Microstructural analysis in foods of vegetal origin: An approach with convolutional neural networks [Análisis microestructural en alimentos de origen vegetal: Una aproximación con redes neuronales convolucionales]

Date
2020-04-30Author
Castro, Wilson
Yoshida, Hideaki
Seguí Gil, Lucia
Mayor López, Luis
Oblitas Cruz, Jimy
De la Torre Gomora, Miguel
Avila George, Himer
Metadata
Show full item recordAbstract
ABSTRACT
The microstructure is a factor in the knowledge and prediction of properties in food and the associated changes during processing. The objective of this work was to evaluate the feasibility of using a convolution neural network (CNN) for the discrimination of structures in foods of vegetable origin. Micrographs of pumpkin were processed digitally to improve the detection of structures (cells and intercellular spaces). Later the found elements were classified in two sets, using a trained operator. The implementation made use of a pre-trained network AlexNet, performing cross-validation, and one hundred repetitions randomizing the information delivered to the training and validation processes. The statistics obtained were accuracy and F-measure. Therefore, the use of convolutional neural networks shows potential for the discrimination of structures in foods of vegetal origin.
Mostrar más
Bibliographic citation
Castro, W. ...[et al]. (2020). Microstructural analysis in foods of vegetal origin: An approach with convolutional neural networks [Análisis microestructural en alimentos de origen vegetal: Una aproximación con redes neuronales convolucionales]. 8th International Conference On Software Process Improvement (CIMPS), 1-5. https://doi.org/10.1109/CIMPS49236.2019.9082421
Note
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
Collections
The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
Oblitas, Jimy; Mejia, Jezreel; De la Torre, Miguel; Avila George, Himer; Seguí Gil, Lucía; Mayor López, Luis; Ibarz, Albert; Castro, Wilson (Multidisciplinary Digital Publishing Institute, 2021-02-10)Acceso abiertoABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction ... -
Desarrollo de un sistema inteligente basado en visión computacional para detectar bacterias escherichia coli en verduras frescas
Rodríguez Alvarez, Jorge Jonathan Jesús (Universidad Privada del Norte, 2019-07-16)Acceso abiertoRESUMEN La resistencia a los antimicrobianos se está acentuando en muchos agentes infecciosos, pero se centra en la resistencia a los antibióticos en siete bacterias responsables de infecciones comunes graves, como ... -
Conocimientos y creencias en relación a la alimentación durante el embarazo, en mujeres gestantes atendidas en el CMI Santa Luzmila II, junio – setiembre, 2020
Arellano Mori, Diana Carolina; Ruiz Narciso, Jannet Norma (Universidad Privada del Norte, 2020-12-14)Acceso abiertoEl objetivo de la investigación fue identificar los conocimientos y creencias en relación a su alimentación durante el embarazo que tienen las gestantes atendidas en el Centro Materno Infantil de junio – setiembre, 2020. ...