

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

Tesis para optar el título profesional de:

INGENIERO CIVIL

Autor:

Bach. Jorge Arturo Jimenez Marreros

Asesor:

Ms. Sheyla Yuliana Cornejo Rodríguez

Trujillo - Perú

2021

DEDICATORIA

A Dios, por sostenerme en los momentos más adversos y haberme permitido lograr mis objetivos.

A mis padres Jorge Jimenez Gonzales y María Marreros Álvarez, quienes me brindaron su apoyo incondicional en cada etapa de mi vida.

A mis hermanos y familiares que participaron directa o indirectamente en el logro de este objetivo.

AGRADECIMIENTO

A Dios por encaminarme en todo el proceso, y conclusión de este trabajo de investigación, además de darme fuerzas en los momentos más difíciles.

> A mi familia en general por apoyar mis decisiones y siempre tener un espacio para compartir los momentos felices y dar alivio en los momentos dificultosos.

> A mis docentes por compartir sus conocimientos y experiencias, los cuales serán siempre conservados en mi memoria y compartidos con aquellos que lo necesiten.

Un agradecimiento muy especial a mi asesor Ing. Sheyla Cornejo Rodríguez por brindarme su tiempo y orientarme para que este trabajo se pueda concluir con éxito.

Tabla de contenidos

DEDICATORIA	2
AGRADECIMIENTO	3
ÍNDICE DE TABLAS	5
ÍNDICE DE FIGURAS	12
ÍNDICE DE GRAFICAS	13
ÍNDICE DE ECUACIONES	14
CAPÍTULO I. INTRODUCCIÓN	17
CAPÍTULO II. METODOLOGÍA	37
CAPÍTULO III. RESULTADOS	66
CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES	78
REFERENCIAS	82
ANEXOS	86

ÍNDICE DE TABLAS

Tabla 1: Tipos de fallas en el pavimento	. 32
Tabla 2: Tipos de fallas en el pavimento según su causa	. 33
Tabla 3: Operacionalización de variable Independiente del método PCI	. 38
Tabla 4: Operacionalización de variable Independiente del método VIZIR	. 39
Tabla 5: Operacionalización de variable Dependiente del método PCI	. 39
Tabla 6: Operacionalización de variable Dependiente del método VIZIR	. 39
Tabla 7: Fallas PCI, codificación y unidad del pavimento flexible	. 40
Tabla 8: Fallas VIZIR, codificación y unidad del pavimento flexible tipo A	. 41
Tabla 9: Fallas VIZIR, codificación y unidad del pavimento flexible tipo B	. 41
Tabla 10: Niveles de severidad PCI del pavimento según su progresión	. 42
Tabla 11: Niveles de gravedad VIZIR del pavimento según su progresión	. 43
Tabla 12: Dimensiones de la Muestra	. 44
Tabla 13: Guía de Observación de conteo y clasificación vehicular	. 50
Tabla 14: Clasificación del pavimento según PCI	. 51
Tabla 15: Longitud de la unidad de muestreo	. 52
Tabla 16: Guía de Observación 1 de las fallas de la metodología PCI	. 53
Tabla 17: Descomposición de la Red Vial	. 53
Tabla 18:Dimensiones del Tramo de estudio	. 53
Tabla 19:Dimensiones de la sección	. 54
Tabla 20: Guía de Observación 2 de los parámetros de la metodología PCI	. 57
Tabla 21: Niveles de gravedad de los deterioros del tipo A	. 59
Tabla 22: Niveles de gravedad de los deterioros del tipo B	. 60
Tabla 23: Hoja de registro de campo de la metodología VIZIR.	. 61
Tabla 24: Aproximación Grado de Deterioro	. 61
Tabla 25: Hoja de registro de parámetros de los deterioros detectados	. 62
Tabla 26: Guía metodológica para el diseño de obras de rehabilitación de pavimer Asfálticos de carreteras	

Tabla 27: Valores de índice de deformación	64
Tabla 28: Primera calificación de índice de deterioro	65
Tabla 29: Rangos de calificación VIZIR	65
Tabla 30: Trafico actual por tipo de vehículo	66
Tabla 31: Resumen de daños según densidad vs severidad por la metodología Pci	69
Tabla 32: Resumen de daños según extensión vs gravedad por la metodología Vizir	71
Tabla 33: Resumen de la clasificación por la metodología Pci	72
Tabla 34: Resumen de la clasificación por la metodología Vizir	74
Tabla 35: Conteo vehicular del lunes 04 de enero del 2021	87
Tabla 36: Conteo vehicular del martes 05 de enero del 2021	88
Tabla 37: Conteo vehicular del miércoles 06 de enero del 2021	89
Tabla 38: Conteo vehicular del jueves 07 de enero del 2021	90
Tabla 39: Conteo vehicular del viernes 08 de enero del 2021	91
Tabla 40: Conteo vehicular del sábado 09 de enero del 2021	92
Tabla 41: Conteo vehicular del domingo 10 de enero del 2021	93
Tabla 42: Resultados de los conteos de trafico	94
Tabla 43: Inspección visual en campo por el método Pci de la muestra 1	95
Tabla 44: Inspección visual en campo por el método Pci de la muestra 2	96
Tabla 45: Inspección visual en campo por el método Pci de la muestra 3	97
Tabla 46: Inspección visual en campo por el método Pci de la muestra 4	98
Tabla 47: Inspección visual en campo por el método Pci de la muestra 5	99
Tabla 48: Inspección visual en campo por el método Pci de la muestra 6	. 100
Tabla 49: Inspección visual en campo por el método Pci de la muestra 7	. 101
Tabla 50: Inspección visual en campo por el método Pci de la muestra 8	. 102
Tabla 51: Inspección visual en campo por el método Pci de la muestra 9	. 103
Tabla 52: Inspección visual en campo por el método Pci de la muestra 10	. 104
Tabla 53: Inspección visual en campo por el método Pci de la muestra 11	. 105

