

FACULTAD DE INGENIERÍA

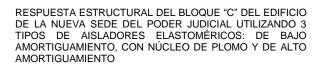
Carrera de Ingeniería Civil

"RESPUESTA ESTRUCTURAL DEL BLOQUE "C" DEL EDIFICIO DE LA NUEVA SEDE DEL PODER JUDICIAL UTILIZANDO 3 TIPOS DE AISLADORES ELASTOMÉRICOS: DE BAJO AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DE ALTO AMORTIGUAMIENTO"

Tesis para optar el título profesional de:

Ingeniero Civil

Autor:


Johnny Jean Pierre Castillo Gallardo

Asesor:

Ing. Dr. Miguel Angel Mosqueira Moreno

Cajamarca - Perú

2020

DEDICATORIA

A mis padres, por la semilla de superación que han puesto en mí, a mis tíos, hermana, primos y abuelos por su gran apoyo emocional.

AGRADECIMIENTO

A mi familia, por su comprensión y estímulo constante, además de su apoyo incondicional a lo largo de mi carrera y a todas las personas que de una u otra forma me apoyaron en la realización de este trabajo.

A la Universidad Privada del Norte y a mi Director de Carrera por brindarme una excelente calidad de enseñanza y formarme como profesional.

Agradecimiento también al Ingeniero Miguel Mosqueira Moreno por compartir su conocimiento y por su constante apoyo y paciencia para hacer posible esta investigación.

Contenido

DEDI	CATORIA	4	2	
AGR	ADECIMI	ENTO	3	
ÍNDI	CE DE TA	BLAS	5	
ÍNDI	CE DE FIO	E TABLAS 5 E FIGURAS 6 N 7 D I. INTRODUCCIÓN 8 nlidad problemática 8 mulación del problema 22 jetivos 22 1. Objetivo general 22		
RESU	J MEN		7	
CAPÍ	TULO I. I	NTRODUCCIÓN	8	
1.1.	Realidad	l problemática	8	
1.2.	Formula	ción del problema	22	
1.3.	Objetivo)S	22	
	1.3.1.	Objetivo general	22	
	1.3.2.	Objetivos específicos	22	
1.4.	Hipótesi	s	22	
CAPÍ	TULO II.	METODOLOGÍA	23	
2.1.	Tipo de	investigación	23	
2.2.	Diseño d	le Investigación	23	
2.3.	Variable	s de Estudio	24	
2.4.	Població	n y muestra	24	
2.5.	Técnicas	s e instrumentos de recolección y análisis de datos	26	
2.6.	Procedir	niento	27	
	2.6.1.	Características de los materiales.	30	
	2.6.2.	Cargas de Análisis	31	
2.7.	Aspecto	s Éticos	50	
La inv		con respecto a los aspectos éticos salvaguarda la propiedad intelectual del auto lamente y precisando las fuentes bibliográficas en donde se encuentra lo referenc		
Los p	lanos y la	información obtenida deben ser de total confidencialidad y privacidad ya que	pertenece la	
	empresa	Hurteco SRI.	50	
CAPÍ	TULO III	. RESULTADOS	51	
3.1.	Estructu	ura Sin Aislamiento	51	
3.2.	Estructu	ura Aislada		
	3.2.1.	Aisladores de Bajo Amortiguamiento del tipo LDRB		
	3.2.2.	Aisladores de Alto Amortiguamiento del tipo HDR		
	3.2.3.	Combinación de Aisladores de Alto Amortiguamiento con Núcleo de Plo HDR y LRB		
3.3.	Resultados para Sismo de Diseño y Sismo Máximo Considerado			
	3.3.1.	Sismo de Diseño	73	
CAPÍ	TULO IV	. DISCUSIÓN Y CONCLUSIONES	80	
4.1.	Discusion	ón	80	
4.2.	Conclus	siones	84	
REFI	ERENCIAS	S	86	
ANE	VOS			

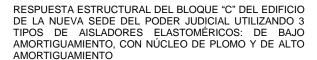

ÍNDICE DE TABLAS

Tabla 1: Datos Obtenidos del Expediente Tecnico	21
Tabla 2: Pesos específicos de los materiales.	30
Tabla 3: Cargas Vivas de Objetos de Ocupación.	31
Tabla 4: Periodo Natural.	
Tabla 5: Desplazamientos en dirección X.	
Tabla 6: Desplazamientos en dirección Y.	53
Tabla 7: Derivas Máximas en dirección X.	53
Tabla 8: Derivas Máximas en dirección Y.	54
Tabla 9: Peso total de la estructura.	54
Tabla 10: Fuerzas en Dirección XX.	55
Tabla 11: Fuerzas en Dirección YY.	56
Tabla 12: Periodos de la estructura con aisladores LDRB.	57
Tabla 13: Desplazamientos de dirección X.	59
Tabla 14: Desplazamientos en dirección Y.	59
Tabla 15: Derivas en dirección X.	60
Tabla 16: Derivas en dirección Y.	60
Tabla 17: Fuerzas en dirección XX.	61
Tabla 18: Fuerzas en dirección YY.	61
Tabla 19: Periodos de la estructura con aisladores HDR	62
Tabla 20: Desplazamientos de dirección X.	64
Tabla 21: Desplazamientos en dirección Y.	64
Tabla 22: Derivas en dirección X.	65
Tabla 23: Derivas en dirección Y.	65
Tabla 24: Fuerzas en dirección XX.	66
Tabla 25: Fuerzas en dirección YY.	66
Tabla 26: Periodos de la estructura con combinación de aisladores HDR y LRB	67
Tabla 27: Desplazamientos de dirección X.	69
Tabla 28: Desplazamientos en dirección Y.	69
Tabla 29: Derivas en dirección X.	70
Tabla 30: Derivas en dirección Y.	70
Tabla 31: Fuerzas en dirección XX.	71
Tabla 32: Fuerzas en dirección YY.	71
Tabla 33: Desplazamientos en el eje X para Sismo de Diseño	72
Tabla 34: Desplazamientos en el eje Y para Sismo de Diseño	73
Tabla 35: Derivas de entrepiso en el eje X para Sismo de Diseño	74
Tabla 36: Derivas de entrepiso en el eje Y para Sismo de Diseño.	75
Tabla 37: Fuerzas por piso en eje X para Sismo de Diseño	
Tabla 38: Fuerzas por piso en eje Y para Sismo de Diseño	

ÍNDICE DE FIGURAS

Figura 1: Comportamiento de un edificio convencional (izquierda) y de uno con aislación basal (
(retamales, 2016).	12
Figura 2: Espectro de aceleraciones (Componente N-S/ Sismo del 2007 - Perú)	13
Figura 3: Aumento del espectro de desplazamientos (Componente N-S/ Sismo del 2007 - Perú)	
Figura 4: Aislador elastomérico de bajo amortiguamiento LDRB (Bridgestone, 2013)	
Figura 5: Vista en planta del aislador de bajo amortiguamiento.	17
Figura 6: Aislador elastomérico con núcleo de plomo LRB (Bridgestone, 2013)	
Figura 7: Detalle del aislador con núcleo de plomo visto en planta.	
Figura 8: Diagrama de Histéresis para un aislador con núcleo de plomo	
Figura 9: Aislador elastomérico de alto amortiguamiento HDRB (Bridgestone, 2013)	21
Figura 10: Ubicación de Bloques del Poder Judicial.	
Figura 11: Elevación del Bloque C	
Figura 12: Procedimiento para el desarrollo de la investigación.	
Figura 13: Procedimiento para el modelamiento bilineal.	
Figura 14: Ventana Principal del Programa ETABS.	
Figura 15: Cuadro para Medidas en planta y elevación ETABS 2016.	
Figura 16: Medidas en Planta.	
Figura 17: Medidas de Elevación en la Estructura	
Figura 18: Plano en planta y elevación de la estructura.	
Figura 19: Definición de Materiales para el modelamiento de la estructura.	38
Figura 20: Definición de propiedades para acero de refuerzo.	
Figura 21: Definición de las secciones de los elementos estructurales	
Figura 22: Dimensiones de columnas.	
Figura 23: Asignación de los muros estructurales.	
Figura 24: Ingreso de Cargas Muertas	41
Figura 25: Asignación de carga viva de Salas de Archivos.	
Figura 26: Carga viva para baños	42
Figura 27: Carga vivas de corredores y escaleras.	
Figura 28: Diafragmas Rígidos	
Figura 29: Diafragmas rígidos por Niveles.	43
Figura 30: Vista en Isométrico de Diafragmas Rígidos	44
Figura 31: Asignación del peso sísmico.	
Figura 32: Combinaciones de cargas.	45
Figura 33: Empotramientos en la Base.	46
Figura 34: Sismo para "X e Y"	47
Figura 35: Espectro de Diseño.	48
Figura 36: Espectro en la Dirección "X e Y"	49
Figura 37: Estructura Finalizada	50
Figura 38: Primer modo de vibración sin aislamiento.	52
Figura 39: Segundo modo de vibración sin aislamiento.	52
Figura 40: Tercer modo de vibración sin aislamiento	53
Figura 41: Primer modo de vibración con aislador LDRB.	59
Figura 42: Segundo modo de vibración con aislador LDRB.	
Figura 43: Tercer modo de vibración con aislador LDRB.	
Figura 44: Primer modo de vibración con aislador HDR.	63
Figura 45: Segundo modo de vibración con aislador HDR.	64
Figura 46: Tercer modo de vibración con aislador HDR	64
Figura 47: Primer modo de vibración con combinación de aisladores HDR y LRB.	69
Figura 48: Segundo modo de vibración con combinación de aisladores HDR y LRB	
Figura 49: Tercer modo de vibración con combinación de aisladores HDR y LRB.	
Figura 50: Desplazamientos en eje X para Sismo de Diseño.	
Figura 51: Desplazamientos en eje Y para Sismo de Diseño	
Figura 52: Derivas de entrepiso en eje X para Sismo de Diseño	
Figura 53: Derivas de entrepiso en eje Y para Sismo de Diseño	77
Figura 54: Fuerzas en la Base en eje X para Sismo de Diseño.	
Figura 55: Fuerzas en la Base en eje Y para Sismo de Diseño	

RESUMEN

La investigación se ha enfocado en un análisis comparativo de la respuesta estructural de un edificio al incorporar 3 tipos de aisladores elastoméricos: De bajo amortiguamiento, con núcleo de plomo y de alto amortiguamiento. Para ello se ha elegido el bloque C de la Nueva Sede del Poder Judicial, Distrito de Cajamarca para realizar dicha comparación estructural. Primero se realizó un modelamiento del edificio el cual fue desarrollado con el programa ETABS v16 versión educacional. La estructura se analizó con su cimentación convencional que viene a hacer una platea de cimentación, luego se hicieron modificaciones complementarias a dicho modelo, esto para poder lograr generar un nivel de aislación en donde estarán ubicados los aisladores. El diseño de los aisladores se realizó con la norma ASCE 7-16, los factores del diseño obtenidos fueron ingresados al modelo de análisis procesados con el programa ETABS v16 versión educacional. Para obtener la respuesta estructural del edificio, ambos modelos fueron sometidos al espectro sísmico generado según la norma E.030 2018 del reglamento nacional de edificaciones, posteriormente a estos análisis se midió y comparó los desplazamientos y fuerzas cortantes, logrando así un mejor comportamiento estructural obteniéndose una disminución promedio del 35.66% en las derivas de entrepiso, un 36.60% en promedio en las fuerzas en la base, también presentó una mejor distribución de los desplazamientos a nivel de diafragmas y por último un aumento en el periodo de la estructura pasando de 0.378 segundos hasta 2.114 segundos para la combinación con LDRB, 2.158 segundos para la combinación HDR y 1.873 para la combinación HDR + LRB, con los resultados obtenidos queda demostrada y descartada la hipótesis planteada.

Palabras clave: Aisladores elastoméricos, respuesta estructural, desplazamientos.

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

En la actualidad los sismos están azotando fuertemente diferentes lugares del planeta pero la mayoría se está dando en el llamado Cinturón de Fuego. "Es el caso de la placa oceánica Nazca, que se introduce bajo la placa Continental Sudamericana, frente al Perú, a razón de unos 9 cm/año, velocidad que se ha establecido mediante mediciones satelitales muy precisas" (Kuroiwa, 2005, p.98).

Existe una teoría llamada la Teoría del Silencio Sísmico, esta nos dice que "es posible identificar lugares donde no se ha liberado energía durante varias décadas; en consecuencia, existe mayor probabilidad de que ésta se libere y ocurra un sismo, toda esta información es gracias a la estadística y a los sismos ocurridos anteriormente" (Kuroiwa, 2005, p.99).

Ya explicado esto, se puede considerar a Cajamarca una zona de silencio sísmico y por tanto considerar su ubicación como lugar de sismos severos.

Además se debe considerar los datos del Instituto Geofísico del Perú, que muestran los últimos sismos ocurridos se dieron cerca de la ciudad de Cajamarca. Éstos se presentan a continuación: viernes 21 de junio de 2013, a las 09 horas y 06 minutos, se registró el sismo con los siguientes parámetros hipocentrales: Magnitud: 3.9 ML, Intensidad Máxima: II en Bambamarca (Escala Mercalli Modificada). Lunes 13 de Enero de 2014, a las 04 horas y 17 minutos, con Magnitud: 4.2 ML. Martes 14 de Enero de 2014, a las 21 horas y 09 minutos, con Magnitud: 4 ML. Jueves 13 de Marzo de 2014, a las 04 horas y 26 minutos, con Magnitud: 4.3 ML.

Para ello el Ingeniero Civil en estos últimos años ha estado investigando y buscando soluciones a los problemas que vienen presentando las estructuras cuando hay una acción de sismo, es por eso que han desarrollado una tecnología que reduce los daños

en las estructuras generadas por los sismos, esta tecnología es denominada Aislación Sísmica.

El concepto de aislación sísmica ha sido desarrollado desde hace más de 100 años, a principios del año 1970 fue usado sobre puentes y a finales del año 1970 en edificios, sin embargo, recién en los últimos 40 años se ha ido difundiendo para ser aplicado de forma práctica y sólo en los últimos 15 años su aplicación se ha ido incrementando de forma exponencial por el buen comportamiento que presentaron. (*Trujillo*, 2017, pág.11).

La aislación sísmica en Perú se da en el año 2010 con la construcción de los Tanques de almacenamiento en la planta de gas de Melchorita, en cuanto a la aplicación en edificaciones peruanas aisladas, se da inicio el año 2012 con la construcción del edificio de oficinas de la empresa Graña y Montero de 7 pisos conformada por 28 aisladores elastoméricos y 8 deslizadores planos de fricción. (*Trujillo*, 2017, pág.12). En Cajamarca no existen edificios ni construcciones aisladas sísmicamente, la mayoría de estos presentan irregularidades o han sido construidas informalmente sin la supervisión de un ingeniero civil, esto hace que ante cualquier evento sísmico de magnitud moderada las construcciones estén propensas a colapsar.

Según la Norma Técnica E.030 2018 nos dice que Cajamarca está en una zona de alto peligro sísmico (zona tipo 3) y para esta zona la aceleración que se espera es un 35 y 25% de la aceleración de la gravedad.

Otro problema que presenta es que la capacidad portante de estos suelos es muy baja, especialmente en los terrenos del complejo Qhapaq Ñam ya que son terrenos limo arcilloso. (Jara Robinson, 2014, pag.59) estos tienden a cambiar de volumen rápidamente es por ello que los convierte en el principal problema ante cualquier evento sísmico ya que son suelos blandos que al tener contacto con las ondas

superficiales (Ondas love y Ondas Rayleigh) la velocidad de estas ondas se incrementa causando daños a las estructuras o cimentación y lo que no se quiere es que estas fallen.

Este trabajo de investigación ayudará a comprender cómo es el comportamiento y la influencia de los aisladores sísmicos de base en edificios importantes y que albergan un gran número de personas, así como proponer una mejora en el comportamiento sismorresistente de las estructuras de hoy en día, considerando que Cajamarca está en una zona de silencio sísmico y que en cualquier momento estaría propensa a que pueda ocurrir un sismo severo colapsando así varias estructuras.

Esta investigación también ayudará para que otras y nuevas investigaciones continúen y esta tecnología pueda ser aplicada en la actualidad.

Como antecedentes a este trabajo tenemos los siguientes:

Korswagen, Arias, Huaringa, (2012) de la Pontificia Universidad Católica del Perú, en su tesis "Análisis y Diseño de Estructuras con Aisladores Sísmicos en el Perú" tiene como objetivo investigar acerca de los tipos, comportamientos y consideraciones en el uso de aisladores sísmicos, llegando a la conclusión que tanto la altura como la esbeltez de la edificación son parámetros limitantes para el aislamiento eficiente de una estructura, por tanto recomiendan prestar y tener mayor cuidado a los efectos $P-\Delta$ para el diseño de las columnas y placas del primer nivel, las vigas de la interfaz de aislación y la cimentación, puesto que el mayor desplazamiento incrementa la importancia de dicho efecto.

Tafur, Wenner, (2011) de la Universidad Nacional de Cajamarca, en su tesis "Influencia de aisladores elastoméricos en el análisis de un prototipo de edificio educacional" tiene como objetivo la comparación de un edificio sin aisladores y otro

con aisladores llegando a la conclusión que la estructura aislada presenta mejores resultados para cada uno de los parámetros realizados en el análisis, tales como derivas, desplazamientos y periodos, además se basó en las normas ASCE 7 – 10 y UBC 97 – IBC 09.

Soriano, (2014) de la Universidad Privada del Norte, en sus tesis "Comparación de la Respuesta Estructural del Pabellón A de la Universidad Privada del Norte con Aisladores Sísmicos Elastoméricos y sin Aisladores Sísmicos" tiene como objetivo comparar la respuesta estructural del pabellón A de la Universidad Privada del Norte con aisladores sísmicos elastoméricos y sin aisladores sísmicos, el tipo de estudio realizado en esta tesis es transversal descriptivo porque se describió el comportamiento del edificio con aisladores sísmicos con respecto al edificio convencional, también fue analítico ya que se analiza la respuesta sísmica del edificio, llegando a la conclusión que para la estructura con aisladores sísmicos, la respuesta estructural tiene un mejor comportamiento frente al edificio sin aisladores sísmicos, esto debido a que las derivas y fuerzas en la base son minimizados, pero los aisladores presentan un mayor desplazamiento a nivel de diafragmas y diferentes valores de desplazamientos absolutos para el análisis Tiempo - Historia.

Hernández, Hernán, (2016) en su investigación "Análisis Estructural de un edificio aislado sísmicamente y diseño de su sistema de aislamiento" tiene como objetivo realizar un análisis sísmico basado en los métodos Estático Equivalente y Dinámico Modal Espectral usando el programa computacional ETABS, llegando a la conclusión que las derivas se pueden reducir más del 75% inclusive llegando a

sobrepasar el 90% y también de las cortantes por piso que se reducen en un 50% llegando a valores como 70% de disminución en el último nivel.

Los aisladores sísmicos pertenecen a un conjunto de sistemas o formas de proteger a los edificios, los sistemas de protección sísmica empleados en la actualidad comprenden desde simples dispositivos de control pasivo hasta avanzados sistemas activos. Los sistemas pasivos son tal vez los más conocidos e incluyen los sistemas de aislamiento sísmico y los sistemas mecánicos de disipación de energía. El aislamiento sísmico es el sistema más desarrollado de la familia, con continuos avances en sus dispositivos, aplicaciones y especificaciones de diseño (*Taboada*, 2012, pág. 7).

La aislación sísmica es una forma de diseño sísmico, que reduce el nivel de aceleraciones que una estructura experimenta durante un sismo, mediante el aumento del período propio de la estructura llevándolo lejos de los períodos predominantes del movimiento del suelo, con la consiguiente disminución de los esfuerzos internos (Taboada, 2012, pág. 8).

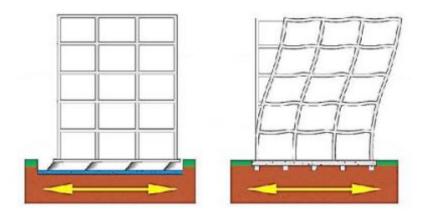


Figura 1: Comportamiento de un edificio convencional (izquierda) y de uno con aislación basal (derecha) (retamales, 2016).

Uno de los principios fundamentales de la aislación sísmica es que permiten modificar la respuesta dinámica de la estructura aumentando su periodo fundamental de vibración respecto al periodo de vibración que tendría en la base fija. De esta manera al incorporar alta flexibilidad (poca rigidez) horizontal aumenta el periodo fundamental de vibración de la estructura, haciendo que se aleje de la zona de mayor demanda de energía sísmica (zonas de periodos cortos en el espectro de diseño), lo cual resulta mejor en estructuras rígidas cimentadas sobre suelos firmes.

Es importante considerar también que al incrementarse el periodo fundamental de vibración se incrementa también los desplazamientos laterales espectrales, lo cual son absorbidos por los dispositivos de aislación sísmica, dichos dispositivos permiten disminuir o minimizar los desplazamientos laterales de entrepiso (derivas) y sus respectivas aceleraciones, logrando así que se transmitan esfuerzos cortantes bajos o moderados a la superestructura.

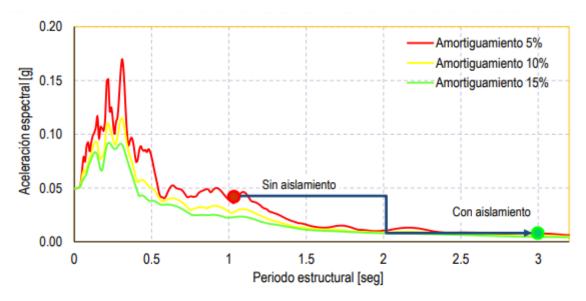


Figura 2: Espectro de aceleraciones (Componente N-S/ Sismo del 2007 - Perú)



Figura 3: Aumento del espectro de desplazamientos (Componente N-S/ Sismo del 2007 - Perú)

Para que resulte efectiva la incorporación de los sistemas de aislación sísmica, las estructuras tienen que estar ubicadas en suelos con periodos relativamente bajos (suelos firmes), tienen que ser de pocos niveles (rígidas) y que no estén pegadas a otras edificaciones ya que pueden desplazarse libremente de 20cm a más.

Cada proyecto debe ser evaluado en su etapa inicial de forma individual, ya que existen grandes diferencias al usar sistemas de aislación sísmica para edificaciones nuevas y para aquellas edificaciones que existen pero serán reforzadas con este elemento.

La primera consideración que se debe tener para edificaciones nuevas es que la aislación sísmica logra reducir la fuerza sísmica incrementando el periodo fundamental de la estructura, siendo este más efectivo cuando las estructuras son rígidas o presentan periodos naturales de vibración menores a 1 segundo, generalmente el periodo natural de una estructura se incrementa con la altura del edificio, por lo tanto la aislación sísmica es aplicable en edificios de baja y mediana altura ya que los edificios altos alcanzan periodos altos y soportan fuerzas laterales

bajas sin la necesidad de aislarlos. Por este motivo se recomienda que si las fuerzas laterales superan el 10% del peso del edificio, no es recomendable usar sistemas de aislación sísmica.

Otra consideración a tener en cuenta son las condiciones del suelo, generalmente los suelos firmes o rígidos son más apropiados para el uso de estos tipos de sistemas, mientras que los suelos flexibles no tanto, puesto que presentan bajas frecuencias y amplifican las bajas frecuencias de movimiento del suelo y los aisladores incrementan el periodo fundamental de la estructura. Por consiguiente, si el periodo de vibración del suelo y el periodo de vibración de la estructura son del mismo orden se produce el efecto de resonancia pudiendo causar graves daños a las estructuras. La última consideración en el uso de sistemas de aislación sísmica son las restricciones por estructuras vecinas, los sistemas de aislación sísmica permiten aumentar los desplazamientos que varían entre 20 y 50 cm y son tomados por los dispositivos. Esto conduce a que si el sitio está limitado por edificios vecinos en el límite de propiedad, puede que no sea posible dar cabida a estos desplazamientos laterales significativos (Mayes y Naeim, 2000).

Los aisladores elastoméricos están conformados por un conjunto de láminas planas de elastómeros intercaladas con capas de acero vulcanizadas entre sí. Las láminas de elastómeros proporcionan la flexibilidad lateral necesaria para permitir el desplazamiento horizontal relativo entre la estructura y el suelo, mientras que las láminas de acero proporcionan la rigidez vertical del sistema del sistema de aislación. Estos aisladores dependen de la amplitud de la deformación a la que son sometidos, y en menor grado a la temperatura, el envejecimiento y la frecuencia del movimiento. (Mendo Rodríguez, 2015, pág. 17).

Entre estos dispositivos tenemos a los Aisladores Elastoméricos de Bajo Amortiguamiento (LDRB), este tipo de dispositivos son los más simples dentro de los aisladores elastoméricos y consisten en un conjunto intercalado de capas de acero y caucho, el cual es vulcanizado para lograr la adherencia entre ambos materiales. Al intercalar el caucho con el acero se aumenta su capacidad para resistir cargas de gravedad y su estabilidad para soportar cargas laterales. En estos dispositivos, también se colocan placas de acero en la zona superior e inferior que sirven para confinar el núcleo y evitar la compresión del caucho ante cargas de gravedad.

La característica principal que tiene este aislador es que presenta un amortiguamiento aproximadamente de 5% al 10%, como se observa tiene una capacidad baja de disipación por lo que este aislador se usa en conjunto con otros sistemas de amortiguamiento.

Estos aisladores pueden ser de goma natural o sintética, su comportamiento es linealelástico a bajas deformaciones y lineal-viscoso a altas deformaciones, también presenta una razón de amortiguamiento crítico menor a 7% para valores de deformaciones angulares menores a 200%.

Las ventajas que presenta este aislador es que son fáciles de fabricar y de modelar (modelo lineal), no tienen una respuesta muy sensible a las variaciones de carga en el tiempo, la temperatura o el envejecimiento.

Las desventajas son que estos aisladores necesitan de amortiguamiento suplementario por lo que se debe considerar otros sistemas que compensen lo que falta.

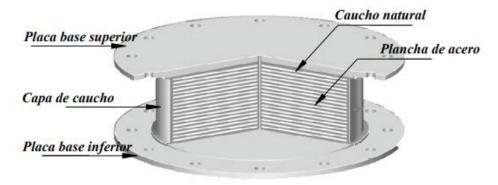


Figura 4: Aislador elastomérico de bajo amortiguamiento LDRB (Bridgestone, 2013).

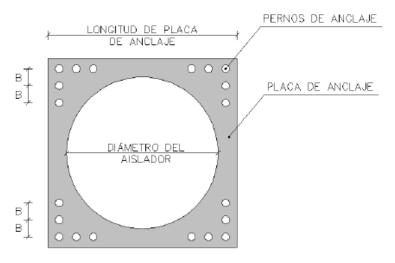


Figura 5: Vista en planta del aislador de bajo amortiguamiento.

También están los Aisladores Elastoméricos de Núcleo de Plomo (LRB), estos aisladores son similares a los LDRB pero incluyen un núcleo de plomo ubicado en el centro del aislador, que permite aumentar su rigidez inicial (proporciona restricción a la carga del viento) y aumenta la capacidad de disipación de energía mediante el incremento del nivel de amortiguamiento del sistema entre 25 y 30%. Al deformarse lateralmente el aislador durante la acción de un sismo, el núcleo de plomo fluye incurriendo en deformaciones plásticas, y disipando energía en forma de calor. Al término de la acción sísmica, la goma del aislador retorna la estructura a su posición original, mientras que el núcleo de plomo se recristaliza quedando en

condiciones similar al original para soportar un nuevo evento sísmico. (Mendo Rodríguez, 2015, pág. 20).

