Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits

Date
2019-10-17Author
De la Torre, Miguel
Avila-George, Himer
Oblitas, Jimy
Castro, Wilson
Metadata
Show full item recordAbstract
ABSTRACT
The use of machine learning techniques to automate the sorting of Cape gooseberry fruits according to their visual ripeness has been reported to provide accurate classification results. Classifiers like artificial neural networks, support vector machines, decision trees, and nearest neighbors are commonly employed to discriminate fruit samples represented in different color spaces (e.g., RGB, HSV, and L*a*b*). Although these feature spaces are equivalent up to a transformation, some of them facilitate classification. In a previous work, authors showed that combining the three-color spaces through principal component analysis enhances classification performance at expenses of increased computational complexity. In this paper, two combination and two selection approaches are explored to find the best characteristics among the combination of the different color spaces (9 features in total). Experimental results reveal that selection and combination of color channels allow classifiers to reach similar levels of accuracy, but combination methods require increased computational complexity.
Mostrar más
Bibliographic citation
De la Torre, M. ...[et al]. (2020). Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits. Advances in Intelligent Systems and Computing, 1071, 219-233. https://doi.org/10.1007/978-3-030-33547-2_17
Note
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
Collections
The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Comparación de tres sistemas expertos y diferentes espacios de color en la clasificación del grado de madurez de frutos de aguaymanto (PHYSALIS PERUVIANA L.)
Bazán Soriano, Karen Stefany; Cotrina Bazán, Carlos Adrián (Universidad Privada del Norte, 2018-06-22)Acceso cerradoRESUMEN La clasificación de frutas frescas según su madurez es un trabajo comúnmente subjetivo y tedioso; en consecuencia, existe un creciente interés en el uso de técnicas no invasivas como las basadas en la visión ... -
Como vender a través de los colores: Influencia de los colores en la toma de decisiones de compra de los consumidores en los distritos de Trujillo y Victor Larco Herrera- La Libertad
Caballero Moreno, Pedro Oliver Leonel (Universidad Privada del Norte, 2014-06-21)Acceso cerradoEl consumidor decide qué colores le gustan y rechaza aquellos que no le transmiten nada. No es nuevo; las ventas, en muchas ocasiones, dependen prácticamente del color del envase, del producto, de la marca, o de los tonos ... -
Effect of different combinations of size and shape parameters in the percentage error of classification of structural elements in vegetal tissue of the pumpkin Cucurbita pepo L. using probabilistic neural networks
Oblitas Cruz, Jimy; Castro Silupu, Wilson; Mayor Lopez, Luis (Universidad Privada del Norte, 2016)Acceso abiertoAbstract It was proceeded to determine the optimal combination of size and shape parameters in order to obtain the classification of structural elements with the lowest percentage of error. To this effect it was ...