Mostrar el registro sencillo del ítem

dc.contributor.authorNieto-Chaupis, Huber
dc.date.accessioned2021-10-01T15:23:44Z
dc.date.available2021-10-01T15:23:44Z
dc.date.issued2021-03-03
dc.identifier.citationNieto, H., ...[et al.]. (2021). Convolution-based machine learning to attenuate Covid-19's infections in large cities. IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 148-152. https://doi.org/10.1109/AIKE48582.2020.00044es_PE
dc.identifier.urihttps://hdl.handle.net/11537/28012
dc.description.abstractABSTRACT In this paper a nonlinear mathematical model based at convolution theory and translated in terms of Machine Learning philosophy is presented. In essence, peaks functions are assumed as the pattern of rate of infections at large cities. In this manner, once the free parameters of theses patterns are identified then one proceeds to engage to the well-known Mitchell's criteria in order to construct the algorithm that would yield the best estimates as to carry out social intervention as well as to predict dates about the main characteristics of infection's distributions. The distributions are modeled by the Dirac-Delta function whose spike property is used to make the numerical convolutions. In this manner the parameters of Dirac-Delta function's argument are interpreted as the model parameters that determine the dates of social regulation such as quarantine as well as the possible date of end of first wave and potential periods of the beginning of a second one. The theoretical and computational approach is illustrated with a case of outbreak depending on free parameters simulating the implementation of new rules to detain the infections.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherIEEEes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceUniversidad Privada del Nortees_PE
dc.sourceRepositorio Institucional - UPNes_PE
dc.subjectCovid-19es_PE
dc.subjectPandemiaes_PE
dc.subjectModelos matematicoses_PE
dc.subjectCiudadeses_PE
dc.titleConvolution-based machine learning to attenuate Covid-19's infections in large citieses_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
dc.publisher.countryUSes_PE
dc.identifier.journalIEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)es_PE
dc.description.peer-reviewRevisión por pareses_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#3.03.03es_PE
dc.description.sedeLos Olivoses_PE
dc.identifier.doihttps://doi.org/10.1109/AIKE48582.2020.00044


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess