	6.13	104.499	0.201
21	20000	6.16	109.999	0.202
22	21000	6.18	115.499	0.203
23	22000	6.26	120.999	0.205
24	23000	6.31	126.499	0.207
25	24000	6.37	131.999	0.209
26	25000	6.39	137.499	0.210
27	26000	6.4	142.999	0.210
28	27000	6.45	148.499	0.211
29	28000	6.48	153.998	0.212
30	29000	6.5	159.498	0.213
31	30000	6.52	164.998	0.214
32	31588	6.53	173.732	0.214
33				
34				
35				
36				
37				
38				
39				
40				

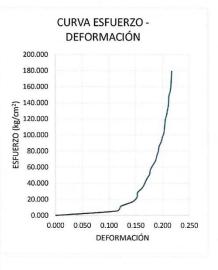
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				75 5 0 205-20
42				
43				
44				
45				
46				
47				
48	10/10/24			
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Ninguntur	-Lunding	Clquid A
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

4	LABO	PRATORIO DE CONCRETO - UI	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
			PROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MT	9.034				
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO EN 9%, 11					
DEL NORTE		Y 22% CC	ON VIDRIO MOLIDO, CAJAMAI	RCA, 2023"			
ID. PROB	ETA:	P03PR-07	Diámetro Probeta (cm):	14.87			
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.15			
FECHA D	E ENSAYO:	11/05/2023	ÁREA (cm²)	173.55			
RESPONS	ABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	eu
1	0		0.000	0.000
2	1000	3.55	5.762	0.118
3	2000	3.81	11.524	0.126
4	3000	4.35	17.286	0.144
5	4000	4.51	23.048	0.150
6	5000	4.68	28.810	0.155
7	6000	4.85	34.572	0.161
8	7000	4.99	40.334	0.166
9	8000	5.13	46.096	0.170
10	9000	5.31	51.858	0.176
11	10000	5.44	57.620	0.180
12	11000	5.53	63.382	0.183
13	12000	5.62	69.144	0.186
14	13000	5.69	74.906	0.189
15	14000	5.72	80.668	0.190
16	15000	5.86	86.430	0.194
17	16000	5.97	92.192	0.198
18	17000	6.01	97.954	0.199
19	18000	6.04	103.717	0.200
20	19000	6.19	109.479	0.205
21	20000	6.2	115.241	0.206
22	21000	6.24	121.003	0.207
23	22000	6.29	126.765	0.209
24	23000	6.33	132.527	0.210
25	24000	6.35	138.289	0.211
26	25000	6.37	144.051	0.211
27	26000	6.38	149.813	0.212
28	27000	6.47	155.575	0.215
29	28000	6.49	161.337	0.215
30	29000	6.51	167.099	0.216
31	30000	6.54	172.861	0.217
32	31000	6.59	178.623	0.219
33	32038	7	184.604	0.232
34				
35				
36				
37				
38				
39				
40				

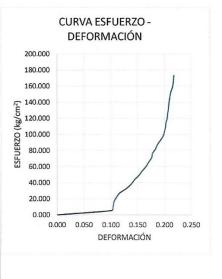
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45	= ===			
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Aluxountar	duite 1/2	Aguilag
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

	2.220		NIVERSIDAD PRIVADA DE PROTOCOLO			
	ENSAYO	RESISTENCIA A I	A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS			
UNIVERSIDAD PRIVADA DEL NORTE		MTC E704 / ASTM C39 / NTP 339.034				
			ON F'C=210 KG/CM2 CON EL RE CON VIDRIO MOLIDO, CAJAM	EMPLAZO DEL CEMENTO EN 9%, ARCA, 2023"		
ID. PROB	ETA:	P04PR-07	Diámetro Probeta (cm):	14.96		
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.05		
FECHA D	E ENSAYO:	11/05/2023	ÁREA (cm²)	175.66		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

No	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
1	0		0.000	0.000
2	1000	3.45	5.693	0.115
3	2000	3.66	11.386	0.122
4	3000	4.32	17.078	0.144
5	4000	4.58	22,771	0.152
6	5000	4.61	28.464	0.153
7	6000	4.87	34.157	0.162
8	7000	5.01	39.850	0.167
9	8000	5.13	45.543	0.171
10	9000	5.29	51.235	0.176
11	10000	5.33	56.928	0.177
12	11000	5.48	62.621	0.182
13	12000	5.63	68.314	0.187
14	13000	5.69	74.007	0.189
15	14000	5.78	79.699	0.192
16	15000	5.81	85.392	0.193
17	16000	5.94	91.085	0.198
18	17000	6	96.778	0.200
19	18000	6.1	102.471	0.203
20	19000	6.13	108.163	0.204
21	20000	6.16	113.856	0.205
22	21000	6.18	119.549	0.206
23	22000	6.26	125.242	0.208
24	23000	6.3	130.935	0.210
25	24000	6.35	136.628	0.211
26	25000	6.37	142.320	0.212
27	26000	6.38	148.013	0.212
28	27000	6.45	153.706	0.215
29	28000	6.49	159.399	0.216
30	29000	6.51	165.092	0.217
31	30000	6.52	170.784	0.217
32	31452	6.54	179.050	0.218
33				
34				
35				
36				
37				
38				
39				
40				

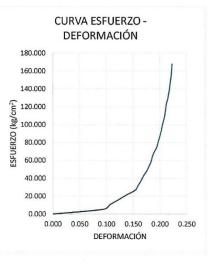
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
41		Laurence -		
42				
43				30-7
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Aleugnunt w	Linus 18	Clauitons
XLEX PAUL PASTOR RAVINES	JOKGE LOIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

4	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA I	DEL NORTE - CAJAMARCA		
7	PROTOCOLO					
	ENSAYO	RESISTENCIA A I	A COMPRESIÓN DE TEST	TGOS CILÍNDRICOS		
	NORMA	MT	C E704 / ASTM C39 / NTP 3	39.034		
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		ON F'C=210 KG/CM ² CON EL F CON VIDRIO MOLIDO, CAJA	REEMPLAZO DEL CEMENTO EN 9%, MARCA, 2023"		
ID. PROB	ETA:	P05PR-07	Diámetro Probeta (cm):	15.28		
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.6		
FECHA D	E ENSAYO:	11/05/2023	ÁREA (cm²)	183.25		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
1	0	(11111)	0.000	0.000
2	1000	3.08	5.457	0.101
3	2000	3.19	10.914	0.104
4	3000	3.24	16.371	0.106
5	4000	3.38	21.828	0.110
6	5000	3.57	27.285	0.117
7	6000	3.94	32.742	0.129
8	7000	4.22	38.199	0.138
9	8000	4.41	43.656	0.144
10	9000	4.67	49.113	0.153
11	10000	4.85	54.570	0.158
12	11000	5.07	60.027	0.166
13	12000	5.22	65.484	0.171
14	13000	5.39	70.941	0.176
15	14000	5.44	76.398	0.178
16	15000	5.61	81.855	0.183
17	16000	5.72	87.312	0.187
18	17000	5.9	92.769	0.193
19	18000	6.05	98.226	0.198
20	19000	6.13	103.683	0.200
21	20000	6.19	109.141	0.202
22	21000	6.22	114.598	0.203
23	22000	6.29	120.055	0.206
24	23000	6.31	125.512	0.206
25	24000	6.36	130.969	0.208
26	25000	6.38	136.426	0.208
27	26000	6.41	141.883	0.209
28	27000	6.45	147.340	0.211
29	28000	6.5	152.797	0.212
30	29000	6.59	158.254	0.215
31	30000	6.63	163.711	0.217
32	31700	6.67	172.988	0.218
33				
34				
35				
36				
37				
38				
39				
40				

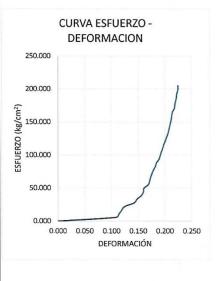
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51	820000000000000000000000000000000000000			
52				
53				V-10-


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORÂTORIO	ASESOR
A lunguete	Sull 1/2	Claust-J
LEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

4	LABO	RATORIO DE CONCRETO - UNI	VERSIDAD PRIVADA D	DEL NORTE - CAJAMARCA			
	PROTOCOLO						
	ENSAYO	RESISTENCIA A LA	COMPRESIÓN DE TEST	TGOS CILÍNDRICOS			
	NORMA	MTC	E704 / ASTM C39 / NTP 3	39.034			
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO EN 99					
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROBETA:		P06PR-07	Diámetro Probeta (cm):	15.43			
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.67			
FECHA D	E ENSAYO:	11/05/2023	ÁREA (cm²)	186.87			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm ²)	€u
1	0	` '	0.000	0.000
2	1000	2.89	5.351	0.094
3	2000	3.27	10.703	0.107
4	3000	3.75	16.054	0.122
5	4000	4.21	21.405	0.137
6	5000	4.72	26.757	0.154
7	6000	4.88	32.108	0.159
8	7000	5.06	37.459	0.165
9	8000	5.19	42.811	0.169
10	9000	5.38	48.162	0.175
11	10000	5.51	53.513	0.180
12	11000	5.63	58.864	0.184
13	12000	5.7	64.216	0.186
14	13000	5.81	69.567	0.189
15	14000	5.96	74.918	0.194
16	15000	6.03	80.270	0.197
17	16000	6.11	85.621	0.199
18	17000	6.19	90.972	0.202
19	18000	6.25	96.324	0.204
20	19000	6.31	101.675	0.206
21	20000	6.39	107.026	0.208
22	21000	6.44	112.378	0.210
23	22000	6.48	117.729	0.211
24	23000	6.51	123.080	0.212
25	24000	6.59	128.432	0.215
26	25000	6.64	133.783	0.216
27	26000	6.69	139.134	0.218
28	27000	6.72	144.485	0.219
29	28000	6.76	149.837	0.220
30	29000	6.8	155.188	0.222
31	30000	6.82	160.539	0.222
32	31337	6.84	167.694	0.223
33				
34				
35				
36				
37				
38				
39				
40				

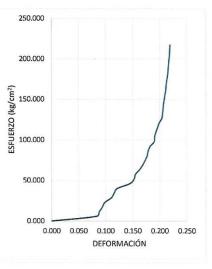
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				NAME OF THE OWNER.
46				
47				SOCTOR AND
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	LABORATORIO	ASESOR
Aliminudy	Mill (S)	Aguil of

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
AR	PROTOCOLO						
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS			
UNIVERSIDAD	NORMA	MTC	E704 / ASTM C39 / NTP 33	9.034			
PRIVADA	TESIS			EEMPLAZO DEL CEMENTO EN 9%,			
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROBETA:		P01PR-14	Diámetro Probeta (cm):	15.21			
EDAD PR	DAD PROBETA: 14 DÍAS DE CURADO Altura(cm) 30.56		30.56				
FECHA D	E ENSAYO:	18/05/2023	ÁREA (cm²)	181.70			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	3.31	5.504	0.108
3	2000	3.49	11.007	0.114
4	3000	3.64	16.511	0.119
5	4000	3.81	22.014	0.125
6	5000	4.35	27.518	0.142
7	6000	4.51	33.021	0.148
8	7000	4.76	38.525	0.156
9	8000	4.88	44.029	0.160
10	9000	4.91	49.532	0.161
11	10000	5.16	55.036	0.169
12	11000	5.24	60.539	0.171
13	12000	5.29	66.043	0.173
14	13000	5.37	71.547	0.176
15	14000	5.45	77.050	0.178
16	15000	5.57	82.554	0.182
17	16000	5.63	88.057	0.184
18	17000	5.78	93.561	0.189
19	18000	5.84	99.064	0.191
20	19000	5.91	104.568	0.193
21	20000	5.99	110.072	0.196
22	21000	6.05	115.575	0.198
23	22000	6.14	121.079	0.201
24	23000	6.21	126.582	0.203
25	24000	6.29	132.086	0.206
26	25000	6.34	137.589	0.207
27	26000	6.39	143.093	0.209
28	27000	6.44	148.597	0.211
29	28000	6.48	154.100	0.212
30	29000	6.51	159.604	0.213
31	30000	6.55	165.107	0.214
32	31000	6.66	170.611	0.218
33	32000	6.69	176.114	0.219
34	33000	6.73	181.618	0.220
35	34000	6.78	187.122	0.222
36	35000	6.8	192.625	0.223
37	36000	6.86	198.129	0.224
38	37234	6.87	204.920	0.225
39				
40				

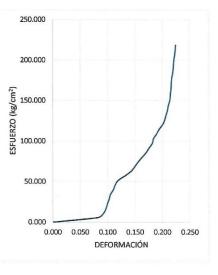
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41				
42				
43				
44				
45				
46				
47				
48				
49				
50	11-1-1-1-1-1			
51	SHIP CONTRACTOR			
52				
53				


