Implementation of a mobile application based on the convolutional neural network for the diagnosis of pneumonia
Abstract
Pneumonia is the main cause of infant mortality in Peru, which has led to plansfig, such as vaccination campaigns, greater economic investment in health, and the strengthening of specialized medical personnel, however, mortality rates remain high. In this sense, the implementation of new computer technologies such as Deep Learning through the use of the artificial neural network is proposed. The objective of this project was to determine the influence of a mobile application based on a Convolutional Neural Network for the diagnosis of Pneumonia, the project consists of the analysis of images of Chest X-rays with Pneumonia and Normal by means of an application developed called “Diagnost”. The study was carried out considering a control group and a study group formed by 33 medical staff members who used the application. The analysis of the data obtained was made based on the study of 3 indicators, detection time, result in accuracy, and reduction of medical assistance. According to the results, it was concluded that the mobile application based on the convolutional neural network allows the early detection of Pneumonia and allows the reduction of medical assistance, however, it is still necessary to continue working on the accuracy of the diagnosis.
Mostrar más
Bibliographic citation
Flores, J. R. (2022). Implementation of a mobile application based on the convolutional neural network for the diagnosis of pneumonia [Artículo científico, Universidad Privada del Norte]. Repositorio de la Universidad Privada del Norte. https://hdl.handle.net/11537/31856
Subject
Collections
The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Classification of the microstructural elements of the vegetal tissue of the pumpkin (Cucurbita pepo l.) using convolutional neural networks
Oblitas, Jimy; Mejia, Jezreel; De la Torre, Miguel; Avila George, Himer; Seguí Gil, Lucía; Mayor López, Luis; Ibarz, Albert; Castro, Wilson (Multidisciplinary Digital Publishing Institute, 2021-02-10)Acceso abiertoABSTRACT Althoughknowledgeofthemicrostructureoffoodofvegetaloriginhelpsustounderstand the behavior of food materials, the variability in the microstructural elements complicates this analysis. In this regard, the construction ... -
Clasificación de imágenes médicas para la detección del cáncer de mama mediante redes neuronales
Riera Iziga, Marcos; Sotelo Hernández, Waldir; Campos Vasquez, Neicer (LACCEI, 2022-02-11)Acceso abiertoEn la Actualidad no es fácil la interpretación de imágenes de mamografía y brindar un diagnóstico medico por un profesional de salud, Es que a pesar de la experiencia del profesional no se detecta al 100 % las anomalías ó ... -
Clasificación de imágenes médicas para la detección del cáncer de mama mediante redes neuronales
Riera Iziga, Marcos Pavel; Sotelo Hernandez, Waldir (Universidad Privada del Norte, 2022-09-15)EmbargadoEn la Actualidad no es fácil la interpretación de imágenes de mamografía y brindar un diagnóstico médico por un profesional de salud, Es que a pesar de la experiencia del profesional no se detecta al 100 % las anomalías ó ...