

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

"PROPIEDADES FÍSICO MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA CON LA ADICIÓN DE EMULSIÓN ASFÁLTICA", CAJAMARCA 2018.

Tesis para optar el título profesional de:

Ingeniero Civil

Autor:

Rojas Galvez, Jeinner Ramiro

Asesor:

Ing. Manuel Rafael Urteaga Toro

Cajamarca - Perú

2020

DEDICATORIA

Primeramente, a Dios, por ser el inspirador y darme fuerza para continuar en este proceso de obtener uno de los anhelos más deseados A mis padres Ramiro Rojas Machuca y Alis Marlene Gálvez Gálvez, por su amor, trabajo y sacrificio en todos estos años, ya que sin ellos no hubiera sido posible lograr esta meta. A todas las personas que me apoyaron y han hecho que este trabajo se realice con éxito.

AGRADECIMIENTO

Agradezco a Dios por guiarme por el camino correcto y ser el apoyo y fortaleza en aquellos momentos de dificultad y debilidad.

A mis padres y hermanas, por los consejos, valores y principios que me han inculcado, además por confiar y creer en mí.

Al Ing. Iván Hildebrando Mejía Díaz por haber guiado este trabajo en su inicio y al Ing. Manuel Rafael Urteaga Toro por ayudarme a concluirlo.

ÍNDICE

DED	DICATORIA	2
AGF	RADECIMIENTO	3
ÍND	ICE DE TABLAS	5
ÍND	ICE DE FIGURAS	7
ÍND	ICE DE ECUACIONES	8
RES	SUMEN	9
CAP	PÍTULO I. INTRODUCCIÓN	10
1.1.	Realidad problemática	10
1.2.	Formulación del problema	19
1.3.	Objetivos	19
1.4.	Hipótesis	20
CAP	PÍTULO II. METODOLOGÍA	21
2.1.	Tipo de investigación	21
2.2.	Población y muestra	21
2.3.	Técnicas e instrumentos de recolección y análisis de datos	
2.4.	Procedimiento	26
CAP	PÍTULO III. RESULTADOS	46
3.1	Resultados para la determinación de un suelo óptimo.	46
3.2	Dosificación para la elaboración de los BTC	50
3.3	Resultados de los ensayos de compresión, flexión y absorción de los BTC	53
3.4	Incremento de las propiedades físico mecánicas de los BTC con adición e asfáltica RC-250 frente a los BTC de la muestra patrón	
CAP	PÍTULO IV. DISCUSIÓN Y CONCLUSIONES	67
4.1	Discusión	67
4.2	Conclusiones	70
REF	FERENCIAS	72
ANE	EXOS	74

ÍNDICE DE TABLAS

Tabla 1 Propiedades de la emulsión astáltica	15
Tabla 2 Población y muestra	22
Tabla 3 Técnicas y guias para el análisi de datos	26
Tabla 4 Ubicación de la cantera	27
Tabla 5 Distribución del material para el ensayo de Proctor modificado	36
Tabla 6 Especificaciones, medias y porcentajes de emulsión en los BTC	39
Tabla 7 Resumen de resultados de los ensayos previos a la elaboración de BTC	46
Tabla 8 Dosificación total de agua y emulsión asfáltica (RC-250) para el ensayo de Proct	tor
modificado	48
Tabla 9 Dosificación detallada del agua para el ensayo de Proctor moficado	49
Tabla 10 Dosificación detalla de emulsión asfáltica (RC-250) – Proctor modificado	49
Tabla 11 Resumen de ensayo de Proctor moficado con y sin adición de emulsión asfáltic	a
(RC-250)	50
Tabla 12 Resumen de dosificación total de agua y emulsión para la elaboración de BTC.	50
Tabla 13 Dosificación de agua para los BTC (30x14x10 cm) en estado natural – flexión	y
absorción	51
Tabla 14 Dosificación de agua para los BTC (15x14x10 cm) en estado natural -	
compresión	51
Tabla 15 Dosificación detallada de emulsión asfáltica para los BTC (30x14x10 cm) –	
flexión y absorción	52
Tabla 16 Dosificación detallada de emulsión asfáltica para los BTC (15x14x10 cm) -	
compresión	52
Tabla 17 Resumen de resultados del ensayo a compresión de los BTC	53
Tabla 18 Resumen de resultados del ensayo a flexión de los BTC	53
Tabla 19 Resumen de resultados del ensayo de grado de absorción de los BTC	53
Tabla 20 Resumen detallado de la resistencia a compresión de los BTC – muestra patrón	54
Tabla 21 Resumen detallado de la resistencia a compresión de los BTC - 2% E.A	54
Tabla 22 Resumen detallado de la resistencia a compresión de los BTC – 3% E.A	55
Tabla 23 Resumen detallado de la resistencia a compresión de los BTC – 4% E.A	55
Tabla 24 Resumen general del ensayo de resistencia a compresión de los BTC	56
Tabla 25 Resumen general del módulo de Young para los BTC sometidos a compresión.	57
Tabla 26 Incremento del módulo de Young para los BTC sometidos a compresión	58

Tabla 27 Resumen detallado de la resistencia a flexión de los BTC – muestra patrón	. 59
Tabla 28 Resumen detallado de la resistencia a flexión de los BTC – 2% E.A	. 59
Tabla 29 Resumen detallado de la resistencia a flexión de los BTC -3% E.A	. 60
Tabla 30 Resumen detallado de la resistencia a flexión de los BTC – 4% E.A	. 60
Tabla 31 Resumen general del ensayo de resistencia a flexión de los BTC	. 61
Tabla 32 Resumen general del módulo de Young para los BTC sometidos a flexión	. 62
Tabla 33 Incremento del módulo de Young para los BTC sometidos a flexión	. 63
Tabla 34 Resumen detallado del ensayo de grado de absorción – muestra patrón	. 63
Tabla 35 Resumen detallado del ensayo de grado de absorción – 2% E.A	. 64
Tabla 36 Resumen detallado del ensayo de grado de absorción – 3% E.A	. 64
Tabla 37 Resumen detallado del ensayo de grado de absorción – 4% E.A	. 64
Tabla 38 Incremento en la resistencia a compresión de los BTC	. 65
Tabla 39 Incremento en la resistencia a flexión de los BTC	. 66

ÍNDICE DE FIGURAS

Figura 1: Protocolo ensayo resistencia a la compresion para los BTC	23
Figura 2: Protocolo ensayo resistencia a la flexión para los BTC	24
Figura 3: Protocolo ensayo de absorción para los BTC	25
Figura 4: Cantera donde se extrajo el material (Santa Bárbara)	27
Figura 5: Ensayo contenido de humedad de la materia prima	29
Figura 6: Ensayo granulométrico de la materia prima	30
Figura 7: Ensayo granulométrico por sifonaje de la materia prima	32
Figura 8: Ensayo límite líquido de la materia prima.	34
Figura 9: Ensayo límite plástico de la materia prima.	35
Figura 10: Ensayo de Proctor modificado para la muestra patrón	38
Figura 11: Ensayo de Proctor modificado con emulsión asfáltica (RC-250)	38
Figura 12: Elaboración de los BTC en la máquina CINVA RAM	40
Figura 13: BTC en estado natural y con adición de emulsión asfáltica (RC-250)	41
Figura 14: Ensayo de resistencia a la compresión de los BTC	42
Figura 15: Ensayo de resistencia a la flexión de los BTC	43
Figura 16: Ensayo de grado de absorción de los BTC.	44
Figura 17: Clasificación de suelos – normativa SUCS	47
Figura 18: Clasificación por carta de plasticidad.	48
Figura 19: Resumen general ensayo a la compresión de los BTC	56
Figura 20: Resumen general del modulo de Young para los BTC sometidos a compresió	ón.
	57
Figura 21: Incremento del módulo de Young para los BTC sometidos a compresión	58
Figura 22: Resumen general ensayo a la flexión de los BTC	61
Figura 23: Resumen general del módulo de Young para los BTC sometidos a flexión	62
Figura 24: Incremento del módulo de Young para los BTC sometidos a flexión	63
Figura 25: Incremento en resistencia a la compresión de los BTC.	65
Figura 26: Incremento en resistencia a la flexión de los BTC.	66

ÍNDICE DE ECUACIONES

Ecuación 1 : Contenido de humedad	28
Ecuación 2: Porcentajes retenidos, gradación del suelo	30
Ecuación 3: Porcentaje retenidos, acumulados	30
Ecuación 4: Porcentaje de material pasante.	30
Ecuación 5: Porcentajes retenidos, gradación del suelo	32
Ecuación 6: Porcentaje retenidos, acumulados	32
Ecuación 7: Porcentaje de material pasante.	32
Ecuación 8: Índice de plasticidad del suelo	35
Ecuación 9: Densidad Seca	37
Ecuación 10: Densidad húmeda.	37
Ecuación 11: Esfuerzo a la Compresión axial del BTC.	42
Ecuación 12: Esfuerzo a la flexión del BTC.	43
Ecuación 13 : Grado de Absorción del bloque de tierra comprimida	44

RESUMEN

Esta investigación tiene como objetivo principal determinar en qué medida influye la adición de emulsión asfáltica (RC-250) en las propiedades físico mecánicas de resistencia a la compresión, flexión y grado de absorción, de bloques de tierra comprimida y compararlos con bloques de tierra comprimida en estado natural; para determinar el incremento de la resistencia a la compresión, flexión y grado de absorción. Se elaboraron bloques de tierra comprimida con suelo natural y bloques de tierra comprimida adicionando emulsión asfáltica (RC -250) en porcentajes de 2.0%, 3.0% y 4%; estos bloques tienen dimensiones de: 15x15x10 cm (ensayo a la compresión) y 30x15x10 cm. (ensayo a la flexión y grado de absorción). Luego de realizados los ensayos se obtuvo que el bloque de tierra comprimida con adición de emulsión asfáltica al 4% tiene los mejores resultados siendo los siguientes: en resistencia a la compresión 38.85 kg/cm² el cual supera en 126.51% a los bloques en condición natural, en resistencia a la flexión 10.33 kg/cm², el cual supera en 44.90% a los bloques de tierra comprimida en condición natural y con respecto al ensayo de grado de absorción, las unidades de estudio no resistieron ser sumergidas veinticuatro horas en agua, por lo que los resultados son parcialmente satisfactorios.

Palabras clave: Bloques de tierra comprimida, Emulsión asfáltica, Resistencia a la compresión, Resistencia a la flexión y Grado de absorción.

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

La tierra es uno de los primeros materiales utilizados en la construcción de viviendas a nivel mundial. La utilización de este material predomina en todas las regiones y climas del mundo por su fácil acceso. En la actualidad, millones de personas optan por vivir en viviendas de tierra y en algunos países en vía de desarrollo representan más de la mitad de las construcciones, lo cual incita al estudio particular de este material. (Minke, 2005).

"Los bloques de tierra comprimida (BTC) están actualmente siendo estudiados en gran parte del mundo con diferentes estabilizantes para mejorar diversas de sus características. Esta situación es debida a la importancia que la tierra cruda tiene en el planeta como material de construcción. Su fácil disponibilidad e inercia térmica hacen de la tierra una materia prima fundamental para las viviendas de ciertas poblaciones en el mundo." (Carcedo Fernández, 2012, pág. i)

En los países andinos la utilización del adobe para la construcción de viviendas es común. Por ejemplo, el INEI en el año 2017 realizó un censo nacional, el cual reveló que en el Perú existen 2 millones 148 mil 494 de viviendas (27.9%) hechas de adobe o tapial; además es importante mencionar que solo en la ciudad de Cajamarca se alberga al 10.9% (303 mil 183) de viviendas construidas de adobe en todo el territorio nacional. Esto indica que existe un importante número de la población que construye sus viviendas con este material; por lo que es recomendable mejorar la calidad de los adobes en su resistencia y elaboración. Debido a lo mencionado, esta investigación

pretende mejorar la resistencia a la compresión, resistencia a la flexión y grado de absorción adicionando emulsión asfáltica (RC-250) a los BTC.

Arteaga Paucar y Loja Saula (2018). En su investigación, "Diseño de adobes estabilizados con emulsión asfáltica". Describe como elaborar un adobe estabilizado con emulsión asfáltica mejorando sus propiedades mecánicas. Los resultados indican que el BTC sin estabilizar obtuvo una resistencia a compresión de 1.42 MPa a 28 días de secado, en cuanto a los BTC estabilizados al 2,5%, 5%, 7.5% y 10% tienen como resultados valores de 1.44, 1.53, 1.55 y 1.63 MPa respectivamente, evidenciando que el ultimo valor es el que resiste más, representado un incremento del 140.65% en comparación al BTC no estabilizado. A flexión el BTC en condición normal obtuvo un valor de 0.18 MPa y con respecto a los BTC tradicionales estabilizados con emulsión asfáltica al 2.5%, 5%,7.5% y 10% se obtuvieron resultados con valores de 0.20, 0.21, 0.25, 0.26 MPa respectivamente, siendo el ultimo valor el que tiene mayor resistencia, representado un incremento del 154.45% respecto al BTC no estabilizado. En cuanto al grado de absorción de agua el BTC normal obtuvo un valor de 1.67% y con respecto al BTC estabilizado con la dosis máxima (10%) este obtuvo un valor de 0.13% de absorción que representa una reducción del 92.31%.

Darío Cañola, Builes Jaramillo, Medina y Gonzales Castañeda (2018). En su investigación llevada a cabo en Medellín – Colombia, tiene por título "Bloques de tierra Comprimida (BTC) con aditivos bituminosos". El objetivo de esta investigación es la reducción del coeficiente de absorción capilar e incremento de la resistencia a la penetración de agua en bloques de tierra comprimida, adicionando emulsión asfáltica en frío en proporciones de 0%, 2.5%, 5%, 7.5% y 10%, respecto al peso del agua. Los

mejores resultados se obtienen con una adición del 5%, 7% y 10% de emulsión asfáltica.

Ríos Pérez (2010). En Santa Cruz Xoxocotlán – Oaxaca, realizó la tesis "Efecto de la Adición de Látex Natural y Jabón en la Resistencia Mecánica y Absorción del Adobe Compactado"; el objetivo es evaluar el efecto de ácidos grasos emulsificador (jabón) y de un polímero (látex natural) en la resistencia a la flexión, compresión y absorción del agua en adobes compactados elaborados con suelos arenosos. Los resultados obtenidos de la primera fase muestran que la adición de 1% de jabón en combinación con 2.0 y 3.0% de látex aumentaron la resistencia a la flexión, compresión y redujeron la absorción de agua con respecto al espécimen de referencia.

Chacón Sánchez, Romero Cuentas y Callasi Venero (2017). En su investigación, "Estudio comparativo de las propiedades físico mecánicas de las unidades de adobe tradicional frente a las unidades de adobe estabilizado con asfalto" tienen el objetivo principal de la implementación de nuevas propuestas para mejorar la calidad de unidades de adobe, de tal forma se encontró los siguientes resultados: El adobe estabilizado al 10% tienen un menor porcentaje de absorción promedio con respecto a las unidades de adobe tradicional y las unidades de adobe estabilizadas al 5% poseen una mejor resistencia a la compresión, ya que las unidades de adobe estabilizado al 5% y al 10% tienen una resistencia promedio de 14.87 kg/cm² y 17.68 kg/cm².

En la ciudad de Puno se desarrolló la tesis: "Efecto de la adición de aglomerantes en la resistencia mecánica y absorción del adobe compactado". La cual indica que al adicionar aglomerantes aumenta la resistencia mecánica y física del adobe. Para

estabilizar dicho material se realizaron varios tipos de prueba; como la adición de cemento y asfalto RC-250, rebajando la propiedad de plasticidad y procediendo a las pruebas de resistencia mecánica y absorción, las cuales tuvieron lugar en la Universidad de Puno. Los resultados que se arrojaron fue una alta resistencia mecánica mayor a 50 kg/cm² y una baja permeabilidad de un 7% en la absorción del agua. (Pacuri Zapana, 2014)

Córdova Fernández (2017). En su investigación, "Resistencia a la compresión de ladrillos de adobe estabilizado con asfalto RC-250 en San Miguel de Utcuyacu – Catac"; el objetivo de esta tesis determinó y comparó la resistencia a la compresión de ladrillos de adobe estabilizado con asfalto RC-250, teniendo como resultados un ladrillo de adobe de alta resistencia estructural mayores a 45 kg/cm² y una baja permeabilidad del 10%.

En adición es muy importante detallar conceptos que sirvan de base para esta investigación, los cuales se exponen a continuación:

La tierra utilizada para la fabricación de BTC, es una mezcla de arcilla, limo y arena compactada en una prensa manual. Las cantidades de los componentes y en consecuencia las características y propiedades de la tierra dependen del lugar de procedencia. De acuerdo con Gernot Minke (2015), la tierra con una óptima distribución granulométrica para elaborar un BTC es aquella que contenga un 14% de arcilla, 22% de limo y 64% de arena. (Vásques Hernandez, Botero Botero, & Carvajal Arango, 2015).

Para la elaboración de adobes, la norma E.080 (2016), en el artículo 4 establece lineamientos para "la gradación del suelo que deben aproximarse a los siguientes porcentajes: arcilla 10-20%, limo 15-25% y arena 55.70% no debiéndose utilizar suelos orgánicos". También podemos destacar que dicha norma específica que estos rangos pueden variar cuando se fabriquen adobes estabilizados.

En esta investigación, es de vital importancia la definición de emulsión asfáltica como la combinación de tres ingredientes básicos: asfalto, agua y un agente emulsificante, lo cuales por ciertos procesos mecánicos y químicos permiten combinarse. Mas allá de la complejidad química de las emulsiones asfálticas, lo importante es seleccionar la emulsión para el agregado y/o sistema constructivo utilizado. (Galván Huamaní, 2015)

Las emulsiones asfálticas tienen propiedades físicas de mayor importancia como: Adhesividad, Viscosidad, Susceptibilidad Térmica, Plasticidad y Envejecimiento.

- Adhesividad: Facilidad que presenta el betún para adherirse a la superficie de una partícula mineral. Esta característica es muy importante en mezclas asfálticas, donde el betún y áridos deben formar un conjunto homogéneo y continuo. (Arteaga Paucar & Loja Saula, 2018)
- Viscosidad: Se define como la resistencia que oponen las partículas a separarse, debido a los rozamientos internos que ocurren en el núcleo del fluido. (Arteaga Paucar & Loja Saula, 2018)
- Susceptibilidad Térmica: Indica la propensión que presenta el betún a variar ciertas propiedades reológicas especialmente la viscosidad con la temperatura.
 Gracias a esta propiedad pueden manejarse con facilidad a altas temperatura,

presentando una mayor estabilidad a temperatura ambiente. (Arteaga Paucar & Loja Saula, 2018)

- Plasticidad: Define el comportamiento mecánico del betún ante diferentes estados físicos y temporales de carga. (Arteaga Paucar & Loja Saula, 2018)
- Envejecimiento: Fenómeno de degradación y transformación química de los componentes de betún debido a la acción oxidante del aire y la presencia de humedad y radiaciones solares, haciendo que el betún pierda sus propiedades reológicas y adhesivas. (Arteaga Paucar & Loja Saula, 2018)

Tabla 1 Propiedades de la emulsión asfáltica.

Descripción	Emulsión Asfáltica		
Propiedades de la emulsión asfáltica	Gravedad específica	0.90 - 0.97 gr/cm ³	
RC - 250	Viscosidad cinemática	250 - 500	

Fuente: Ficha de datos de seguridad - Petroperú.

Antes de elaborar los bloques de tierra comprimida, cabe destacar algunos ensayos previos como el Contenido de Humedad donde Juárez Badillo y Rico Rodríguez en su libro "Fundamentos de la Mecánica de Suelos", define al contenido de humedad de un suelo, a la relación entre el peso de agua contenida en el mismo y el peso de su fase sólida. (p.54).

Para la elaboración de los (BTC) es muy importante el tamaño de agregados que constituyen esta unidad. Debido a esto algunas normativas como la (NTP 339.128, 1999), establece que el ensayo granulométrico tiene por objeto la determinación

cuantitativa de la distribución de tamaños de partículas de suelo por medio de un tamizaje. Así mismo Juárez Badillo y Rico Rodríguez en su libro "Fundamentos de la Mecánica de Suelos" especifica que gracias a la técnica del cribado fue posible efectuar el trazo de curvas granulométricas, contando con agrupaciones de partículas del suelo en mayor número de tamaños diferentes. (p.98).

La granulometría por tamizaje no es suficiente y es necesario hacer un ensayo de granulometría por sifonaje, para esto hacemos uso de la normativa (ASTM D421, 2007), la cual define que este método de ensayo determina la distribución de los tamaños de partículas menores a 75 µm mediante un proceso de sedimentación.

Los límites de Atterberg o límites de consistencia se basan en conceptos de suelos finos. Este ensayo permite definir la plasticidad y la clasificación de un suelo. Por consiguiente, un suelo se puede encontrar en un estado sólido, semisólido, plástico, semilíquido y liquido; por ejemplo: La arcilla al agregarle agua, pasa gradualmente del estado sólido al estado plástico y finalmente al estado líquido. (Juárez Badillo & Rico Rodríguez, 1985)

Es medular entender por compactación de suelos al mejoramiento artificial de sus propiedades mecánicas por medios mecánicos. La importancia de la compactación de los suelos estriba en el aumento de resistencia y disminución de capacidad de deformación del suelo. (Juárez Badillo & Rico Rodríguez, 1985)

Un método de compactación es el ensayo de Proctor Modificado basado en la norma ASTM D1557 y abarca los procedimientos de compactación usados en laboratorio

para determinar la relación entre el contenido de agua y peso seco de los suelos. (ASTM D-1557 & MTC E 115 - 2000, 2006)

El ensayo de Proctor Modificado proporciona 3 métodos alternativos, para esta investigación se escoge el Método A. Este método solo aplica para suelos que tienen el 20% o menos del peso del material que es retenido en el tamiz N° 4 (4.75 mm), tal cual como lo especifica la norma ASTM D-1557 y MTC E115.

En la elaboración de los (BTC) se utilizó la máquina CINVA-RAM, es una prensa manual que se usa para la fabricación de adobes, fue creada por el ingeniero chileno Raúl Ramírez desarrollado para el Centro Interamericano de Vivienda y Planeamiento (CINVA). Básicamente la CINVA – RAM, tiene una palanca, la cual ejerce una fuerza que comprime al material compactándolo y endureciéndolo, obteniendo un resultado de mayor resistencia y durabilidad en las construcciones. (Lou Ma, 1981)

La resistencia a la compresión de los elementos de construcción secos hechos de tierra, como por ejemplo bloques de tierra compactada difieren generalmente de 5 a 50 kg/cm². Este depende no solo de la cantidad y tipo de arcilla sino también de la distribución granulométrica de limo arena y agregados mayores, además como el método de preparación y compactación. (Minke, 2005)

La resistencia a flexión depende fundamentalmente del contenido de arcilla y el tipo de minerales de la arcilla considerando que la resistencia esta entre 17 y 918 N/cm². (Minke, 2005), finalmente el grado de absorción se define como la relación porcentual (% Abs) de la diferencia de la masa del espécimen saturado menos el espécimen en seco, dividido entre el espécimen en seco y multiplicado por cien. El grado de

absorción implica una alteración en las características del bloque de tierra; ya que este absorbe una cantidad de agua. (Jimenez Pose, 2014)

Al identificar las viviendas alrededor de Cajamarca y principalmente en centro histórico de esta ciudad, vemos el material adobe como uno de los más utilizados y a la vez deteriorados, estos bloques de tierra comprimida (adobe), la mayoría de veces son elaborados de forma artesanal y empírica; es decir, que no cumplen con los lineamientos básicos de la normativa, ni con el debido control de calidad; por estas razones las viviendas tienen poca resistencia y son más susceptibles al paso del tiempo. Conocidos estos problemas y sabiendo la información del censo INEI (2017), que Cajamarca alberga aproximadamente el 10.9% de viviendas de adobe de todo el país, nace la principal razón de buscar un bloque de tierra mejorado en cuanto a sus propiedades físico mecánicas.

Esta investigación buscó mejorar las propiedades físico mecánicas de los bloques de tierra comprimida adicionando emulsión asfáltica (RC-250), para lo cual se delimitó la investigación a la realización de los ensayos de compresión, flexión y grado de absorción; comparando una muestra patrón elaborada con suelo natural y muestras con adición de emulsión asfáltica (RC-250) al 2%, 3% y 4%, con la finalidad de determinar que muestra tiene el mejor rendimiento y así obtener un BTC de calidad que garantice su viabilidad y alto desempeño ante cualquier evento natural.

1.2. Formulación del problema

¿En qué medida influye la adición de emulsión asfáltica (RC-250), en las propiedades físico mecánicas de resistencia a la compresión, flexión y grado de absorción en los bloques de tierra comprimida en la ciudad de Cajamarca - 2018?

1.3. Objetivos

1.3.1. Objetivo general

Determinar en qué medida influye la adición de emulsión asfáltica (RC-250) en las propiedades físico mecánicas de resistencia a la compresión, flexión y grado de absorción en los bloques de tierra comprimida.

1.3.2. Objetivos específicos

- Determinar si el suelo de la cantera "Flores" es óptimo para la elaboración de bloques de tierra comprimida.
- Determinar el óptimo contenido de humedad y máxima densidad seca, para las muestras en estado natural y para las muestras con porcentajes de 2%,3% y 4% de emulsión asfáltica (RC-250).
- Determinar la resistencia a la compresión, flexión y grado de absorción de los BTC con la adición de emulsión asfáltica (RC-250).
- Evaluar los resultados obtenidos de la resistencia a la compresión y flexión de los bloques de tierra comprimida con adición de emulsión asfáltica (RC-250) frente a los bloques de tierra comprimida de la muestra patrón.

1.4. Hipótesis

1.4.1. Hipótesis general

Al incrementar el porcentaje de emulsión asfáltica (RC-250), en las unidades de bloques de tierra comprimida; mejoran las propiedades físico mecánicas de resistencia a la compresión, flexión en más del 50% y grado de absorción en más del 8% con respecto a la muestra patrón (BTC sin adición de emulsión asfáltica).

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

Esta investigación, en función del propósito, es del tipo aplicada, debido a que se empleó conocimientos teóricos, para mejorar las propiedades de los BTC; por su nivel de profundidad es del tipo correlacional debido a que se influyó en la variable dependiente para evaluar el cambio producido; por su naturaleza de datos es del tipo cuantitativo debido a que se utilizó la recolección de datos para corroborar la hipótesis en base a la medición numérica de la resistencia de los BTC; por su diseño es del tipo experimental ya que se evalúa el cambio en la variable dependiente. Además, es del tipo transversal ya que se desarrolla en un periodo de tiempo determinado.

2.2. Población y muestra

2.2.1. Población.

Para esta investigación fueron elaborados un total de 68 unidades, teniendo en cuenta la norma E.080 (2016), la cual "establece un mínimo de 6 especímenes para resistencia ultima"; además la norma ASTM C-67 fija un numero de 5 unidades para el grado de absorción. La población de los BTC esta comprendido entre BCT en estado natural y BTC adicionando emulsión asfáltica (RC-250) en porcentajes de 2%,3% y 4%.

2.2.2. Muestra.

La muestra es de igual tamaño que la población pues están conformados por 68 unidades, dicho tamaño ha sido considerado a través de la norma E.080 y la ASTM C-67; para la elaboración de los BTC se ha teniendo en cuenta la disponibilidad del material.

Para la muestra se elaboró:

- Veinticuatro unidades de bloques de tierra comprimida con medidas de 15x14x10cm, para el ensayo de resistencia a la compresión.
- Veinticuatro unidades con medidas de 30x14x10cm, para el ensayo de resistencia a la flexión.
- Veinte unidades con medidas de 30x15x10cm, para el grado de absorción. En tabla 2 se observa la población y muestra detallando el porcentaje de emulsión asfáltica (RC-250) agregada en los diferentes ensayos. El número de BTC, fue de 6 especímenes teniendo en cuenta norma NTP E.080, la cual establece que se deben ensayar un mínimo 6 especímenes para la resistencia ultima.