COORDINADOR DE	ASESOR
Time May	Claust of
	COORDINADOR DE LABORATORIO

4	LABO	RATORIO DE CONCRETO - UN	IVERSIDAD PRIVADA D	EL NORTE - CAJAMARCA			
			PROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS C					
	NORMA	MTC	39.034				
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL R CON VIDRIO MOLIDO, CAJAN	L REEMPLAZO DEL CEMENTO EN 9%, JAMARCA, 2023"			
ID. PROB	ETA:	P04PR-28	Diámetro Probeta (cm):	14.88			
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	29.76			
FECHA D	E ENSAYO:	1/06/2023	ÁREA (cm²)	173.90			
RESPONS	ABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.48	5.750	0.083
3	2000	2.61	11.501	0.088
4	3000	2.79	17.251	0.094
5	4000	2.93	23.002	0.098
6	5000	3.29	28.752	0.111
7	6000	3.44	34.503	0.116
8	7000	3.62	40.253	0.122
9	8000	4.31	46.003	0.145
10	9000	4.54	51.754	0.153
11	10000	4.61	57.504	0.155
12	11000	4.84	63.255	0.163
13	12000	5.01	69.005	0.168
14	13000	5.15	74.756	0.173
15	14000	5.26	80.506	0.177
16	15000	5.31	86.256	0.178
17	16000	5.42	92.007	0.182
18	17000	5.65	97.757	0.190
19	18000	5.67	103.508	0.191
20	19000	5.74	109.258	0.193
21	20000	5.83	115.009	0.196
22	21000	5.92	120.759	0.199
23	22000	6.07	126.509	0.204
24	23000	6.11	132.260	0.205
25	24000	6.14	138.010	0.206
26	25000	6.16	143.761	0.207
27	26000	6.2	149.511	0.208
28	27000	6.24	155.262	0.210
29	28000	6.29	161.012	0.211
30	29000	6.31	166.763	0.212
31	30000	6.34	172.513	0.213
32	31000	6.38	178.263	0.214
33	32000	6.41	184.014	0.215
34	33000	6.43	189.764	0.216
35	34000	6.45	195.515	0.217
36	35000	6.48	201.265	0.218
37	36000	6.5	207.016	0.218
38	37752	6.52	217.090	0.219
39				
40				

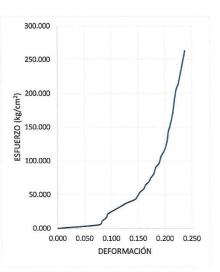
Ν°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				010-22
48				
49				
50	N-O-CHOOL CALL			
51				
52				
53				


SERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Deuxpuntur	Luin Se	Clquib ?
LEX PAUL PASTOR RAVINES	JORGE LOIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALL

			PROTOCOLO			
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS		
	NORMA	MTC	E704 / ASTM C39 / NTP 33	9.034		
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 99 Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	D. PROBETA: P05PR-28		Diámetro Probeta (cm):	14.91		
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	29.55		
FECHA D	E ENSAYO:	1/06/2023	ÁREA (cm²)	174.60		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	eu
1	0		0.000	0.000
2	1000	2.42	5.727	0.082
3	2000	2.74	11.455	0.093
4	3000	2.87	17.182	0.097
5	4000	2.95	22.910	0.100
6	5000	3.04	28.637	0.103
7	6000	3.11	34.364	0.105
8	7000	3.27	40.092	0.111
9	8000	3.36	45.819	0.114
10	9000	3.53	51.546	0.119
11	10000	3.91	57.274	0.132
12	11000	4.24	63.001	0.143
13	12000	4.43	68.729	0.150
14	13000	4.61	74.456	0.156
15	14000	4.82	80.183	0.163
16	15000	5.04	85.911	0.171
17	16000	5.2	91.638	0.176
18	17000	5.37	97.365	0.182
19	18000	5.43	103.093	0.184
20	19000	5.6	108.820	0.190
21	20000	5.74	114.548	0.194
22	21000	5.93	120.275	0.201
23	22000	6.04	126.002	0.204
24	23000	6.11	131.730	0.207
25	24000	6.19	137.457	0.209
26	25000	6.23	143.184	0.211
27	26000	6.31	148.912	0.214
28	27000	6.34	154.639	0.215
29	28000	6.36	160.367	0.215
30	29000	6.39	166.094	0.216
31	30000	6.4	171.821	0.217
32	31000	6.42	177.549	0.217
33	32000	6.47	183.276	0.219
34	33000	6.5	189.003	0.220
35	34000	6.52	194.731	0.221
36	35000	6.54	200.458	0.221
37	36000	6.58	206.186	0.223
38	37000	6.61	211.913	0.224
39	38147	6.63	218.482	0.224

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41	and the second			
42				
43				
44				
45				
46				
47				
48				1111
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Leuren ell	Simple 1	Clavilor g
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGVILAR ALIA

AN	2002000	RATORIO DE CONCRETO - UN	PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTIO	GOS CILÍNDRICOS
	NORMA	MTC	E704 / ASTM C39 / NTP 339	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		EMPLAZO DEL CEMENTO EN 9%, ARCA, 2023"	
ID. PROB	ETA:	P02PR-28	Diámetro Probeta (cm):	15.41
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.05
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	186.39
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0	()	0.000	0.000
2	1000	2.34	5.365	0.078
3	2000	2.48	10.730	0.083
4	3000	2.73	16.095	0.091
5	4000	2.81	21.460	0.094
6	5000	3.15	26.825	0.105
7	6000	\3.51	32.191	0.117
8	7000	3.85	37.556	0.128
9	8000	4.33	42.921	0.144
10	9000	4.48	48.286	0.149
11	10000	4.61	53.651	0.153
12	11000	4.83	59.016	0.161
13	12000	4.92	64.381	0.164
14	13000	5.12	69.746	0.170
15	14000	5.22	75.111	0.174
16	15000	5.38	80.476	0.179
17	16000	5.44	85.842	0.181
18	17000	5.52	91.207	0.184
19	18000	5.69	96.572	0.189
20	19000	5.75	101.937	0.191
21	20000	5.81	107.302	0.193
22	21000	5.93	112.667	0.197
23	22000	6.03	118.032	0.201
24	23000	6.09	123.397	0.203
25	24000	6.14	128.762	0.204
26	25000	6.17	134.127	0.205
27	26000	6.19	139.492	0.206
28	27000	6.22	144.858	0.207
29	28000	6.29	150.223	0.209
30	29000	6.34	155.588	0.211
31	30000	6.39	160.953	0.213
32	31000	6.42	166.318	0.214
33	32000	6.47	171.683	0.215
34	33000	6.49	177.048	0.216
35	34000	6.52	182.413	0.217
36	35000	6.54	187.778	0.218
37	36000	6.57	193.143	0.219
38	37000	6.61	198.509	0.220
30	38000	6.63	203 874	0.221

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єц
41	40000	6.78	214.604	0.226
42	41000	6.82	219.969	0.227
43	42000	6.86	225.334	0.228
44	43000	6.9	230.699	0.230
45	44000	6.94	236.064	0.231
46	45000	6.98	241.429	0.232
47	46000	7.02	246.794	0.234
48	47000	7.06	252.159	0.235
49	48000	7.10	257.525	0.236
50	49030	7.14	263.051	0.238
51				
52				
53				
54				
55				

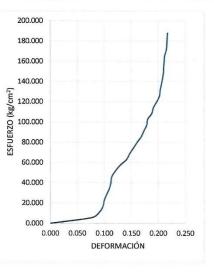
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Aliveniute	Swing No	Classico ?
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAG

0.221

0.223

193.143 198.509 203.874 209.239

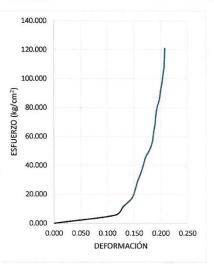
6.57 6.61 6.63 6.7


38000 39000

		RATORIO DE CONCRETO - UN	PROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC	C E704 / ASTM C39 / NTP 33	9.034			
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL C 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P05PR-14	Diámetro Probeta (cm):	14.94			
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30			
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	175.30			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

No	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.31	5.705	0.077
3	2000	2.74	11.409	0.091
4	3000	2.93	17.114	0.098
5	4000	3	22.818	0.100
6	5000	3.14	28.523	0.105
7	6000	3.28	34.227	0.109
8	7000	3.37	39.932	0.112
9	8000	3.41	45.636	0.114
10	9000	3.61	51.341	0.120
11	10000	3.87	57.045	0.129
12	11000	4.23	62.750	0.141
13	12000	4.4	68.454	0.147
14	13000	4.62	74.159	0.154
15	14000	4.82	79.863	0.161
16	15000	5.06	85.568	0.169
17	16000	5.2	91.272	0.173
18	17000	5.36	96.977	0.179
19	18000	5.41	102.681	0.180
20	19000	5.64	108.386	0.188
21	20000	5.73	114.090	0.191
22	21000	5.92	119.795	0.197
23	22000	6.07	125.499	0.202
24	23000	6.11	131.204	0.204
25	24000	6.18	136.908	0.206
26	25000	6.24	142.613	0.208
27	26000	6.29	148.317	0.210
28	27000	6.3	154.022	0.210
29	28000	6.33	159.726	0.211
30	29000	6.36	165.431	0.212
31	30000	6.45	171.135	0.215
32	31000	6.48	176.840	0.216
33	32916	6.52	187.770	0.217
34				
35				
36				
37				
38				
39		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
40				

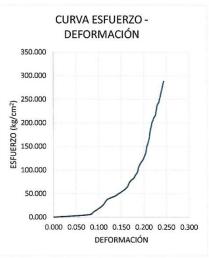
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49				777
50				
51				
52				
53				


COORDINADOR DE LABORATORIO	ASESOR
aning M	Clauster 7

	23.120	RATORIO DE CONCRETO - UN	PROTOCOLO	2 Holding Charles and Charles			
	ENSAYO						
ш	NORMA	MTC	E704 / ASTM C39 / NTP 339	9.034			
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEME 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROBETA:		P03PR-07	Diámetro Probeta (cm):	14.94			
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.74			
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	175.19			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0	(uuu)	0.000	0.000
2	1000	3.41	5.708	0.115
3	2000	3.84	11.416	0.129
4	3000	4.32	17.124	0.145
5	4000	4.51	22.832	0.152
6	5000	4.64	28.540	0.156
7	6000	4.82	34.249	0.162
8	7000	4.97	39.957	0.167
9	8000	5.1	45.665	0.171
10	9000	5.35	51.373	0.180
11	10000	5.49	57.081	0.185
12	11000	5.55	62.789	0.187
13	12000	5.63	68.497	0.189
14	13000	5.67	74.205	0.191
15	14000	5.74	79.913	0.193
16	15000	5.88	85.621	0.198
17	16000	5.94	91.329	0.200
18	17000	6.02	97.038	0.202
19	18000	6.08	102.746	0.204
20	19000	6.14	108.454	0.206
21	20000	6.16	114.162	0.207
22	21166	6.18	120.817	0.208
23				
24				
25				
26				
27				
28				.1
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

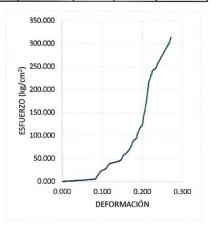
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				00415-7045
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


SERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Dur pauls	- Juint 182	Classic ?
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAG

AN	DABO	RATORIO DE CONCRETO - UN	PROTOCOLO	BE NORTE - CASAMARCA		
	ENSAYO RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC	C E704 / ASTM C39 / NTP 33	9.034		
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM ² CON EL REEMPLAZO DEL CEMENTO 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	ETA:	P01PR-28	Diámetro Probeta (cm):	15.16		
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.01		
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	180.39		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0	(2222)	0.000	0.000
2	1000	2.41	5.544	0.080
3	2000	2.64	11.087	0.088
4	3000	2.91	16.631	0.097
5	4000	3.16	22.174	0.105
6	5000	3.34	27.718	0.111
7	6000	3.45	33.261	0.115
8	7000	3.62	38.805	0.121
9	8000	4.04	44.348	0.135
10	9000	4.33	49.892	0.144
11	10000	4.58	55.435	0.153
12	11000	4.81	60.979	0.160
13	12000	4.94	66.523	0.165
14	13000	5.01	72.066	0.167
15	14000	5.13	77.610	0.171
16	15000	5.34	83.153	0.178
17	16000	5.43	88.697	0.181
18	17000	5.55	94.240	0.185
19	18000	5.61	99.784	0.187
20	19000	5.65	105.327	0.188
21	20000	5.72	110.871	0.191
22	21000	5.82	116.414	0.194
23	22000	5.95	121.958	0.198
24	23000	6.02	127.502	0.201
25	24000	6.1	133.045	0.203
26	25000	6.15	138.589	0.205
27	26000	6.17	144.132	0.206
28	27000	6.2	149.676	0.207
29	28000	6.26	155.219	0.209
30	29000	6.31	160.763	0.210
31	30000	6.36	166.306	0.212
32	31000	6.39	171.850	0.213
33	32000	6.41	177.393	0.214
34	33000	6.44	182.937	0.215
35	34000	6.47	188.481	0.216
36	35000	6.52	194.024	0.217
37	36000	6.54	199.568	0.218
38	37000	6.62	205.111	0.221
39	38000	6.67	210.655	0.222
40	39000	6.78	216.198	0.226

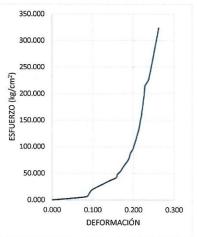
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41	40000	6.81	221.742	0.227
42	41000	6.84	227.285	0.228
43	42000	6.87	232.829	0.229
44	43000	6.91	238.372	0.230
45	44000	7.01	243.916	0.234
46	45000	7.05	249.460	0.235
47	46000	7.09	255.003	0.236
48	47000	7.13	260.547	0.238
49	48000	7.17	266.090	0.239
50	49000	7.21	271.634	0.240
51	50000	7.25	277.177	0.242
52	51000	7.29	282.721	0.243
53	52000	7.33	288.264	0.244
54	53000	7.37	293.808	0.246
55	54701	7.41	303.237	0.247


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Alux pumber	Jalian 1861	Clauston !!
ALEX PAUL PASTOR/RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