Tabla 54: Inspección visual en campo por el método Pci de la muestra 12
Tabla 55: Inspección visual en campo por el método Pci de la muestra 13
Tabla 56: Inspección visual en campo por el método Pci de la muestra 14 108
Tabla 57: Inspección visual en campo por el método Pci de la muestra 15 109
Tabla 58: Inspección visual en campo por el método Pci de la muestra 16110
Tabla 59: Inspección visual en campo por el método Pci de la muestra 17111
Tabla 60: Inspección visual en campo por el método Pci de la muestra 18112
Tabla 61: Inspección visual en campo por el método Pci de la muestra 19
Tabla 62: Inspección visual en campo por el método Pci de la muestra 20
Tabla 63: Inspección visual en campo por el método Pci de la muestra 21 115
Tabla 64: Inspección visual en campo por el método Pci de la muestra 22
Tabla 65: Inspección visual en campo por el método Pci de la muestra 23
Tabla 66: Inspección visual en campo por el método Pci de la muestra 24
Tabla 67: Inspección visual en campo por el método Pci de la muestra 25
Tabla 68: Inspección visual en campo por el método Pci de la muestra 26
Tabla 69: Inspección visual en campo por el método Pci de la muestra 27 121
Tabla 70: Inspección visual en campo por el método Pci de la muestra 28
Tabla 71: Inspección visual en campo por el método Pci de la muestra 29
Tabla 72: Inspección visual en campo por el método Pci de la muestra 30
Tabla 73: Inspección visual en campo por el método Vizir de la muestra 1
Tabla 74: Inspección visual en campo por el método Vizir de la muestra 2
Tabla 75: Inspección visual en campo por el método Vizir de la muestra 3
Tabla 76: Inspección visual en campo por el método Vizir de la muestra 4
Tabla 77: Inspección visual en campo por el método Vizir de la muestra 5
Tabla 78: Inspección visual en campo por el método Vizir de la muestra 6
Tabla 79: Inspección visual en campo por el método Vizir de la muestra 7
Tabla 80: Inspección visual en campo por el método Vizir de la muestra 8

Tabla 81: Inspección visual en campo por el metodo Vizir de la muestra 9
Tabla 82: Inspección visual en campo por el método Vizir de la muestra 10
Tabla 83: Inspección visual en campo por el método Vizir de la muestra 11
Tabla 84: Inspección visual en campo por el método Vizir de la muestra 12
Tabla 85: Inspección visual en campo por el método Vizir de la muestra 13 137
Tabla 86: Inspección visual en campo por el método Vizir de la muestra 14
Tabla 87: Inspección visual en campo por el método Vizir de la muestra 15
Tabla 88: Inspección visual en campo por el método Vizir de la muestra 16
Tabla 89: Inspección visual en campo por el método Vizir de la muestra 17 141
Tabla 90: Inspección visual en campo por el método Vizir de la muestra 18 142
Tabla 91: Inspección visual en campo por el método Vizir de la muestra 19 143
Tabla 92: Inspección visual en campo por el método Vizir de la muestra 20 144
Tabla 93: Inspección visual en campo por el método Vizir de la muestra 21 145
Tabla 94: Inspección visual en campo por el método Vizir de la muestra 22 146
Tabla 95: Inspección visual en campo por el método Vizir de la muestra 23 147
Tabla 96: Inspección visual en campo por el método Vizir de la muestra 24 148
Tabla 97: Inspección visual en campo por el método Vizir de la muestra 25 149
Tabla 98: Inspección visual en campo por el método Vizir de la muestra 26
Tabla 99: Inspección visual en campo por el método Vizir de la muestra 27 151
Tabla 100: Inspección visual en campo por el método Vizir de la muestra 28 152
Tabla 101: Inspección visual en campo por el método Vizir de la muestra 29 153
Tabla 102: Inspección visual en campo por el método Vizir de la muestra 30 154
Tabla 103: Índice de condición del pavimento (PCI) y clasificación de la muestra 1 155
Tabla 104: Índice de condición del pavimento (PCI) y clasificación de la muestra 2 155
Tabla 105: Índice de condición del pavimento (PCI) y clasificación de la muestra 3 156
Tabla 106: Índice de condición del pavimento (PCI) y clasificación de la muestra 4 156
Tabla 107: Índice de condición del pavimento (PCI) y clasificación de la muestra 5 157

