A stock market forecasting model in Peru using artificial intelligence and computational optimization tools

Date
2020-12-15Author
Cano Lengua, Miguel Angel
Rodríguez Mallma, Mirko Jerber
Papa Quiroz, Erik Alex
Metadata
Show full item recordAbstract
ABSTRACT
It is proposed the development of a forecast model capable of predicting the behavior of the price indices and quotes of the shares traded on the Lima Stock Exchange, based on the use of artificial intelligence techniques such as artificial neural networks and fuzzy logic based on computational optimization methods. The proposed model considers the forecast, in addition to the historical quantitative data of the share price, the inclusion of qualitative macroeconomic factors that significantly influence the behavior of the time series of the stock markets. It is about harnessing the ability of artificial neural networks to work with nonlinear quantitative data and their capacity for learning and also take advantage of the fuzzy logic technique to simulate the way of reasoning of human beings by defining judgment rules or knowledge base and their evaluation through inference mechanisms. The main contribution is to demonstrate that the proposed model is capable of obtaining more optimal approximations in the forecast of the financial time series.
Mostrar más
Bibliographic citation
Cano, M. A., Rodríguez, M. J., & Papa, E. A. (2020). A stock market forecasting model in Peru using artificial intelligence and computational optimization tools. Proceedings of the 5th Brazilian Technology Symposium. Smart Innovation, Systems and Technologies, 201, 79-86. https://doi.org/10.1007/978-3-030-57548-9_7
Note
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
Collections
The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Metodología de simulación con inteligencia artificial en la planificación y control de la producción, en sistemas de manufactura de fundición
Romero Ríos, Percy Marcial (Universidad Privada del Norte, 2021-06-04)Acceso abiertoEl estudio realizado bajo la modalidad de tesis tuvo como objetivo general determinar cómo una metodología de Simulación con Inteligencia Artificial permite ayudar en la Planificación y Control de la Producción, en sistemas ... -
Comparación de tres sistemas expertos y diferentes espacios de color en la clasificación del grado de madurez de frutos de aguaymanto (PHYSALIS PERUVIANA L.)
Bazán Soriano, Karen Stefany; Cotrina Bazán, Carlos Adrián (Universidad Privada del Norte, 2018-06-22)Acceso cerradoRESUMEN La clasificación de frutas frescas según su madurez es un trabajo comúnmente subjetivo y tedioso; en consecuencia, existe un creciente interés en el uso de técnicas no invasivas como las basadas en la visión ... -
Forecasting photovoltaic power using bagging feed-forward neural network
Zarate, E. J.; Palumbo, M.; Motta, A. L. T.; Grados, J. H. (Transstellar Journal Publications and Research Consultancy Private Limited, 2020-09-17)Acceso abiertoABSTRACT This paper presents a forecast model of the active power of a photovoltaic (PV) power generation system. In this model, a feed-forward neural network (FNN) is combined with bootstrap aggregation techniques using ...