Tabla 2 *Población y Muestra.*

	% de				
Descripción	Emulsión asfáltica (RC-250).	Resistencia. Compresión.	Resistencia. Flexión.	Grado. Absorción.	Sub total
D1 1	0%	6 Und	6 Und	5 Und	17 Und
Bloque de tierra	2%	6 Und	6 Und	5 Und	17 Und
comprimida	3%	6 Und	6 Und	5 Und	17 Und
comprimida	4%	6 Und	6 Und	5 Und	17 Und
Sub total p	or ensayo.	24 Und	24 Und	20 Und	68 Und

2.3. Técnicas e instrumentos de recolección y análisis de datos

En esta investigación fue empleada la técnica de observación directa; la cual tiene por finalidad corroborar la hipótesis establecida; para ello se realizaron diversos ensayos de suelos que se llevaron a cabo en la Universidad Privada Del Norte Sede Cajamarca, donde los materiales e instrumentos de recolección de datos utilizados fueron guías y protocolos que establecen las diferentes normativas como la ASTM, NTP E.080 y NTP E.050.

A través de las guías se realizaron los ensayos de suelos, los cuales nos permitieron determinar si un suelo es óptimo para la elaboración de bloques de tierra comprimida; luego hacemos uso de los protocolos (Anexo N°2) donde se registró los datos obtenidos de cada ensayo, para después procesarlos en gabinete mediante hojas de cálculo (Software Microsoft Excel). Finalmente se realizó el análisis e interpretación de resultados.

A continuación, se evidencian algunos formatos proporcionados por la Universidad Privada del Norte que fueron utilizados para esta investigación.

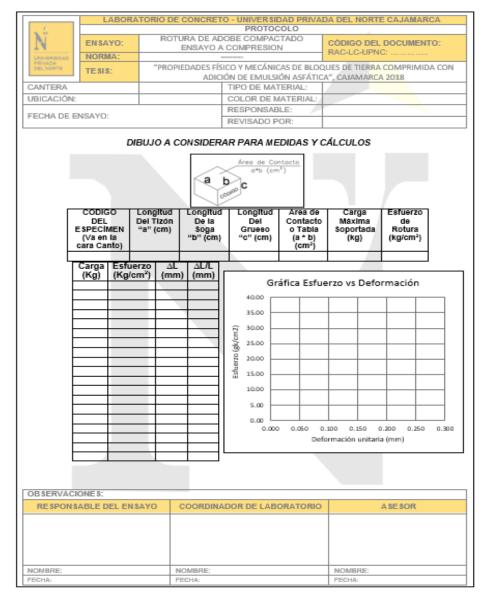


Figura 1: Protocolo ensayo resistencia a la compresión para los BTC.

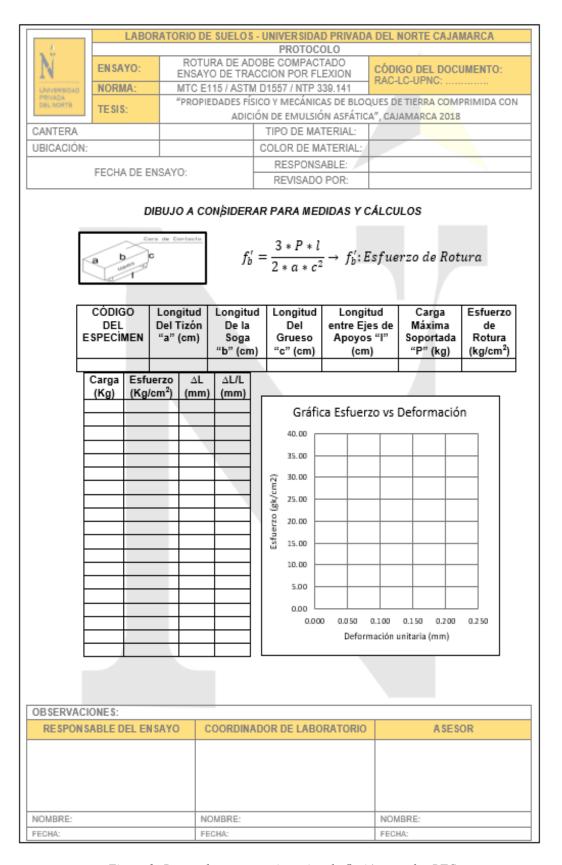


Figura 2: Protocolo ensayo resistencia a la flexión para los BTC

1		LABORATORIO DE	SUELOS - UNIVERSID PROTO		DEL NORTE	CAJAMARCA
N		SAYO: ENSAYO	O DE GRADO DE ABSO		CÓDIGO DEI	DOCUMENTO:
UNIV	NO NO	RMA:	ASTM C-67		EA-LS-UPNO	
PRIV	ADA	"PROPIEI	DADES FÍSICO Y MECÁN			
TESIS: ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018						
	TERA:		TIPO DE MATERIAL: COLOR DE MATERIAL:			
UBIC	ACIÓN:		RESPONSAI			
FECH	HA DE ENSAY	ro:	REVISADO F			
	MUEATE	040407501055	ENSAYO DE ABSOR	Peso de la		Porcentaje de
MUESTRA CARACTERISTICA Seca (kg) Saturada (gr) Absorción P1 P2 %ABS						
						%ABS
	M1	Secado al Ambiente				%ABS
	M1 M2	Secado al Ambiente Secado al Ambiente				
						-
	M2	Secado al Ambiente				
	M2 M3	Secado al Ambiente Secado al Ambiente				
	M2 M3 M4	Secado al Ambiente Secado al Ambiente Secado al Ambiente				
	M2 M3 M4 M5	Secado al Ambiente	orcentaje de Absorció			

$$(\%ABS) = \frac{P2 - P1}{P1} * 100$$

	OBSERVACIONES:							
	RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR					
ľ								
İ	NOMBRE:	NOMBRE:	NOMBRE:					
	FECHA:	FECHA:	FECHA:					

Figura 3: Protocolo ensayo de absorción para los BTC

En la tabla 3 se muestra un resumen de las técnicas e instrumentos de recolección usados en la investigación.

Tabla 3 Técnicas y guías para el análisis de datos.

Técnicas	Guías y Protocolos	Norma		
	Contenido de Humedad.	MTC E108 / ASTM D2216 / NTP 339.127		
	Ensayo de granulometría.	ASTM D421		
Observación	Ensayo de límites de Atterberg.	ASTM D4318 / NTP E339.130 / NTP E111		
directa.	Ensayo de Proctor modificado.	ASTM D1557 / NTP 339.141 / MTC E115		
	Resistencia a la compresión.	E.080 / ASTM C67		
	Resistencia a la flexión.	NTP 339.078		
	Ensayo de grado de absorción.	ASTM C-67		
Uso del Software Microsoft Excel.	Análisis de datos y comparación de resultados de los ensayos realizados en el laboratorio de la Universidad Privada Del Norte.	-		

2.4. Procedimiento

A. Adquisición del material para los ensayos y elaboración de los BTC.

• Obtención de la materia prima.

En primera instancia, se visitó la cantera del Sr. Luis Flores ubicada en Santa Bárbara – Baños del Inca – Cajamarca (Anexo N°3 – Plano de ubicación), y se llevó a cabo la extracción de 60 kilogramos de suelo (materia prima), los cuales fueron depositados en sacos para ser transportados al laboratorio de la Universidad Privada Del Norte, sede Cajamarca.

Tabla 4 *Ubicación de la cantera*

Departamento: Cajamarca.
Provincia: Cajamarca.
Distrito: Baños Del Inca.
Centro Poblado: Santa Bárbara.

Coordenadas: E.775437.200, N.9212625.180

Datum: WGS84

Figura 4: Cantera donde se extrajo el material (Santa Bárbara).

Obtención de emulsión asfáltica (RC-250) o asfalto liquido (RC-250).

Para la compra del asfalto liquido (RC-250), se contactó con la empresa llamada "Industrias A&S SAC", ubicada en la provincia constitucional del Callao – Lima, y se adquirió 4 galones de dicho material; en el anexo N°4, identificamos una ficha técnica de la emulsión asfáltica (RC-250) establecida por Petro Perú.

B. Ensayos de laboratorio de mecánica de suelos.

• Contenido de humedad (NTP 399.127/ASTM D2216/MTC E 108).

Para realizar este ensayo se hizo uso de la normativa NTP 399.127, la cual establece ciertos materiales y procedimientos especificados a continuación:

Materiales:

- Horno o estufa.
- Taras o recipientes.
- Balanza.

Procedimiento:

Como primer paso por medio del cuarteo se separó una muestra de dos kilogramos de suelo en estado natural; de las cuatro partes del cuarteo elegimos dos extremos y obtenemos 3 muestras de 28.40 gr, 28.20gr y 39.20gr, las cuales fueron depositadas en recipientes para luego llevarlas al horno por un tiempo de veinticuatro horas; pasado este periodo de tiempo se procedió a pesar los recipientes con el material seco y finalmente calcularlo mediante la siguiente formula.

Ecuación 1: Contenido de humedad

$$W (\%) = \frac{W_w}{W_s} * 100$$

Donde:

W = Contenido de agua o humedad, (%)

Ww = peso de agua presente en la masa de suelos, (gr)

Ws = peso de la muestra seca, (gr)

Figura 5: Ensayo contenido de humedad de la materia prima.

• Análisis granulométrico (NTP 339.128).

La normativa NTP 339.128 establece materiales y procedimientos para la determinación cuantitativa de tamaños de partículas de suelo que estableceremos a continuación:

Materiales:

- Tamices.
- Balanza.
- Taras o recipientes.

Procedimiento:

Para realizar este ensayo, el material estuvo totalmente seco y se tomó aproximadamente 5 kilogramos de muestra, de los cuales por medio del cuarteo seleccionamos aproximadamente un kilogramo. Esta muestra es tamizada por las mallas N°4, N°10, N°20, N°30, N°40, N°60, N°100 y N°200; la muestra

retenida en la malla N°200 fue lavada y luego depositada en un recipiente para después colocarla al horno por un promedio de veinticuatro horas. Finalmente, el material se pesó y se obtuvo los porcentajes retenidos y acumulados para el cálculo de gradación del suelo.

Ecuación 2: Porcentajes retenidos, gradación del suelo.

$$\%RP = \frac{PR}{W_s} * 100$$

Ecuación 3: Porcentaje retenidos, acumulados.

$$%RA = %PR1 + %PR2 + \cdots + %RPn$$

Ecuación 4: Porcentaje de material pasante.

$$%Q'Pasa = 100\% - %RA$$

Donde:

%PR= Porcentaje del peso retenido.

PR=Peso retenido en el tamiz.

Ws= Peso total de la muestra.

%RA= Porcentaje retenido acumulado.

Figura 6: Ensayo granulométrico de la materia prima.

• Análisis granulométrico por sifonaje (ASTM D421)

La normativa ASTM D421 establece materiales y procedimientos para determinar la distribución de los tamaños de partículas menores a 75 µm mediante un proceso de sedimentación que describiremos a continuación:

Materiales

- Agitador mecánico.
- Probeta de 5ml.
- Glicerina.
- Probeta de 100 ml.
- Disco metálico o vástago.
- Manguera.
- Estufa o horno.

Procedimiento

Para realizar este ensayo el material estuvo totalmente seco y se tomó una muestra de 80 gramos, luego se separó el material por medio de los tamices N°40 y N°200 y se procedió a pesarlos. El material que pasa la malla N°200 es denominado limo y arcilla, a este material se lo colocó en una capsula de porcelana, se le agrego 5ml de glicerina y se procedió a mezclar en un agitador mecánico por un periodo de quince minutos, luego se vacía la mezcla a una probeta de 1000 ml y se agrega agua hasta una altura de 20 cm dejándola reposar durante un periodo de 15 minutos; como siguiente paso se colocó un disco metálico en la probeta hasta donde se encontraba el material sedimentado y se procedió a sifonear el agua con una manguera quedando el material en suspensión, este fue depositado en un recipiente y llevado al horno por un

promedio de 24 horas. El material seco es denominado limo y el material que se extrajo mediante la manguera es arcilla.

Ecuación 5: Porcentajes retenidos, gradación del suelo.

$$\%RP = \frac{PR}{W_s} * 100$$

Ecuación 6: Porcentaje retenidos, acumulados.

$$%RA = %PR1 + %PR2 + \cdots + %RPn$$

Ecuación 7: Porcentaje de material pasante.

$$%Q'Pasa = 100\% - %RA$$

Figura 7: Ensayo granulométrico por sifonaje de la materia prima.

• Límites de Atterberg (NTP 339.129).

La normativa NTP 339.129, establece materiales y procedimientos para la adecuada clasificación del suelo que especificaremos a continuación:

Límite liquido (LL).

Materiales

- Tamiz N°40.
- Copa Casagrande.
- Ranurador o acanalador.
- Balanza.
- Horno o estufa.
- Probeta.
- Capsula de porcelana o mortero.
- Taras o recipientes.

Procedimiento

Como primer requisito para este ensayo se empleó 500 gr de material que paso por la malla N°40, este material se colocó en un mortero de porcelana y se agregó agua para ser mezclado con ayuda de una espátula hasta crear una mezcla uniforme; luego la mezcla fue colocada en la Copa Casagrande y mediante un ranurador se separó la mezcla; siguiendo con el ensayo se procede a elevar y dejar caer la Copa Casagrande contando el número de golpes hasta que la muestra se una. Finalmente se extrae una pequeña parte de la muestra y se la coloca en un recipiente, esta se la lleva al horno por un promedio de 24 horas de tal forma de que al pesarlo es obtenido el contenido de humedad.

Figura 8: Ensayo límite líquido de la materia prima.

Límite plástico (LP).

- Materiales.
- Balanza.
- Estufa o Horno.
- Espátula
- Capsula de porcelana o mortero.
- Placa de vidrio.
- Taras o recipientes.

Procedimiento.

Para este ensayo, se utilizó una porción restante de mezcla utilizada del ensayo de limite líquido. Esta mezcla la colocamos sobre una placa de vidrio en la cual se elaboraron rollos de suelo entre 3 mm y 4mm de diámetro, los cuales fueron

depositados en recipientes y llevados al horno por un promedio de veinticuatro horas. Finalmente fueron pesados para obtener el contenido de humedad.

Ecuación 8: Índice de plasticidad del suelo.

$$IP = LL - LP$$

Donde:

IP: Índice de plasticidad

LL: Límite líquido

LP: Límite plástico

Figura 9: Ensayo límite plástico de la materia prima.

• Proctor modificado – método A (NTP 339.142/MTC E 115/ ASTM D 1557)

Este ensayo se llevó acabo en la Universidad Privada del Norte, Sede Cajamarca y se hizo uso de la normativa NTP 339.142, la cual establece los materiales y procedimientos que se describen a continuación.

Materiales:

- El equipo de Proctor modificado comprende un molde cilíndrico, una placa base y un anillo de extensión.
- Pistón o Martillo para Proctor modificado.
- Balanza.
- Estufa o Horno.
- Recipientes o Taras.
- Tamiz N°4.

Procedimiento:

Para el ensayo de Proctor modificado método A, se utilizó 40 kilogramos de suelo tamizado por la malla N°4 y se distribuyó tal como se muestra en la tabla 5.

Tabla 5 Distribución del material para el ensayo de Proctor modificado

Ensayo	Tipo de Muestra	Capsula o Molde	Capas en el Molde	Peso material	Dosificación de agua	Dosificación de emulsión asfáltica (RC-250).
		Molde 1	5 capas	2.5 kg	75 ml	0 ml
	Muestra	Molde 2	5 capas	2.5 kg	125 ml	0 ml
	Patrón.	Molde 3	5 capas	2.5 kg	175 ml	0 ml
		Molde 4	5 capas	2.5 kg	225 ml	0 ml
	3.6	Molde 1	5 capas	2.5 kg	75 ml	50 ml
	Muestra 2% de emulsión. Muestra 3% de emulsión.	Molde 2	5 capas	2.5 kg	125 ml	50 ml
_		Molde 3	5 capas	2.5 kg	175 ml	50 ml
Proctor Modificado		Molde 4	5 capas	2.5 kg	225 ml	50 ml
Modificado Método A		Molde 1	5 capas	2.5 kg	75 ml	75 ml
Wictodo / I		Molde 2	5 capas	2.5 kg	125 ml	75 ml
		Molde 3	5 capas	2.5 kg	175 ml	75 ml
		Molde 4	5 capas	2.5 kg	225 ml	75 ml
	Muestra 4% de emulsión.	Molde 1	5 capas	2.5 kg	75 ml	100 ml
		Molde 2	5 capas	2.5 kg	125 ml	100 ml
		Molde 3	5 capas	2.5 kg	175 ml	100 ml
	Cilidision.	Molde 4	5 capas	2.5 kg	225 ml	100 ml

En la tabla N°5 podemos identificar que para la muestra patrón se utilizó 2.5 kilogramos de material por molde. Estos 2.5 kilogramos fueron divididos en 5 muestras de suelo de 500 gramos cada una, luego se le coloco una cantidad de agua determinada y se procedió a colocar la muestra en el molde, con ayuda de un pistón la muestra fue compactada en 5 capas con 25 golpes en cada una, al finalizar el apisonado se procedió a enrazar la muestra con una espátula, luego se tomó una muestra inferior y superior para llevarlas al horno y poder determinar el contenido de humedad y la máxima densidad seca.

De la misma manera se procede a realizar el ensayo para la muestra con emulsión asfáltica (RC-250) en diferentes porcentajes y mediante las siguientes expresiones se calculó la máxima densidad seca y el óptimo contenido de humedad.

Ecuación 9: Densidad Seca

$$Ds = \frac{Dh}{(1 + \frac{W\%}{100})} * 100$$

Donde:

Ds = Densidad seca

Dh = Densidad húmeda

W% = Contenido de humedad de la muestra compactada

Ecuación 10: Densidad húmeda.

$$Dh = \frac{(Mt - Mmd)}{1000 * V}$$

Donde:

Dh = Densidad Húmeda del espécimen compactado (Mg/m³)

Mt = Masa del espécimen húmedo y molde (kg)

Mmd = Masa del molde de compactación (kg)

V = Volumen del molde de compactación (m³)

Figura 10: Ensayo de Proctor modificado para la muestra patrón

Figura 11: Ensayo de Proctor modificado con emulsión asfáltica (RC-250).

 Elaboración de los bloques de tierra comprimida en estado natural y con adición de emulsión asfáltica (RC-250).

Para la elaboración de estas unidades se tuvo en cuenta la Norma NTP E.080; la cual especifica el número mínimo de especímenes que deben ser ensayados. A continuación, se presenta una tabla con la cantidad de unidades, descripción, medidas y porcentaje de emulsión asfáltica.

Tabla 6

Especificaciones, medidas y porcentajes de emulsión asfáltica (RC-250) en los BTC.

Cantidad	Descripción	Medidas	% Adición de emulsión asfáltica		
	Unidades ensayo resistencia	a compresió	n		
6	Bloques de Tierra Comprimida	15x14x10	0%		
6	Bloques de Tierra Comprimida	15x14x10	2%		
6	Bloques de Tierra Comprimida	15x14x10	3%		
6	Bloques de Tierra Comprimida	15x14x10	4%		
	Unidades ensayo resistencia a flexión				
6	Bloques de Tierra Comprimida	30x14x10	0%		
6	Bloques de Tierra Comprimida	30x14x10	2%		
6	Bloques de Tierra Comprimida	30x14x10	3%		
6	Bloques de Tierra Comprimida	30x14x10	4%		
	Unidades ensayo grado de	absorción			
5	Bloques de Tierra Comprimida	30x14x10	0%		
5	Bloques de Tierra Comprimida	30x14x10	2%		
5	Bloques de Tierra Comprimida	30x14x10	3%		
5	Bloques de Tierra Comprimida	30x14x10	4%		

La elaboración de los bloques de tierra comprimida en condición normal y adicionando emulsión asfáltica (RC-250), se realizó de la siguiente manera.

- Como primer paso se recolecto el material de la cantera del Sr. Luis Flores ubicada en Santa Bárbara, el material fue cernido con el propósito de eliminar piedras de gran tamaño e impurezas que afecten a nuestra unidad.

- Como segundo paso se aplicó la dosificación (porcentaje de humedad)
 obtenido en el ensayo de Proctor modificado y se procedió a calcular la cantidad de material que ingresó a la maquina CINVA RAM.
- Luego se llevó a cabo el proceso de prensado de las unidades y finalmente estas se apilaron bajo techo por un periodo de 28 días.
- Para la elaboración de los bloques de tierra con emulsión asfáltica en diferentes porcentajes, se siguió el mismo procedimiento, pero para este se tuvo en cuenta la dosificación de emulsión asfáltica de acuerdo al peso de bloque de tierra comprimida.

Figura 12: Elaboración de los BTC en la máquina CINVA RAM.

Figura 13: BTC en estado natural y con adición de emulsión asfáltica (RC-250)

• Ensayo de resistencia a la compresión axial de los BTC.

Este ensayo se realizó en la Universidad Privada del Norte, sede Cajamarca y se hizo uso de la normativa ASTM C67, la cual especifica procedimientos que describiremos a continuación.

En este ensayo se utilizaron los bloques de tierra comprimida con dimensiones de 15x14x10cm, los cuales fueron colocados en una prensa hidráulica, que ejerció una carga actuante sobre estos hasta producir la falla; finalizado el ensayo se tomó la lectura de la carga ultima sobre el BTC y además se tuvo en cuenta la deformación de este durante todo el ensayo. Finalmente, mediante la siguiente expresión calcularemos la resistencia a compresión de los bloques.

Ecuación 11: Esfuerzo a la Compresión axial del BTC.

$$\sigma = \frac{P}{A}$$

Donde:

 σ = Resistencia a la compresión (Kg/cm²).

P = Carga máxima de rotura (kg).

 $A = \text{Área bruta (cm}^2).$

Figura 14: Ensayo de resistencia a la compresión de los BTC.

• Ensayo de resistencia a la flexión de los BTC.

Este ensayo se realizó en la Universidad Privada del Norte, sede Cajamarca y se hizo uso de la normativa NTP 339.078, la cual especifica procedimientos que describiremos a continuación:

En este ensayo se utilizaron los bloques de tierra comprimida con dimensiones de 30x14x10cm, los cuales fueron colocados en una prensa hidráulica, luego se colocó dos elementos de fierro liso de ½" cuya distancia entre ellos es de

aproximadamente 17cm en la parte inferior del BTC como elementos de apoyo. Se procedió al ensayo mediante la aplicación de una carga actuante con la prensa hidráulica sobre los BTC hasta producir la falla; finalizado el ensayo se tomó la lectura de la carga actuante última aplicada al BTC y además se tuvo en cuenta la deformación de este durante todo el ensayo. Finalmente, mediante la siguiente expresión calcularemos la resistencia a flexión de los bloques.

Ecuación 12: Esfuerzo a la flexión del BTC.

$$\sigma = \frac{3 \times P \times D.A}{2 \times L \times H^2}$$

Donde:

 σ = Esfuerzo a la flexión en Kg/cm2

P = Carga actuante en Kg.

D.A = Distancia entre apoyos en cm.

L= Lado del espécimen en cm.

H = Altura del espécimen en cm.

Figura 15: Ensayo de resistencia a la flexión de los BTC.

• Ensayo de grado de absorción de los BTC.

Este ensayo se realizó en la Universidad Privada del Norte, Sede Cajamarca y se hizo uso de la normativa ASTM C67, la cual especifica procedimientos que describiremos a continuación:

Este ensayo consistió en pesar el bloque de tierra con ayuda de una balanza, luego este se sumergió en una tina con agua hasta quedar totalmente cubierto por un periodo de veinticuatro horas. Finalmente, al pasar el tiempo establecido, el bloque de tierra comprimida fue retirado y pesado con el fin de determinar el grado de absorción mediante la siguiente expresión.

Ecuación 13: Grado de Absorción del bloque de tierra comprimida.

$$A = \frac{Psat - Psec}{Psec} * 100$$

Donde:

A= Absorción (%).

Psat = Peso saturado (gr).

Psec = Peso seco (gr).

Figura 16: Ensayo de grado de absorción de los BTC.

2.5. Aspectos éticos

En esta investigación, para salvaguardar la propiedad intelectual de los autores cuyas investigaciones y teorías sirvieron de insumo para ésta, se los ha citado apropiadamente de acuerdo a la norma APA y también se han precisado las fuentes bibliográficas. A si mismo los datos obtenidos de cada uno de los ensayos realizados son veraces y no han sido manipulados en beneficio propio.

CAPÍTULO III. RESULTADOS

3.1 Resultados para la determinación de un suelo óptimo.

Para determinar que el suelo de la cantera "Flores" sea óptimo se realizaron distintos ensayos en el laboratorio de la Universidad Privada del Norte – Cajamarca, además se contó con guías, protocolos y normativas que rigen a estos. En la tabla 7 se muestran los ensayos, normativa y resultados satisfactorios para la elaboración de los BTC.

Tabla 7
Resumen de resultados de los ensayos de la materia prima (suelo) previos a la elaboración de BTC.

Ensayos	Norma	Resultado	Anexo - Código
Contenido de humedad.	NTP 399.127 ASTM D2216 MTC E 108	12.89%	Ver anexo N°2 CH-LS-UPNC
Análisis granulométrico por lavado.	NTP 339.128	N°4 = 99.00% N°200 = 25.42%	Ver anexo N°2 AGGF-LC-UPNC
Análisis granulométrico por sifojane.	ASTM D421	N°40 = 38.13 % N°200 = 22.00 % Limo = 13.38% Arcilla = 16.50 %	Ver anexo N°2 AGTSF-LS- UPNC
Límite líquido.	NTP 339.129	L.L = 29.49	Ver anexo N°2 LP-LS-UPNC
Límite plástico.	NTP 339.129	L.P = 19.52	Ver anexo N°2 LP-LS-UPNC
Índice plástico.	NTP 339.129	I.P = 9.97	Ver anexo N°2 LP-LS-UPNC

Realizados los ensayos cuyos resultados se muestran en la tabla 7, se procedió a clasificar el suelo mediante la figura 17 y 18. En la figura 17 se observa las divisiones principales como: suelos de grano grueso, pasamos a las arenas, luego a las arenas con finos la cual cuenta con un símbolo SC que es típico de una arena arcillosa o mezcla de arena- arcilla. En la figura 18 se clasificó el suelo mediante la carta de plasticidad,

en la cual se empleó los datos del límite líquido y limite plástico interceptando estos dos y clasificando el suelo.

SISTEMA DE CLASIFICACIÓN DE SUELOS UNIFICADO "S.U.C.S"				
Divisiones Principales		Símbolos del grupo	Nombres Típicos	
		Gravas límpias (sin o con	GW	Gravas, bien graduadas, mezclas grava-arena, pocos finos o sin finos.
	GRAVAS Más de la mitad de la fracción gruesa	pocos finos)	GP	Gravas mal graduadas, mezclas grava-arena, pocos finos o sin finos.
	es retenida por el tamiz número 4 (4,76 mm)	Gravas con finos (apreciable	GM	Gravas limosas, mezclas grava-arena-limo.
SUELOS DE GRANO GRUESO Más de la mitad del material		cantidad de finos)	GC	Gravas arcillosas, mezclas grava-arena-arcilla.
retenido en el tamiz número 200		Arenas límpias	sw	Arenas bien graduadas, arenas con grava, pocos finos o sin finos.
	ARENAS Más de la mitad de la fracción gruesa	finos)	SP	Arenas mal graduadas, arenas con grava, pocos finos o sin finos.
	pasa por el tamiz número 4 (4,76 mm)	Arenas con finos	SM	Arenas limosas, mezclas de arena y limo.
		(apreciable cantidad de finos)	sc	Arenas arcillosas, mezclas arena-arcilla.
			ML	Limos inorgánicos y arenas muy finas, limos límpios, arenas finas, limosas o arcillosa, o limos arcillosos con ligera plásticidad.
SUELOS DE	Limos y arcilla líquido me		CL	Arcillas inorgánicas de plasticidad baja a media, arcillas con grava, arcillas arenosas, arcillas limosas.
GRANO FINO Más de la mitad del material pasa			OL	Limos orgánicos y arcillas orgánicas limosas de baja plasticidad.
por el tamiz número 200	Limos y arcillas: Límite líquido mayor de 50		МН	Limos inorgánicos, suelos arenosos finos o limosos con mica o diatomeas, limos elásticos.
			СН	Arcillas inorgánicas de plasticidad alta.
		ОН	Arcillas orgánicas de plasticidad media a elevada; limos orgánicos.	
Su	Suelos muy orgánicos			Turba y otros suelos de alto contenido orgánico.

Figura 17: Clasificación de suelos – normativa SUCS

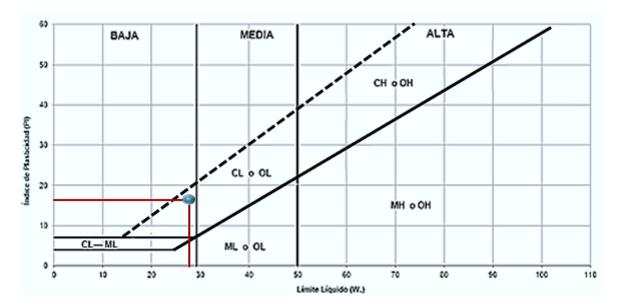


Figura 18: Clasificación por carta de plasticidad.

Antes de realizar el ensayo de Proctor modificado se realizó una dosificación tentativa, la cual nos permite modificar el contenido de agua del suelo; en la tabla 8 y tabla 9 se muestra la dosificación de agua que se empleó, además del porcentaje que esta representa en el ensayo.

Tabla 8 Dosificación total de agua y emulsión asfáltica (RC-250) para el ensayo de Proctor modificado.

Dosificación	Cantidad de agua.
Dosificación de	Molde $1 = 75$ mL.
agua	Molde $2 = 125 \text{ mL}$.
Proctor Modificado	Molde $3 = 175$ mL.
Muestra Patrón.	Molde 4 = 225 Ml.
Dosificación de agua para Emulsión Asfáltica (RC-250)	Muestra Patrón = 0 mL. Muestra 2% E.A = 200 mL. Muestra 3% E.A = 300 mL. Muestra 4% E.A = 400 mL.

Tabla 9 Dosificación detallada de agua para el ensayo de Proctor modificado.

% de H ₂ O	Tie	rra	Cantidad de H ₂ O
3.00%	Molde 1	2500 gr	75 mL
5.00%	Molde 2	2500 gr	125 mL
7.00%	Molde 3	2500 gr	175 mL
9.00%	Molde 4	2500 gr	225 mL
Total, de	600 mL		
Total, de Agua para los 4 porcentajes			2400 mL

La tabla 10, muestra la dosificación de la emulsión asfáltica, la cual está en función del peso del material que va ha ser empleado en el ensayo de Proctor modificado.

Tabla 10 Dosificación detallada de emulsión asfáltica (RC-250) - Proctor modificado.

% de Emulsión	Molde	Peso del material	Cantidad de emulsión
0%	Molde 1	2500 gr	0 mL
0%	Molde 2	2500 gr	0 mL
0%	Molde 3	2500 gr	0 mL
0%	Molde 4	2500 gr	0 mL
Total, de emul	sión asfáltica (l	RC-250) al 0%	0 mL
2%	Molde 1	2500 gr	50 mL
2%	Molde 2	2500 gr	50 mL
2%	Molde 3	2500 gr	50 mL
2%	Molde 4	2500 gr	50 mL
Total, de emul	sión asfáltica (l	RC-250) al 2%	200 mL
3%	Molde 1	2500 gr	75 mL
3%	Molde 2	2500 gr	75 mL
3%	Molde 3	2500 gr	75 mL
3%	Molde 4	2500 gr	75 mL
Total, de emul	sión asfáltica (l	RC-250) al 3%	300 mL
4%	Molde 1	2500 gr	100 mL
4%	Molde 2	2500 gr	100 mL
4%	Molde 3	2500 gr	100 mL
4%	Molde 4	2500 gr	100 mL
Total, de emul	sión asfáltica (l	RC-250) al 4%	400 mL

Para determinar el optimo contenido de humedad y la máxima densidad seca, se realizó el ensayo de Proctor modificado (Método A) para la muestra patrón y para la muestra con diferentes porcentajes de emulsión asfáltica (RC-250). A continuación, en la tabla 11 se muestran los resultados de este ensayo.

Tabla 11 Resumen de ensayo de Proctor modificado con y sin adición de emulsión asfáltica (RC-250).

Ensayos	Norma	Resultado	Anexo - Código
Proctor modificado Muestra patrón.	NTP 339.142 MTC E115 ASTM D1557	DS máx. = 2.20 gr/cm^3 Hu.Opt = 9.35%	Ver Anexo N°2 CPM-LS-UPNC
Proctor modificado Muestra 2% E.A (RC-250).	NTP 339.142 MTC E115 ASTM D1557	DS máx. = 2.38 gr/cm^3 Hu.Opt = 8.95%	Ver Anexo N°2 CPM-LS-UPNC
Proctor modificado Muestra 3% E.A (RC-250).	NTP 339.142 MTC E115 ASTM D1557	DS máx. = 2.33 gr/cm ³ Hu.Opt = 10.35 %	Ver Anexo N°2 CPM-LS-UPNC
Proctor modificado Muestra 4% E.A (RC-250).	NTP 339.142 MTC E115 ASTM D1557	DS máx. = 2.26 gr/cm ³ Hu.Opt = 9.52 %	Ver Anexo N°2 CPM-LS-UPNC

3.2 Dosificación para la elaboración de los BTC.

En la tabla 12, se muestra el total de agua y el total de emulsión que fueron empleados para la elaboración de BTC con dimensiones de 30x14x10 y 15x14x10 en los ensayos de resistencia a la compresión, flexión y grado de absorción.

Tabla 12 Resumen de dosificación total de agua y emulsión para la elaboración de BTC.

Dosificación de agua y emulsión	N° de BTC	Cantidad de agua.
BTC (30x14x10 cm)	44 und	41.99 Lts de agua.
BTC (15x14x10 cm)	24 und	11.45 Lts de agua.
BTC (30x14x10 cm)	44 und	9.90 Lts de E. A
BTC (15x14x10 cm)	24 und	2.70 Lts E.A.

A continuación, en la tabla 13, se muestra la dosificación de agua, la cual toma el óptimo contenido de humedad y lo relaciona con el peso del BTC con medidas de 30x14x10, calculando así la cantidad de agua que tendrá cada BTC en los ensayos de resistencia a la flexión y absorción.

Tabla 13 Dosificación de agua para los BTC (30x14x10 cm) en estado natural —flexión y absorción.

% de H ₂ O	О.С.Н	Peso T.	Cantidad de H ₂ O
Muestra Patrón	9.35%	110000 gr	10.29 L
Muestra E.A 2%	8.95%	110000 gr	9.85 L
Muestra E.A 3%	10.35%	110000 gr	11.39 L
Muestra E.A 4%	9.52%	110000 gr	10.47 L
Tota	ıl, de Agua		41.99 L

En la tabla 14, se muestra la dosificación de agua, la cual toma el óptimo contenido de humedad y lo relaciona con el peso del BTC con medidas de 15x14x10, calculando así la cantidad de agua que tendrá cada BTC en los ensayos de resistencia a la compresión.

Tabla 14

Dosificación de agua para los BTC (15x14x10 cm) en estado natural – compresión.

% de H ₂ O	о.с.н	Peso T.	Cantidad de H ₂ O
Muestra Patrón	9.35%	30000 gr	2.81 L
Muestra E.A 2%	8.95%	30000 gr	2.69 L
Muestra E.A 3%	10.35%	30000 gr	3.11 L
Muestra E.A 4%	9.52%	30000 gr	2.86 L
Tota	al, de Agua		11.45 L

En la tabla 15, se muestra la dosificación de emulsión asfáltica (RC-250), la cual toma cada porcentaje de adición y lo relaciona con el peso del BTC con medidas de 30x14x10, calculando así la cantidad de emulsión asfáltica que tendrá cada BTC en los ensayos de resistencia a la flexión y absorción.

Tabla 15
Dosificación detallada de emulsión asfáltica para los BTC (30x14x10 cm) – flexión y absorción.

% de emulsión asfáltica (RC-250)	Peso Total.	Cantidad de emulsión
0%	110000 gr	0.00 L
2%	110000 gr	2.20 L
3%	110000 gr	3.30 L
4%	110000 gr	4.40 L
Total, de Emulsión	n Asfáltica	9.90 L

La tabla 16, muestra la dosificación de emulsión asfáltica (RC-250), la cual toma cada porcentaje de adición y lo relaciona con el peso del BTC con medidas de 15x14x10, calculando así la cantidad de emulsión asfáltica que tendrá cada BTC en los ensayos de resistencia a la compresión.

Tabla 16 Dosificación detallada de emulsión asfáltica para los BTC (15x14x10 cm) compresión.

% de emulsión asfáltica (RC-250)	Peso Total.	Cantidad de emulsión
0%	30000 gr	0.00 L
2%	30000 gr	0.60 L
3%	30000 gr	0.90 L
4%	30000 gr	1.20 L
Total, de Emulsión	Asfáltica	2.70 L

3.3 Resultados de los ensayos de compresión, flexión y absorción de los BTC.

A continuación, en las tablas 17, 18 y 19, se muestra el resultado promedio de la resistencia a la compresión, flexión y grado de absorción de los BTC en estado natural y con adición de emulsión asfáltica RC-250 en los porcentajes de 2%, 3% y 4%.

Tabla 17 Resumen de resultados del ensayo a compresión de los BTC.

Ensayos	Norma	Resultado
Resistencia a la compresión.	ASTM C67 NTP E.080	BTC- E.A 0% = 17.15 kgf/cm ² BTC - E.A 2% = 20.06 kgf/cm ² BTC - E.A 3% = 26.85 kgf/cm ² BTC - E.A 4% = 38.85 kgf/cm ²

Tabla 18 Resumen de resultados del ensayo a flexión de los BTC.

Ensayos	Norma	Resultado
Resistencia a la flexión.	NTP 339.078	BTC- E.A 0% = 7.13 kgf/cm ² BTC - E.A 2% = 8.08 kgf/cm ² BTC - E.A 3% = 9.27 kgf/cm ² BTC - E.A 4% = 10.33 kgf/cm ²

Tabla 19 Resumen de resultados del ensayo de grado de absorción de los BTC.

Ensayos	Norma	Resultado
Grado de absorción.	ASTM C67	$BTC- E.A \ 0\% = Nc.$ $BTC- E.A \ 2\% = Nc.$ $BTC- E.A \ 3\% = Nc.$ $BTC- E.A \ 4\% = Nc.$

En las tablas 20,21,22 y 23, se muestra el resumen detallado de la resistencia a la compresión de cada una de las unidades de los BTC sin adición y con adición de emulsión asfáltica (RC-250), en porcentajes del 2%, 3% y 4% respectivamente.

Tabla 20 Resumen detallado de la resistencia a compresión de los BTC – muestra patrón.

Código	Carga (kgf)	Def. Unitaria (mm)	Esfuerzo (kgf/cm²)	Módulo de Young (kgf/cm²)
M.P - 1	3941	0.129	17.86	172.77
M.P - 2	3878	0.141	17.37	91.23
M.P - 3	3690	0.141	16.26	148.25
M.P - 4	3581	0.161	16.91	171.06
M.P - 5	3354	0.132	14.99	86.17
M.P - 6	4132	0.127	19.52	171.91
Promedio	3762.67	0.14	17.15	140.23
Desv. Est.	278.14	0.01	1.53	40.99

Tabla 21 Resumen detallado de la resistencia a compresión de los BTC – 2% E.A.

Código	Carga (kgf)	Def. Unitaria (mm)	Esfuerzo (kgf/cm²)	Módulo de Young (kgf/cm²)
E.A 2%-1	4888	0.186	21.41	190.08
E.A 2%-2	4659	0.172	20.68	271.18
E.A 2%-3	4563	0.164	20.96	217.17
E.A 2%-4	4426	0.190	19.60	191.40
E.A 2%-5	4253	0.184	18.72	133.90
E.A 2%-6	4132	0.172	18.99	173.22
Promedio	4486.83	0.18	20.06	196.16
Desv. Est.	275.92	0.01	1.11	45.89

Tabla 22 Resumen detallado de la resistencia a compresión de los BTC – 3% E.A.

Código	Carga (kgf)	Def. Unitaria (mm)	Esfuerzo (kgf/cm²)	Módulo de Young (kgf/cm²)
E.A 3%-1	6254	0.249	28.83	242.02
E.A 3%-2	6059	0.239	27.63	239.48
E.A 3%-3	5818	0.234	26.75	185.12
E.A 3%-4	5795	0.257	27.15	189.18
E.A 3%-5	5742	0.223	26.24	194.50
E.A 3%-6	5229	0.230	24.49	142.15
Promedio	5816.17	0.24	26.85	198.74
Desv. Est.	346.81	0.01	1.45	37.50

Tabla 23 Resumen detallado de la resistencia a compresión de los BTC – 4% E.A.

Código	Carga (kgf)	Def. Unitaria (mm)	Esfuerzo (kgf/cm²)	Módulo de Young (kgf/cm²)
E.A 4%-1	9039	0.281	40.92	313.57
E.A 4%-2	7002	0.256	32.49	261.49
E.A 4%-3	8574	0.290	38.32	340.60
E.A 4%-4	8394	0.279	36.77	410.68
E.A 4%-5	9814	0.298	43.57	381.57
E.A 4%-6	9004	0.293	41.01	473.48
Promedio	8637.83	0.28	38.85	363.57
Desv. Est.	939.99	0.01	3.91	74.93

La tabla 24 y la figura 19, muestran el valor de la resistencia a la compresión promedio de los BTC de la muestra patrón y de los BTC con adición de emulsión asfáltica (RC-250) en porcentajes de 2%,3% y 4%, evidenciándose tanto en la tabla como en el grafico que las unidades con adición del 4% de emulsión asfáltica tienen mejor resistencia a la compresión.

Tabla 24 Resumen general del ensayo de resistencia a compresión de los BTC.

Muestra	BTC. PATRÓN (kgf/cm²)	BTC. + E.A.2% (kgf/cm ²)	BTC. + E.A.3% (kgf/cm ²)	BTC. + E.A.4% (kgf/cm ²)
M1	17.86	21.41	28.83	40.92
M2	17.37	20.68	27.63	32.49
M3	16.26	20.96	26.75	38.32
M4	16.91	19.60	27.15	36.77
M5	14.99	18.72	26.24	43.57
M6	19.52	18.99	24.49	41.01
Promedio	17.15	20.06	26.85	38.85

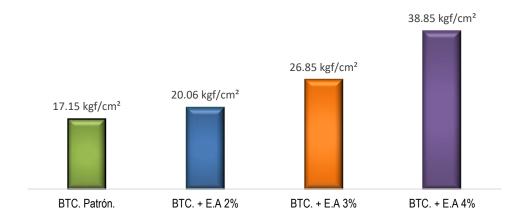


Figura 19: Resumen general ensayo a la compresión de los BTC.

La tabla 25 y la figura 20, muestran el valor promedio del módulo de Young para los BTC sometidos a compresión de la muestra patrón y de los BTC con adición de emulsión asfáltica (RC-250) en porcentajes de 2%,3% y 4%, evidenciándose que la adición del 4% mejora la elasticidad del BTC.

Tabla 25 Resumen general del módulo de Young para los BTC sometidos a compresión.

М.	Módulo de Young Muestra Patrón (kgf/cm²)	Módulo de Young Muestra E.A 2% (kgf/cm²)	Módulo de Young Muestra E.A 3% (kgf/cm²)	Módulo de Young Muestra E.A 4% (kgf/cm²)
M1	172.77	190.082	242.02	313.57
M2	91.23	271.178	239.48	261.49
M3	148.25	217.168	185.12	340.60
M4	171.06	191.402	189.18	410.68
M5	86.17	133.896	194.50	381.57
M6	171.91	173.225	142.15	473.48
Promedio	140.23	196.158	198.74	363.57

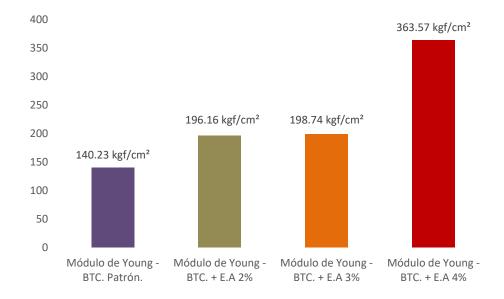


Figura 20: Resumen general del modulo de Young para los BTC sometidos a compresión.

La tabla 26 y la figura 21, muestran el incremento del módulo de Young, para los BTC en condición normal y con adición de emulsión asfáltica RC-250 en porcentajes de 2%, 3% y 4%; de los resultados obtenidos, el 4% tiene una mejora del 159.26%.

Tabla 26 Incremento del módulo de Young para los BTC sometidos a compresión.

Muestras	Módulo de Young Muestra Patrón (kgf/cm²)	Módulo de Young Muestra E.A 2% (kgf/cm²)	Módulo de Young Muestra E.A 3% (kgf/cm²)	Módulo de Young Muestra E.A 4% (kgf/cm²)
Promedio	140.23	196.16	198.74	363.57
% de mejora	0%	39.88%	41.72%	159.26%

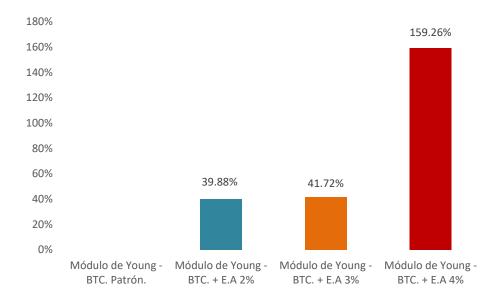


Figura 21: Incremento del módulo de Young para los BTC sometidos a compresión

En las tablas 27,28,29 y 30, se muestra el resumen detallado de la resistencia a la flexión de cada una de las unidades de los BTC sin adición y con adición de emulsión asfáltica (RC-250), en porcentajes del 2%, 3% y 4% respectivamente.

Tabla 27 Resumen detallado de la resistencia a flexión de los BTC – muestra patrón.

Código	Carga (kgf)	Def. Unitaria (mm)	Esfuerzo (kgf/cm²)	Módulo de Young (kgf/cm²)
M.P - 1	442	0.107	6.69	59.47
M.P - 2	453	0.109	7.28	69.06
M.P - 3	433	0.114	7.14	74.37
M.P - 4	416	0.115	6.92	62.95
M.P - 5	446	0.133	7.70	66.61
M.P - 6	422	0.092	7.05	84.36
Promedio	435.33	0.11	7.13	69.47
Desv. Est.	14.33	0.01	0.35	8.91

Tabla 28 Resumen detallado de la resistencia a flexión de los BTC – 2% E.A.

Código	Carga (kgf)	Def. Unitaria (mm)	Esfuerzo (kgf/cm²)	Módulo de Young (kgf/cm²)
E.A 2%-1	547	0.077	8.53	205.03
E.A 2%-2	498	0.072	8.06	196.27
E.A 2%-3	504	0.082	7.01	194.85
E.A 2%-4	522	0.101	8.33	159.79
E.A 2%-5	531	0.106	8.72	153.50
E.A 2%-6	528	0.081	7.80	133.18
Promedio	521.67	0.09	8.08	173.77
Desv. Est.	18.12	0.01	0.62	28.92

Tabla 29 Resumen detallado de la resistencia a flexión de los BTC – 3% E.A.

Código	Carga (kgf)	Def. Unitaria (mm)	Esfuerzo (kgf/cm²)	Módulo de Young (kgf/cm²)
E.A 3%-1	543	0.057	8.97	253.21
E.A 3%-2	576	0.097	9.79	148.84
E.A 3%-3	596	0.072	9.11	212.97
E.A 3%-4	550	0.080	9.44	302.34
E.A 3%-5	568	0.087	9.66	248.07
E.A 3%-6	611	0.119	8.67	181.09
Promedio	574.00	0.09	9.27	224.42
Desv. Est.	26.19	0.02	0.43	55.10

Tabla 30 Resumen detallado de la resistencia a flexión de los BTC – 4% E.A

Código	Carga (kgf)	Def. Unitaria (mm)	Esfuerzo (kgf/cm²)	Módulo de Young (kgf/cm²)
E.A 4%-1	616	0.061	9.84	185.36
E.A 4%-2	579	0.058	10.63	182.52
E.A 4%-3	614	0.063	9.80	277.71
E.A 4%-4	622	0.059	9.91	332.58
E.A 4%-5	603	0.066	11.11	240.41
E.A 4%-6	631	0.080	10.70	186.31
Promedio	610.83	0.06	10.33	234.15
Desv. Est.	18.13	0.01	0.55	61.58

La tabla 29 y la figura 20, muestran el valor de la resistencia a la flexión promedio de los BTC de la muestra patrón y de los BTC con adición de emulsión asfáltica (RC-250) en porcentajes de 2%,3% y 4%, evidenciándose tanto en la tabla como en el grafico que las unidades con adición del 4% de emulsión asfáltica tienen mejor resistencia a la compresión.

Tabla 31 Resumen general del ensayo de resistencia a flexión de los BTC.

Muestra	BTC. PATRÓN (kgf/cm²)	BTC. + E.A.2% (kgf/cm ²)	BTC. + E.A.3% (kgf/cm ²)	BTC. + E.A.4% (kgf/cm ²)
M1	6.69	8.53	8.97	9.84
M2	7.28	8.06	9.79	10.63
M3	7.14	7.01	9.11	9.80
M4	6.92	8.33	9.44	9.91
M5	7.70	8.72	9.66	11.11
M6	7.05	7.80	8.67	10.70
Promedio	7.13	8.08	9.27	10.33

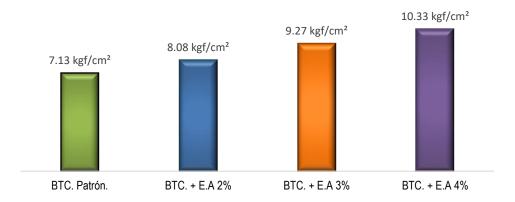


Figura 22: Resumen general ensayo a la flexión de los BTC.

La tabla 32 y la figura 23, muestran el valor promedio del módulo de Young para los BTC sometidos a flexión de la muestra patrón y de los BTC con adición de emulsión asfáltica (RC-250) en porcentajes de 2%,3% y 4%, evidenciándose que la adición del 4% mejora la elasticidad del BTC.

Tabla 32 Resumen general del módulo de Young para los BTC sometidos a flexión.

М.	Módulo de Young Muestra Patrón (kgf/cm²)	Módulo de Young Muestra E.A 2% (kgf/cm²)	Módulo de Young Muestra E.A 3% (kgf/cm²)	Módulo de Young Muestra E.A 4% (kgf/cm²)
M1	59.47	205.032	253.21	185.36
M2	69.06	196.272	148.84	182.52
M3	74.37	194.851	212.97	277.71
M4	62.95	159.790	302.34	332.58
M5	66.61	153.498	248.07	240.41
M6	84.36	133.182	181.09	186.31
Promedio	69.47	173.771	224.42	234.15

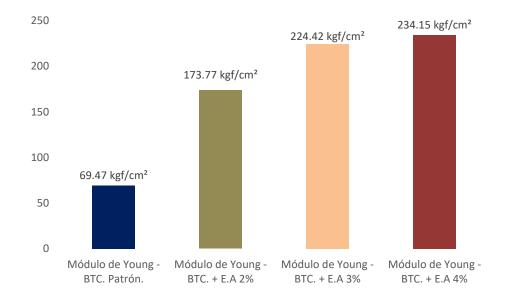


Figura 23: Resumen general del módulo de Young para los BTC sometidos a flexión.

La tabla 33 y la figura 24, muestran el incremento del módulo de Young, para los BTC en condición normal y con adición de emulsión asfáltica RC-250 en porcentajes de 2%, 3% y 4%; de los resultados obtenidos, el 4% tiene una mejora del 237.05%.

Tabla 33 Incremento del módulo de Young para los BTC sometidos a flexión.

Muestras	Módulo de Young Muestra Patrón (kgf/cm²)	Módulo de Young Muestra E.A 2% (kgf/cm²)	Módulo de Young Muestra E.A 3% (kgf/cm²)	Módulo de Young Muestra E.A 4% (kgf/cm²)
Promedio	69.47	173.77	224.42	234.15
% de mejora	0%	150.14%	223.05%	237.05%

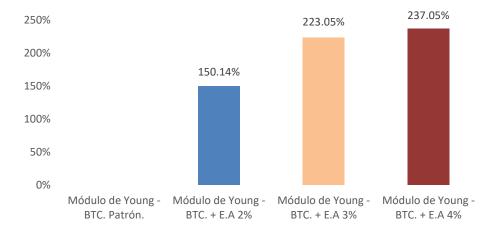


Figura 24: Incremento del módulo de Young para los BTC sometidos a flexión.

En las tablas 34,35,36 y 37, se muestra el peso seco de los BTC, mas no se muestra peso saturado ya que los especímenes se destruyeron durante el ensayo de grado de absorción.

Tabla 34 Resumen detallado del ensayo de grado de absorción – muestra patrón

Código	Característica	Peso kg	Peso Saturado kg	% Abs
Patrón 1	Secado al ambiente	8.854	-	No cumple
Patrón 2	Secado al ambiente	8.609	-	No cumple
Patrón 3	Secado al ambiente	8.757	-	No cumple
Patrón 4	Secado al ambiente	8.609	-	No cumple
Patrón 5	Secado al ambiente	8.651	-	No cumple

Tabla 35 Resumen detallado del ensayo de grado de absorción – 2% E.A

Código	Característica	Peso kg	Peso Saturado kg	% Abs
E.A 2% - 1	Secado al ambiente	8.315	-	No cumple
E.A 2% - 2	Secado al ambiente	9.538	-	No cumple
E.A 2% - 3	Secado al ambiente	8.222	-	No cumple
E.A 2% - 4	Secado al ambiente	9.536	-	No cumple
E.A 2% - 5	Secado al ambiente	9.921	-	No cumple

Tabla 36 Resumen detallado del ensayo de grado de absorción – 3% E.A

Código	Característica	Peso kg	Peso Saturado kg	% Abs
E.A 3% - 1	Secado al ambiente	8.411	-	No cumple
E.A 3% - 2	Secado al ambiente	8.632	-	No cumple
E.A 3% - 3	Secado al ambiente	8.587	-	No cumple
E.A 3% - 4	Secado al ambiente	8.642	-	No cumple
E.A 3% - 5	Secado al ambiente	8.313	-	No cumple

Tabla 37 Resumen detallado del ensayo de grado de absorción – 4% E.A

Código	Característica	Peso kg	Peso Saturado kg	% Abs
E.A 4% - 1	Secado al ambiente	9.225	-	No cumple
E.A 4% - 2	Secado al ambiente	8.315	-	No cumple
E.A 4% - 3	Secado al ambiente	9.345	-	No cumple
E.A 4% - 4	Secado al ambiente	9.920	-	No cumple
E.A 4% - 5	Secado al ambiente	8.760	-	No cumple

3.4 Incremento de la resistencia a la compresión y flexión de los BTC con adición de emulsión asfáltica RC-250 frente a los BTC de la muestra patrón.

En la tabla 34 y en la figura 21, se puede evidenciar el incremento de la resistencia a la compresión de los BTC con adición de emulsión asfáltica (RC-250) en los porcentajes de 2%, 3% y 4% frente a los BTC de la muestra patrón, donde claramente el BTC con porcentaje del 4% de emulsión asfáltica tiene un incremento del 126.51% respecto al BTC de la muestra patrón.

Tabla 38 *Incremento en la resistencia a la compresión de los BTC.*

Muestras	BTC. PATRÓN (kgf/cm²)	BTC. + E.A.2% (kgf/cm²)	BTC. + E.A.3% (kgf/cm²)	BTC. + E.A.4% (kgf/cm²)
Promedio	17.15	20.06	26.85	38.85
% de mejora	0%	16.97%	56.55%	126.51%

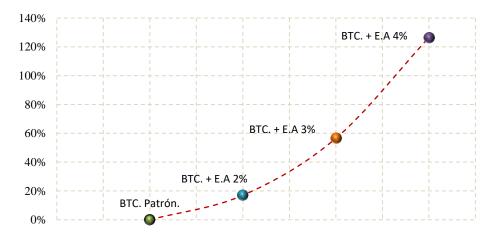


Figura 25: Incremento en resistencia a la compresión de los BTC.

En la tabla 35 y en la figura 22, se puede evidenciar el porcentaje de mejora de la resistencia a la flexión de los BTC con adición de emulsión asfáltica (RC-250) en los porcentajes de 2%, 3% y 4% frente a los BTC de la muestra patrón, donde claramente el BTC con porcentaje del 4% de emulsión asfáltica tiene un incremento del 44.90% respecto al BTC de la muestra patrón.

Tabla 39 Incremento en la resistencia a la flexión de los BTC.

Muestras	BTC. PATRÓN (kgf/cm²)	BTC. + E.A.2% (kgf/cm ²)	BTC. + E.A.3% (kgf/cm²)	BTC. + E.A.4% (kgf/cm²)
Promedio	7.13	8.08	9.27	10.33
% de mejora	0%	13.27%	30.09%	44.90%

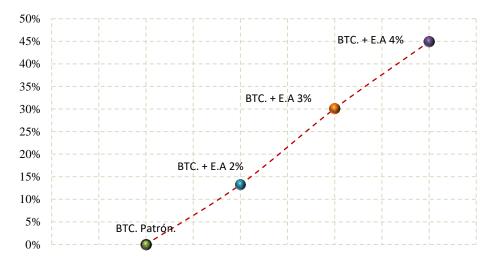


Figura 26: Incremento en resistencia a la flexión de los BTC.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión

4.1.1. Limitaciones.

En esta investigación se utilizó el suelo (materia prima) de la cantera "Flores",
 ubicada en Santa Bárbara – Baños del Inca – Cajamarca. Por tanto; los resultados obtenidos son válidos para esta cantera y para aquellas que cumplan características similares.

4.1.2. Interpretación comparativa.

- La norma E.080 (2016), en el artículo 4 establece lineamientos para la gradación del suelo que deben aproximarse a los siguientes porcentajes: arcilla 10-20%, limo 15-25% y arena 55.70%, no debiéndose utilizar suelos orgánicos; también dicha norma específica que estos rangos pueden variar cuando se fabriquen adobes estabilizados. Según a los porcentajes estipulados anteriormente, el ensayo de granulometría por sifonaje nos lleva a precisar que el suelo de la cantera "Flores" es óptimo para la elaboración de los BTC, debido a que cuentan con una gradación de 16.50 % en arcilla, 23.38% en limo y 60.13% en arena.
- De acuerdo con la investigación desarrollada podemos inferir que los resultados del ensayo a compresión de los BTC con adición de emulsión asfáltica RC-250 al 4%, presentan una resistencia promedio de 38.85 kgf/cm² y los BTC sin adición solo alcanzaron una resistencia de 17.15 kgf/cm². En el ensayo de resistencia a la flexión de los BTC con adición de emulsión asfáltica RC-250 al 4%, se obtuvo una resistencia promedio de 10.33 kgf/cm² y los BTC sin adición solo llegaron a obtener una resistencia de 7.13 kgf/cm²; de acuerdo a estos resultados, se acepta la hipótesis planteada, la cual al incrementar la adición de emulsión asfáltica RC-250 en un 4%,

el BTC alcanza una mejor resistencia a la compresión y flexión en comparación al BTC sin adición de emulsión asfáltica o muestra patrón.

- Según (Arteaga Paucar & Loja Saula, 2018), en su investigación "Diseño de adobes estabilizados con emulsión asfáltica"; con respecto al ensayo a la compresión indican que el BTC estabilizado con emulsión asfáltica al 2.5%, 5%, 7.5% y 10% tienen como resultados valores de 1.44 MPa, 1.53 MPa, 1.55 MPa y 1.63 MPa respectivamente, evidenciando que el mayor porcentaje es el que resiste más, representando un incremento del 140.65%. Si comparamos la investigación antes mencionada con esta tesis podemos concluir que se tienen resultados semejantes en el incremento, ya que, en el ensayo de resistencia a la compresión, los BTC con adición de emulsión asfáltica RC-250 al 2%, 3% y 4% mostraron resultados promedios de 20.06 kgf/cm² (1.97 MPa), 26.85 kgf/cm² (2.63 MPa) y 38.85 kgf/cm² (3.81 MPa) respectivamente, donde claramente se puede observar que los BTC con adición de emulsión asfáltica RC-250 al 4% tiene la mayor resistencia, que representa un incremento del 126.51% frente a los BTC de la muestra patrón.
- En esta investigación se obtuvo un resultado promedio de resistencia a la compresión de los BTC con adición de emulsión asfáltica RC-250 al 2% de 20.06 kgf/cm² y al 4% de 38.85 kgf/cm²; si comparamos estos resultados con los obtenidos en base a la investigación de (Chacón Sánchez, Romero Cuentas, & Callasi Venero, 2017), en el cual el ensayo de resistencia a la compresión de los adobes estabilizados con asfalto al 5% obtuvo un resultado promedio de 14.87 kgf/cm² y al 10% de 17.68 kgf/cm²; esto evidencia que a mayor porcentaje de emulsión, los BTC tienen mayor resistencia a la compresión.

Según la investigación "Bloques de tierra comprimida con aditivos bituminosos" de (Darío Cañola, Builes Jaramillo, Medina, & Gonzáles Castañeda, 2018); tiene como resultado la reducción del coeficiente de absorción capilar e incremento de la resistencia a la penetración del agua en los BTC adicionando emulsión asfáltica al 5%, 7% y 10%, además (Chacón Sánchez, Romero Cuentas, & Callasi Venero, 2017), nos dice que el adobe debe ser sometido a una prueba de succión, la cual busca determinar el índice de absorción de agua temprana en el espécimen; comparando los ensayos de las investigaciones antes mencionadas con el ensayo de absorción empleado en esta tesis, podemos inferir que son ensayos totalmente distintos, debido a que en las investigaciones de referencia, el adobe solo hizo contacto con el agua en una de sus caras; en cambio en nuestro ensayo de absorción, el BTC fue totalmente sumergido por un periodo de 24h, los cuales se destruyeron y no se obtuvo resultado alguno.

4.1.3. Implicancias.

- La principal implicancia, es que la estructura de esta investigación podrá servir como antecedente para la elaboración de investigaciones parecidas utilizando su propio radio de influencia, además de poder utilizar otro tipo de estabilizante.
- Continuar desarrollando la presente investigación realizando ensayos de pilas y
 muretes con unidades de BTC adicionando emulsión asfáltica RC-250, tomando
 como referencia la norma E.080.
- Generar nuevas investigaciones con otro tipo de estabilizantes con la finalidad de fomentar el uso de BTC en la construcción de edificaciones.
- Esta investigación obtuvo resultados favorables al incrementar la resistencia a la compresión y flexión, por lo que podrían desarrollar nuevas investigaciones

adicionando mayor porcentaje de emulsión asfáltica para evaluar las posibles mejoras con este estabilizante en los BTC.

4.2 Conclusiones

- De acuerdo a los resultados de esta investigación, se cumple parcialmente la hipótesis, debido a que los ensayos de resistencia a la compresión y flexión demostraron que al adicionar emulsión asfáltica RC-250 al 2%, 3% y 4%, las unidades de los BTC, muestran resultados favorables; sin embargo, las unidades de los BTC, en el ensayo de grado de absorción se desintegraron, por lo que no se tiene resultado alguno.
- Los resultados de los ensayos de suelos de la cantera "Flores", usado para la elaboración de los BTC, nos muestra un suelo óptimo, puesto que de acuerdo a la clasificación S.U.C.S, el material es una arena arcillosa (SC), la cual cumple con los requerimientos de la norma E.080 (2016).
- En los ensayos de Proctor modificado para la muestra patrón y para las muestras con adición de emulsión asfáltica RC-250 al 2%, 3% y 4%, se obtuvo resultados de máxima densidad seca igual a 2.19 gr/cm3, 2.38 gr/cm3, 2.33 gr/cm3 y 2.26 gr/cm3, con un óptimo contenido de humedad de 9.35%, 8.95%, 10.35% y 9.5% respectivamente.
- Los resultados de los BTC con adición de emulsión asfáltica RC-250 al 2%, 3% y 4% son: resistencia a la compresión 20.06 kgf/cm², 26.85 kgf/cm² y 38.85 kgf/cm² y resistencia a la flexión 8.08 kgf/cm², 9.27 kgf/cm² y 10.33 kgf/cm² respectivamente.

• Se evaluó el resultado de los ensayos de resistencia a la compresión y flexión, obteniéndose los mejores resultados con la adición de emulsión asfáltica al 4%, ya que esta muestra obtuvo un incremento del 126.51% de resistencia a la compresión, y 44.90% de resistencia a la flexión con respecto a la muestra patrón.

REFERENCIAS

- Arteaga Paucar, J. M., & Loja Saula, L. A. (2018). Diseño de Adobes Estabilizados con Emulsión Asfáltica. Cuenca.
- ASTM C67. (2019). Métodos de ensayo estándar para el muestreo y la prueba de ladrillo y ladrillo de arcilla estructural. West Conshohocken: ASTM International.
- ASTM D-1557, & MTC E 115 2000. (2006). Compactación de Suelos en Laboratorio Utilizando una Energia Modificada.
- ASTM D421. (2007). Prática para la Preparación en Seco de Muestras de Suelo para el Análisis del Tamaño de Partícula y la Determinación de Constantes de Suelo.
- Carcedo Fernández, M. (2012). Resistencia a Compresión de Bloques de Tierra Comprimida Estabilizada con Materiales de Sílices de Diferente Tamaño de Partícula. Madrid.
- Chacón Sánchez, V., Romero Cuentas, V. I., & Callasi Venero, C. D. (2017). Estudio Comparativo de las Propiedades Físico Mecánicas de las Unidades de Adobe Tradicional Frente a las Unidades de Adobe Estabilizado con Asfalto. Cusco.
- Cordova Fernandez, E. L. (2017). Resistencia a la Compresión de Ladrillos de Adobe Estabilizados con Asfalto RC-250 en San Miguel de Utcayacu-Catac. Chimbote.
- Darío Cañola, H., Builes Jaramillo, A., Medina, C. A., & Gonzáles Castañeda, G. E. (2018). Bloques de Tierra Comprimida con Aditivos Bituminosos . *Instituto Tecnológico Metropolitano*.
- Galván Huamaní, L. M. (2015). Criterios de Análisis y Diseño de una Mezcla Asfáltica en Frío con Pavimento Reciclado y Emulsión Asfáltica. Lima.
- INEI, D. T. (2017). *Perfil Sociodemografico del Peru*. Obtenido de Recuperado 11 de mayo de 2018, a partir de https://www.inei.gob.pe/
- Jimenez Pose, C. (2014). Ensayo de Absorción del BTC y su Influencia en el Tipo de Juntas. *Construcción con Tierra*.
- Juárez Badillo, E., & Rico Rodríguez, A. (1985). Fundamentos de la Mecánica de Suelos. Ciudad de Mexico.
- Lou Ma, R. (1981). Manual para la Construcción de la CETA -RAM.
- Ministerio de Vivienda Construcción y Saneamiento. (7 de Abril de 2017). Norma E.080 Diseño y Construcción con Tierra Reforzada. *Diario Oficial El Peruano*.
- Ministerio de vivienda, construcción y saneamiento. (2016). *Norma técnica de edificaciónes*. Obtenido de Ministerio de vivienda, construcción y saneamiento Web site: https://www3.vivienda.gob.pe/dgprvu/docs/TITULO_III_EDIFICACIONES/III.2% 20ESTRUCTURAS/E.080%20ADOBE.pdf
- Minke, G. (2005). Manual de Construccion en Tierra. Fin de Siglo.
- Nieto Castañeda, F. A., Gámez Camargo, C. P., & Hilarión Plazas, D. L. (2008). Método para la Determinanción de la Humedad en Suelos Granulares Utilizando Horno Microondas. *Epsilon*.
- NTP 339.613. (1999). Ensayo de resistencia a la compresión de albañileria. Lima : INACAL.
- NTP 339.078. (2012). Ensayo a la Flexión. Lima: INDECOPI.
- NTP 339.127. (1998). Suelos. Método de ensayo para determinar el contenido de humedad de un suelo. Lima: INDECOPI.
- NTP 339.128. (1999). Suelos. Método de Ensayo para el Análisis Granulométrico. Lima: INDECOPI.

- NTP 339.129. (1999). Suelos Método de ensayo para determinar el límite líquido, límite plástico e índice de plasticidad. Lima: INDECOPI.
- NTP 339-141. (1999). Suelos. Método de ensayo para compactación del suelo en laboratorio utilizando una energía modificada (2,700 kN-m/m3 (56,000pie-lbf/pie3)). Lima: INDECOPI.
- P. Gatani, M. (2000). Ladrillos de Suelo Cemento: Mampuesto Tradicional en Base a un Material Sostenible. *Sciense*.
- Pacuri Zapana, O. A. (2014). Efecto de la Adición de aglometantes en la Resistencia Mecánica y Física del Adobe. Puno.
- Reglamento Nacional de Edificaciones. (2017). Norma E.080 Diseño y Construcción con Tierra Reforzada. Lima: El Peruano.
- Ríos Pérez, E. Y. (2010). Efecto de la Adición de Latex Natural y Jabón en la Resistencia Mecánica y Absorción del Adobe Compactado. Oaxaca.
- Vásques Hernandez, A., Botero Botero, L. F., & Carvajal Arango, D. (2015). Fabricación de Bloques de Tierra Comprimida con Adición de Residuos de Construcción y Demoloción Como Reemplazo del Agregado Pétreo Convencional. *Scielo*.

ANEXOS

• Anexo N°1: Matriz de consistencia

	TITULO: "Propiedades Físico M	ecánicas De Bloques de Tierra Com	primida con la Adición de Emu	lsión Asfáltica", Cajamarc	a 2018
Formulación del problema	Objetivos	Hipótesis	Variables	Indicadores	Formula
1. Problema General:	1. Objetivo General:	Hipótesis General: Al incrementar el porcentaje de emulsión asfáltica en las unidades de bloques de tierra comprimida; mejoran las propiedades físico mecánicas con respecto a la muestra patrón (BTC sin adición de emulsión	V. Independiente	X.1. Emulsión Asfáltica al 2%.	$EA_{2\%} = \frac{2\% * Peso \ total \ del \ bloque}{100}$
1	Determinar las propiedades físico mecánicas de bloques de tierra comprimida con la adición de emulsión asfáltica.	asfáltica).	X. Emulsión Asfáltica (EA)	X.2. Emulsión Asfáltica al 3%.	EA _{3%} = $\frac{3\% * Peso total del bloque}{100}$
				X.3. Emulsión Asfáltica al 4%.	$EA_{4\%} = \frac{4\% * Peso\ total\ del\ bloque}{100}$
ducton do cindiston		2. Hipótesis Específicas	V. Dependiente:		
asfáltica en las propiedades fisico mecánicas de los bloques de tierra comprimida?	 Realizar los ensayos de Granulometria y Limites de Consistencia para clasificar el suelo mediante el Sistema Unificado de Clasificación de suelos (S.U.C.S), para la elaboración de bloques de tierra comprimida. Realizar el ensayo de Proctor Modificado 	 Al realizar los ensayos de Granulometria y Limites de Consistencia, se identifica que este suelo es optimo para la elaboración de bloques de tierra comprimida. Con el ensayo de Proctor Modificado, el óptimo contenido de humedad para la muestra patrón es menor al 10% y para la 		Y.1. Resistencia a la Compresión.	$\sigma = \frac{P}{A}$
	para la muestra patrón y para la muestra con adición de emulsión asfáltica en porcentajes del 2%, 3% y 4%,	muestra con adición de emulsión asfáltica en distintos porcentajes el óptimo contenido de humedad es menor al 15%.	Y. Propiedades Físico Mecánicas de los bloques de tierra comprimida.	Y.2. Resistencia a la Flexión.	$\sigma = \frac{3*P*D.A}{2*L*H^2}$
		mecánica en resistencia a la compresión y flexión frente a los que no cuentan con esta mezcla.		Y.3. Absorción.	$\% = \frac{Ws - Wh}{Ws} * 100$

• Anexo N°2: Protocolos

	LABORA	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA							
N	PROTOCOLO								
	ENSAYO:	CONTENIDO DE HUMEDAD			CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD	NORMA:	MTC E 1	08 / AS	TM D2216 / NTP 339.127	CH-LS-UPNC:				
PRIVADA DEL NORTE	PROYECTO:	"PROPIE	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA CO ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018						
CANTERA:	"Flores"	Dueño:	L.F	TIPO DE MATERIAL:	Arena - Arcilla				
UBICACIÓN:		CAJAMARCA		COLOR DE MATERIAL:	Marrón - Plomo				
FECHA DE MUESTREO:		23/09/18		RESPONSABLE:	J. Ramiro, Rojas Gálvez				
FECHA DE E	NSAYO:	24/09/18		REVISADO POR:	Ing. Manuel Urteaga Toro				

Temperatura de Secado

10.00

Método

Horno 110 ± 5 °C

	C	ONTENIDO	DE HUMEDA	AD.		
ID	DESCRIPCIÓN	UND	1	2	3	4
Α	Identificación del recipiente o Tara		N°1	N°2	N°3	
В	Peso del Recipiente	gr	28.4	28.2	39.2	
С	Recipiente + Material Natural	gr	198.6	196.2	201	
D	Recipiente + Material Seco	gr	178.7	177.4	182.6	
Е	Peso del material húmedo (Wmh) = C - B	gr	170.2	168.00	161.8	
F	Peso del material Seco (Ws)= D - B	gr	150.3	149.20	143.4	-
W%	Porcentaje de humedad (E-F / F) * 100	%	13.24	12.60	12.83	
G	Promedio Porcentaje Humedad	%		12.	.89	

$$(W\%) = \frac{Wmh - Ws}{Wc} * 100$$

Nota: Materia hace mención tanto al suelo como a los agregados tanto grueso como fino.

OBSERVACIONES:						
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR				
J. J	(Sney)	(Kand				
NOMBRE: U. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro				
FECHA	FECHA:	FECHA:				

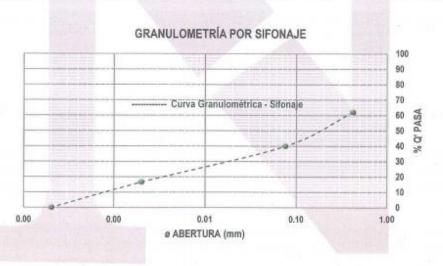
. 6	LABORA			ADA DEL NORTE CAJAMARCA					
		PROTOCOLO							
N	ENSAYO	ANÁLISIS GRANULO AGREGADOS GRUE	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD	NORMA	MTC E204 - ASTM C13	AGGF-LC-UPNC:						
PRIVADA DEL NORTE	PROYECTO	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018							
CANTERA:		"Flores"	TM:						
UBICACIÓN:									
UBICACIÓN:		CAJAMARCA	TMN:						
UBICACIÓN: FECHA DE N		23/09/18	TMN: M.F:						
	IUESTRA:								

AGREGADO FINO

N°	TAMIZ		PESO RETENIDO (gr)	% RETENIDO (%)	% RETENIDO ACUMULADO (%)	% PASANTE ACUMULADO (%)	Hus Granulo (Depend Revisar ASTM	métrico le TMN, Norma
	(pulg)	(mm)	The said		(11)	(74)	Limite Superior	Limite Inferior
1	N° 4	4.75	5.40	1.00	1.00	99.00	95	100
2	N° 10	2.00	15.10	2.80	3.81	96.19	80	100
3	N°20	0.84	29.00	5.38	9.19	90.81	-	-
4	N° 30	0.59	32.40	6.02	15.21	84.79	50	85
5	N° 40	0.42	83.90	15.58	30.78	69.22	25	60
6	N° 60	0.25	79.00	14.67	45.45	54.55	10	30
7	N* 100	0.15	80.20	14.89	60.34	39.66	2	10
8	N* 200	0.075	76.70	14.24	74.58	25.42	0	3
9	Bandeja	0	136.90	25.42	100.00	0.00		-

Nota: Para calcular el módulo de finura no utilizar la malla N° 10 y N° 200, además para el cálculo utilizar la siguiente ecuación:

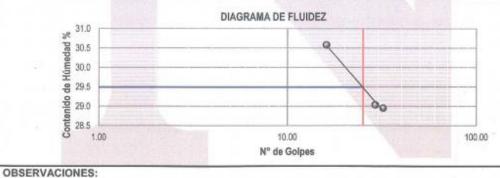
 $M.F = \frac{(\sum \% Retenido acumulado en las mallas N^4, 8,16,30,50 y 100)}{100}$


OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
	(2) ung	A.
NOMBRE/ J/Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urleaga Toro
FECHA /	FECHA:	FECHA:

UNIVERSIDAD PRIVADA DEL NORTE	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO								
	ENSAYO:	ANÁLISIS GRANULOMÉTRICO POR SIFONAJE			CÓDIGO DEL DOCUMENTO:				
	NORMA:		Α	STM D421	AGTSF-LS-UPNC:				
	TESIS:	PROPIEE	PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMI ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018						
CANTERA:	"Flores"	Dueño:	L.F	TIPO DE MATERIAL:	Arena - Arcilla				
UBICACIÓN;		CAJAMARCA		COLOR DE MATERIAL:	Marrón - Plomo				
FECHA DE MUESTREO:		23/0918		RESPONSABLE:	J. Ramiro, Rojas Gálvez				
	ENSAYO: 03/10/18		REVISADO POR:	Ing, Manuel Urteaga Toro					

Peso de muestra seca; Ws	80	gr
--------------------------	----	----

	ANÁLISIS GRANULOMÉ	TRICO POR SIFONA	JE
Malla	Malla (mm)	P.R.P	% RP
Nº10	2,00	-	-
N°40	0,42	30.5	38.13
Nº200	0,074	17.6	22.00
Limo	0,002	18.70	23,38
Arcilla	0,0002	13.20	16.50
Total		80.00	100.00


OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	DOCENTE
Light.	Buy	Port
NOMBRE: J/Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA C	FECHA:	FECHA:

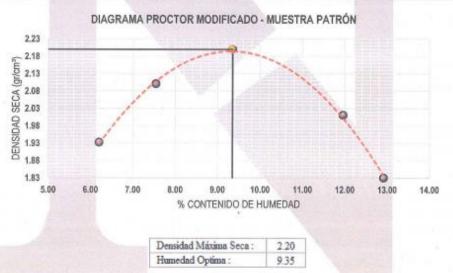
Ń	LABORA	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA PROTOCOLO							
	ENSAYO:	LÍMITES DE PLASTICIDAD			CÓDIGO DEL DOCUMENTO:				
UMVERSIDAD	NORMA:	ASTM D	4318 / 1	NTP E339.130 - NTP E111	LP-LS-UPNC:				
PRIVADA DEL NORTE	TESIS:	PROPIEC	PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA (ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018						
CANTERA	"Flores"	Dueño:	L.F	TIPO DE MATERIAL:	Arena - Arcilla				
UBICACIÓN:		CAJAMARCA		COLOR DE MATERIAL:	Marrón - Plomo				
FECHA DE MUESTREO:		23/09/18		RESPONSABLE:	J. Ramiro Rojas Gálvez				
	IA DE ENSAYO: 26/09/18		REVISADO POR:	Ing. Manuel Urteaga Toro					

	DETERM	INACIÓN L	ÍMITE LÍG	UIDO (LL)			
ID	DESCRIPCIÓN	UND	1	2	3	4	5
Α	Identificación de Recipiente	N°	#13	#14	#15		
В	Suelo Húmedo + Recipiente	gr	40.40	42.80	38.20		
C	Suelo Seco + Recipiente	gr	37.70	39.10	36.00		/
D	Peso de Recipiente	gr	28.40	27.00	28.40		
E	Peso del Agua	gr	2.70	3.70	2.20		
F	Peso Suelo Seco	gr	9.30	12.10	7.60		
G	Número de Golpes	N	29	16	32		
Н	Contenido de Humedad	%	29.03	30.58	28.95		

	DETERMI	NACIÓN LÍN	MITE PLAST	TICO (LP)			
ID	DESCRIPCIÓN	UND	1	2	3	4	5
A	Identificación de Recipiente	N°	#11	#12			
В	Suelo Húmedo + Tara	gr	48.30	38.70			
C	Suelo Seco + Tara	gr	46.90	36.70			
D	Peso de Tara	gr	39.30	27.00			
E	Peso del Agua	gr	1.40	2.00			
F	Peso Suelo Seco	gr	7.60	9.70			
G	Contenido de Humedad	%	18.42	20.62			
Н	Promedio Limite Plástico		19.5	52			

NOMBRE: J. Ramiro Rojas Gálvez

NOMBRE: ing. Kevin Robertson Tello Casas


NOMBRE: Ing. Manuel Urteaga Toro
FECHA:

FECHA:

	LABORA	TORIO DE S	UELOS		A DEL NORTE CAJAMARCA		
2.0				PROTOCOLO			
N	ENSAYO:	CO		TACIÓN PROCTOR ODIFICADO	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	MTC E1	15 / AS	TM D1557 / NTP 339.141	CPM-LS-UPNC:		
DEL NORTE	TESIS:	PROPIEC		ÍSICO Y MECÁNICAS DE BLO ICIÓN DE EMULSIÓN ASFÁT	OQUES DE TIERRA COMPRIMIDA COI TICA", CAJAMARCA 2018		
CANTERA:	"Flores"	Dueño:	L.F	TIPO DE MATERIAL:	Arena - Arcilla - Patrón		
UBICACIÓN:		"CAJAMA	RCA"	COLOR DE MATERIAL:	Marrón - Plomo		
FECHA DE MUESTREO: FECHA DE ENSAYO:		23/09/	/18	RESPONSABLE:	J. Ramiro, Rojas Gálvez		
		24/10/18		REVISADO POR:	Ing. Manuel Urteaga Toro		

		CTACIÓN	PROC	TOR MC	DIFICA	DO					
ID	DESCRIPCIÓN	UND		1	1	2	1	3		4	
A	Peso Molde	gr	4156		4156 4		41	56	41	4156	
В	Peso Muestra Húmeda + Molde	gr	6085		6280		92	72	60	99	
C	Peso Muestra Húmeda	gr	19	1929 2124		21	2116		1943		
D	Volumen Muestra húmeda	cm ³	939	9.98	939.98		939	9.98	939.98		
F	Densidad húmeda; Dh	gr/cm3	2.	05	2.26		2.25		2.07		
G	Recipiente	Nº	а	b	а	b	a	b	a	b	
Н	Peso Recipiente	gr	25.8	32.8	27.6	28.2	30.4	25.4	25	27	
1	Peso Muestra húmeda + Recipiente	gr	163.8	172	182.1	182.9	192.6	174.1	206.25	181.9	
J	Peso Muestra Seca + Recipiente	gr	155.7	163.9	171.3	172	175.3	158.2	185.5	164.2	
K	Peso del Agua	gr	8.1	8.1	10.8	10.9	17.3	15.9	20.75	17.7	
L	Peso Muestra seca	gr	129.9	131.1	143.7	143.8	144.9	132.8	160.5	137.2	
M	Contenido de Humedad W%	%	6.24	6.18	7.52	7.58	11.94	11.97	12.93	12.90	
N	Promedio Contenido de humedad Óptimo	%	6	21	7.55		11.	.96	12	91	
0	Densidad Seca Máxima; Ds	gr/cm3	31.5	93	2.	10	2.01		1.83		

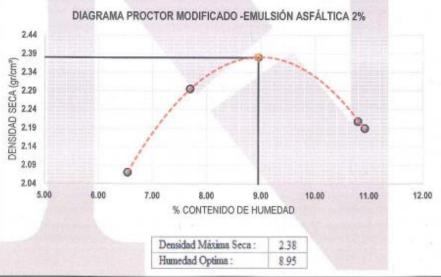
RESPONSABLE DEL ENSAYO

COORDINADOR DE LABORATORIO

DOCENTE

NOMBRE: J. Remiro, Rojas Gálvez

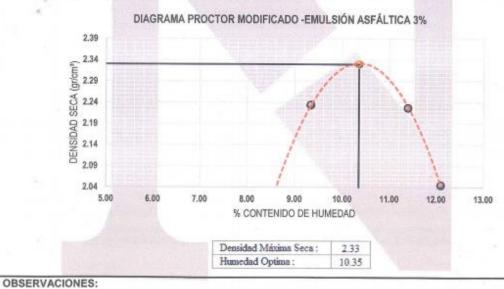
NOMBRE: Ing. Kevin Robertson Tello Casas


NOMBRE: Ing. Manuel Urteaga Toro
FECHA:

FECHA:

	LABORA	TORIO DE S	UELOS	- UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA							
7 11				PROTOCOLO								
N	ENSAYO:	CO		TACIÓN PROCTOR ODIFICADO	CÓDIGO DEL DOCUMENTO:							
UNIVERSIDAD	NORMA:	MTC E1	15 / AS	TM D1557 / NTP 339.141	CPM-LS-UPNC:							
PRIVADA DEL NORTE	TESIS:	PROPIEC	PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIN ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018									
CANTERA:	"Flores"	"Flores" Dueño: L.F TIPO DE MATERIAI		TIPO DE MATERIAL;	Arena - Arcilla - 2% E. A							
UBICACIÓN:		"CAJAM/	ARCA*	COLOR DE MATERIAL:	Marrón - Plomo							
FECHA DE M	IUESTREO:	23/09/	18	RESPONSABLE:	J. Ramiro, Rojas Gálvez							
FECHA DE ENSAYO:		24/10/	18	REVISADO POR:	Ing. Manuel Urteaga Toro							

ID	DESCRIPCIÓN	UND		1	2	2	1	3		4	
Α	Peso Molde	gr	4156		4156		41	4156		4156	
В	Peso Muestra Húmeda + Molde	gr	62	6230 6480		80	64	56	64	139	
C	Peso Muestra Húmeda	gr	20	2074 2340		2300		2283			
D	Volumen Muestra húmeda	cm ³	939	.98	939.98		939.98		939.98		
F	Densidad húmeda; Dh	gr/cm3	2.	21	2.47		2.45		2.43		
G	Recipiente	N°	a	b	а	b	a	b	a	b	
Н	Peso Recipiente	gr	23.8	31.1	27	28	29	27	28	27.2	
1	Peso Muestra húmeda + Recipiente	gr	208.6	187.5	214.4	198,4	203.6	205.2	200.2	215.	
J	Peso Muestra Seca + Recipiente	gr	197.6	177.6	200.9	186.3	186.7	187.7	183.9	196.	
K	Peso del Agua	gr	11.00	9.9	13.5	12.1	16.9	17.5	16.3	19.3	
L	Peso Muestra seca	gr	173.8	146.5	173.9	158.3	157.7	160.7	155.9	169.	
M	Contenido de Humedad W%	%	6.33	6.76	7.76	7.64	10.72	10.89	10.46	11.4	
N	Promedio Contenido de humedad Óptimo	%	6.1	54	7.	70	10.	.80	10	.93	
0	Densidad Seca Máxima; Ds	qr/cm ³	2.07		2.30		2.21		2.19		


OBSERVACIONES:

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	DOCENTE
L. J. J. M.	Runfa	(Doct
NOMBRE, J. Ramire, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA (4	FECHA:	FECHA:

	LABORA	TORIO DE S	UELOS	- UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA							
2 %			- Committee	PROTOCOLO								
N	ENSAYO:	CC		TACIÓN PROCTOR ODIFICADO	CÓDIGO DEL DOCUMENTO:							
UNIVERSIDAD	NORMA:	MTC E1	15 / AS	TM D1557 / NTP 339.141	CPM-LS-UPNC:							
PRIVADA DEL NORTE	TESIS:	PROPIE	PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMI ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018									
CANTERA:	"Flores"	Dueño:	L.F	TIPO DE MATERIAL:	Arena - Arcilla - 3% E. A							
UBICACIÓN:	1	*CAJAM/	ARCA"	COLOR DE MATERIAL:	Marrón - Plomo							
FECHA DE N	ECHA DE MUESTREO:		/18	RESPONSABLE:	J. Ramiro, Rojas Gálvez							
FECHA DE ENSAYO:		24/10	/18	REVISADO POR:	Ing. Manuel Urteaga Toro							

055-1		CTACIÓN	PROC	TOR MC	DIFICA	DO					
ID	DESCRIPCIÓN	UND		1		2		3		4	
A	Peso Molde	gr	gr 4156		41	4156 41		156		4156	
В	Peso Muestra Húmeda + Molde	gr	5330		6488 64		52	63	311		
C	Peso Muestra Húmeda	gr	.11	1174 2332		2296		2155			
D	Volumen Muestra húmeda	cm3	939	98.	939.98		939.98		939.98		
F	Densidad húmeda; Dh	gr/cm3	1.	25	2.48		2.44		2.29		
G	Recipiente	N°	a	b	a	b	a	b	8	ь	
Н	Peso Recipiente	gr	30.4	25.4	25.8	32.8	25	27	27.6	28.2	
1	Peso Muestra húmeda + Recipiente	gr	113	109.2	72.3	71.1	75.3	78.5	115.1	113	
J	Peso Muestra Seca + Recipiente	gr	107.3	104.2	67.4	67.3	71.5	73.6	107.1	102.5	
K	Peso del Agua	gr	5.70	5.00	4.90	3.80	3.80	4.90	8.00	10.50	
L	Peso Muestra seca	gr	76.9	78.8	41.60	34.50	46.50	46.60	79.50	74.30	
M	Contenido de Humedad W%	%	7.41	6.35	11.78	11.01	8.17	10.52	10.06	14.13	
N	Promedio Contenido de humedad Óptimo	%	6.	6.88 11.40		.40	9.	34		.10	
0	Densidad Seca Máxima; Ds	qr/cm3	1.	17	2.	23	2.23		2.05		

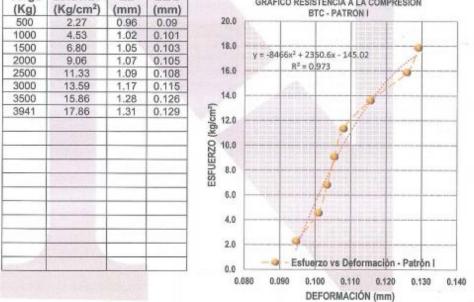
RESPONSABLE DEL ENSAYO COORDINADOR DE LABORATORIO DOCENTE

NOMBRE: J. Ramiro, Rojas Gálvez NOMBRE: Ing. Kevin Robertson Tello Casas NOMBRE: Ing. Manuel Urteaga Toro FECHA: FECHA:

1	LABORA	TORIO DE S	UELOS	PROTOCOLO	A DEL NORTE CAJAMARCA					
N	ENSAYO:	co		CACIÓN PROCTOR DDIFICADO	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E1	15 / AS	TM D1557 / NTP 339.141	CPM-LS-UPNC:					
DEL NORTE	TESIS:	PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018								
CANTERA:	"Flores"	Dueño:	L.F	TIPO DE MATERIAL:	Arena - Arcilla - 4% E. A					
UBICACIÓN:		"CAJAMA	RCA"	COLOR DE MATERIAL:	Marrón - Plomo					
FECHA DE N	MUESTREO:	23/09/	18	RESPONSABLE:	J. Ramiro, Rojas Gálvez					
FECHA DE ENSAYO:		24/10/	18	REVISADO POR:	Ing. Manuel Urteaga Toro					

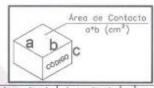
-		CTACIÓN	THOU	ON MO	DII IOM	00				
ID	DESCRIPCIÓN	UND		1	1 2	2	- 1	3		4
Α	Peso Molde	gr	4156		4156		41	56	4156	
В	Peso Muestra Húmeda + Molde	gr	6236		6464 64		64	42	62	68
C	Peso Muestra Húmeda	gr	20	2080		2308		86	21	12
D	Volumen Muestra húmeda	cm3	939	939.98 939.98		939	88.0	939.98		
F	Densidad húmeda; Dh	gr/cm ³	2.	21	2.46		2.43		2.25	
G	Recipiente	N°	а	b	a	b	a	b	a	b
Н	Peso Recipiente	gr	25	27	27.7	28.2	25.8	32.6	30	25.4
1	Peso Muestra húmeda + Recipiente	gr	123	114.3	130.5	120.1	184.4	188.1	148.8	140.3
J	Peso Muestra Seca + Recipiente	gr	116.9	109.4	119.5	114.8	169.1	170.1	130.0	131,3
K	Peso del Agua	gr	6.10	4.90	11	5.30	15.30	18.00	18.8	9.00
L	Peso Muestra seca	gr	91.9	82.4	91.8	86.8	143.30	137.5	100	105.9
M	Contenido de Humedad W%	%	6.64	5.95	11.98	6.12	10.68	13.09	18.8	8.50
N	Promedio Contenido de humedad Óptimo	%	6.:	6.29 9.0		05	11.	.88	13	.65
0	Densidad Seca Máxima; Ds	gr/cm3	2.1	08	2.25		2.17		1.98	

Densidad Máxima Seca: 2.26 Humedad Optima: 9.52

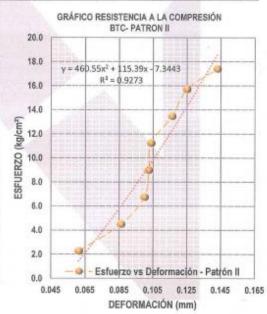

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	DOCENTE
19974	Bung	(Dyl
NOMBRE: J. Ramíro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FEGHA	FECHA:	FECHA:

OBSERVACIONES:

DIGO DEL DOCUMENTO: C-LC-UPNC:
DE TIERRA COMPRIMIDA CON JAMARCA 2018
Arena - Arcilla - Patrón
Marrón - Plomo
J. Ramiro, Rojas Gálvez
Ing. Manuel Urteaga Toro

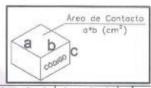

CÓDIGO Longitud Longitud Longitud Área de Carga Esfuerzo Máxima DEL Del Tizón De la Contacto Del de **ESPECÍMEN** "a" (cm) Soga Grueso o Tabla Soportada Rotura "b" (cm) (Va en la "c" (cm) (a * b) (kg) (kg/cm²) cara Canto) (cm²) Patrón -15.18 14.54 10.14 220.72 3941 17.86 Carga Esfuerzo AL AL/L GRÁFICO RESISTENCIA A LA COMPRESIÓN BTC - PATRON I (Kg/cm²) (Kg) (mm) (mm) 2.27 0.96 0.09 20.0 1000 4.53 1.02 0.101 18.0 1500 6.80 1.05 0.103

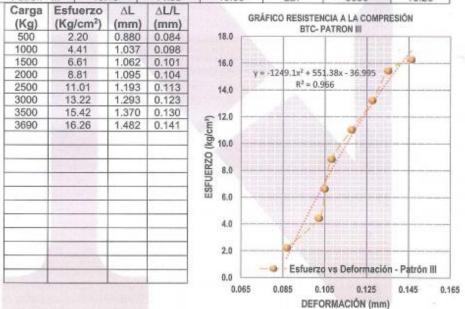
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR	
Market Jan 4	day.	Angel .	
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro	
FECHA:	FECHA:	FECHA:	



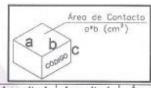
- 4	LABOR	ATORIO DE CONCR	PROTOCOLO	DA DEL NORTE CAJAMARCA
N UNIVERSIDAD PRIVADA	ENSAYO:	ROTURA DE ADOBE COMPACTADO ENSAYO A COMPRESION		CÓDIGO DEL DOCUMENTO:
	NORMA:		*******	RAC-LC-UPNC:
DEL NORTE	TESIS:		FÍSICO Y MECÁNICAS DE BLO DICIÓN DE EMULSIÓN ASFÁTIO	QUES DE TIERRA COMPRIMIDA CON CA", CAJAMARCA 2018
CANTERA "Flores" UBICACIÓN: CAJAMARCA		TIPO DE MATERIAL:	Arena – Arcilla - Patrón	
		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo
FECHA DE ENSAYO: 22/11/2018		RESPONSABLE:	J. Ramiro, Rojas Gálvez	
		REVISADO POR:	Ing. Manuel Urteaga Toro	

CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
Patrón - II	15.16	14.73	10.31	223.26	3878	17.37

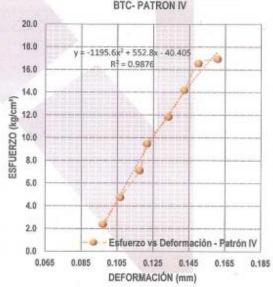

Carga	Esfuerzo	ΔL	ΔL/L
(Kg)	(Kg/cm ²)	(mm)	(mm)
500	2.24	0.62	0.060
1000	4.48	0.873	0.085
1500	6.72	1.012	0.098
2000	8.96	1.039	0.101
2500	11.20	1.051	0.102
3000	13.44	1.178	0.114
3500	15.68	1.266	0.123
3878	17.37	1.449	0.141
		-	


RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Jan	Benef.	Rosel
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

2 /	LABOR	ATORIO DE CONCR		ADA DEL NORTE CAJAMARCA
M			PROTOCOLO	
N	ENSAYO: ROTURA DE ADOBE COMPACTADO ENSAYO A COMPRESION		CÓDIGO DEL DOCUMENTO:	
UNIVERSIDAD PRIVADA	NORMA:	7003-1000	******	RAC-LC-UPNC:
DEL NORTE	TESIS:		FÍSICO Y MECÁNICAS DE BLO DICIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON CA", CAJAMARCA 2018
CANTERA	CANTERA "Flores"		TIPO DE MATERIAL:	Arena – Arcilla - Patrón
UBICACIÓN: CAJAMAR		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo
EECUA DE ENEAVO. 2011 1/2010		RESPONSABLE:	J. Ramiro, Rojas Gálvez	
EECHA DE E	FECHA DE ENSAYO: 22/11/2018		REVISADO POR:	Ing. Manuel Urteaga Toro

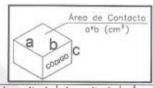

CÓDIG DEL ESPECÍN (Va en cara Car	MEN la	Long Del T "a" (izón	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
Patrón -	III	15.	15	14.99	10.53	227	3690	16.26
Carga (Kg)	(Kg	uerzo /cm²)	ΔL (mm)	-			ICIA A LA COMPR PATRON III	ESIÓN
500	2	.20	0.880	0.084	18.0	1		

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
J. J.	Bur.	Jan Jan
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Torr
ECHA: /	FECHA:	FECHA:

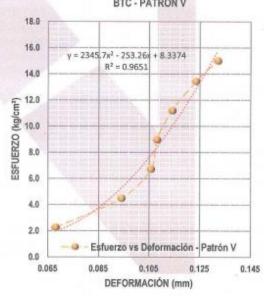


CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
Patrón - IV	14.91	14.21	10.21	211.77	3581	16.91

Carga	Esfuerzo	ΔL	ΔL/L
(Kg)	(Kg/cm ²)	(mm)	(mm)
500	2.36	0.984	0.0964
1000	4.72	1.080	0.1058
1500	7.08	1.190	0.1166
2000	9.44	1.230	0.1205
2500	11.81	1.350	0.1322
3000	14.17	1.440	0.1410
3500	16.53	1.520	0.1489
3581	16.91	1.630	0.1596

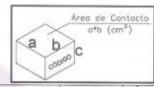


RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Ser.	Bruz.	(Def
NOMBRÉ: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA;	FECHA:	FECHA:


)	LABOR	ATORIO DE CONCR	ETO - UNIVERSIDAD PRIVA	DA DEL NORTE CAJAMARCA		
N			PROTOCOLO			
	ENSAYO:		ADOBE COMPACTADO O A COMPRESION	CÓDIGO DEL DOCUMENTO: RAC-LC-UPNC:		
UNIVERSIDAD PRIVADA	NORMA:					
DELNORTE	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA CO ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018				
CANTERA "		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - Patrón		
	UBICACIÓN: CAJAN		COLOR DE MATERIAL:	Marrón - Plomo		
UBICACIÓN:						
Standard Standard	NSAYO: 22/11	/2018	RESPONSABLE:	J. Ramiro, Rojas Gálvez		

CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
Patrón - V	15.08	14.84	9.99	223.79	3354	14.99

Carga	Esfuerzo	ΔL	ΔL/L
(Kg)	(Kg/cm ²)	(mm)	(mm)
500	2.23	0.690	0.069
1000	4.47	0.953	0.095
1500	6.70	1.072	0.107
2000	8.94	1.096	0.110
2500	11.17	1.157	0.116
3000	13.41	1.252	0.125
3354	14.99	1.339	0.134
			-
		-	



RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
S. J. J.	Bruz :	4 Def
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA: U	FECHA:	FECHA:

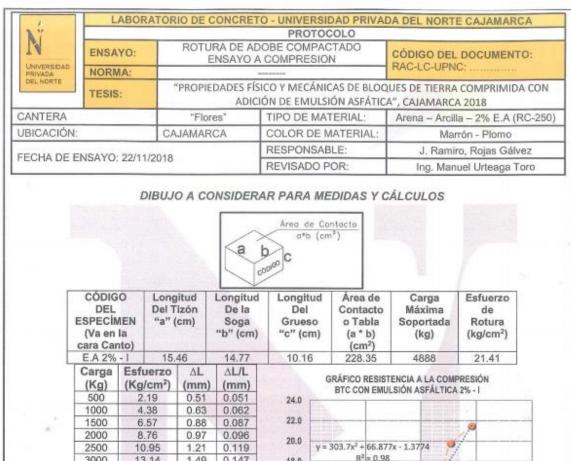
	LABOR	ATORIO DE CONCR		DA DEL NORTE CAJAMARCA	
N			PROTOCOLO		
	ENSAYO:		ADOBE COMPACTADO A COMPRESION	CÓDIGO DEL DOCUMENTO:	
UNIVERSIDAD PRIVADA DEL NORTE	NORMA:			RAC-LC-UPNC:	
	TESIS:		"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA CO ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2		
CANTERA			TIPO DE MATERIAL:	Arena – Arcilla - Patrón	
UBICACIÓN: CAJA		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo	
OBICACION:					
	NSAYO: 22/11	2040	RESPONSABLE:	J. Ramiro, Rojas Gálvez	

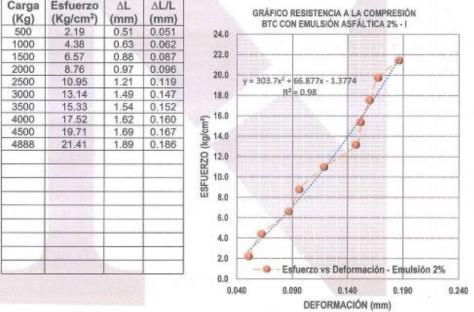
CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
Patrón - VI	15.02	14.09	10.19	211.68	4132	19.52

Patron	- VI 15.	02	14.09	10.19	211.68	4132	19.52
Carga (Kg)	Esfuerzo (Kg/cm²)	ΔL (mm)	ΔL/L (mm)	GF	ÁFICO RESISTEN		ESIÓN
500	2.36	0.980	0.096		BIG-1	PATRON VI	1
1000	4.72	1.025	0.101	22.0			-
1500	7.09	1.047	0.103			1888	
2000	9.45	1.068	0.105	20.0	y = -12002x ² +	3278.5x - 203.02	
2500	11.81	1.099	0.108	18.0		0.9915	199
3000	14.17	1.155	0.113	10.0			
3500	16.53	1.183	0.116	16.0		9	
4000	18.90	1.247	0.122	m ₃)		2	
4132	19.52	1.290	0.127	(kg/cm²)		3	1
				2 12.0			
				02		7	The Brand
				0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01		2	-
				E .	7		
				E 8.0	- 6		1
				6.0	1		
			_	0.0			
				4.0			
				2.0	9		
				1000	- Esfuerzo v	s Deformación	Patrón VI
-				0.0			

0.090

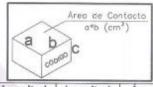
0.110


DEFORMACIÓN (mm)

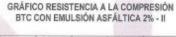

0.120

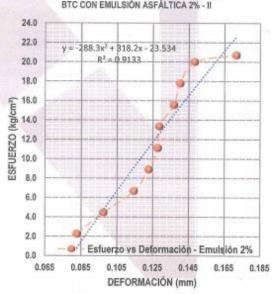
0.130

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR	
Jan	Bury	Pargel	
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro	
ECHA:	FECHA:	FECHA:	

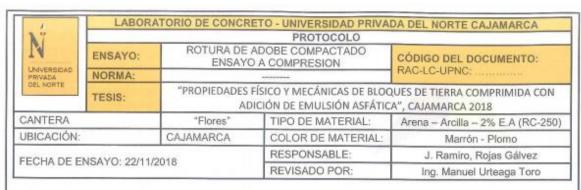


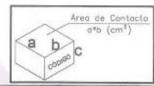
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
July J	Bruy !	Port
NOMBRE, J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:





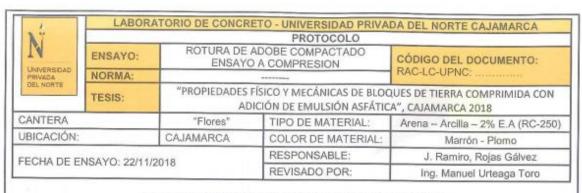
CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 2% - II	15.12	14.90	10.02	225.24	4659	20.68

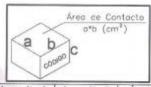

Carga	Esfuerzo	ΔL	∆L/L
(Kg)	(Kg/cm ²)	(mm)	(mm)
500	2.22	0.84	0.084
1000	4.44	0.99	0.099
1500	6.66	1.16	0.116
2000	8.88	1.25	0.124
2500	11.10	1.30	0.129
3000	13.32	1.30	0.130
3500	15.54	1.39	0.139
4000	17.76	1.42	0.142
4500	19.98	1.51	0.150
4659	20.68	1.74	0.174
			-



RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR	
Life y.	Buf.	Post	
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro	
ECHA: V	FECHA:	FECHA:	

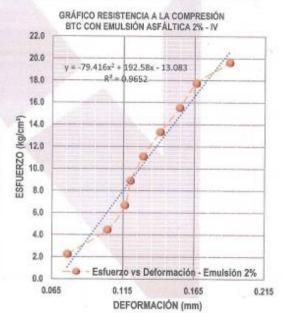
CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 2% - III	15.05	14.46	10.10	217.67	4563	20.96


E.A Z70	- 111 15.	05	14.46	10.10		217.67		4563	20.96
Carga (Kg)	Esfuerzo (Kg/cm²)	ΔL (mm)	ΔL/L (mm)		GRÁFI BTC	ICO RESIS	TENCIA A	LA COMPI	RESIÓN % - III
500	2.30	0.72	0.071	24.0	1000	-			
1000	4.54	0.89	0.088					E DOWN	1.
1500	6.89	0.97	0.096	22.0	v = -1	01.28x2+	241 ROV	15.067	-
2000	9.19	1.09	0.108	20.0			0.9917	13.007	9.9
2500	11.49	1.18	0.117	20.0		1	1		15
3000	13.78	1.26	0.124	18.0	-	-	-	9	
3500	16.08	1.37	0.135			dillin.		1	E TOTAL STREET
4000	18.38	1.47	0.145	€ 16.0			25.	-	
4500	20.67	1.58	0.157	(kg/cm²)			lin.	1	
4563	20.96	1.67	0.165	\$ 17.0			1		2118
				S 12.0		-	-	43000	
				0.01 10.0 0.01 10.0			100		
				₩ 10.0	1200	1	6		
_				₩ 8.0	308	1			5
	10731-1070					6	CODE DE	DESCRIPTION OF	
				6.0		10000	-	- in a second	
	2000						50.00	OF LOTH	
				4.0	1	7 "		100000	100
				2.0	0		2000		The state of the s
					-0	Fefuerz	o ve Dof	nmación -	Emulsión 2%
				0.0	_	Loiuciz	o va Deli	ormacion -	Cindialon 276
				0.0	65 0.	085 0.	105 0.1	25 0.14	5 0.165 0.

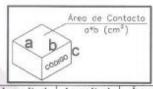

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Silly.	Eury.	Dyaf
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
ECHA	FECHA:	FECHA:

DEFORMACIÓN (mm)

0.185

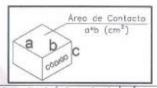


CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Area de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 2% - IV	15.34	14.72	10.43	225.81	4426	19.60


-	The state of the s		~ 1	1 7 C F Ro
	Carga	Esfuerzo	ΔL	AL/L
	(Kg)	(Kg/cm ²)	(mm)	(mm)
	500	2.21	0.77	0.074
	1000	4.43	1.05	0.101
	1500	6.64	1.18	0.113
	2000	8.86	1.22	0.117
1	2500	11.07	1.31	0.126
	3000	13.29	1.43	0.137
	3500	15.50	1.57	0.151
ı	4000	17.71	1.69	0.162
	4426	19.60	1.93	0.185
		A THE REAL PROPERTY.		
1				

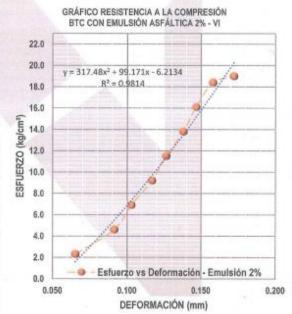
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
La Sold	Burg -	A Dogat
NOMBRE / J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA: V	FECHA:	FECHA:

1	LABORATORIO DE CONCRETO - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
NT	PROTOCOLO								
N UNIVERSIDAD PRIVADA	ENSAYO:		ADOBE COMPACTADO O A COMPRESION	CÓDIGO DEL DOCUMENTO:					
	NORMA:		*********	RAC-LC-UPNC:					
DEL NORTE	TESIS:		FÍSICO Y MECÁNICAS DE BLOC DICIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON CA", CAJAMARCA 2018					
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 2% E.A (RC-250)					
UBICACIÓN:	BICACIÓN: CAJAMARCA		COLOR DE MATERIAL:	Marrón - Plomo					
FECHA DE ENSAYO: 22/11/2018		2019	RESPONSABLE:	J. Ramiro, Rojas Gálvez					
		REVISADO POR:		Ing. Manuel Urteaga Toro					


CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 2% - V	15.14	15.01	10.29	227.20	4253	18.72

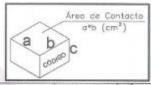
ara Car	nto)					(cm ²)	1.50	, -
E.A 2%	- V	15.	14	15.01	10.29	227.20	4253	18.72
Carga (Kg)	(Kg	uerzo /cm²)	ΔL (mm)	ΔL/L (mm)			RESISTENCIA A LA	
500		.20	0.62	0.060	18.0			Wilder To
1000		.40	0.94	0.091				
1500		.60	1.09	0.106	16.0	-		
2000	8	.80	1.18	0.114			- 123.92x + 4.541	2 0
2500	11	1.00	1.27	0.124	14.0	R ²	= 0.9945	1
3000	13	3.20	1.40	0.136	14.0	44		9
3500	15	5.40	1.49	0.145	100			1
4000	17	7.61	1.63	0.158	E 12.0	200000000		1
4253	18	3.72	1.87	0.182	Joe J	TABLE .		
Accept 1	- 12.7/32	100015	C-10000	CONTROL OF	2 10.0			7
					02			
					出 8.0		- A	10
		Ville			ESFUERZO (kg/cm²)			10
	10	(197)			ш 6.0		1/	
					4.0			
						The State of the S		EB
					2.0	OC.	-	
		- 8			0.0	Esfuerz	to vs Deformació	ón - Emulsión 2%
					0.055	1.000000	0.095 0.11 DEFORMACIÓN (

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Lafter J. Y	Buy.	(Augs)
NOMBRE, J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

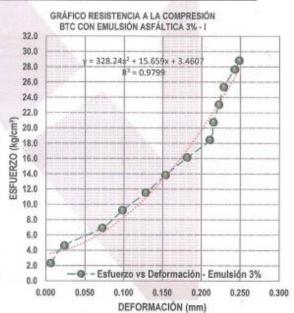


1.	LABOR	LABORATORIO DE CONCRETO - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
NY	PROTOCOLO									
UNIVERSIDAD PRIVADA DEL NORTE	ENSAYO:		ADOBE COMPACTADO O A COMPRESION	CÓDIGO DEL DOCUMENTO:						
	NORMA:			RAC-LC-UPNC:						
	TESIS:		FÍSICO Y MECÁNICAS DE BLOC DICIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON CA", CAJAMARCA 2018						
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 2% E.A (RC-250						
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo						
EECHA DE E	NEAVO: 22/44	RESPONSABLE:		J. Ramiro, Rojas Gálvez						
FECHA DE E	ISAYO: 22/11/2018 REVISADO POR:		Ing. Manuel Urteaga Toro							

CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 2% - VI	14.96	14.55	10.42	217.62	4132	18.99

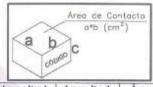

Carga	Esfuerzo	ΔL	∆L/L
(Kg)	(Kg/cm ²)	(mm)	(mm)
500	2.30	0.66	0.064
1000	4.60	0.93	0.089
1500	6.89	1.04	0.100
2000	9.19	1.19	0.114
2500	11.49	1.28	0.123
3000	13.79	1.40	0.134
3500	16.08	1.49	0.143
4000	18.38	1.61	0.154
4132	18.99	1.75	0.168
			12

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Life Jan. 4	Benny.	Rugel
NOMBRE J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

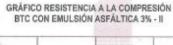


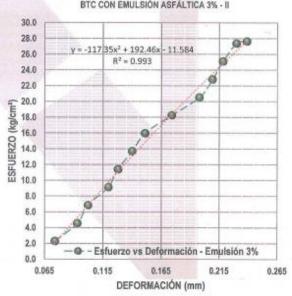
- X	LABOR	ATORIO DE CONCR		DA DEL NORTE CAJAMARCA	
7.4			PROTOCOLO		
N	ENSAYO:		ADOBE COMPACTADO O A COMPRESION	CÓDIGO DEL DOCUMENTO:	
UNIVERSIDAD PRIVADA	NORMA:			RAC-LC-UPNC:	
DEL NORTE	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA CO ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018			
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 3% E.A (RC-250	
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo	
FECHA DE ENSAYO: 22/11/2018		RESPONSABLE:		J. Ramiro, Rojas Gálvez	
		REVISADO POR:			

CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3% - I	14.99	14.48	9.98	216.96	6254	28.83


E.A.S	70 - 1	14.	88	14.48
Carg	100000000000000000000000000000000000000	uerzo	ΔL	∆L/L
(Kg)	(Kg	/cm²)	(mm)	(mm)
500	2	.30	0.06	0.006
1000	4	.61	0.24	0.024
1500	6	.91	0.72	0.072
2000	9	22	0.98	0.098
2500	11	1.52	1.28	0.128
3000	13	3.83	1.53	0.153
3500	16	3.13	1.81	0.181
4000	18	3.44	2.10	0.210
4500	20).74	2.15	0.216
5000	23	3.05	2.22	0.223
5500	25	5.35	2.28	0.229
6000	27	7.66	2.42	0.243
6254	28	3.33	2.48	0.249
_				
-				-
_				
-	100			

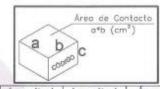
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
J. J. J.	Bruz.	A John
NOMBRE J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:



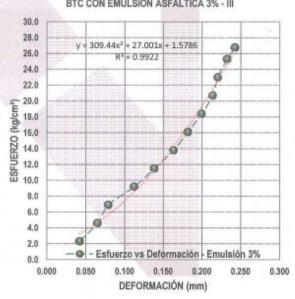


CODIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Area de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3% - II	15.08	14.54	10.26	219.56	6059	27.63

L.M 370	- 11	UO	14.34
Carga	Esfuerzo	ΔL	AL/L
(Kg)	(Kg/cm ²)	(mm)	(mm)
500	2.28	0.74	0.072
1000	4.56	0.93	0.090
1500	6.84	1.02	0.099
2000	9.12	1.19	0.116
2500	11.40	1.27	0.124
3000	13.68	1.40	0.136
3500	15.96	1.51	0.147
4000	18.24	1.74	0.169
4500	20.52	1.97	0.192
5000	22.80	2.09	0.203
5500	25.08	2.18	0.212
6000	27.36	2.29	0.223
6059	27.63	2.38	0.232
	0.00		
			-

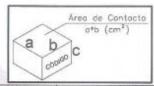


RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
July 1	Egny .	Pargel
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urleaga Toro
FECHA:	FECHA:	FECHA:

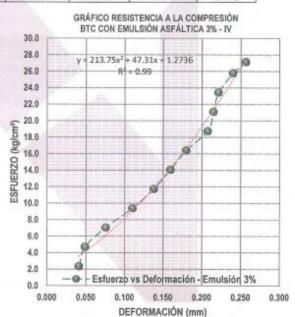


CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3% - III	15.13	14.38	10.23	217.52	5818	26.75

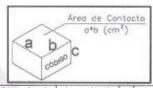

E.A 3%	- 111	15.	13	14.38
Carga	Esf	uerzo	ΔL	ΔL/L
(Kg)	(Kg	/cm ²)	(mm)	(mm)
500		.30	0.42	0.041
1000	4	.60	0.65	0.064
1500	6	.90	0.79	0.077
2000	9	.19	1.12	0.109
2500	11	1.49	1.38	0.135
3000	13	3.79	1.63	0.159
3500	16	3.09	1.81	0.177
4000	18	3.39	1.99	0.195
4500	20	0.69	2.13	0.208
5000	22	2.99	2.20	0.215
5500	25	5.29	2.32	0.227
5818	26	5.75	2.42	0.237
		18.08		


GRÁFICO RESISTENCIA A LA COMPRESIÓN BTC CON EMULSIÓN ASFÁLTICA 3% - III

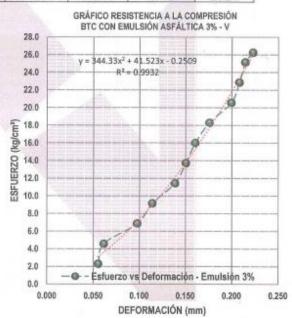
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Luft	Bung .	(Dort
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:



CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3% - IV	15.11	14.13	10.26	213.46	5795	27.15

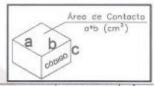

E.A 3% -	- IV	15.	11	14.13
		uerzo /cm²)	ΔL (mm)	∆L/L (mm)
500	2.34 4.68 7.03 9.37		0.41	0.040
1000			0.49	0.047
1500			0.75	0.073
2000			1.10	0.107
2500	11	1.71	1.37	0.134
3000	14	1.05	1.59	0.155
3500	16	3.40	1.79	0.175
4000	18	3.74	2.07	0.202
4500	21	1.08	2.14	0.209
5000	23	3.42	2.21	0.215
5500	25	5.77	2.40	0.234
5795	27	7.15	2.56	0.257
		1		
				-

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
La DAY	Bury.	Port
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:



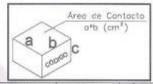
- 1	LABORATORIO DE CONCRETO - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA							
N.Y		PROTOCOLO						
N	ENSAYO:	ROTURA DE ADOBE COMPACTADO ENSAYO A COMPRESION		CÓDIGO DEL DOCUMENTO:				
PRIVADA		Assessment .	RAC-LC-UPNC:					
DEL NORTE	TESIS:		FÍSICO Y MECÁNICAS DE BLOC DICIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON CA", CAJAMARCA 2018				
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 3% E.A (RC-250)				
UBICACIÓN: CAJAM		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo				
UBICACION:			ENSAYO: 22/11/2018 RESPONSABLE:					
	NEAVO: 22/44	2010	RESPONSABLE:	J. Ramiro, Rojas Gálvez				

CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3% - V	15.01	14.57	10.22	218.79	5742	26.24

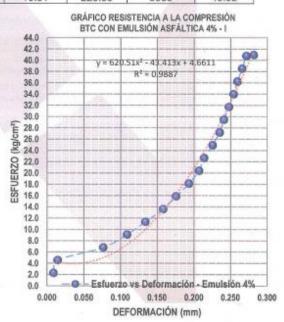

E.A 3%	- V 15	.01	14.57
Carga (Kg)	Esfuerzo (Kg/cm²)	ΔL (mm	ΔL/L) (mm)
500	2.29	0.55	
1000	4.57	0.61	0.060
1500	6.86	0.97	0.095
2000	9.14	1.14	0.111
2500	11.43	1.38	0.135
3000	13.71	1.50	0.147
3500	16.01	1.61	0.157
4000	18.28	1.75	0.172
4500	20.57	1.99	0.194
5000	22.85	2.08	0.203
5500	25.14	2.14	0.209
5742	26.24	2.22	0.217

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
de Part	Bury.	Port
NOMBRE: A Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

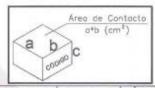
CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Area de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3% - VI	15.12	14.13	10.38	213.55	5229	24.49


E.A 3% -	-VI	15.	12	14.13
Carga	Esf	uerzo	ΔL	ΔL/L
(Kg)	(Kg	/cm²)	(mm	(mm)
500	2	.34	0.60	0.058
1000	4	.68	0.69	0.066
1500	7	.02	0.83	0.080
2000	9	.37	1.09	0.105
2500	11	1.71	1.27	0.123
3000	14	1.05	1.50	0.144
3500	16	3.39	1.67	0.161
4000	18	3.73	1.81	0.175
4500	21	1.07	2.03	0.196
5000	23	3.41	2.17	0.209
5229	24	1.49	2.30	0.221

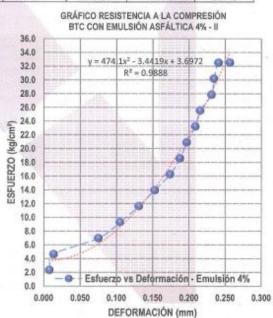
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
J. P. P. Y	Buy !	(Deget
NOMBRE: J. Ramíro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA: /	FECHA:	FECHA:



		-				
CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Area de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 4% - 1	15.21	14.52	10.31	220.90	9039	40.92

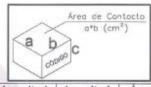

	E.A 4%	-1 15.	21	14.52
ĺ	Carga	Esfuerzo	ΔL	∆L/L
	(Kg)	(Kg/cm ²)	(mm)	(mm)
	500	2.26	0.09	0.009
	1000	4.53	0.15	0.015
	1500	6.79	0.79	0.077
	2000	9.05	1.12	0.109
	2500	11.32	1.38	0.134
	3000	13.58	1.63	0.158
	3500	15.84	1.81	0.176
	4000	18.11	1.99	0.193
	4500	20.37	2.13	0.207
	5000	22.63	2.20	0.213
	5500	24.90	2.32	0.225
	6000	27.16	2.42	0.235
	6500	29.43	2.48	0.240
	7000	31.69	2.55	0.247
	7500	33.65	2.62	0.254
	8000	36.22	2.67	0.259
	8500	38.48	2.74	0.266
	9000	40.74	2.80	0.271
	9039	40.92	2.91	0.281

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Jan	Benny:	Burgh
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

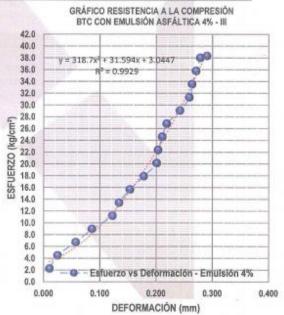


14	LABOR	ATORIO DE CONCR	PROTOCOLO	DA DEL NORTE CAJAMARCA		
N	ENSAYO:		ADOBE COMPACTADO O A COMPRESION	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD PRIVADA	NORMA:		********	RAC-LC-UPNC:		
DELNORTE	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018				
UBICACIÓN: CAJAMARCA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250		
		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo		
		(0049	RESPONSABLE:	J. Ramiro, Rojas Gálvez		
FECHA DE ENSAYO: 22/11/2018			REVISADO POR:	Ing. Manuel Urteaga Toro		

CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 4% - II	15.04	14.33	9.91	215.52	7002	32.49

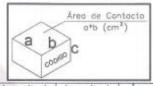

E.A 4%	- 11	15.	04		14.33	
Carga (Kg)	17533994	uerzo /cm²)	∆L (mm)	ΔL/L (mm)	1
500	24		32 0.08		0.008	1
1000	4	64	0.14		0.014	1
1500	6	96	0.78	3	0.078	1
2000	9	28	1.08		0.109	1
2500	11	.60	1.34		0.136	
3000	13	3.92			0.159	
3500	16	3.24			0.181	
4000	18	3.56	1.93		0.195	
4500	20	20.88 2.03 23.20 2.15		0.205		
5000	23		2.15		0.217	
5500	25	.52		0.224]	
6000	-27	.84	2.38		0.240]
6500	30).16	2.42		0.244	
7000	32	2.48	2.48	8.	0.250	
7002	32	2.49	2.65		0.267	1
	7					1

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Sally.	Bury	Port
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHÁ:	FECHA:	FECHA:

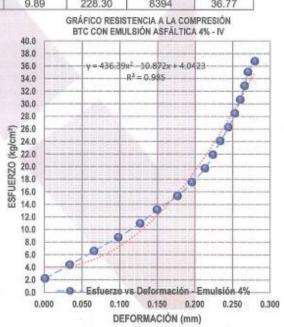


2 4	LABOR	ATORIO DE CONCR	PROTOCOLO	DA DEL NORTE CAJAMARCA	
N	ENSAYO:		ADOBE COMPACTADO O A COMPRESION	CÓDIGO DEL DOCUMENTO:	
UNIVERSIDAD PRIVADA	NORMA:			RAC-LC-UPNC:	
DELNORTE	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIM ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018			
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250)	
UBICACIÓN:		CACIÓN: CAJAMARCA		Marrón - Plomo	
EECUA DE E	UA DE ENGAVO, COMAIGOAC		RESPONSABLE:	J. Ramiro, Rojas Gálvez	
FECHA DE ENSAYO; 22/11/2018			REVISADO POR:	Ing. Manuel Urteaga Toro	

CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Area de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 4% - III	15.21	14.71	9.75	223.74	8574	38.32

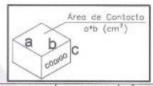

Carga	Esfuerzo	ΔL	AL/L
(Kg)	(Kg/cm ²)	(mm)	(mm)
500	2.23	0.11	0.011
1000	4.47	0.26	0.026
1500	6.70	0.59	0.060
2000	8.94	0.89	0.091
2500	11.17	1.26	0.129
3000	13.41	1.38	0.142
3500	15.64	1.58	0.162
4000	17.88	1.83	0.188
4500	20.11	2.07	0.213
5000	22.35	2.10	0.215
5500	24.58	2.17	0.223
6000	26.82	2.26	0.232
6500	29.05	2.49	0.256
7000	31.29	2.67	0.274
7500	33.52	2.72	0.279
8000	35.76	2.80	0.287
8500	37.99	2.87	0.295
8574	38.32	2.99	0.306

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
J. J. J. Y	Ecury.	(Doch
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:



- 1	LABOR	ATORIO DE CONCR		DA DEL NORTE CAJAMARCA			
N	ENSAYO:		ADOBE COMPACTADO A COMPRESION	CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD PRIVADA	NORMA:			RAC-LC-UPNC:			
DELNORTE	TESIS:		"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018				
CANTERA UBICACIÓN:		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250			
		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo			
FECHA DE ENSAYO: 22/11/2018			RESPONSABLE:	J. Ramiro, Rojas Gálvez			
			REVISADO POR:	Ing. Manuel Urteaga Toro			

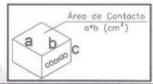
CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 4% - IV	15.00	15.22	9.89	228.30	8394	36.77


E.A 4%	- IV	15.	00	15.22
Carga	Esf	uerzo	ΔL	ΔL/L
(Kg)	(Kg	/cm²)	(mm)	(mm)
500	2	.19	0.01	0.001
1000	4.38		0.35	0.034
1500	6	.57	0.68	0.66
2000	8	.76	1.01	0.098
2500	10).95	1.31	0.127
3000	13	3.14	1.54	0.149
3500	15	5.33	1.82	0.176
4000	17.52		2.02	0.196
4500	19	3.71	2.20	0.213
5000	21	1.90	2.31	0.224
5500	24	1.09	2.41	0.234
6000	26	5.28	2.52	0.244
6500	28	3.47	2.61	0.253
7000	30	0.66	2.68	0.260
7500	32	2.85	2.74	0.266
8000	35	5.04	2.79	0.271
8394	36	5.77	2.88	0.279

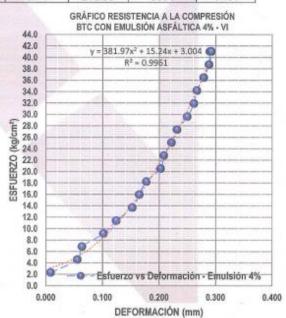
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
S.A. S.Y	Bury.	Angel		
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro		
FECHA:	FECHA:	FECHA:		

Ń	LABORATORIO DE CONCRETO - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA							
	PROTOCOLO							
	ENSAYO:		ADOBE COMPACTADO O A COMPRESION	CÓDIGO DEL DOCUMENTO:				
UNIVERSIDAD PRIVADA	NORMA:			RAC-LC-UPNC:				
DELNORTE	TESIS:		FÍSICO Y MECÁNICAS DE BLOC DICIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018				
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250				
UBICACIÓN:	UBICACIÓN: CAJAMARCA		COLOR DE MATERIAL:	Marrón - Plomo				
FECUA DE ENGAVO, 22/44/2042			RESPONSABLE:	J. Ramiro, Rojas Gálvez				
FECHA DE ENSAYO: 22/11/2018		2010	REVISADO POR:	Ing. Manuel Urteaga Toro				

CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 4% - V	15.12	14.90	10.05	225.24	9814	43.57

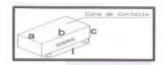

_	E.A 4%	- V 15.	12	14.90
	Carga	Esfuerzo	ΔL	ΔL/L
	(Kg)	(Kg/cm ²)	(mm)	(mm)
	500	2.22	0.09	0.009
1	1000	4.44	0.15	0.014
	1500	6.66	0.78	0.075
	2000	8.88	1.12	0.108
	2500	11.10	1.39	0.134
	3000	13.32	1.67	0.162
	3500	15.54	1.88	0.182
1	4000	17.76	1.97	0.191
	4500	19.98	2.23	0.216
	5000	22.20	2.26	0.219
	5500	24.42	2.33	0.226
	6000	26.64	2.47	0.239
	6500	28.86	2.52	0.245
ı	7000	31.08	2.56	0.249
	7500	33.30	2.64	0.256
1	8000	35.52	2.70	0.262
	8500	37.74	2.77	0.268
	9000	39.96	2.85	0.276
	9814	43.57	3.07	0.298

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
Jaggy 4	Bury.	Perf		
NOMBRE: J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro		
FECHA:	FECHA:	FECHA:		



1	LABORATORIO DE CONCRETO - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
NY	PROTOCOLO								
N	ENSAYO:		ADOBE COMPACTADO O A COMPRESION	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD PRIVADA	NORMA:		*****	RAC-LC-UPNC:					
DEL NORTE	TESIS:		FÍSICO Y MECÁNICAS DE BLOC DICIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON CA", CAJAMARCA 2018					
	the state of the s	10.70		W LEWAINIAUCH ZOTO					
CANTERA		"Flores"	TIPO DE MATERIAL:	The state of the s					
		_		The state of the s					
CANTERA UBICACIÓN	ENSAYO: 22/11	"Flores" CAJAMARCA	TIPO DE MATERIAL:	Arena – Arcilla – 4% E.A (RC-250)					

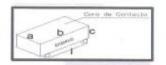
CÓDIGO DEL ESPECÍMEN (Va en la cara Canto)	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Área de Contacto o Tabla (a * b) (cm²)	Carga Máxima Soportada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 4% - VI	15.29	14.36	9.74	219.56	9004	41.01


/L m) 08
08
-
55
63
02
24
53
64
77
02
80
21
31
50
61
66
78
88
90
93

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
Latt.	Bany.	Dung		
NOMBRE J. Ramiro Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro		
FECHA:	FECHA:	FECHA:		

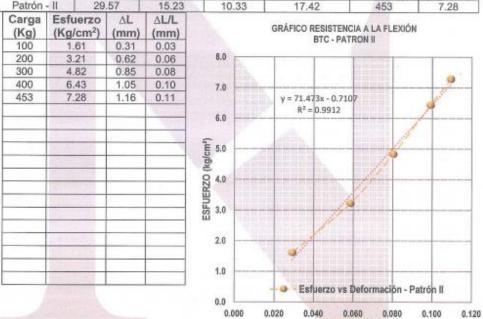
	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA							
- 4		PROTOCOLO							
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:					
PRIVADA DEL NORTE	TESIS:		"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA CO ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018						
CANTERA		"Flores"	TIPO DE MATERIAL;	Arena – Arcilla - Patrón					
UBICACIÓN:	JBICACIÓN: CAJAMARCA		COLOR DE MATERIAL:	Marrón - Plomo					
EEC	HA DE ENGAVO	RESPONSABLE:		J. Ramiro, Rojas Gálvez					
FECHA DE ENSAYO: 22/11/2018			REVISADO POR:	Ing. Manuel Urteaga Toro					

$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b'$$
: Esfuerzo de Rotura


CÓDIGO DEL ESPECÍMEN		Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Longitud entre Ejes de Apoyos "I" (cm)	Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)	
Patrón	trón - I 29.63 15.36		10.60	17.43	442	6.69		
Carga	Description of	ierzo AL	ΔL/L		GRÁFICO RESISTI	ENCIA A LA FLEXI	ÓN	

Patrón	-1	29	.63	15.36	10	.60	17.4	3	442	6.69
Carga (Kg)	(Kg/	erzo cm²)	ΔL (mm)	ΔL/L (mm)				O RESISTE	NCIA A LA FLEXI	
100	1.	51	0.29	0.03	8.0		-	2.0	THE STATE OF THE S	
200	3.	03	0.58	0.05						
300	4.	54	0.83	0.08	-	Eh.				
400	6.	06	1.00	0.09	7.0	TIE.		05.3 . 44	207	-
442	6.	69	1.13	0.11		SHEE	A = 199	$R^2 = 0.9$	807x + 0.2087	1
	1			7	6.0	NEW YEAR	-	N = 0.5	939	(S)
		E COLUMN								9
					£		AND DESCRIPTION OF THE PERSON		1	
	- 11				(kg/cm²)	- 4	10000		7	
			T-T-		(Kg	out Title	10000	S		1.1
					9 4.0	Supple.	0 0 2 2 2 0		- 0	
					ESFUERZO		99999		300	
					₽			1		
					3.0			100	NOTES:	
						7500	10000	1	50/541	
					2.0		1		HOMO:	-
	14	110				100	1	milimes		
	100						DIE LI	11005		
					1.0			BESSE		
_							Es	uerzo vs	Deformación - P	atrón i
					0.0		1			
						000 0		0.0 DEFORMA	60 0.080 CIÓN (mm)	0.100 0.1

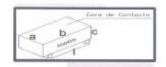
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR	
Coffee My 24	Elmy.	(Danjaf	
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Torr	
FECHA	FECHA:	FECHA:	


	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA		
24	PROTOCOLO					
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO: RAC-LC-UPNC:		
UNIVERSIDAD PRIVADA DEL NORTE	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141			
	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA CON ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018				
CANTERA "Flores"		TIPO DE MATERIAL:	Arena – Arcilla - Patrón			
JBICACIÓN: CAJAMARCA		COLOR DE MATERIAL:	Marrón - Plomo			
FECHA DE ENSAYO: 22/11/2018			RESPONSABLE:	J. Ramiro, Rojas Gálvez		
EEC						

$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo \ de \ Rotura$$

DEFORMACIÓN (mm)

CÓDIGO DEL ESPECÍMEN Patrón - II		Longitud Del Tizón "a" (cm)		Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Longitud entre Ejes de Apoyos "I" (cm)	Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)
		29	29.57	15.23	10.33	17.42	453	7.28
Carga Esfuerzo (Kg) (Kg/cm²)		ΔL (mm)	ΔL/L (mm)	A.	GRÁFICO RESISTEN BTC - PA			



RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR	
Little Jay	Derwing -	Payal	
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Tor	
ECHA:	FECHA:	FECHA:	

M. Control	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA									
N	PROTOCOLO										
	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:							
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:							
PRIVADA DEL NORTE	TESIS:		"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERR ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARO								
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena – Arcilla - Patrón							
UBICACIÓN: CA		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo							
FECHA DE ENSAYO: 22/11/2018		- 22/11/2019	RESPONSABLE:	J. Ramiro, Rojas Gálvez							
		REVISADO POR:	Ing. Manuel Urteaga Toro								

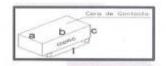
Longitud Longitud Longitud

CÓDIGO

$$f_b' = \frac{3 * P * l}{2 * a * c^2} \rightarrow f_b'$$
: Esfuerzo de Rotura

Longitud

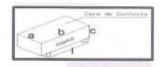
Esfuerzo


Carga

DEL ESPECÍI			rizón (cm)	De la Soga "b" (cm	Del Grueso) "c" (cm) 10.20		entre Ejes de Apoyos "I" (cm)	Máxima Soportada "P" (kg)	de Rotura (kg/cm²)
Patrón -	- 111	29	.66	15.24			17.42	433	7.14
Carga (Kg)		uerzo /cm²)	ΔL (mm)	ΔL/L (mm)			GRÁFICO RESISTE	NCIA A LA FLEXIÓN	4
100	1.	.65	0.41	0.04		8.0			
200	3	30	0.64	0.06					
300	4.	95	0.88	0.08		7.0		12110011	
400		59	1.09	0.10		7.0	y = -66.864x ² + 84		6
433	- /-	.14	1.21	0.11		6.0	R ² = 0.9	982	1
					ESFUERZO (kg/cm²)	799			
						2.0	1 4		
						1.0			
						0.0		Deformación - Pa	
						0.000		0.060 0.080 IACIÓN (mm)	0.100 0.1

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR	
Want of the second	Rung.	Alangal	
NOMBRE, J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro	
FECHA:	FECHA:	FECHA:	

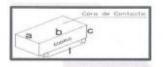
	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA									
27	PROTOCOLO										
N	ENSAYO:	ROTURA DE A ENSAYO DE TR	DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:							
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:							
PRIVADA DEL NORTE	TESIS:		"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA O ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018								
CANTERA	CANTERA "Flores"		TIPO DE MATERIAL:	Arena – Arcilla - Patrón							
UBICACIÓN: CAJA		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo							
FECHA DE ENSAYO: 22/11/2018			RESPONSABLE:	J. Ramiro, Rojas Gálvez							
			REVISADO POR:	Ing. Manuel Urteaga Toro							


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$

CÓDIO DEL ESPECÍI		Longitud Del Tizón "a" (cm)		Longitu De la Soga "b" (cm	Del Grueso) "c" (cm)		a Del a Grueso m) "c" (cm)		Longitud entre Ejes de Apoyos "I" (cm)	Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)
Patrón -	- IV	29	.67	15.26	17.40	416			6.92		
Carga (Kg)	(Kg	ierzo (cm²)	ΔL (mm) 0.28	ΔL/L (mm) 0.03			GRÁFICO RESISTEI BTC - PA		1		
200		32	0.56	0.05		0.0		1000			
300		99	0.85	0.08							
400	_	65	1.01	0.10	7	.0	257 40 3 - 05 04	0.000	- W		
416	-	92	1.22	0.12		y s	157.19x ² + 85.01x - R ² = 0.9778	0.5647	1000		
		1			6	.0	11 - 0.5770				
			7. Vi		(_c m ₃)	.0	din -				
					ESFUERZO (kg/cm²)	.0		4			
					ESFUE	.0	-/-				
					2	.0	1				
					1	.0	- Fsfuerzo vs	Deformación - Pa	atrón IV		
					0.	.0	Louding	Daroning 11	au on y		
							.020 0.040 0.060 DEFORM	0.080 0.100 ACIÓN (mm)	0.120 0.1		

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR	
Jeffy.	Eury	(Day)	
NOMBRÉ: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Tor	
FECHÁ:	FECHA:	FECHA:	

	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA									
2 11	PROTOCOLO										
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO: RAC-LC-UPNC:							
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141								
PRIVADA DEL NORTE	TESIS:		ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018							
CANTERA "Flor		"Flores"	TIPO DE MATERIAL:	Arono Aveille Detrés							
CANTERA		110165	THE OFFICE MINTERSTANCE	Arena – Arcilla - Patrón							
CANTERA UBICACIÓN		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo							
UBICACIÓN	HA DE ENSAYO	CAJAMARCA									


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo \ de \ Rotura$$

DEL ESPECÍI		Del 1	gitud Fizón (cm)	Longitu De la Soga "b" (cm		Longitud Del Grueso "c" (cm)	Longitud entre Ejes de Apoyos "I" (cm)	Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)
Patrón -	- V	29	.92	15.01		10.04	17.41	446	7.70
Carga (Kg)	(Kg	erzo (cm²)	ΔL (mm)	ΔL/L (mm)			GRÁFICO RESISTE BTC - PA	NCIA A LA FLEXIÓ	N
100		73	0.41	0.04		9.0			
200	_	46	0.72	0.07					
300		18	0.96	0.09		8.0			
400	-	91	1.18	0.11			$y = -73.374x^2 + 78.9$,0
446	7.	70	1.41	0.13		7.0	R ² = 0.99	05	9
					(2	6.0		No.	
				7	(ka/cm²)	5.0			
					ESFUERZO	4.0		1	
		300			ESFU			6	
						3.0		ARRIVE OF THE STREET	
						2.0	-		
						1.0	- was a second		
						0.0	- Esfuerzo vs	Deformación - Pa	atrón V
							020 0.040 0.060 DEFORM	0.080 0.100 ACIÓN (mm)	0.120 0.14

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR	
Juffer Hogely	- Bury .	(Dyl	
NOMBRE J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Tor	
ECHA:	FECHA:	FECHA:	

	LABOR	ATORIO DE SUELO	The second secon	A DEL NORTE CAJAMARCA					
2.00	PROTOCOLO								
N ENSAYO:			DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:					
PRIVADA DEL NORTE	TESIS:	25925	"PROPIEDADES FÍSICO Y MECÂNICAS DE BLOQUES DE TIERRA COMPRIMIDA CO ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018						
CANTERA	CANTERA "Flores"		TIPO DE MATERIAL:	Arena – Arcilla - Patrón					
UBICACIÓN: CAJAMAR		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo					
FECULA DE ENGAVO, 20141/2012		22/44/2049	RESPONSABLE:	J. Ramiro, Rojas Gálvez					
FECHA DE ENSAYO: 22/11/2018			REVISADO POR:	Ing. Manuel Urteaga Toro					

$$f_b' = \frac{3*P*l}{2*\alpha*c^2} \rightarrow f_b' : Esfuerzo \ de \ Rotura$$

CÓDIO DEL ESPECÍI		Del 1	gitud Fizón (cm)	De la Soga "b" (cm	De la Del e		Longitud entre Ejes de Apoyos "I" (cm)	Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)
Patrón -	VI	29	.60	15.25		10.13	17.43	422	7.05
Carga (Kg)		ierzo (cm²)	ΔL (mm)	ΔL/L (mm)			GRÁFICO RESISTEI BTC - PA		N
100	1.	67	0.10	0.01		8.0		1110000000	-
200	-	34	0.43	0.04		92 3			
300		01	0.52	0.05		7.0			1
400		.68	0.74	0.07		7.0	= -279.07x2 + 98.622x	+ 0.5783	100
422	7.	.05	0.98	0.09			R3 = 0.9457		
						6.0			-
	160				6.80	5.0		6	
				-	ESELIERZO (kolom²)	5		2	
				_	2	5 40			
				-	27	4.0	30 1		
				-	#	3	1 1	HEIR	
				-	O.	3.0			
						WI EE	1000		
		100				2.0	4		
						9			
-			-			1.0			2000 000
						1.0	Fatiens	Defendants D	
							ESTUERZO VS	Deformación - P	ation VI
						0.0		2522	
						0.000	0.020 0.040		0.080 0.1
							DEFORM	ACIÓN (mm)	

DBSERVACIONES:

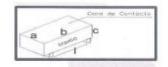
RESPONSABLE DEL ENSAYO

COORDINADOR DE LABORATORIO

ASESOR

NOMBRE: J. Rámíro, Rojas Gálvez

NOMBRE: Ing. Kevin Robertson Tello Casas


NOMBRE: Ing. Manuel Urteaga Toro
FECHA:

FECHA:

FECHA:

	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA									
- 5	PROTOCOLO										
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:							
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:							
PRIVADA DEL NORTE	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA CO ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018									
CANTERA	CANTERA "FI		TIPO DE MATERIAL:	Arena - Arcilla - 2% E.A (RC-250							
UBICACIÓN: (CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo							
EFOLIA DE ENOUVO ANUADAVA		RESPONSABLE:	J. Ramiro, Rojas Gálvez								
FECHA DE ENSAYO: 22/11/2018			REVISADO POR:	Ing. Manuel Urteaga Toro							

$$f_b' = \frac{3 * P * l}{2 * a * c^2} \rightarrow f_b'$$
: Esfuerzo de Rotura

CÓDIG DEL ESPECÍI	MEN	Del 1	gitud Fizón (cm)	Longitudo De la Soga "b" (cm		Longitud Longitud entre Ejes de Grueso Apoyos "I" "c" (cm) (cm)		Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)	
E.A 2%	-1	29	.93	15.17		10.51	17.44	547	8.53	
(Kg) 100 200	(Kg/	rerzo (cm²) 56	ΔL (mm) 0.52 0.60	ΔL/L (mm) 0.049 0.057		10.0		STENCIA A LA FL SIÓN ASFÁLTICA		
300		68	0.63	0.060		10.0				
400		24	0.68	0.065			y = -3030.2x ² + 655.	75x - 23.744		
500		80	0.74	0.070		W 1997	R ² = 0.97	17	cò	
547		53	0.81	0.077		8.0	-			
					ESFUERZO (kg/cm²)	6.0				
					ESFUE	4.0				
						2.0				
-				_		0.0 0.040 0.	045 0.050 0.055	0.060 0.065 0.0 0.060 (mm)	Marcollo No.	

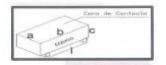
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
La Jaly	Comy	August
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
* "	PROTOCOLO									
N Universidad	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:						
	NORMA:	MTC E115 / AST	M D1557 / NTP 339,141	RAC-LC-UPNC:						
PRIVADA DEL NORTE	TESIS:		ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC							
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 2% E.A (RC-250						
UBICACIÓN: CAJ		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo						
	FECHA DE ENSAYO: 22/11/2018									
EEC	HA DE ENGAVO	22/11/2010	RESPONSABLE:	J. Ramiro, Rojas Gálvez						

$$f_b' = \frac{3 * P * l}{2 * a * c^2} \rightarrow f_b'$$
: Esfuerzo de Rotura

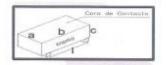
CÓDIGO DEL ESPECÍMEN E.A 2% - II		Del	gitud Fizón (cm)	izón De la cm) Soga "b" (cm)		Longitu Del Gruese "c" (cn	entre Éjes de so Apoyos "l" m) (cm)		Carga Máxima Soportada "P" (kg)	de Rotura (kg/cm²)	
		29.46				15.50		10.21		1	7.44
Carga (Kg)	(Kg	erzo /cm²)	ΔL (mm)	ΔL/L (mm)				GR/ BTC	FICO RESISTI	ENCIA A LA FLEXI ON ASFÁLTICA 2%	ÓN 6 - II
100		.62	0.29	0.028		10.0					5.1003
200 300	_	.24	0.33	0.031		Marie L		- 222			
400	-	47	0.40	0.038				y = -3082	$R^2 = 0.9822$	x - 7,8593	
498	-	.06	0.76	0.032		8.0			n - 0,3622		
					ESFUERZO (ka/cm²)	6.0					
					ESFUERZO	4.0			-/		
						2.0			1		
						0.0		• - Es	sfuerzo vs De	formación - Emu	dsión 2%

0.000


0.020

DEFORMACIÓN (mm)

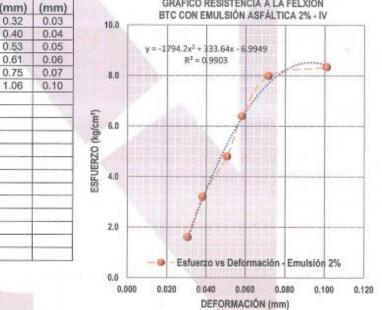
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
La Ry	Lung	(Payel		
NOMBRE/ (J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Tore		
ECHA:	FECHA:	FECHA:		


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo \ de \ Rotura$$

CÓDIG DEL ESPECÍI		Del 1	gitud Fizón (cm)	Longitud De la Soga "b" (cm)	Del Grueso "c" (cm)		Grueso		Longitud entre Ejes de Apoyos "I" (cm)	Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 2%	- 111	29	.73	15.37	11.07			504	7.01		
Carga (Kg)	(Kg) (Kg/cm ²) (mm) (mm)				-		GRÁFICO RESIS	TENCIA A LA FLE	XIÓN % - III		
100		39	0.18	0.017	8.0						
200		78	0.22	0.021							
300		17	0.33	0.031			y = -1078.3x ² + 184.21	x - 0.9536			
400		56	0.58	0.055			R2 = 0.9655	1000			
504	7.	.01	0.86	0.082	6.0						
					ESFUERZO (kg/cm²)						
					2.0	79	•				
					0.0	ř.	0.020 0.040	0.060 0.060 (MACIÓN (mm)	ulsión 2% 0.080 0.		

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
J. J. J. H	Rung.	A Dest		
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro		
FECHA:	FECHA:	FECHA:		

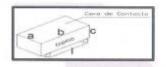
	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
- 6			PROTOCOLO							
N	ENSAYO:	ROTURA DE A ENSAYO DE TR	DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD PRIVADA DEL NORTE	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:						
	TESIS:		ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018						
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 2% E.A (RC-250)						
UBICACIÓN:	JBICACIÓN:		COLOR DE MATERIAL:	Marrón - Plomo						
FECUA DE ENCAVO, COMADOMO		RESPONSABLE:	J. Ramiro, Rojas Gálvez							
FECHA DE ENSAYO: 22/11/2018			REVISADO POR:	Ing. Manuel Urteaga Toro						



8.33

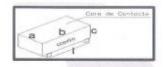
522

$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$


CÓDIO DEL ESPECÍI		Del 1	gitud Fizón (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Longitud entre Ejes de Apoyos "I" (cm)	Carga Máxima Soportada "P" (kg)	Rotura (kg/cm²)	
E.A 2%	- IV	29	.74	15.75	10.20	17.43	522	8.33	
Carga (Kg)			ΔL/L (mm)		GRÁFICO RESIST	A CONTRACTOR OF THE PARTY OF TH			
100	1.	60	0.32	0.03	10.0	BTC CON EMULSIC	IN ASFALTICA 2	% - IV	
200	3.	19	0.40	0.04	10000		18888		
300	4.	79	0.53	0.05	V	= -1794.2x ² + 333.64x	- 6.9949	146	
400	6.	38	0.61	0.06		R ² = 0.9903		7750	
500	7	98	0.75	0.07	0.0	50005 507 (00000)			

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Jel 3 y	Bung.	Day!
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

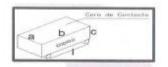
1	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA		
2 21			PROTOCOLO			
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:		
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:		
PRIVADA DEL NORTE	TESIS:		ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON CA", CAJAMARCA 2018		
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 2% E.A (RC-250)		
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo		
FECHA DE ENSAYO: 22/11/2018			RESPONSABLE:	J. Ramiro, Rojas Gálvez		
			REVISADO POR:	Ing. Manuel Urteaga Toro		


$$f_b' = \frac{3 * P * l}{2 * a * c^2} \rightarrow f_b'$$
: Esfuerzo de Rotura

E.A 2% - V		(cm)	De la Soga "b" (cm)	Grues	Longitud Longitud Del entre Ejes de Grueso Apoyos "I" (cm) (cm)		Máxima Soportac "P" (kg	da	de Rotura (kg/cm²)		
^ -	/ 29	.78	15.19	10.24		17.43		531		8.72	
	Kg/cm²)	ΔL (mm) 0.38	ΔL/L (mm) 0.036	A				NCIA A LA FI N ASFÁLTICA			
200	3.29	0.41	0.039	10.0		_		1		_	
300	4.93	0.50	0.048					11111111		100	
400	6.57	0.62	0.059	9.0		/ = -2056.6x ² -	383.76	8 969	******	******	
500	8.21	0.83	0.079				0.9823	1			
531	8.72	1.11	0.106	8.0	IF			1			
				7.0		100		1		-	
				g/cm²	asii		17	1	_	-	
				X) 5.0			0		-	-	
				ESFUERZO (kg/cm²)			4		77.77	-	
				3.0		9				-	
				2.0		1	eesw			-	
				1.0		Persi				-	
				0.0	-	Esfuerzi	vs Def	ormación - El	mulsi	ón 2%	

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
A Stanting of	Ewy	Pok		
NOMBRE J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NÓMBRE: Ing. Manuel Urteaga Torr		
FECHA:	FECHA:	FECHA:		

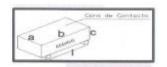
	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA							
2 4	PROTOCOLO								
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD PRIVADA DEL NORTE	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:					
	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMI ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018							
CANTERA "Flores"		TIPO DE MATERIAL:	Arena - Arcilla - 2% E.A (RC-250)						
UBICACIÓN: CAJAMARCA			COLOR DE MATERIAL:	Marrón - Plomo					
FECHA DE ENSAYO: 22/11/2018			RESPONSABLE:	J. Ramiro, Rojas Gálvez					
			REVISADO POR:	Ing. Manuel Urteaga Toro					


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b'$$
: Esfuerzo de Rotura

CÓDIO DEL ESPECÍI		Del	gitud l'izón (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)		Longitud entre Ejes de Apoyos "I" (cm)	Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 2%	- VI	29	.72	15.42	10.7	1	17.42	528	7,80
Carga (Kg)	(Kg	ierzo (cm²)	ΔL (mm)	ΔL/L (mm)				ENCIA A LA FLEXI ÓN ASFÁLTICA 2%	
100		48	0.29	0.03	9.0		1 1		
200		96	0.44	0.04	5550				
300		43	0.53	0.05	8.0				
400	_	91	0.64	0.06		Y	= -352.41x ² + 163.75		1
500	-	39	0.77	0.07	7.0		$R^2 = 0.9914$	4	
528	7.	80	0.85	0.08				1/	
					_ 6.0			4	
				-	(kg/cm²)		A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	
					\$ 5.0	-110		- p*	-
							THE STATE	6	
		700			ESFUERZO	-		1	
					F			1200	
					ш 3.0				
					4000		1		
					2.0	75	1		
							0		
					1.0				
							Total .	D.F	F
					0.0		Estuerzo	vs Deformación -	Emulsion
					0.00	in	0.020 0.040	0.060	0.080 0.
					0.00			MACIÓN (mm)	0.000

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
(Rolly)	Rim.	(Daniel		
NOMBRE: J. Rámiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Tore		
ECHA:	FECHA:	FECHA:		

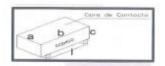
	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVAD	A DEL NORTE CAJAMARCA						
- 4	PROTOCOLO									
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:						
PRIVADA DEL NORTE	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:						
	TESIS:		ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018						
CANTERA	CANTERA "Flores"		TIPO DE MATERIAL:	Arena - Arcilla - 3% E.A (RC-250						
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo						
EEC	FEGUA DE ENGANO, CONTROLO		RESPONSABLE:	J. Ramiro, Rojas Gálvez						
FECHA DE ENSAYO: 22/11/2018		REVISADO POR:	Ing. Manuel Urteaga Toro							


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$

	Soga "b" (cm)	Grueso "c" (cm)	entre Ejes de Apoyos "I" (cm)	Máxima Soportada "P" (kg)	de Rotura (kg/cm²)
29.70	15.17	10.21	17.44	543	8.97
fuerzo ΔL g/cm²) (mm) 1.65 0.20	ΔL/L (mm) 0.020		GRÁFICO RESISTI BTC CON EMULSI	ENCIA A LA FLE) ÓN ASFÁLTICA 3	GÓN % - I
3.31 0.24	0.023	10.0			
4.96 0.30 6.61 0.40	0.029	9.0	y.u3	613.7x2 ± 465.92x	-5 8309
8.26 0.51	0.050			R ² = 0.9945	1
8.97 0.58	0.057	8.0	++		2
		7.0 6.0 6.0 5.0 5.0 4.0 2.0 2.0 1.0	Series of Division In the Control of	Samuella Enu	Initim 294
			3.0	3.0 2.0 1.0 0.0 —————————————————————————————————	3.0 2.0 1.0

2 10 1
110 47
evin Robertson Tello Casas NOMBRE: Ing. Manuel Urteaga Toro
K

	LABOR	LABORATORIO DE SUELOS - UNIVERSIDAD PRIVADA DEL NORTE CAJAMARCA								
~	PROTOCOLO									
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD PRIVADA DEL NORTE	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:						
	TESIS:	The state of the s	ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018						
CANTERA "Flores"		TIPO DE MATERIAL:	Arena - Arcilla - 3% E.A (RC-250							
UBICACIÓN: CAJAMARCA			COLOR DE MATERIAL:	Marrón - Plomo						
FECULA DE ENICAVO, 2014 1904 0			RESPONSABLE:	J. Ramiro, Rojas Gálvez						
FECHA DE ENSAYO: 22/11/2018		REVISADO POR:	Ing. Manuel Urteaga Toro							


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo \ de \ Rotura$$

CÓDIG DEL SPECÍN		Del 1	gitud Fizón (cm)	Longitu De la Soga "b" (cm	D Gru		Longitud Del Grueso "c" (cm)			s de	Car Máx Sopor "P"	ima rtada	R	fuerzo de otura (/cm²)
E.A 3%	- 11	29	.61	15.34	9	10.0		17	7.43		57			9.79
Carga (Kg)		erzo cm²)	ΔL (mm)	ΔL/L (mm)	700			GRÁFIC BTC CO		ESISTEN				
100	1.	70	0.23	0.02		11.0		51000	-	HOLOIOI	HO! HE	110/10/	4.50	
200	3.	40	0.31	0.03		-								
300	5.	10	0.45	0.04		10.0		= -902.23	1 _v 2 =	213 51x	- 2 4852	-	0	
400	6.	80	0.58	0.06		2083				0.9976	2.4032			
500	8.	50	0.79	0.08		9.0		5.			THE S	100	+	-
576	9.	79	0.99	0.10		8.0					1			
						0.0	Mar.				1			
					Part S	7.0		10000	Dr.	- 0	-	-	+	
					Ibale	6.0	-dif			1			_	
					Control (balens)	5.0				6				
					1	5 5,0	199			1	122 20			
				1	20	3 4.0			1		-	-	+	
- 9						3.0		9						
	300					2355		1						dines on
- 3						2.0		0					+	
						1.0						-		
						0.0	-	- US	uerz	to vs De	ormacio	n - Emu	ision	3%

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
Suggest,	Cenny.	Dyaf		
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro		
ECHA:	FECHA:	FECHA:		

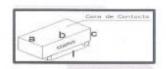
1	LABOR	ATORIO DE SUELO		A DEL NORTE CAJAMARCA						
3.7	PROTOCOLO									
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339,141	RAC-LC-UPNC: DQUES DE TIERRA COMPRIMIDA CON ICA", CAJAMARCA 2018						
PRIVADA DEL NORTE	TESIS:		ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC							
CANTERA "Flores"		TIPO DE MATERIAL:	Arena - Arcilla - 3% E.A (RC-250)							
UBICACIÓN: CAJAMARCA			COLOR DE MATERIAL:	Marrón - Plomo						
FECHA DE ENSAYO: 22/11/2018			RESPONSABLE:	J. Ramiro, Rojas Gálvez						
			REVISADO POR:	Ing. Manuel Urteaga Toro						

$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$

DEL	Longitud Del Tizón "a" (cm)	Longitud De la Soga "b" (cm)	Longitud Del Grueso "c" (cm)	Longitud entre Ejes de Apoyos "!" (cm)	Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3% - III	29.65	15.30	10.57	17.43	596	9.11
Carga Esfue (Kg) (Kg/c	:m ²) (mm)	THE RESIDENCE OF THE PARTY OF T		GRÁFICO RESIST BTC CON EMULSI	ENCIA A LA FLEX ÓN ASFÁLTICA 3º	IIÓN % - III
100 1.5 200 3.0	-	0.02	11.0			
300 4.5	THE RESERVE OF THE PERSON NAMED IN	0.03				
400 6.1		0.04	10.0	y = 148.43x - 1.173	8	
500 7.6		0.06	9.0	R ² = 0.9631		0
596 9.1	Market Street,	0.07				11
			8.0		0	-
-			1 7.0		1	
			7.0 (kg/cm²)		ø	
			ESFUERZO			
		-	1.0 LSS 4.0		4	
			3.0	-		
			2.0	17		
				0		
			1.0	Esfuerzo vs I	Deformación - Emu	ulsión 3%
			0.0	The second second	and the same of the same of	22/14/14/9/21

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
July 4	Rung	Part
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Ton
ECHA:	FECHA:	FECHA:

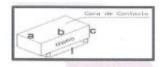
	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA							
- 4	8	PROTOCOLO									
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:							
UNIVERSIDAD	NORMA:	MTC E115 / AST	RAC-LC-UPNC:								
DEL NORTE	TESIS:		ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018							
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 3% E.A (RC-250							
UBICACIÓN: CAJAMARCA			COLOR DE MATERIAL:	Marrón - Plomo							
EEC	HA DE ENSAYO	N- 22/44/2040	RESPONSABLE:	J. Ramiro, Rojas Gálvez							
PEC	THE ENSATE	1. 22111/2010	REVISADO POR:	Ing. Manuel Urteaga Toro							


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b'$$
: Esfuerzo de Rotura

CÓDIO DEL ESPECÍI		Del 1	gitud Γizón (cm)	Longitue De la Soga "b" (cm		ongitu Del Grueso "c" (cm	, 6	Apoy	jes de	Má: Sopo	rga xima ortada (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3%	- IV	29	.52	15.27		9.99		17.	44	5	50	9.44
Carga (Kg) 100	(Kg	cm²)	ΔL (mm) 0.22	ΔL/L (mm) 0.02		10.0			RESISTEN MULSIÓN			
200 300		15	0.28	0.03		10.0				THE	11	
400	_	87	0.58	0.04		9.0		-		2010	-	-
500	-	58	0.69	0.07			y = -:		+ 239.7x -	2,6096	9	-
550	_	44	0.82	0.08		8.0		R*=	0.9902		1	
					ESFUERZO (kg/cm²)	7.0 - 6.0 - 5.0 - 4.0 - 3.0 - 2.0 - 1.0		e Estu	erzo vs De	eformaci	ón - Emu	Isión 3%
						0.000		0.020	0.040 DEFORM	0.0	100 Sec. 16.	0.080 0.1

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Jan Jany	Cewy.	And
NOMBRE J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

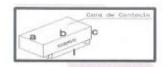
	LABOR	ATORIO DE SUELO		A DEL NORTE CAJAMARCA	
20			PROTOCOLO		
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:	
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:	
PRIVADA DEL NORTE	TESIS:		ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018	
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 3% E.A (RC-250)	
JBICACIÓN: CAJAMARCA			COLOR DE MATERIAL:	Marrón - Plomo	
CEC	HA DE ENSAYO	20/44/2048	RESPONSABLE:	J. Ramiro, Rojas Gálvez	
FEC	LIM DE ENSATO	22/11/2010	REVISADO POR:	Ing. Manuel Urteaga Toro	


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b'$$
: Esfuerzo de Rotura

CODIC DEL SPECÍI	MEN	Del 1	gitud Fizón (cm)	Longitu De la Soga "b" (cm		Longitud Del Grueso "c" (cm)	ent	ongitud re Ejes de poyos "I" (cm)	Má Sop	arga ixima ortada " (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3%	- V	29	.67	15.36		10.01		17.43		568	9.66
Carga (Kg)	(Kg	erzo cm²)	ΔL (mm)	ΔL/L (mm)				ÁFICO RESISTE			
100		70	0.20	0.02			010	OUT EMOLUIO	THE PAUL A	ALTION OF	
200		40	0.31	0.03		11.0			100		
300	_	10	0.42	0.04		10.0					3.
400	_	80	0.55	0.05		10.0	y = -	1043.5x2 + 232.5		84	0
500	-	50	0.67	0.07		9.0		R2 = 0.9964	201000	1	
568	9	66	0.89	0.09		633				0	
				7500		8.0	-		-	/	-
	502				(¿wi	7.0	-6		6		
					(kg/cm²)	6.0			1		
					ERZO	5.0		ø			
					ESFUERZO	4.0	22	1			
					-	3.0		9			
						2.0	0	<i>[</i>			
						1.0		Esfuerzo vs De		in Feed	olé = 20/
						0.0		ESTUEIZO VS DE	rormac	on - Emul	sion 3%
						0.000	0.0	20 0.040 DEFORM	700		0.080 0.1

OBSERVACIONES: RESPONSABLE DEL ENSAYO COORDINADOR DE LABORATORIO ASESOR NOMBRE: (J. Rámiro, Rojas Gálvez NOMBRE: Ing. Kevin Robertson Tello Casas NOMBRE: Ing. Manuel Urteaga Toro FECHA: FECHA:

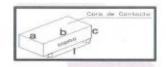
	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA							
- 4		PROTOCOLO									
N	ENSAYO:		ROTURA DE ADOBE COMPACTADO ENSAYO DE TRACCIÓN POR FLEXIÓN CÓDIGO DEL DO								
UNIVERSIDAD	NORMA:	MTC E115 / AST	MTC E115 / ASTM D1557 / NTP 339.141 RAC-LC-UPNC:								
PRIVADA DEL NORTE	TESIS:	Participation for the participation of Account Account for	ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018							
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 3% E.A (RC-250							
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo							
FEC	HA DE ENSAYO	. 22/44/2040	RESPONSABLE:	J. Ramiro, Rojas Gálvez							
FEC	HA DE ENSATO	1. 22/11/2010	REVISADO POR:	Ing. Manuel Urteaga Toro							


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$

CÓDIG DEL ESPECÍN		Longitud Del Tizón "a" (cm)		Longitud De la Soga "b" (cm)	Del Grueso		Del Grueso		entre E	gitud Ejes de os "I" :m)	Sor	arga áxima oortada ''' (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 3% -	VI	29	.64	15.35		10.96	17	.44		611	8.67		
Carga (Kg)	(Kg/	erzo (cm²)	ΔL (mm) 0.33	ΔL/L (mm) 0.03	41					LA FLEXIÓ TICA 3% -			
200		84	0.44	0.04	11	0.0			1535				
300 400		26 67	0.57	0.06	9	9.0			4000		- 2		
500		09	0.90	0.07			y = -603.92			858			
611	-	67	1.22	0.09	1	B.0		$R^2 = 0.9999$	9	- 3	2		
			1 - 60,60	V. 14						2			
						7.0				/			
					g/cm²	8.0			6				
					RZO ()	5.0	90000		4				
					ESFUERZO (kg/cm²)	4.0		9			-		
					-	3.0		6			-		
		2550			2	2.0	1						
					139	1.0	1300		2000				
						-	Esfi	erzo vs D	eforma	ición - Emu	Isión 3%		
					(0.000	0.020 0.0	0.060 DEFORM			0.120 0.		