Tabla 108: Indice de condición del pavimento (PCI) y clasificación de la muestra 6 157
Tabla 109: Índice de condición del pavimento (PCI) y clasificación de la muestra 7 158
Tabla 110: Índice de condición del pavimento (PCI) y clasificación de la muestra 8 158
Tabla 111: Índice de condición del pavimento (PCI) y clasificación de la muestra 9 159
Tabla 112: Índice de condición del pavimento (PCI) y clasificación de la muestra 10 159
Tabla 113: Índice de condición del pavimento (PCI) y clasificación de la muestra 11 160
Tabla 114: Índice de condición del pavimento (PCI) y clasificación de la muestra 12 160
Tabla 115: Índice de condición del pavimento (PCI) y clasificación de la muestra 13 161
Tabla 116: Índice de condición del pavimento (PCI) y clasificación de la muestra 14 161
Tabla 117: Índice de condición del pavimento (PCI) y clasificación de la muestra 15 162
Tabla 118: Índice de condición del pavimento (PCI) y clasificación de la muestra 16 162
Tabla 119: Índice de condición del pavimento (PCI) y clasificación de la muestra 17 163
Tabla 120: Índice de condición del pavimento (PCI) y clasificación de la muestra 18 163
Tabla 121: Índice de condición del pavimento (PCI) y clasificación de la muestra 19 164
Tabla 122: Índice de condición del pavimento (PCI) y clasificación de la muestra 20 164
Tabla 123: Índice de condición del pavimento (PCI) y clasificación de la muestra 21 165
Tabla 124: Índice de condición del pavimento (PCI) y clasificación de la muestra 22 165
Tabla 125: Índice de condición del pavimento (PCI) y clasificación de la muestra 23 166
Tabla 126: Índice de condición del pavimento (PCI) y clasificación de la muestra 24 166
Tabla 127: Índice de condición del pavimento (PCI) y clasificación de la muestra 25 167
Tabla 128: Índice de condición del pavimento (PCI) y clasificación de la muestra 26 167
Tabla 129: Índice de condición del pavimento (PCI) y clasificación de la muestra 27 168
Tabla 130: Índice de condición del pavimento (PCI) y clasificación de la muestra 28 168
Tabla 131: Índice de condición del pavimento (PCI) y clasificación de la muestra 29 169
Tabla 132: Índice de condición del pavimento (PCI) y clasificación de la muestra 30 169
Tabla 133: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 1 170
Tabla 134: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 2 170

Tabla 135: Indice de deterioro superficial (VIZIR) y clasificación de la muestra 3 171
Tabla 136: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 4 171
Tabla 137: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 5 172
Tabla 138: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 6 172
Tabla 139: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 7 173
Tabla 140: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 8 173
Tabla 141: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 9 174
Tabla 142: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 10 174
Tabla 143: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 11 175
Tabla 144: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 12 175
Tabla 145: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 13 176
Tabla 146: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 14 176
Tabla 147: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 15 177
Tabla 148: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 16 177
Tabla 149: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 17 178
Tabla 150: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 18 178
Tabla 151: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 19 179
Tabla 152: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 20 179
Tabla 153: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 21 180
Tabla 154: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 22 180
Tabla 155: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 23 181
Tabla 156: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 24 181
Tabla 157: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 25 182
Tabla 158: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 26 182
Tabla 159: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 27 183
Tabla 160: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 28 183
Tabla 161: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 29 184

"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

Tabla 162: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 30...... 184

ÍNDICE DE FIGURAS

Figura 1: Sección de un pavimento	26
Figura 2: Estructura típica de pavimento flexible	28
Figura 3: Comportamiento estructural de los pavi	mentos flexibles y rígidos29
Figura 4: Ciclo de vida de los pavimentos	29
Figura 5:Procedimiento de la investigación	46
Figura 6: Departamento de La Libertad del Perú de La Libertad	Figura 7: Provincia de Trujillo del Dep. 47
Figura 8: Distrito de Moche de la Prov. de Trujill	o47
Figura 9: Ubicación del pavimento flexible a eval	uar48
Figura 10: Ancho de calzada a evaluar	48

ÍNDICE DE GRAFICAS

Gráfico 1: Índice medio diario67
Gráfico 2: Fallas encontrados según la metodología Pci
Gráfico 3: Fallas encontrados según la metodología Vizir
Gráfico 4: Comparación de la severidad de los danos encontrados por la metodología Pci70
Gráfico 5: Comparación de la gravedad de los daños encontrados por la metodología Vizir
Gráfico 6: Comparación de la clasificación del método PCI
Gráfico 7: Comparación de la clasificación del método Vizir
Gráfico 8: Comparación de la metodología Pci v Vizir

"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

ÍNDICE DE ECUACIONES

Ecuación 1: Calculo para Índice Medio Diario Semanal	50
Ecuación 2: Determinación de las unidades de muestreo para la evaluación	54
Ecuación 3: Número de unidades	55
Ecuación 4: Unidades de muestreo	55
Ecuación 5: Número máximo admisible de valores deducidos	56
Ecuación 6: Valor ponderado de la condición global del pavimento	61

RESUMEN

En este proyecto de investigación consiste en la aplicación de la metodología PCI por sus siglas (Índice de condición de pavimentos) Y VIZIR (Visión e inspección de zonas e itinerarios en riesgo en la evaluación superficial del pavimento flexible con un tramo del Ovalo La Marina hasta el km 680 de la Carretera Panamericana Norte del Perú, ubicada en el Departamento de La Libertad; con la finalidad de comparar ambas metodologías según el daño superficial del pavimento en función a las fallas existentes. La evaluación realizada se desarrolló en dos partes, la primera referente a la tarea de campo y la segunda a la de gabinete. El tramo de estudio cuenta con una longitud de 1062 metros, que fue dividida en 30 unidades de muestreo de 34.50 metros. Tras la evaluación PCI, el 26.66% tienen un pavimento clasificado como Bueno, el 23.33% clasificado como Regular, el 20% clasificado como Muy Malo, 13.33% clasificado como Fallado, el 10% clasificado como Malo, el 6.66% clasificado como Muy Bueno y 0% como excelente. Y VIZIR el 46.75% clasificado como Regular, el 28.57% clasificado como Bueno y el 24.68% clasificado como Deficiente. Además, los daños que portan mayor parte son las: grietas longitudinales y transversales, Fisuras por fatiga, pulimiento de agregados y perdida de agregados. Por último, el índice de PCI del tramo fue de 41.7, el cual se determinó promediando el PCI de todas las unidades de muestras del pavimento, con lo que se concluye que el pavimento flexible se encuentra en un estado de conservación REGULAR y el índice de VIZIR obtuvimos un valor 3.28 que nos indica que el pavimento se encuentra en un estado REGULAR. Según los resultados obtenidos de este análisis demostraron la viabilidad y efectividad de ambas metodologías, en donde se obtuvieron resultados similares que indican claramente el estado del tramo de estudiado clasificado como REGULAR y que los daños que se presentan son mayores.

