

FACULTAD DE INGENIERÍA

Carrera de Ingeniería de Minas

"ANÁLISIS DE RENTABILIDAD DE FLOTAS DE CARGUÍO Y ACARREO MEDIANTE EL USO DEL SOFTWARE TALPAC EN UNA UNIDAD MINERA DE LA REGIÓN LA LIBERTAD, 2020"

Tesis para optar el título profesional de:

Ingeniero de Minas

Autores:

Bach. Grober Duban Cotrina Julcamoro Bach. Arturo Manuel Muñoz Huaman

Asesor:

Ing. Víctor Eduardo Álvarez León

Cajamarca - Perú

2020

DEDICATORIA

A mis padres Samuel Cotrina Rumay y Luz Elena Julcamoro Casas, por su incondicional amor y apoyo que me brindan día a día, a mis hermanos Pamela Sarahy y Rodrigo Samuel Cotrina que son parte fundamental de mi vida. A mis amigos e ingenieros que me ayudaron a lograr esta meta.

Grober

A mis padres Jaime Alberto Muñoz Villalba y Miriam Rossana Huaman Castillo, por su incondicional amor y sabiduría que me brindan, así mismo a mi tía Sonia Huaman Castillo por su incondicional apoyo y amor que me brinda, a mis hermanos Michael Muñoz Huaman y Daniel Muñoz Huaman por sus incondicionales consejos y fuerza que me brindan, a mis amigos que siempre me apoyan y me aconsejan y por ultimo a mi asesor Víctor Eduardo Alvarez León por su apoyo, así mismo a mi director de carrera e ingenieros que durante mi estancia en la universidad me forjaron para tener un buen futuro.

Arturo

AGRADECIMIENTO

A Dios por permitirme culminar una de mis metas de mi vida. Agradecer a mis padres y hermanos que con sus consejos y esfuerzos estoy cumpliendo mis metas, agradecer a mis amigos que me apoyaron y me brindaron su aliento para seguir a delante y a mi Universidad e ingenieros que son la fuente de mi sabiduría.

Grober

A Dios por estar donde me propuse y no dejarme desorientar. Darle gracias a mi familia por el profundo apoyo que me brindo, así mismos agradecer a mis amigos que siempre me aconsejaron para bien y me brindaron su apoyo. Por ultimo agradecer a la Universidad Privada del Norte y sus docentes, por forjarme y hacer un hombre con futuro.

Arturo

Tabla de contenidos

DED	ICATORIA	2
AGR	ADECIMIENTO	3
ÍNDI	CE DE TABLAS	5
ÍNDI	CE DE FIGURAS	6
CAP	ÍTULO I. INTRODUCCIÓN	8
1.1.	Realidad problemática	8
1.2.	Formulación del problema	11
1.3.	Objetivos	11
1.4.	Hipótesis	11
CAP	ÍTULO II. METODOLOGÍA	12
2.1.	Tipo de investigación	12
2.2.	Población y muestra	12
2.3.	Técnicas e instrumentos de recolección y análisis de datos	12
CAP:	ÍTULO III. RESULTADOS	27
CAP	ÍTULO IV. DISCUSIÓN Y CONCLUSIONES	32
4.1.	Discusión	32
4.2.	Conclusiones	33
REF	ERENCIAS	33
ANE	XOS	35

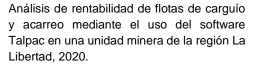

ÍNDICE DE TABLAS

Tabla 1 Datos de mineral estéril	14
Tabla 2 Sistema de turnos	14
Tabla 3 Parámetros de velocidad en segmentos de ida	15
Tabla 4 Parámetros de velocidad en segmentos de ida	16
Tabla 5 Parámetros de pala de la flota 1	19
Tabla 6 Parámetros de pala de la flota 2	20
Tabla 7 Parámetros de pala de la flota 3	21
Tabla 8 Parámetros de camión de la flota 1	22
Tabla 9 Parámetros de camión de la flota 2	23
Tabla 10 Parámetros de camión de la flota 3	24
Tabla 11 Análisis de flujo de efectivo de los 10 años de utilización de los camiones	
analizando costos de operaciones en la flota 1	28
Tabla 12 Análisis de flujos de efectivo de los 10 años de utilización de los camiones,	
analizando costos de operación en la flota 2	29
Tabla 13 Análisis de flujos de efectivo de los diez años de utilización de los camiones	
analizando costos de operación de la flota 3	30
Tabla 14 Producción de carguío, acarreo y tiempos de operación	31
Tabla 15 Flujo de caja	31
Tabla 16 Tiempo de recorrido de las tres flotas	31
Tabla 17 Resultados completos de simulación de la flota 1	36
Tabla 18 Neumáticos y consumo de combustible de la flota 1	39
Tabla 19 Resultados completos de simulación de la flota 2	40
Tabla 20 Neumáticos y consumo de combustible de la flota 2	43
Tabla 21 Resultados completos de simulación de la flota 3	44
Tabla 22 Neumáticos y consumo de combustible de la flota 3	47
Tabla 23 Indicadores de rentabilidad de las flotas de carguío y acarreo	49
Tabla 24 Cuadro resumen de los indicadores de rentabilidad	50

ÍNDICE DE FIGURAS

Figura	1. Segmentos de carguio y descarga -velocidades, pendiente y distancia de vuelta.	1/
Figura	2. Segmentos de carguío y descarga -velocidades, pendiente y distancia de vuelta.	18
Figura	3.Pala Terex RH 90 – C.	19
Figura	4.Pala Komatsu H 285	20
Figura	5.Pala Caterpillar 5130 B.	21
Figura	6.Caterpillar 777F.	22
Figura	7.KOMATSU 510 E.	23
Figura	8.TEREX TR 100	24
Figura	9.Cuadro de introducción del software Talpac (llenado de datos)	25
Figura	10. Variables de sistema de turnos.	25
Figura	11.Ruta del área de carguio al área de descarga	48
Figura	12.Simulación de cronograma de pagos	51

RESUMEN

Esta investigación se centra en el análisis de rentabilidad de tres flotas en el ciclo de carguío

y acarreo, para lograr la reducción de costos en la producción, debido a que hoy en día los

procesos más costosos en cualquier unidad minera son dichas actividades; para lo cual se

aplicara el software Talpac como método alternativo en la evaluación de la rentabilidad de

las flotas, teniendo en cuenta los sistemas de turno, ciclos de ruta, velocidad y maquinaria.

Así mismo se calculará indicadores de rentabilidad como el VAN y el TIR teniendo en

cuenta una tasa de descuento del 14%.

Se consideró la maquinaria siguiente: en la flota uno pala Terex (O&K) RH 90 C y el camión

Caterpillar 777 F, en la flota dos, pala Komatsu H 285 S y camión Komatsu 510 E, y en la

flota 3, pala Caterpillar 5130 B y un camión Terex TR 100. Con este estudio se logró

determinar que la flota uno sería la más adecuada en el análisis de un rango de 10 años, ya

que tiene costo capital 0.20 \$/Tn, costo operativo de 1.37 \$/Tn, 1.58 \$/Tn de costo promedio,

VAN de \$./347,730.33 y TIR de 18.6 % a diferencia de la flota 2 con un costo capital de 0.90

\$/Tn, costo operativo de 1.33 \$/Tn , 2.23 \$/Tn de costo promedio, VAN de \$/819,817.29 y TIR

de 15%, y de la tercera flota con 0.0 \$/Tn de costo capital debido a que la maquinaria seria

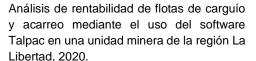
alquilada durante el periodo de los 10 años, costo operativo 1.73 \$/Tn y 1.73 de costo

promedio y un VAN de \$/-1.80.

Se logró determinar que la flota número uno será más rentable para la unidad minera ya que

ayudara a disminuir costos de producción y generara más beneficios económicos.

Palabras clave: Software Talpac, rentabilidad, flotas de carguío y acarreo.

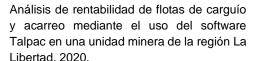

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

Actualmente gran parte de las unidades mineras del mundo no realizan un adecuado análisis de la rentabilidad de las flotas que son usadas en sus procesos, afectando al sistema de adquisición y originando que dichas adquisiciones no lleguen a cumplir con los estándares de rendimiento deseados por las unidades mineras, lo que conlleva a ocasionar retrasos operativos a nivel de producción y generar pérdidas económicas para la empresa. Teniendo en cuenta lo antes mencionado se sabe que en las operaciones mineras tanto superficiales como subterráneas, los rubros que demandan mayor cantidad de inversión son las actividades de carguío y acarreo de material, por ello es de suma importancia basarse en el tiempo de efectividad y costos, siendo la flota la principal variable a considerar en dichas actividades.

En el Perú se encuentran diferentes empresas mineras las cuales se preocupan en abarcar todas las actividades relacionadas con las operaciones de minado, para lograr establecerse como una empresa minera que logre disminuir riesgos en la inversión, los cuales se manifiestan en el flujo de caja, por lo que se toman en cuenta los costos operativos y costos capital para realizar un mejor planeamiento de minado y poder garantizar una buena rentabilidad.

Las condiciones actuales de las mineras ubicadas en la región la Libertad presentan diversidad de dificultades en la adquisición de sus flotas puesto que al analizar la rentabilidad de las flotas no se le da la debida atención en la inversión que se realizara cuando la maquinaria es rentada, y maquinaria propia al trascurrir los años. Con esta investigación se dará una alternativa de solución para un análisis más rápido del tema antes mencionado, con la aplicación del software Talpac en tres flotas que participan en las actividades de carguío y acarreo de material.



Gates y Mamani (2019) demostraron que la mejora continua para la optimización de transporte de minerales se basó en la identificación de las diversas actividades del negocio como: carguío, voladura, chancado entre otros; de estos procesos se eligió el carguío y transporte debido a que generan mayores costos en los procesos de producción, sirviendo para desarrollar una aplicación informática que optimice el proceso de carguío y transporte que permita minimizar los costos en la operación; concluyendo que el software aplicado cumple con la calidad y requerimientos propuestos en las diversas instalaciones.

Vidal (2010) buscó calcular el número de camiones para optimizar el transporte de mineral en una minera tajo abierto de cobre, basándose en la comparación y análisis de los periodos de producción de la mina considerando a los tiempos de ciclo y las distancias como variables para lograr minimizar los tiempos muertos de la maquinaria en los procesos de carguío y acarreo, concluyendo que el modelo establecido podría ser utilizado antes del inicio de la explotación de la mina al igual que el desarrollo de esta logrando así minimizar los costos.

Soto y Tarazona (2016) tuvieron como objetivo aplicar el software Talpac para lograr una simulación del proceso de acarreo y carguío, con el uso de 8 camiones dentro de ellos el Caterpillar 777F con una capacidad de 100 toneladas y 1 pala hidráulica O&K RH 90C, considerando como variables características del equipo utilizado y las características de rutas y los segmentos fijados, concluyendo así que el simulador aporto con un nivel de corrección del 90 %, basándose en la estimación del tiempo del ciclo con el simulador "FPM" usando el factor de corrección es de 0% y con el simulador "FPC" fue de un 11%.

Quispe (2019) en su investigación acerca de mejorar la estimación de los tiempos en el acarreo en el área de planeamiento, realizo la estimación de los tiempos variables,

con la simulación del software se obtuvo una reducción de 7 minutos a 0.6 minutos, con respectos a los tiempos de ida vario a 0.3 minutos y los de vuelta a 0.5 minutos determinando que el software en perfectas condiciones es considerado una buena herramienta, por ello es que se debe considerar la calibración del mismo.

En el estudio elaborado por Zapata (2019) se demostró el beneficio del uso de los camiones Komatsu HD1500-7 respecto a camiones CAT 758C utilizando el software Talpac, se concluyó que para tener un mejor análisis se debe considerar la productividad del camión, también se determinó con el software Talpac que el camión Komatsu es más velos en un 9.9% que el camión CAT pero que puede cambiar de acuerdo a la fabricación de las tolvas.

(Rojas Vigo, 2020) en su tesis "Factibilidad técnica - económica de la aplicación del método de explotación longwall mining para incrementar la producción de carbón antracita en la mina Piñipata - 2019" se basó en determinar la factibilidad técnica económica de la aplicación del método de explotación Longwall Mining para incrementar la producción de carbón antracita en la mina Piñipata, ya que se evidencio en que en sus procesos presentaban falta de asesoramiento técnico y una inadecuada distribución de la construcción de las instalaciones y de maquinaria, lo cual perjudica al ingreso-salida de los trabajadores, por ende la extracción de la antracita; se logró analizar la rentabilidad económica de la aplicación del método Longwall Mining, el cual utilizando una taza de descuento del 14% obtuvo un valor actual neto (VAN) de US\$ 290,441.49, una tasa interna de retorno (TIR) de 78.82% ,un periodo de recuperación de capital de 13.65 meses y una relación beneficio – costo (R B/C) de 2.11.

1.2. Formulación del problema

¿Cuál de las flotas de carguío y acarreo es la más rentable usando el software TALPAC en una unidad minera de la región La Libertad, 2020?

1.3. Objetivos

1.3.1. Objetivo general

Determinar mediante el uso del software TALPAC la flota más rentable de carguío y acarreo en una unidad minera de la región La Libertad, 2020.

1.3.2. Objetivos específicos

- Evaluar el flujo de caja de las flotas de carguío y acarreo de las tres flotas en estudio
- Determinar costos operativos y costos promedio de las tres flotas de carguío y acarreo.

1.4. Hipótesis

1.4.1. Hipótesis general

La flota número 1 es la más rentable evaluando los costos capitales, operativos y promedios, usando el software Talpac para una unidad minera de la región La Libertad, 2020.

1.4.2. Hipótesis específicas

- La flota de alquiler presenta menores costos operativos con respecto a las dos flotas en estudio.
- Los costos operativos y los costos promedios del carguío y acarreo están entre
 1 \$/Tn y 2 \$/Tn respectivamente.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

La investigación es no experimental, descriptiva-longitudinal; es no experimental porque solo se hizo el análisis de rentabilidad sin modificación de variables, evaluando los costos operativos, costos capitales y costos promedios, mediante la aplicación del software Talpac en tres flotas para la planificación de la productividad en el ciclo de carguío y acarreo, así mismo es longitudinal debido a que el análisis de los flujo de caja fueron del año 0 al año 10, y esto facilitará el cálculo de los indicadores de rentabilidad como el VAN y el TIR.

2.2. Población y muestra

2.2.1.Población:

Flotas constituidas por maquinarias de modelos Caterpillar 777F, Caterpillar 5130 E, Komatsu 510 E, Komatsu H285 y Terex RH 90 c, Terex TR 100, dentro de la operación de carguío y acarreo en una unidad minera de la región La libertad,2020.

2.2.2.Muestra

Tres flotas constituidas por maquinarias de modelos Caterpillar 777F, Caterpillar 5130 E, Komatsu 510 E, Komatsu H285 y Terex RH 90 c, Terex TR 100, dentro de la operación de carguío y acarreo en una unidad minera de la región La libertad,2020.

2.3. Técnicas e instrumentos de recolección y análisis de datos

2.3.1. Técnicas e instrumentos de recolección de datos

Las técnicas que se usaron fueron:

 Análisis documental: Se recolectó información de datos de operación de carguío y acarreo de mineral estéril en minería a tajo abierto.

- Revisión de fichas técnicas de la maquinaria considerada en las flotas.
- Plantilla Excel para ingresar datos.

2.3.2. Técnicas e instrumentos de análisis de datos

- Para analizar la producción de las flotas en el carguío y acarreo, se utilizó el software Talpac, así mismo para el análisis de datos y el orden se utilizó el programa Microsoft Excel.
- Para analizar la rentabilidad de las flotas de carguío y acarreo a partir de un indicador financiero y de rentabilidad (VAN y TIR) se utilizó el programa
 Excel, teniendo en cuenta los cálculos financieros y una tasa de descuento del 14%.

2.4. Procedimiento

En primer lugar, se estableció la maquinaria asignada a cada flota siendo las siguientes

- Flota 1: Fue en base a la flota utilizada en una unidad minera de la región la Libertad, constituida por un cargador Terex (O&K) RH90-C y un camión Caterpillar 777F.
- Flota 2: Fue en base a una flota de mayor capacidad que la flota 1, constituida por un cargador Komatsu H 285 S y un camión Komatsu (Haulack) 510 E
- Flota 3: Fue en base a una flota similar a la flota 1, con la diferencia que esta será con maquinaria rentada y no comprada constituida por un cargador Caterpillar 5130B y un camión Terex TR 100.

Luego se hizo la data en el Excel en base a la información de ciclos de ruta, cantidad de material, sistemas de turnos, velocidades y especificaciones técnicas de la maquinaria; los cuales se muestran a continuación:

Tabla 1

Datos de mineral estéril

Mineral estéril				
Tipo		Valor	Unidad	
Densidad In-Situ		2.59	Tn/m³	
Densidad In-Situ Factor de esponjamiento	Cargador	30%	30%	
Factor de esponjamiento	Balde	35%	35%	
Cociente del producto		1	1	
Calidad de Voladura		Media	Media	

Fuente: Unidad minera de la región La Libertad.

2.4.1. Sistema de turno

Se operó en dos turnos por día, de lunes a viernes, los sábados se asumió un turno y el domingo no se trabajó y se consideró veinte turnos perdidos al año debido a huelgas y diez turnos perdidos por condiciones de clima (cada turno es de diez horas).

Tabla 2 *Sistema de turnos*

Sistema de Turno					
Ti	ро	Valor	Unidad		
	Domingo	1	Día		
	Lunes	2	Día		
	Martes	2	Día		
Turnos	Miércoles	2	Día		
	Jueves	2	Día		
	Viernes	2	Día		
	Sábado	2	Día		
Turras Dandidas	Programados	6	Turnos		
Turnos Perdidos	No Programados	20	Turnos		
Horas de Trabajo	Turnos	10	Horas		

Fuente: Unidad minera de la región La Libertad.

En la Tabla 2 se muestra los días trabajados, turnos (valor) perdidos y programados.

Este sistema de turnos se ingresó al programa como se muestra en la Figura 2.

2.4.2. Ciclo de rutas

Para este módulo se tomó en consideración la ruta tomada desde un tajo hacia el botadero, la ruta se resumió en un total de 24 segmentos lineales.

2.4.3. Velocidades

Las velocidades máximas y finales se especifican en la tabla número 3y 4.

Tabla 3
Parámetros de velocidad en segmentos de ida

Tipo	Tramo	V. Max km/h	Vel. Final Km/h
	Tramo 1	14	14
	Tramo 2	14	11
	Tramo 3	11	13
	Tramo 4	13	15
	Tramo 5	15	17
	Tramo 6	17	11
	Tramo 7	11	17
	Tramo 8	17	20
	Tramo 9	20	19
	Tramo 10	19	15
	Tramo 11	15	17
l al a	Tramo 12	17	18
Ida	Tramo 13	18	20
	Tramo 14	20	14
	Tramo 15	14	14
	Tramo 16	14	23
	Tramo 17	23	44
	Tramo 18	44	32
	Tramo 19	32	43
	Tramo 20	43	39
	Tramo 21	39	30
	Tramo 22	30	17
	Tramo 23	17	9
	Tramo 24	9	0

Fuente: Unidad minera de la región La Libertad.

Tabla 4 Parámetros de velocidad en segmentos de ida

Tipo	Tramo	V. Max km/h	Vel. Final Km/h
	Tramo 1	13	13
	Tramo 2	13	22
	Tramo 3	22	34
	Tramo 4	34	40
	Tramo 5	40	45
	Tramo 6	45	29
	Tramo 7	29	26
	Tramo 8	26	44
	Tramo 9	44	25
	Tramo 10	25	23
	Tramo 11	23	29
Vuelta	Tramo 12	29	19
vueita	Tramo 13	19	25
	Tramo 14	25	16
	Tramo 15	16	23
	Tramo 16	23	24
	Tramo 17	24	18
	Tramo 18	18	20
	Tramo 19	20	21
	Tramo 20	21	21
	Tramo 21	21	16
	Tramo 22	16	16
	Tramo 23	16	14
	Tramo 24	14	0

Fuente: Unidad minera de la región La Libertad.

Se observa las velocidades de recorrido en los veinticuatro segmentos.

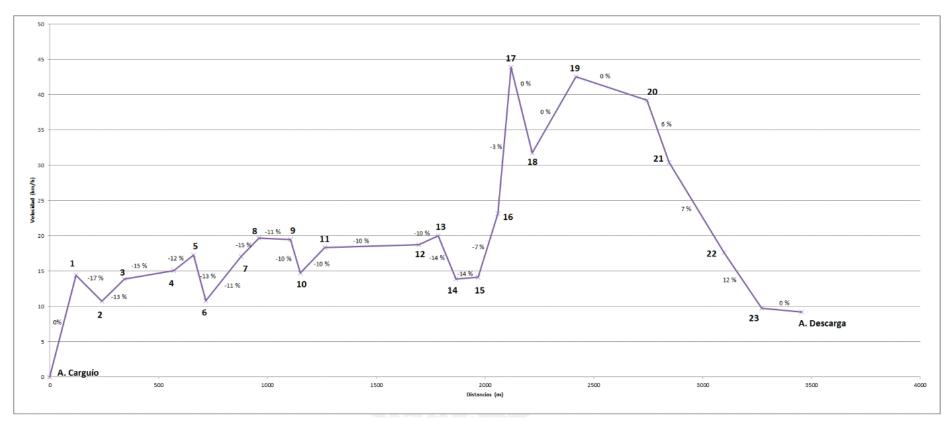


Figura 1. Segmentos de carguío y descarga -velocidades, pendiente y distancia de vuelta.

Fuente: Soto Vilca & Tarazona Yábar, 2016

Se observa las velocidades de recorrido en los veinticuatro segmentos.

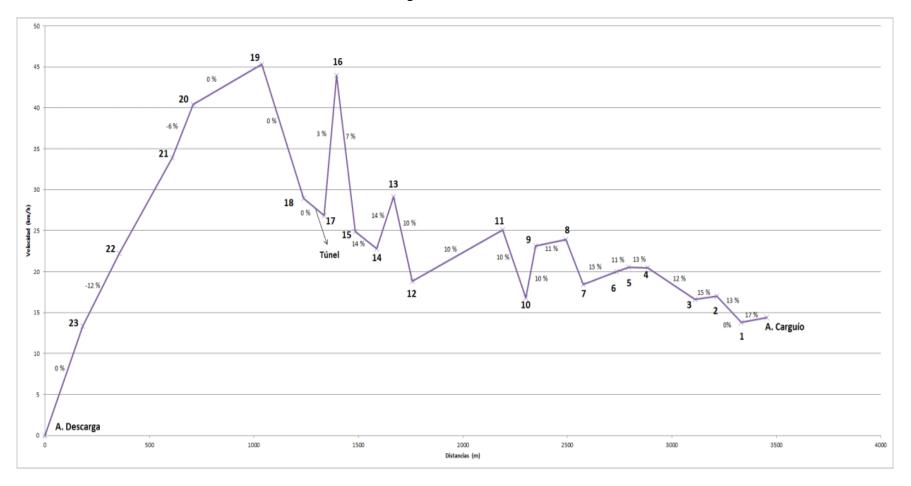


Figura 2. Segmentos de carguío y descarga -velocidades, pendiente y distancia de vuelta.

Fuente: Soto Vilca & Tarazona Yábar, 2016

2.4.4. Maquinaria

A continuación, se muestra los parámetros de cada flota constituidas por pala / cargador.

2.4.4.1. Flota 01

Tabla 5

Parámetros de pala de la flota 1

	Pala			
	Tipo	Valo	or	Unidad
Terex RH 90C		10		m^3
Tiempo de ciclo		43		Segundos
Disponibilidad		90		%
Retraso		12		Segundos
	Capital	12000	000	\$
Vida	Rescate	20		%
v iua	Operación	7		año
	Depreciación	15		%
Costos	Labor	11.0)1	\$
Costos	Mantenimiento	45		\$
Lubrica		ricante	3.79	\$
	Neu	mático	11.01	\$
	Pa	artes	10	\$
	Ga	solina	25.26	\$

Fuente: Unidad minera de la región La Libertad.

Figura 3.Pala Terex RH 90 – C.

Fuente: Maquinarias pesadas, 2013

2.4.4.2. Flota 02

Tabla 6 Parámetros de pala de la flota 2

		Pala	
Ti	ipo	Valor	Unidad
KOMATSU	J H 285 S	10	m^3
Tiempo de	ciclo	40	Segundos
Disponibili	dad	90	%
Retraso		12	Segundos
Costo	Total	222.73	Hora

Fuente: Unidad minera de la región La Libertad.

Se observa en la Tabla 5 los datos de la pala Komatsu H 285 S perteneciente a la flota dos.

Figura 4.Pala Komatsu H 285.

Fuente: Obraplaza, 2020

2.4.4.3. Flota 03

Tabla 7 Parámetros de pala de la flota 3

Pala				
	Tipo	Valor	Unidad	
CATERPIL	LAR 5130 B	10.5	m3	
Tiempo de c	riclo	43	Segundos	
Disponibilid	lad	85	%	
Retraso		12	Segundos	
	Alquiler	9.26	\$	
	Labor	54.76	\$	
	Mantenimiento	19.52	\$	
Costos	Lubricante	3.79	\$	
	Neumático	11.01	\$	
	Partes	45	\$	
	Gasolina	25.26	\$	

Fuente: Unidad minera de la región La Libertad.

Figura 5.Pala Caterpillar 5130 B.

Fuente: Caterpillar, 1997

2.4.4.4. Flota 01 / Camión

Tabla 8
Parámetros de camión de la flota 1

	Camió	on .		
	Tipo	Valor	Unidad	
Caterpillar 777	F	90.32	Tn	
Tiempo en carg	gador	60	Segundos	
Tiempo de vac	iado	27	7 Segundos	
Descarga		30	Segundos	
Disponibilidad		83	%	
	Capital	850000	\$	
V. J.	Rescate	10	%	
Vida	Operación	6	año	
	Depreciación	10	%	
	Labor	46.37	\$	
	Mantenimiento	18.24	\$	
C 4	Lubricante	2.59	\$	
Costos	Neumático	10.91	\$	
	Partes	10	\$	
	Gasolina	17.24	\$	

Fuente: Unidad minera de la región La Libertad.

Figura 6.Caterpillar 777F.

Fuente: Caterpillar, 2007

2.4.4.5. Flota 02 / Camión

Tabla 9
Parámetros de camión de la flota 2

		Camión	
Tip	0	Valor	Unidad
KOMATSU:	510 E	90.32	Toneladas
Tiempo en ca	ırgador	90	Segundos
Tiempo de vaciado		40	Segundos
Descarga		45	Segundos
Disponibilida	ıd	85	%
Costo	Total	163.5	\$

Fuente: Unidad minera de la región La Libertad.

Figura 7.KOMATSU 510 E.

Fuente: Brescia, 2011

2.4.4.6. Flota 03/ camión

Tabla 10 Parámetros de camión de la flota 3

	Cami	ón				
	Tipo	Valor	Unidad			
TEREX T	R 100	90.72	Toneladas			
Tiempo en	cargador	24	Segundos			
Tiempo de	vaciado	18	Segundos			
Descarga		12	Segundos			
Disponibil	idad	83	%			
Costo	Horario Total	150	\$			

Fuente: Unidad minera de la región La Libertad.

Figura 8.TEREX TR 100.

Fuente: TEREX, 2014

Luego, para el procedimiento de análisis de resultados se ingresó los datos de las flotas del Excel al software Talpac

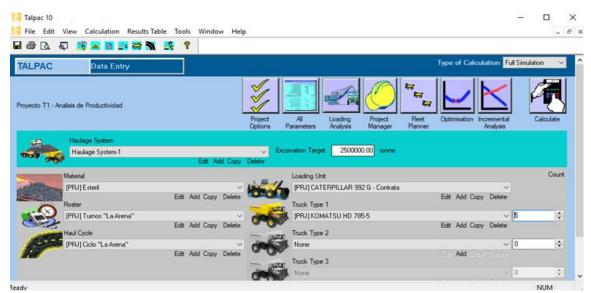


Figura 9. Cuadro de introducción del software Talpac (llenado de datos).

Fuente: Software Talpac.

Tal como se observa en la Figura 1, se insertó los datos y el tipo de maquinaria a usar. La información es de la mina de la región Libertad con se observa en la Tabla 1.

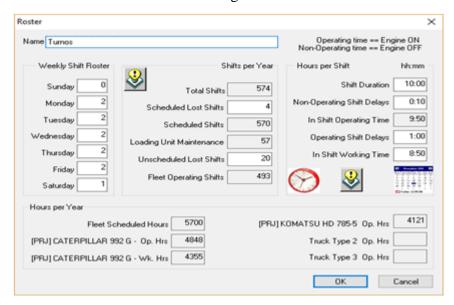


Figura 10. Variables de sistema de turnos.

Finalmente teniendo en cuenta los resultados obtenidos por el software Talpac (cálculos financieros) y utilizando un 14% de tasa de descuento se procedió a calcular los indicadores de rentabilidad VAN y TIR.

CAPÍTULO III. RESULTADOS

Se analizaron los resultados de la comparación obtenidos de las tres flotas, basándose en el análisis de 10 años, viendo usado: tiempos de carguío, tiempos de acarreo, costos de alquiler de maquinaria o en algunos casos compra de maquinaria; todos estos insertados en el programa Talpac.

- En la primera flota (Tabla 10) se observa el coste de compra de la maquinaria y su
 respectiva depreciación donde en el año 8 el software supone que debe de haber otra
 compra, tanto para el equipo de carguío como de acarreo.
 - Teniendo un costo capital de 0.20 \$/Tn, un costo operativo de 1.37 \$/Tn y un costo promedio de 1.58 \$/Tn.
- En la segunda flota (Tabla 11) se observa el coste de compra de la maquinaria y su respectiva depreciación donde en el año 8 el software supone que debe haber otra compra, tanto para el equipo de carguío como de acarreo.
 - Teniendo un costo capital de 0.90 \$/Tn, un costo operativo de 1.33 \$/Tn y un costo promedio de 2.33 \$/Tn.
- En la tercera flota (Tabla 12) se observa que en esta flota no cuenta con costo capital pues la maquinaria es alquilada, durante los 10 años, tiene un costo operativo de 1.73 \$/Tn y un costo promedio de 1.73 \$/Tn.

A continuación, se mostrará tres tablas de análisis de flujos de las tres flotas

Tabla 11
Análisis de flujo de efectivo de los 10 años de utilización de los camiones analizando costos de operaciones en la flota 1

			Análisis d	e flujo de e	fectivo						
Costo de Capital / Alquiler	año 0	año 1	año 2	año 3	año 4	año 5	año 6	año 7	año 8	año 9	año 10
Nuevo cargador :: [PRJ] TEREX (O&K) RH 90 C				1,200,000		1,200,000					
- Contrata											
valor de intercambio		120,000									
Valor por depreciación		1,200,000	1,020,000	840,000	660,000	480,000	300,000	120,000	1,200,000	1,020,000	840,000
Depreciación reclamable		180,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000
Camión nuevo: [PRJ] CATERPILLAR 777 F Contrata			765,0	00					765,000		
valor de intercambio							76,500				
Valor por depreciación		765,000	688,500	612,000	535,500	459,000	382,500	306,000	765,000	688,500	612,000
Depreciación reclamable		76,500	76,500	76,500	76,500	76,500	76,500	76,500	76,500	76,500	76,500
		, 0,000	,	s de operació	,	, 0,2 00	, 0,200	, 0,200	, 0,200	, 0,2 00	, 0,5 00
Cargador: [PRJ] TEREX (O&K) RH 90 C - Contrata		518,933	518,933	518,933	518,933	518,933	518,933	518,933	518,933	518,933	518,933
Camión: [PRJ] CATERPILLAR 777 F Contrata		3,723,050	3,723,050	3,723,050	3,723,050	3,723,050	3,723,050	3,723,050	3,723,050	3,723,050	3,723,050
Costo operativo total		4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983
Cálculos financieros		[Producción anual de la flota: 3085944 toneladas]									1,2 12,5 00
Ingresos @1.58 \$/tn		4,869,893	4,869,893	4,869,893	4,869,893	4,869,893	4,869,893	4,869,893	4,869,893	4,869,893	4,869,893
MENOS costo operativo		4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983	4,241,983
Excedente neto de operación		627,910	627,910	627,910	627,910	627,910	627,910	627,910	627,910	627,910	627,910
Menos depreciación		256,500	256,500	256,500	256,500	256,500	562,500	196,500	256,500	256,500	256,500
Ganancias por impuestos		371,410	371,410	371,410	371,410	371,410	141,910	551,410	371,410	371,410	1,490,410
MENOS impuestos por pagar @36.0%		133,708	133,708	133,708	133,708	133,708	51,088	198,508	133,708	133,708	536,548
Flujo de efectivo neto	-1,965,000	494,202	494,202	494,202	494,202	494,202	111,678	650,598	-494,202	494,202	1,210,362
Factor de descuento @15.0% ROI	1.00	0.87	0.76	0.66	0.57	0.50	0.43	0.38	0.33	0.28	0.25
Flujo de caja descontado	-1,965,000	429,741	373,688	324,946	282,562	245,706	-48,281	-244,584	161,556	140,483	299,183
Costo de capital	0.20										
Costo operativo	1.37					\$/	tn				
Costo promedio	1.58					\$/	tn				

Tabla 12 Análisis de flujos de efectivo de los 10 años de utilización de los camiones, analizando costos de operación en la flota 2

			An	álisis de flujo	de efectivo						
Costo de Capital / Alquiler	año 0	año 1	año 2	año 3	año 4	año 5	año 6	año 7	año 8	año 9	año 10
Nuevo cargador :: [PRJ] KOMATSU (DEMAG) H 285 S - F Grande				2,000	,000				2,000,000		
Valor de intercambio					200,000						
Valor por depreciación		2,000,000	1,750,000	1,500,000	1,250,000	1,000,000	750,000	500,000	2,000,000	1,750,000	1,500,000
Depreciación reclamable		250,000	250,000	250,000	250,000	250,000	250,000	250,000	250,000	250,000	250,000
Camión nuevo: [PRJ] KOMATSU (HAULPAK) 510 E - F Grande				20,800	0,000				20,800,000		
Valor de intercambio					2,080,000						
Valor por depreciación		20,800,000	18,460,000	16,120,000	13,780,000	11,440,000	9,100,000	6,760,000	20,800,000	18,460,000	16,120,000
Depreciación reclamable		2,340,000	2,340,000	2,340,000	2,340,000	2,340,000	2,340,000	2,340,000	2,340,000	2,340,000	2,340,000
				Costos de op	eración						
Cargador: [PRJ] KOMATSU (DEMAG) H 285 S - F Grande		929,564	929,564	929,564	929,564	929,564	929,564	929,564	929,564	929,564	929,564
Camión: [PRJ] KOMATSU (HAULPAK) 510 E - F Grande		9,280,195	9,280,195	9,280,195	9,280,195	9,280,195	9,280,195	9,280,195	9,280,195	9,280,195	9,280,195
Costo operativo total		10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758
Cálculos financieros				[Pr	oducción anu	al de la flota:	7677045 tone	eladas]			
Ingresos @2.23 \$/tn		17,089,103	17,089,103	17,089,103	17,089,103	17,089,103	17,089,103	17,089,103	17,089,103	17,089,103	17,089,103
MENOS costo operativo		10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758	10,209,758
Excedente neto de operación		6,879,345	6,879,345	6,879,345	6,879,345	6,879,345	6,879,345	6,879,345	6,879,345	6,879,345	6,879,345
Menos depreciación		2,590,000	2,590,000	2,590,000	2,590,000	2,590,000	2,590,000	2,590,000	2,590,000	4,670,000	2,590,000
Ganancias por impuestos		4,289,345	4,289,345	4,289,345	4,289,345	4,289,345	4,289,345	4,289,345	6,569,345	2,209,345	21,909,345
MENOS impuestos por pagar @36.0%		1,544,164	1,544,164	1,544,164	1,544,164	1,544,164	1,544,164	1,544,164	2,364,964	795,364	7,887,364
Flujo de efectivo neto	-22,800,000	5,335,181	5,335,181	5,335,181	5,335,181	5,335,181	5,335,181	5,335,181	-16,005,619	6,083,981	16,611,981
Factor de descuento @15.0% ROI	1.00	0.87	0.76	0.66	0.57	0.50	0.43	0.38	0.33	0.28	0.25
Flujo de caja descontado	-22,800,000	4,639,287	4,034,163	3,507,968	3,050,407	2,652,528	2,306,546	2,005,692	-5,232,265	1,729,447	4,106,228
Costo de capital	0.90						\$/tn				
Costo operativo	1.33						\$/tn				
Costo promedio	2.23						\$/tn				

Tabla 13
Análisis de flujos de efectivo de los diez años de utilización de los camiones analizando costos de operación de la flota 3

			Análisis de fl	lujo de efectiv	70							
Costo de Capital / Alquiler	año 0	año 1	año 2	año 3	año 4	año 5	año 6	año 7	año 8	año 9	año 10	
Alquiler: Cargador :: [PRJ] CATERPILLAR 5130 B ME Alquiler		36,443	36,443	36,443	36,443	36,443	36,443	36,443	36,443	36,443	36,443	
Alquiler de Camiones: [PRJ] TEREX TR 100 Alquiler		35	35	35	35	35	35	35	35	35	35	
			Costos de	e operación								
Cargador: [PRJ] CATERPILLAR 5130 B ME Alquiler	663,5	25	663,525	663,525	663,525	663,525	663,525	663,525	663,525	663,525	663,525	
Camión: [PRJ] TEREX TR 100 Alquiler	5,312,925		5,312,925	5,312,925	5,312,925	5,312,925	5,312,925	5,312,925	5,312,925	5,312,925	5,312,925	
Costo operativo total	5,976,	450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	
Cálculos financieros	[Producción anual de la flota: 3452265 toneladas]											
Ingresos @1.73 \$/toneladas		5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	
MENOS costo operativo		5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	5,976,450	
Excedente neto de operación		0	0	0	0	0	0	0	0	0	0	
Menos depreciación		0	0	0	0	0	0	0	0	0	0	
Ganancias por impuestos		0	-1	-1	-1	-2	-2	-2	-3	-3	-3	
MENOS impuestos por pagar @36.0%		0	0	0	0	0	0	0	0	0	0	
Flujo de efectivo neto	0	0	0	0	0	0	0	0	0	0	0	
Factor de descuento @15.0% ROI	1.00	0.87	0.76	0.66	0.57	0.50	0.43	0.38	0.33	0.28	0.25	
Flujo de caja descontado	0	0	0	0	0	0	0	0	0	0	0	
Costo de capital	0.00					\$/tn						
Costo operativo	1.73					\$/tn						
Costo promedio	1.73					\$/tn						

Tabla 14 Producción de carguío, acarreo y tiempos de operación.

			Produc	ción				
Tip	00]	F1]	F2	F3		
Carguío	Horario	751.24	Tn	1,848.11	Tn	783.30	Tn	
	Turno	6,386	Tn	15,709	Tn	6,658	Tn	
	Semanal	60,932	Tn	149,895	Tn	59,909	Tn	
Acarreo	Ciclo	33.44	min/ciclo	33.14	min/ciclo	30.79	min/ciclo	
	Cantidad	9	unidades	5	unidades	11	unidades	
Estimación	Producción	60,104	Tn/semana	150,018	Tn/semana	67,168	Tn/semana	
de remoción	Días	295	Tn	118.39	Tn	296.21	Tn	
de material	Turnos	245	Promedio	240	Promedio	0.00	Promedio	
	Costo	3,943,765	\$	5,539,002	\$	3,889,291	\$	

Fuente: Software Talpac

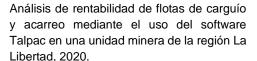
Tabla 15 Flujo de caja

FLUJO DE CAJA							
Tipo	F1			F2	F3		
Costo Capital	0.20		0.90		0.00		
Costo Operario	1.37	\$/Tn	1.33	\$/Tn	1.73	\$/Tn	
Promedio	1.58		2.23		1.73		

Fuente: Software Talpac

Tabla 16 Tiempo de recorrido de las tres flotas

RECORRIDO								
Tipo	F1		F2		F3			
Tiempo	33.52	min	36	min	30.79	min		



CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1. Discusión

Los resultados obtenidos en el presente estudio muestran el análisis de rentabilidad que resulta al aplicar el software Talpac en los tres tipos de flotas; los costos operativos, costos capital y costos promedio, varían por la compra y alquiler de la maquinaria en el periodo de 10 años, por tal motivo el costo de flujo de caja de la flota número uno es de 1.58 \$/Tn, de la flota número dos es de 2.23 \$/Tn y de la flota tres es de 1.73 \$/Tn; con esto se puede evidenciar que la adquisición de la flota uno, es la más eficiente para la productividad en carguío y acarreo en minería, puesto que utiliza un equipo adecuado para minimizar costos y obtener más producción en menos tiempo, teniendo así un flujo de caja positivo en comparación a las otras dos flotas. Nuestros resultados corroboran en relación con la investigación de Vidal (2010), el cual buscó calcular el número de camiones para optimizar el transporte de mineral en una minera tajo abierto de cobre, basándose en la comparación y análisis de los periodos de producción de la mina considerando a los tiempos de ciclo y las distancias como variables para lograr minimizar los tiempos muertos de la maquinaria en los procesos de carguío y acarreo. Así mismo corroboramos con la investigación de Gates y Mamani (2019), quienes mencionan que el carguío es una actividad fundamental, en la cual se utiliza la maquinaria pesada para cargar el material en los camiones, por ello es de suma importancia basarse en el tiempo de efectividad y costos. También se evidencia con Quispe (2019), en su investigación acerca de mejorar la estimación de los tiempos en el acarreo en el área de planeamiento, en el cual se realizó la estimación de los tiempos variables con la simulación del software Talpac, se obtuvo una reducción.

Por otro lado, teniendo una taza de descuento del 14 % ,el VAN de la flota 1 es de \$/347,730.33, de la flota 2 es de \$/819,817.29 y de la flota 3 es de \$/-1.80 respectivamente; y el TIR de la flota 1 es 18,6% y de la flota 2 es de 15 %, en el caso

de la flota 3 no se establece valor ya que es una flota de alquiler, así mismo cuenta con un VAN negativo el cual hace referencia a la no rentabilidad de la flota; al analizar los datos se evidencia que en el caso de la flota número 1 el TIR tiene un porcentaje más alto, el cual indica que la rentabilidad del dinero invertido será mayor en otras palabras que la inversión adquirirá un interés más alto; Rojas (2020) en su tesis aporta con nuestro estudio al establecer que la factibilidad técnica económica se basa en el análisis del VAN y TIR utilizando una tasa de descuento de 14% en los cuales se obtuvo \$ 290,441.49 y 78.82% respectivamente, la cual indica la rentabilidad.

4.2. Conclusiones

Para lograr analizar la rentabilidad de las flotas de carguío y acarreo, se calculó los costos operativos, costos promedio, VAN y TIR de las tres flotas; la flota número uno su costo operativo fue de 1.37 \$/Tn, su costo promedio de 1.58 \$/Tn, VAN de \$./347,730.33 y TIR de 18.6 %; la flota número dos con un costo operativo de 1.33 \$/Tn, un costo Promedio de 2.23 \$/Tn, VAN de \$/819,817.29 y TIR de 15%; la flota número tres con un costo operativo de 1.73 \$/Tn, un costo promedio de 1.73 \$/Tn y VAN de \$/1.80. Se concluye que las dos primeras flotas cuentan con un costo capital, ya que son flotas que serán compradas a futuro si es que esto es conveniente para que sean rentables en las operaciones, y la tercera no cuenta con un costo capital por que se asume que será maquinaria alquilada.

Según los resultados obtenidos, teniendo en cuenta los ciclos de sistema de turnos, ciclos de rutas, velocidades, maquinaria con la finalidad de obtener el flujo de caja de las tres flotas y a la vez nuestros indicadores de rentabilidad, se determinó que la flota número uno sería la más rentable, puesto que con esta los costos de producción no serán elevados y generara más beneficios económicos para la unidad minera incrementando el interés de las ganancias.

REFERENCIAS

- [Fotografia de Brescia, R.] (30 de Diciembre de 2011). *Haulpak Dresser 510E*. Obtenido de Flickr: https://www.flickr.com/photos/raphaelbrescia/6599362687/in/photostream/
- Caterpillar. (1997). 5130B Hydraulic Shovel. Obtenido de kellytractor: sohttps://www.kellytractor.com/eng/images/pdf/earthmoving/front_shovels/5130b.pdf
- Caterpillar. (2007). *Camión de obras 777 F*. Obtenido de Slideshare: https://es.slideshare.net/oro5cocatt/catalogo-de-camion-minero-777-f-espaol-wwworoscocattcom
- Gates Fernández, R. G., & Mamani Quispe, R. M. (12 de Febrero de 2019). *Optimización del proceso de carguío de minerales en mina de tajo abierto*. Obtenido de Repositorio académico UPC: https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/625265/RonaldGates_RosaMamani_Final.pdf?sequence=1&isAllowed=y%20)
- Maquinarias pesadas. (03 de Octubre de 2013). Capacitación en operación de excavadora O&K RH90-C TEREX. Obtenido de maquinariaspesadas.org: https://www.maquinariaspesadas.org/blog/901-curso-operacion-excavadora-hidraulica-rh90c-terex
- Obraplaza. (16 de Junio de 2020). *Ficha técnica Pala Komatsu H285S*. Obtenido de Obraplaza.com: https://www.obraplaza.com.mx/pdf/datasheet.php?id=2309
- Quispe Pérez, K. (2019). Calibración del software Talpac 10.2 para la estimación de tiempos variables de acarreo en el área de planeamiento de la Cia Minera Antapaccay. Obtenido de Universidad nacional del centro del Perú:

 http://repositorio.uncp.edu.pe/bitstream/handle/UNCP/5322/T010_48208319_T..pdf?sequence=1
- Rojas Vigo, W. E. (13 de Febrero de 2020). Factibilidad técnica económica de la aplicación del método de explotación Longwall Mining para incrementar la producción de carbón antracita en la mina Piñipata 2019. Obtenido de Repositorio Universidad Privada del Norte: https://repositorio.upn.edu.pe/handle/11537/23862
- Soto Vilca, C. Y., & Tarazona Yábar, N. (Junio de 2016). *Diseño, validación e implementación de una aplicación de acarreo en minería superficial*. Lima, Perú. Obtenido de Pontificia Universidad católica del Perú.
- TEREX. (Diciembre de 2014). *Dúmper rígido TR 100*. Obtenido de Vialfe: https://www.vialfe.com.ar/pdf/equipos/camiones-rigidos-terex-tr100.pdf
- Vidal Loli, M. A. (Agosto de 2010). Estudio de cálculo de flotas de camiones para una operación mínera a cielo abierto . Obtenido de Pontificia Universidad Católica del Perú:

 http://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/534/VIDAL_LOLI_MANUEL_CALCULO_CAMIONES_OPERACION_MINERA.pdf?sequence=1&isAllowed=y
- Zapata Velásquez, R. T. (2019). Análisis comparativo del uso de camiones de acarreo Komatsu modelo HD 1500-7 respecto a camiones CAT modelo 758C utilizando el software Talpac en la operación Shougang Hierro Perú. Obtenido de Repositorio académico UPC: https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/624519/Zapata_VR.pdf?sequence= 1&isAllowed=y

ANEXOS

$\label{eq:control} Anexo~n^\circ~1$ Resultados completos de simulación (Flota 1)

Tabla 17 Resultados completos de simulación de la flota 1

		Material:		[PRJ]	Estéril					Sistema de transporte:		Sistem	a de transporte	e-1			
		Lista:		[PRJ] Turno	os					Ciclo de acarreo:		[PRJ] C	iclo				
					Laminación	Curva			Segmento	Ciclo	Max	Final	Velocidad	Promedio	Elevación	Combustible	% Debe
	Tipo	Título del segmento	Distancia	Grado	Resistir.	Ángulo	Estructura de tierra.	Carga	Tiempo	Tiempo	Vel.	Vel.	Limite.	Velocidad	Cambio	Uso	Ciclo
			metros	%	%	Grados		%	min	%	km/h	km/h		km/h	metros	litro/OpHr	%
[PRJ] CATERPIL 777 F Contrata	LAR																
Cola		Cola de Trabajo	Auto	Minutos					0.00	0.00						0.0	
Lugar		Lugar de carga	Auto	Minutos					1.00	3.42						0.0	
Carga		Carga	Auto	Minutos					2.79	9.55						0.0	
1		1	120	0.0	3.0	0.0	Clase 0.4	Completo	0.60	2.05	14.0	10.4	Max.	12.0	0.0	0.0	32.5
2		2	119	-17.0	3.0	0.0	Clase 0.4	Completo	0.69	2.35	10.4	10.4	Max Acel.	10.4	-20.2	0.0	0.0
3		3	104	-13.0	3.0	0.0	Clase 0.4	Completo	0.57	1.94	11.0	11.0	Max.	11.0	-13.5	0.0	1.3
1		4	226	-15.0	3.0	0.0	Clase 0.4	Completo	1.04	3.57	13.0	13.0	Max.	13.0	-33.9	0.0	1.1
5		5	91	-12.0	3.0	0.0	Clase 0.4	Completo	0.37	1.25	15.0	13.9	Max.	14.9	-10.9	0.0	3.0
5		6	57	-13.0	3.0	0.0	Clase 0.4	Completo	0.25	0.86	13.9	11.0	Final.	13.7	-7.4	0.0	0.0
1		7	161	-11.0	3.0	0.0	Clase 0.4	Completo	0.88	3.00	11.0	11.0	Max.	11.0	-17.7	0.0	0.0
3		8	82	-15.0	3.0	0.0	Clase 0.4	Completo	0.36	1.22	13.9	13.9	Max. Acel.	13.8	-12.3	0.0	2.9
9		9	146	-11.0	3.0	0.0	Clase 0.4	Completo	0.47	1.61	18.9	18.9	Final.	18.6	-16.1	0.0	2.3
10		10	45	-10.0	3.0	0.0	Clase 0.4	Completo	0.15	0.51	19.0	15.0	Final.	18.1	-4.5	0.0	0.7

11	11	112	-10.0	3.0	0.0	Clase 0.4	Completo	0.45	1.53	15.0	15.0	Max.	15.0	-11.2	0.0	0.0
12	12	433	-10.0	3.0	0.0	Clase 0.4	Completo	1.53	5.22	17.0	17.0	Max.	17.0	-43.3	0.0	0.7
13	13	89	-10.0	3.0	0.0	Clase 0.4	Completo	0.30	1.04	18.0	13.9	Max.	17.5	-8.9	0.0	3.7
14	14	81	-14.0	3.0	0.0	Clase 0.4	Completo	0.35	1.19	13.9	13.9	Final	13.9	-11.3	0.0	0.0
15	15	102	-14.0	3.0	0.0	Clase 0.4	Completo	0.44	1.50	13.9	13.9	Final.	13.9	-14.3	0.0	0.0
16	16	90	-7.0	3.0	0.0	Clase 0.4	Completo	0.39	1.32	14.0	14.0	Max.	14.0	-6.3	0.0	0.0
17	17	61	-3.0	3.0	0.0	Clase 0.4	Completo	0.18	0.61	23.0	23.0	Max.	20.5	-1.8	0.0	34.0
18	18	97	0.0	3.0	0.0	Clase 0.4	Completo	0.21	0.72	31.4	31.4	Fuerza de empuje	27.7	0.0	0.0	100.0
19	19	201	0.0	3.0	0.0	Clase 0.4	Completo	0.38	1.29	32.0	32.0	Max.	32.0	0.0	0.0	74.2
20	20	327	0.0	3.0	0.0	Clase 0.4	Completo	0.54	1.84	39.6	39.0	Final.	36.5	0.0	0.0	96.9
21	21	101	6.0	3.0	0.0	Clase 0.4	Completo	0.21	0.73	39.0	19.8	Max.	28.2	6.1	0.0	100.0
22	22	254	7.0	3.0	0.0	Clase 0.4	Completo	1.14	3.88	19.8	13.0		13.4	17.8	0.0	100.0
23	23	173	12.0	3.0	0.0	Clase 0.4	Completo	1.15	3.92	13.0	9.0	Final.	9.0	20.8	0.0	100.0
24	24	182	0.0	3.0	0.0	Clase 0.4	Completo	1.29	4.40	9.0	0.0	Final.	8.5	0.0	0.0	17.8
Lugar	Tiempo puntual al volcado	Auto	Minutos					0.45	1.54						0.0	
Dejar	Vertido	Auto	Minutos					0.50	1.72						0.0	
25	24 (rev.)	182	0.0	3.0	0.0	Clase 0.4	Vacío	0.91	3.12	13.0	13.0	Final.	12.0	0.0	0.0	14.6
26	23 (rev.)	173	-12.0	3.0	0.0	Clase 0.4	Vacío	0.80	2.73	13.0	13.0	Max.	13.0	-20.8	0.0	0.0
27	22 (rev.)	254	-7.0	3.0	0.0	Clase 0.4	Vacío	0.71	2.44	22.0	22.0	Max.	21.4	-17.8	0.0	0.2
28	21 (rev.)	101	-6.0	3.0	0.0	Clase 0.4	Vacío	0.20	0.69	34.0	34.0	Max.	30.1	-6.1	0.0	8.1
29	20 (rev.)	327	0.0	3.0	0.0	Clase 0.4	Vacío	0.50	1.69	40.0	40.0	Max.	39.6	0.0	0.0	47.4
30	19 (rev.)	201	0.0	3.0	0.0	Clase 0.4	Vacío	0.30	1.03	45.0	29.0	Final.	39.9	0.0	0.0	30.4
31	18 (rev.)	97	0.0	3.0	0.0	Clase 0.4	Vacío	0.20	0.69	29.0	26.0	Final.	28.8	0.0	0.0	24.5
32	17 (rev.)	61	3.0	3.0	0.0	Clase 0.4	Vacío	0.14	0.48	26.0	26.0	Max.	26.0	1.8	0.0	54.3
33	16 (rev.)	90	7.0	3.0	0.0	Clase 0.4	Vacío	0.20	0.67	28.6	25.0	Final.	27.4	6.3	0.0	77.4
34	15 (rev.)	102	14.0	3.0	0.0	Clase 0.4	Vacío	0.33	1.14	25.0	17.3	Max.	18.4	14.3	0.0	100.0
35	14 (rev.)	81	14.0	3.0	0.0	Clase 0.4	Vacío	0.28	0.96	17.3	17.3	Fuerza de empuje	17.3	11.3	0.0	100.0
36	13 (rev.)	89	10.0	3.0	0.0	Clase 0.4	Vacío	0.25	0.86	22.8	19.0	Final.	21.1	8.9	0.0	83.5
37	12 (rev.)	433	10.0	3.0	0.0	Clase 0.4	Vacío	1.37	4.67	19.0	19.0	Max.	19.0	43.3	0.0	86.3

38	11 (rev.)	112	10.0	3.0	0.0	Clase 0.4	Vacío	0.32	1.08	22.8	16.0	Final.	21.3	11.2	0.0	76.2
39	10 (rev.)	45	10.0	3.0	0.0	Clase 0.4	Vacío	0.17	0.58	16.0	16.0	Max.	16.0	4.5	0.0	70.0
40	9 (rev.)	146	11.0	3.0	0.0	Clase 0.4	Vacío	0.43	1.46	21.2	21.2	Fuerza de empuje	20.5	16.1	0.0	100.0
41	8 (rev.)	82	15.0	3.0	0.0	Clase 0.4	Vacío	0.29	0.99	21.2	16.5		17.1	12.3	0.0	100.0
42	7 (rev.)	161	15.0	3.0	0.0	Clase 0.4	Vacío	0.59	2.00	16.5	16.5	Fuerza de empuje	16.5	24.2	0.0	100.0
43	6 (rev.)	57	11.0	3.0	0.0	Clase 0.4	Vacío	0.18	0.60	20.0	20.0	Max.	19.4	6.3	0.0	98.0
44	5 (rev.)	91	13.0	3.0	0.0	Clase 0.4	Vacío	0.30	1.03	20.0	17.9		18.2	11.8	0.0	100.0
45	4 (rev.)	226	12.0	3.0	0.0	Clase 0.4	Vacío	0.71	2.44	19.2	16.0	Final.	19.0	27.1	0.0	95.1
46	3 (rev.)	104	15.0	3.0	0.0	Clase 0.4	Vacío	0.39	1.33	16.0	16.0	Final.	16.0	15.6	0.0	96.9
47	2 (rev.)	119	13.0	3.0	0.0	Clase 0.4	Vacío	0.45	1.53	16.0	14.0	Final.	16.0	15.5	0.0	81.9
48	1 (rev.)	120	0.0	3.0	0.0	Clase 0.4	Vacío	0.59	2.02	14.0	0.0	Final.	12.2	0.0	0.0	10.9
	Total	6,908						29.25	100.00				14.2	-3		

ANEXO n° 2

Neumáticos y consumo de combustible (Flota 1)

Tabla 18
Neumáticos y consumo de combustible de la flota 1

Neumáticos y c	consumo de comb	ustible		
Consumo de combustible [I	PRJ] TEREX (O&K)	RH 90 C - Co	ontrata	
Coste del combustible @1.07 \$ /	litro	2	5.26 \$ / OpHr	
Consumo de combustible	[PRJ] CATERPILLA	AR 777 F Con	trata	
Coste del combustible@ 1.07 \$ /	litro	1	7.24 \$ / OpHr	
Cálculos de neumáticos	[PRJ] CATERPILLA	R 777 F Cont	rata	
Eje	Llantas	Carga completa	Carga vacía	ТКРН
		·	toneladas	
1	2	53.10	32.84	169.99
2	4	107.80	40.14	146.27

ANEXO n° 3

Resultados completos de simulación (Flota 2)

Tabla 19 Resultados completos de simulación de la flota 2

	Material:	[PRJ] Estéril						Sistema de transporte:	Sistema	a de transporte-	1				
	Lista:	[PRJ] Turnos						Ciclo de acarreo:	[1	PRJ] Ciclo					
				Laminación	Curva			Segmento	Ciclo	Max	Final	Velocidad	Promedio	Elevación	Combustible	% Deber
Tipo	Título del segmento	Distancia	Grado	Resistir	Angulo	Estructura de tierra	Carga	Tiempo	Tiempo	Vel.	Vel.	Limite.	Velocidad	Cambio	Uso	Ciclo
		metros	%	%	Grados		%	min	%	km/h	km/h		km/h	metros	litro/OpHr	%
[PRJ] KOMA	ATSU (HAULPAR	K) 510 E - F Grande														
Cola	Cola de trabajo	Auto	Minutos					0.00	0.00						0.0	
Lugar	Lugar de carga	Auto	Minutos					1.50	5.26						0.0	
Carga	Carga	Auto	Minutos					0.67	2.34						0.0	
1	1	120	0.0	3.0	0.0	Clase 0.4	Completa	0.60	2.12	1	14.0 9.6	Max.	11.9	0.0	0.0	28.0
2	2	119	-17.0	3.0	0.0	Clase0.4	Completa	0.74	2.60		9.6 9.6	Max Acel.	9.6	-20.2	0.0	0.0
3	3	104	-13.0	3.0	0.0	Clase 0.4	Completa	0.65	2.27		9.6 9.6	Max Acel.	9.6	-13.5	0.0	0.0
4	4	226	-15.0	3.0	0.0	Clase 0.4	Completa	1.41	4.94		9.6 9.6	Max Acel.	9.6	-33.9	0.0	0.0
5	5	91	-12.0	3.0	0.0	Clase 0.4	Completa	0.39	1.37	1	15.0 9.6	Max.	14.0	-10.9	0.0	1.1
6	6	57	-13.0	3.0	0.0	Clase 0.4	Completa	0.36	1.25		9.6 9.6	Max Acel.	9.6	-7.4	0.0	0.0
7	7	161	-11.0	3.0	0.0	Clase 0.4	Completa	0.88	3.09	1	11.0 9.6	Max.	11.0	-17.7	0.0	0.5
8	8	82	-15.0	3.0	0.0	Clase 0.4	Completa	0.51	1.79		9.6 9.6	Max Acel.	9.6	-12.3	0.0	0.0
9	9	146	-11.0	3.0	0.0	Clase 0.4	Completa	0.47	1.64	2	20.0 19.0	Final.	18.7	-16.1	0.0	0.9
10	10	45	-10.0	3.0	0.0	Clase 0.4	Completa	0.15	0.52	1	19.0 15.0	Final.	18.1	-4.5	0.0	0.0
11	11	112	-10.0	3.0	0.0	Clase 0.4	Completa	0.45	1.57	1	15.0 15.0	Max.	15.0	-11.2	0.0	0.0
12	12	433	-10.0	3.0	0.0	Clase 0.4	Completa	1.53	5.36	1	17.0 17.0	Max.	17.0	-43.3	0.0	0.7

13	13	89	-10.0	3.0	0.0	Clase 0.4	Completa	0.33	1.16	18.0	9.6	Max.	16.2	-8.9	0.0	3.4
14	14	81	-14.0	3.0	0.0	Clase 0.4	Completa	0.50	1.77	9.6	9.6	Max Acel.	9.6	-11.3	0.0	0.0
15	15	102	-14.0	3.0	0.0	Clase 0.4	Completa	0.64	2.23	9.6	9.6	Max Acel.	9.6	-14.3	0.0	0.0
16	16	90	-7.0	3.0	0.0	Clase 0.4	Completa	0.39	1.38	14.0	14.0	Max.	13.7	-6.3	0.0	0.2
17	17	61	-3.0	3.0	0.0	Clase 0.4	Completa	0.18	0.63	23.0	23.0	Max.	20.5	-1.8	0.0	27.8
18	18	97	0.0	3.0	0.0	Clase 0.4	Completa	0.20	0.69	33.3	32.0	Final.	29.7	0.0	0.0	83.0
19	19	201	0.0	3.0	0.0	Clase 0.4	Completa	0.38	1.32	32.0	32.0	Max.	32.0	0.0	0.0	59.4
20	20	327	0.0	3.0	0.0	Clase 0.4	Completa	0.51	1.77	43.0	39.0	Final.	38.8	0.0	0.0	86.7
21	21	101	6.0	3.0	0.0	Clase 0.4	Completa	0.20	0.70	39.0	24.2	Max.	30.5	6.1	0.0	100.0
22	22	254	7.0	3.0	0.0	Clase 0.4	Completa	0.94	3.29	24.2	15.2		16.3	17.8	0.0	100.0
23	23	173	12.0	3.0	0.0	Clase 0.4	Completa	1.10	3.85	15.2	9.0	Final.	9.5	20.8	0.0	99.6
24	24	182	0.0	3.0	0.0	Clase 0.4	Completa	1.29	4.52	9.0	0.0	Final.	8.5	0.0	0.0	17.3
Lugar	Tiempo puntual al vertido	Auto	Minuto					0.67	2.34						0.0	
Dejar	Vertido	Auto	Minuto					0.75	2.62						0.0	
25	24 (rev.)	182	0.0	3.0	0.0	Clase 0.4	Completa	0.91	3.20	13.0	13.0	Final.	12.0	0.0	0.0	12.5
26	23 (rev.)	173	-12.0	3.0	0.0	Clase 0.4	Completa	0.80	2.80	13.0	13.0	Max.	13.0	-20.8	0.0	0.0
27	22 (rev.)	254	-7.0	3.0	0.0	Clase 0.4	Completa	0.71	2.50	22.0	22.0	Max.	21.4	-17.8	0.0	0.2
28	21 (rev.)	101	-6.0	3.0	0.0	Clase 0.4	Completa	0.20	0.71	34.0	34.0	Max.	30.1	-6.1	0.0	6.3
29	20 (rev.)	327	0.0	3.0	0.0	Clase 0.4	Completa	0.50	1.74	40.0	40.0	Max.	39.6	0.0	0.0	39.6
30	19 (rev.)	201	0.0	3.0	0.0	Clase 0.4	Completa	0.30	1.06	45.0	29.0	Final.	39.9	0.0	0.0	26.9
31	18 (rev.)	97	0.0	3.0	0.0	Clase 0.4	Completa	0.20	0.71	29.0	26.0	Final.	28.8	0.0	0.0	19.1
32	17 (rev.)	61	3.0	3.0	0.0	Clase 0.4	Completa	0.14	0.49	26.0	26.0	Max.	26.0	1.8	0.0	40.1
33	16 (rev.)	90	7.0	3.0	0.0	Clase 0.4	Completa	0.18	0.65	32.1	25.0	Final.	29.3	6.3	0.0	51.7
34	15 (rev.)	102	14.0	3.0	0.0	Clase 0.4	Completa	0.26	0.93	25.0	22.6	Max.	23.1	14.3	0.0	100.0
35	14 (rev.)	81	14.0	3.0	0.0	Clase 0.4	Completa	0.21	0.75	22.6	22.6	Fuerza de empuje	22.6	11.3	0.0	100.0
36	13 (rev.)	89	10.0	3.0	0.0	Clase 0.4	Completa	0.21	0.75	27.9	19.0	Final.	24.9	8.9	0.0	50.4
37	12 (rev.)	433	10.0	3.0	0.0	Clase 0.4	Completa	1.37	4.79	19.0	19.0	Max.	19.0	43.3	0.0	67.8
38	11 (rev.)	112	10.0	3.0	0.0	Clase 0.4	Completa	0.29	1.03	25.0	16.0	Final.	22.8	11.2	0.0	58.8

39	10 (rev.)	45	10.0	3.0	0.0	Clase 0.4	Completa	0.17	0.59	16.0	16.0	Max.	16.0	4.5	0.0	61.5
40	9 (rev.)	146	11.0	3.0	0.0	Clase 0.4	Completa	0.39	1.38	23.0	23.0	Max.	22.3	16.1	0.0	86.3
41	8 (rev.)	82	15.0	3.0	0.0	Clase 0.4	Completa	0.23	0.81	23.0	18.0	Final.	21.2	12.3	0.0	86.0
42	7 (rev.)	161	15.0	3.0	0.0	Clase 0.4	Completa	0.54	1.88	18.0	18.0	Max.	18.0	24.2	0.0	91.0
43	6 (rev.)	57	11.0	3.0	0.0	Clase 0.4	Completa	0.17	0.60	20.0	20.0	Max.	19.9	6.3	0.0	78.2
44	5 (rev.)	91	13.0	3.0	0.0	Clase 0.4	Completa	0.26	0.91	21.0	21.0	Final.	21.0	11.8	0.0	89.9
45	4 (rev.)	226	12.0	3.0	0.0	Clase 0.4	Completa	0.65	2.29	21.0	16.0	Final.	20.8	27.1	0.0	76.4
46	3 (rev.)	104	15.0	3.0	0.0	Clase 0.4	Completa	0.39	1.37	16.0	16.0	Final.	16.0	15.6	0.0	85.1
47	2 (rev.)	119	13.0	3.0	0.0	Clase 0.4	Completa	0.45	1.57	16.0	14.0	Final.	16.0	15.5	0.0	71.9
48	1 (rev.)	120	0.0	3.0	0.0	Clase 0.4	Completa	0.59	2.08	14.0	0.0	Final.	12.2	0.0	0.0	9.0
	Total	6,908						28.49	100.00				14.5	-3		

ANEXO n° 4

Neumáticos y consumo de combustible (Flota 2)

Tabla 20 Neumáticos y consumo de combustible de la flota 2

Neumáticos y consumo de c	combustible			
Consumo de combustible [PRJ] TEREX (C	0&K) RH 90 C	– Contrata		
Coste del combustible @1.07 \$ / litro		2	5.26 \$ / OpHr	
Consumo de combustible [PRJ] CATER	PILLAR 777 F	Contrata		
Coste del combustible@ 1.07 \$ / litro		1	.7.24 \$ / OpHr	
Cálculos de neumáticos [PRJ] CATERP	ILLAR 777 F C	Contrata		
Eje	Llantas	Carga completa	Carga vacía	ТКРН
		Toneladas		
1	2	53.10	32.84	169.99
2	4	107.80	40.14	146.27

ANEXO n° 5

Resultados completos de simulación (Flota 3)

Tabla 21 Resultados completos de simulación de la flota 3

	Material:	[PRJ] E	Estéril	transporte: Ciclo de					Sistema de tra	nsporte-1						
	Listar:	[PRJ] T	Turnos						acarreo:	[PRJ] C	iclo					
				Laminación	Curva			Segmento	Ciclo	Max	Final	Velocidad	Promedio	Elevación	Combustible	% Deber
Tipo	Título del segmento	Distancia	Grado	Resistir.	Ángulo	Estructura de tierra	Carga	Tiempo	Tiempo	Vel.	Vel.	Limite.	Velocidad	Cambio	Uso	Ciclo
		metros	%	%	Grados		%	min	%	km/h	km/h		km/h	metros	litro/OpHr	%
[PRJ] TE	REX TR 100 Alquiler															
Cola	Cola de Trabajo	Auto	Minutos					0.52	1.90						0.0	
Mancha	Lugar de carga	Auto	Minutos					0.40	1.47						0.0	
Carga	Carga	Auto	Minutos					2.21	8.12						0.0	
1	1	120	0.0	3.0	0.0	Clase 0.4	Completo	0.59	2.18	14.0	14.0	Final.	12.2	0.0	0.0	31.0
2	2	119	-17.0	3.0	0.0	Clase 0.4	Completo	0.51	1.89	14.0	11.0	Final.	13.9	-20.2	0.0	0.0
3	3	104	-13.0	3.0	0.0	Clase 0.4	Completo	0.57	2.09	11.0	11.0	Max.	11.0	-13.5	0.0	0.0
4	4	226	-15.0	3.0	0.0	Clase 0.4	Completo	1.04	3.84	13.0	13.0	Max.	13.0	-33.9	0.0	1.1
5	5	91	-12.0	3.0	0.0	Clase 0.4	Completo	0.37	1.34	15.0	15.0	Max.	15.0	-10.9	0.0	3.0
6	6	57	-13.0	3.0	0.0	Clase 0.4	Completo	0.22	0.81	17.0	11.0	Final.	15.5	-7.4	0.0	5.1
7	7	161	-11.0	3.0	0.0	Clase 0.4	Completo	0.88	3.23	11.0	11.0	Max.	11.0	-17.7	0.0	0.0
8	8	82	-15.0	3.0	0.0	Clase 0.4	Completo	0.30	1.11	17.0	17.0	Max.	16.3	-12.3	0.0	3.7
9	9	146	-11.0	3.0	0.0	Clase 0.4	Completo	0.44	1.62	20.0	19.0	Final.	19.9	-16.1	0.0	2.5
10	10	45	-10.0	3.0	0.0	Clase 0.4	Completo	0.15	0.55	19.0	15.0	Final.	18.1	-4.5	0.0	0.0
11	11	112	-10.0	3.0	0.0	Clase 0.4	Completo	0.45	1.65	15.0	15.0	Max.	15.0	-11.2	0.0	0.0

12	12	433	-10.0	3.0	0.0	Clase 0.4	Completo	1.53	5.62	17.0	17.0	Max.	17.0	-43.3	0.0	0.7
13	13	89	-10.0	3.0	0.0	Clase 0.4	Completo	0.30	1.09	18.0	18.0	Max.	18.0	-8.9	0.0	3.7
14	14	81	-14.0	3.0	0.0	Clase 0.4	Completo	0.26	0.95	20.0	14.0	Final.	18.8	-11.3	0.0	4.3
15	15	102	-14.0	3.0	0.0	Clase 0.4	Completo	0.44	1.61	14.0	14.0	Final.	14.0	-14.3	0.0	0.0
16	16	90	-7.0	3.0	0.0	Clase 0.4	Completo	0.39	1.42	14.0	14.0	Max.	14.0	-6.3	0.0	0.0
17	17	61	-3.0	3.0	0.0	Clase 0.4	Completo	0.18	0.66	23.0	23.0	Max.	20.5	-1.8	0.0	31.1
18	18	97	0.0	3.0	0.0	Clase 0.4	Completo	0.20	0.75	32.2	32.0	Final.	28.5	0.0	0.0	91.8
19	19	201	0.0	3.0	0.0	Clase 0.4	Completo	0.38	1.39	32.0	32.0	Max.	32.0	0.0	0.0	67.2
20	20	327	0.0	3.0	0.0	Clase 0.4	Completo	0.52	1.93	41.0	39.0	Final.	37.4	0.0	0.0	93.6
21	21	101	6.0	3.0	0.0	Clase 0.4	Completo	0.21	0.77	39.0	21.5	Max.	29.1	6.1	0.0	100.0
22	22	254	7.0	3.0	0.0	Clase 0.4	Completo	1.00	3.68	21.5	14.8		15.2	17.8	0.0	100.0
23	23	173	12.0	3.0	0.0	Clase 0.4	Completo	0.96	3.54	14.8	9.0	Final.	10.8	20.8	0.0	97.1
24	24	182	0.0	3.0	0.0	Clase 0.4	Completo	1.29	4.74	9.0	0.0	Final.	8.5	0.0	0.0	15.3
	Tiempo							0.20								
Lugar	puntual de vertido	Auto	Minutos					0.30	1.10						0.0	
Lugar Dejar	de	Auto	Minutos Minutos					0.30	0.74						0.0	
Ü	de vertido			3.0	0.0	Clase 0.4	Vacío			13.0	13.0	Final.	12.0	0.0		12.4
Dejar	de vertido Vertido	Auto	Minutos	3.0 3.0	0.0	Clase 0.4 Clase 0.4	Vacío Vacío	0.20	0.74	13.0 13.0	13.0 13.0	Final. Max.	12.0 13.0	0.0	0.0	12.4
Dejar 25	de vertido Vertido 24 (rev.)	Auto 182	Minutos 0.0					0.20 0.91	0.74 3.35						0.0 0.0	
Dejar 25 26	de vertido Vertido 24 (rev.) 23 (rev.)	Auto 182 173	Minutos 0.0 -12.0	3.0	0.0	Clase 0.4	Vacío	0.20 0.91 0.80	0.74 3.35 2.94	13.0	13.0	Max.	13.0	-20.8	0.0 0.0 0.0	0.0
Dejar 25 26 27	de vertido Vertido 24 (rev.) 23 (rev.) 22 (rev.)	Auto 182 173 254	Minutos 0.0 -12.0 -7.0	3.0 3.0	0.0	Clase 0.4 Clase 0.4	Vacío Vacío	0.20 0.91 0.80 0.71	0.74 3.35 2.94 2.62	13.0 22.0	13.0 22.0	Max.	13.0 21.4	-20.8 -17.8	0.0 0.0 0.0 0.0	0.0 0.2
Dejar 25 26 27 28	de vertido Vertido 24 (rev.) 23 (rev.) 22 (rev.) 21 (rev.)	Auto 182 173 254 101	Minutos 0.0 -12.0 -7.0 -6.0	3.0 3.0 3.0	0.0 0.0 0.0	Clase 0.4 Clase 0.4 Clase 0.4	Vacío Vacío Vacío	0.20 0.91 0.80 0.71 0.20	0.74 3.35 2.94 2.62 0.74	13.0 22.0 34.0	13.0 22.0 34.0	Max. Max. Max.	13.0 21.4 30.1	-20.8 -17.8 -6.1	0.0 0.0 0.0 0.0 0.0	0.0 0.2 7.5
Dejar 25 26 27 28 29	de vertido Vertido 24 (rev.) 23 (rev.) 22 (rev.) 21 (rev.) 20 (rev.)	Auto 182 173 254 101 327	Minutos 0.0 -12.0 -7.0 -6.0 0.0	3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0	Clase 0.4 Clase 0.4 Clase 0.4 Clase 0.4	Vacío Vacío Vacío Vacío	0.20 0.91 0.80 0.71 0.20 0.50	0.74 3.35 2.94 2.62 0.74 1.82	13.0 22.0 34.0 40.0	13.0 22.0 34.0 40.0	Max. Max. Max. Max.	13.0 21.4 30.1 39.6	-20.8 -17.8 -6.1 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.2 7.5 45.5
Dejar 25 26 27 28 29 30	de vertido Vertido 24 (rev.) 23 (rev.) 22 (rev.) 21 (rev.) 20 (rev.) 19 (rev.)	Auto 182 173 254 101 327 201	Minutos 0.0 -12.0 -7.0 -6.0 0.0	3.0 3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0 0.0	Clase 0.4 Clase 0.4 Clase 0.4 Clase 0.4 Clase 0.4	Vacío Vacío Vacío Vacío Vacío	0.20 0.91 0.80 0.71 0.20 0.50	0.74 3.35 2.94 2.62 0.74 1.82 1.11	13.0 22.0 34.0 40.0 45.0	13.0 22.0 34.0 40.0 29.0	Max. Max. Max. Max. Final.	13.0 21.4 30.1 39.6 39.9	-20.8 -17.8 -6.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.2 7.5 45.5 29.9
Dejar 25 26 27 28 29 30 31	de vertido Vertido 24 (rev.) 23 (rev.) 22 (rev.) 21 (rev.) 20 (rev.) 19 (rev.) 18 (rev.)	Auto 182 173 254 101 327 201	Minutos 0.0 -12.0 -7.0 -6.0 0.0 0.0	3.0 3.0 3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0 0.0 0.0	Clase 0.4	Vacío Vacío Vacío Vacío Vacío Vacío	0.20 0.91 0.80 0.71 0.20 0.50 0.30 0.20	0.74 3.35 2.94 2.62 0.74 1.82 1.11 0.74	13.0 22.0 34.0 40.0 45.0 29.0	13.0 22.0 34.0 40.0 29.0 26.0	Max. Max. Max. Max. Final.	13.0 21.4 30.1 39.6 39.9 28.8	-20.8 -17.8 -6.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.2 7.5 45.5 29.9 22.8
Dejar 25 26 27 28 29 30 31 32	de vertido Vertido 24 (rev.) 23 (rev.) 22 (rev.) 21 (rev.) 20 (rev.) 19 (rev.) 17 (rev.)	Auto 182 173 254 101 327 201 97 61	Minutos 0.0 -12.0 -7.0 -6.0 0.0 0.0 3.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0 0.0 0.0	Clase 0.4	Vacío Vacío Vacío Vacío Vacío Vacío	0.20 0.91 0.80 0.71 0.20 0.50 0.30 0.20 0.14	0.74 3.35 2.94 2.62 0.74 1.82 1.11 0.74 0.52	13.0 22.0 34.0 40.0 45.0 29.0 26.0	13.0 22.0 34.0 40.0 29.0 26.0	Max. Max. Max. Final. Max.	13.0 21.4 30.1 39.6 39.9 28.8 26.0	-20.8 -17.8 -6.1 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.2 7.5 45.5 29.9 22.8 49.8
Dejar 25 26 27 28 29 30 31 32 33	de vertido Vertido 24 (rev.) 23 (rev.) 22 (rev.) 21 (rev.) 20 (rev.) 19 (rev.) 17 (rev.) 16 (rev.)	Auto 182 173 254 101 327 201 97 61	Minutos 0.0 -12.0 -7.0 -6.0 0.0 0.0 3.0 7.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	Clase 0.4	Vacío Vacío Vacío Vacío Vacío Vacío Vacío Vacío	0.20 0.91 0.80 0.71 0.20 0.50 0.30 0.20 0.14 0.19	0.74 3.35 2.94 2.62 0.74 1.82 1.11 0.74 0.52 0.71	13.0 22.0 34.0 40.0 45.0 29.0 26.0 29.9	13.0 22.0 34.0 40.0 29.0 26.0 25.0	Max. Max. Max. Final. Final. Max. Final.	13.0 21.4 30.1 39.6 39.9 28.8 26.0 28.1	-20.8 -17.8 -6.1 0.0 0.0 0.0 1.8 6.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.2 7.5 45.5 29.9 22.8 49.8 65.3
Dejar 25 26 27 28 29 30 31 32 33	de vertido Vertido 24 (rev.) 23 (rev.) 22 (rev.) 21 (rev.) 20 (rev.) 19 (rev.) 17 (rev.) 16 (rev.) 15 (rev.)	Auto 182 173 254 101 327 201 97 61 90 102	Minutos 0.0 -12.0 -7.0 -6.0 0.0 0.0 3.0 7.0 14.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Clase 0.4	Vacío Vacío Vacío Vacío Vacío Vacío Vacío Vacío Vacío	0.20 0.91 0.80 0.71 0.20 0.50 0.30 0.20 0.14 0.19 0.32	0.74 3.35 2.94 2.62 0.74 1.82 1.11 0.74 0.52 0.71 1.16	13.0 22.0 34.0 40.0 45.0 29.0 26.0 29.9	13.0 22.0 34.0 40.0 29.0 26.0 25.0 18.3	Max. Max. Max. Final. Final. Max. Final. Max. Final.	13.0 21.4 30.1 39.6 39.9 28.8 26.0 28.1 19.4	-20.8 -17.8 -6.1 0.0 0.0 0.0 1.8 6.3 14.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.2 7.5 45.5 29.9 22.8 49.8 65.3 100.0

