Classification of land cover in optical satellite images, using characteristics and color indices
Fecha
2023-04-04Autor(es)
Auccahuasi, Wilver
Herrera, Lucas
Rojas, Karin
Urbano, Kitty
Romero, Luis
Lovera, Denny
Cueva, Juanita
Perez, Ivan
Santos, César
Leva, Antenor
Fuentes, Alfonso
Sernaque, Fernando
Metadatos
Mostrar el registro completo del ítemResumen
Satellite images are being used more and more frequently in the analysis of land coverage, due to their ability to record large areas of land, managing to analyze their type of coverage and the uses that it is providing, in this work the images of areas corresponding to the Amazon, where an attempt is made to evaluate through the use of Neural Networks, if the chosen area is being covered by vegetation or does not present vegetation, this analysis is carried out thanks to the calculation of the reflectance and the NDVI vegetation index. For the purposes of being able to analyze the analysis methodology, a tool developed in Matlab is provided, where all the processes can be carried out both for the management of the images, as well as to carry out the procedures for the use of neural networks, as well as the visualization of the characteristics and the final result of the classification. The proposed methodology is scalable and can be adapted to multiple needs and uses, managing to increase the number of characteristics to evaluate, such as being able to use different types of groups of images. An image database model is also presented that corresponds to areas with vegetation cover and areas that do not correspond to vegetation cover. With the use of the developed application, it is possible to test the proposed methodology.
Mostrar más
Cita bibliográfica
Auccahuasi, W., Herrera, L., Rojas, K., Urbano, K., Romero, L., Lovera, D., Cueva, J., Perez, I., Santos, C., Leva, A., Fuentes, A., & Sernaque, F. (2023). Classification of land cover in optical satellite images, using characteristics and color indices. AIP Conference Proceedings, 2725(1), 050002. https://doi.org/10.1063/5.0125496
Nota
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
Colecciones
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Análisis espacio temporal de la cobertura vegetal mediante el NDVI, y su relación con el crecimiento poblacional de la provincia de Lima, Perú (2000-2019)
Guerra Cardenas, María de los Ángeles Lisbeth (Universidad Privada del Norte, 2021-11-19)Acceso abiertoLos cambios de cobertura vegetal son provocados por factores naturales, climáticos y antrópicos, siendo este último el más predominante en territorios urbanos; en donde, se encuentra el crecimiento poblacional; el cual, ... -
Method to classify vegetation cover using satellite images and artificial intelligence
Herrera, Lucas; Auccahuasi, Wilver; Rojas, Karin; Urbano, Kitty; Cuzcano, Abilio; Del Carpio, Jorge; Flores, Edward; Flores, Pedro; Benites, Nicanor; Zamalloa, Leonidas; Sernaque, Fernando (American Institute of Physics, 2023-04-04)Acceso cerradoSpace technology is being used with greater emphasis in monitoring land cover, where the use of satellite images is used to analyze large areas of land, we can find optical satellite images that cover large areas of land, ... -
Índices de Vegetación espectral y Cadena de Markov para evaluar la pérdida de cobertura forestal en la Reserva Nacional Allpahuayo Mishana, en el período 2002 – 2021
Cruz Cespedes, Tiffany Valeria; Gamboa Alvarez, Solange Margot (Universidad Privada del Norte, 2022-09-20)Acceso abiertoEl presente estudio identifica el patrón de cambio de cobertura forestal en el periodo 2002 – 2021, utilizando índices de vegetación y Cadena de Markov en la Reserva Nacional Alpahuayo Mishana, Loreto, Perú, para predecir ...