Palabras clave: Método Vizir, Método Pci, Pavimento flexible, Fallas en el pavimento

ABSTRACT

This research project consists of the application of the PCI methodology by its acronym (Pavement Condition Index) AND VIZIR (Vision and inspection of areas and itineraries at risk in the superficial evaluation of the flexible pavement with a section of the Ovalo La Marina up to km 680 of the North Pan-American Highway of Peru, located in the Department of La Libertad, in order to compare both methodologies according to the surface damage of the pavement based on existing faults. The evaluation carried out was developed in two parts, the first referring to the field task and the second to the cabinet task. The study section has a length of 1062 meters, which was divided into 30 sampling units of 34.50 meters. After the PCI evaluation, 26.66% have a classified pavement as Good, 23.33% classified as Fair, 20% classified as Very Bad, 13.33% classified as Failed, 10% classified as Bad, 6.66% classified as Very Good and 0% as excellent. And VIZIR 46.75% classified as Fair, 28.57% classified as Good and 24.68% classified as Poor. In addition, the most important damages are: longitudinal and transverse cracks, fatigue cracks, aggregate polishing and aggregate loss. Finally, the PCI index of the section was 41.7, which was determined by averaging the PCI of all the sample units of the pavement, with which it is concluded that the flexible pavement is in a REGULAR state of conservation and the index of VIZIR we obtained a value of 3.28 that indicates that the pavement is in a REGULAR state. According to the results obtained from this analysis, they demonstrated the viability and effectiveness of both methodologies, where similar results were obtained that clearly indicate the state of the studied section classified as REGULAR and that the damages that occur are greater.

Palabras clave: Vizir French Methodology, Pavement Condition Index, Flexible Pavement, Type of Failures

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

En la actualidad una ciudad que se encuentre en pleno desarrollo económico demanda una adecuada conexión de sus barrios, urbanizaciones y centros poblados, es decir contar con vías que les permita transitar adecuadamente y así aumentar su flujo comercial y comodidad de los habitantes. También es cierto que durante el uso de estas y en casos por falta de mantenimiento, estas presentan fallas durante su vida de útil; es por ello la evaluación superficial de los pavimentos ayuda a conocer e identificar a tiempo los daños que se presentan en las vías, y de esta forma realizar las retificaciones en las mismas, consiguiendo así mejorar el estado actual y aumentando su tiempo de vida. (Huaccha, 2019).

Por lo que las estructuras urbanas y rurales son el principal medio de interrelación entre múltiples lugares, por tal fundamento su conveniencia es permanente y necesaria para el progreso de la cuidad en varios aspectos, Actualmente en la mayoría de los pavimentos flexibles en el Perú no se encuentran con la serviciabilidad que estas ameritan. Ahora existen desiguales metodologías para apreciar y justipreciar el estado de las vías y carreteras, estas se diferencian en la manera de catalogar los desiguales tipos de fallas, ya sean funcionales o estructurales que se puedan presentar. (Oropeza, 2019)

De la misma manera la infraestructura vial es un agente contundente en el cambio social, económico y cultural de las originales demarcaciones de nuestro país, es por eso que es importante considerar a nuestros pavimentos como el principal activo económico que posee la patria, debido a que ahora el estado de las vías primarias y secundarias se encuentran por abajo de los niveles de competitividad necesarios por el entorno, al conseguir efectuar la intervención en las vías territoriales se podría ganar

el provecho en la reducción de los costos de operación, encima de reactivar el incremento económico en regiones particulares. (Naranjo, 2014)

Existen varios métodos de evaluación superficial de un pavimento flexible, sin embargo se eligió la metodología VIZIR dado que con este método sabremos cual fue la principal causa del deterioro del pavimento, si fue por deficiencias constructivas o insuficiencia en la eficiencia estructural, para que así se puedan fijar medidas correctivas para obras futuras y el método Pavement Condition Index (PCI); porque constituye el modo más completo para la estimación y calificación objetiva de pavimentos flexibles, siendo ampliamente aceptado y formalmente adoptado como procedimiento estandarizado, y ha sido divulgado por la ASTM como forma de análisis y aplicación. Además, se desarrolló para obtener un índice de la viabilidad estructural del pavimento y de la condición operacional de la superficie, valor que cuantifica el estado en que se encuentra el pavimento para su respectivo tratamiento y mantenimiento, (Leguía & Pacheco, 2016)

Para el planteamiento de tácticas de rehabilitación, la norma aprovechada fue la mirada visual y tasación operacional, los cuales fueron completados con los parámetros estandarizados por la metodología Vizir, la toma de puntos de información en campo se realizó por medio de formatos (guías de observación) con las demandas de la metodología utilizada. (Chávez & Cusquisiban, 2017)