1			PROTOCOLO			
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS				
	NORMA	MTC E704 / ASTM C39 / NTP 339.034				
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EI 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	ETA:	P04PR-28	Diámetro Probeta (cm):	15.09		
EDAD PROBETA:		28 DÍAS DE CURADO	Altura(cm)	30.33		
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	178.72		
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
1	0		0.000	0.000
2	1000	2.48	5.595	0.082
3	2000	2.61	11.191	0.086
4	3000	2.79	16.786	0.092
5	4000	2.93	22.381	0.097
6	5000	3.29	27.977	0.108
7	6000	3.44	33.572	0.113
8	7000	3.62	39.167	0.119
9	8000	4.31	44.763	0.142
10	9000	4.54	50.358	0.150
11	10000	4.61	55.953	0.152
12	11000	4.84	61.549	0.160
13	12000	5.01	67.144	0.165
14	13000	5.15	72.739	0.170
15	14000	5.26	78.335	0.173
16	15000	5.31	83.930	0.175
17	16000	5.42	89.526	0.179
18	17000	5.65	95.121	0.186
19	18000	5.67	100.716	0.187
20	19000	5.74	106.312	0.189
21	20000	5.83	111.907	0.192
22	21000	5.92	117.502	0.195
23	22000	6.07	123.098	0.200
24	23000	6.11	128.693	0.201
25	24000	6.14	134.288	0.202
26	25000	6.16	139.884	0.203
27	26000	6.2	145.479	0.204
28	27000	6.24	151.074	0.206
29	28000	6.29	156.670	0.207
30	29000	6.31	162.265	0.208
31	30000	6.34	167.860	0.209
32	31000	6.38	173.456	0.210
33	32000	6.41	179.051	0.211
34	33000	6.43	184.646	0.212
35	34000	6.45	190.242	0.213
36	35000	6.48	195.837	0.214
37	36000	6.5	201.432	0.214
38	37000	6.53	207.028	0.215
39	38000	6.55	212.623	0.216
40	39000	6.58	218.218	0.217

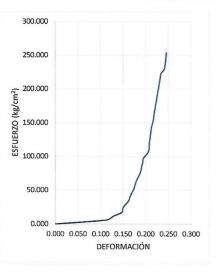
41 42		ión (mm)	σ (kg/cm²)	€u
42	40000	6.67	223.814	0.220
12	41000	6.72	229.409	0.222
43	42000	6.81	235.004	0.225
44	43000	6.85	240.600	0.226
45	44000	7.08	246.195	0.233
46	45000	7.19	251.791	0.237
47	46000	7.25	257.386	0.239
48	47000	7.38	262.981	0.243
49	48000	7.47	268.577	0.246
50	49000	7.59	274.172	0.250
51	50000	7.70	279.767	0.254
52	51000	7.81	285.363	0.257
53	52000	7.92	290.958	0.261
54	53000	8.03	296.553	0.265
55	54000	8.14	302.149	0.268
56	55995	8.25	313.311	0.272


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATQRIO	ASESOR
A Dampand 11 ···	Aniel 142	Clquibu ?
ALEX PAUL PASTOR RAVINES	JORGE LOS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

	LABOI	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
UNIVERSIDAD PRIVADA			PROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC	9.034				
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO					
DEL NORTE		11% Y 22% (CON VIDRIO MOLIDO, CAJAM	MARCA, 2023"			
ID. PROB	ETA:	P06PR-28	Diámetro Probeta (cm):	14.61			
EDAD PROBETA:		28 DÍAS DE CURADO	Altura(cm)	29.96			
FECHA DE ENSAYO:		29/06/2023	ÁREA (cm²)	167.53			
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

Nº	Carga (Kg)	Deformación ((mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.51	5.969	0.084
3	2000	2.72	11.938	0.091
4	3000	2.89	17.907	0.096
5	4000	3.27	23.876	0.109
6	5000	3.75	29.845	0.125
7	6000	4.2	35.814	0.140
8	7000	4.72	41.784	0.158
9	8000	4.81	47.753	0.161
10	9000	5.04	53.722	0.168
11	10000	5.18	59.691	0.173
12	11000	5.34	65.660	0.178
13	12000	5.52	71.629	0.184
14	13000	5.66	77.598	0.189
15	14000	5.73	83.567	0.191
16	15000	5.81	89.536	0.194
17	16000	5.96	95.505	0.199
18	17000	6.03	101.474	0.201
19	18000	6.11	107.443	0.204
20	19000	6.19	113.413	0.207
21	20000	6.25	119.382	0.209
22	21000	6.31	125.351	0.211
23	22000	6.39	131.320	0.213
24	23000	6.44	137.289	0.215
25	24000	6.48	143.258	0.216
26	25000	6.51	149.227	0.217
27	26000	6.57	155.196	0.219
28	27000	6.61	161.165	0.221
29	28000	6.63	167.134	0.221
30	29000	6.68	173.103	0.223
31	30000	6.71	179.072	0.224
32	31000	6.73	185.041	0.225
33	32000	6.77	191.011	0.226
34	33000	6.81	196.980	0.227
35	34000	6.82	202.949	0.228
36	35000	6.84	208.918	0.228
37	36000	6.87	214.887	0.229
38	37000	7.02	220.856	0.234
39	38000	7.14	226.825	0.238
40	39000	7.19	232,794	0.240

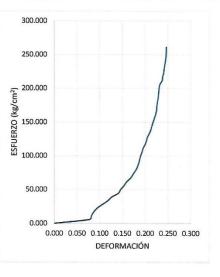
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.24	238.763	0.242
42	41000	7.29	244.732	0.243
43	42000	7.33	250.701	0.245
44	43000	7.38	256.670	0.246
45	44000	7.42	262.640	0.248
46	45000	7.47	268.609	0.249
47	46000	7.51	274.578	0.251
48	47000	7.56	280.547	0.252
49	48000	7.60	286.516	0.254
50	49000	7.65	292.485	0.255
51	50000	7.69	298.454	0.257
52	51000	7.74	304.423	0.258
53	52000	7.78	310.392	0.260
54	53000	7.83	316.361	0.261
55	54178	7.87	323.393	0.263


SERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Dury pourty	Simul 118	(Iguilor)
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUMLAR ALIA

	LABOI	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
			PROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EI 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P02PR-14	Diámetro Probeta (cm):	14.93			
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	29.82			
FECHA DE ENSAYO:		15/06/2023	ÁREA (cm²)	175.07			
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€ш
1	0	(/	0.000	0.000
2	1000	3.34	5.712	0.112
3	2000	3.82	11.424	0.128
4	3000	4.39	17.136	0.147
5	4000	4.44	22.848	0.149
6	5000	4.62	28.560	0.155
7	6000	4.84	34.272	0.162
8	7000	4.92	39.984	0.165
9	8000	5.04	45.696	0.169
10	9000	5.17	51.408	0.173
11	10000	5.25	57.120	0.176
12	11000	5.33	62.832	0.179
13	12000	5.45	68.544	0.183
14	13000	5.58	74.256	0.187
15	14000	5.65	79.968	0.189
16	15000	5.7	85.680	0.191
17	16000	5.77	91.392	0.193
18	17000	5.81	97.104	0.195
19	18000	6.02	102.816	0.202
20	19000	6.16	108.528	0.207
21	20000	6.19	114.240	0.208
22	21000	6.2	119.952	0.208
23	22000	6.24	125.664	0.209
24	23000	6.27	131.376	0.210
25	24000	6.31	137.088	0.212
26	25000	6.34	142.800	0.213
27	26000	6.41	148.512	0.215
28	27000	6.47	154.224	0.217
29	28000	6.5	159.936	0.218
30	29000	6.54	165.648	0.219
31	30000	6.59	171.360	0.221
32	31000	6.62	177.072	0.222
33	32000	6.68	182.784	0.224
34	33000	6.71	188.496	0.225
35	34000	6.76	194.208	0.227
36	35000	6.805	199.920	0.228
37	36000	6.85	205.632	0.230
38	37000	6.895	211.344	0.231
39	38000	6.94	217.056	0.233
40	39000	6.985	222,768	0.234

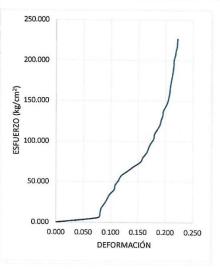
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.18	228.480	0.241
42	41000	7.24	234.192	0.243
43	42000	7.28	239.904	0.244
44	43000	7.3	245.616	0.245
45	44423	7.34	253.744	0.246
46				
47				
48				
49				
50				
51				
52				
53				


SSERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Alauxpuntue	- Jaine 17	Olquitor A
ALEX PAUL PASTOR RAVINES	JORGE LOIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
	NORMA	MTC	C E704 / ASTM C39 / NTP 339	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	EMPLAZO DEL CEMENTO EN 9%, ARCA, 2023"
ID. PROB	ETA:	P03PR-14	Diámetro Probeta (cm):	15.13
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.28
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	179.67
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.34	5.566	0.077
3	2000	2.47	11.132	0.082
4	3000	2.62	16.697	0.087
5	4000	2.84	22.263	0.094
6	5000	3.18	27.829	0.105
7	6000	3.57	33.395	0.118
8	7000	3.83	38.960	0.126
9	8000	4.27	44.526	0.141
10	9000	4.42	50.092	0.146
11	10000	4.64	55.658	0.153
12	11000	4.81	61.223	0.159
13	12000	5.08	66.789	0.168
14	13000	5.24	72.355	0.173
15	14000	5.41	77.921	0.179
16	15000	5.54	83.486	0.183
17	16000	5.63	89.052	0.186
18	17000	5.69	94.618	0.188
19	18000	5.75	100.184	0.190
20	19000	5.84	105.749	0.193
21	20000	5.92	111.315	0.196
22	21000	6.05	116.881	0.200
23	22000	6.14	122.447	0.203
24	23000	6.21	128.012	0.205
25	24000	6.34	133.578	0.209
26	25000	6.44	139.144	0.213
27	26000	6.51	144.710	0.215
28	27000	6.59	150.276	0.218
29	28000	6.67	155.841	0.220
30	29000	6.75	161.407	0.223
31	30000	6.81	166.973	0.225
32	31000	6.83	172.539	0.226
33	32000	6.86	178.104	0.227
34	33000	6.91	183.670	0.228
35	34000	6.94	189.236	0.229
36	35000	6.97	194.802	0.230
37	36000	6.99	200.367	0.231
38	37000	7.04	205.933	0.232
39	38000	7.19	211.499	0.237
40	39000	7.22	217.065	0.238

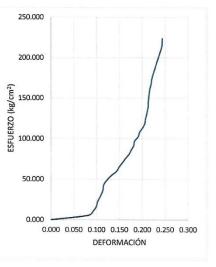
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.29	222.630	0.241
42	41000	7.32	228.196	0.242
43	42000	7.36	233.762	0.243
44	43000	7.4	239.328	0.244
45	44000	7.43	244.893	0.245
46	45000	7.46	250.459	0.246
47	46907	7.47	261.073	0.247
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIQ	ASESOR
A New purely	Mine Miles	Aguitos [3
ALEX PAUL PASTOR RAVINES	JORGE LOIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAG

	Date	DRATORIO DE CONCRETO - UN	PROTOCOLO	LL NORTE - CAJAMARCA
	ENSAYO		A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
UNIVERSIDAD	NORMA	MTC	E704 / ASTM C39 / NTP 339	9.034
PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN I Y 22% COI	F'C=210 KG/CM² CON EL REEN N VIDRIO MOLIDO, CAJAMAI	
ID. PROB	ETA:	P04PR-14	Diámetro Probeta (cm):	14.92
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	29.64
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	174.72
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
1	0	1	0.000	0.000
2	1000	2.28	5.723	0.077
3	2000	2.39	11.447	0.081
4	3000	2.45	17.170	0.083
5	4000	2.62	22.894	0.088
6	5000	2.78	28.617	0.094
7	6000	2.91	34.341	0.098
8	7000	3.15	40.064	0.106
9	8000	3.21	45.788	0.108
10	9000	3.39	51.511	0.114
11	10000	3.53	57.234	0.119
12	11000	3.87	62.958	0.131
13	12000	4.21	68.681	0.142
14	13000	4.58	74.405	0.155
15	14000	4.71	80.128	0.159
16	15000	4.91	85.852	0.166
17	16000	5.01	91.575	0.169
18	17000	5.13	97.299	0.173
19	18000	5.29	103.022	0.178
20	19000	5.33	108.745	0.180
21	20000	5.48	114.469	0.185
22	21000	5.63	120.192	0.190
23	22000	5.69	125.916	0.192
24	23000	5.78	131.639	0.195
25	24000	5.81	137.363	0.196
26	25000	5.94	143.086	0.200
27	26000	6.05	148.810	0.204
28	27000	6.11	154.533	0.206
29	28000	6.16	160.256	0.208
30	29000	6.18	165.980	0.209
31	30000	6.22	171.703	0.210
32	31000	6.26	177.427	0.211
33	32000	6.31	183.150	0.213
34	33000	6.35	188.874	0.214
35	34000	6.37	194.597	0.215
36	35000	6.38	200.321	0.215
37	36000	6.45	206.044	0.218
38	37000	6.49	211.767	0.219
39	38000	6.55	217.491	0.221
40	39552	6.57	226.374	0.222

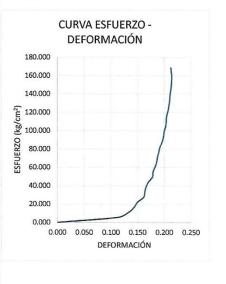
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				7.05
43	= 005			
44				102
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Daupual 1	Swiff 1961	Aguilor 3
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAG.