Las características que presenta este aislador es que su módulo de elasticidad de corte varía de 5 a 7 Kg/cm² para una deformación al corte del 100%, la variación de sus propiedades no son significativas como ocurre con los aisladores tipo HDRB, debido a que la máxima deformación de corte no es mayor a 200% (varía de 125% a 200%), la respuesta histerética que presenta es fuertemente dependiente del desplazamiento lateral. Tienen también una alta rigidez inicial, debido a que el esfuerzo de fluencia del plomo alcanza valores que varían alrededor de 105 Kg/cm2, su esfuerzo de fluencia se reduce con ciclos repetidos debido al aumento de temperatura. Típicamente el núcleo de plomo abarca del 15 al 33% del diámetro total del aislador. Las ventajas que proporciona este aislador es que el plomo es un material que tiene alta rigidez horizontal antes de alcanzar su fluencia y presenta un comportamiento perfectamente plástico después de su fluencia, el plomo es un material en el cual se producen los procesos de recuperación y recristalización, esto ocurre simultáneamente a temperatura ambiente, por lo que puede recuperar sus propiedades mecánicas luego de una acción inelástica. Las propiedades mecánicas del núcleo de plomo no presentan cambios significativos durante el periodo de vida útil de las estructuras (50 años).

Las desventajas de este aislador es que los incrementos de temperatura ambientales pueden afectar su rigidez horizontal, así como el incremento de la carga axial también afecta su rigidez horizontal haciendo que esta disminuya.

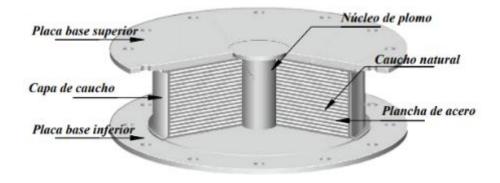


Figura 6: Aislador elastomérico con núcleo de plomo LRB (Bridgestone, 2013).

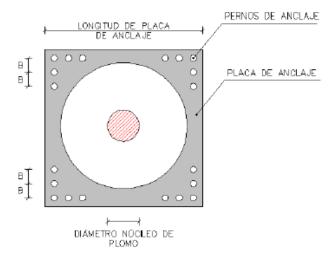


Figura 7: Detalle del aislador con núcleo de plomo visto en planta.

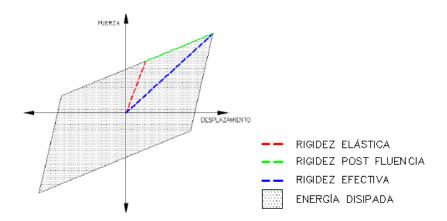


Figura 8: Diagrama de Histéresis para un aislador con núcleo de plomo.

Por último están los Aisladores Elastoméricos de Alto Amortiguamiento (HDRB), estos aisladores al igual que los de bajo amortiguamiento están compuestos por una serie de placas de acero y goma intercaladas, con la diferencia que a estos se le han adicionado compuestos químicos como carbón en polvo, aceites, resinas u otros polímeros al caucho para mejorar su capacidad de amortiguamiento, rigidez, disipación y flexibilidad. La razón de amortiguamiento crítico es de 10% a 20% para una deformación de corte igual al 100%, su módulo de elasticidad al corte varía de 17 a 64 Kg/cm2, el amortiguamiento efectivo de este aislador depende de los elastómeros, de la presión de contacto, la velocidad de carga y de los incrementos de temperatura ambiente.

Una característica importante de estos aisladores es que sus propiedades dinámicas son sensibles a los cambios de frecuencia y temperatura que generan reducción de rigidez y amortiguamiento. Por ejemplo, cuando los dispositivos están sujetos a ciclos de movimiento, presentan mayor rigidez para los primeros ciclos de carga, que generalmente se estabilizan luego del tercer ciclo de carga. Por lo tanto, su comportamiento inicial puede ser apreciablemente diferente bajo distintos ciclos de carga y deformación, siendo sus propiedades iniciales recuperables en el tiempo (horas o días) (*Mendo Rodríguez, 2015, pág. 18-19*).

Las ventajas que proporciona el usar este tipo de aislador es que combinan la flexibilidad y disipación de energía en un solo elemento, por el lado de la fabricación, son relativamente sencillos de fabricar.

Una de las principales desventajas de estos aisladores es que a elevadas temperaturas su rigidez horizontal y su amortiguamiento decrecen, también al incrementar la carga axial, su rigidez horizontal tiende a disminuir.

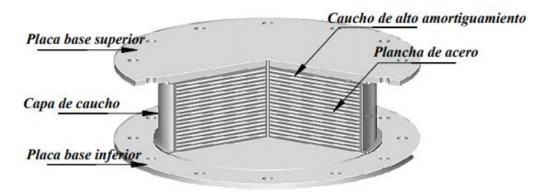


Figura 9: Aislador elastomérico de alto amortiguamiento HDRB (Bridgestone, 2013).

1.2. Formulación del problema

¿Qué tipo de aislador elastomérico: De bajo amortiguamiento, con Núcleo de Plomo y de Alto Amortiguamiento genera la mejor respuesta estructural en el bloque C del edificio de la Nueva Sede del Poder Judicial?

1.3. Objetivos

1.3.1. Objetivo general

Determinar la respuesta estructural del bloque C del edificio de la Nueva Sede del Poder Judicial utilizando 3 tipos de aisladores elastoméricos: De bajo amortiguamiento, con núcleo de plomo y del alto amortiguamiento.

1.3.2. Objetivos específicos

- Determinar la respuesta estructural del edificio sin incorporar aisladores elastoméricos utilizando el programa ETABS v16 educacional.
- Determinar la respuesta estructural del edificio al incorporar aisladores elastoméricos de bajo amortiguamiento utilizando el programa ETABS v16 educacional.
- Calcular la respuesta estructural del edificio al incorporar aisladores elastoméricos con núcleo de plomo utilizando el programa ETABS v16 educacional.
- Hallar la respuesta estructural del edificio al incorporar aisladores elastoméricos de alto amortiguamiento utilizando el programa ETABS v16 educacional.
- Comparar la respuesta estructural de los aisladores y elegir el que mejor comportamiento tiene.

1.4. Hipótesis

La mejor respuesta estructural en el bloque C del edificio de la Nueva Sede del Poder Judicial la presenta el aislador con núcleo de plomo.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

La investigación es no experimental, descriptiva y transversal en donde se realiza un análisis comparativo del comportamiento estructural de un bloque de la nueva sede del Poder Judicial, utilizando y obviando aisladores sísmicos elastoméricos.

2.2. Diseño de Investigación

Con el diseño de investigación se obtendrá toda la información necesaria para aceptar o rechazar la hipótesis planteada.

Esta investigación es no experimental, de diseño transversal, descriptivo. Es no experimental porque las variables no se pueden manipular y transeccional ya que la recolección de datos se hará en un solo tiempo.

La investigación no experimental es la que se realiza sin manipular deliberadamente las variables, lo que se hace en este tipo de investigación es observar fenómenos tal y como se dan en su contexto natural, para después analizarlos. (Hernández, Fernández y Baptista, 2003).

Los estudios no experimentales pueden ser de dos tipos, transeccionales y longitudinales. Los diseños de investigación transeccional o transversal recolectan datos en un solo momento, en un tiempo único. Su propósito es describir variables y analizar su incidencia e interrelación en un momento dado. (Hernández, Fernández y Baptista, 2003, p.270).

JNIVERSIDAD

Variables de Estudio

Independiente: Aislador Elastomérico de Bajo Amortiguamiento, de Alto

Amortiguamiento y con Núcleo de Plomo.

Dependiente: Respuesta Estructural.

Población y muestra 2.4.

a) Población:

Nueva Sede del Poder Judicial, Distrito Cajamarca. Se escogió esta población

ya que representa a un edificio importante del Distrito de Cajamarca el cual va

a albergar una gran cantidad de personas (Ver figura 10).

b) Muestra:

El Bloque C de la Nueva Sede del Poder Judicial, Distrito Cajamarca. Se eligió

este bloque porque presenta irregularidades tanto en altura como en planta: En

altura presenta irregularidad de masa y peso e irregularidad geométrica vertical

y en planta tiene irregularidad de esquinas entrantes, además este bloque fue

elegido ya que presenta un área de 685.83 m2 siendo este uno de los más

grandes e importantes entre los otros bloques, su sistema estructural es de

muros estructurales de 18 cm de espesor y su cimentación es una platea con

vigas en su interior para que soporte la malla de refuerzo que tendrá en la parte

superior.

La estructura se encuentra ubicada en la Manzana B, Lote 02, Habilitación

urbana Bellavista, Sector Bellavista, de la ciudad, distrito, provincia y

departamento de Cajamarca (Ver Anexo 2).

El método empleado para sacar la muestra fue el No Probabilístico.

24

La presente figura es un croquis del edificio del Poder Judicial realizado por la empresa Hurteco SRL; ahí se pueden apreciar los diferentes bloques que lo conforman.

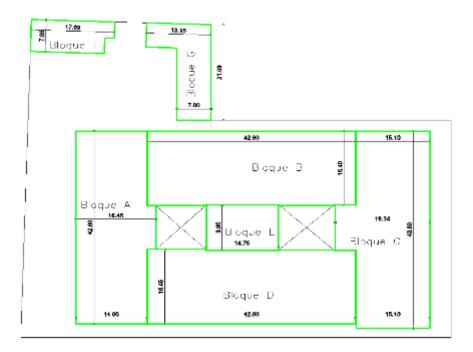


Figura 10: Ubicación de Bloques del Poder Judicial.

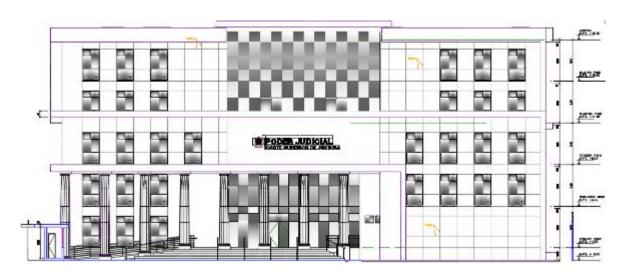


Figura 11: Elevación del Bloque C

2.5. Técnicas e instrumentos de recolección y análisis de datos

a) Técnicas e instrumentos de recolección de datos:

La técnica para la recolección de datos es la Recopilación Documental ya que la información que se necesitará como las características de los materiales y los planos de arquitectura y estructuras están de manera física y virtual en el expediente técnico, para esta investigación el instrumento de recolección de datos es la observación directa.

b) Técnicas e instrumentos de análisis de datos:

Como técnica de análisis de datos tenemos el análisis descriptivo por cada variable ya que estos van a describir los datos, valores para cada variable y como instrumentos para analizar la información se utilizaron los softwares como ETABS v.2016 versión educacional, Excel y AutoCad ya que con ellos se nos hará más fácil el desarrollo de la investigación.

El instrumentos de análisis de datos es el programa Excel donde se procesaron los datos y así se pudo calcular los desplazamientos y aceleraciones para el edificio diseñado con y sin aisladores elastoméricos mediante el uso del programa ETABS v16 educacional.

2.6. Procedimiento

A continuación se muestra la carta de autorización de uso de información por parte del Representante Legal de la empresa Hermanos Urteaga Contratistas SRL (Hurteco SRL) el Ingeniero Horacio Urteaga Becerra.

CARTA DE AUTORIZACIÓN DE USO DE INFORMACIÓN DE EMPRESA

Yo HORACIO URTEAGA BECERRA, identificado con DNI 26608585, en mi calidad de Representante Legal de la empresa Hermanos Urteaga Contratistas SRL (HURTECO SRL) con R.U.C N° 26608585, ubicada en el Jr. La Mar N°239 de la ciudad de Cajamarca;

OTORGO LA AUTORIZACIÓN,

Al señor Johnny Jean Pierre Castillo Gallardo, identificado con DNI Nº 73472718, egresado de la Carrera profesional de Ingeniería Civil para que utilice la siguiente información de la empresa: EXPEDIENTE TÉCNICO DEL PROYECTO: "MEJORAMIENTO DE LOS SERVICIOS DE ADMINISTRACIÓN DE JUSTICIA DE LOS ÓRGANOS JURISDICCIONALES E IMPLEMENTACION DEL NCPP EN LA SEDE DEL DISTRIO JUDICIAL DE CAJAMARCA"; en lo referente a:

Especificaciones Técnicas, planos de arquitectura, estructuras y otros documentos y/o datos que sean necesarios para la realización de dicha investigación; con la finalidad de que pueda desarrollar su Tesis para optar el Titulo Profesional.

Adjunto a esta carta, está la siguiente documentación: (X) Ficha RUC

Indicar si el Representante que autoriza la información de la empresa, solicita mantener el nombre o cualquier distintivo de la empresa en reserva, marcando con una "X" la opción seleccionada. (X) Mencionar el nombre de la empresa.

> Firma y sello del Representante Legal DNI: 26608585

TRATECNA

El Egresado/Bachiller declara que los datos emitidos en esta carta y en el Trabajo de Investigación, en la Tesis son auténticos. En caso de comprobarse la falsedad de datos, el Egresado será sometido al inicio del procedimiento disciplinario correspondiente; asimismo, asumirá toda la responsabilidad ante posibles acciones legales que la empresa, otorgante de información, pueda ejecutar.

Firma del Egresado DN: 73472718

a) Procedimiento de recolección de datos

Los procedimientos que se utilizaron para recolectar los datos fueron los siguientes:

- ✓ Se realizó la revisión bibliográfica en libros, artículos, revistas, tesis, con respecto al tema en estudio.
- Para recoger la información se utilizó la técnica de Recopilación Documental la cual se obtuvo el expediente técnico "Mejoramiento de los Servicios de Administración de Justicia de los Órganos Jurisdiccionales e Implementación del NCPP en LA Sede del Distrito Judicial de Cajamarca", ya que este contiene los planos y especificaciones técnicas de los materiales que se usará para el modelado de la estructura y su posterior análisis, siendo estos autorizados por la empresa Hurteco SRL.

A continuación se presentan los datos que se extrajeron del expediente técnico.

Tabla 1: Ficha de recolección de datos.

DESCRIPCIÓN	SÍMBOLO	VALOR	OBSERVACIÓN	NORMA E.030
FACTOR DE ZONA	Z	0.35	Av. La Alameda - Complejo Qhapac Ñam - Cajamarca	Tabla Número 1
FACTOR DE IMPORTANCIA	U	1	Categoría "C". Oficinas	Tabla Número 5
FACTOR DE AMPLIFICACIÓN SÍSMICA	С	Variable	Función de TL y TP	Ítem 2.5
FACTOR DE SUELO	S	1.15	Z3/S2 (Zona Sísmica 3/Suelo Intermedio)	Tabla Número 3
COEFICIENTE BÁSICO DE REDUCCIÓN	Ro	6	Sistema (Muros Estructurales)	Tabla Número 7
FACTOR DE IRREGULARIDAD EN ALTURA	la	0.9	Irregularidad de Masa y Peso y Geometría Vertical	Tabla Número 8
FACTOR DE IRREGULRIDAD EN PLANTA	lp	0.9	Irregularidad de Esquinas Entrantes	Tabla Número 9
COEFICIENTE DE REDUCCIÓN FINAL	Rx, Ry	4.86	R = Ro. Ia. Ip	Ítem 3.8
GRVEDAD	g	9.81	-	-
PERIODO QUE DEFINE EL INICIO DE LA ZONA DEL ESPECTRO CON DESPLAZAMIENTOS CONSTANTES	TL	2	Periodos (seg)	Tabla Número 4
PERIODO QUE DEFINE LA PLATAFORMA DE LA ESTRUCTURA	TP	0.6	Periodos (seg)	Tabla Número 4
COEFECIENTE PARA ESTIMAR EL PERIODO FUNDAMENTAL DEL EDIFICIO	СТ	60	Muros Estructurales	Item 4.5.4
ALTURA TOTAL DE LA EDIFICACIÓN	Hn	17.5	-	-

2.6.1. Características de los materiales.

A continuación se indican las características físico – mecánicas de los materiales a emplearse para la construcción de dicho edificio.

2.6.1.1. Concreto Armado.

• Resistencia a la compresión del concreto :

$$f'c = 210.0 \text{ kg/cm}^2$$

• Módulo de elasticidad del concreto :

$$E_c = 15000 \text{ f}'c^{0.5}$$

$$E_{c-210} = 218819.79 \text{ kg/cm}^2$$

$$E_{c-210} = 252671.33 \text{ kg/cm}^2$$

• Peso específico del concreto armado :

$$\gamma = 2400.0 \text{ kg/m}^3$$

Relación de Poisson del concreto

$$\mu = 0.15$$

• Esfuerzo de fluencia del acero de refuerzo :

 4200.0 kg/cm^2

2.6.1.2. Acero Estructural ASTM A36 (Planchas y Perfiles)

• Peso unitario : $\gamma = 7850.0 \text{ kg/m}^3$

• Módulo de elasticidad : $E = 2.10 \times 10^6 \text{ kg/cm}^2$

• Relación de Poisson : $\mu = 0.30$

• Módulo de corte : $G = 8 \times 10^5 \text{ kg/cm}^2$

• Esfuerzo de fluencia : $F_v = 2530.0 \text{ kg/cm}^2$

• Resistencia a la fractura : $F_u = 4080.0 \text{ kg/cm}^2$

2.6.1.3. Pernos.

Pernos A307 (G2): Pernos de anclaje.

• Esfuerzo de Fluencia : $F_v = 2530.0 \text{ kg/cm}^2$

• Resistencia a la Fractura : $F_u = 4080.0 \text{ kg/cm}^2$

Pernos A325 (G5): Pernos para conexión entre elementos metálicos.

• Esfuerzo de Fluencia : $F_y = 4600.0 \text{ Kg/cm}^2$

• Resistencia a la Fractura : $F_u = 8040.0 \text{ Kg/cm}^2$

2.6.1.4. Soldadura.

Soldadura al arco con electrodo protegido.

• Resistencia a la Fractura E7018 : $F_{eex} = 4900.0 \text{ Kg/cm}^2$

2.6.2. Cargas de Análisis

2.6.2.1. Cargas Permanentes – D (E.020 – 2006)

Las cargas permanentes o también llamadas cargas muertas corresponden al peso propio de los elementos estructurales y también cualquier elemento que permanezca fijo a la estructura.

A continuación se indican las cargas permanentes que se van a considerar para el diseño del edificio:

Peso de la estructura:

El peso de los elementos estructurales se determina mediante el producto de las secciones transversales de estos elementos por el peso específico del material.

Tabla 2:
Pesos específicos de los materiales.

MATERIAL	VALOR
Concreto Armado	2.400 Tn/m^3
Acero Estructural	7.850 Tn/m^3
Albañilería de unidades de arcilla cocidas huecas	$1.350~\mathrm{Tn/m^3}$
Albañilería de unidades de arcillas cocida sólidas	$1.800~\mathrm{Tn/m^3}$
Piso Terminado	$0.100\;Tn/m^2$
Peso de cobertura de policarbonato	0.005 Tn/m^2

La tabla muestra los valores de los pesos específicos para los materiales de la estructura.

2.6.2.2. Cargas Vivas – L (E.020 - 2006)

Las cargas vivas corresponden a todos los objetos de ocupación o uso dentro de la estructura.

Tabla 3:

Cargas Vivas de Objetos de Ocupación.

OBJETOS DE OCUPACIÓN	CARGA VIVA
Techos con inclinación hasta 3° respecto a la horizontal.	$0.100~\rm Tn/m^2$
Techos con cobertura liviana.	$0.030\;Tn/m^2$
Corredores, salas de espera, escaleras, salas de audiencia.	$0.400~\text{Tn/m}^2$
Almacenes, archivos modulares, cafetería.	$0.500\;Tn/m^2$
Oficinas	$0.250\ Tn/m^2$

La tabla muestra los valores de las cargas vivas para diferentes objetos que ocupan la estructura.

2.6.2.3. Carga de Sismo

Para considerar las cargas sísmicas en la estructura se ha generado espectros de pseudo aceleraciones de acuerdo a la norma peruana de Diseño Sismo resistente E.030 2016.

b) Procedimiento de análisis de datos

Los datos que se obtendrán van hacer procesados en hojas de cálculo para luego calcular los desplazamientos, derivas y aceleraciones con un modelo de análisis sísmico para los casos de empotramiento y aisladores de base, para ello se utilizarán los software como el ETABS educacional versión 2016 y Microsoft Excel.

Para los Procedimientos:

• Para el desarrollo de la Investigación:

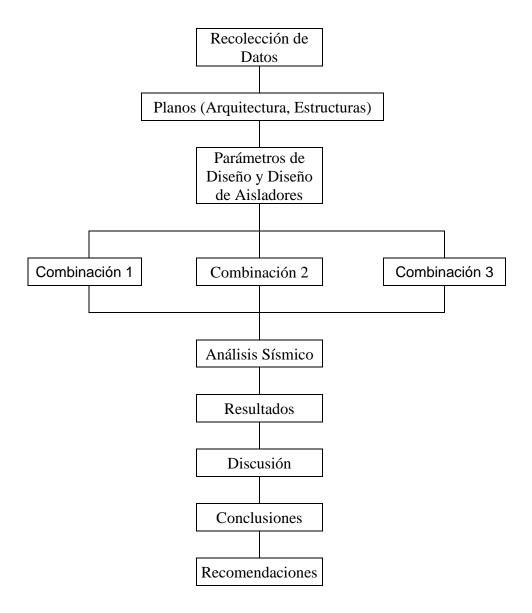


Figura 12: Procedimiento para el desarrollo de la investigación.

Para el Diseño de los Aisladores:

- 1°. Se obtienen los parámetros de diseño.
- 2°. Se calcula la rigidez horizontal del aislador.
- 3°. Se hallan los desplazamientos de diseño.
- 4º. Una vez calculados los desplazamientos de diseño se procede a calcular las alturas de las capas de caucho del aislador.
- 5°. Luego obtenidos las alturas de capas de caucho se calcula el área del aislador.
- 6°. Una vez obtenida el área se calcula el diámetro para luego calcular una nueva rigidez horizontal.
- 7°. Calculada la nueva rigidez horizontal se calcula el periodo real, seguidamente de el amortiguamiento compuesto.
- 8°. Obtenido el amortiguamiento compuesto se calcula un nuevo desplazamiento de diseño y se hace la verificación a cortante.
- 9°. Luego de eso se halla el factor de forma y el módulo de compresión para poder calcular la rigidez vertical y la frecuencia vertical del aislador así como su módulo de compresión.
- 10°. Obtenidos los parámetros anteriores se procede a calcular el coeficiente de seguridad al pandeo.
- 11°. Para el SMC se calcula a modificación del módulo de deformación a cortante, con ello se obtiene la rigidez horizontal y luego el periodo efectivo.
- 12°. Una vez calculado el periodo efectivo se calcula el desplazamiento máximo y el desplazamiento total, así como la verificación por volcamiento y rodadura.
- 13°. Por último se hace un cuadro resumen con todas las características finales de los aisladores.

• Para el modelo bilineal:

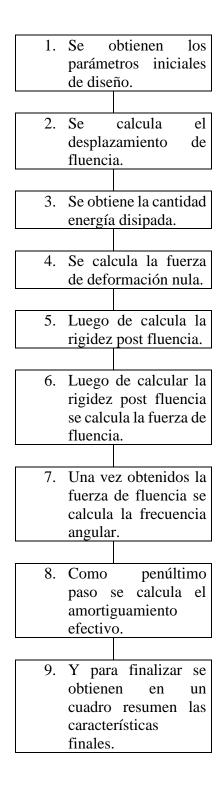


Figura 13: Procedimiento para el modelamiento bilineal.

Modelamiento en ETABS 2016 de la Estructura sin Aislar.

1. Ingresamos al programa ETABS 2016, creamos un nuevo modelo en "File – New Model", al momento que aparece el cuadro de "Model Initialization" hacemos click en "Use Built – in Settings With", elegimos las unidades "Metric MKS (metros, kilogramos, segundos)" y le damos la opción OK.

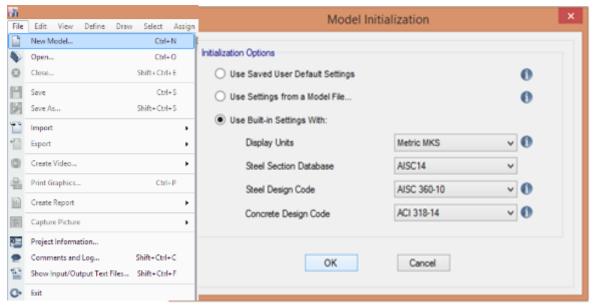


Figura 14: Ventana Principal del Programa ETABS.

2. Luego nos aparecerá el cuadro "New Model Quick Templates", para asignar los espaciamientos entre ejes tanto en "x – y" nos vamos a "Custon Grid Spacing – Specify Data for Grid Lines".

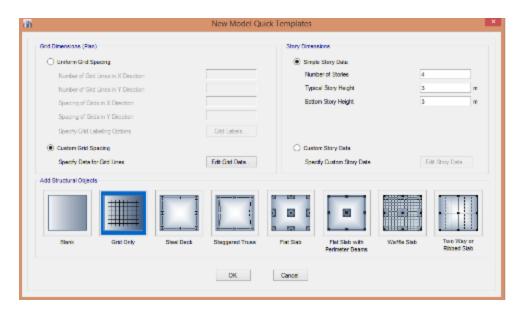


Figura 15: Cuadro para Medidas en planta y elevación ETABS 2016.

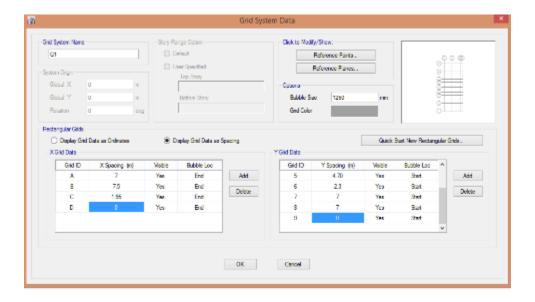


Figura 16: Medidas en Planta.

 Para poner la elevación nos vamos a "Custom Story Data – Specify Custom Story Data – Edit Story Data"

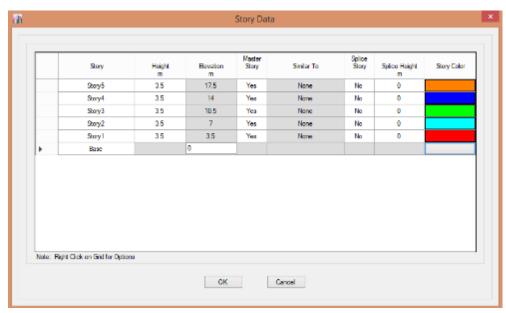


Figura 17: Medidas de Elevación en la Estructura

4. A continuación se muestra la estructura en planta en la parte izquierda y elevación 3D en la parte derecha.

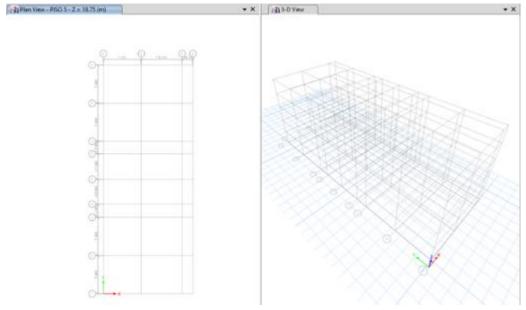


Figura 18: Plano en planta y elevación de la estructura.

5. Asignaremos las propiedades de los materiales en el ETABS, para ello vamos a "Define – Material Properties" para concreto ilustración 6 y para acero ilustración 7.

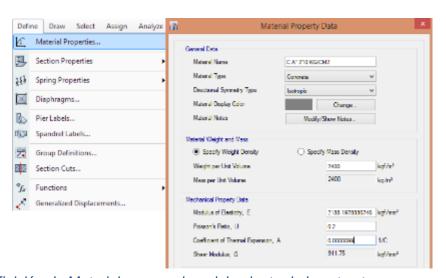


Figura 19: Definición de Materiales para el modelamiento de la estructura.