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Jung Process Jan M	Eury.	(Ruget
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Torr
FECHA:	FECHA:	FECHA:

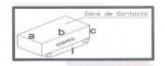
	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA							
* **		PROTOCOLO									
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:							
	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:							
PRIVADA DEL NORTE	TESIS:		ÍSICO Y MECÁNICAS DE BLOC CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018							
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250							
UBICACIÓN: CA.		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo							
FECHA DE ENSAYO: 22/11/2018			RESPONSABLE:	J. Ramiro, Rojas Gálvez							
			REVISADO POR:	Ing. Manuel Urteaga Toro							


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$

ongitud C re Ejes de Ma ooyos "!" Sop (cm) "P	l eso	Long De Grue "c" (e	Longitud De la Soga "b" (cm)	itud izón (cm)			CÓDIG DEL ESPECÍN
17.44	14	10.4	15.02	46	29.	-1	E.A 4%
ÁFICO RESISTENCIA CON EMULSIÓN AS			ΔL/L (mm)	ΔL (mm)	erzo cm²)		Carga (Kg)
CON EMULSION AS			0.003	0.03	20	3.	200
		11.0	0.020	0.21	39	6.	400
		10.0	0.044	0.46	59	9.	600
		10.0	0.061	0.64	84	9.	616
		9.0			-		122-00-
E SAN		8.0					
y = -2070		SFUERZO (kg/cm²)					
	1	SFUERZ					
	6	3.0					
		2.0			73.11		
- Esfuerzo vs Deform	-	1.0				MIS.	
- Esfuerzo vs Deform 0.020 0.030 0.0 DEFORMACIÓN		2.0					

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Sandy y	Piny	Post
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

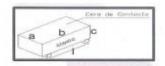
	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA					
* 4			PROTOCOLO						
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E115 / AST	RAC-LC-UPNC:						
PRIVADA DEL NORTE	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIN ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018							
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250					
UBICACIÓN:	2	CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo					
EEC	HA DE ENSAYO	- 22/44/2048	RESPONSABLE:	J. Ramiro, Rojas Gálvez					
FEC	HA DE ENSATO	. 22/11/2010	REVISADO POR:	Ing. Manuel Urteaga Toro					


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo \ de \ Rotura$$

CÓDIO DEL ESPECÍI	The same of	Longitud Del Tizón "a" (cm)		izón De la		Longitud Del Grueso "c" (cm)		Longitud entre Ejes de Apoyos "!" (cm)		Máxima Soportada "P" (kg)		uerzo de tura /cm²)
E.A 4%	-11	29	.31	15.44 9.60		17	17.43		579		0.63	
Carga (Kg)	(Kg	ierzo (cm²)	ΔL (mm)	ΔL/L (mm)				ICO RESIS				,
200		.08	0.01	3.67	40.0		1711.074.07	Ca 1.50.500 100.000		ala militari	308 12	
400 550	-	.29 .45	0.03	7.34	12.0				11111			
579		61	0.04	10.63	11.0		-		-	-	-	
515	0.	.01	0.00	10.03	10.0				JEEL	0-		
	17.			1			2		1			
					9.0	-			1		1000	
				- 8.0		1000	1	1	40			
	771			E.		49545	0					
	1				5 7.0		10000	1	y = -204	2.2x2 + 276	.48x+	1.5829
					2 6.0	-		/	-1868	R2 = 0 95	902	
					ESFUERZO		1					
-				-	F 2.0		1					
					ш 4.0	-	8	+				
		10.00			3.0						- 22 27	
					233							
	To be		d.		2.0		O . E.	fuerzo vs [aform	nelán Em	ulelán	207
					1.0		- ES	HUSTZU VS L	ALOU III	acion - em	uision	7/0
			· C.				1					
					0.0	0 4	0.010 0	.020 0.03	0 01	0.050	0.0	60 0.0
					0.00			DEFORM	10 0 28		0.0	00 0.1

DBSERVACIONES: RESPONSABLE DEL ENSAYO COORDINADOR DE LABORATORIO ASESOR NOMBRE: J. Ramiro, Rojas Gálvez NOMBRE: Ing. Kevin Robertson Tello Casas NOMBRE: Ing. Manuel Urteaga Toro FECHA: FECHA: FECHA:

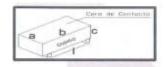
	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA			
- 4			PROTOCOLO				
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO: RAC-LC-UPNC:			
UNIVERSIDAD	NORMA:	MTC E115 / AST	RAC-EC-OFNC,				
DEL NORTE	TESIS:		QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018				
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250			
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo			
	=	00/44/0040	RESPONSABLE:	J. Ramiro, Rojas Gálvez			
FEC	HA DE ENSAYO); 22/11/2018	REVISADO POR:	Ing. Manuel Urteaga Toro			


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$

CÓDIO DEL ESPECÍI		Del 1	ongitud Longitud Longitud Longitud el Tizón De la Del entre Ejes de a" (cm) Soga Grueso Apoyos "l" "b" (cm) "c" (cm) (cm)		Ejes de os "l"	So	arga áxima oortada o" (kg)	Esfuerzo de Rotura (kg/cm²				
E.A 4%	- 111	29	.46	14.60	10.6	0	17	.44		614	9.80	
Carga (Kg) 200	(Kg	erzo /cm²)	ΔL (mm) 0.05	ΔL/L (mm) 0.005						A LA FLE SFÁLTICA 4		
400	6	.38	0.17	0.016	12.0		1					
600	9	.58	0.35	0.034	11.0	h-	-		400			
614	9	.80	0.66	0.063						Ghal +++++	*******	
					10.0	2535	1		0-		0	
					9.0		-	-				
		(4)			700			1				
			€ 8.0		100000	1	71101					
					(kg/cm²)	-20		V-	-3645	3x2 + 361 5	5x + 1.5179	
					0. 6.0		9		100	$R^2 = 0.999$		
					ESFUERZO		/					
		-1-			5.0	-	·	CHARLES OF	He			
					SS 4.0		1					
					200.00	1						
					3.0	-0	-		****			
					2.0		- CONTRACT					
			-		2.20		1000					
					1.0							
					0.0		- 0 - Est	uerzo vs D	eform	ación - Em	ulsión 4%	
					0.0	00	0.010 0.	020 0.03 DEFORI		040 0.05 N (mm)	0.060	

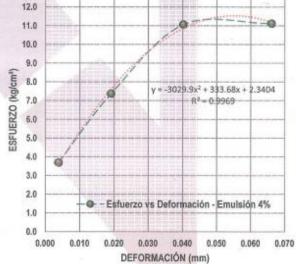
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Sent of the sent o	Rung	And
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVADA	A DEL NORTE CAJAMARCA						
- 4			PROTOCOLO							
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:						
UNIVERSIDAD	NORMA:	MTC E115 / AST	AC-LC-UPNC:							
DEL NORTE	TESIS:		"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA (ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018							
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250)						
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo						
EEC	HA DE ENSAYO	- 22/44/2048	RESPONSABLE:	J. Ramiro, Rojas Gálvez						
FEC	HA DE ENSATO	1. 22/11/2010	REVISADO POR:	Ing. Manuel Urteaga Toro						


$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$

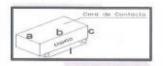
CÓDIO DEL ESPECÍI		Del 1	gitud Fizón (cm)	Longitud De la Soga "b" (cm)	De Grue	ongitud Longitud Del entre Ejes de Grueso Apoyos "!" 'c" (cm) (cm)		Sop	arga áxima oortada '" (kg)	Esfuerzo de Rotura (kg/cm²)			
E.A 4%	- IV	29	.69	14.90	10.5	0	17	.44	1	622	9.91		
Carga (Kg)	(Kg	rerzo (cm²)	ΔL (mm)	ΔL/L (mm)			GRÁFICO RESISTENCIA A LA FLEXIÓN BTC CON EMULSIÓN ASFÁLTICA 4% - IV						
200	-	19	0.09	0.01	40.0								
400	6.	.37	0.19	0.02	12.0				H	11 - 11			
600	9.	.56	0.33	0.03	11.0	ili.	-	-					
622	9.	.91	0.62	0.06	10.0		-	6	·				
		m			9.0		-	1					
		1	(cm) 7.0			/ Y.	-5157.	2x ² + 484.0 R ² = 0.9996	9x - 0.6448				
	La				ESFUERZO (kg/cm²)								
					FUER:		1						
					S 4.0		1						
		0.5			3.0						-		
				1.0									
-		TOTAL .			0.0		Esf	uerzo vs D	eforma	ción - Emu	ulsión 4%		
					0.0	00	0.010 0.	020 0.03 DEFORM		040 0.050 N (mm)	0.060 0.0		

OBSERVACIONES: RESPONSABLE DEL ENSAYO COORDINADOR DE LABORATORIO ASESOR NOMBRE: J. Ramíro, Rojas Gálvez NOMBRE: Ing. Kevin Robertson Tello Casas NOMBRE: Ing. Manuel Urteaga Toro FECHA: FECHA: FECHA:



7	LABOR	ATORIO DE SUELO	The state of the s	A DEL NORTE CAJAMARCA			
* **			PROTOCOLO				
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:			
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:			
PRIVADA DEL NORTE	TESIS;		QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018				
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250)			
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo			
EEC	HA DE ENSAYO	20/44/2049	RESPONSABLE:	J. Ramiro, Rojas Gálvez			
FEC	HA DE ENSATO	. 22/11/2018	REVISADO POR:	Ing. Manuel Urteaga Toro			

$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$


CÓDIO DEL ESPECÍI		Del	gitud l'izón (cm)	De la Soga "b" (cm)	De Grue	l so	entre Ejes de o Apoyos "I"		Carga Máxima Soportada "P" (kg)	Esfuerzo de Rotura (kg/cm²)
E.A 4%	- V	29	.59	15.20	9.6	7	17.44		603	11.11
Carga (Kg)	110000000000000000000000000000000000000	erzo (cm²)	ΔL (mm)	ΔL/L (mm)					ENCIA A LA FLE	
200	3.	.68	0.04	0.004			BIC CON EM	ULSI	ÓN ASFÁLTICA	476 - V
400	7.	.37	0.20	0.019	13.0			-		_
600	- 11	.05	0.42	0.040	12.0					-
603	- 11	.11	0.69	0.066	12.0					
					11.0			-	0	
					10.0			1		-
					9.0			1		
							1			
			3		(kg/cm³)	76	1	У	= -3029.9x ² + 333.	
					≥ 7.0		1		R2 = 0.99	69

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR		
South House	Bung .	A Dogt		
NOMBRE: J. Ramíro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro		
FECHA:	FECHA:	FECHA:		

	LABOR	ATORIO DE SUELO		A DEL NORTE CAJAMARCA					
2 22			PROTOCOLO						
N	ENSAYO:		DOBE COMPACTADO ACCIÓN POR FLEXIÓN	CÓDIGO DEL DOCUMENTO:					
UNIVERSIDAD	NORMA:	MTC E115 / AST	M D1557 / NTP 339.141	RAC-LC-UPNC:					
PRIVADA DEL NORTE	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIM ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018							
CANTERA		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - 4% E.A (RC-250					
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo					
			RESPONSABLE:	J. Ramiro, Rojas Gálvez					
EEC	HA DE ENSAYO	22/11/2018	RESPUNSABLE.	J. Kamiro, Kojas Galvez					

$$f_b' = \frac{3*P*l}{2*a*c^2} \rightarrow f_b' : Esfuerzo de Rotura$$

CÓDIGO DEL ESPECÍMEN		Longitud Del Tizón "a" (cm)		lizón De la		itud el eso cm)	ent	ongitud tre Ejes de poyos "I" (cm)	Sop	arga axima ortada " (kg)	Esfuerzo de Rotura (kg/cm²)	
E.A 4%	- VI	29	.75	15.21	10.0			17.44		631	10.70	
Carga (Kg)								RÁFICO RES				
200	3.	39	0.07	0.01			D	I C CON EMOI	LOIUN A	SPALIICA	476 - VI	
400	6.	78	0.26	0.02	12.0					1 .		
600	10	.17	0.51	0.05	11.0	-			- 10 11			
631	10	.70	0.83	0.08		HE.			0	+	- 0	
					10.0				1		TO ME TO SERVICE	
				- 1000	9.0				V = -185	5 2 2 4 262	.18x + 1.6225	
					= 8.0	-		1	1 - 203	$R^2 = 0.99$		
					E	-		1		** = 100000		
				+	5 7.0		10 15	0	- 68	-		
					9 6.0			/	- 1000	-		
					ERZ		1					
	100				五 5.0		7					
	179				ш 4.0	1				-		
					3.0	0						
		56/4					26 15					
					2.0	-		F-6	Defer	- II-	and the AM	
					1.0		-0	- Esfuerzo vs	Detorm	acion - Em	uision 4%	
								YERE E				
					0.0	000	0.0	20 0.040		000	0.000	
					0.0	Jud:	0.0	- 1000000	RMACIÓN	.060 L(mm)	0.080 0.	

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO ASESOR	
feld.4	Enny.	(Aust
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

UNIVERSIDAD PRIVADA DEL NORTE	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVAD PROTOCOLO	A DEL NORTE CAJAMARCA	
	ENSAYO:	ENSAYO DE GRADO DE ABSORCIÓN		CÓDIGO DEL DOCUMENTO:	
	NORMA:	A	STM C-67	EA-LS-UPNC:	
	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018			
CANTERA:		"Flores"	TIPO DE MATERIAL:	Arena - Arcilla - Patrón	
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo	
FECHA DE ENSAYO:		20/44/2040	RESPONSABLE:	J. Ramiro, Rojas Gálvez	
		22/11/2018	REVISADO POR:	Ing. Manuel Urteaga Toro	

Temperatura de Secado

20 °C / 110 °C /Ambiente

ENSAYO DE ABSORCIÓN					
MUESTRA	CARACTERÍSTICA	Peso de la Unidad Seca (kg) P1	Peso de la Unidad Saturada (gr) P2	Porcentaje de Absorción %ABS	
M1	Secado al Ambiente	8.854		<u> </u>	
M2	Secado al Ambiente	8.609	- 4		
M3	Secado al Ambiente	8.757		1	
M4	Secado al Ambiente	8.609	- 1		
M5	Secado al Ambiente	8.651	P	-	
M6	Secado al Ambiente		- A-		

$$(\%ABS) = \frac{P2 - P1}{P1} * 100$$

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR	
PO PH	2	1001	
Just of Jo	Cyny.	All of	
NOMBRE J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro	
ECHA	FECHA:	FECHA:	

UNIVERSIDAD PRIVADA	EADON	ATORIO DE SOLLO	PROTOCOLO	A DEL NORTE CAJAMARCA
	ENSAYO:			CÓDIGO DEL DOCUMENTO:
	NORMA:	A:	STM C-67	EA-LS-UPNC:
	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA CO ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018		
CANTERA:		"Flores"	TIPO DE MATERIAL:	Arena – Arcilla – Con 2% de Emulsión Asfáltica.
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo
FECHA DE ENSAYO:		22/11/2018	RESPONSABLE:	J. Ramiro, Rojas Gálvez
		22/11/2010	REVISADO POR:	Ing. Manuel Urteaga Toro

Temperatura de Secado 20 °C / 110 °C /Ambiente

ENSAYO DE ABSORCIÓN						
MUESTRA	CARACTERÍSTICA	Peso de la Unidad Seca (kg) P1	Peso de la Unidad Saturada (gr) P2	Porcentaje de Absorción %ABS		
M1	Secado al Ambiente	8.315		-		
M2	Secado al Ambiente	9.538	1. TO 1.			
- M3	Secado al Ambiente	8.222				
M4	Secado al Ambiente	9.536				
M5	Secado al Ambiente	9.921		-		
M6	Secado al Ambiente	- Total	A	***		

$$(\%ABS) = \frac{P2 - P1}{P1} * 100$$

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
John Sill	Emy.	A Dongt
NOMBRE, J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

1	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVAD PROTOCOLO	A DEL NORTE CAJAMARCA
N	ENSAYO:			CÓDIGO DEL DOCUMENTO:
UNIVERSIDAD PRIVADA DEL NORTE	NORMA:	A	STM C-67	EA-LS-UPNC:
	TESIS:	"PROPIEDADES FÍSICO Y MECÁNICAS DE BLOQUES DE TIERRA COMPRIMIDA C ADICIÓN DE EMULSIÓN ASFÁTICA", CAJAMARCA 2018		
CANTERA:		"Flores"	TIPO DE MATERIAL:	Arena – Arcilla – Con 3% de Emulsión Asfáltica.
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo
FECHA DE ENSAYO:		22/44/2049	RESPONSABLE:	J. Ramiro, Rojas Gálvez
FECHA DE E	INOMTO:	22/11/2018	REVISADO POR:	Ing. Manuel Urteaga Toro

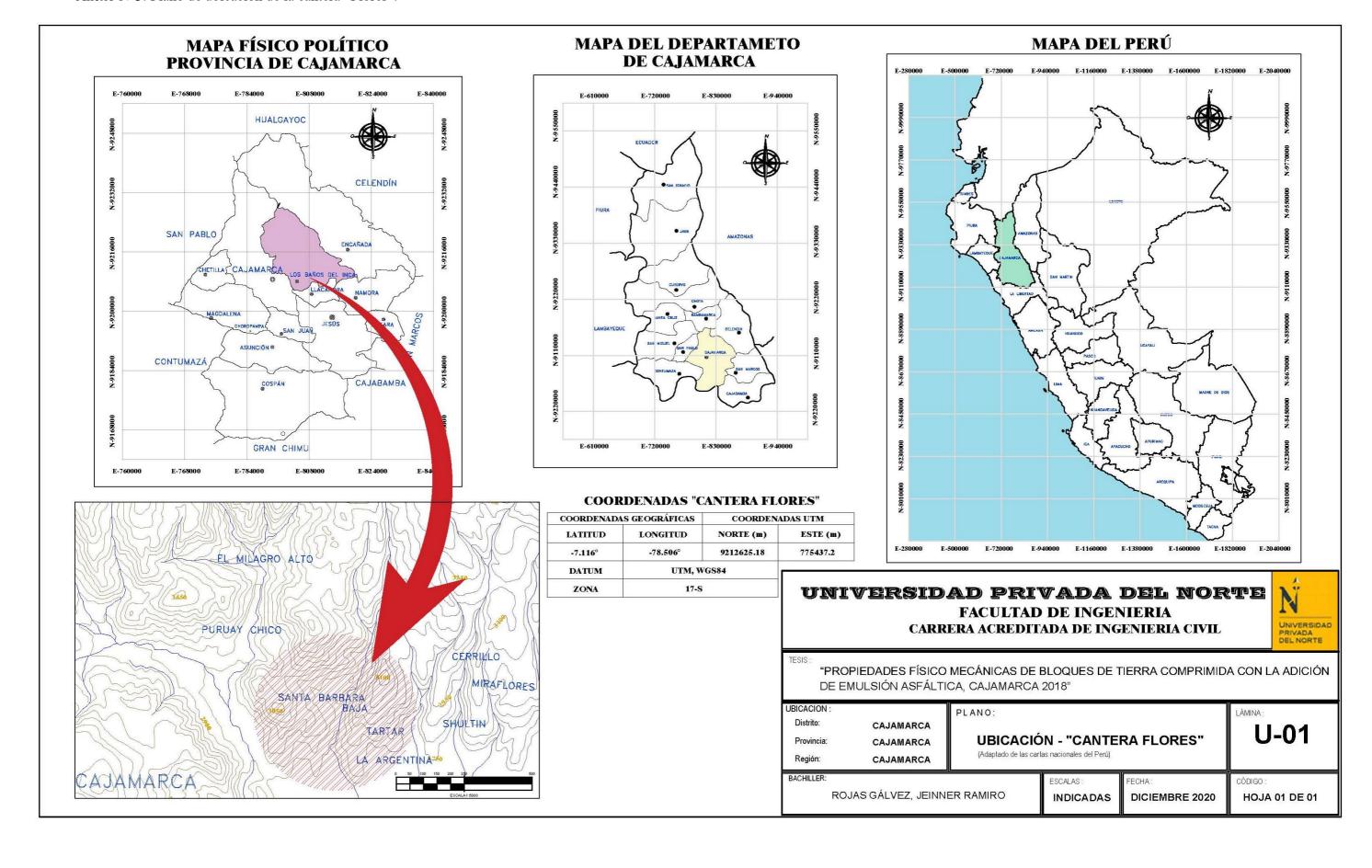
Temperatura de Secado 20 °C / 110 °C /Ambiente

		ENSAYO DE ABSOR	RCIÓN	1
MUESTRA	CARACTERÍSTICA	Peso de la Unidad Seca (kg) P1	Peso de la Unidad Saturada (gr) P2	Porcentaje de Absorción %ABS
M1	Secado al Ambiente	8.411		
M2	Secado al Ambiente	8.632	- 4	_
_ M3	Secado al Ambiente	8.587		-
M4	Secado al Ambiente	8.642	_	-
M5	Secado al Ambiente	8.313	P (***)	
M6	Secado al Ambiente	-	A	

$$(\%ABS) = \frac{P2 - P1}{P1} * 100$$

RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Sala Jel	Ruy	A Payof
NOMBRE: J. Ramiro, Rojas Gálvez	NOMBRE; Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

N UNIVERSIDAD PRIVADA DEL MORTE	LABOR	ATORIO DE SUELO	S - UNIVERSIDAD PRIVAD PROTOCOLO	A DEL NORTE CAJAMARCA
	ENSAYO:	ENSAYO DE GRADO DE ABSORCIÓN		CÓDIGO DEL DOCUMENTO:
	NORMA:	A	STM C-67	EA-LS-UPNC:
	TESIS:		ÍSICO Y MECÁNICAS DE BLO CIÓN DE EMULSIÓN ASFÁTIC	QUES DE TIERRA COMPRIMIDA CON A", CAJAMARCA 2018
CANTERA:		"Flores"	TIPO DE MATERIAL;	Arena – Arcilla – Con 4% de Emulsión Asfáltica.
UBICACIÓN:		CAJAMARCA	COLOR DE MATERIAL:	Marrón - Plomo
FECHA DE ENSAYO:		00/44/2040	RESPONSABLE:	J. Ramiro, Rojas Gálvez
FECHA DE E	INSATU:	22/11/2018	REVISADO POR:	Ing, Manuel Urteaga Toro


Temperatura de Secado 20 °C / 110 °C /Ambiente

MUESTRA	CARACTERÍSTICA	Peso de la Unidad Seca (kg) P1	Peso de la Unidad Saturada (gr) P2	Porcentaje de Absorción %ABS
M1	Secado al Ambiente	9.225		-
M2	Secado al Ambiente	8.315	- 4	
- M3	Secado al Ambiente	9.345	- 1	-
M4	Secado al Ambiente	9.920	-	
M5	Secado al Ambiente	8.760	P - 1	-
M6	Secado al Ambiente		- A	

$$(\%ABS) = \frac{P2 - P1}{P1} * 100$$

OBSERVACIONES:		
RESPONSABLE DEL ENSAYO	COORDINADOR DE LABORATORIO	ASESOR
Contract of the second	Eling.	Angel
NOMBRE J. Ramiro, Rojas Gálvez	NOMBRE: Ing. Kevin Robertson Tello Casas	NOMBRE: Ing. Manuel Urteaga Toro
FECHA:	FECHA:	FECHA:

• Anexo N°3: Plano de ubicación de la cantera "Flores".

Anexo N°4: Ficha técnica – Emulsión asfáltica RC-250.

Ficha de Datos de Seguridad

1. IDENTIFICACIÓN DEL PRODUCTO E INFORMACIÓN DE LA EMPRESA

1.1 NOMBRE DEL PRODUCTO : ASFALTO LÍQUIDO RC-250 con emulsión

1.2 SINÓNIMOS : Asfalto líquido curado rápido.

1.3 USO RECOMENDADO : Construcción y tratamiento de pavimentos.

1.4 DATOS DEL PROVEEDOR

Empresa : Petróleos del Perú - PETROPERÚ S.A.

Dirección : Av. Enrique Canaval Moreyra 150, Lima 27 - Perú Teléfonos : (01)614-5000, (01)630-4000, (01)630-4079

0800 77 155

Portal Empresarial : http://www.petroperu.com.pe Correo electrónico : servcliente@petroperu.com.pe

1.5 TELÉFONO DE EMERGENCIA : (01) 614-5000, anexo 11444, celular 944-944-667

Horario de atención: 24 horas.

2. IDENTIFICACIÓN DE PELIGROS

2.1 CLASIFICACIÓN DE LA SUSTANCIA O MEZCLA

El producto es una sustancia inflamable y al incrementarse la temperatura presenta un aumento de la liberación de vapores, pudiendo formar mezclas explosivas con el aire.

2.1.1 Peligros físicos

Líquido inflamable: Categoría 3

2.1.2 Peligros para la salud

Corrosión/irritación cutánea: Categoría 2 (Irritante cutáneo)

Toxicidad para la reproducción: Categoría 2 Toxicidad específica en órganos diana: Categoría 3

Mutagenicidad: Categoría 1B Carcinogenicidad: Categoría 1B

Toxicidad específica en determinados órganos: STOT única 3

2.1.3 Peligros para el ambiente

Peligro para el ambiente acuático: Toxicidad acuática crónica 2

2.2 ELEMENTOS DE LAS ETIQUETAS

2.2.1 Pictograma

Palabra de advertencia: Peligro

2.2.2 Códigos de indicación de peligros

Fecha de Revisión: 01.04.2018

Ficha de Datos de Seguridad

Apariencia : Líquido muy viscoso, homogéneo y libre de

agua.

Color : Marrón oscuro a negro.
Olor : Característico.

Umbral olfativo : No se dispone de datos PH : No se dispone de datos Punto de fusión, °C : No se dispone de datos

Punto inicial de ebullición, °C : 35 aprox.

Punto final de ebullición, °C : Se destila hasta 360°C según norma

Punto de inflamación, °C : 27 mínimo

Tasa de evaporación : No se dispone de datos Inflamabilidad (Sólido, gas) : Líquido inflamable Límites de inflamabilidad, %Vol. en aire : Inferior: 1

Superior: 6
Presión de vapor : No se dispone de datos
Densidad de vapor : No se dispone de datos
Gravedad específica a 15.6/15.6°C : 0.94 – 0.97 aprox.

Solubilidad en agua : Insignificante

Coeficiente de reparto: n-octanol/agua : No se dispone de datos

Temperatura de autoinflamación, °C : >232 aprox.

Temperatura de descomposición : No se dispone de datos

Viscosidad cinemática a 60°C, cSt : 250-500

10. ESTABILIDAD Y REACTIVIDAD

10.1 REACTIVIDAD

No se dispone de datos.

10.2 ESTABILIDAD QUÍMICA

El producto es estable en las condiciones previstas para su manipulación.

10.3 POSIBILIDAD DE REACCIONES PELIGROSAS

No existen en condiciones previstas para su almacenamiento y manipulación.

10.4 CONDICIONES QUE DEBEN EVITARSE

Fuentes de ignición. No exponer los recipientes vacíos a cualquier tratamiento mecánico que generen fuentes de ignición tales como: soldadura, corte, taladrado, etc.

10.5 MATERIALES INCOMPATIBLES

Es incompatible con sustancias oxidantes.

10.6 PRODUCTOS DE DESCOMPOSICIÓN PELIGROSOS

El calentamiento del producto libera vapores del disolvente utilizado en su formulación.

11. INFORMACIÓN TOXICOLÓGICA

11.1 Toxicidad aguda
 No disponible.

Corrosión o irritación cutánea
 Provoca irritación cutánea.

Fecha de Revisión: 01.04.2018