	LABO	DRATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA
			PROTOCOLO	
	ENSAYO	RESISTENCIA A I	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
INTERIOR DATE OF	NORMA	MTG	C E704 / ASTM C39 / NTP 33	9.034
	TESIS	"RESISTENCIA A LA COMPRESIÓN	F'C=210 KG/CM2 CON EL REEN	MPLAZO DEL CEMENTO EN 9%, 11%
DEL NORTE		Y 22% CC	N VIDRIO MOLIDO, CAJAMAI	RCA, 2023"
ID. PROB	ETA:	P05PR-14	Diámetro Probeta (cm):	15.37
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	29.53
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	185.54
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.42	5.390	0.082
3	2000	2.74	10.779	0.093
4	3000	2.93	16.169	0.099
5	4000	3	21.559	0.102
6	5000	3.14	26.948	0.106
7	6000	3.28	32.338	0.111
8	7000	3.37	37.728	0.114
9	8000	3.41	43.117	0.115
10	9000	3.61	48.507	0.122
11	10000	3.87	53.897	0.131
12	11000	4.23	59.286	0.143
13	12000	4.4	64.676	0.149
14	13000	4.62	70.066	0.156
15	14000	4.82	75.455	0.163
16	15000	5.06	80.845	0.171
17	16000	5.2	86.235	0.176
18	17000	5.36	91.624	0.182
19	18000	5.41	97.014	0.183
20	19000	5.64	102.404	0.191
21	20000	5.73	107.793	0.194
22	21000	5.92	113.183	0.200
23	22000	6.07	118.573	0.206
24	23000	6.11	123.962	0.207
25	24000	6.18	129.352	0.209
26	25000	6.24	134.742	0.211
27	26000	6.29	140.132	0.213
28	27000	6.3	145.521	0.213
29	28000	6.33	150.911	0.214
30	29000	6.36	156.301	0.215
31	30000	6.4	161.690	0.217
32	31000	6.48	167.080	0.219
33	32000	6.51	172.470	0.220
34	33000	6.58	177.859	0.223
35	34000	6.67	183.249	0.226
36	35000	6.76	188.639	0.229
37	36000	6.85	194.028	0.232
38	37000	6.94	199.418	0.235
39	38000	7.03	204.808	0.238
40	39000	7.12	210.197	0.241

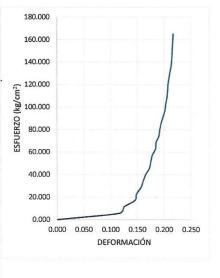
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.19	215.587	0.243
42	41457	7.2	223.440	0.244
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				8180
53	- 1			


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Marganto	Luisel (186)	Clausory

UNIVERSIDAD PRIVADA DEL NORTE			PROTOCOLO			
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTIO	GOS CILÍNDRICOS		
	NORMA	MTC	9.034			
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO I 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	ETA:	P01PR-07	Diámetro Probeta (cm):	15.21		
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.24		
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	181.70		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm ²)	€u
1	0		0.000	0.000
2	1000	3.41	5.504	0.113
3	2000	4.03	11.007	0.133
4	3000	4.34	16.511	0.144
5	4000	4.53	22.014	0.150
6	5000	4.88	27.518	0.161
7	6000	4.94	33.021	0.163
8	7000	5.01	38.525	0.166
9	8000	5.15	44.029	0.170
10	9000	5.38	49.532	0.178
11	10000	5.41	55.036	0.179
12	11000	5.53	60.539	0.183
13	12000	5.62	66.043	0.186
14	13000	5.67	71.547	0.188
15	14000	5.74	77.050	0.190
16	15000	5.81	82.554	0.192
17	16000	5.94	88.057	0.196
18	17000	6.01	93.561	0.199
19	18000	6.05	99.064	0.200
20	19000	6.13	104.568	0.203
21	20000	6.16	110.072	0.204
22	21000	6.18	115.575	0.204
23	22000	6.26	121.079	0.207
24	23000	6.31	126.582	0.209
25	24000	6.35	132.086	0.210
26	25000	6.37	137.589	0.211
27	26000	6.41	143.093	0.212
28	27000	6.45	148.597	0.213
29	28000	6.46	154.100	0.214
30	29000	6.47	159.604	0.214
31	30589	6.42	168.349	0.212
32		17.141888		
33				
34				
35				- 17.6
36				
37				
38				
39				
40				

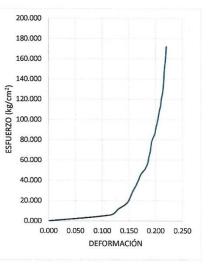
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				200000
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Varnimety	- Hind 196	Squitors
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DE	EL NORTE - CAJAMARCA				
			PROTOCOLO					
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTIO	GOS CILÍNDRICOS				
UNIVERSIDAD PRIVADA	NORMA	MTC	MTC E704 / ASTM C39 / NTP 339.034					
	TESIS	"RESISTENCIA A LA COMPRESIÓ	N F'C=210 KG/CM2 CON EL RE	EEMPLAZO DEL CEMENTO EN 9%,				
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"						
ID. PROB	ETA:	P02PR-07	Diámetro Probeta (cm):	14.95				
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.86				
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	175.54				
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez				

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
1	0		0.000	0.000
2	1000	3.49	5.697	0.117
3	2000	3.74	11.393	0.125
4	3000	4.34	17.090	0.145
5	4000	4.43	22.787	0.148
6	5000	4.68	28.484	0.157
7	6000	4.8	34.180	0.161
8	7000	4.94	39.877	0.165
9	8000	5.15	45.574	0.172
10	9000	5.23	51.270	0.175
11	10000	5.31	56.967	0.178
12	11000	5.49	62.664	0.184
13	12000	5.52	68.360	0.185
14	13000	5.68	74.057	0.190
15	14000	5.73	79.754	0.192
16	15000	5.81	85.451	0.195
17	16000	5.92	91.147	0.198
18	17000	6.03	96.844	0.202
19	18000	6.07	102.541	0.203
20	19000	6.14	108.237	0.206
21	20000	6.18	113.934	0.207
22	21000	6.2	119.631	0.208
23	22000	6.25	125.328	0.209
24	23000	6.31	131.024	0.211
25	24000	6.38	136.721	0.214
26	25000	6.41	142.418	0.215
27	26000	6.43	148.114	0.215
28	27000	6.45	153.811	0.216
29	28956	6.49	164.954	0.217
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

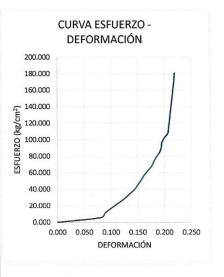
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Alungunds.	Suint 13	Clquitor 3

UNIVERSIDAD			PROTOCOLO			
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTIO	GOS CILÍNDRICOS		
	NORMA	MTC	9.034			
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	ETA:	P03PR-07	Diámetro Probeta (cm):	14.93		
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.63		
FECHA DE ENSAYO:		8/06/2023	ÁREA (cm²)	175.07		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	3.41	5.712	0.115
3	2000	3.84	11.424	0.130
4	3000	4.32	17.136	0.146
5	4000	4.51	22.848	0.152
6	5000	4.64	28.560	0.157
7	6000	4.82	34.272	0.163
8	7000	4.97	39.984	0.168
9	8000	5.1	45.696	0.172
10	9000	5.35	51.408	0.181
11	10000	5.49	57.120	0.185
12	11000	5.55	62.832	0.187
13	12000	5.63	68.544	0.190
14	13000	5.67	74.256	0.191
15	14000	5.74	79.968	0.194
16	15000	5.88	85.680	0.198
17	16000	5.94	91.392	0.200
18	17000	6.02	97.104	0.203
19	18000	6.08	102.816	0.205
20	19000	6.14	108.528	0.207
21	20000	6.21	114.240	0.210
22	21000	6.24	119.952	0.211
23	22000	6.31	125.664	0.213
24	23000	6.35	131.376	0.214
25	24000	6.37	137.088	0.215
26	25000	6.39	142.800	0.216
27	26000	6.41	148.512	0.216
28	27000	6.44	154.224	0.217
29	28000	6.48	159.936	0.219
30	29000	6.5	165.648	0.219
31	30099	6.52	171.926	0.220
32				T.
33				
34				
35				V.11
36				
37				
38				
39			and the second	
40				

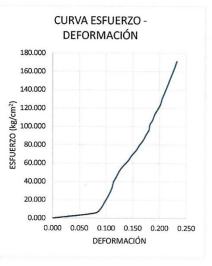
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	12 (1880)			
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


ERVACIONES:				
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
Alaux Damel	Limin 180	Clauston ?		
(AL)EX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC		

	LABU	RATORIO DE CONCRETO - UN		L NORTE - CAJAMARCA				
HNEVEDSTOAD	PROTOCOLO							
	ENSAYO	RESISTENCIA A L	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034						
	TESIS	"RESISTENCIA A LA COMPRESIÓ	N F'C=210 KG/CM2 CON EL RE	EMPLAZO DEL CEMENTO EN 9%,				
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"						
ID. PROB	ETA:	P04PR-07	Diámetro Probeta (cm):	14.99				
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.72				
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	176.36				
RESPONS	ABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez				

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.41	5.670	0.081
3	2000	2.64	11.340	0.089
4	3000	2.98	17.011	0.100
5	4000	3.34	22.681	0.112
6	5000	3.71	28.351	0.125
7	6000	3.99	34.021	0.134
8	7000	4.28	39.692	0.144
9	8000	4.47	45.362	0.150
10	9000	4.65	51.032	0.156
11	10000	4.81	56.702	0.162
12	11000	5.02	62.372	0.169
13	12000	5.24	68.043	0.176
14	13000	5.36	73.713	0.180
15	14000	5.51	79.383	0.185
16	15000	5.69	85.053	0.191
17	16000	5.78	90.724	0.194
18	17000	5.81	96.394	0.195
19	18000	5.94	102.064	0.200
20	19000	6.14	107.734	0.207
21	20000	6.18	113.404	0.208
22	21000	6.21	119.075	0.209
23	22000	6.24	124.745	0.210
24	23000	6.27	130.415	0.211
25	24000	6.3	136.085	0.212
26	25000	6.33	141.756	0.213
27	26000	6.36	147.426	0.214
28	27000	6.39	153.096	0.215
29	28000	6.42	158.766	0.216
30	29000	6.45	164.436	0.217
31	30000	6.48	170.107	0.218
32	31851	6.51	180.602	0.219
33				
34				
35				
36				
37				
38				10000000
39				
40				

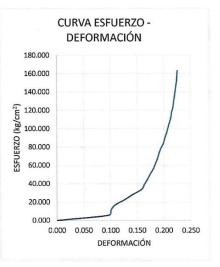
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49			,,	
50				
51	200			
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Vinispand II	Awiell Xel	Clquiby 7
ALEX PAUL PASTOR RAVINES	JORGE LUB ADOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILA

UNTUTROTOAD			PROTOCOLO				
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P05PR-07	Diámetro Probeta (cm):	14.99			
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.93			
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	176.48			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
1	0		0.000	0.000
2	1000	2.38	5.666	0.080
3	2000	2.72	11.333	0.091
4	3000	2.9	16.999	0.097
5	4000	3.07	22.665	0.103
6	5000	3.22	28.332	0.108
7	6000	3.34	33.998	0.112
8	7000	3.41	39.665	0.114
9	8000	3.58	45.331	0.120
10	9000	3.72	50.997	0.124
11	10000	3.94	56.664	0.132
12	11000	4.22	62.330	0.141
13	12000	4.41	67.996	0.147
14	13000	4.67	73.663	0.156
15	14000	4.85	79.329	0.162
16	15000	5.07	84.995	0.169
17	16000	5.22	90.662	0.174
18	17000	5.39	96.328	0.180
19	18000	5.44	101.995	0.182
20	19000	5.61	107.661	0.187
21	20000	5.72	113.327	0.191
22	21000	5.9	118.994	0.197
23	22000	6.05	124.660	0.202
24	23000	6.13	130.326	0.205
25	24000	6.26	135.993	0.209
26	25000	6.37	141.659	0.213
27	26000	6.49	147.325	0.217
28	27000	6.60	152.992	0.221
29	28000	6.72	158.658	0.224
30	29000	6.83	164.325	0.228
31	30148	6.95	170.830	0.232
32				
33				
34				
35				
36				
37				
38				
39				
40				

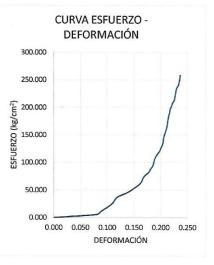
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm ²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52	39/2			
53				


BSERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Slevin well 1.	-fuirfl/16	Aguilas A
ALEX PAUL PASTOR RAVINES	JORGE LUS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

	LABO	RATORIO DE CONCRETO - UN	IVERSIDAD PRIVADA D	EL NORTE - CAJAMARCA			
	PROTOCOLO						
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
UNIVERSIDAD PRIVADA	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO EI					
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P06PR-07	Diámetro Probeta (cm):	15.05			
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.85			
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	177.78			
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	еш
1	0		0.000	0.000
2	1000	2.89	5.625	0.097
3	2000	3.01	11.250	0.101
4	3000	3.24	16.875	0.109
5	4000	3.77	22.500	0.126
6	5000	4.21	28.125	0.141
7	6000	4.72	33.750	0.158
8	7000	4.88	39.375	0.163
9	8000	5.06	44.999	0.170
10	9000	5.21	50.624	0.175
11	10000	5.38	56.249	0.180
12	11000	5.5	61.874	0.184
13	12000	5.62	67.499	0.188
14	13000	5.7	73.124	0.191
15	14000	5.81	78.749	0.195
16	15000	5.96	84.374	0.200
17	16000	6.03	89.999	0.202
18	17000	6.13	95.624	0.205
19	18000	6.21	101.249	0.208
20	19000	6.29	106.874	0.211
21	20000	6.37	112.499	0.213
22	21000	6.41	118.124	0.215
23	22000	6.49	123.748	0.217
24	23000	6.52	129.373	0.218
25	24000	6.57	134.998	0.220
26	25000	6.61	140.623	0.221
27	26000	6.65	146.248	0.223
28	27000	6.69	151.873	0.224
29	28987	6.73	163.050	0.225
30				
31				
32				
33				
34				AND STREET STREET
35				
36				
37		una management a	/	
38				
39				
40				

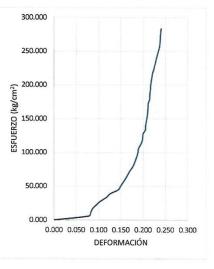
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				200000000000000000000000000000000000000
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


SSERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Aluxpunt 1	Juinf 182	Clquito-A
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

TR			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTIO	GOS CILÍNDRICOS
	NORMA	MTC	E704 / ASTM C39 / NTP 339	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	EMPLAZO DEL CEMENTO EN 9%, ARCA, 2023"
ID. PROB	ETA:	P01PR-28	Diámetro Probeta (cm):	15.27
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.06
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	183.01
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.41	5.464	0.080
3	2000	2.64	10.928	0.088
4	3000	2.91	16.393	0.097
5	4000	3.16	21.857	0.105
6	5000	3.34	27.321	0.111
7	6000	3.45	32.785	0.115
8	7000	3.62	38.249	0.120
9	8000	4.04	43.713	0.134
10	9000	4.33	49.178	0.144
11	10000	4.58	54.642	0.152
12	11000	4.81	60.106	0.160
13	12000	4.94	65.570	0.164
14	13000	5.01	71.034	0.167
15	14000	5.13	76.499	0.171
16	15000	5.34	81.963	0.178
17	16000	5.43	87.427	0.181
18	17000	5.55	92.891	0.185
19	18000	5.61	98.355	0.187
20	19000	5.65	103.819	0.188
21	20000	5.72	109.284	0.190
22	21000	5.82	114.748	0.194
23	22000	5.95	120.212	0.198
24	23000	6.02	125.676	0.200
25	24000	6.1	131.140	0.203
26	25000	6.15	136.605	0.205
27	26000	6.17	142.069	0.205
28	27000	6.2	147.533	0.206
29	28000	6.26	152.997	0.208
30	29000	6.31	158.461	0.210
31	30000	6.36	163.925	0.212
32	31000	6.39	169.390	0.213
33	32000	6.41	174.854	0.213
34	33000	6.44	180.318	0.214
35	34000	6.47	185.782	0.215
36	35000	6.52	191.246	0.217
37	36000	6.54	196.711	0.218
38	37000	6.62	202.175	0.220
39	38000	6.67	207.639	0.222
40	39000	6.78	213,103	0.226

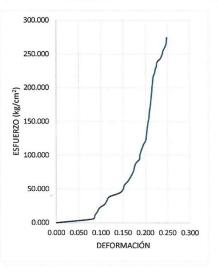
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	6.81	218.567	0.227
42	41000	6.84	224.031	0.228
43	42000	6.87	229.496	0.229
44	43000	6.91	234.960	0.230
45	44000	7.01	240.424	0.233
46	45000	7.05	245.888	0.235
47	46000	7.09	251.352	0.236
48	47247	7.11	258.166	0.237
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Juix pully 1	Suind (So)	Clquitor 7
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

AR			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
THE STREET	NORMA	MTC	E704 / ASTM C39 / NTP 33	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RI CON VIDRIO MOLIDO, CAJAN	EEMPLAZO DEL CEMENTO EN 9%, IARCA, 2023"
ID. PROB	ETA:	P03PR-28	Diámetro Probeta (cm):	15.14
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.19
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	179.91
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	сu
1	0		0.000	0.000
2	1000	2.34	5.558	0.078
3	2000	2.49	11.117	0.082
4	3000	2.61	16.675	0.086
5	4000	2.86	22.233	0.095
6	5000	3.14	27.792	0.104
7	6000	3.55	33.350	0.118
8	7000	3.81	38.908	0.126
9	8000	4.35	44.467	0.144
10	9000	4.51	50.025	0.149
11	10000	4.68	55.583	0.155
12	11000	4.85	61.142	0.161
13	12000	4.99	66.700	0.165
14	13000	5.13	72.258	0.170
15	14000	5.31	77.817	0.176
16	15000	5.44	83.375	0.180
17	16000	5.53	88.933	0.183
18	17000	5.62	94.492	0.186
19	18000	5.69	100.050	0.188
20	19000	5.72	105.608	0.189
21	20000	5.86	111.167	0.194
22	21000	5.97	116.725	0.198
23	22000	6.01	122.283	0.199
24	23000	6.04	127.842	0.200
25	24000	6.19	133.400	0.205
26	25000	6.2	138.958	0.205
27	26000	6.24	144.517	0.207
28	27000	6.29	150.075	0.208
29	28000	6.33	155.633	0.210
30	29000	6.35	161.192	0.210
31	30000	6.37	166.750	0.211
32	31000	6.38	172.308	0.211
33	32000	6.47	177.867	0.214
34	33000	6.49	183.425	0.215
35	34000	6.51	188.983	0.216
36	35000	6.54	194.542	0.217
37	36000	6.55	200.100	0.217
38	37000	6.59	205.658	0.218
39	38000	6.63	211.217	0.220
40	39000	6.67	216.775	0.221

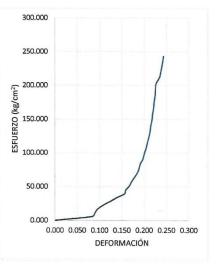
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	6.75	222.333	0.224
42	41000	6.81	227.892	0.226
43	42000	6.88	233.450	0.228
44	43000	6.94	239.008	0.230
45	44000	7.01	244.567	0.232
46	45000	7.08	250.125	0.235
47	46000	7.15	255.683	0.237
48	47000	7.18	261.242	0.238
49	48000	7.2	266.800	0.238
50	49000	7.21	272.358	0.239
51	50968	7.26	283.297	0.240
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A linspiral -	Lind (186)	Aguilor A

71			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
	NORMA	MTC	E704 / ASTM C39 / NTP 33	9.034
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓ	N F'C=210 KG/CM2 CON EL RE	EEMPLAZO DEL CEMENTO EN 9%,
DEL NORTE		11% Y 22% C	CON VIDRIO MOLIDO, CAJAM	ARCA, 2023"
ID. PROB	ETA:	P04PR-28	Diámetro Probeta (cm):	15.17
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.22
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	180.74
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.48	5.533	0.082
3	2000	2.61	11.066	0.086
4	3000	2.79	16.598	0.092
5	4000	2.93	22.131	0.097
6	5000	3.29	27.664	0.109
7	6000	3.44	33.197	0.114
8	7000	3.62	38.730	0.120
9	8000	4.31	44.262	0.143
10	9000	4.54	49.795	0.150
11	10000	4.61	55.328	0.153
12	11000	4.84	60.861	0.160
13	12000	5.01	66.394	0.166
14	13000	5.15	71.927	0.170
15	14000	5.26	77.459	0.174
16	15000	5.31	82.992	0.176
17	16000	5.42	88.525	0.179
18	17000	5.65	94.058	0.187
19	18000	5.67	99.591	0.188
20	19000	5.74	105.123	0.190
21	20000	5.83	110.656	0.193
22	21000	5.92	116.189	0.196
23	22000	6.07	121.722	0.201
24	23000	6.11	127.255	0.202
25	24000	6.14	132.787	0.203
26	25000	6.16	138.320	0.204
27	26000	6.2	143.853	0.205
28	27000	6.24	149.386	0.206
29	28000	6.29	154.919	0.208
30	29000	6.31	160.451	0.209
31	30000	6.34	165.984	0.210
32	31000	6.38	171.517	0.211
33	32000	6.41	177.050	0.212
34	33000	6.43	182.583	0.213
35	34000	6.45	188.116	0.213
36	35000	6.48	193.648	0.214
37	36000	6.5	199.181	0.215
38	37000	6.53	204.714	0.216
39	38000	6.55	210,247	0.217
40	39000	6.58	215.780	0.218

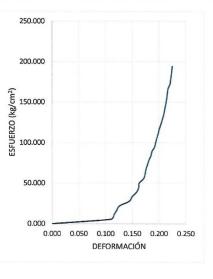
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	6.67	221.312	0.221
42	41000	6.72	226.845	0.222
43	42000	6.81	232.378	0.225
44	43000	6.85	237.911	0.227
45	44000	7.08	243.444	0.234
46	45000	7.19	248.976	0.238
47	46000	7.25	254.509	0.240
48	47000	7.38	260.042	0.244
49	48000	7.47	265.575	0.247
50	49582	7.5	274.328	0.248
51				
52				
53				


ORATORIO	ASESOR
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u></u>
	SHOYOS MARTINEZ

AN	LABO	RATORIO DE CONCRETO - UN	VIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA		
1			PROTOCOLO			
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS				
THE RESERVE OF THE PERSON OF T	NORMA	MTC	E704 / ASTM C39 / NTP 33	9.034		
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RI CON VIDRIO MOLIDO, CAJAM	EEMPLAZO DEL CEMENTO EN 9%,		
ID. PROB	ETA:	P06PR-28	Diámetro Probeta (cm):	15.05		
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.3		
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	177.89		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.51	5.621	0.083
3	2000	2.72	11.243	0.090
4	3000	2.89	16.864	0.095
5	4000	3.27	22.486	0.108
6	5000	3.75	28.107	0.124
7	6000	4.2	33.729	0.139
8	7000	4.72	39.350	0.156
9	8000	4.81	44.972	0.159
10	9000	5.04	50.593	0.166
11	10000	5.18	56.215	0.171
12	11000	5.34	61.836	0.176
13	12000	5.52	67.457	0.182
14	13000	5.66	73.079	0.187
15	14000	5.73	78.700	0.189
16	15000	5.81	84.322	0.192
17	16000	5.96	89.943	0.197
18	17000	6.03	95.565	0.199
19	18000	6.11	101.186	0.202
20	19000	6.19	106.808	0.204
21	20000	6.25	112.429	0.206
22	21000	6.31	118.050	0.208
23	22000	6.39	123.672	0.211
24	23000	6.44	129.293	0.213
25	24000	6.48	134.915	0.214
26	25000	6.51	140.536	0.215
27	26000	6.57	146.158	0.217
28	27000	6.61	151.779	0.218
29	28000	6.63	157.401	0.219
30	29000	6.68	163.022	0.220
31	30000	6.71	168.644	0.221
32	31000	6.73	174.265	0.222
33	32000	6.77	179.886	0.223
34	33000	6.81	185.508	0.225
35	34000	6.82	191.129	0.225
36	35000	6.84	196.751	0.226
37	36000	6.87	202.372	0.227
38	37000	7.02	207.994	0.232
39	38000	7.14	213.615	0.236
40	39000	7.19	219.237	0.237

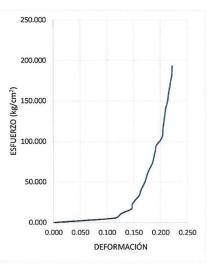
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.24	224.858	0.239
42	41000	7.29	230.480	0.241
43	42000	7.33	236.101	0.242
44	43178	7.37	242.723	0.243
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Dungunt	Simplified	(lguips)
ALEX PAUL PASTOR RAVINES	JØRGE LUS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIA

	LABOI	RATORIO DE CONCRETO - UN		EL NORTE - CAJAMARCA			
	PROTOCOLO						
	ENSAYO	RESISTENCIA A L	GOS CILÍNDRICOS				
	NORMA	1110 270 17 110 1111 237.031					
UNIVERSIDAD PRIVADA	TESIS						
DEL NORTE		11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ETA:	P01PR-14	Diámetro Probeta (cm):	15.13			
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.15			
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	179.79			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	3.31	5.562	0.110
3	2000	3.49	11.124	0.116
4	3000	3.64	16.686	0.121
5	4000	3.81	22.248	0.126
6	5000	4.35	27.810	0.144
7	6000	4.51	33.372	0.150
8	7000	4.76	38.934	0.158
9	8000	4.88	44.496	0.162
10	9000	4.91	50.058	0.163
11	10000	5.16	55.620	0.171
12	11000	5.24	61.182	0.174
13	12000	5.29	66.745	0.175
14	13000	5.37	72.307	0.178
15	14000	5.45	77.869	0.181
16	15000	5.57	83.431	0.185
17	16000	5.63	88.993	0.187
18	17000	5.78	94.555	0.192
19	18000	5.84	100.117	0.194
20	19000	5.91	105.679	0.196
21	20000	5.99	111.241	0.199
22	21000	6.05	116.803	0.201
23	22000	6.14	122.365	0.204
24	23000	6.21	127.927	0.206
25	24000	6.29	133.489	0.209
26	25000	6.34	139.051	0.210
27	26000	6.39	144.613	0.212
28	27000	6.44	150.175	0.214
29	28000	6.48	155.737	0.215
30	29000	6.51	161.299	0.216
31	30000	6.55	166.861	0.217
32	31000	6.66	172.423	0.221
33	32000	6.69	177.985	0.222
34	33000	6.73	183.547	0.223
35	34907	6.78	194.154	0.225
36				
37				
38				
39				
40				

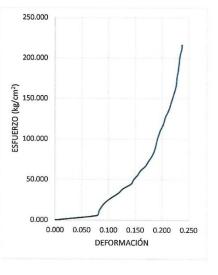
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				201-
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A Clever paraly	Siminal Mal	Clauston 3
ALEX PAUL PASTOR RAVINES	JORGE LUIS JOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR AL

AN	LABO	PROTOCOLO						
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS				
	NORMA	MTC	E E 704 / ASTM C 39 / NTP 33	9.034				
UNIVERSIDAD PRIVADA DEL NORTE			N F'C=210 KG/CM² CON EL RI CON VIDRIO MOLIDO, CAJAN	EEMPLAZO DEL CEMENTO EN 9%, MARCA, 2023"				
ID. PROB	ETA:	P02PR-14	Diámetro Probeta (cm):	15.1				
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.25				
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	178.96				
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez				

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm ²)	cu
1	0		0.000	0.000
2	1000	3.45	5.588	0.114
3	2000	3.82	11.176	0.126
4	3000	4.39	16.764	0.145
5	4000	4.44	22.351	0.147
6	5000	4.62	27.939	0.153
7	6000	4.84	33.527	0.160
8	7000	4.92	39.115	0.163
9	8000	5.04	44.703	0.167
10	9000	5.17	50.291	0.171
11	10000	5.25	55.878	0.174
12	11000	5.33	61.466	0.176
13	12000	5.45	67.054	0.180
14	13000	5.58	72.642	0.184
15	14000	5.65	78.230	0.187
16	15000	5.7	83.818	0.188
17	16000	5.77	89.405	0.191
18	17000	5.81	94.993	0.192
19	18000	6.02	100.581	0.199
20	19000	6.16	106.169	0.204
21	20000	6.19	111.757	0.205
22	21000	6.2	117.345	0.205
23	22000	6.24	122.932	0.206
24	23000	6.27	128.520	0.207
25	24000	6.31	134.108	0.209
26	25000	6.34	139.696	0.210
27	26000	6.41	145.284	0.212
28	27000	6.47	150.872	0.214
29	28000	6.5	156.460	0.215
30	29000	6.54	162.047	0.216
31	30000	6.59	167.635	0.218
32	31000	6.62	173.223	0.219
33	32000	6.68	178.811	0.221
34	33000	6.71	184.399	0.222
35	34581	6.72	193.233	0.222
36				M1610000000
37				
38				
39				
40			2	

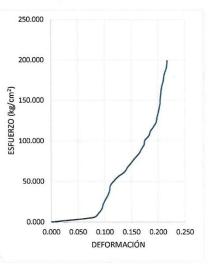
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41				
42				
43				
44				
45				
46				
47				
48				III nikorowe –
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A) we much	Janiel 19	Clouby ?
ALLX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR AI

	LABO	RATORIO DE CONCRETO – UN	IVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA	
UNIVERSIDAD PRIVADA			PROTOCOLO		
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS	
	NORMA	MTC	C E704 / ASTM C39 / NTP 339.034 N F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 99		
	TESIS	"RESISTENCIA A LA COMPRESIO			
DEL NORTE		11% Y 22% C	CON VIDRIO MOLIDO, CAJAM	IARCA, 2023"	
ID. PROB	ETA:	P03PR-14	Diámetro Probeta (cm):	15.15	
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.04	
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	180.27	
RESPONSABLE		Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez	

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0	` '	0.000	0.000
2	1000	2.34	5.547	0.078
3	2000	2.47	11.094	0.082
4	3000	2.62	16.642	0.087
5	4000	2.84	22.189	0.095
6	5000	3.18	27.736	0.106
7	6000	3.57	33.283	0.119
8	7000	3.83	38.831	0.127
9	8000	4.27	44.378	0.142
10	9000	4.42	49,925	0.147
11	10000	4.64	55.472	0.154
12	11000	4.81	61.020	0.160
13	12000	5.08	66.567	0.169
14	13000	5.24	72.114	0.174
15	14000	5.41	77.661	0.180
16	15000	5.54	83.209	0.184
17	16000	5.63	88.756	0.187
18	17000	5.69	94.303	0.189
19	18000	5.75	99.850	0.191
20	19000	5.84	105.397	0.194
21	20000	5.92	110.945	0.197
22	21000	6.05	116.492	0.201
23	22000	6.14	122.039	0.204
24	23000	6.21	127.586	0.207
25	24000	6.34	133.134	0.211
26	25000	6.44	138.681	0.214
27	26000	6.51	144.228	0.217
28	27000	6.59	149.775	0.219
29	28000	6.67	155.323	0.222
30	29000	6.75	160,870	0.225
31	30000	6.81	166,417	0.227
32	31000	6.83	171.964	0.227
33	32000	6.86	177.512	0.228
34	33000	6.91	183.059	0.230
35	34000	6.94	188.606	0.231
36	35000	6.97	194.153	0.232
37	36000	6.99	199.700	0.232
38	37000	7.04	205.248	0.234
39	38000	7.11	210.795	0.237
40	39000	7.13	216.342	0.237

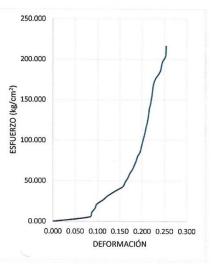
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41	40554	7.15	224.96256	7.489
42				
43	04/16/10/10			
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A lecuxpanel	Luiults	Clgwibs ??
ALEX PAUL PASTOR RAVINES	JOBGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALL

	LABO	RATORIO DE CONCRETO - UN	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
UNIVERSIDAD PRIVADA DEL NORTE			PROTOCOLO				
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS			
	NORMA	MTC E704 / ASTM C39 / NTP 339.034 "RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9% 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
	TESIS						
ID. PROB	ETA:	P05PR-14	Diámetro Probeta (cm):	15.07			
EDAD PROBETA:		14 DÍAS DE CURADO	Altura(cm)	30.85			
FECHA DE ENSAYO:		15/06/2023	ÁREA (cm²)	178.37			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	eu
1	0		0.000	0.000
2	1000	2.42	5.606	0.078
3	2000	2.74	11.213	0.089
4	3000	2.93	16.819	0.095
5	4000	3	22.425	0.097
6	5000	3.14	28.032	0.102
7	6000	3.28	33.638	0.106
8	7000	3.37	39.244	0.109
9	8000	3.41	44.851	0.111
10	9000	3.61	50.457	0.117
11	10000	3.87	56.063	0.125
12	11000	4.23	61.670	0.137
13	12000	4.4	67.276	0.143
14	13000	4.62	72.882	0.150
15	14000	4.82	78.489	0.156
16	15000	5.06	84.095	0.164
17	16000	5.2	89.701	0.169
18	17000	5.36	95.308	0.174
19	18000	5.41	100.914	0.175
20	19000	5.64	106.520	0.183
21	20000	5.73	112.126	0.186
22	21000	5.92	117.733	0.192
23	22000	6.07	123.339	0.197
24	23000	6.11	128.945	0.198
25	24000	6.18	134.552	0.200
26	25000	6.24	140.158	0.202
27	26000	6.29	145.764	0.204
28	27000	6.3	151.371	0.204
29	28000	6.33	156.977	0.205
30	29000	6.36	162.583	0.206
31	30000	6.4	168.190	0.207
32	31000	6.48	173.796	0.210
33	32000	6.51	179.402	0.211
34	33000	6.58	185.009	0.213
35	34000	6.67	190.615	0.216
36	35472	6.7	198.868	0.217
37				
38				
39				¥
40				ľ

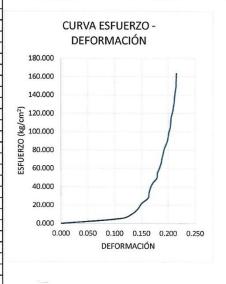
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	eu
41				
42				
43				
44				
45				S. P. W. P. St. C.
46				
47				
48				
49				
50				San
51				
52				
53	7			


LABORATORIO	ASESOR
Tuinff (186)	Aguilos P
	LABORATORIO JULIANIO POR MARTINEZ

UNIVERSIDAD PRIVADA DEL NORTE			PROTOCOLO			
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTIO	GOS CILÍNDRICOS		
	NORMA	MTC E704 / ASTM C39 / NTP 339.034				
	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO 11% Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"				
ID. PROB	ETA:	P06PR-14	Diámetro Probeta (cm):	15.44		
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.15		
FECHA DE ENSAYO:		15/06/2023	ÁREA (cm²)	187.23		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.48	5.341	0.082
3	2000	2.61	10.682	0.087
4	3000	2.84	16.023	0.094
5	4000	2.97	21.364	0.099
6	5000	3.41	26.705	0.113
7	6000	3.75	32.046	0.124
8	7000	4.21	37.387	0.140
9	8000	4.72	42.728	0.157
10	9000	4.88	48.069	0.162
11	10000	5.06	53.410	0.168
12	11000	5.19	58.751	0.172
13	12000	5.38	64.092	0.178
14	13000	5.51	69.433	0.183
15	14000	5.63	74.774	0.187
16	15000	5.72	80.115	0.190
17	16000	5.89	85.456	0.195
18	17000	5.96	90.797	0.198
19	18000	6.03	96.138	0.200
20	19000	6.11	101.479	0.203
21	20000	6.19	106.820	0.205
22	21000	6.25	112.162	0.207
23	22000	6.31	117.503	0.209
24	23000	6.39	122.844	0.212
25	24000	6.44	128.185	0.214
26	25000	6.48	133.526	0.215
27	26000	6.51	138.867	0.216
28	27000	6.59	144.208	0.219
29	28000	6.64	149.549	0.220
30	29000	6.69	154.890	0.222
31	30000	6.72	160.231	0.223
32	31000	6.76	165.572	0.224
33	32000	6.82	170.913	0.226
34	33000	6.94	176.254	0.230
35	34000	7.15	181.595	0.237
36	35000	7.29	186.936	0.242
37	36000	7.34	192.277	0.243
38	37000	7.42	197.618	0.246
39	38000	7.6	202.959	0.252
40	39000	7.64	208.300	0.253

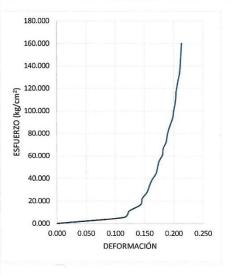
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
41	40487	7.65	216.242	0.254
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


SERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A liverpand	Auiuf 182	Clywiks?
ALEX PAUL PASTOR RAVINES	JORGE LUSTIOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

	LABO	RATORIO DE CONCRETO - UI	NIVERSIDAD PRIVADA DI	EL NORTE - CAJAMARCA			
1			PROTOCOLO				
	ENSAYO	RESISTENCIA A I	LA COMPRESIÓN DE TESTI	GOS CILÍNDRICOS			
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM² CON EL REEMPLAZO DEL CEMENTO EN 9%, Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
DEL NORTE							
ID. PROB	ETA:	P01PR-07	Diámetro Probeta (cm):	15.22			
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.1			
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	181.94			
RESPONSABLE Alex Paul Pastor Ravines REVISADO POR: Jorge Luis Ho		Jorge Luis Hoyos Martinez					

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
1	0		0.000	0.000
2	1000	3.41	5.496	0.113
3	2000	4.03	10.993	0.134
4	3000	4.34	16.489	0.144
5	4000	4.53	21.985	0.150
6	5000	4.88	27.482	0.162
7	6000	4.94	32.978	0.164
8	7000	5.01	38.474	0.166
9	8000	5.15	43.971	0.171
10	9000	5.38	49.467	0.179
11	10000	5.41	54.963	0.180
12	11000	5.53	60.459	0.184
13	12000	5.62	65.956	0.187
14	13000	5.67	71.452	0.188
15	14000	5.74	76.948	0.191
16	15000	5.81	82.445	0.193
17	16000	5.94	87.941	0.197
18	17000	6.01	93.437	0.200
19	18000	6.05	98.934	0.201
20	19000	6.13	104.430	0.204
21	20000	6.16	109.926	0.205
22	21000	6.18	115.423	0.205
23	22000	6.26	120.919	0.208
24	23000	6.31	126.415	0.210
25	24000	6.35	131.912	0.211
26	25000	6.37	137.408	0.212
27	26000	6.41	142.904	0.213
28	27000	6.45	148.401	0.214
29	28000	6.46	153.897	0.215
30	29746	6.48	163.493	0.215
31				
32				
33		a .		
34				
35				
36				
37				
38				
39				
40				

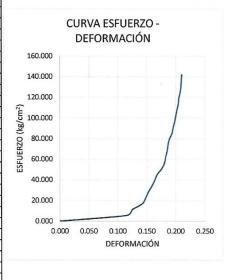
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
41				
42				
43				
44				
45				
46	N I I A THE STREET			
47	8			
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Dungan 15	Built Sel	Clquilon 7
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