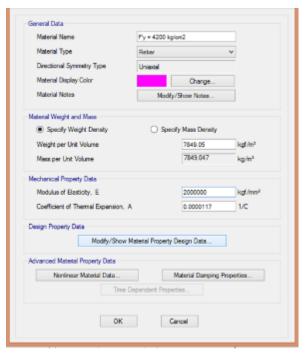


Figura 20: Definición de propiedades para acero de refuerzo.

6. Definiremos las dimensiones de los elementos estructurales que vamos a usar, para ello nos vamos a "Define – Section Properties – Frame Sections".

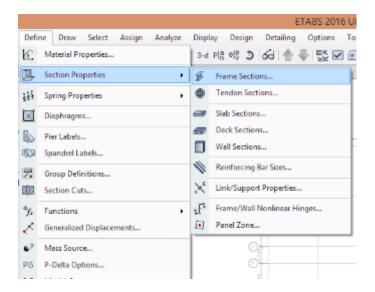


Figura 21: Definición de las secciones de los elementos estructurales.

RESPUESTA ESTRUCTURAL DEL BLOQUE "C" DEL EDIFICIO DE LA NUEVA SEDE DEL PODER JUDICIAL UTILIZANDO 3 TIPOS DE AISLADORES ELASTOMÉRICOS: DE BAJO AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DE ALTO AMORTIGUAMIENTO

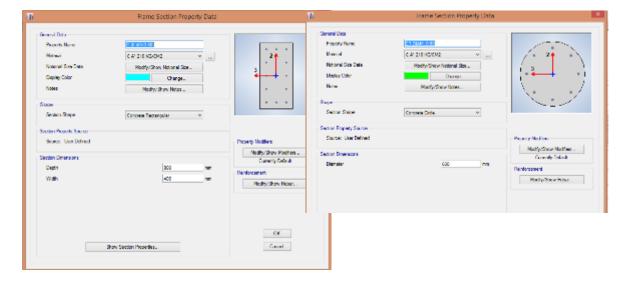


Figura 22: Dimensiones de columnas.

7. Asignación de los muros estructurales a la edificación, nos vamos a "DefineSection Properties – Wall Sections"

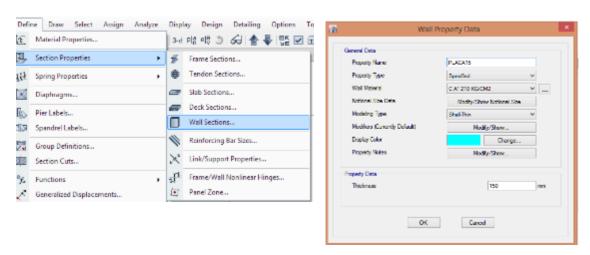


Figura 23: Asignación de los muros estructurales.

8. Asignación de cargas

a) Carga Muerta:

Peso Propio de la losa : 350 Kg/cm2
Piso Terminado : 100 Kg/cm2
Tabiquería Móvil : 100 Kg/cm2
TOTAL : 550 Kg/cm2

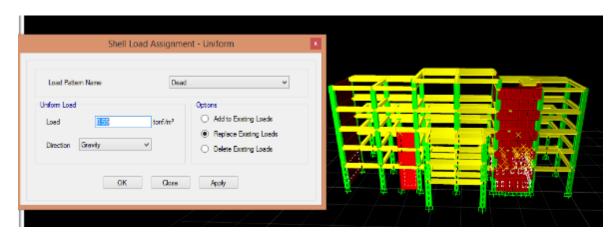


Figura 24: Ingreso de Cargas Muertas

9. Asignación de la Carga Viva.

Para las losas 1°, 2°, 3°, 4° y 5° piso se le asignarán una carga viva de 500 kg/cm2 (SALAS DE ARCHIVO).

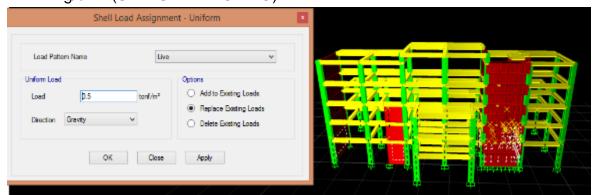


Figura 25: Asignación de carga viva de Salas de Archivos.

Para servicios higiénicos: 300 kg/cm2.

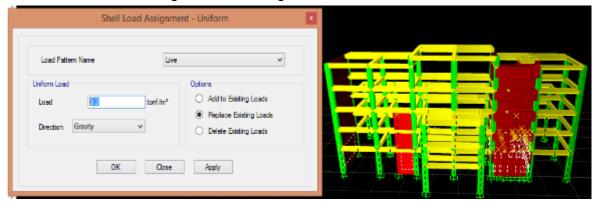


Figura 26: Carga viva para baños

Cargas de corredores y escaleras: 400 kg/cm2.

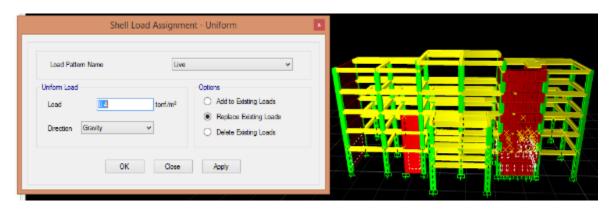


Figura 27: Carga vivas de corredores y escaleras.

10. Asignación de los Diafragmas Rígidos: Nos vamos a "DEFINE – DIAPHRAGMS" y asignamos un diafragma por cada piso.

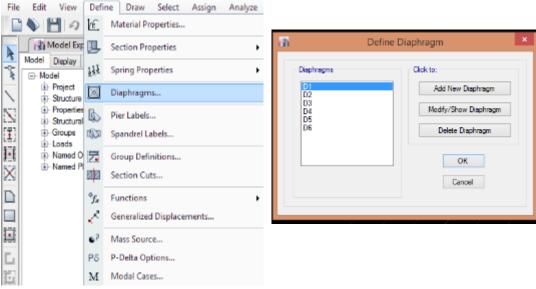


Figura 28: Diafragmas Rígidos.

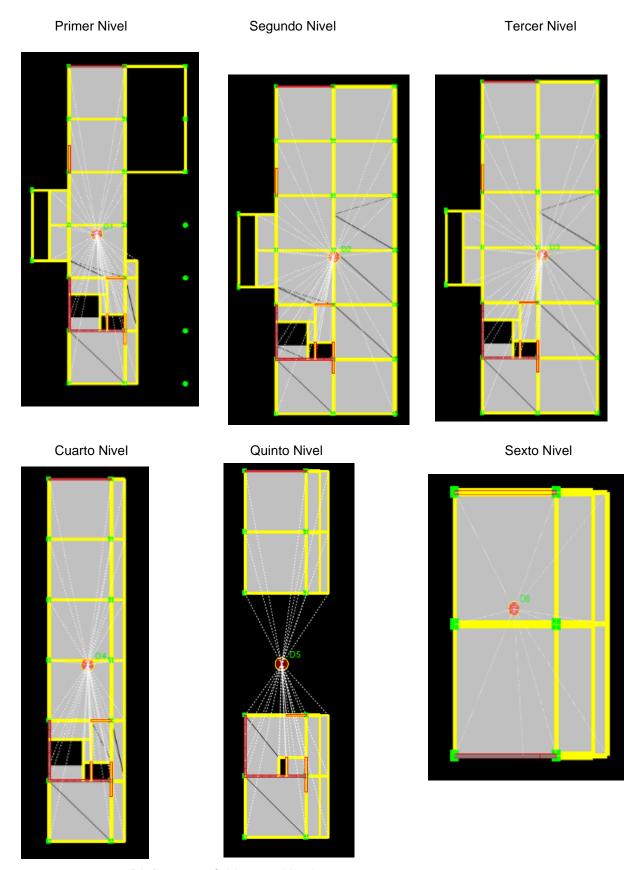


Figura 29: Diafragmas rígidos por Niveles.

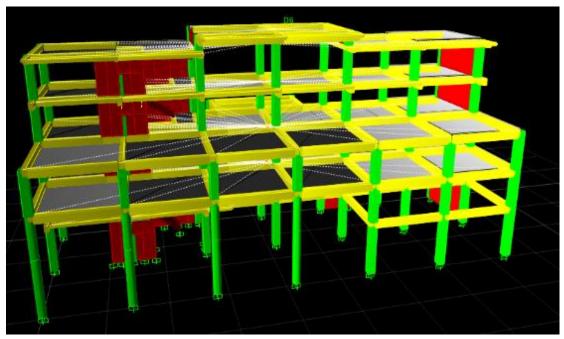


Figura 30: Vista en Isométrico de Diafragmas Rígidos

11. Definimos los pesos sísmicos para la estructura, nos vamos a "Define- Mass Source".

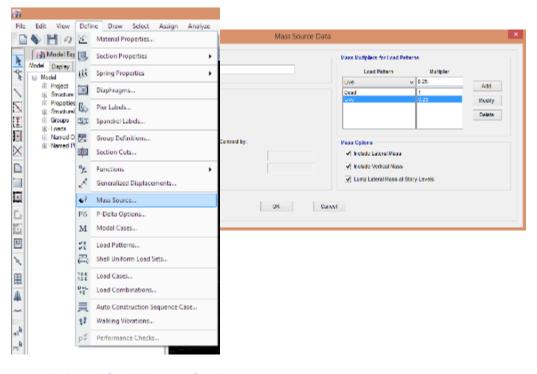


Figura 31: Asignación del peso sísmico.

12. Asignamos las Combinaciones de Cargas para la estructura, nos vamos a "Define – Load Combination".

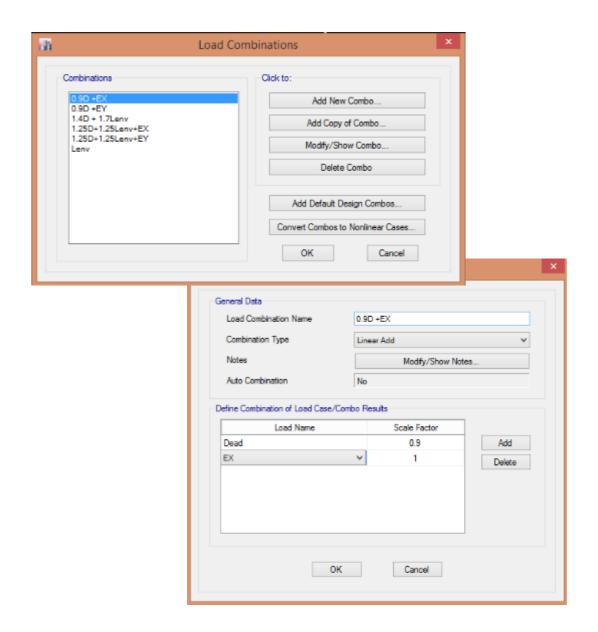


Figura 32: Combinaciones de cargas.

13. Asignamos los empotramientos en la base, para ello nos vamos a "ASSIGN – JOINT- RESTRAINTS".

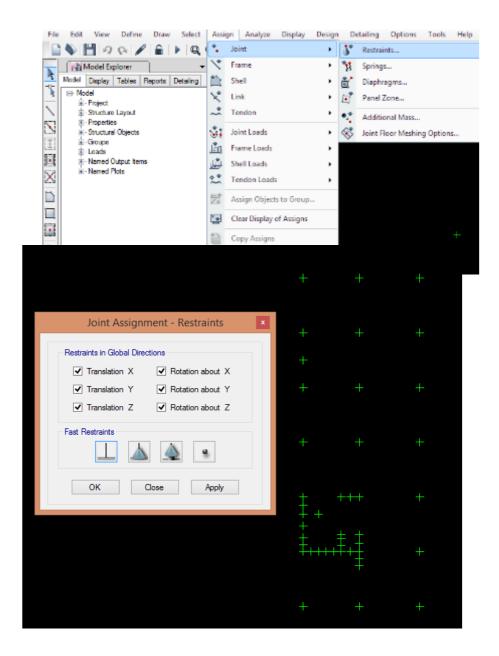


Figura 33: Empotramientos en la Base.

14. Análisis Estático

Definimos los sismos en "X e Y", vamos a "Define - Load Cases".

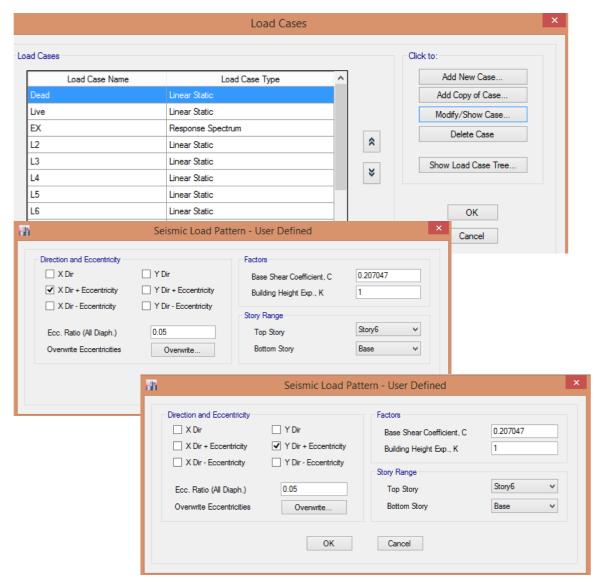


Figura 34: Sismo para "X e Y"

15. Análisis Dinámico: Definimos el Espectro de Diseño según la Norma Peruana E.030. Para ello nos vamos a "Define – Functions – Response Spectrum"

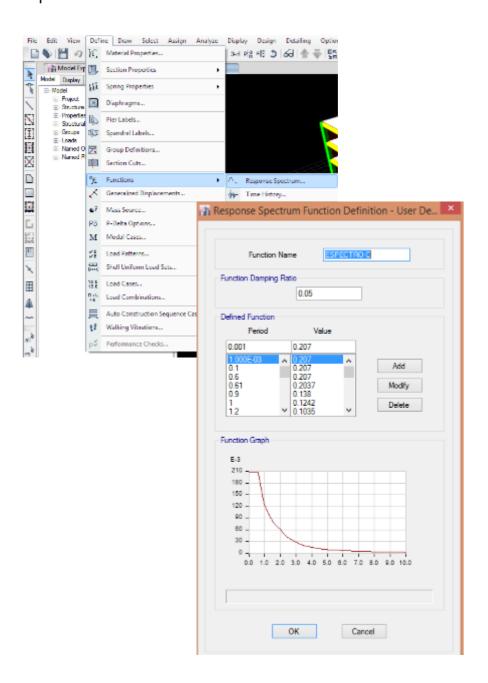


Figura 35: Espectro de Diseño.

 Asignamos el espectro en la Dirección X e Y con un 5% de excentricidad accidental y un factor de escala de 12.3981.

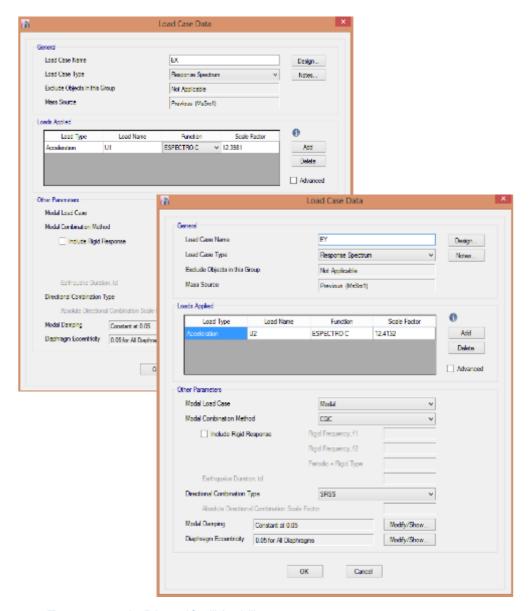


Figura 36: Espectro en la Dirección "X e Y"

16. Vista en 3D de la estructura Finalizada.

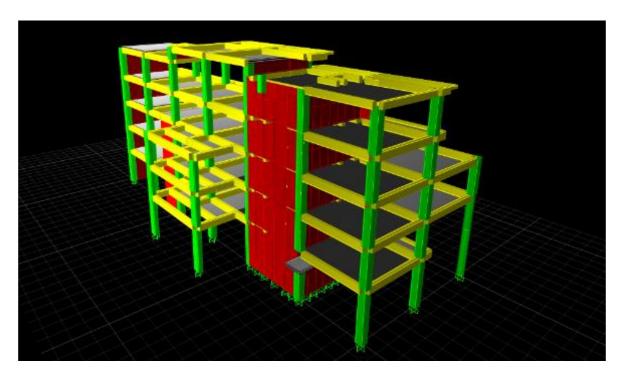


Figura 37: Estructura Finalizada

2.7. Aspectos Éticos

La investigación con respecto a los aspectos éticos salvaguarda la propiedad intelectual del autor, citándolos apropiadamente y precisando las fuentes bibliográficas en donde se encuentra lo referenciado.

Los planos y la información obtenida deben ser de total confidencialidad y privacidad ya que pertenece la empresa Hurteco SRI.

La Norma E031: Aislamiento Sísmico se ha usado como guía para el diseño de los aisladores sísmicos

CAPÍTULO III. RESULTADOS

3.1. Estructura Sin Aislamiento

a) Periodo Natural: El periodo natural de dicha estructura es de 0.378 seg.

Tabla 4:
Periodo Natural.

Case	Mode	Period (seg)
Modal	1	0.378
Modal	2	0.289
Modal	3	0.202
Modal	4	0.146
Modal	5	0.122
Modal	6	0.122
Modal	7	0.121
Modal	8	0.121
Modal	9	0.119
Modal	10	0.119
Modal	11	0.119
Modal	12	0.118
Modal	13	0.118
Modal	14	0.117
Modal	15	0.117

En la tabla se puede apreciar los periodos para cada modo de vibración de la estructura sin aislar.

b) Modos de Vibración

 Primer modo de vibración: T1 = 0.378 seg. Nos muestra una traslación en el eje Y.

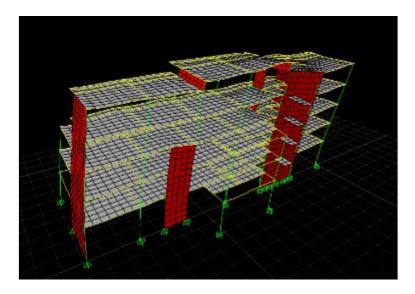


Figura 38: Primer modo de vibración sin aislamiento.

 Segundo modo de vibración: T2 = 0.289 seg. Nos muestra una traslación en el eje X.

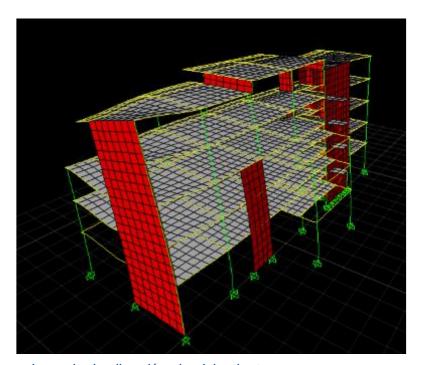


Figura 39: Segundo modo de vibración sin aislamiento.

 Tercer modo de vibración: T3 = 0.202 seg. Nos muestra una rotación.

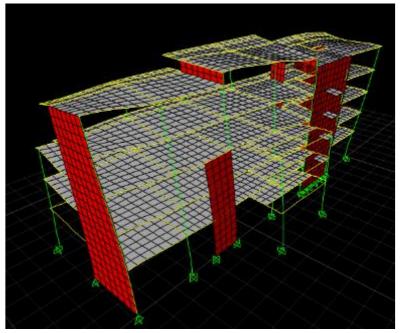


Figura 40: Tercer modo de vibración sin aislamiento

c) Desplazamientos

 Desplazamiento en X: El desplazamiento máximo en la dirección X es de 0.011503 m.

Tabla 5:

Desplazamientos en dirección X.

Piso	Dirección	Máximo (m)
Piso 6	Х	0.008775
Piso 5	X	0.011503
Piso 4	X	0.008989
Piso 3	X	0.006434
Piso 2	X	0.003988
Piso 1	Χ	0.001842

En la tabla se puede apreciar los desplazamientos máximos por piso para la dirección X.

 Desplazamiento en Y: El desplazamiento inelástico máximo en la dirección Y es de 0.014468 m.

Tabla 6:

Desplazamientos en dirección Y.

Piso	Dirección	Máximo (m)
Piso 6	Y	0.014468
Piso 5	Υ	0.013412
Piso 4	Υ	0.010391
Piso 3	Υ	0.008414
Piso 2	Υ	0.0053
Piso 1	Υ	0.002882

En la tabla se puede apreciar los desplazamientos máximos por piso para la dirección Y.

d) Derivas de Entrepiso

✓ La deriva máxima en la dirección X: Es de 0.002563 ≤ 0.007, cumple con lo especificado en la norma E.030.

Tabla 7:

Derivas Máximas en dirección X.

Piso	Carga	Dirección	Deriva Máx. (m)
Piso 6	EX Max	Х	0.000436
Piso 5	EY Max	X	0.00252
Piso 4	EX Max	X	0.002563
Piso 3	EX Max	X	0.002451
Piso 2	EX Max	X	0.002176
Piso 1	EX Max	Χ	0.001842

En la tabla se puede apreciar la deriva máxima por piso para la dirección X.

✓ La deriva máxima en la dirección Y: Es de 0.003122 ≤ 0.007, cumple con lo especificado en la norma E.030.

Tabla 8: Derivas Máximas en dirección Y.

Piso	Carga	Dirección	Deriva Máx. (m)
Piso 6	EY Max	Υ	0.00109
Piso 5	EY Max	Υ	0.002694
Piso 4	EY Max	Υ	0.002799
Piso 3	EY Max	Υ	0.003122
Piso 2	EY Max	Υ	0.002664
Piso 1	EY Max	Υ	0.002882

En la tabla se puede apreciar la deriva máxima por piso para la dirección Y.

e) Peso de la Estructura: El peso total de la estructura es de 904.78 Tn.

Tabla 9:
Peso total de la estructura.

Piso	Mass X
Piso 1	16.77061
Piso 2	25.48372
Piso 3	25.59494
Piso 4	15.42712
Piso 5	5.93759
Piso 6	3.01649
TOTAL	92.23047

En la tabla se puede apreciar los pesos por piso y el peso total de la estructura.

f) Fuerzas por Piso:

Análisis Dinámico:

✓ Para Dirección XX.

Tabla 10: Fuerzas en Dirección XX.

Story	Load Case/Combo	Location	P tonf	VX tonf	VY tonf
Story6	EX Max	Тор	3.18	45.3162	13.3663
Story6	EX Max	Bottom	2.5789	45.7001	12.1423
Story5	EX Max	Top	16.4588	124.5836	33.0968
Story5	EX Max	Bottom	16.6444	136.2927	36.403
Story4	EX Max	Тор	18.606	247.4362	68.4531
Story4	EX Max	Bottom	18.7495	256.7073	71.2958
Story3	EX Max	Top	20.2433	389.3645	110.9619
Story3	EX Max	Bottom	20.3071	397.1188	113.204
Story2	EX Max	Top	22.6731	491.5099	140.1159
Story2	EX Max	Bottom	22.7162	496.5525	141.4226
Story1	EX Max	Тор	23.4193	529.964	149.6404
Story1	EX Max	Bottom	23.4725	532.2837	150.1974

En la tabla se puede apreciar las fuerzas por piso en la dirección X.

✓ Para Dirección YY.

Tabla 11: Fuerzas en Dirección YY.

01	Load	1 1	Р	VX	VY
Story	Case/Combo	Location	tonf	tonf	tonf
Story6	EY Max	Тор	2.0248	11.3011	51.1064
Story6	EY Max	Bottom	1.097	11.3446	44.9752
Story5	EY Max	Тор	3.2838	32.9805	121.7026
Story5	EY Max	Bottom	3.3463	37.0119	133.3854
Story4	EY Max	Тор	6.0344	67.5436	246.4517
Story4	EY Max	Bottom	6.0186	71.2337	256.0989
Story3	EY Max	Тор	10.2183	110.6445	392.7283
Story3	EY Max	Bottom	10.234	113.4165	400.5642
Story2	EY Max	Тор	12.5297	139.8114	496.2267
Story2	EY Max	Bottom	12.557	141.4439	501.0491
Story1	EY Max	Top	14.1664	149.6986	531.4286
Story1	EY Max	Bottom	14.1952	150.3815	533.5918

En la tabla se puede apreciar las fuerzas por piso en la dirección X.

3.2. Estructura Aislada

3.2.1. Aisladores de Bajo Amortiguamiento del tipo LDRB.

a) Periodo Natural: El periodo natural de dicha estructura es de 2.114 seg.

Tabla 12:
Periodos de la estructura con aisladores LDRB.

Case	Mode	Period (seg)
Modal	1	2.114
Modal	2	2.097
Modal	3	1.872
Modal	4	0.263
Modal	5	0.197
Modal	6	0.191
Modal	7	0.186
Modal	8	0.179
Modal	9	0.164
Modal	10	0.16
Modal	11	0.146
Modal	12	0.141

En la tabla se puede apreciar los periodos para cada modo de vibración de la estructura aislada con tipo LDRB.

b) Modos de Vibración

 Primer modo de vibración: T1 = 2.114 seg. Nos muestra una traslación en el eje Y.

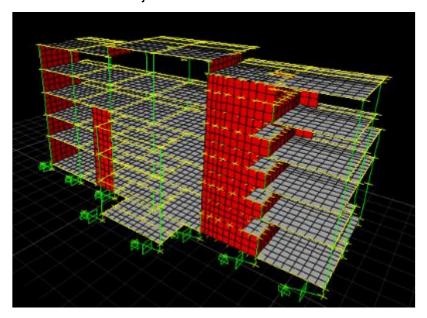


Figura 41: Primer modo de vibración con aislador LDRB.

 Segundo modo de vibración: T2 = 2.097 seg. Nos muestra una traslación en el eje X.

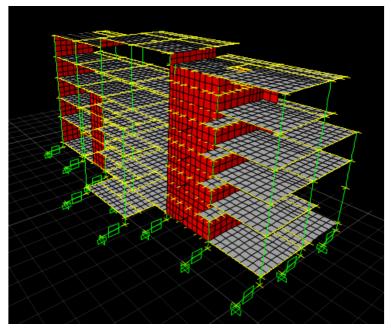


Figura 42: Segundo modo de vibración con aislador LDRB.

 Tercer modo de vibración: T3 = 1.872 seg. Nos muestra una rotación.

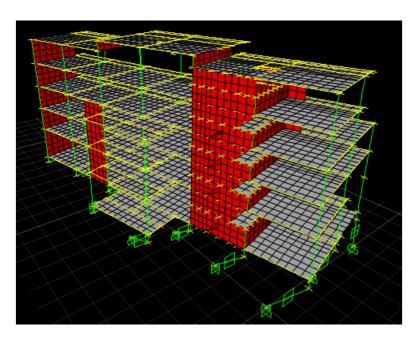


Figura 43: Tercer modo de vibración con aislador LDRB.

c) Desplazamientos

• **Desplazamiento en X:** El desplazamiento máximo en la dirección X es de 0.143818 m.

Tabla 13:

Desplazamientos de dirección X.

Piso	Diafragma	Load Case/Combo	UX
Piso 6	D6	Des.Inelásticos X Max	0.143155
Piso 5	D5	Des.Inelásticos X Max	0.143818
Piso 4	D4	Des.Inelásticos X Max	0.142432
Piso 3	D3	Des.Inelásticos X Max	0.141862
Piso 2	D2	Des.Inelásticos X Max	0.140797
Piso1	D1	Des.Inelásticos X Max	0.140101
Capitel	Dcapitel	Des.Inelásticos X Max	0.137885

En la tabla se puede apreciar los desplazamientos máximos por piso para la dirección X.

 Desplazamiento en Y El desplazamiento máximo en la dirección Y es de 0.146469 m.

Tabla 14:

Desplazamientos en dirección Y.