38	11 (rev.)	112	10.0	3.0	0.0	Clase 0.4	Vacío	0.31	1.13	24.0	16.0	Final.	22.0	11.2	0.0	70.8
39	10 (rev.)	45	10.0	3.0	0.0	Clase 0.4	Vacío	0.17	0.62	16.0	16.0	Max.	16.0	4.5	0.0	65.0
40	9 (rev.)	146	11.0	3.0	0.0	Clase 0.4	Vacío	0.40	1.49	22.7	22.7	Fuerza de empuje	21.7	16.1	0.0	99.9
41	8 (rev.)	82	15.0	3.0	0.0	Clase 0.4	Vacío	0.27	0.99	22.7	17.5		18.3	12.3	0.0	100.0
42	7 (rev.)	161	15.0	3.0	0.0	Clase 0.4	Vacío	0.55	2.03	17.5	17.5	Fuerza de empuje	17.5	24.2	0.0	100.0
43	6 (rev.)	57	11.0	3.0	0.0	Clase 0.4	Vacío	0.17	0.64	20.0	20.0	Max.	19.8	6.3	0.0	92.8
44	5 (rev.)	91	13.0	3.0	0.0	Clase 0.4	Vacío	0.28	1.05	20.0	19.1		19.2	11.8	0.0	100.0
45	4 (rev.)	226	12.0	3.0	0.0	Clase 0.4	Vacío	0.66	2.43	20.9	16.0	Final.	20.6	27.1	0.0	91.8
46	3 (rev.)	104	15.0	3.0	0.0	Clase 0.4	Vacío	0.39	1.43	16.0	16.0	Final.	16.0	15.6	0.0	90.0
47	2 (rev.)	119	13.0	3.0	0.0	Clase 0.4	Vacío	0.45	1.65	16.0	14.0	Final.	16.0	15.5	0.0	76.0
48	1 (rev.)	120	0.0	3.0	0.0	Clase 0.4	Vacío	0.59	2.18	14.0	0.0	Final.	12.2	0.0	0.0	9.7
	Total	6,908						27.18	100.00				15.2	-3		

ANEXO n° 6

Neumáticos y consumo de combustible (Flota 3)

Tabla 22

Neumáticos y consumo de combustible de la flota 3

N 62 1 211	
Neumáticos y consumo de combustible	
Consumo de combustible [PRJ] CATERPILLAR 5130 B ME Alo	quiler
Coste del combustible @0.00 \$ / litro	25.26 \$ / OpHr
Consumo de combustible [PRJ] TEREX TR 100 Alquiler	
Uso de combustible	0 litro / OpHr
Coste del combustible @ 0.00 \$ / litro	0 \$ / OpHr
Consumo de combustible por tonelada	0 litro / tonelada
Producción por litro	Toneladas / litros indefinidos
Cálculos de neumáticos [PRJ] TEREX TR 100 Alquiler	
	Carga

 Eje
 Llantas
 Carga completa
 Carga vacía
 TKPH

 Tonelada

 1
 2
 50.57
 33.62
 180.39

 2
 4
 98.17
 35.00
 142.66

ANEXO n° 7

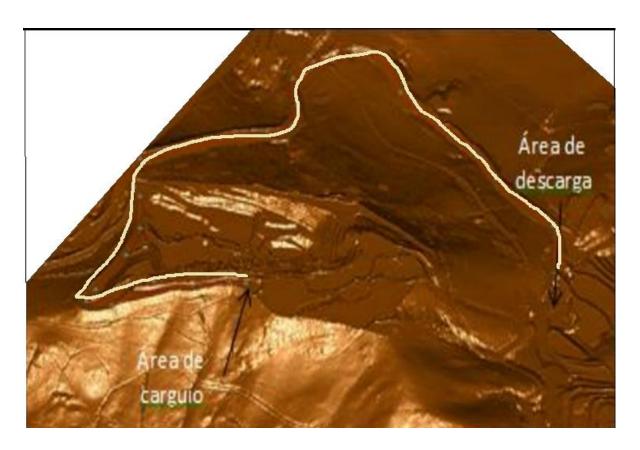


Figura 11. Ruta del área de carguio al área de descarga.

Fuente: Soto Vilca & Tarazona Yábar, 2016

ANEXO n° 8

Tabla 23
Indicadores de rentabilidad de las flotas de carguío y acarreo

DATOS	
Tasa de descuento:	14%
AÑOS	10

PROYECT		INVERSIÓN	Año 1	Año 2	Año 3	Año 4	Año 5	Año 6	Año 7	Año 8	Año 9	Año10	VAN	TIR	PAYBACK (Años)	VAN/INV
FLOTA 1	\$ 1,965,000.00	-1,965,000	494,202	494,202	494,202	494,202	494,202	111,678	650,598	-494,202	494,202	1,210,362	\$ 347,730.33	18.6%	11	\$ 0.18
FLOTA 2	\$ 22,800,000.00	-22,800,000	5,335,181	5,335,181	5,335,181	5,335,181	5,335,181	5,335,181	5,335,181	-16,005,619	6,083,981	16,611,981	\$ 819,817.29	15.0%	12	\$ 0.04
FLOTA 3	0	0	0	0	0	0	0	0	0	0	0	0	\$ -1.80	0%	0	0

Fuente: Elaboración propia

ANEXO n° 9

Tabla 24
Cuadro resumen de los indicadores de rentabilidad

IND. DE RENTABILIDAD	FLOTA 1	FLOTA 2	FLOTA 3
VAN(\$)	\$ 347730.33	\$ 819817.27	\$ -1.80
TIR (%)	18.60%	15%	0
PAYBACK (AÑOS)	11 AÑOS	12 AÑOS	0
VAN / INV	\$ 0.18	\$ 0.04	0

Fuente: Elaboración propia

ANEXO n° 10

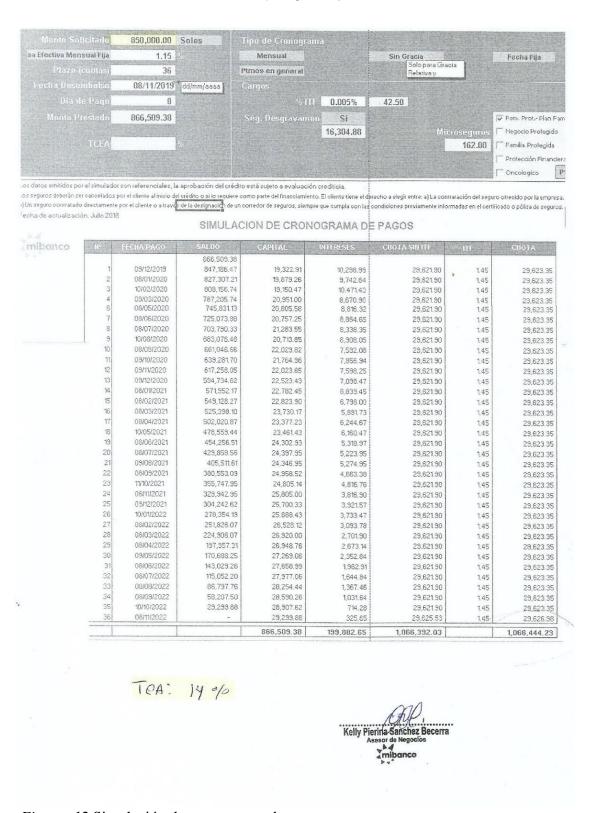


Figura 12. Simulación de cronograma de pagos.

Fuente. Rojas Vigo, W. E,2020