Mostrar el registro sencillo del ítem
Desarrollo de un sistema de visión artificial para realizar una clasificación uniforme de limones
dc.contributor.advisor | Salazar Campos, Juan Orlando | |
dc.contributor.author | Del Castillo Huaccha, Eduardo | |
dc.date.accessioned | 2018-03-14T20:18:17Z | |
dc.date.available | 2018-03-14T20:18:17Z | |
dc.date.issued | 2018-03-13 | |
dc.identifier.citation | Del Castillo, E. (2018). Desarrollo de un sistema de visión artificial para realizar una clasificación uniforme de limones [Tesis de licenciatura, Universidad Privada del Norte]. Repositorio de la Universidad Privada del Norte. Recuperado de https://hdl.handle.net/11537/13118 | es_PE |
dc.identifier.other | 006.37 CAST 2018 | es_PE |
dc.identifier.uri | https://hdl.handle.net/11537/13118 | |
dc.description.abstract | La presente tesis planteó como objetivo principal la creación de un sistema de visión artificial que permita realizar una clasificación uniforme de limones. Las formas y dimensiones de los limones a ser analizados están sujetos al códex de la lima-limón de la Organización de Comida y Agricultura de las Naciones Unidas. Actualmente se analizó el contexto internacional y nacional determinando que no existe tecnología de información asociada al proceso de clasificación de limones, esto nos brinda la posibilidad de explorar alternativas basadas en áreas de la computación que ayuden en este proceso, tal es el caso de la visión artificial. Se diseñó una solución siguiendo las fases de visión artificial (adquisición, pre procesamiento, segmentación, descripción y reconocimiento e interpretación), donde se realizó una comparativa entre los algoritmos dentro de cada fase, para identificar cuáles son los que mejor se adaptan a la problemática planteada permitiendo obtener un resultado adecuado. Luego de haber desarrollado el sistema de visión artificial aplicando los algoritmos seleccionados, se obtuvo como resultado que el sistema tiene una eficacia de 83.9%, una sensibilidad de 82.8% y una especificidad del 100%. Por otro lado, el tiempo de procesamiento para clasificar un limón es de 0.33 segundos. Gracias a los resultados obtenidos se pudo comprobar la hipótesis en la que se sostiene que un sistema de visión artificial permite realizar una clasificación uniforme de limones. | es_PE |
dc.description.abstract | This thesis main objective is to create an artificial vision system able to do a uniform classification of lemons. Sizes and dimensions of lemons are tied to the Lime-lemon codex from the United Nations Food and Agriculture Organization. Currently the international and national context was analyzed, determining that there is no information technology associated with the lemons classification process, which gives us the possibility to explore alternatives based on areas of computation that helps in this process, such as the artificial vision. A solution was designed applying the algorithms belonging to the phases of the artificial vision (acquisition, pre-processing, segmentation, description and recognition and interpretation). Also, a comparison was made between the algorithms within each phase to identify which are the ones that has a better fit to this system and give an suitable result. After having implemented the artificial vision system, using the selected algorithms, it was obtained as a result that the artificial vision system has an efficiency of 83.9%, a sensitivity of 82.8% and a specificity of 100% On the other hand, the processing time to classify a lemon is of 0.33 seconds. Thanks to the results obtained it was possible to verify the hypothesis in which it is maintained that an artificial vision system is able to perform a uniform classification of lemons. | es_PE |
dc.description.uri | Tesis | es_PE |
dc.format | application/pdf | es_PE |
dc.format | application/msword | es_PE |
dc.language.iso | spa | es_PE |
dc.publisher | Universidad Privada del Norte | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.source | Universidad Privada del Norte | es_PE |
dc.source | Repositorio Institucional - UPN | es_PE |
dc.subject | Visión por computadora | es_PE |
dc.subject | Señales digitales | es_PE |
dc.subject | Inteligencia artificial | es_PE |
dc.title | Desarrollo de un sistema de visión artificial para realizar una clasificación uniforme de limones | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | es_PE |
thesis.degree.grantor | Universidad Privada del Norte. Facultad de Ingeniería | es_PE |
thesis.degree.level | Título Profesional | es_PE |
thesis.degree.discipline | Ingeniería de Sistemas Computacionales | es_PE |
thesis.degree.name | Ingeniero de Sistemas Computacionales | es_PE |
dc.publisher.country | PE | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | es_PE |
thesis.degree.program | Pregrado | es_PE |
dc.description.sede | Trujillo San Isidro | es_PE |
renati.advisor.dni | 41852940 | |
renati.advisor.orcid | https://orcid.org/0000-0003-3081-7081 | es_PE |
renati.author.dni | 47134133 | |
renati.discipline | 612086 | es_PE |
renati.juror | Peralta, José Luis | |
renati.juror | Gutiérrez Magan, Luis | |
renati.juror | Leiva Via, Geancarlo | |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_PE |
renati.type | http://purl.org/pe-repo/renati/type#tesis | es_PE |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis [260]