Piso	Diafragma	Load Case/Combo	UY
Piso 6	D6	Des.Inelásticos Y Max	0.146469
Piso 5	D5	Des.Inelásticos Y Max	0.145981
Piso 4	D4	Des.Inelásticos Y Max	0.144454
Piso 3	D3	Des.Inelásticos Y Max	0.141582
Piso 2	D2	Des.Inelásticos Y Max	0.13999
Piso1	D1	Des.Inelásticos Y Max	0.140183
Capitel	Dcapitel	Des.Inelásticos Y Max	0.13599

En la tabla se puede apreciar los desplazamientos máximos por piso para la dirección Y.

d) Derivas de Entrepiso

✓ La deriva máxima en la dirección X: Es de 0.000906 ≤ 0.007, cumple con lo especificado en la norma E.030.

Tabla 15:

Derivas en dirección X.

Piso	Load Case/Combo	Dirección	Deriva
Piso 6	Des.Inelásticos X Max	Х	0.000208
Piso 5	Des.Inelásticos X Max	Χ	0.000308
Piso 4	Des.Inelásticos X Max	Χ	0.000318
Piso 3	Des.Inelásticos X Max	Χ	0.000316
Piso 2	Des.Inelásticos X Max	Χ	0.000533
Piso1	Des.Inelásticos X Max	Χ	0.000906

En la tabla se puede apreciar la deriva máxima por piso para la dirección X.

✓ La deriva máxima en la dirección Y: Es de 0.001075 ≤ 0.007, cumple con lo especificado en la norma E.030.

Tabla 16: Derivas en dirección Y.

Piso	Load Case/Combo	Dirección	Deriva
Piso 6	Des.Inelásticos Y Max	Y	0.000408
Piso 5	Des.Inelásticos Y Max	Υ	0.00044
Piso 4	Des.Inelásticos Y Max	Υ	0.000466
Piso 3	Des.Inelásticos Y Max	Υ	0.000541
Piso 2	Des.Inelásticos Y Max	Υ	0.000518
Piso1	Des.Inelásticos Y Max	Υ	0.001075

En la tabla se puede apreciar la deriva máxima por piso para la dirección Y.

Análisis Dinámico:

✓ Para Dirección XX.

Tabla 17:

Fuerzas en dirección XX.

Story	Load Case/Combo	Location	P	VX	VY
			tonf	tonf	tonf
Story6	EX Max	Тор	0.0462	7.7805	0.3414
Story6	EX Max	Bottom	0.0402	7.6287	0.3453
Story5	EX Max	Тор	0.126	21.9069	0.8439
Story5	EX Max	Bottom	0.1256	24.4621	0.9164
Story4	EX Max	Тор	0.2139	50.969	1.5856
Story4	EX Max	Bottom	0.2114	53.8467	1.633
Story3	EX Max	Тор	0.35	98.5007	2.4641
Story3	EX Max	Bottom	0.3471	101.767	2.4791
Story2	EX Max	Тор	0.4332	147.2613	3.0529
Story2	EX Max	Bottom	0.4305	150.5039	3.0489
Story1	EX Max	Тор	0.4474	179.6701	3.1016
Story1	EX Max	Bottom	0.4438	184.6462	3.09

En la tabla se puede apreciar las fuerzas por piso en la dirección X.

✓ Para Dirección YY.

Tabla 18:

Fuerzas en dirección YY.

Story	Load	Location	Р	VX	VY
•	Case/Combo		tonf	tonf	tonf
Story6	EY Max	Тор	0.0405	0.3136	7.8804
Story6	EY Max	Bottom	0.2297	0.3111	6.2991
Story5	EY Max	Top	0.2336	0.8914	20.6798
Story5	EY Max	Bottom	0.2345	0.9794	23.2387
Story4	EY Max	Top	0.1058	1.7504	51.1945
Story4	EY Max	Bottom	0.0939	1.796	54.0524
Story3	EY Max	Top	0.17	2.5269	98.2029
Story3	EY Max	Bottom	0.162	2.5396	101.4352
Story2	EY Max	Top	0.2344	2.9145	146.1661
Story2	EY Max	Bottom	0.2272	2.8989	149.3596
Story1	EY Max	Top	0.2637	3.0884	178.0516
Story1	EY Max	Bottom	0.2581	3.0446	182.9216

En la tabla se puede apreciar las fuerzas por piso en la dirección Y.

3.2.2. Aisladores de Alto Amortiguamiento del tipo HDR.

a) Periodo Natural: El periodo natural de dicha estructura es de 2.158 seg.

Tabla 19:
Periodos de la estructura con aisladores HDR.

Case	Mode	Period (seg)
Modal	1	2.158
Modal	2	2.141
Modal	3	1.911
Modal	4	0.263
Modal	5	0.197
Modal	6	0.191
Modal	7	0.186
Modal	8	0.179
Modal	9	0.164
Modal	10	0.16
Modal	11	0.146
Modal	12	0.141

En la tabla se puede apreciar los periodos para cada modo de vibración de la estructura aislada del tipo HDR.

b) Modos de Vibración

 Primer modo de vibración: T1 = 2.158 seg. Nos muestra una traslación en el eje Y.

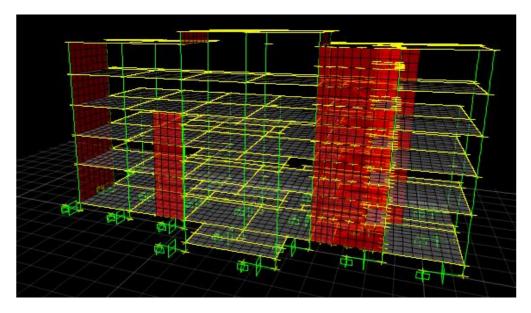


Figura 44: Primer modo de vibración con aislador HDR.

 Segundo modo de vibración: T2 = 2.141 seg. Nos muestra una traslación en el eje X.

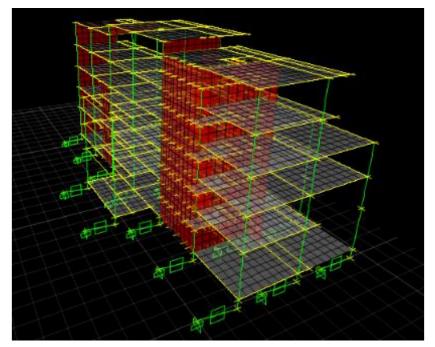


Figura 45: Segundo modo de vibración con aislador HDR.

 Tercer modo de vibración: T3 = 1.911 seg. Nos muestra una rotación.

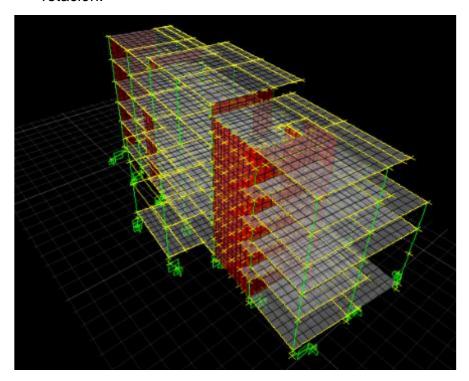


Figura 46: Tercer modo de vibración con aislador HDR.

c) Desplazamientos

• **Desplazamiento en X:** El desplazamiento máximo en la dirección X es de 0.132679 m.

Tabla 20:

Desplazamientos de dirección X.

Piso	Diafragma	Load Case/Combo	UX
Piso 6	D6	Des.Inelásticos X Max	0.132238
Piso 5	D5	Des.Inelásticos X Max	0.132679
Piso 4	D4	Des.Inelásticos X Max	0.131485
Piso 3	D3	Des.Inelásticos X Max	0.130955
Piso 2	D2	Des.Inelásticos X Max	0.130017
Piso1	D1	Des.Inelásticos X Max	0.12938
Capitel	Dcapitel	Des.Inelásticos X Max	0.127532

En la tabla se puede apreciar los desplazamientos máximos por piso para la dirección X.

 Desplazamiento en Y: El desplazamiento máximo en la dirección Y es de 0.135071 m.

Tabla 21:

Desplazamientos en dirección Y.

Piso	Diafragma	Load Case/Combo	UY
Piso 6	D6	Des.Inelásticos Y Max	0.135071
Piso 5	D5	Des.Inelásticos Y Max	0.134648
Piso 4	D4	Des.Inelásticos Y Max	0.133302
Piso 3	D3	Des.Inelásticos Y Max	0.131056
Piso 2	D2	Des.Inelásticos Y Max	0.129586
Piso1	D1	Des.Inelásticos Y Max	0.129428
Capitel	Dcapitel	Des.Inelásticos Y Max	0.125957

En la tabla se puede apreciar los desplazamientos máximos por piso para la dirección Y.

d) Derivas de Entrepiso

✓ La deriva máxima en la dirección X: Es de 0.000793 ≤ 0.007, cumple con lo especificado en la norma E.030.

Tabla 22: **Piso** Load Case/Combo Dirección Deriva Derivas en Piso 6 Des.Inelásticos X Max Χ 0.000185 dirección X. Χ Piso 5 Des.Inelásticos X Max 0.000275 Piso 4 Des.Inelásticos X Max Χ 0.000284 Piso 3 Des.Inelásticos X Max Χ 0.000283 Piso 2 Des.Inelásticos X Max Χ 0.000466 Des.Inelásticos X Max Χ Piso1 0.000793

En la tabla se puede apreciar la deriva máxima por piso para la dirección X.

✓ La deriva máxima en la dirección Y: Es de 0.00096 ≤ 0.007, cumple con lo especificado en la norma E.030.

Tabla 23:

Derivas en dirección Y.

Piso	Load Case/Combo	Dirección	Deriva
Piso 6	Des.Inelásticos Y Max	Υ	0.000363
Piso 5	Des.Inelásticos Y Max	Υ	0.000392
Piso 4	Des.Inelásticos Y Max	Υ	0.000415
Piso 3	Des.Inelásticos Y Max	Υ	0.000483
Piso 2	Des.Inelásticos Y Max	Υ	0.000461
Piso1	Des.Inelásticos Y Max	Υ	0.00096

En la tabla se puede apreciar la deriva máxima por piso para la dirección X.

e) Fuerzas por Piso

Análisis Dinámico:

✓ Para Dirección XX.

Tabla 24:

Fuerzas en dirección XX.

Story	Load Case/Combo	Location	Р	VX	VY
	Oasc/Oombo		tonf	tonf	tonf
Story6	EX Max	Тор	0.0436	6.8952	0.3084
Story6	EX Max	Bottom	0.0365	6.7605	0.3127
Story5	EX Max	Тор	0.118	19.4068	0.7628
Story5	EX Max	Bottom	0.1178	21.6657	0.8275
Story4	EX Max	Тор	0.2016	45.1567	1.41
Story4	EX Max	Bottom	0.1992	47.6983	1.4499
Story3	EX Max	Тор	0.3299	87.2601	2.0639
Story3	EX Max	Bottom	0.3273	90.1485	2.0716
Story2	EX Max	Тор	0.4078	130.4666	2.3727
Story2	EX Max	Bottom	0.4052	133.3349	2.3587
Story1	EX Max	Top	0.4211	159.1931	2.2736
Story1	EX Max	Bottom	0.4178	163.5947	2.2403

En la tabla se puede apreciar las fuerzas por piso en la dirección X.

✓ Para Dirección YY.

Tabla 25: Fuerzas en dirección YY.

Story	Load Case/Combo	Location	Р	VX	VY
	Case/Combo		tonf	tonf	tonf
Story6	EY Max	Тор	0.0379	0.2771	6.9909
Story6	EY Max	Bottom	0.2037	0.2772	5.5858
Story5	EY Max	Тор	0.2076	0.7978	18.3331
Story5	EY Max	Bottom	0.2084	0.8794	20.598
Story4	EY Max	Тор	0.0984	1.534	45.3653
Story4	EY Max	Bottom	0.0874	1.578	47.8941
Story3	EY Max	Тор	0.1585	2.1304	87.1176
Story3	EY Max	Bottom	0.1512	2.137	89.9769
Story2	EY Max	Тор	0.2187	2.2849	129.7205
Story2	EY Max	Bottom	0.212	2.2589	132.5466
Story1	EY Max	Тор	0.2459	2.264	157.9764
Story1	EY Max	Bottom	0.2407	2.1996	162.2886

En la tabla se puede apreciar las fuerzas por piso en la dirección Y.

3.2.3. Combinación de Aisladores de Alto Amortiguamiento con Núcleo de Plomo del tipo HDR y LRB.

a) Periodo Natural: El periodo natural de dicha estructura es de 1.873
 seg.

Tabla 26:

Periodos de la estructura con combinación de aisladores HDR y LRB.

Case	Mode	Period (seg)
Modal	1	1.873
Modal	2	1.595
Modal	3	1.528
Modal	4	0.26
Modal	5	0.195
Modal	6	0.19
Modal	7	0.186
Modal	8	0.179
Modal	9	0.164
Modal	10	0.16
Modal	11	0.146
Modal	12	0.141

En la tabla se puede apreciar los

periodos para cada modo de vibración de la estructura aislada con la combinación HDR y LRB.

b) Modos de Vibración

 Primer modo de vibración: T1 = 1.873 seg. Nos muestra una traslación en el eje Y.

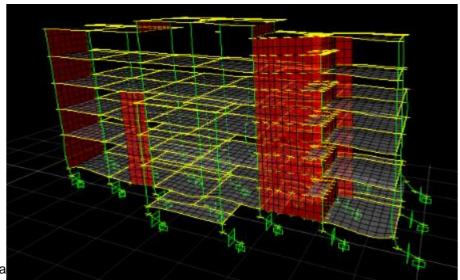


Figura 47: Primer modo de vibración con combinación de aisladores HDR y LRB.

 Segundo modo de vibración: T2 = 1.595 seg. Nos muestra una traslación en el eje X.

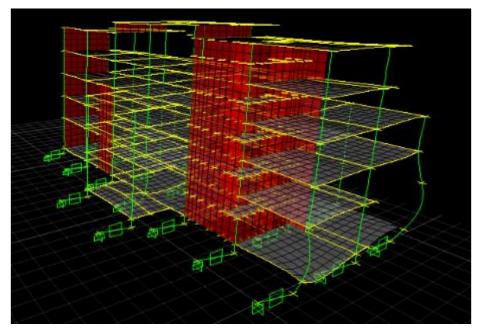


Figura 48: Segundo modo de vibración con combinación de aisladores HDR y LRB.

 Tercer modo de vibración: T3 = 1.528 seg. Nos muestra una rotación.

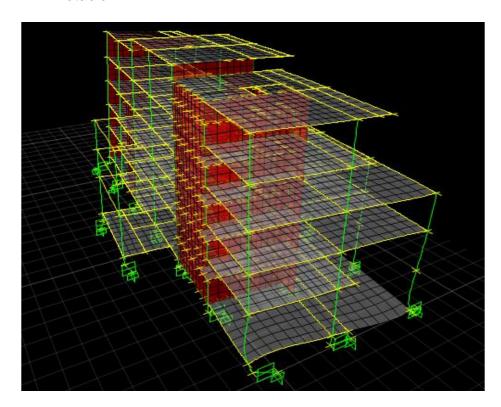


Figura 49: Tercer modo de vibración con combinación de aisladores HDR y LRB.

c) Desplazamientos

 Desplazamiento en X: El desplazamiento máximo en la dirección X es de 0.09885 m.

Tabla 27:

Desplazamientos de dirección X.

Piso	Diafragma	Load Case/Combo	UX
Piso 6	D6	Des.Inelásticos X Max	0.098738
Piso 5	D5	Des.Inelásticos X Max	0.09885
Piso 4	D4	Des.Inelásticos X Max	0.097675
Piso 3	D3	Des.Inelásticos X Max	0.09663
Piso 2	D2	Des.Inelásticos X Max	0.095437
Piso1	D1	Des.Inelásticos X Max	0.094348
Capitel	Dcapitel	Des.Inelásticos X Max	0.092557

En la tabla se puede apreciar los desplazamientos máximos por piso para la dirección X.

 Desplazamiento en Y El desplazamiento máximo en la dirección Y es de 0.108988 m.

Tabla 28:

Desplazamientos en dirección Y.

Piso	Diafragma	Load Cas	se/Com	bo	U	Y
Piso 6	D6	Des.Inelás	ticos Y	Max	0.108	3988
Piso 5	D5	Des.Inelás	ticos Y	Max	0.108	388
Piso 4	D4	Des.Inelás	ticos Y	Max	0.106	6493
Piso 3	D3	Des.Inelás	ticos Y	Max	0.104	187
Piso 2	D2	Des.Inelás	ticos Y	Max	0.102	2071
Pi £iso	LoDaid Case	e /Coesbo elá B	iiræsc¥ó	M ax De	r iv.a 00	951
Carpistel6	Dea prit ell ásti	cosDesMinaedás	tico%s Y	Ma 0 .00	02546	939
Piso 5	Des.Inelásti	cos X Max	Х	0.00	0464	En la tabla
Piso 4	Des.Inelásti	cos X Max	Χ	0.00	0478	se puede
Piso 3	Des.Inelásti	cos X Max	X	0.00	0476	apreciar los
Piso 2	Des.Inelásti	cos X Max	X	0.00	0455	
Piso1	Des.Inelásti	cos X Max	Χ	0.00	0746	

desplazamientos máximos por piso para la dirección Y.

d) Derivas de Entrepiso

✓ La deriva máxima en la dirección X: Es de 0.000746 ≤ 0.007, cumple con lo especificado en la norma E.030.

Tabla 29:

Derivas en dirección X.

En la tabla se puede apreciar la deriva máxima por piso para la dirección X.

✓ La deriva máxima en la dirección Y: Es de 0.001082 ≤ 0.007, cumple con lo especificado en la norma E.030.

Tabla 30:

Derivas en dirección Y.

Piso	Load Case/Combo	Dirección	Deriva
Piso 6	Des.Inelásticos Y Max	Y	0.000515
Piso 5	Des.Inelásticos Y Max	Υ	0.000554
Piso 4	Des.Inelásticos Y Max	Υ	0.000586
Piso 3	Des.Inelásticos Y Max	Υ	0.000675
Piso 2	Des.Inelásticos Y Max	Υ	0.000644
Piso1	Des.Inelásticos Y Max	Υ	0.001082

En la tabla se puede apreciar la deriva máxima por piso para la dirección X.

e) Fuerzas por Piso

Análisis Dinámico:

✓ Para Dirección XX.

Tabla 31:

Fuerzas en dirección XX.

Story	Load Case/Combo	Location	Р	VX	VY
			tonf	tonf	tonf
Story6	EX Max	Тор	0.0803	9.5233	0.9707
Story6	EX Max	Bottom	0.0608	9.343	0.8416
Story5	EX Max	Тор	0.2186	26.616	2.4937
Story5	EX Max	Bottom	0.2178	29.5872	2.7652
Story4	EX Max	Тор	0.3799	61.7665	5.7329
Story4	EX Max	Bottom	0.3753	65.0221	6.0264
Story3	EX Max	Тор	0.6222	118.4587	11.4232
Story3	EX Max	Bottom	0.6171	122.2079	11.6699
Story2	EX Max	Тор	0.7746	176.3755	17.3956
Story2	EX Max	Bottom	0.7697	180.075	17.6094
Story1	EX Max	Тор	0.8022	214.687	20.1425
Story1	EX Max	Bottom	0.7958	220.2888	20.505

En la tabla se puede apreciar las fuerzas por piso en la dirección X.

✓ Para Dirección YY.

Tabla 32:

Fuerzas en dirección YY.

Story	Load	Location	Р	VX	VY
	Case/Combo		tonf	tonf	tonf
Story6	EY Max	Тор	0.0692	0.927	10.3388
Story6	EY Max	Bottom	0.3	0.9368	8.3502
Story5	EY Max	Top	0.3086	2.7155	27.1813
Story5	EY Max	Bottom	0.3107	3.0699	30.5312
Story4	EY Max	Тор	0.1731	5.9933	66.7783
Story4	EY Max	Bottom	0.1532	6.3929	70.4867
Story3	EY Max	Тор	0.2776	11.2925	126.5482
Story3	EY Max	Bottom	0.2643	11.7075	130.7127
Story2	EY Max	Тор	0.3833	16.6278	187.0293
Story2	EY Max	Bottom	0.3713	17.045	191.11
Story1	EY Max	Top	0.4352	20.2176	227.4079
Story1	EY Max	Bottom	0.4261	20.8951	233.5701

En la tabla se puede apreciar las fuerzas por piso en la dirección Y.

3.3. Resultados para Sismo de Diseño y Sismo Máximo Considerado.

3.3.1. Sismo de Diseño

a) Desplazamientos:

Desplazamientos en el eje X.

Tabla 33:

Desplazamientos en el eje X para Sismo de Diseño.

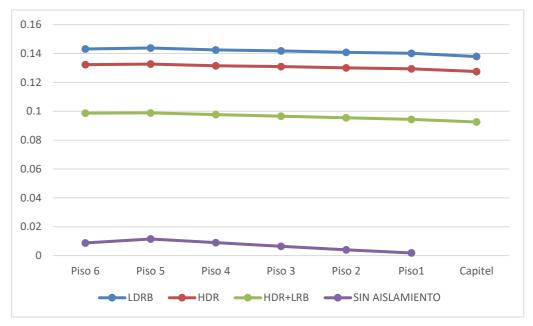
			LDRB	HDR	HDR+LRB	SIN AISLAMIENTO
Piso	Diafragma	Load Case/Combo	UX (m)	UX (m)	UX (m)	UX (m)
Piso 6	D6	Des.Inelásticos X Max	0.143155	0.132238	0.098738	0.008775
Piso 5	D5	Des.Inelásticos X Max	0.143818	0.132679	0.09885	0.011503
Piso 4	D4	Des.Inelásticos X Max	0.142432	0.131485	0.097675	0.008989
Piso 3	D3	Des.Inelásticos X Max	0.141862	0.130955	0.09663	0.006434
Piso 2	D2	Des.Inelásticos X Max	0.140797	0.130017	0.095437	0.003988
Piso1	D1	Des.Inelásticos X Max	0.140101	0.12938	0.094348	0.001842

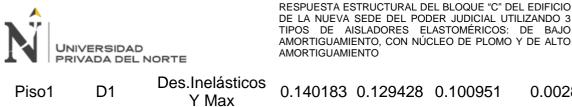
Capitel Dcapitel

Des.Inelásticos X Max

0.137885 0.127532 0.092557

En la tabla se puede apreciar los desplazamientos máximos por piso para la dirección X.




Figura 50: Desplazamientos en eje X para Sismo de Diseño.

- ✓ Se puede apreciar que la estructura sin aislamiento tiene un desplazamiento menor a la estructura con aisladores, esto se debe a que los aisladores proporcionan flexibilidad.
- Desplazamientos en el eje Y.

Tabla 34:

Desplazamientos en el eje Y para Sismo de Diseño.

			LDRB	HDR	HDR+LRB	SIN AISLAMIENTO
Piso	Diafragma	Load Case/Combo	UY (m)	UY (m)	UY (m)	UY (m)
Piso 6	D6	Des.Inelásticos Y Max	0.146469	0.135071	0.108988	0.014468
Piso 5	D5	Des.Inelásticos Y Max	0.145981	0.134648	0.108388	0.013412
Piso 4	D4	Des.Inelásticos Y Max	0.144454	0.133302	0.106493	0.010391
Piso 3	D3	Des.Inelásticos Y Max	0.141582	0.131056	0.104187	0.008414
Piso 2	D2	Des.Inelásticos Y Max	0.13999	0.129586	0.102071	0.0053

Des.Inelásticos

Y Max

Capitel

Dcapitel

0.140183 0.129428 0.100951 0.002882

0.13599 0.125957 0.096939

En la tabla se puede apreciar los desplazamientos máximos por piso para la dirección Y.

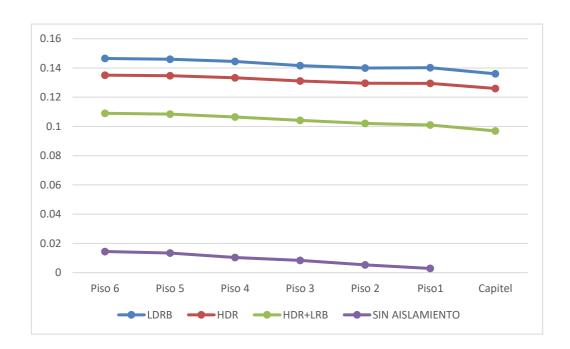


Figura 51: Desplazamientos en eje Y para Sismo de Diseño

En esta tabla y figura también se puede apreciar como la estructura sin aislamiento tiene un desplazamiento menor a la estructura con aisladores.

b) Derivas:

Derivas en el eje X.

Tabla 35:

Derivas de entrepiso en el eje X para Sismo de Diseño.

			LDRB	HDR	HDR+LRB	Sin Aislamiento
Piso	Load Case/Combo	Dirección	Deriva	Deriva	Deriva	Deriva
Piso 6	Des.Inelásticos X Max	Х	0.000208	0.000185	0.000254	0.000436
Piso 5	Des.Inelásticos X Max	Χ	0.000308	0.000275	0.000464	0.00252
Piso 4	Des.Inelásticos X Max	Χ	0.000318	0.000284	0.000478	0.002563
Piso 3	Des.Inelásticos X Max	Χ	0.000316	0.000283	0.000476	0.002451
Piso 2	Des.Inelásticos X Max	Χ	0.000533	0.000466	0.000455	0.002176
Piso1	Des.Inelásticos X Max	Χ	0.000906	0.000793	0.000746	0.001842
		Máximo	0.000906	0.000793	0.000746	0.002563

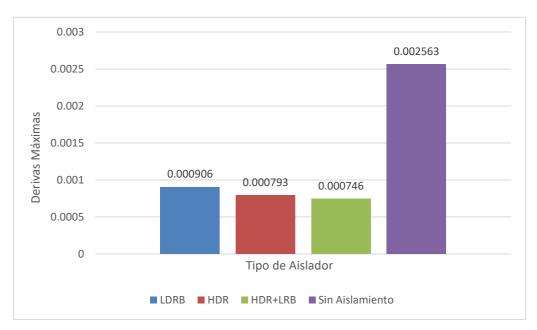


Figura 52: Derivas de entrepiso en eje X para Sismo de Diseño.

✓ En la tabla y figura mostrada se puede apreciar que la estructura sin aislamiento presenta una deriva mucho mayor a la estructura con aisladores,

esto se debe a que los aisladores absorben la energía del sismo y la superestructura no llega a deformarse mucho.

Derivas en el eje Y.

Tabla 36:

Derivas de entrepiso en el eje Y para Sismo de Diseño.

			LDRB	HDR	HDR+LRB	Sin Aislamiento
Piso	Load Case/Combo	Dirección	Deriva	Deriva	Deriva	Deriva
Piso 6	Des.Inelásticos Y Max	Υ	0.000408	0.000363	0.000515	0.00109
Piso 5	Des.Inelásticos Y Max	Υ	0.00044	0.000392	0.000554	0.002694
Piso 4	Des.Inelásticos Y Max	Υ	0.000466	0.000415	0.000586	0.002799
Piso 3	Des.Inelásticos Y Max	Υ	0.000541	0.000483	0.000675	0.003122
Piso 2	Des.Inelásticos Y Max	Υ	0.000518	0.000461	0.000644	0.002664
Piso1	Des.Inelásticos Y Max	Υ	0.001075	0.00096	0.001082	0.002882
		Máximo	0.001075	0.00096	0.001082	0.003122

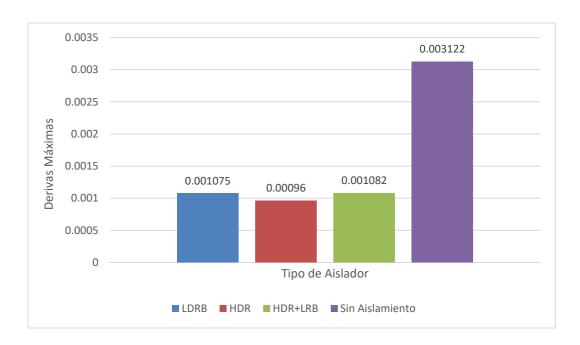


Figura 53: Derivas de entrepiso en eje Y para Sismo de Diseño.