	LABO	DRATORIO DE CONCRETO - U	NIVERSIDAD PRIVADA D	EL NORTE - CAJAMARCA			
	_		PROTOCOLO				
	ENSAYO	RESISTENCIA A I	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS				
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM ² CON EL REEMPLAZO DEL CEMENTO EN 9%, 119 Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"					
ID. PROB	ID. PROBETA: P02PR-07		Diámetro Probeta (cm):	15.17			
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.37			
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	180.62			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
1	0		0.000	0.000
2	1000	3.49	5.536	0.115
3	2000	3.74	11.073	0.123
4	3000	4.34	16.609	0.143
5	4000	4.43	22.146	0.146
6	5000	4.68	27.682	0.154
7	6000	4.8	33.219	0.158
8	7000	4.94	38.755	0.163
9	8000	5.15	44.292	0.170
10	9000	5.23	49.828	0.172
11	10000	5.31	55.365	0.175
12	11000	5.49	60.901	0.181
13	12000	5.52	66.438	0.182
14	13000	5.68	71.974	0.187
15	14000	5.73	77.511	0.189
16	15000	5.81	83.047	0.191
17	16000	5.92	88.584	0.195
18	17000	6.03	94.120	0.199
19	18000	6.07	99.657	0.200
20	19000	6.14	105.193	0.202
21	20000	6.18	110.730	0.203
22	21000	6.2	116.266	0.204
23	22000	6.25	121.803	0.206
24	23000	6.31	127.339	0.208
25	24000	6.38	132.876	0.210
26	25000	6.41	138.412	0.211
27	26000	6.43	143.949	0.212
28	27000	6.45	149.485	0.212
29	28883	6.49	159.910	0.214
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

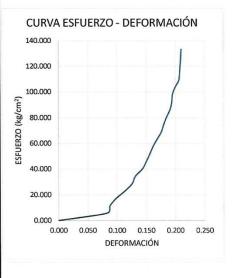
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	and the second			
42				
43				
44				
45				
46				
47				
48				
49				
50	07-11			
51				
52				
53				allecates


ERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A wigner	Tuniuff 189	Clquidon J
ALEX PAUL PASTOR RAVINES	JORGE LUX HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAG

	LABO	DRATORIO DE CONCRETO - U	NIVERSIDAD PRIVADA I	DEL NORTE - CAJAMARCA				
			PROTOCOLO					
	ENSAYO	RESISTENCIA A	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS					
	NORMA	MTC E704 / ASTM C39 / NTP 339.034						
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓN F'C=210 KG/CM2 CON EL REEMPLAZO DEL CEMENTO E						
DEL NORTE		Y 22% CON VIDRIO MOLIDO, CAJAMARCA, 2023"						
ID. PROB	ETA:	P03PR-07	Diámetro Probeta (cm):	14.99				
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.37				
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	176.48				
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez				

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	εu
1	0		0.000	0.000
2	1000	3.51	5.666	0.116
3	2000	3.8	11.333	0.125
4	3000	4.32	16.999	0.142
5	4000	4.5	22.665	0.148
6	5000	4.64	28.332	0.153
7	6000	4.82	33.998	0.159
8	7000	4.97	39.665	0.164
9	8000	5.1	45.331	0.168
10	9000	5.35	50.997	0.176
11	10000	5.49	56.664	0.181
12	11000	5.55	62.330	0.183
13	12000	5.63	67.996	0.185
14	13000	5.67	73.663	0.187
15	14000	5.74	79.329	0.189
16	15000	5.88	84.995	0.194
17	16000	5.94	90.662	0.196
18	17000	6.02	96.328	0.198
19	18000	6.08	101.995	0.200
20	19000	6.14	107.661	0.202
21	20000	6.21	113.327	0.204
22	21000	6.24	118.994	0.205
23	22000	6.31	124.660	0.208
24	23000	6.35	130.326	0.209
25	24000	6.37	135.993	0.210
26	25022	6.39	141.784	0.210
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

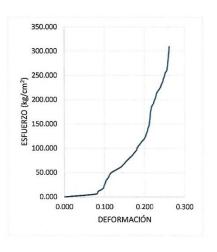
Ν°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				-3555
43				
44				
45				
46				
47				
48		14-		
49				
50				
51				
52	The same and			
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
(Juniqual)	Simplified.	Iguilas J
ALEX PAUL PASTOR RAVINES	CLORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR ALIAC

	LABO	DRATORIO DE CONCRETO - UN	VIVERSIDAD PRIVADA I	DEL NORTE - CAJAMARCA				
	PROTOCOLO							
	ENSAYO	RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILÍNDRICOS						
	NORMA	MTC	E704 / ASTM C39 / NTP 3	339.034				
PRIVADA DEL NORTE UNIVERSIDAD TESIS "RESISTENCIA A I			F'C=210 KG/CM² CON EL RE N VIDRIO MOLIDO, CAJAM	EMPLAZO DEL CEMENTO EN 9%, 11% ARCA, 2023"				
ID. PROB	ETA:	P04PR-07	Diámetro Probeta (cm):	14.9				
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.81				
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	174.37				
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez				

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	eu
1	0		0.000	0.000
2	1000	2.47	5.735	0.083
3	2000	2.61	11.470	0.088
4	3000	2.93	17.205	0.098
5	4000	3.38	22.940	0.113
6	5000	3.75	28.675	0.126
7	6000	3.91	34.410	0.131
8	7000	4.28	40.145	0.144
9	8000	4.47	45.879	0.150
10	9000	4.65	51.614	0.156
11	10000	4.81	57.349	0.161
12	11000	5.02	63.084	0.168
13	12000	5.24	68.819	0.176
14	13000	5.36	74.554	0.180
15	14000	5.51	80.289	0.185
16	15000	5.69	86.024	0.191
17	16000	5.78	91.759	0.194
18	17000	5.81	97.494	0.195
19	18000	5.94	103.229	0.199
20	19000	6.14	108.964	0.206
21	20000	6.18	114.699	0.207
22	21000	6.21	120.434	0.208
23	22000	6.24	126.168	0.209
24	23215	6.26	133.136	0.210
25				
26	1			
27				
28				
29				- 22
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

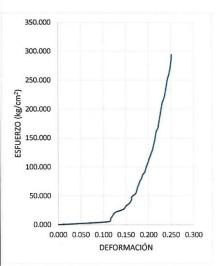
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43	- Inc.			
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


DBSERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
L Juisparith	Tunid 189	Igailon 7
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO XGUILAR ALIAGA

	LABO	RATORIO DE CONCRETO - UN	SIVERSIDAD PRIVADA D	EL NORTE - CAJAMARCA			
	PROTOCOLO						
	ENSAYO	RESISTENCIA A L	COMPRESIÓN DE TESTIGOS CILÍNDRICOS				
	NORMA	MTC E704 / ASTM C39 / NTP 339.034					
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RI CON VIDRIO MOLIDO, CAJAN	EEMPLAZO DEL CEMENTO EN 9%, MARCA, 2023"			
ID. PROB	ETA:	P05PR-28	Diámetro Probeta (cm):	15.02			
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	29.83			
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	177.07			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.37	5.647	0.079
3	2000	2.5	11.295	0.084
4	3000	2.87	16.942	0.096
5	4000	2.95	22.590	0.099
6	5000	3.04	28.237	0.102
7	6000	3.11	33.885	0.104
8	7000	3.27	39.532	0.110
9	8000	3.36	45.180	0.113
10	9000	3.53	50.827	0.118
11	10000	3.91	56.475	0.131
12	11000	4.24	62.122	0.142
13	12000	4.43	67.770	0.149
14	13000	4.61	73.417	0.155
15	14000	4.82	79.065	0.162
16	15000	5.04	84.712	0.169
17	16000	5.2	90.360	0.174
18	17000	5.37	96.007	0.180
19	18000	5.43	101.655	0.182
20	19000	5.6	107.302	0.188
21	20000	5.74	112.950	0.192
22	21000	5.93	118.597	0.199
23	22000	6.04	124.245	0.202
24	23000	6.11	129.892	0.205
25	24000	6.19	135.540	0.208
26	25000	6.23	141.187	0.209
27	26000	6.31	146.835	0.212
28	27000	6.34	152.482	0.213
29	28000	6.36	158.130	0.213
30	29000	6.39	163.777	0.214
31	30000	6.4	169.425	0.215
32	31000	6.42	175.072	0.215
33	32000	6.47	180.719	0.217
34	33000	6.51	186.367	0.218
35	34000	6.64	192.014	0.223
36	35000	6.71	197.662	0.225
37	36000	6.79	203.309	0.228
38	37000	6.84	208.957	0.229
39	38000	6.91	214.604	0.232
40	39000	7.04	220,252	0.236

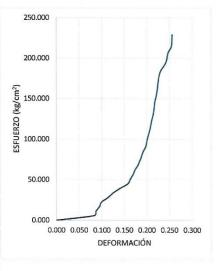
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.18	225.899	0.241
42	41000	7.24	231.547	0.243
43	42000	7.34	237.194	0.246
44	43000	7.39	242.842	0.248
45	44000	7.47	248.489	0.250
46	45000	7.51	254.137	0.252
47	46000	7.64	259.784	0.256
48	47000	7.68	265.432	0.257
49	48000	7.7	271.079	0.258
50	49000	7.72	276.727	0.259
51	50000	7.74	282.374	0.259
52	51000	7.76	288.022	0.260
53	52000	7.78	293.669	0.261
54	53000	7.8	299.317	0.261
55	54684	7.82	308.827	0.262


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO ₂	ASESOR
A hunguat u	-duint/18	Clquilos J
ALEX PAUL FASTOR RAVINES	JØRGKLI/ISHOYOS MARTINEZ	Dr. Ing. ORLANDO ACUILAI

	PROTOCOLO					
	ENSAYO	RESISTENCIA A L	GOS CILÍNDRICOS			
	NORMA	MTC	E704 / ASTM C39 / NTP 33	9.034		
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	A STATE OF THE STA	N F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	EEMPLAZO DEL CEMENTO EN 9%, IARCA, 2023"		
ID. PROB	ETA:	P01PR-14	Diámetro Probeta (cm):	15.37		
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.12		
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	185.54		
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez		

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	3.38	5.390	0.112
3	2000	3.49	10.779	0.116
4	3000	3.64	16.169	0.121
5	4000	3.81	21.559	0.126
6	5000	4.35	26.948	0.144
7	6000	4.51	32.338	0.150
8	7000	4.76	37.728	0.158
9	8000	4.88	43.117	0.162
10	9000	4.91	48.507	0.163
11	10000	5.16	53.897	0.171
12	11000	5.24	59.286	0.174
13	12000	5.29	64.676	0.176
14	13000	5.37	70.066	0.178
15	14000	5.45	75.455	0.181
16	15000	5.57	80.845	0.185
17	16000	5.63	86.235	0.187
18	17000	5.78	91.624	0.192
19	18000	5.84	97.014	0.194
20	19000	5.91	102.404	0.196
21	20000	5.99	107.793	0.199
22	21000	6.05	113.183	0.201
23	22000	6.14	118.573	0.204
24	23000	6.21	123.962	0.206
25	24000	6.29	129.352	0.209
26	25000	6.34	134.742	0.210
27	26000	6.39	140.132	0.212
28	27000	6.44	145.521	0.214
29	28000	6.48	150.911	0.215
30	29000	6.51	156.301	0.216
31	30000	6.55	161.690	0.217
32	31000	6.66	167.080	0.221
33	32000	6.69	172.470	0.222
34	33000	6.73	177.859	0.223
35	34000	6.76	183.249	0.225
36	35000	6.80	188.639	0.226
37	36000	6.83	194.028	0.227
38	37000	6.87	199.418	0.228
39	38000	6.90	204.808	0.229
40	39000	6.94	210.197	0.230

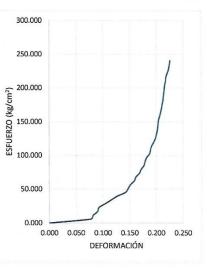
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	7.02	215.587	0.233
42	41000	7.09	220.977	0.235
43	42000	7.14	226.366	0.237
44	43000	7.18	231.756	0.238
45	44000	7.21	237.146	0.239
46	45000	7.25	242.535	0.241
47	46000	7.28	247.925	0.242
48	47000	7.32	253.315	0.243
49	48000	7.39	258.704	0.245
50	49000	7.43	264.094	0.247
51	50000	7.48	269.484	0.248
52	51000	7.51	274.873	0.249
53	52000	7.53	280.263	0.250
54	53000	7.56	285.653	0.251
55	54532	7.57	293.910	0.251


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Dumpand 1	Single 199	Clquitorp
ALEX PAUL PASTOR RAVINES	JONGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDØ AGUILAR AL

1			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
	NORMA	MTC	E704 / ASTM C39 / NTP 339	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓN Y 22% CO	F'C=210 KG/CM² CON EL REEM N VIDRIO MOLIDO, CAJAMAN	
ID. PROB	ETA:	P06PR-14	Diámetro Probeta (cm):	15.06
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	29.92
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	178.01
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	eu
1	0		0.000	0.000
2	1000	2.48	5.618	0.083
3	2000	2.61	11.235	0.087
4	3000	2.84	16.853	0.095
5	4000	2.97	22.471	0.099
6	5000	3.41	28.088	0.114
7	6000	3.75	33.706	0.125
8	7000	4.21	39.324	0.141
9	8000	4.72	44.941	0.158
10	9000	4.88	50.559	0.163
11	10000	5.06	56.177	0.169
12	11000	5.19	61.794	0.173
13	12000	5.38	67.412	0.180
14	13000	5.51	73.030	0.184
15	14000	5.63	78.647	0.188
16	15000	5.72	84.265	0.191
17	16000	5.89	89.883	0.197
18	17000	5.96	95.500	0.199
19	18000	6.03	101.118	0.202
20	19000	6.11	106.736	0.204
21	20000	6.19	112.353	0.207
22	21000	6.25	117.971	0.209
23	22000	6.31	123.589	0.211
24	23000	6.39	129.206	0.214
25	24000	6.44	134.824	0.215
26	25000	6.48	140.442	0.217
27	26000	6.51	146.059	0.218
28	27000	6.59	151.677	0.220
29	28000	6.64	157.295	0.222
30	29000	6.69	162.912	0.224
31	30000	6.72	168.530	0.225
32	31000	6.76	174.148	0.226
33	32000	6.82	179.765	0.228
34	33000	6.94	185.383	0.232
35	34000	7.15	191.001	0.239
36	35000	7.29	196.618	0.244
37	36000	7.34	202.236	0.245
38	37000	7.42	207.853	0.248
39	38000	7.6	213.471	0.254
40	39000	7.64	219.089	0.255

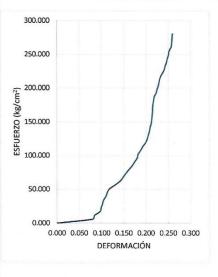
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40736	7.66	228.841	0.256
42				4
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


SERVACIONES:		
RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
A lun preve v	- Similar 1982	(Equilor)
ALEX PAUL PASTOR RAVINES	JORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGOLAR ALIA

	LABOI	RATORIO DE CONCRETO - UN		EL NORTE - CASAMARCA			
	PROTOCOLO						
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTION	TIGOS CILÍNDRICOS			
	NORMA	MTC	E704 / ASTM C39 / NTP 339	9.034			
UNIVERSIDAD PRIVADA	TESIS	"RESISTENCIA A LA COMPRESIÓ	N F'C=210 KG/CM2 CON EL RE	EEMPLAZO DEL CEMENTO EN 9%,			
DEL NORTE		11% Y 22% C	CON VIDRIO MOLIDO, CAJAM	ARCA, 2023"			
ID. PROB	ETA:	P02PR-28	Diámetro Probeta (cm):	15			
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	30.42			
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	176.60			
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez			

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.34	5.663	0.077
3	2000	2.48	11.325	0.082
4	3000	2.73	16.988	0.090
5	4000	2.81	22.650	0.092
6	5000	3.15	28.313	0.104
7	6000	3.51	33.975	0.115
8	7000	3.85	39.638	0.127
9	8000	4.33	45.300	0.142
10	9000	4.48	50.963	0.147
11	10000	4.61	56.625	0.152
12	11000	4.83	62.288	0.159
13	12000	4.92	67.950	0.162
14	13000	5.12	73.613	0.168
15	14000	5.22	79.275	0.172
16	15000	5.38	84.938	0.177
17	16000	5.44	90.600	0.179
18	17000	5.52	96.263	0.181
19	18000	5.69	101.925	0.187
20	19000	5.75	107.588	0.189
21	20000	5.81	113.250	0.191
22	21000	5.93	118.913	0.195
23	22000	6.03	124.575	0.198
24	23000	6.09	130.238	0.200
25	24000	6.14	135.900	0.202
26	25000	6.17	141.563	0.203
27	26000	6.19	147.225	0.203
28	27000	6.22	152.888	0.204
29	28000	6.29	158.550	0.207
30	29000	6.34	164.213	0.208
31	30000	6.39	169.875	0.210
32	31000	6.42	175.538	0.211
33	32000	6.47	181.200	0.213
34	33000	6.49	186.863	0.213
35	34000	6.52	192.525	0.214
36	35000	6.54	198.188	0.215
37	36000	6.57	203.851	0.216
38	37000	6.61	209.513	0.217
39	38000	6.63	215.176	0.218
40	39000	6.7	220.838	0.220

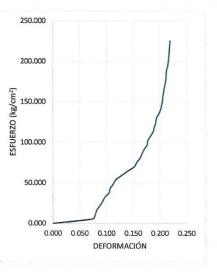
N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41	40000	6.78	226.501	0.223
42	41000	6.82	232.163	0.224
43	42448	6.87	240.362	0.226
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Aluxpanely	_duid/13	lquitosz

AN	DADO	RATORIO DE CONCRETO - UN	PROTOCOLO	SENORIE - CAJAMARCA
	ENSAYO		A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
	NORMA	MTC	C E704 / ASTM C39 / NTP 33	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM ² CON EL RI CON VIDRIO MOLIDO, CAJAM	EEMPLAZO DEL CEMENTO EN 9%, MARCA, 2023"
ID. PROB	ETA:	P05PR-28	Diámetro Probeta (cm):	15
EDAD PR	OBETA:	28 DÍAS DE CURADO	Altura(cm)	29.79
FECHA D	E ENSAYO:	29/06/2023	ÁREA (cm²)	176.60
RESPONS	ABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
1	0		0.000	0.000
2	1000	2.37	5.663	0.080
3	2000	2.5	11.325	0.084
4	3000	2.87	16.988	0.096
5	4000	2.95	22.650	0.099
6	5000	3.04	28.313	0.102
7	6000	3.11	33.975	0.104
8	7000	3.27	39.638	0.110
9	8000	3.36	45.300	0.113
10	9000	3.53	50.963	0.118
11	10000	3.91	56.625	0.131
12	11000	4.24	62.288	0.142
13	12000	4.43	67.950	0.149
14	13000	4.61	73.613	0.155
15	14000	4.82	79.275	0.162
16	15000	5.04	84.938	0.169
17	16000	5.2	90.600	0.175
18	17000	5.37	96.263	0.180
19	18000	5.43	101.925	0.182
20	19000	5.6	107.588	0.188
21	20000	5.74	113.250	0.193
22	21000	5.93	118.913	0.199
23	22000	6.04	124.575	0.203
24	23000	6.11	130.238	0.205
25	24000	6.19	135.900	0.208
26	25000	6.23	141.563	0.209
27	26000	6.31	147.225	0.212
28	27000	6.34	152.888	0.213
29	28000	6.36	158.550	0.213
30	29000	6.39	164.213	0.215
31	30000	6.4	169.875	0.215
32	31000	6.42	175.538	0.216
33	32000	6.47	181.200	0.217
34	33000	6.51	186.863	0.219
35	34000	6.64	192.525	0.223
36	35000	6.71	198.188	0.225
37	36000	6.79	203.851	0.228
38	37000	6.84	209.513	0.230
39	38000	6.91	215.176	0.232
40	39000	7.04	220.838	0.236

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	cu
41	40000	7.18	226.501	0.241
42	41000	7.24	232.163	0.243
43	42000	7.34	237.826	0.246
44	43000	7.39	243.488	0.248
45	44000	7.47	249.151	0.251
46	45000	7.51	254.813	0.252
47	46000	7.64	260.476	0.256
48	47000	7.68	266.138	0.258
49	48000	7.7	271.801	0.258
50	49475	7.73	280.153	0.259
51				
52				
53				or a state of


LABORATORIO 7	ASESOR
Emine (196)	Eguston 1
	LABORATORIO LABORATORIO LABORATORIO LABORATORIO LABORATORIO LABORATORIO LABORATORIO

1			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTIO	GOS CILÍNDRICOS
	NORMA	MTC	E704 / ASTM C39 / NTP 339	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	EMPLAZO DEL CEMENTO EN 9%, ARCA, 2023"
ID. PROB	ETA:	P04PR-14	Diámetro Probeta (cm):	15.39
EDAD PR	OBETA:	14 DÍAS DE CURADO	Altura(cm)	30.05
FECHA D	E ENSAYO:	15/06/2023	ÁREA (cm²)	185.90
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єп
1	0		0.000	0.000
2	1000	2.21	5.379	0.074
3	2000	2.37	10.758	0.079
4	3000	2.45	16.138	0.082
5	4000	2.62	21.517	0.087
6	5000	2.78	26.896	0.093
7	6000	2.91	32.275	0.097
8	7000	3.15	37.655	0.105
9	8000	3.21	43.034	0.107
10	9000	3.39	48.413	0.113
11	10000	3.53	53.792	0.117
12	11000	3.87	59.172	0.129
13	12000	4.21	64.551	0.140
14	13000	4.58	69.930	0.152
15	14000	4.71	75.309	0.157
16	15000	4.91	80.689	0.163
17	16000	5.01	86.068	0.167
18	17000	5.13	91.447	0.171
19	18000	5.29	96.826	0.176
20	19000	5.33	102.205	0.177
21	20000	5.48	107.585	0.182
22	21000	5.63	112.964	0.187
23	22000	5.69	118.343	0.189
24	23000	5.78	123.722	0.192
25	24000	5.81	129.102	0.193
26	25000	5.94	134.481	0.198
27	26000	6.05	139.860	0.201
28	27000	6.11	145.239	0.203
29	28000	6.16	150.619	0.205
30	29000	6.18	155.998	0.206
31	30000	6.22	161.377	0.207
32	31000	6.26	166.756	0.208
33	32000	6.31	172.136	0.210
34	33000	6.35	177.515	0.211
35	34000	6.37	182.894	0.212
36	35000	6.38	188.273	0.212
37	36000	6.45	193.653	0.215
38	37000	6.49	199.032	0.216
39	38000	6.51	204.411	0.217
40	39000	6.53	209.790	0.217

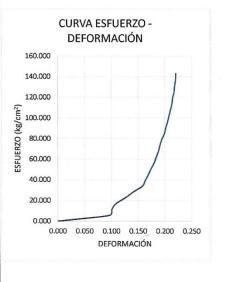
Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
41	40000	6.55	215.169	0.218
42	41822	6.58	224.970	0.219
43				
44				
45				
46				us -
47				
48				
49				116.7
50				
51				
52				
53				

RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
& Dury rul h	Turing (142)	Clquito 7

AL			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTI	GOS CILÍNDRICOS
	NORMA	MTC	E704 / ASTM C39 / NTP 339	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS		N F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	EMPLAZO DEL CEMENTO EN 9%, ARCA, 2023"
ID. PROB	ETA:	P05PR-07	Diámetro Probeta (cm):	15.05
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	30.06
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	177.89
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm ²)	єu
1	0		0.000	0.000
2	1000	2.38	5.621	0.079
3	2000	2.72	11.243	0.090
4	3000	2.9	16.864	0.096
5	4000	3.07	22.486	0.102
6	5000	3.22	28.107	0.107
7	6000	3.34	33.729	0.111
8	7000	3.41	39.350	0.113
9	8000	3.58	44.972	0.119
10	9000	3.72	50.593	0.124
11	10000	3.94	56.215	0.131
12	11000	4.22	61.836	0.140
13	12000	4.41	67.457	0.147
14	13000	4.67	73.079	0.155
15	14000	4.85	78.700	0.161
16	15000	5.07	84.322	0.169
17	16000	5.22	89.943	0.174
18	17000	5.39	95.565	0.179
19	18000	5.44	101.186	0.181
20	19000	5.61	106.808	0.187
21	20000	5.72	112.429	0.190
22	21000	5.9	118.050	0.196
23	22000	6.05	123.672	0.201
24	23000	6.13	129.293	0.204
25	24575	6.19	138.147	0.206
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				
42				
43				
44				
45	******			
46				
47				
48				
49				
50				
51				
52				
53				


RESPONSABLE DE ENSAYO	COORDINADOR DE LABÓRATORIO	ASESOR
Alleurgnauel	Juin No	Iguibe 7
ALEX PAUL PASTOR RAVINES	SORGE LUIS HOYOS MARTINEZ	Dr. Ing. ORLANDO AGUILAR AL

			PROTOCOLO	
	ENSAYO	RESISTENCIA A L	A COMPRESIÓN DE TESTIC	GOS CILÍNDRICOS
	NORMA	MTC	E704 / ASTM C39 / NTP 339	9.034
UNIVERSIDAD PRIVADA DEL NORTE	TESIS	"RESISTENCIA A LA COMPRESIÓ 11% Y 22% (N F'C=210 KG/CM² CON EL RE CON VIDRIO MOLIDO, CAJAM	
ID. PROB	ETA:	P06PR-07	Diámetro Probeta (cm):	14.99
EDAD PR	OBETA:	7 DÍAS DE CURADO	Altura(cm)	29.85
FECHA D	E ENSAYO:	8/06/2023	ÁREA (cm²)	176.36
RESPONS	SABLE	Alex Paul Pastor Ravines	REVISADO POR:	Jorge Luis Hoyos Martinez

N°	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	єu
1	0		0.000	0.000
2	1000	2.89	5.670	0.097
3	2000	3.01	11.340	0.101
4	3000	3.24	17.011	0.109
5	4000	3.77	22.681	0.126
6	5000	4.21	28.351	0.141
7	6000	4.72	34.021	0.158
8	7000	4.88	39.692	0.163
9	8000	5.06	45.362	0.170
10	9000	5.21	51.032	0.175
11	10000	5.38	56.702	0.180
12	11000	5.5	62.372	0.184
13	12000	5.62	68.043	0.188
14	13000	5.7	73.713	0.191
15	14000	5.81	79.383	0.195
16	15000	5.96	85.053	0.200
17	16000	6.03	90.724	0.202
18	17000	6.13	96.394	0.205
19	18000	6.21	102.064	0.208
20	19000	6.29	107.734	0.211
21	20000	6.37	113.404	0.213
22	21000	6.41	119.075	0.215
23	22000	6.49	124.745	0.217
24	23000	6.52	130.415	0.218
25	24000	6.57	136.085	0.220
26	25211	6.59	142.952	0.221
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				

Nº	Carga (Kg)	Deformación (mm)	σ (kg/cm²)	€u
41				11122000
42				
43				
44	Section .			
45				
46				
47				nestre s
48				197 km 2
49				
50				
51				
52				
53				

RESPONSABLE DE ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Alluix Delial 4	Annill XII	Classilon of