La metodología planteada para la clase y la cuantificación de los daños que presentan los pavimentos en panamericanas cuenta con dos condiciones de daños, en consentimiento con lo establecido en la metodología Vizir, tomado como uso para el presente instructivo: los deterioros del Tipo "A", que caracterizan

la necesidad estructural del piso y los deterioros del Tipo "B", en su mayoridad de ejemplo funcional. (Instituto Nacional de Vías, 2017)

Además de esto, la evaluación superficial del pavimento por el método Pavement Condition Index (PCI), es muy importante porque establece el modo más completo, de fácil implementación y que no requiere de herramientas especializadas para la evaluación y calificación objetiva de los pavimentos; incluso en los resultados del inventario visual del estado del pavimento se establecen clase, severidad y cantidad de cada falla presente. Dada la gran cantidad de combinaciones posibles, el método introduce un factor de ponderación, llamado "valor deducido", para mostrar en qué nivel afecta a la calidad del pavimento flexible cada daño, nivel de severidad y densidad.

Las aplicaciones de intervención de rehabilitación y mantenimiento de las estructuras de pavimentos flexibles pueden ser de tipo estructural y funcional las cuales representaran patrimonios cualitativos una vez que estos permitirán hacer desplazamientos de forma segura y confortable, por otra parte, cuantitativos dado que permitirá prevenir los sobrecostos por ejecución de una infraestructura nueva en casos innecesarios donde la estructura posea vida residual. (Naranjo, 2014)

Así mismo en el trabajo de investigación se comparará la aplicación de las metodologías PCI y VIZIR en la evaluación superficial del pavimento flexible del Ovalo La Marina hasta Km 680 en la cuidad de Trujillo, para así poder obtener la viabilidad y confiabilidad de cada método a criterio técnico y ético respecto al estudio realizado por mi persona (Jorge Arturo Jimenez Marreros) y asimismo del apoyo del asesor Ing. Sheyla Cornejo Rodríguez, y para brindar de apoyo a futuras investigaciones.

1.2. Formulación del problema

¿Cuál es el estado de conservación aplicando la metodología PCI y VIZIR en la evaluación superficial del pavimento flexible del Ovalo La Marina hasta km 680 – Trujillo-2021?

1.3. Objetivos

1.3.1. Objetivo general

 Aplicar las metodologías PCI y VIZIR en la evaluación superficial del pavimento flexible del Ovalo La Marina hasta km 680 - Trujillo.

1.3.2. Objetivos específicos

- Calcular el índice medio diario obtenido a partir del volumen registrado en el conteo vehicular.
- Determinar los diferentes tipos de daño que se presentan en el pavimento y catalogarlos de acuerdo con el método de clasificación de la metodología PCI y VIZIR.
- Evaluar los parámetros de daños de las metodologías PCI y VIZIR del Ovalo La
 Marina hasta km 680 Trujillo.
- Calificar el estado superficial del pavimento del Ovalo La Marina hasta Km 680
 Trujillo, mediante la metodología PCI y VIZIR.

1.4. Hipótesis

1.4.1. Hipótesis general

• Al aplicar las metodologías PCI y VIZIR en la evaluación superficial del pavimento flexible del Ovalo La Marina hasta Km 680 - Trujillo ayudará a tomar una mejor decisión en la alternativa de intervención del tramo estudiado, y así alargar su vida útil del pavimento flexible; utilizando la metodología PCI y VIZIR, encontramos un resultado clasificado como regular en ambos casos.

1.5. Bases Teóricas

1.5.1. Antecedentes de la investigación

Según Morales, (2019), en su tesis denominada Comparación de los métodos PCI y VIZIR en la evaluación de fallas del pavimento flexible de la avenida Aviación de la ciudad de Juliaca, menciona que el efecto de la investigación es localizar el estado de conservación del pavimento flexible de la avenida Aviación de la ciudad de Juliaca para poder perfeccionar la alternativa de decisión que afuera necesaria.

MIV (2013) menciona que, las fallas en calzadas pueden clasificarse en dos grandes consideraciones: fallas estructurales y fallas superficiales. Se llevó a lado un despacho netamente superficial, es decir, en las fallas funcionales. La apreciación de las fallas de la avenida aviación se realizó por medio dos metodologías de inspección visual; PCI (Índice de Condición del Pavimento) y VIZIR (Visión e Inspección de Zonas e Itinerarios en Riesgo).

Se evaluó una distancia total de 1400m, divididas en 45 unidades de muestreo; así mismo, se calificó por medio los formatos catalogadas por cada método complementándose con el ensayo de lavado de asfalto. Mediante la aplicación de ambas metodologías se obtuvo resultados similares, con lo cual se pudo identificar el tratamiento requerido por la vía; por lo tanto, según el método PCI el pavimento se clasifico en una condición MUY BUENA con un 76% y a través el método VIZIR el pavimento se clasifico en un estado BUENO con un 91%. Así mismo, el daño más predominado fue el Pulimiento de Agregados. A través del estudio se identificó que la Av. Aviación requiere Mantenimiento. Para dicha intervención se sugirió actuar mediante un tratamiento superficial; por lo cual, se realizó el análisis de costos

unitarios del tratamiento Slurry Seal, permitiendo sellar y corregir defectos de la superficie.

Chávez & Cusquisiban, (2017) realizó la tesis denominada Planteamiento de estrategias de rehabilitación del pavimento flexible aplicando la metodología VIZIR, para la optimización de recursos en la avenida 225 (Ventanilla – Lima), promueve la aplicación de la metodología mencionada para así determinar el estado de operatividad en que se encuentra la avenida. La metodología empleada fue inductiva y se realizó una inspección visual en campo, para lo cual se llevó a cabo el seccionamiento de la avenida 225, obteniéndose 80 unidades de muestra, y se elaboró formatos de registro en campo con los parámetros de la metodología utilizada.

Asimismo, se utilizó el manual del Instituto Nacional de Vías, Instructivo para la inspección visual y la evaluación de los deterioros de los pavimentos asfálticos de carreteras (2008).

La problemática de este plan se analizó en base al Plan Intermodal de Transporte que presentó el Ministerio de Transporte y Comunicaciones (2007), adonde indica que el medio de transporte aún no puede ser considerado como un sistema integrado y capaz en su operación, siendo el principal desasosiego el bajo o nulo sostenimiento de su infraestructura, refiriéndose además a las obras reactivas para reparar el asfalto dañado, a más, en nuestro país no existe una metodología para clasificar los tipos de fallas, por lo que generalmente se opta por una reconstrucción total del asfalto, generando mayores costos y tiempo. El objetivo general de este trabajo es proyectar estrategias de rehabilitación en el pavimento flexible, aplicando la metodología VIZIR, para la optimización de los recursos en la avenida 225 (Ventanilla – Lima).

Por otro lado, apuesta en práctica la hipótesis de solución se corroboró que, aplicando la metodología VIZIR y planteando estrategias de rehabilitación versus una

reconstrucción total de la avenida, se logró mejorar un 44.18% de costo y un 35.00% de tiempo.

Según el trabajo realizado por Sierra & Rivas, (2016), la iniciativa de utilizar las metodologías de conservación y mantenimiento VIZIR y PCI en la estructura del pavimento del tramo de vía estudiado, se enfoca en mejorar la calidad del estado vial de la UPZ yomasa considerando que estas metodologías se utilizan en las principales vías de la infraestructura vial del país, esta investigación del proyecto estudiantil de la Universidad Católica de Colombia en la UPZ Yomasa, llevo cabo una inspección visual obteniendo daños encontrados en los formatos evaluados de cada metodología para realizar un análisis detallado de la vía según el estado que se encuentra en la UPZ Yomasa entre la Dg. 78 Bis Sur con Calle 84 Sur en el kilómetro (PR 00+000) hasta el kilómetro (PR 01+020), la cual está en condiciones óptimas para la aplicación de ambas metodologías, se brindará información según los parámetros y criterios de las metodologías empleadas VIZIR (de origen francés) y PCI (de origen americano) donde a través de la comparación de estas metodologías se determinó el estado de la capa de rodadura asfáltica del tramo de vía analizado, obteniendo información para determinar las ventajas y desventajas de las metodologías aplicadas, encontraremos las ecuaciones, tablas y parámetros empleados por cada una de las metodologías para la determinación del estado de la condición del pavimento del tramo de vía estudiado. Porta (2016) realizó una tesis denominada "Evaluación y Comparación de metodológicas de Índice de Condición de Pavimentos (PCI) y Visión e Inspección de Zonas e Itinerarios en Riesgo (VIZIR) en la Avenida Mariscal Castilla Tramo: Fundo El Porvenir – La Victoria", en la ciudad de Huancayo, este trabajo de investigación, proyecta un diagnóstico situacional visual de la avenida mariscal castilla, tramo: Fundo El Porvenir- La Victoria (Jr. La Cantuta- Av. Bolívar) aplicando el uso de los métodos

PCI (criterio y parámetros de la Norma ASTM 5340-98) y VIZIR, (desarrollado por el Laboratoire Central des Ponts et Chaussés, de origen francés), para luego realizar un análisis y comparación de las coincidencias y desaciertos de estos dos métodos; así mismo para determinar la serviciabilidad de esta vía, basándonos en el método de muestreo estadístico del PCI.

La tesis de investigación empieza con la división de la vía en unidades muestras de longitudes de 30m que nos dio 51 unidades en el sentido izquierdo y 51 unidades en el sentido derecho, de los cuales 13 unidades fueron evaluadas por sentido; haciendo un total de 26 unidades sometidas a. evaluación; por fines de comparabilidad de resultados, para la evaluación por el método VIZIR se consideraron exactamente las mismas unidades de muestras para el método PCI. Las fallas existentes en la vía, así como su severidad y cantidad se junta en formatos distintos para cada método con apoyo del catálogo de fallas para pavimentos asfalticos de ambos métodos con ayuda de instrumentos de medición. Después del procesamiento de datos se obtuvo que el estado de conservación situacional de la vía del lado izquierdo por el método PCI es malo (39.35) y por el método VIZIR es bueno (1.38) mientras que el lado derecho por PCI es regular (45.43) y por VIZIR es Bueno (2.23). Así mismo la serviciabilidad del lado izquierdo de la vía es mala y del lado derecho es regular.

Villanueva & Rodríguez (2019) realizó una tesis denominada "Determinación del estado de conservación superficial del pavimento flexible aplicando los métodos del PCI y VIZIR en la Avenida Costa Rica y Prolongación César Vallejo, Trujillo", El presente trabajo de investigación, tuvo como objetivo obtener un indicador del estado de condición superficial del pavimento flexible, haciendo uso de los métodos PCI (Índice de Condición del Pavimento) basado en la Norma ASTM D6433-11 y VIZIR, (desarrollado por el Laboratorio Central de Puentes y Carreteras – Francia país de

Origen), donde se ejecutó un análisis y comparación de sus resultados teniendo en cuenta sus similitudes y diferencias que puedan presentar ambos métodos; basándose en el método del PCI, las unidades de muestras estuvieron conformadas por las divisiones de las vías en varios tramos de longitudes de 25.7 m cada uno, que nos dio un total de 28 unidades de muestras, 14 de ida y 14 de vuelta las cuales fueron evaluadas.

Por lo consiguiente, se realizó la evaluación por el método VIZIR donde se consideraron muestras de 100 m dando un total de 48 muestras, 24 de ida y 24 de vuelta. Se junto los datos de las fallas existentes en el pavimento flexible, como su nivel de severidad y su extensión que estas presentaban según corresponda por cada método, con el apoyo fundamental de los catálogos de las fallas para pavimentos asfalticos de los distintos métodos y con apoyo de los instrumentos de medición, se realizó el procesamiento de datos se obtuvo que nuestro índice del estado de conservación de la vía Prolongación César Vallejo y Avenida Costa Rica, mediante el método PCI se obtuvo un 52.06 el cual se clasifica como regular y por el método VIZIR un 2.25 se clasifica como bueno. De lo cual concluimos que el método PCI es el que determina y clasifica con mayor criterio las fallas observadas.

1.5.2. Pavimento

1.5.2.1. Definición de pavimento

El Manual de Carreteras: Suelos, Geología, Geotecnia y Pavimentos divulgado por el Ministerio de Transportes y Comunicaciones del Perú (2013), fija al pavimento como una estructura de compuesta por varias capas construida sobre la subrasante del trayecto para resistir y distribuir esfuerzos producidos por los vehículos y mejorar las condiciones de seguridad y comodidad para el tránsito vehicular. Por lo general el

pavimento está constituida por las siguientes capas: base, subbase y capa de rodadura (MTC, 2013, pág. 23).

Por otro lado, también es un elemento estructural que se encuentra apoyado en toda su superficie sobre el terreno de fundación llamado subrasante. Este segmento debe estar listo para mantener un sistema de capas de espesores diferentes como se muestra en la Figura 1, denominado paquete estructural, diseñado y construido para soportar cargas externas durante un determinado período de tiempo (Velásquez, 2009).

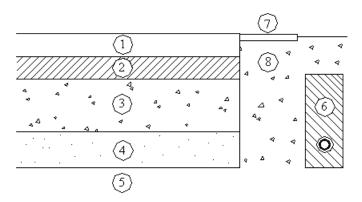


Figura 1: Sección de un pavimento

Fuente: Instituto Tecnológico de Aeronáutica, Ingeniería de Pavimentos, Brasil, 2000.

- 1. Capa de Rodadura 5. Subrasante
- 2. Capa Base 6. Subdrenaje longitudinal
- 3. Capa Subbase 7. Revestimiento de Hombreras
- 4. Suelo Compactado 8. Subbase de Hombreras

1.5.2.2. Clasificación de pavimentos

Como cualquier otro elemento para la construcción, el pavimento cuenta con una clasificación y existe diversos tipos, dependiendo del material con el que se elabore, el peso y otros factores.

Los pavimentos pueden identificarse de 3 tipos, esta puede ser pavimentos flexibles, rígidos y semirrígidos, pero para esta investigación en las siguientes líneas se explica básicamente sobre el pavimento flexible.

1.5.2.2.1. Pavimento flexible

La carpeta está compuesta por una mezcla asfáltica que proporciona la capa de rodamiento; que soporta directamente las solicitaciones del tránsito y aporta las características funcionales. Estructuralmente, este segmento absorbe los esfuerzos horizontales y parte de los verticales, ya que las cargas de los vehículos se distribuyen hacia las capas inferiores por medio de las características de fricción y cohesión de las partículas de los materiales, la carpeta asfáltica se pliega a pequeñas deformaciones de las capas inferiores sin que su estructura se rompa.(Javier & Rebolledo, 2010)

Asimismo, el pavimento flexible está compuesta (ver Figura 2) por base, subbase (capas granulares) y una capa de rodadura constituida con agregados, materiales bituminosos (aglomerantes) y aditivos (de ser el caso). Igualmente, son considerados como capa de rodadura asfáltica: mortero asfáltico, tratamiento superficial bicapa, micro pavimentos, mezclas asfálticas en frío y mezclas asfálticas en caliente (MTC, 2013, pág. 33).

Subbase:

Es la capa de la estructura de pavimento encaminada fundamentalmente a resignar, publicar y repartir con uniformidad las cargas aplicadas a la superficie de rodadura de pavimento, de tal manera que la capa de subrasante la pueda tolerar absorbiendo las alternancias inherentes a dicho suelo que puedan simular a la subbase.

Base:

Es la capa de pavimento que tiene como función primordial, distribuir y transmitir las cargas ocasionadas por el tránsito, a la subbase y a través de ésta a la subrasante, y es la capa sobre la cual se coloca la capa de rodadura

En las combinaciones asfálticas es fundamental obtener un contenido óptimo de asfalto ya que, es este elemento el encargado deberá hacer una membrana que tenga las adecuadas dimensiones para resistir las solicitaciones producto del tránsito y de la intemperie. (Gamboa, 2009).