✓ En la tabla y figura mostrada se puede apreciar que la estructura sin aislamiento presenta una deriva mucho mayor a la estructura con aisladores, esto se debe a que los aisladores absorben la energía del sismo y la superestructura no llega a deformarse mucho.

a) Fuerzas por piso:

Fuerzas en el eje X.

Tabla 37:

Fuerzas por piso en eje X para Sismo de Diseño.

			LDRB	HDR	HDR+LRB	SIN AISLAMIENTO
Story	Load	Location	VX	VX	VX	VX
Story	Case/Combo	Location	tonf	tonf	tonf	tonf
Story6	EX Max	Тор	7.7805	6.8952	9.5233	45.3162
Story6	EX Max	Bottom	7.6287	6.7605	9.343	45.7001
Story5	EX Max	Top	21.9069	19.4068	26.616	124.5836
Story5	EX Max	Bottom	24.4621	21.6657	29.5872	136.2927
Story4	EX Max	Top	50.969	45.1567	61.7665	247.4362
Story4	EX Max	Bottom	53.8467	47.6983	65.0221	256.7073
Story3	EX Max	Top	98.5007	87.2601	118.4587	389.3645
Story3	EX Max	Bottom	101.767	90.1485	122.2079	397.1188
Story2	EX Max	Top	147.2613	130.4666	176.3755	491.5099
Story2	EX Max	Bottom	150.5039	133.3349	180.075	496.5525
Story1	EX Max	Top	179.6701	159.1931	214.687	529.964
Story1	EX Max	Bottom	184.65	163.59	220.2888	532.28
	FUERZ	A MÁXIMA	184.65	163.59	220.29	532.28

En la tabla se puede apreciar las fuerzas por piso en la dirección X para cada tipo de aislador y para la estructura sin aislar.

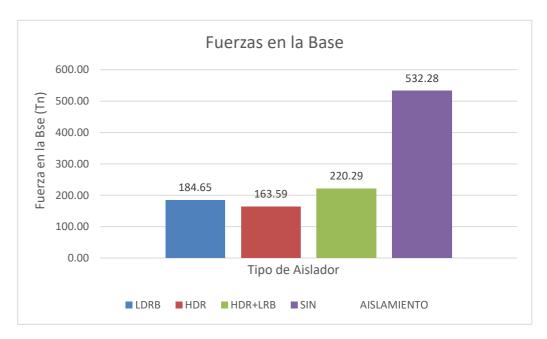


Figura 54: Fuerzas en la Base en eje X para Sismo de Diseño.

✓ En la siguiente tabla y figura se puede apreciar como la estructura sin aislamiento tiene mayor fuerza en la base, caso contrario pasa con la estructura con aisladores ya que esta presenta una disminución considerable de las fuerzas en la base.

Fuerzas en el eje Y.

Tabla 38: Fuerzas por piso en eje Y para Sismo de Diseño.

			LDRB	HDR	HDR+LRB	SIN AISLAMIENTO
Story	Load	Location	VY	VY	VY	VY
Story	Case/Combo	Location	tonf	tonf	tonf	tonf
Story6	EY Max	Тор	7.8804	6.9909	10.3388	51.1064
Story6	EY Max	Bottom	6.2991	5.5858	8.3502	44.9752
Story5	EY Max	Тор	20.6798	18.3331	27.1813	121.7026
Story5	EY Max	Bottom	23.2387	20.598	30.5312	133.3854
Story4	EY Max	Тор	51.1945	45.3653	66.7783	246.4517
Story4	EY Max	Bottom	54.0524	47.8941	70.4867	256.0989
Story3	EY Max	Top	98.2029	87.1176	126.5482	392.7283
Story3	EY Max	Bottom	101.4352	89.9769	130.7127	400.5642
Story2	EY Max	Тор	146.1661	129.7205	187.0293	496.2267
Story2	EY Max	Bottom	149.3596	132.5466	191.11	501.0491
Story1	EY Max	Top	178.0516	157.9764	227.4079	531.4286
Story1	EY Max	Bottom	182.9216	162.2886	233.5701	533.5918
	FUERZ	A MÁXIMA	182.92	162.29	233.57	533.59

En la tabla se puede apreciar las fuerzas por piso en la dirección Y para cada tipo de aislador y para la estructura sin aislar.

Figura 55: Fuerzas en la Base en eje Y para Sismo de Diseño.

En la siguiente tabla y figura se puede apreciar como la estructura sin aislamiento tiene mayor fuerza en la base, caso contrario pasa con la estructura con aisladores ya que esta presenta una disminución considerable de las fuerzas en la base.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1. Discusión

Para la estructura que está sin aislamiento sísmico en su base según la Tabla 4, el periodo principal es de 0.378 seg, luego para las combinaciones de aisladores se han obtenido los siguientes periodos según las Tablas 12; 19 y 26 respectivamente, para la primera combinación con LDRB se obtuvo un periodo de 2.114 seg, de la otra combinación con HDR el periodo que se obtuvo fue de 2.158 seg, y de la tercera combinación con HDR + LRB se obtuvo un periodo de 1.873 seg. Esto quiere decir que para la estructura con aisladores el periodo se ha incrementado ya que estos dispositivos le proporcionan flexibilidad a la estructura.

Para la estructura con aislamiento en su base en el análisis según la norma E.030 se ha obtenido una reducción en las derivas de entrepiso de aproximadamente un 35.66% en promedio, ya que pasó de una deriva máxima de 0.002563 (Tabla 7) a 0.000746 (Tabla 29) para el eje X, y de 0.003122 (Tabla 8) a 0.001082 (Tabla 30) para el eje Y.

El cortante basal se ha reducido en promedio un 35.60%, obteniéndose en el eje X una cortante de 532.28 Tn (Tabla 10) para la estructura sin aislamiento, cambiando considerablemente a valores de 184.65 Tn, 163.59 Tn, 220.29 Tn respectivamente para las combinaciones de aisladores según las Tablas 17; 24 y 31, y para el eje Y se obtuvo un cortante de 533.59 Tn (Tabla 11), reduciendo a valores de 182.92 Tn, 162.29 Tn, 233.57 Tn, según las Tablas 18; 25 y 32 respectivamente, llegando a reducir hasta el 36.17% promedio.

Los desplazamientos en la estructura con aisladores son más uniformes, el menor desplazamiento la presenta la tercera combinación de aisladores que viene hacer la HDR + LRB (alto amortiguamiento más núcleo de plomo) obteniéndose una reducción significativa del 28.38% a comparación de las otras dos combinaciones,

sin embargo estos desplazamientos a nivel de diafragmas son mayores a la estructura sin aislar.

Haciendo una comparación entre los antecedentes mencionados y los resultados obtenidos tenemos lo siguiente:

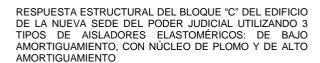
Korswagen, Arias, Huaringa, (2012) de la Pontificia Universidad Católica del Perú, en su tesis "Análisis y Diseño de Estructuras con Aisladores Sísmicos en el Perú" llega a la conclusión que tanto la altura como la esbeltez de la edificación son parámetros limitantes para el aislamiento eficiente de una estructura, por tanto recomiendan prestar y tener mayor cuidado a los efectos $P-\Delta$ para el diseño de las columnas y placas del primer nivel, las vigas de la interfaz de aislación y la cimentación, puesto que el mayor desplazamiento incrementa la importancia de dicho efecto, comparando lo mencionado anteriormente con los resultados obtenidos se concluye lo mismo ya que la altura y la esbeltez influye en el comportamiento de los aisladores es por ello que se debe prestar atención a los elementos estructurales del primer nivel ya que los desplazamientos aumentan considerablemente.

Tafur, Wenner, (2011) de la Universidad Nacional de Cajamarca, en su tesis "Influencia de aisladores elastoméricos en el análisis de un prototipo de edificio educacional" llega a la conclusión que la estructura aislada presenta mejores resultados para cada uno de los parámetros realizados en el análisis, tales como derivas, desplazamientos y periodos, esto es correcto, ya que en esta tesis se llega a la misma conclusión, que la estructura aislada presenta mejores resultados tanto en derivas, fuerzas, desplazamientos y periodos.

Soriano, (2014) de la Universidad Privada del Norte, en sus tesis "Comparación de la Respuesta Estructural del Pabellón A de la Universidad Privada del Norte con Aisladores Sísmicos Elastoméricos y sin Aisladores Sísmicos" llega a la conclusión que para la estructura con aisladores sísmicos, la respuesta estructural tiene un mejor comportamiento frente al edificio sin aisladores sísmicos, esto debido a que las derivas y fuerzas en la base son minimizados, pero los aisladores presentan un mayor desplazamiento a nivel de diafragmas, en esta tesis se llega a la misma conclusión que la estructura aislada presenta una mejor respuesta estructural ya que las fuerzas y derivas son disminuidas considerablemente pero los desplazamientos a nivel de diafragma son mayores que la estructura sin aislar.

Hernández, Hernán, (2016) en su investigación "Análisis Estructural de un edificio aislado sísmicamente y diseño de su sistema de aislamiento" llega a la conclusión que las derivas se pueden reducir más del 75% inclusive llegando a sobrepasar el 90% y también de las cortantes por piso que se reducen en un 50% llegando a valores como 70% de disminución en el último nivel, para esta tesis las derivas llegaron a reducirse en un 35.66% y las cortantes por piso se redujeron en un 35.60% para el eje X y en un 36.17% para el eje Y.

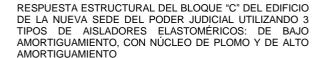
Las limitaciones que se tuvieron para el trabajo fue que para el análisis no se consideró la Interacción suelo – estructura tampoco el análisis tiempo – historia porque solo se trabajó con el análisis modal espectral, otra de las limitaciones fue que en Perú no se cuenta con proveedores nacionales para el diseño de aisladores elastoméricos por el cual se ha considerado con la hoja de especificaciones de la empresa Dynamic Isolation System de EE.UU, y otra limitación es la versión del ETABS que para esta investigación se usó el ETABS v16 versión educacional es por ello que se recomienda trabajar con la versión no educacional para que los resultados sean más fiables


Las implicancias y/o aportes al realizar el trabajo fue dar a conocer que una estructura sísmicamente aislada reduce las derivas y fuerzas en la base frente a una estructura sin aislar siendo para esta investigación una edificación de muros estructurales con un periodo aproximado de 0.378 seg. en un suelo tipo S2 considerando que el periodo se puede ver afectado por los periodos que presenten los suelos blandos, asimismo se apreció que los aisladores HDR redujeron muy significativamente las derivas.

Esta investigación también está aportando con información para futuras construcciones en la ciudad de Cajamarca que se quieran aislar sísmicamente.

4.2. Conclusiones

- Se rechaza la hipótesis planteada ya que la mejor respuesta estructural la presenta el aislador de alto amortiguamiento (HDR).
- Se determinó la respuesta estructural del edificio sin incorporar aisladores elastoméricos utilizando el programa ETABS v16 educacional obteniéndose un periodo natural de 0.378 seg, unas derivas máximas en la dirección X de 0.002563 y en la dirección Y de 0.003122, también la cortante basal e X de 532.2837 Tn y en la dirección Y de 533.5918 Tn.
- Se determinó la respuesta estructural del edificio al incorporar aisladores elastoméricos de bajo amortiguamiento utilizando el programa ETABS v16 educacional obteniéndose un periodo natural de 2.114 seg, unas derivas máximas en la dirección X de 0.000906 y en la dirección Y de 0.001075, también la cortante basal e X de 184.6462 Tn y en la dirección Y de 182.9216
 Tn. .
- Se calculó la respuesta estructural del edificio al incorporar aisladores elastoméricos con núcleo de plomo utilizando el programa ETABS v16 educacional obteniéndose un periodo natural de 2.158 seg, unas derivas máximas en la dirección X de 0.000793 y en la dirección Y de 0.00096, también la cortante basal e X de 163.5947 Tn y en la dirección Y de 162.2886 Tn.
- Se calculó la respuesta estructural del edificio al incorporar aisladores elastoméricos de alto amortiguamiento utilizando el programa ETABS v16 educacional obteniéndose un periodo natural de 1.873 seg, unas derivas máximas en la dirección X de 0.000746 y en la dirección Y de 0.001082, también la cortante basal e X de 220.2888 Tn y en la dirección Y de 233.5701 Tn. .



 Se comparó la respuesta estructural de los aisladores y se eligió el que mejor comportamiento tiene, siendo este el aislador de la segunda combinación con aisladores HDR (alto amortiguamiento) por lo que se rechaza la hipótesis planteada.

REFERENCIAS

- American Society of Civil Engineers (2016). *Minimun Desing Loads for Buildings and Other Structures. Virginia: ASCE.*
- Cámara Peruana de la Construcción (2006). Reglamento Nacional de Edificaciones Cargas E-020. Perú: CAPECO.
- Cámara Peruana de la Construcción (2018). Reglamento Nacional de Edificaciones Diseño Sismorresistente E-030. Perú: CAPECO.
- CDVperú. (2013). Aislamiento Sísmico. 2016, de DYNAMIC ISOLATION SYSTEMS, Sitio web: http://cdvperu.com/wp-content/uploads/2016/03/CATALOGO-DIS.pdf
- Hernández, Hernán, (2016). Análisis Estructural de un edificio aislado sísmicamente y diseño de su sistema de aislamiento. (Trabajo de Investigación). Universidad Nacional de Ingeniería, Lima, Perú.
- Korswagen, P., Arias, J., HUaringa, P. (2012). *Análisis y diseño de estructuras con aisladores sísmicos en el Perú.* (Tesis para título). Pontificia Universidad Católica del Perú, Lima, Perú.
- Kuroiwa Hirachi, J. (2005). Reducción de Desastres. (2ª Edición). Lima, Perú: Bruño.
- Lema Toapanta, E. (2013). *Análisis y diseño de un edificio con aisladores sísmicos en ETABS*. (Tesis para título). Universidad Central de Ecuador, Quito, Ecuador.
- Luis Alex, Bozzo Barbat. (Reimpresión 2004). *Diseño Sismorresistente de Edificios "Técnicas Convencionales y Avanzadas"*. España: Reverté, S.A.
- Luis Horia, Bozzo Barbat. (Reimpresión 2008). *Diseño Sismorresistente de Estructuras*. Lima: Fondo Editorial ICG.
- Mayes L. y Naeim F. (2000). Design of Structures with Seismic Isolation Design of Structures with Seismic Isolation.
- Mendo, A. (2015). Bases para la implementación de la norma peruana de análisis y diseño de edificios con aislación sísmica. (Tesis para Magister). Pontificia Universidad Católica del Perú, Lima, Perú.
- Retamales R. (2016). Alcance y Requerimientos Norma Chilena NCh2745.Of2003: Análisis y Diseño de Edificios con Aislación Sísmica. Paper presented at the Alcance y Requerimientos Norma Chilena NCh2745.Of2003: Análisis y Diseño de Edificios con Aislación Sísmica.

- Robinson Jara (2014). Tesis "Efecto de la cal como estabilizante de una subrasante de suelo arcilloso"
- Soriano Cacho, J. L. (2014). Comparación de la Respuesta Estructural del Pabellón A de la Universidad Privada del Norte con Aisladores Sísmicos Elastoméricos y sin Aisladores Sísmicos. (Tesis para título). Universidad Privada del Norte, Cajamarca, Perú.
- Tafur Chilón, W. M. (2011). *Influencia de aisladores elastoméricos en el análisis de un prototipo de edificio educacional*. (Tesis para título). Universidad Nacional de Cajamarca, Cajamarca, Perú.
- Trujillo Benito, E. (2017). Diseño integral de estructuras con sistema de aislación sísmica aplicado a un edificio de concreto armado. (Tesis para título). Universidad Nacional del Centro del Perú, Huancayo, Perú.
- Yazmín, R. (2014). Análisis Dinámico de Aisladores de Base Elastoméricos como alternativa de solución para edificaciones con fallas por piso blando (tesis de pregrado). Universidad Nacional de Cajamarca, Perú.

ANEXOS

VER ANEXOS:

VER ANEXO 1: VALIDACIÓN DE DATOS.

VER ANEXO 2: UBICACIÓN DEL PROYECTO A REALIZAR.

VER ANEXO 3: PLANO DE ARQUITECTURA DEL BLOQUE C.

VER ANEXO 4: PLANO DE ARQUITECTURA GENERAL 1er PISO.

VER ANEXO 5: PLANO DE ARQUITECTURA GENERAL 2do PISO.

VER ANEXO 6: PLANO DE ARQUITECTURA GENERAL 3er PISO.

VER ANEXO 7: PLANO DE ARQUITECTURA GENERAL 4to PISO.

VER ANEXO 8: PLANO DE ARQUITECTURA GENERAL 5to PISO.

VER ANEXO 9: PLANO DE ARQUITECTURA GENERAL AZOTEA.

VER ANEXO 10: PLANO DE ESTRUCTURA GENERAL TECHO 1er PISO.

VER ANEXO 11: PLANO DE ESTRUCTURA GENERAL TECHO 2do PISO.

VER ANEXO 12: PLANO DE ESTRUCTURA GENERAL TECHO 3er PISO.

VER ANEXO 13: DISEÑO DE AISLADOR TIPO LDRB.

VER ANEXO 14: DISEÑO DE AISLADOR TIPO HDR.

VER ANEXO 15: DISEÑO DE AISLADOR TIPO HDR + LRB.

CARTA DE AUTORIZACIÓN DE USO DE INFORMACIÓN DE EMPRESA

Yo HORACIO URTEAGA BECERRA, identificado con DNI 26608585, en mi calidad de Representante Legal de la empresa Hermanos Urteaga Contratistas SRL (HURTECO SRL) con R.U.C N° 26608585, ubicada en el Jr. La Mar N°239 de la ciudad de Cajamarca;

- OTORGO LA AUTORIZACIÓN,

45.0

Al señor Johnny Jean Pierre Castillo Gallardo, identificado con DNI Nº 73472718, egresado de la Carrera profesional de Ingeniería Civil para que utilice la siguiente información de la empresa: EXPEDIENTE TÉCNICO DEL PROYECTO: "MEJORAMIENTO DE LOS SERVICIOS DE ADMINISTRACIÓN DE JUSTICIA DE LOS ÓRGANOS JURISDICCIONALES E IMPLEMENTACION DEL NCPP EN LA SEDE DEL DISTRIO JUDICIAL DE CAJAMARCA"; en lo referente a:

Especificaciones Técnicas, planos de arquitectura, estructuras y otros documentos y/o datos que sean necesarios para la realización de dicha investigación; con la finalidad de que pueda desarrollar su Tesis para optar el Título Profesional.

Adjunto a esta carta, está la siguiente documentación: (X) Ficha RUC

Indicar si el Representante que autoriza la información de la empresa, solicita mantener el nombre o cualquier distintivo de la empresa en reserva, marcando con una "X" la opción seleccionada. (X) Mencionar el nombre de la empresa.

> Firma y sello del Representante Legal DNI: 26608585

El Egresado/Bachiller declara que los datos emitidos en esta carta y en el Trabajo de Investigación, en la Tesis son auténticos. En caso de comprobarse la falsedad de datos, el Egresado será sometido al inicio del procedimiento disciplinario correspondiente; asimismo, asumirá toda la responsabilidad ante posibles acciones legales que la empresa, otorgante de información, pueda ejecutar.

Firma del Egresado DN: 73472718

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

"RESPUESTA ESTRUCTURAL DEL BLOQUE C DEL EDIFICIO DE LA NUEVA SEDE DEL PODER JUDICIAL UTLIZANDO 3 TIPOS DE AISLADORES ELASTOMÉRICOS: DE BAJO AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DEL ALTO AMORTIGUAMIENTO"

Tesis para optar el título profesional de:

Ingeniero Civil

Autor:


Johnny Jean Pierre Castillo Gallardo

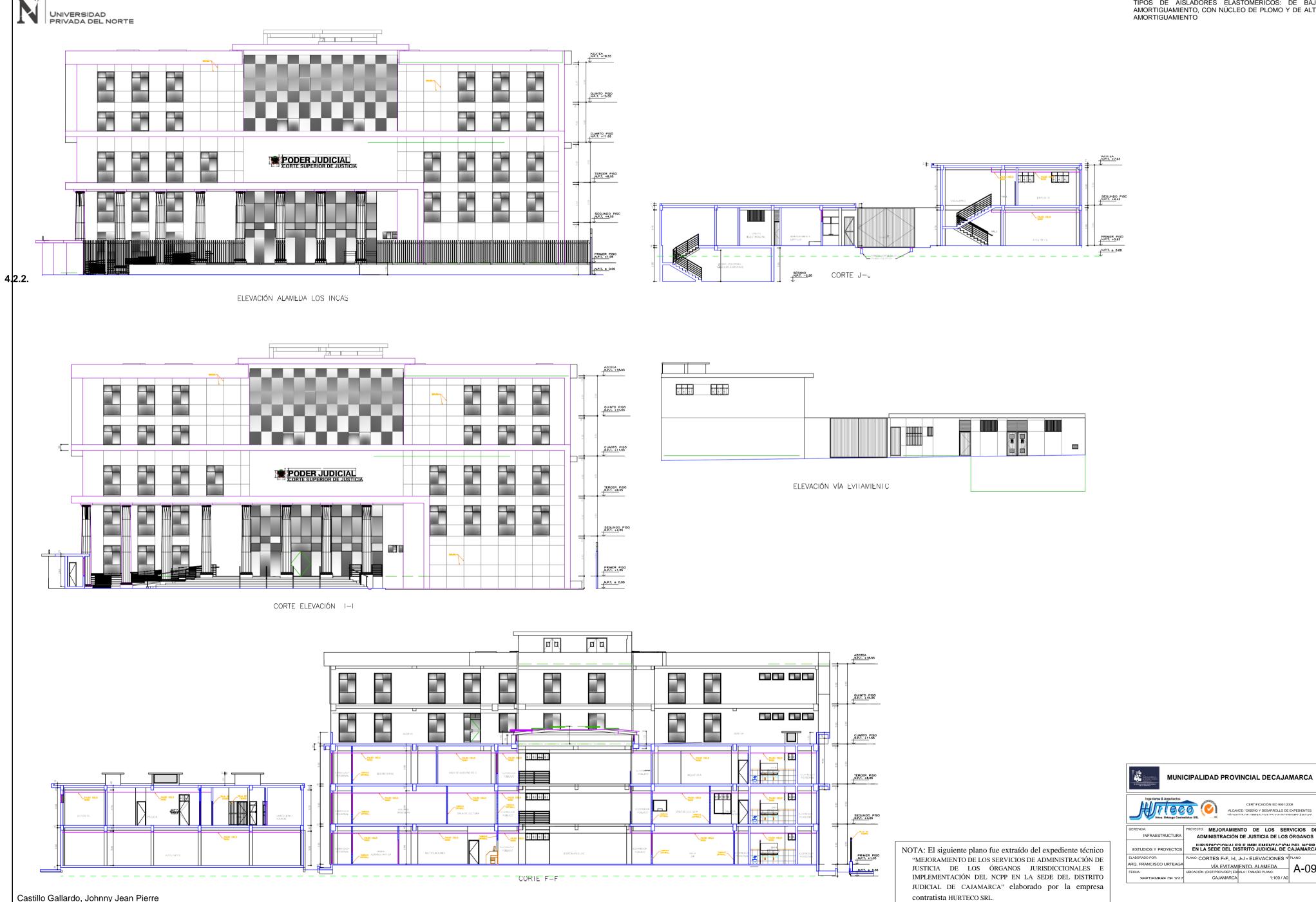
Asesor:

Ing. Dr. Miguel Ángel Mosqueira Moreno

Cajamarca - Perú

2019

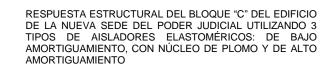
PLANO DE UBICACIÓN


776,600 E

Esc. 1:500

EL REPUESTA ESTRUCTURAL DEL BLOQUE "C" DEL EDIFICIO
DE LA NUEVA SEDE DEL PODER JUDICIAL UTILIZANDO 3
TIPOS DE AISLADORES ELASTOMÉRICOS. DE BAJO
AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DE ALTO
RESPUESTA ESTRUCTURAL DEL BLOQUE C DEL EDIFICAMIQUE MUNICIPALIZANDO 3 TIPOS DE
AISLADORES ELASTOMÉRICOS: DE BAJO AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DEL ALTO AMORTIGUAMIENTO

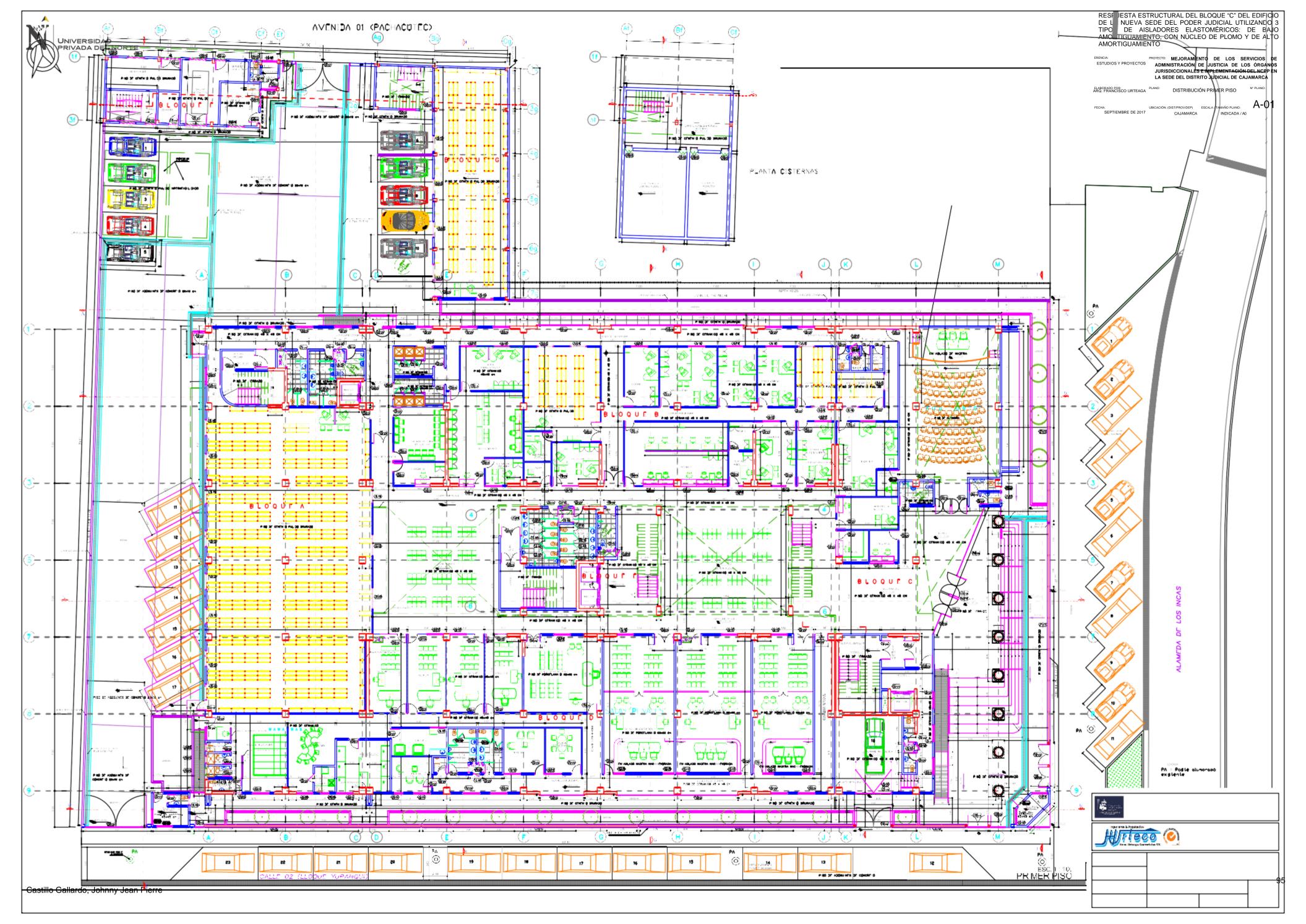
strito : ovincia : egión :	CAJAMARCA CAJAMARCA CAJAMARCA	PLANO: UBICACIÓN DEL	LÁMINA: U - 01	
JMNO:			ESCALA:	FECHA:
CASTILLO GA	LLARDO JOHNNY		Indicada	JUNIO 2019


92 Castillo Gallardo, Johnny Jean Pierre

TECTO: MEJORAMIENTO DE LOS SERVICIOS DE ADMINISTRACIÓN DE JUSTICIA DE LOS ÓRGANOS ILIDISDICCIONALES E IMPLEMENTACIÓN DEL NODO EN LA SEDE DEL DISTRITO JUDICIAL DE CAJAMARCA O: CORTES F-F, I-I, J-J - ELEVACIONES N PLANO VÍA EVITAMIENTO. ALAMEDA

VÍA EVITAMIENTO PLANO:

A-09 / TAMAÑO PLANO: 1:100 / A0 DIST/PROV/DEP) ESCALA CAJAMARCA

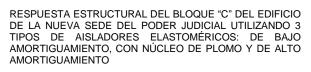


4.2.2.1. MUNICIPALIDAD PROVINCIAL DE CAJAMARCA

NOTA: El siguiente plano fue extraído del expediente técnico "MEJORAMIENTO DE LOS SERVICIOS DE ADMINISTRACIÓN DE JUSTICIA DE LOS ÓRGANOS JURISDICCIONALES E IMPLEMENTACIÓN DEL NCPP EN LA SEDE DEL DISTRITO JUDICIAL DE CAJAMARCA" elaborado por la empresa contratista HURTECO SRL.

GERENCIA:
INFRAESTRUCTURA

MUNICIPALIDAD PROVINCIAL DE CAJAMARCA

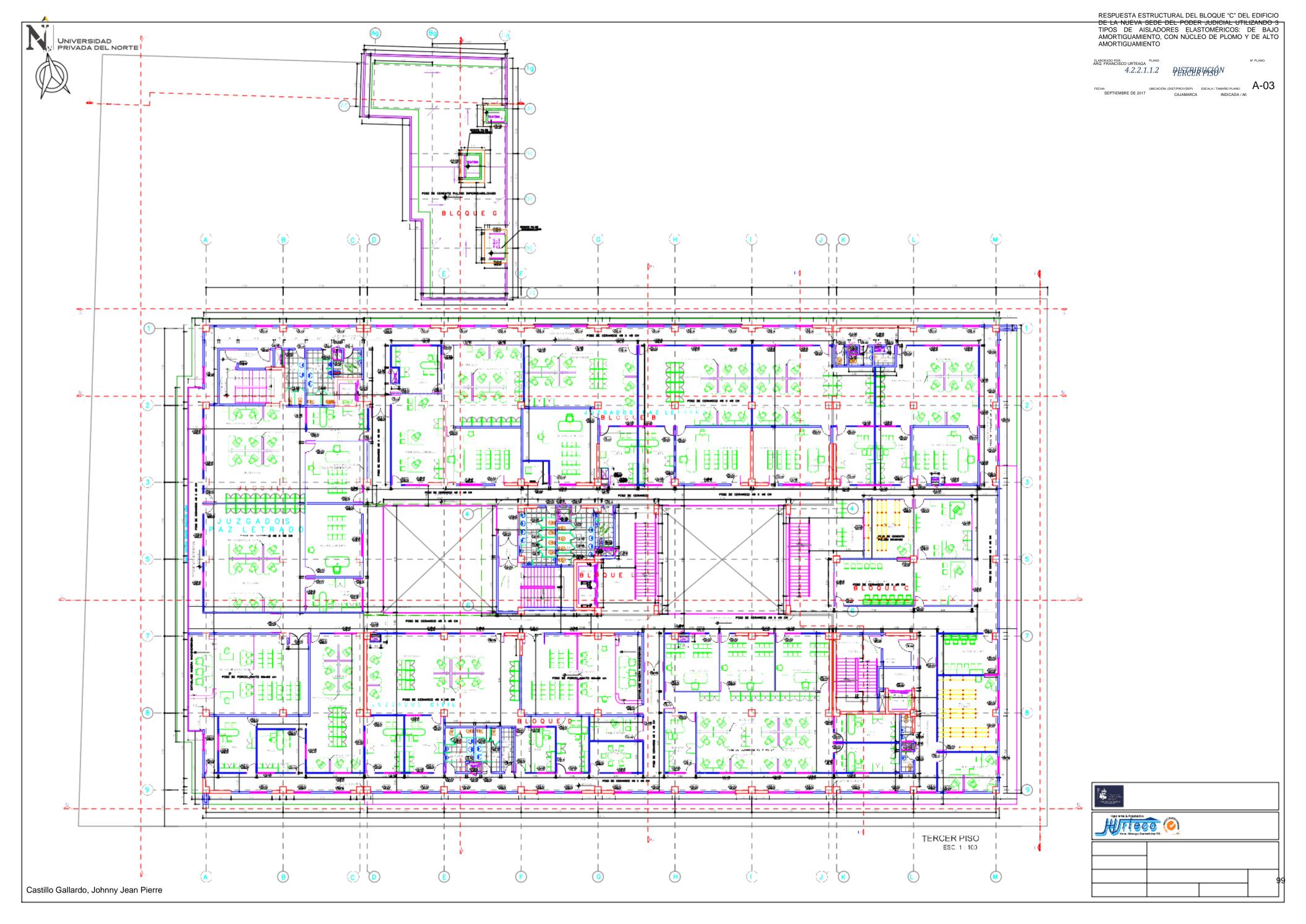

SUBGERENCIA: ESTUDIOS Y PROYECTOS

GERENCIA:
INFRAESTRUCTURA

SUBGERENCIA:
SUBG

UNIVERSIDAD PRIVADA DEL NORTE

RESPUESTA ESTRUCTURAL DEL BLOQUE "C" DEL EDIFICIO TIPOS DE AISLADORES ELASTOMÉRICOS: DE BAJO AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DE ALTO UNIVERSIDAD
PRIVADA DEL NOT AMORTIGUAMIENTO ELABORADO POR: PLANO: ARQ. FRANCISCO URTEAGA 4.2.2.1.1.1 PLSTPHBUGIÓN SHA: UBICACIÓN: (DIST/PROV/DEP) ESCALA / TAMAÑO PLANO: A-02 BLOQUEF DESCRIPCION тарытфо бологая аробаро о тво он в явичной умовую PROPIEDAD DE TERCEROS (M) 100 K COWEC 4 X 40 C 141 1.44 5.0 HITTEE | | SEGUNDO PISO | | ESC. 1:100 | | 1 1 Castillo Gallardo, Johnny Jean Pierre



MUNICIPALIDAD PROVINCIAL DE CAJAMARCA

GERENCIA:
INFRAESTRUCTURA

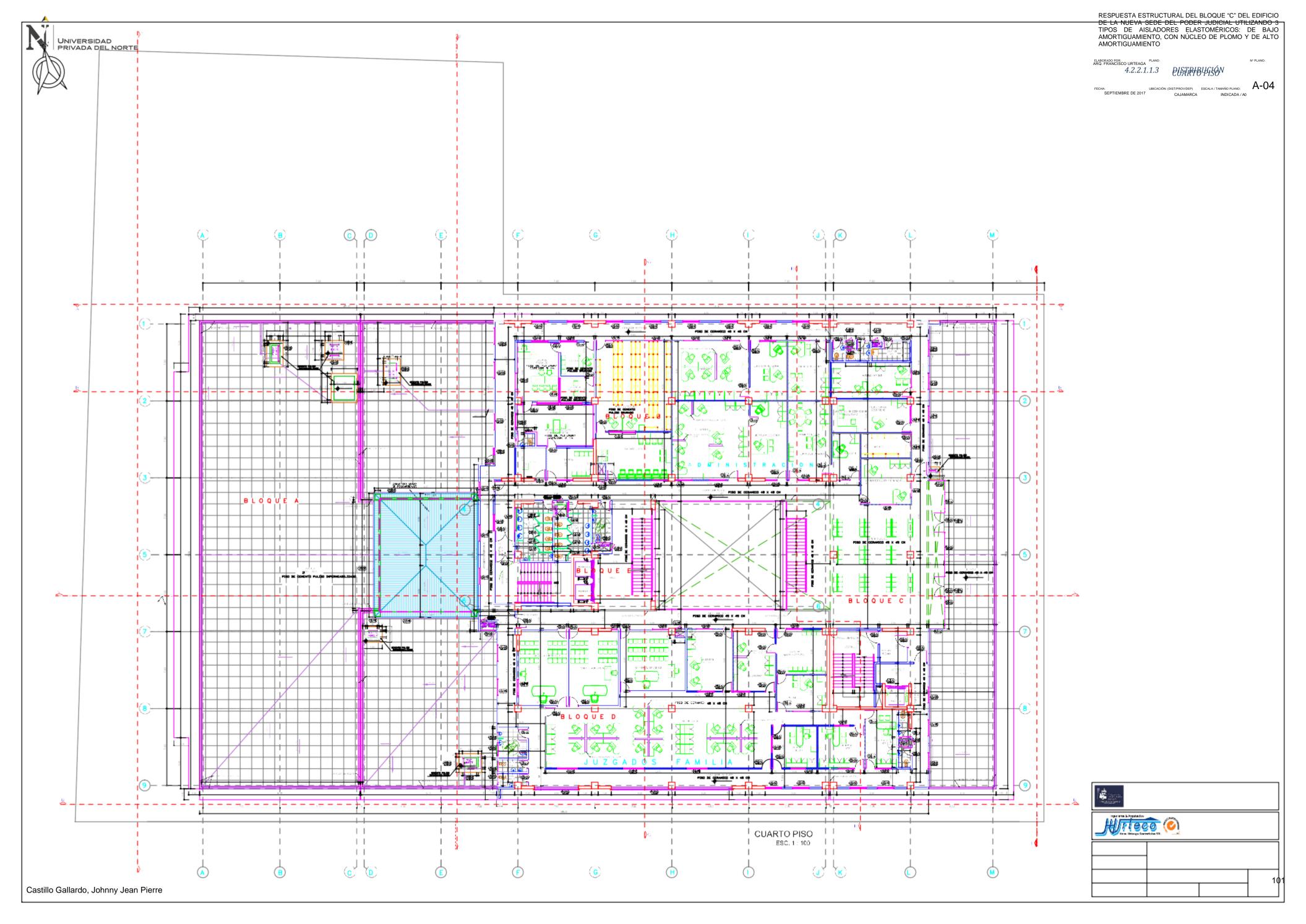
SUBGERENCIA:
SUBG SUBGERENCIA: ESTUDIOS Y PROYECTOS

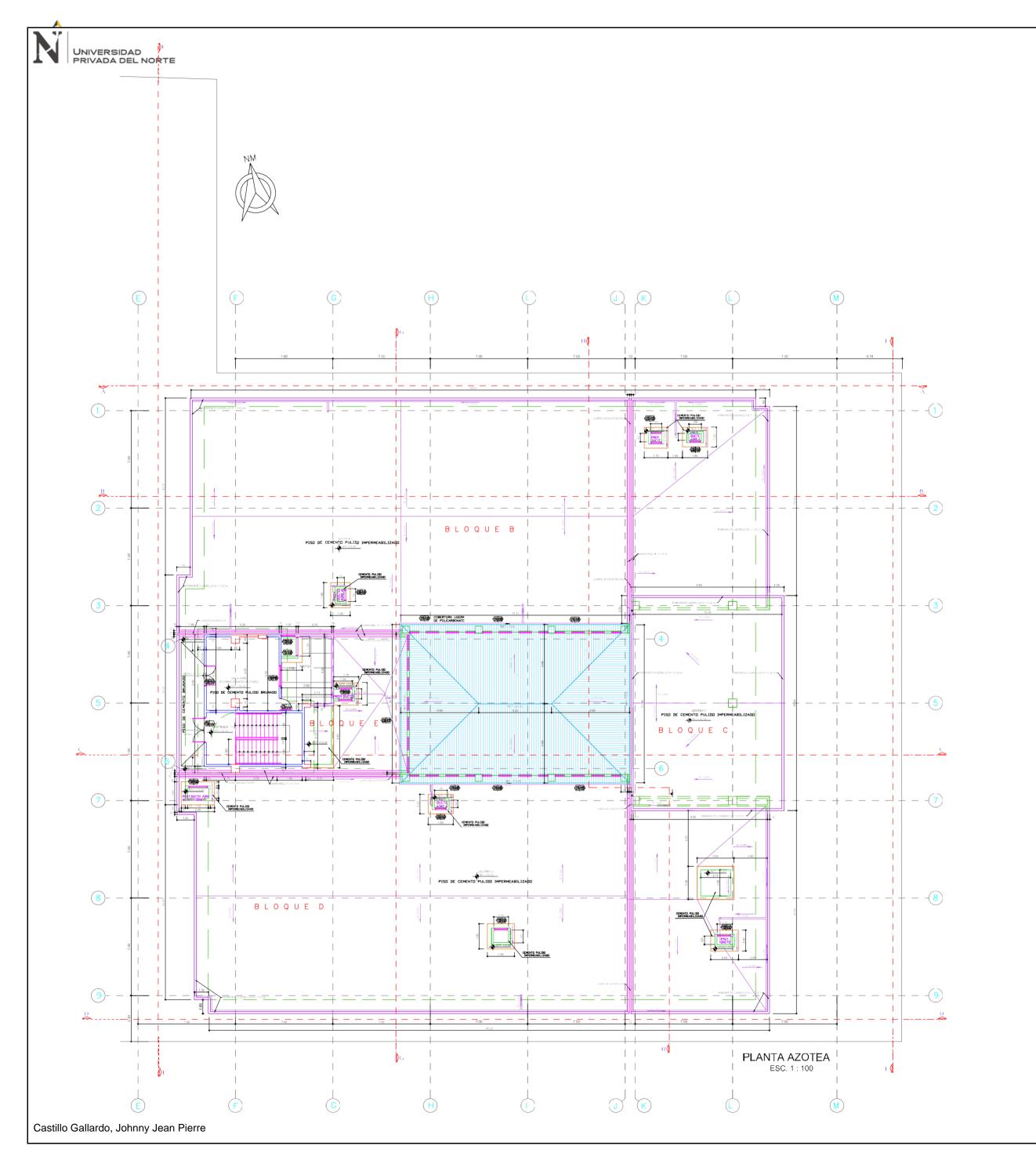
MUNICIPALIDAD PROVINCIAL DE CAJAMARCA

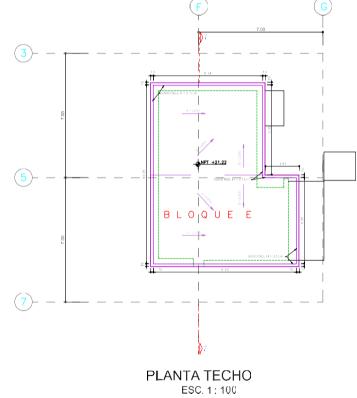
CERTIFICACIÓN ISO 9001:2008
ALCANCE: "DISEÑO Y DESARROLLO DE EXPEDIENTES
TÉCNICOS DE OBRAS CIVILES Y ELECTROMECÁNICAS

GERENCIA:

INFRAESTRUCTURA


MEJORAMIENTO DE LOS SERVICIOS DE

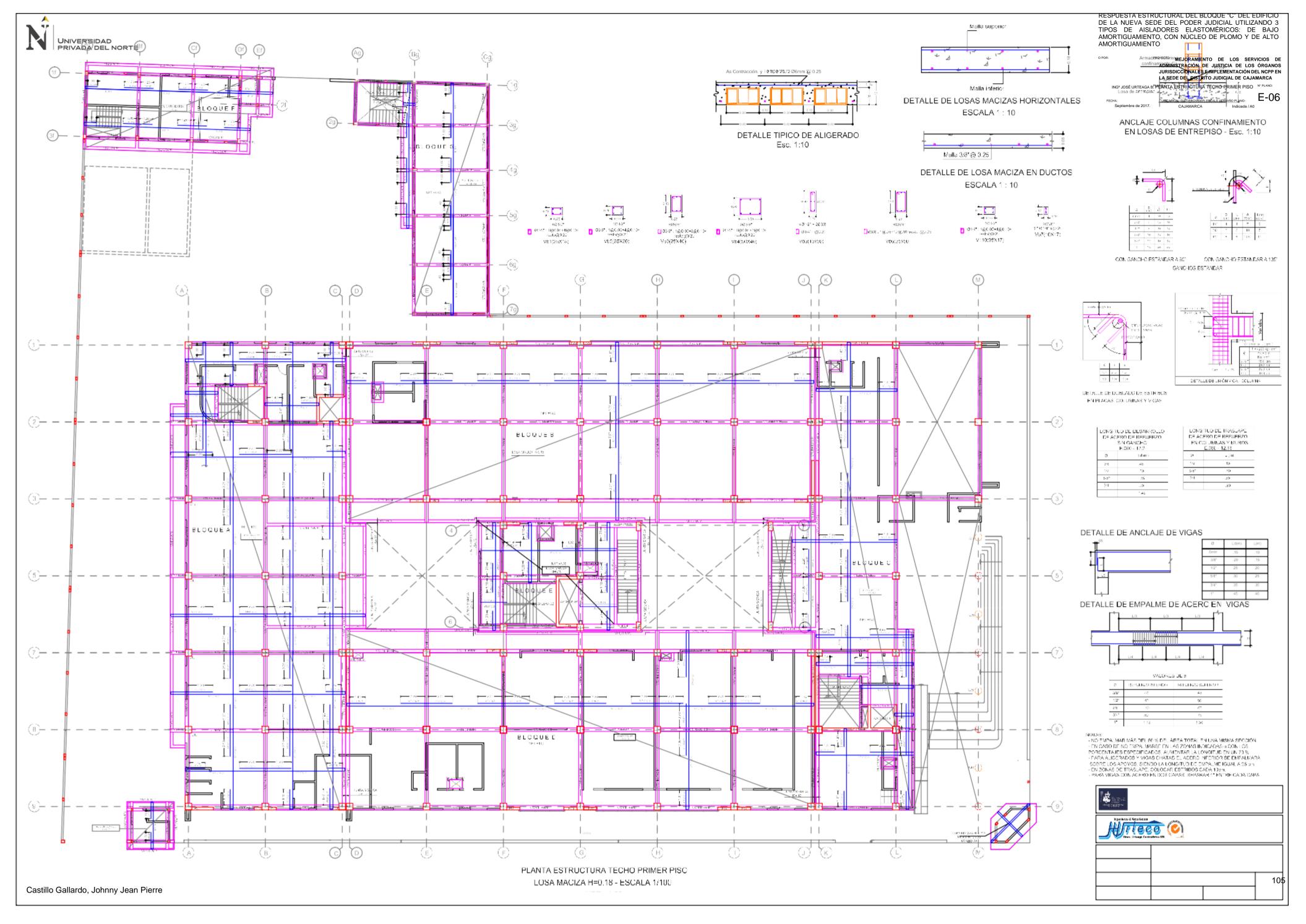

ADMINISTRACIÓN DE JUSTICIA DE LOS ÓRGANOS


JURISDICCIONALES E IMPLEMENTACIÓN DEL NCPP EN

LA SEDE DEL DISTRITO JUDICIAL DE CAJAMARCA

NOTA: El siguiente plano fue extraído del expediente técnico "MEJORAMIENTO DE LOS SERVICIOS DE ADMINISTRACIÓN DE JUSTICIA DE LOS ÓRGANOS JURISDICCIONALES E IMPLEMENTACIÓN DEL NCPP EN LA SEDE DEL DISTRITO JUDICIAL DE CAJAMARCA" elaborado por la empresa contratista HURTECO SRL.

NOTA: El siguiente plano fue extraído del expediente técnico "MEJORAMIENTO DE LOS SERVICIOS DE ADMINISTRACIÓN DE JUSTICIA DE LOS ÓRGANOS JURISDICCIONALES E IMPLEMENTACIÓN DEL NCPP EN LA SEDE DEL DISTRITO JUDICIAL DE CAJAMARCA" elaborado por la empresa contratista HURTECO SRL.



MUNICIPALIDAD PROVINCIAL DE CAJAMARCA

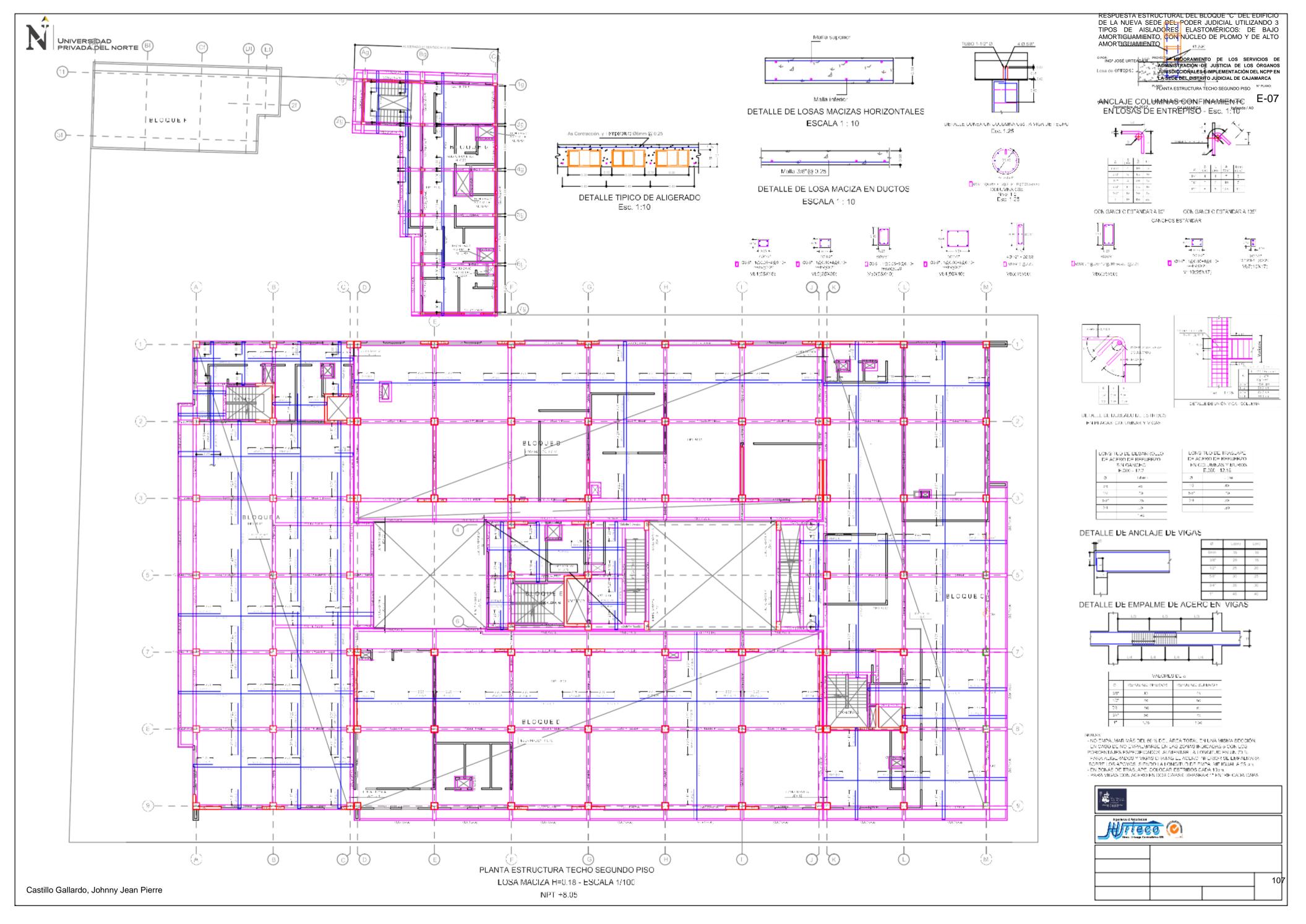
CERTIFICACION ISO 9001:2008
ALCANCE: "DISEÑO Y DESARROLLO DE EXPEDIENTES
TÉCNICOS DE OBRAS CIVILES Y ELECTROMECÁNICAS"

GERENCIA: INFRAESTRUCTURA

SUBGERENCIA: ESTUDIOS Y PROYECTOS

MUNICIPALIDAD PROVINCIAL DE CAJAMARCA

GERENCIA:
INFRAESTRUCTURA

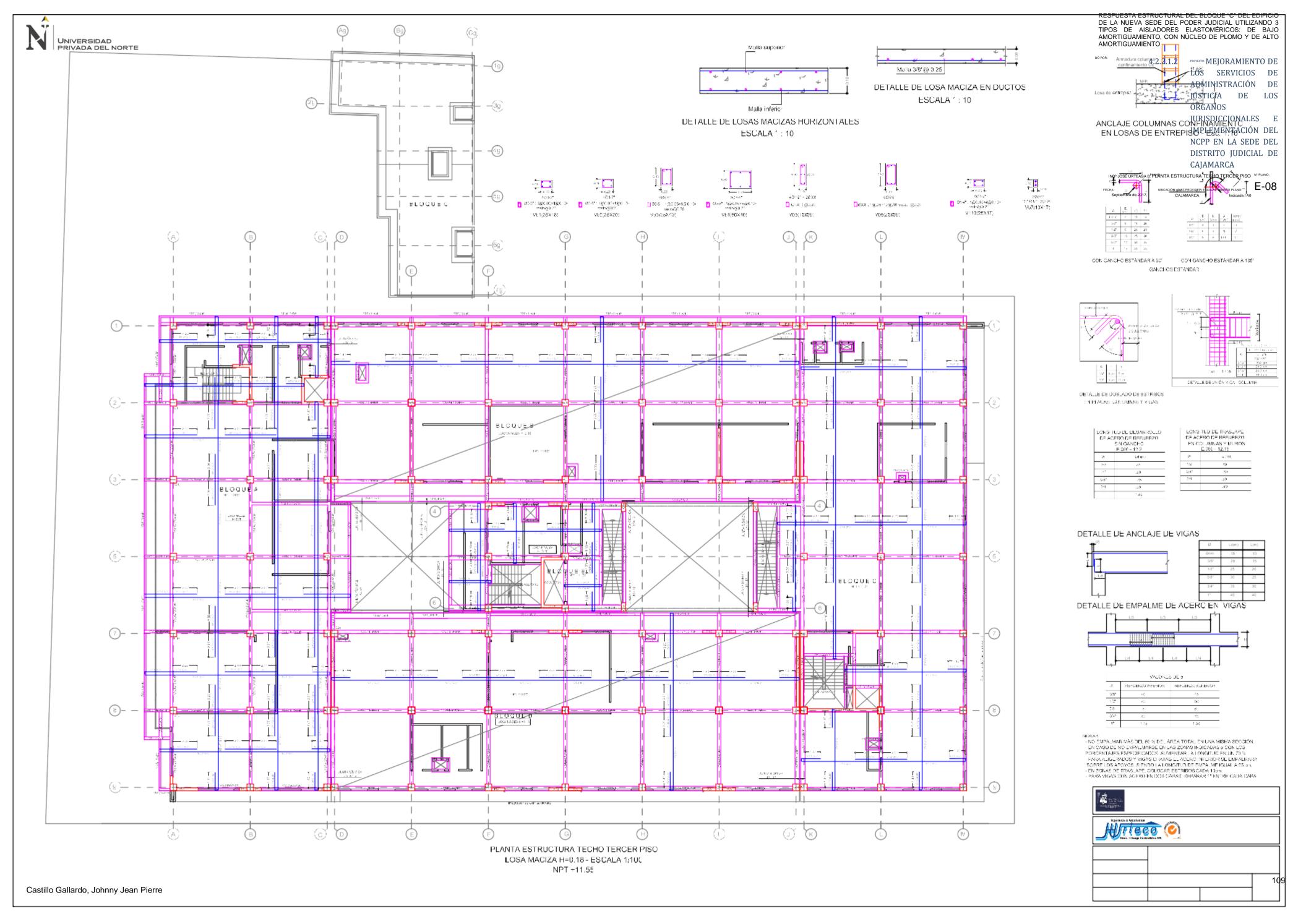

NOTA: El siguiente plano fue extraído del expediente técnico "MEJORAMIENTO DE LOS SERVICIOS DE ADMINISTRACIÓN DE JUSTICIA DE LOS ÓRGANOS JURISDICCIONALES E IMPLEMENTACIÓN DEL NCPP EN LA SEDE DEL DISTRITO

SUBGERENCIA: ESTUDIOS Y PROYECTOS JUDICIAL DE CAJAMARCA" elaborado por la empresa

contratista HURTECO SRL.

Castillo Gallardo, Johnny Jean Pierre

106


MUNICIPALIDAD PROVINCIAL DE CAJAMARCA

CERTIFICACIÓN ISO 9001:2008
ALCANCE: "DISEÑO Y DESARROLLO DE EXPEDIENTES
TÉCNICOS DE OBRAS CIVILES Y ELECTROMECÁNICAS*

NOTA: El siguiente plano fue extraído del expediente técnico "MEJORAMIENTO DE LOS SERVICIOS DE ADMINISTRACIÓN DE JUSTICIA DE LOS ÓRGANOS JURISDICCIONALES E IMPLEMENTACIÓN DEL NCPP EN LA SEDE DEL DISTRITO JUDICIAL DE CAJAMARCA" elaborado por la empresa

contratista HURTECO SRL.

GERENCIA:
INFRAESTRUCTURA
SUBGERENCIA:
ESTUDIOS Y PROYECTOS

NOMENCLATURA

La siguiente tabla muestra la nomenclatura usada en las fórmulas para el diseño de los aisladores.

N°	Nomenclatura	Significado
1	$B_M =$	Factor de amortiguamiento, correspondiente a la razón entre la ordenada espectral para 5% de amortiguamiento y la ordenada espectral para el amortiguamiento efectivo β_M correspondiente al desplazamiento traslacional D_M , que se indica en la tabla N° 5.
2	b =	Dimensión menor de la proyección en planta de la estructura, medida perpendicularmente a la dimensión mayor, d , en mm.
3	<i>C</i> =	Factor de amplificación sísmica definido en la norma técnica de edificación E.030.
4	$D_M =$	Desplazamiento traslacional en el centro de rigidez del sistema de aislamiento, en la dirección de análisis, determinado con la ecuación 6, en mm.
5	$D'_{M} =$	Desplazamiento en el centro de rigidez del sistema de aislamiento, en la dirección de análisis, determinado con la ecuación 16, en mm.
6	$D_{TM} =$	Desplazamiento total de un elemento del sistema de aislamiento, en la dirección de análisis, que incluye la traslación en el centro de rigidez y la componente torsional, determinado con la ecuación 8, en mm.
7	d =	Dimensión mayor de la proyección en planta de la estructura, en mm.
8	$E_{ciclo} =$	Energía disipada en un aislador durante un ciclo completo de ensayo con carga reversible, para un rango de desplazamiento desde Δ^+ hasta Δ^- , medida por el área encerrada en la curva fuerza — desplazamiento, en kN-mm.
9	e =	Excentricidad obtenida como la suma de la distancia en planta entre el centro de masa de la estructura sobre la interfaz de aislamiento y el centro de rigidez del sistema de aislamiento, más la excentricidad accidental, tomada

	Γ		
		como 5% de la mayor dimensión en planta del edificio en	
		dirección perpendicular a la de la fuerza sísmica considerada, en	
		mm.	
		Mínima fuerza negativa en un aislador durante un ciclo	
10	F ⁻ =	de ensayo de un prototipo, correspondiente a la amplitud	
		de desplazamiento Δ^- , en kN.	
		Máxima fuerza positiva en un aislador durante un ciclo de	
11	F+ =	ensayo de un prototipo, correspondiente a la amplitud	
	1 -	de desplazamiento Δ^+ , en kN.	
		Fuerza sísmica lateral en el nivel de base, determinada con la	
12	$F_1 =$	ecuación 13, en kN	
	-		
13	$F_i =$	Fuerza lateral en el nivel i determinada con la ecuación 14, en	
		kN.	
14	<i>g</i> =	Aceleración de la gravedad (9 810 mm/s²).	
15	$h_i =$	Altura del nivel i respecto al nivel de base, en mm.	
		Rigidez efectiva (secante) del sistema de aislamiento en	
16	$k_M =$	el desplazamiento traslacional en la dirección de análisis,	
		determinada con la ecuación 3, en kN/mm.	
17	k	Rigidez efectiva (secante) de un aislador, determinada	
17	k_{eff} =	con la ecuación 17, en kN/mm.	
40		Número de pisos de la estructura sobre la interfaz de	
18	n =	aislamiento.	
19	N =	Número de aisladores.	
		Peso de la estructura sobre la interfaz de aislamiento,	
20	P =	determinado en la norma técnica de edificación E.030, en	
	•	kN.	
		Parte del peso P que se ubica en o se asigna al nivel i, en kN.	
21	$p_i =$	Tarte del peso i que se ablea en o se asigna armiveri, en kiv.	
		Peso sísmico efectivo de la estructura sobre la interfaz	
22	$P_s =$	de aislamiento, calculado en forma similar a P pero sin incluir el	
22	1 s —	nivel de base, en kN.	
<u> </u>			
22		Radio de giro del sistema de aislamiento, en mm, el cual es	
23	$r_a =$	igual a $\frac{1}{2}(b_{12}^2 + d^2)^{1/2}$ en sistemas de aislamiento con	
		planta rectangular de dimensiones $b \times d$.	
		Coeficiente de reducción de las fuerzas sísmicas para la	
24	$R_0 =$	superestructura considerándola como si fuera de base	
24	N ₀ —	fija, según lo indicado en la norma técnica de edificación E.030.	
		Coeficiente de reducción de las fuerzas sísmicas para la	
25	$R_a =$	estructura sobre el sistema de aislamiento, calculado como	
		$3/8R_0$ pero no menor que 1 ni mayor que 2.	
26	C —	Factor de amplificación del suelo definido en la norma	
26	S =	técnica de edificación E.030.	
		Ordenada del espectro elástico de pseudo aceleraciones	
27	$S_{aM} =$	correspondiente al sismo máximo, en mm/s², determinada	
	- un	con la ecuación 5.	
	I		

PINADA DEL MODITE 7 MONTHOU MILLION		7 WIGHTINGS WILLIAM
ARIVADA DEL NORTE		período fundamental de la estructura considerada con
28	T =	base fija, en la dirección de análisis, evaluado con cualquiera de
20	I =	los procedimientos indicados en la norma técnica de edificación
		E.030, en segundos.

	1		
29	$T_M =$	período efectivo de la estructura sísmicamente aislada, asociado al desplazamiento traslacional D_M en la dirección de análisis, determinada con la ecuación 7, en segundos.	
30	U =	Factor de uso e importancia, igual a 1.	
31	$V_b =$	Fuerza cortante total en el sistema de aislamiento o en los elementos bajo el nivel de aislamiento, determinada con la ecuación 10, en kN.	
32	$V_s =$	Fuerza cortante en la base de la estructura sobre el sistema de aislamiento, determinada con la ecuación 11 y con los límites indicados en el numeral 21.3, en kN.	
33	$V_{st} =$	Fuerza cortante no reducida actuante sobre los elementos por encima del nivel de base, determinada con la ecuación 12, en kN.	
34	x_i , y_i =	Distancias horizontales entre el centro de masas del sistema de aislamiento y el aislador i -ésimo, medidas en las direcciones de los ejes del sistema de aislamiento, en mm.	
35	<i>y</i> =	Distancia entre el centro de rigidez del sistema de aislamiento y el elemento de interés, medida perpendicularmente a la dirección de la solicitación sísmica considerada, en mm.	
36	Z =	Factor de zona definido en la norma técnica de edificación E.030.	
37	$eta_{\scriptscriptstyle M} =$	Amortiguamiento efectivo del sistema de aislamiento para el desplazamiento traslacional D , determinado con la ecuación 4 (expresado como fracción del amortiguamiento crítico).	
38	β_{eff} =	Amortiguamiento efectivo de un dispositivo del sistema de aislamiento, determinado con la ecuación 18 (expresado como fracción del amortiguamiento crítico).	
39	$\Delta^{+}=$	Desplazamiento positivo máximo de un aislador durante cada ciclo de ensayo de un prototipo, en mm.	
40	Δ-=	Desplazamiento negativo mínimo de un aislador durante cada ciclo de ensayo de un prototipo, en mm.	
41	$\lambda_{mcute{a}x} =$	Factor modificatorio para determinar el máximo valor de una propiedad del aislador, teniendo en cuenta todas las fuentes de variabilidad, como se indica en el numeral 12.3.	
42	λ_{min} $=$	Factor modificatorio para determinar el mínimo valor de una propiedad del aislador, teniendo en cuenta todas las fuentes de variabilidad, como se indica en el numeral 12.3.	

AMORTIGUAMIENTO

43	$\lambda_{(ae,m\acute{a}x)} =$	Factor modificatorio para determinar el máximo valor de una propiedad del aislador, considerando las condiciones ambientales y el envejecimiento, como se indica en el numeral 12.3.	
44	$\lambda_{(ae,min)} =$	Factor modificatorio para determinar el mínimo valor de una propiedad del aislador, considerando las condiciones ambientales y el envejecimiento, como se indica en el numeral 12.3.	

Fuente: Norma E.031, Norma Técnica de Asilamiento Sísmico.

DISEÑO DEL AISLADOR CON ASCE 7 - 10

DATOS DE ENTRADA

Número de aisladores (N):	23	aisladores
Peso Sísmico de la estructura (W):	904.41	Tn
Período Objetivo deseado (Td):	2.00	Seg
Carga máxima sobre el aislador:	147.5	Tn
Carga mínima sobre el aislador:	140.9	Tn

DATOS PRELIMINARES

Site Class:	E
Risk Category:	III

Parámetros de respuesta espectral de la aceleración:

Ss =	0.50	g
S1 =	0.22	g

Coeficientes de zona:

Fa =	1.70
Fv =	3.12

Aceleración de la respuesta espectral:

SMS =	0.85
SM1 -	0.69

Espectros de diseño:

SDS =	0.567
SD1 =	0.458

Periodos:

Estructura aislada:	0.162
Para diseño:	0.808

Factor de Reducción: 2

DISEÑO DEL AISLADOR ELASTOMERICO DE BAJO AMORTIGUAMIENTO

Propiedades de inicio para el diseño del aislador:

PROPIEDADES UNIDAD AISLADOR

Amortiguamiento
Máxima Deformación lateral a cortante
Carga Peso propio + 0.30 Carga viva
Módulo de elasticidad volumétrico
Tipo de conexión

RESPUESTA ESTRUCTURAL DEL BLOQUE "C" DEL EDIFICIO DE LA NUEVA SEDE DEL PODER JUDICIAL UTILIZANDO 3 TIPOS DE AISLADORES ELASTOMÉRICOS: DE BAJO AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DE ALTO AMORTIGUAMIENTO

Мра	0.40
%	5
	1.5
Ton	140.90
Мра	2000
Empernado	Empernad

1.-Cálculo de la rigidez horizontal total del sistema de aislación, con las cargas de peso propio más 50% de la carga viva que es 147.5 Tn.

El factor de R_I se basará en el tipo de sistema-resistencia fuerza sísmica utilizada para la estructura anterior del sistema de aislamiento y será de tres octavos del valor de R dada en la Tabla 12.2-1, con un valor m

$$k_{H} = m \left(\frac{2\pi}{T_{D}}\right)^{2}$$
 kh = 141.76 Tn/m

- Desplazamiento de diseño del centro de rigidez del sistema de aislamiento, asumiendo 5% por lo que BD = BM = 1.00.

Table 17.5-1 Damping Coefficient, B_D or B_M				
Effective Damping, β_D or β_M (percentage of critical) ^{a,b} B_D or B_M Factor				
≤2	0.8			
5	1.0			
10	1.2			
20	1.5			
30	1.7			
40	1.9			
≥50	2.0			

2.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento, asumiendo un amortiguamiento efectivo del 5% como dato inicial.

$$D_D = \frac{gS_{D1}T_D}{4\pi^2\beta_D}$$

$$Dd = 0.2274$$
Sd1 = 0.458
Bd = 1.00

3.- Suma de las alturas de las capas del caucho

$$tr = \frac{D_D}{\gamma_s}$$

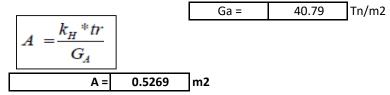
$$tr = 0.1516$$
 m

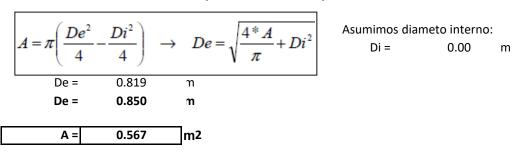
- Deformación de corte máxima admisible Ymax= 200%

$$tr = \frac{D_D}{\gamma_{MAX}}$$

$$tr = 0.1137$$

- Número de capas de caucho:

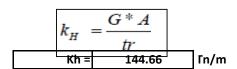

$$n = \frac{tr}{0.01}$$
 $n = 15.16$


Asumimos n: 16 capas por lo que tenemos

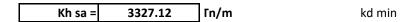
tr = 0.16 m

4.- Área del aislador

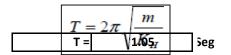
5.- Diámetro exterior del aislador imponiéndose un valor para diámetro inicial Di=10cm



- Verificación de esfuerzos


$$\rho = \frac{CARGA_{MAX}}{A}$$

$$p = 259.93 \quad Tn/m2$$


6.- Cálculo de la rigidez horizontal del aislador

- Cálculo de la rigidez compuesta del sistema de aislamiento

7.- Cálculo del período real del sistema de aislamiento

Disminuye aproximadamente

8.- Con lo que se cumple la hipótesis de período deseado de 2.5 segundos.

$$\beta = \frac{n * \beta_{\text{IMPUESTO}} * k_H}{k_{\text{HTOTAL}}}$$

$$\beta = 5.00$$
%

9.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento

$$D_D = rac{g S_{D1} T_D}{4 \pi^2 oldsymbol{eta}_D}$$

10.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento con efectos de torsión según la norma.

$$D_{TD \ norma} = 1.1 * D_D$$
 Dtd norma = 0.1308 m

11.- Verificación de la deformación a cortante máximo

$$\gamma_{S} = \frac{D_{TD\,norma}}{Hr}$$

Ys = 0.82 (Valor aceptable)

12.- Cálculo del cortante de diseño de los elementos por encima de la interfaz de aislamiento y el cortante de base elástico del código

$$Vs = \frac{k_H * D_D}{R_I}$$

$$Vs = 197.85 \text{ Tn}$$

$$Cs = 0.219$$

$$Cs = 21.88\%$$

13.- Detalles de los aisladores

13.1.- Factor de forma :

- Debe dar valores mayores a 10 para asegurar que la rigidez vertical será la adecuada:

$$S = \frac{De - Di}{4 * ti}$$

$$S = 21.25$$
 > Cumple la condición

13.2.- Calculo del módulo de compresión del compuesto caucho y acero para un aislador, considerando el módulo de elasticidad volumétrico de k = 20000 kg/cm2.

$$Ec = \left(\frac{1}{6*G*S^2} + \frac{4}{3K}\right)^{-1}$$

G = 40.79 Tn/m2 K = 200000.00 Tn/m2

Ec = 63630.95 Tn/m2

13.3.- Cálculo de la rigidez vertical compuesta del sistema de aislamiento

$$Kv = \frac{Ec * A}{Hr}$$

NOTA: No es Hr es tr

Kv total = 5190437.87 Tn/m

- 13.4.-Verificación de la frecuencia natural vertical
- Periodo vertical real es:

$$T = 2\pi \sqrt{\frac{m}{K_{\nu}}}$$

T = 0.0265

Seg

Hz

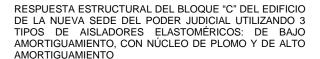
- La frecuencia natural vertical es

$$fv = \frac{1}{T}$$

f v = 37.76

> 10 Hz Cumple la condición

13.5.- Altura total del aislador (H), que corresponde a la sumatoria de las capas de goma, las placas de acero tiene un espesor de ts=3 mm según los datos comerciales.


-Ancho de placas de anclaje: 0.032 m -Espesor discos de acero: 0.003 m

h -	0.269 269	m 1 mm
h =	269	mm

- Los discos de acero tendrán un recubrimiento de 5mm, de modo que el diámetro para cada aislador es

 $\Phi = 0.840$ m $\Phi = 840$ mm

- 14.- Procedimiento para determinar el coeficiente de seguridad al pandeo
- 14.1.- Cálculo de la inercia del disco de acero, y no de la sección transversal completa para estar al lado de la seguridad al momento de determinar la carga crítica.

$$I = \frac{\pi}{4} \left[\left(\frac{\phi_s}{2} \right)^4 - \left(\frac{Di}{2} \right)^4 \right]$$

I = 0.024439 m4 I = **2443920.32** cm4

- La carga de pandeo de Euler de cada aislador es:

$$P_E = \frac{\pi^2 * Ec*I}{3*tr^2}$$

Pe = 199845.32 Tn

14.2.- Cálculo de la rigidez efectiva a cortante

$$As = A + \frac{tr + disco}{tr}$$

As = 0.727

NOTA: No es suma es multiplicación

- Rigidez a cortante de cada aislador

$$Ps = G * As$$

Ps = 29.65

m2

Tn

14.3.- Cálculo de la carga crítica para cada tipo de aislador

$$P_{CRITICA} = \sqrt{P_E * Ps}$$

P critica = 2434.41

14.4.- Cálculo del coeficiente de seguridad

$$SF = \frac{P_{CRITICA}}{P \max}$$

NOTA: se usa Wd+0.5wl

Procedimiento para determinar el desplazamiento máximo del centro de rigidez del sistema de aislamiento en el caso del sismo máximo esperado

1.- Modificación de modulo de deformación a cortante amortiguamiento efectivo

- Normalmente los compuestos de los aisladores experimentan un incremento del 20% de deformación a cortante y un decremento de amortiguamiento de un 1%.

.- Cálculo de la rigidez horizontal del sistema de aislamiento

- Rigidez del aislador:

$$k_H = \frac{G_A * A}{tr}$$
Kh = 173.59 Tn/m

- Rigidez del sistema de aislamiento:

Kh total = 3992.54 Tn/m

3.- Determinación del coeficiente de amortiguamiento BM

BM = 4.00 Tn/m

4.- Período efectivo en el máximo desplazamiento del sistema aislado

$$T = 2\pi \sqrt{\frac{m}{K_H}}$$

$$T = 0.95 \quad \text{seg}$$

5.- Desplazamiento máximo del centro de rigidez del sistema de aislamiento

$$D_M = rac{gS_{M1}T_M}{4\pi^2eta_M}$$
 SM1 = 0.686 Bm = 1

6.- Desplazamiento máximo del centro de rigidez del sistema de aislamiento con efectos de torsión según la norma

Dt norma = 0.179 m

7.- Determinación del desplazamiento de rodamiento y verificación del volcamiento global

$$Dm\acute{a}x = \frac{De}{1 + k_H * h / C \arg a}_{D+0,3L}$$

$$D \, \text{m\'ax} = 0.6661 \quad \text{m}$$

- Los desplazamientos anteriores son menores, por lo cual se cumple la condición.

CARACTERISTICAS	AISLADOR	UNIDAD
Número de aisladores del sistema	23	und
Altura total	26.90	cm
Diámetro del caucho	85.00	cm
Diámetro interno	0.00	cm
Altura del caucho	16.00	cm
Número de capas de caucho	16	und
Espesor de la capa de caucho	1.00	cm
Diámetro de los discos de acero	84.00	cm
Altura de los discos de acero	4.50	cm
Número de discos de acero	15	und
Espesor de los discos de acero	0.30	cm
Espesor de la placa de anclaje	3.20	cm
Longitud de la plancha de anclaje	90.00	cm
Módulo de rigidez a corte	40.79	Tn/m2
Rigidez Horizontal	144.66	Tn/m
Rigidez Vertical	225671.21	Tn/m

Parámetros para la modelación bilineal del aislador

Rigidez efectiva lineal	144.66	Tn/m
Desplazamiento de diseño del sistema Dd	0.1189	m
Amortiguamiento	0.05	
Altura del caucho	0.27	m
Periodo real del sistema	1.05	Seg

1.- Desplazamiento de fluencia del aislador es:

$$D_{Y} = 0.1 \cdot t_{r}$$

$$Dy = 0.027 \quad m$$

Puede variar de 0.05 a 0.1

2.- Energía disipada del aislador:

$$W_D^A = 2\pi \cdot k_{eff}^A \cdot D_D^2 \cdot \beta^A$$

$$W = 0.643 \quad \text{Tn-m}$$

3.- La fuerza de deformación nual del aislador es:

$$Q^{A} = \frac{W_{D}^{A}}{4 \cdot (D_{D} - D_{Y})}$$

$$Q = 1.746 \quad \text{Tn}$$

$$k_2^A = k_{eff}^A - \frac{Q^A}{D_D}$$

129.975

Tn/m

5.- La rigidez inicial del aislador es:

$$k_1^A = \frac{Q^A}{D_Y} + k_2^A$$

K1 =

194.888

Tn/m

6.- La fuerza de la fluencia es:

$$F_Y^A = Q^A + k_2^A \cdot D_Y$$

Fy =

5.242

Tn

7.- La frecuencia angular es:

$$\omega = \frac{2\pi}{T_{real}}$$

φ =

6.007

rad/seg

8.- El amortiguamiento efectivo es:

$$C^{A} = \frac{W_{D}^{A}}{\boldsymbol{\pi} \cdot D_{D}^{2} \cdot \boldsymbol{\omega}}$$

C =

2.408

Tn-seg/m

RESULTADO PARÁMETROS PARA ETABS

Rigidez Vertical	225671.21	Tn/m
Rigidez Efectiva Lineal	144.66	Tn/m
Rigidez Inicial	194.888	Tn/m
Fuerza de Fluencia	5.242	Tn
Relación Rigidez Post Fluencia / Rigidez Inicial	0.667	
Amortiguamiento Efectivo	2.408	Tn-seg/m
Energía Disipada	0.643	Tn-m

DISEÑO DEL AISLADOR CON ASCE 7 - 10

DATOS DE ENTRADA

Número de aisladores (N):	23	aisladores
Peso Sísmico de la estructura (W):	904.41	Tn
Período Objetivo deseado (Td):	2.00	Seg
Carga máxima sobre el aislador:	147.5	Tn
Carga mínima sobre el aislador:	140.9	Tn

DATOS PRELIMINARES

Site Class : E
Risk Category : III

Parametros de resupuesta espectral de la aceleración:

Ss =	0.50	g
S1 =	0.22	g

Coeficientes de zona:

Fa =	1.70
Fv =	3 12

Aceleración de la respuesta espectral:

SMS = 0.85 SM1 = 0.69

Espectros de diseño:

SDS = 0.567 SD1 = 0.458

Periodos:

Estructura aislada: 0.162

Para diseño: 0.808

El factor de R $_{\text{I}}$ se basará en el tipo de sistema-resistencia fuerza sísmica utilizada para la estructura

anterior del sistema de aislamiento y será de tres octavos del valor de R dada en la Tabla 12.2-1, con un

Factor de Reducción: 2 valor máximo no mayor que 2.0 y un valor mínimo no inferior a 1.0

DISEÑO DEL AISLADOR ELASTOMERICO DE ALTO AMORTIGUAMIENTO

Propiedades de inicio para el diseño del aislador:

PROPIEDADES	UNIDAD	AISLADOR
Módulo de rigidez a cortante	Мра	0.40
Amortiguamiento	%	10
Máxima Deformación lateral a cortante		1.5
Carga Peso propio + 0.30 Carga viva	Ton	140.90
Módulo de elasticidad volumetrico	Мра	2000
Tipo de conexión	Empernado	Empernadc

1.-Calculo de la rigidez horizontal total del sistema de aislación, con las cargas de peso propio más 50% de la carga viva que es 147.5 Tn.

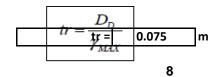
- Rigidez horizontal de cada aislador

$$k_{H} = m \left(\frac{2\pi}{T_{D}}\right)^{2}$$
 kh = 141.76 Tn/m

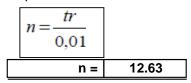
- Desplazamiento de diseño del centro de rigidez del sistema de aislamiento, asumiendo 10% por lo que BD = BM = 1.20.

Table 17.5-1 Damping Coefficient, B_D or B_M			
Effective Damping, β_D or β_M (percentage of critical) ^{a,b} B_D or B_M Factor			
≤2	0.8		
5	1.0		
10	1.2		
20	1.5		
30	1.7		
40	1.9		
≥50	2.0		

2.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento, asumiendo un amortiguamiento efectivo del 10% como dato inicial.


$$\begin{array}{c|c}
gS_{D1}T_{D} & \text{Sd1} = & 0.458 \\
Bd = & 1.20 \\
\hline
Dd TT^{2}\beta 189 & m
\end{array}$$

3.- Suma de las alturas de las capas del caucho


$$tr = \frac{D_D}{t_s^{r=1}}$$

$$0.126$$

- Deformación de corte máxima admisible³/max= 250%

- Número de capas de caucho:

Asumimos n: 13 capas por lo que tenemos

tr = 0.13 m

4.- Área del aislador

5.- Diámetro exterior del aislador imponiéndose un valor para al diámetro inicial D inicial=10cm

$$A = \pi \left(\frac{De^2}{4} - \frac{Di^2}{4} \right) \rightarrow De = \sqrt{\frac{4*A}{\pi} + Di^2}$$
 Asumimos diameto interno: Di = 0.00 m
De = 0.748 m
De = 0.750 m

- Verificación de esfuerzos

A =

$$\rho = \frac{CARGA_{MAX}}{A}$$

$$p = 333.87 \quad Tn/m2$$

0.442

6.- Cálculo de la rigidez horizontal del aislador

$$k_{H} = \frac{G * A}{tr}$$
Kh | 138.61 | Tn/m

- Cálculo de la rigidez compuesta del sistema de aislamiento

m2

		¬	1.4.4.4.
Kh sa	3188.08	Tn/m	kd min
		1	

7.- Cálculo del periodo real del sistema de aislamiento

$$T = 2\pi \sqrt{\frac{m}{K_H}}$$

$$T = \begin{bmatrix} 1.07 \end{bmatrix} Seg$$

Disminuye aproximadamente

46.58

%

8.- Con lo que se cumple la hipótesis de período deseado de 2.5 segundos.

$$\beta = \frac{n * \beta_{\text{IMPUESTO}} * k_H}{k_{\text{HTOTAL}}}$$

$$\beta = 10.00 \%$$

9.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento

$$D_D = rac{gS_{D1}T_D}{4\pi^2oldsymbol{eta}_D}$$

10.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento con efectos de torsión según la norma.

$$D_{TD\ norma} = 1.1*D_D$$
 Dtd norma = 0.1114 m

11.- Verificación de la deformación a cortante máximo

$$\gamma_{S} = \frac{D_{TD\,norma}}{Hr}$$

Ys = 0.86 (Valor aceptable)

12.- Cálculo del cortante de diseño de los elementos por encima de la interfaz de aislamiento y el cortante de base elástico del código

$$Vs = \frac{k_H * D_D}{R_I}$$

$$Vs = 161.39 \quad Tn$$

$$Cs = 0.178$$

$$Cs = 17.84\%$$

13.1.- Factor de forma :

- Debe dar valores mayores a 10 para asegurar que la rigidez vertical será la adecuada:

$$S = \frac{De - Di}{4*ti}$$

S = 18.75

Cumple la condición

13.2.- Cálculo del módulo de compresión del compuesto caucho y acero para un aislador, considerando el módulo de elasticidad volumétrico de k = 20000 kg/cm2.

$$Ec = \left(\frac{1}{6*G*S^2} + \frac{4}{3K}\right)^{-1}$$

G =

K =

40.79 Tn/m2 200000.00 Tn/m2

Ec =

54676.04 Tn/m2

13.3.- Cálculo de la rigidez vertical compuesta del sistema de aislamiento

Tn/m

$$Kv = \frac{Ec * A}{Hr}$$

$$Kv = 185808.72$$

NOTA: No es Hr es tr

4273600.53 Tn/m

13.4.-Verificación de la frecuencia natural vertical

- Periodo vertical real es:

$$T = 2\pi \sqrt{\frac{m}{K_{\nu}}}$$

T = 0.0292

Seg

- La frecuencia natural vertical es

$$fv = \frac{1}{T}$$

f v =

= 34.27 Hz

> 10 Hz Cumple la condición

13.5.- Altura total del aislador (H), que corresponde a la sumatoria de las capas de goma, las placas de acero tiene un espesor de ts=3 mm según los datos comerciales.

-Ancho de placas de anclaje: 0.032 m

-Espesor discos de acero: 0.003 m

h =	0.23	m
h =	230	mm

- Los discos de acero tendrán un recubrimiento de 5mm, de modo que el diámetro para cada aislador es

$$\Phi = 0.740 \text{ m}$$
 $\Phi = 740 \text{ mm}$

14.- Procedimiento para determinar el coeficiente de seguridad al pandeo

14.1.- Cálculo de la inercia del disco de acero, y no de la sección transversal completa para estar al lado de la seguridad al momento de determinar la carga crítica.

$$I = \frac{\pi}{4} \left[\left(\frac{\phi_{S}}{2} \right)^{4} - \left(\frac{Di}{2} \right)^{4} \right]$$

I = 0.014720 m4 I = **1471962.61** cm**4**

- La carga de pandeo de Euler de cada aislador es:

$$P_E = \frac{\pi^2 * Ec*I}{3*tr^2}$$

Pe = 156669.91 Tn

14.2.- Cálculo de la rigidez efectiva a cortante

$$As = A + \frac{tr + disco}{tr}$$

$$As = 0.564 \quad m2$$

NOTA: No es suma es multiplicación

- Rigidez a cortante de cada aislador

$$Ps = G * As$$

Ps = 23.01 Tn

14.3.- Cálculo de la carga crítica para cada tipo de aislador

$$P_{CRITICA} = \sqrt{P_E * Ps}$$

P critica = 1898.66 Tn

14.4.- Cálculo del coeficiente de seguridad

$$SF = \frac{P_{CRITICA}}{P \max}$$

NOTA: se usa Wd+0.5wl

SF = 12.87 > 2 OK

Procedimiento para determinar el desplazamiento máximo del centro de rigidez del sistema de aislamiento en el caso del sismo máximo esperado

1.- Modificación de módulo de deformación a cortante amortiguamiento efectivo

- Normalmente los compuestos de los aisladores experimentan un incremento del 20% de deformación a cortante y un decremento de amortiguamiento de un 1%.

G =
$$48.95$$
 Tn/m2
 β = 9.00 %

2.- Cálculo de la rigidez horizontal del sistema de aislamiento

- Rigidez del aislador:

$$k_{H} = \frac{G_{A} * A}{tr}$$
Kh = 166.33 Tn/m

- Rigidez del sistema de aislamiento:

3.- Determinación del coeficiente de amortiguamiento BM

4.- Período efectivo en el máximo desplazamiento del sistema aislado

$$T=2\pi\sqrt{\frac{m}{K_H}}$$
T = 0.98 seg

5.- Desplazamiento máximo del centro de rigidez del sistema de aislamiento

$$D_{M} = \frac{gS_{M1}T_{M}}{4\pi^{2}\beta_{M}}$$

$$S_{M1} = 0.686$$

$$Bm = 1.2$$

$$D_{M} = 0.139$$

$$m$$

6.- Desplazamiento máximo del centro de rigidez del sistema de aislamiento con efectos de torsión según la norma

7.- Determinación del desplazamiento de rodamiento y verificación del volcamiento global

$$Dm\acute{a}x = \frac{De}{1 + k_H * h / C \arg a_{D+0,3L}}$$

4.2.3. - Los desplazamientos anteriores son menores, por lo cual

se cumple la condición. RESUMEN DE RESULTADOS

CARACTERISTICAS	AISLADOR	UNIDAD
Número de aisladores del sistema	23	und
Altura total	23.00	cm
Diámetro del caucho	75.00	cm
Diámetro interno	0.00	cm
Altura del caucho	13.00	cm
Número de capas de caucho	13	und
Espesor de la capa de caucho	1.00	cm
Diámetro de los discos de acero	74.00	cm
Altura de los discos de acero	3.60	cm
Número de discos de acero	12	und
Espesor de los discos de acero	0.30	cm
Espesor de la placa de anclaje	3.20	cm
Longitud de la plancha de anclaje	80.00	cm
Módulo de rigidez a corte	40.79	Tn/m2
Rigidez Horizontal	138.61	Tn/m
Rigidez Vertical	185808.72	Tn/m

Parámetros para la modelación bilineal del aislador

Rigidez efectiva lineal	138.61	Tn/m
Desplazamiento de diseño del sistema Dd	0.1012	m
Amortiguamiento	0.10	
Altura del caucho	0.23	m
Periodo real del sistema	1.07	Seg

1.- Desplazamiento de fluencia del aislador es:

$$D_Y = 0.1 \cdot t_r$$

$$Dy = 0.023 \quad m$$

Puede variar de 0.05 a 0.1

2.- Energía disipada del aislador:

$$W_D^A = 2\pi \cdot k_{eff}^A \cdot D_D^2 \cdot \beta^A$$

$$W = 0.893 \quad \text{Tn-m}$$

RESPUESTA ESTRUCTURAL DEL BLOQUE "C" DEL EDIFICIO DE LA NUEVA SEDE DEL PODER JUDICIAL UTILIZANDO 3
TIPOS DE AISLADORES ELASTOMÉRICOS: DE BAJO
AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DE ALTO
AMORTIGUAMIENTO
La fuerza de deformación nual del aislador es:

4.- La rigidez post fluencia del aislador es:

$$k_{2}^{A} = k_{eff}^{A} - \frac{Q^{A}}{D_{D}}$$

K₂ = 110.439 Tn/m

5.- La rigidez inicial del aislador es:

$$k_1^A = \frac{Q^A}{D_Y} + k_2^A$$

K₁ = 234.458

Tn/m

6.- La fuerza de la fluencia es:

$$F_Y^A = Q^A + k_2^A \cdot D_Y$$
Fy = 5.393 Tn

7.- La frecuencia angular es:

$$\omega = \frac{2\pi}{T_{real}}$$

φ =

5.881

rad/seg

8.- El amortiguamiento efectivo es:

$$C^{A} = \frac{W_{D}^{A}}{\boldsymbol{\pi} \cdot D_{D}^{2} \cdot \boldsymbol{\omega}}$$

C =

4.714

Tn-seg/m

RESULTADO PARAMETROS PARA ETABS

Rigidez Vertical	185808.72	Tn/m
Rigidez Efectiva Lineal	138.61	Tn/m
Rigidez Inicial	234.458	Tn/m
Fuerza de Fluencia	5.393	Tn
Relación Rigidez Post Fluencia / Rigidez Inicial	0.471	
Amortiguamiento Efectivo	4.714	Tn-seg/m
Energía Disipada	0.893	Tn-m

DISEÑO DEL AISLADOR CON ASCE 7 - 10

DATOS DE ENTRADA

Número de aisladores (N):	23	aisladores
Peso Sísmico de la estructura (W):	904.41	Tn
Período Objetivo deseado (Td):	2.00	Seg
Carga máxima sobre el aislador:	147.5	Tn
Carga mínima sobre el aislador:	140.9	Tn

DATOS PRELIMINARES

Site Class : E Risk Category : III

Parámetros de resupuesta espectral de la aceleración:

Ss =	0.50	g
S1 =	0.22	g

Coeficientes de zona:

Fa =	1.70
Fv =	3.12

Aceleración de la respuesta espectral:

SMS =	0.85
SM1 =	0.69

Espectros de diseño:

SDS =	0.567	
SD1 =	0.458	

Periodos:

Estructura aislada: 0.162 Para diseño: 0.808

Factor de Reducción: 2

El factor de R_i se basará en el tipo de sistema-resistencia fuerza sísmica utilizada para la estructura anterior del sistema de aislamiento y será de tres octavos del valor de R dada en la Tabla 12.2-1, con un valor máximo no mayor que 2.0 y un valor mínimo no inferior a 1.0

DISEÑO DEL AISLADOR ELASTOMERICO DE ALTO AMORTIGUAMIENTO

Propiedades de inicio para el diseño del aislador:

PROPIEDADES	UNIDAD	AISLADOR
Módulo de rigidez a cortante	Мра	0.40
Amortiguamiento	%	10
Máxima Deformación lateral a cortante		1.5
Carga Peso propio + 0.30 Carga viva	Ton	140.90
Módulo de elasticidad volumetrico	Мра	2000
Tipo de conexión	Empernado	Empernado

1.-Cálculo de la rigidez horizontal total del sistema de aislación, con las cargas de peso propio más 50% de la carga viva que es 147.5 Tn.

$$k_H = m \left(\frac{2\pi}{T_D}\right)^2$$

kh = 141.76 Tn/m

- Desplazamiento de diseño del centro de rigidez del sistema de aislamiento, asumiendo 10% por lo que BD = BM = 1.20.

Table 17.5-1 Damping Coefficient, B_D or B_M		
Effective Damping, β_D or β_M (percentage of critical) ^{a,b}	\mathbf{B}_D or \mathbf{B}_M Factor	
≤2	0.8	
5	1.0	
10	1.2	
20	1.5	
30	1.7	
40	1.9	
≥50	2.0	
230	2.0	

2.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento un amortiguamiento efectivo del 10% como dato inicial.

$$D_D = rac{gS_{D1}T_D}{4\pi^2eta_D}$$
 Sd1 = 0.458 Bd = 1.20

3.- Suma de las alturas de las capas del cauch o

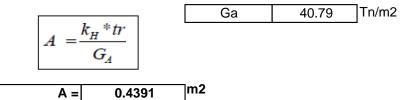
$$tr = \frac{D_D}{\gamma_s}$$

$$tr = 0.1263$$
 m

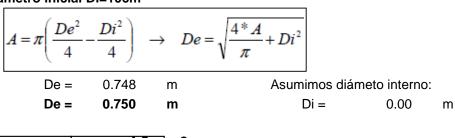
- Deformación de corte máxima admisible Ymax= 250%

$$tr = \frac{D_D}{\gamma_{MAX}}$$
 tr = 0.0758 m

- Número de capas de caucho:


$$n = \frac{tr}{0.01}$$

$$n = 12.63$$


Asumimos n: 13 capas por lo que tenemos

tr = 0.13 m

4.- Área del aislador

5.- Diámetro exterior del aislador imponiéndose un valor para el diámetro inicial Di=10cm

$$A = \begin{bmatrix} 0.442 \\ 3. \end{bmatrix}$$

- Verificación de esfuerzos

$$\rho = \frac{CARGA_{MAX}}{A}$$

$$p = 333.87 \quad Tn/m2$$

6.- Cálculo de la rigidez horizontal del aislador

$$k_{H} = \frac{G * A}{tr}$$
Kh = 138.61 Tn/m

- Cálculo de la rigidez compuesta del sistema de aislamiento

		— <i>- ·</i>	
Kh sa	3188.08	Tn/m	kd min

4.4. 7.- Cálculo del período real del sistema de aislamiento

$$T = 2\pi \sqrt{\frac{m}{K_H}}$$

$$T = 1.07$$
 Seg

.- Con lo que se cumple la hipótesis de período deseado de 2.5 segundos.

$$\beta = \frac{n * \beta_{DAPUESTO} * k_H}{k_{HTOTAL}}$$

$$\beta = 10.00$$
%

9.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento

$$D_D = rac{gS_{D1}T_D}{4\pi^2oldsymbol{eta}_D}$$

10.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento con efectos de torsión según la norma.

m

$$D_{TD\ norma} = 1.1*D_D$$
Dtd norma = 0.1114 m

11.- Verificación de la deformación a cortante máximo

$$\gamma_{S} = \frac{D_{TD \, norma}}{Hr}$$

$$\gamma_{S} = 0.86$$

Ys = 0.86 (Valor aceptable)

12.- Cálculo del cortante de diseño de los elementos por encima de la interfaz de aislamiento y el cortante de base elástico del código

$$Vs = \frac{k_H * D_D}{R_I}$$

Vs = 161.39 Tn

Cs = 0.178

Cs = 17.84%

13.- Detalles de los aisladores

13.1.- Factor de forma:

- Debe dar valores mayores a 10 para asegurar que la rigidez vertical será la adecuada:

$$S = \frac{De - Di}{4 * tr}$$

$$S = 18.75$$
 > Cumple la condición

| UNIVERSIDAD 2.P Călculo de compresión del compuesto caucho y acero para un aislador considerando el módulo de elasticidad volumétrico de k = 20000 kg/cm2.

$$Ec = \left(\frac{1}{6*G*S^2} + \frac{4}{3K}\right)^{-1}$$

$$G = 40.79 \quad Tn/m2$$

 $K = 200000.00 \quad Tn/m2$

Tn/m2 54676.04 Ec =

13.3.- Cálculo de la rigidez vertical compuesta del sistema de aislamiento

$$Kv = \frac{Ec * A}{Hr}$$

$$Kv = 185808.72 \quad Tn/m$$

4273600.53 Kv total

13.4.-Verificación de la frecuencia natural vertical

- Periodo vertical real es:

$$T = 2\pi \sqrt{\frac{m}{K_{V}}}$$

$$\Gamma = 0.0292$$
 Seg

- La frecuencia natural vertical es

$$fv = \frac{1}{T}$$

> 10 Hz Cumple la condición

13.5.- Altura total del aislador (H), que corresponde a la sumatoria de las placas de acero tiene un espesor de ts=3 mm según los datos comerciales.

-Ancho de placas de anclaje: 0.032 m -Espesor discos de acero: 0.003 m

- Los discos de acero tendrán un recubrimiento de 5mm, de modo que el diámetro para cada aislador es

$$\Phi = 0.740 \text{ m}$$
 $\Phi = 740 \text{ mm}$

Procedimiento para determinar el coeficiente de seguridad al pandeo

14.1.- Cálculo de la inercia del disco de acero, y no de la sección transversal completa para estar al lado de la seguridad al momento de determinar la carga crítica.

$$I = \frac{\pi}{4} \left[\left(\frac{\phi_S}{2} \right)^4 - \left(\frac{Di}{2} \right)^4 \right]$$

I = 0.014720 m4

I = 1471962.61 cm4

- La carga de pandeo de Euler de cada aislador es:

$$P_E = \frac{\pi^2 * Ec*I}{3*tr^2}$$

Pe = 156669.91 Ti

14.2.- Cálculo de la rigidez efectiva a cortante

$$As = A + \frac{tr + disco}{tr}$$

As = 0.564 m

No es suma es multiplicación

- Rigidez a cortante de cada aislador

$$Ps = G * As$$

Ps = 23.01

14.3.- Cálculo de la carga crítica para cada tipo de aislador

$$P_{CRITICA} = \sqrt{P_E * Ps}$$

P critica =

1898.66

Tn

Tn

14.4.- Cálculo del coeficiente de seguridad

$$SF = \frac{P_{CRITICA}}{P \max}$$

NOTA:

se usa Wd+0.5wl

SF =

12.87

> 2 OK

Procedimiento para determinar el desplazamiento máximo del centro de rigidez del sistema de aislamiento en el caso del sismo máximo esperado

1.- Modificación de módulo de deformación a cortante amortiguamiento efectivo

- Normalmente los compuestos de los aisladores experimentan un incremento del 20% de deformación a cortante y un decremento de amortiquamiento de un 1%.

G = 48.95 Tn/m2 $\beta = 9.00$ %

- 2.- Cálculo de la rigidez horizontal del sistema de aislamiento
- Rigidez del aislador:

$$k_{H} = \frac{G_{A} * A}{tr}$$

$$Kh = 166.33 \quad Tn/m$$

- Rigidez del sistema de aislamiento:

3.- Determinación del coeficiente de amortiguamiento BM

4.- Período efectivo en el máximo desplazamiento del sistema aislado

$$T = 2\pi \sqrt{\frac{m}{K_H}}$$

$$T = 0.98 \text{ seg}$$

5.- Desplazamiento máximo del centro de rigidez del sistema de aislamiento

$$D_M = rac{gS_{M1}T_M}{4\pi^2eta_M}$$
 $S_{M1} = 0.686$
 $S_{M2} = 0.686$
 $S_{M3} = 0.686$
 $S_{M3} = 0.686$
 $S_{M3} = 0.686$
 $S_{M3} = 0.686$

6.- Desplazamiento máximo del centro de rigidez del sistema de aislamiento con efectos de torsión según la norma

7.- Determinación del desplazamiento de rodamiento y verificación del volcamiento global

$$Dm \acute{a}x = \frac{De}{1 + k_{H} * h / C \arg a}_{D+0,3L}$$
D máx = 0.6116 m

- Los desplazamientos anteriores son menores, por lo cual se cumple la condición.

CARACTERISTICAS	AISLADOR	UNIDAD
Número de aisladores del sistema	23	und
Altura total	23.00	cm
Diámetro del caucho	75.00	cm
Diámetro interno	0.00	cm
Altura del caucho	13.00	cm
Número de capas de caucho	13	und
Espesor de la capa de caucho	1.00	cm
Diámetro de los discos de acero	74.00	cm
Altura de los discos de acero	3.60	cm
Número de discos de acero	12	und
Espesor de los discos de acero	0.30	cm
Espesor de la placa de anclaje	3.20	cm
Longitud de la plancha de anclaje	80.00	cm
Módulo de rigidez a corte	40.79	Tn/m2
Rigidez Horizontal	138.61	Tn/m
Rigidez Vertical	185808.72	Tn/m

COMBINACIONES DE AISLADORES CON NUCLEO DE PLOMO

- 1.- Desplazamientos máximos y cortantes de diseño del sistema de aislamiento y de la superestructura
- a) Cálculo de la fuerza a deformación nula Q

Diámetro de núcleo de plomo:

Número de aisladores:

4.00

$$Apb = \#aisladores* \frac{Dpb^2 * \pi}{4}$$

4.5.
$$Apb = 0.0314 m2$$

- Fuerza a deformación nula considerando la fuerza de fluencia del plomo

Q = **28.83** Tn 9.00 Mpa 917.73 Tn/m2

- Área del aislador con un orificio de diámetro Dpb=10cm

De = 0.750 m

A = 0.434 m2

2.- Cálculo de la rigidez elástica Ke

$$k_r^A = \frac{G_A \cdot A_{anular}^A}{t_r}$$

3.- Cálculo de la rigidez efectiva Keff

$$k_{eff} = k_2 + \frac{Q}{D_D} = \#_{aisladores} \cdot k_r^A + \frac{Q}{D_D}$$
Keff = 829.357 Tn/m

- Rigidez efectiva de cada aislador:

4.- Cálculo de la energía disipada

- La deformación de fluencia del conjunto es:

$$D_{Y} = \frac{Q}{k_{1} - k_{2}} = \frac{Q}{9 \cdot k_{2}}$$

$$D_{Y} = 0.0059 \text{ m}$$

- Energía disipada:

$$W_D = 4 \cdot Q \cdot (D_D - D_Y)$$
WD= 11.00 Tn-m

5.- Amortiguamiento efectivo del conjunto de aisladores

$$\beta_{A.p} = \frac{W_D}{2\pi \cdot k_{eff} \cdot D_D^2}$$

$$\beta = 20.59 \%$$

6.- Rigidez compuesta del sistema de aislamiento

7.- Amortiguamiento compuesto del sistema de aislamiento

8.- Coeficiente de amortiguamiento

Por Interpolación:

- Despiazamiento de diseño del centro de rigidez del sistema de aislamiento

$$D_D = rac{g S_{D1} T_D}{4 \pi^2 oldsymbol{eta}_D}$$
 Sd1 = 0.458 Bd = 1.276

10.- Cálculo del desplazamiento de diseño del centro de rigidez del sistema de aislamiento con efectos de torsión según la norma.

$$D_{TD \, norma} = 1.1 * D_D$$

11.- Verificación de la deformación a cortante máximo

$$\gamma_{\scriptscriptstyle S} = \frac{D_{\scriptscriptstyle TD\,norma}}{Hr}$$

12.- Cálculo del período real del sistema de aislamiento

$$T = 2\pi \sqrt{\frac{m}{K_H}}$$

13.- Cálculo del cortante de diseño de los elementos por encima de la interfaz de aislamiento y el cortante de base elástico del código

$$Vs = \frac{k_H * D_D}{R_I}$$

$$Cs = 0.341$$

Procedimiento para determinar el desplazamiento máximo del centro de rigidez del sistema de aislamiento en el caso del sismo máximo esperado

1.- Factor de forma:

- Debe dar valores mayores a 10 para asegurar que la rigidez vertical será la adecuada:

$$S = \frac{De - Di}{4 * tr}$$

Cumple la condición

Cálculo del modulo de compresión del compuesto caucho y acero para un aislador considerando el módulo de elasticidad volumétrico de k = 20000 kg/cm2.

$$Ec = \left(\frac{1}{6*G*S^2} + \frac{4}{3K}\right)^{-1}$$
Ec = 45165.25 Tn/m2

3.- Procedimiento para determinar el coeficiente de seguridad al pandeo

3.1.- Cálculo de la inercia del disco de acero, y no de la sección transversal completa para estar al lado de la seguridad al momento de determinar la carga crítica.

$$I = \frac{\pi}{4} \left[\left(\frac{\phi_{S}}{2} \right)^{4} - \left(\frac{Di}{2} \right)^{4} \right]$$

$$I = 1552664.6 \text{ cm4}$$

- La carga de pandeo de Euler de cada aislador es:

$$P_{E} = \frac{\pi^2 * Ec * I}{136542.95}$$
 Tr

3.2.- Cálculo de la rigidez efectiva a cortante

$$A^{s} = A + \frac{tr + 0.05524}{tr}$$
 m2

- Rigidez a cortante de cada aislador

$$Ps = 22.60$$

$$Ps = G * As$$

3.3.- Cálculo de la carga crítica para cada tipo de aislador

P critica = 1756,49 Tn
$$P_{CRITICA} = \sqrt{P_E * P_S}$$
3.4. Cálculo del coeficiente de seguridad

 $SF = \frac{P_{CRITICA}}{P \max}$

RESPUESTA ESTRUCTURAL DEL BLOQUE "C" DEL EDIFICIO DE LA NUEVA SEDE DEL PODER JUDICIAL UTILIZANDO 3 TIPOS DE AISLADORES ELASTOMÉRICOS: DE BAJO AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DE ALTO AMORTIGUAMIENTO

3.5.- Cálculo de la rigidez vertical compuesta del sistema de aislamiento

- Módulo de compresión del plomo

$$Kv = \frac{Ec * A}{Hr}$$

- Rigidez vertical del aislador con núcleo de plomo

- Rigidez compuesta

$$Kv total = 4403574.79 Tn/m$$

- 3.6.-Verificación de la frecuencia natural vertical
- Periodo vertical real es:

$$T = 2\pi \sqrt{\frac{m}{K_{\nu}}}$$

- La frecuencia natural vertical es

$$fv = \frac{1}{T}$$

$$f v = 34.78 Hz$$

> 10 Hz Cumple la condición

- Combinación de aisladores:

CARACTERISTICAS	HDR	LRB	UNIDAD
Número de aisladores del sistema	19.00	4.00	und
Altura total	23.00	23.00	cm
Diámetro exterior del caucho	75.00	75.00	cm
Diámetro interior del caucho	-	10.00	cm
Altura del caucho	13.00	13.00	cm
Número de capas de caucho	13	13	und
Espesor de la capa de caucho	1.00	1.00	cm
Diámetro del núcleo de plomo	-	10.00	cm

Altura del núcleo de plomo	-	16.60	cm
Diámetro exterior de los discos de acero	74.00	74.00	cm

UNIVERSIDAD

RESPUESTA ESTRUCTURAL DEL BLOQUE "C" DEL EDIFICIO DE LA NUEVA SEDE DEL PODER JUDICIAL UTILIZANDO 3 TIPOS DE AISLADORES ELASTOMÉRICOS: DE BAJO AMORTIGUAMIENTO, CON NÚCLEO DE PLOMO Y DE ALTO

	AMORTIGIAMIENTO			
7	Diametro interior de los discos de acero	-	10.00	cm
	Altura de los discos de acero	3.60	3.60	cm
	Número de discos de acero	12.00	12.00	und
	Espesor de los discos de acero	0.30	0.30	cm
	Espesor de la placa de anclaje	3.20	3.20	cm
	Longitud de la plancha de anclaje	80.00	80.00	cm
	Módulo de rigidez a corte	40.79	40.79	Tn/m2
	Rigidez Horizontal (Efectiva)	138.61	829.36	Tn/m
	Rigidez Vertical	185808.72	218302.28	Tn/m

Parámetros para la modelación bilineal del aislador

	HDR	LRB	1
Rigidez efectiva lineal	138.61	829.36	Tn/m
Desplazamiento de diseño del sistema	0.0954	0.0954	m
Amortiguamiento	0.10	0.21	
Altura del caucho	0.13	0.13	m
Periodo real del sistema	1.03	1.03	seg
Deformación de fluencia		0.0059	
Número de aisladores	19.00	4.00	
Energía disipada del conjunto		11.00	Tn-m
Fuerza a deformación nula del conjunto		28.83	Tn
Rigidez proporcionada por el caucho		136.15	Tn/m
Rigidez proporcionada por el núcleo de plomo			

1.- Desplazamiento de fluencia del aislador es:

$$D_Y = 0.1 \cdot t_r$$

Dy HDR = 0.013 m

Dy LRB = 0.006 m

Puede variar de 0.05 a 0.1

4.6. 2.- Energía disipada del aislador:

$$W_D^A = 2\boldsymbol{\pi} \cdot k_{eff}^A \cdot D_D^2 \cdot \boldsymbol{\beta}^A$$

W HDR = 0.792 Tn-m

W LRB = 2.75 Tn-m

- La fuerza de deformación nual del aislador es:

$$Q^A = \frac{W_D^A}{4 \cdot (D_D - D_Y)}$$

4.- La rigidez post fluencia del aislador es:

$$k_2^A = k_{eff}^A - \frac{Q^A}{D_D}$$

$$k_2 HDR = 113.40 Tn/m$$

5.- La rigidez inicial del aislador es:

$$k_1^A = \frac{Q^A}{D_Y} + k_2^A$$

Tn

6.- La fuerza de la fluencia es:

$$F_Y^A = Q^A + k_2^A \cdot D_Y$$

$$F_{1} HDR = 3.878$$

7.- La frecuencia angular es:

$$\omega = \frac{2\pi}{T_{real}}$$

$$\omega = 6.129$$
 rad/seg

8.- El amortiguamiento efectivo es:

$$C^A = \frac{W_D^A}{\boldsymbol{\pi} \cdot D_D^2 \cdot \boldsymbol{\omega}}$$

RESULTADO PARÁMETROS PARA ETABS

	AISLADOR			UNIDADES	
	HDR	LRB	Combinación	UNIDADES	
Rigidez Vertical	185808.72	218302.28	4890978.27	Tn/m	
Rigidez Efectiva Lineal	138.61	829.36	16312.24	Tn/m	
Rigidez Inicial	298.333	1361.480	27061.45	Tn/m	
Fuerza de Fluencia	3.878	8.009	167.68	Tn	
Amortiguamiento Efectivo	4.52	15.70	316.43	Tn-seg/m	
Energía Disipada	0.79	2.75	55.41	Tn-m	