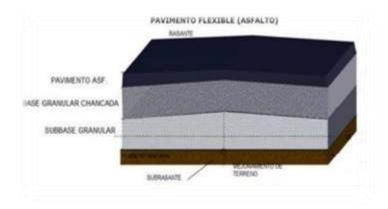


Figura 2: Estructura típica de pavimento flexible

Fuente: (Javier & Rebolledo, 2010)

1.5.2.3. Comportamiento estructural del pavimento de un pavimento

flexible

Un pavimento expuestas a cargas externas se comporta de acuerdo con como las capas estén constituidas. Mencionando además que, la primordial diferencia entre el comportamiento de pavimentos flexibles y rígidos es la forma cómo se reparten las cargas. (Ver Figura 3)

Pero en el caso de los pavimentos flexibles las capas de mejor calidad están en la parte superior donde existe mayor presión, y para tener una idea en los pavimentos rígidos la losa es la capa que soporta las cargas mayores, las demás capas, como la base y la subrasante son prácticamente despreciable.

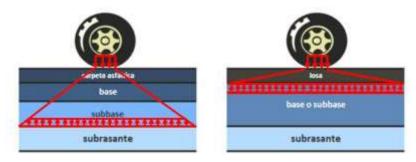


Figura 3: Comportamiento estructural de los pavimentos flexibles y rígidos

Fuente: Rodríguez Velásquez, E. (2009).

1.5.2.4. Ciclo de vida de los pavimentos flexibles

Su ciclo de vida de los pavimentos, (Ver Figura 4) va tomando mucha importancia las tareas de conservación y rehabilitación de pavimentos, porque estos se deterioran con el paso del tiempo y con el tránsito. Una adecuada administración de pavimentos garantiza la preservación de la inversión inicial de manera de prolongar la vida del pavimento.

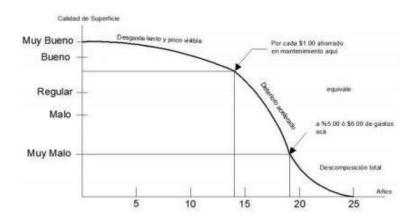


Figura 4: Ciclo de vida de los pavimentos

Fuente: Naciones Unidas, (1994).

1.5.2.5. Etapas de los pavimentos flexibles

En la etapa de los pavimentos flexibles; antes, durante y después de su ciclo de vida, afrontan diferentes procesos que permiten captar a qué están sujetos. Estas están divididas en 3 que son construcción, rehabilitación y mantenimiento.

a) Diseño y construcción

El diseño es la primera etapa que se realiza para posteriormente realizar la construcción del pavimento, para el diseño se realiza una investigación y recopilación de datos en campo, estos datos comprenden el estudio de tráfico, la calidad de materiales, ensayos de laboratorio y otros aspectos generales para poder realizar el diseño.

Lo primero después de tener los datos suficientes, se hará el diseño que consiste en elegir una considerada mezcla de espesores de capas y características de materiales para que los esfuerzos y deformaciones ocasionados por las solicitaciones a que se somete la estructura de pavimento resista dentro de los límites admisibles durante la vida útil de la estructura que están constituyendo.

b) Mantenimiento

En la etapa de mantenimiento se contempla los trabajos, actividades, operaciones, acciones y cuidados rutinarios, periódicos o de emergencia, designado a lograr que la infraestructura vial preserve la condición superficial, funcional, estructural y de seguridad requerida, a efectos de asegurar la satisfacción de los usuarios y en general tomar en consideración de manera adecuada el tránsito. Por razones operativas, el mantenimiento se subdivide en mantenimiento periódico, mantenimiento rutinario y mantenimiento de emergencia (prevención y atención).

1.5.2.6. Fallas en el pavimento

Las fallas en los pavimentos flexibles se deben a diferentes causas, se encuentran debidas a la mala calidad de las mezclas asfálticas, ocasionadas por fallas en los procesos industriales de su fabricación o a los materiales usados en la producción de las mismas, ya sean los áridos de base o súbase o los ligantes, y por los procesos constructivos, por lo que se exige un mayor control de calidad que se debe aplicar desde el diseño y construcción de la estructura.(Gómez Vallejos, 2014)

Determinar si la falla del pavimento, la carga soportada, el agua, la temperatura, los materiales del pavimento o la construcción fueron la causa del daño. Además de la inspección visual.

1.5.2.6.1. Clasificación de fallas

• Según su origen

Según su razón inicial o principal, se tienen los generados por segunda vez de las sobrecargas vehiculares (tránsito) y otros producidos por datos ambientales, diseño, construcción o materiales.

• Según su forma o geometría

Según área o geometría dañada se pueden preferir en fisuras o grietas (escusadas o interconectadas) y en deformaciones (transversales o longitudinales).

• Según la cual se localizan

Se inician los daños se presentan daños superficiales, de interfaz capa granular – capa cementada, capas granulares o subrasante.

Existen algunos puntos que pueden volar el deterioro de la estructura antes de lo previsto, como lo son grandes progresos de temperatura, humedad, errores en los diseños de las capas o de la mezcla asfáltica, falla de taludes, falla de obras de contención, falta de confinamiento lateral, entre otras.(Halliday et al., 2016)

1.5.2.6.2. Tipos de fallas en el pavimento flexible

Existen distintos tipos de fallas y cada uno de ellos indica alguna dificultad que está presentando la carpeta asfáltica o la estructura vial, por eso es de vital y gran importancia hacer una respectiva clasificación de manera adecuada según el tipo de

falla, ya que de lo contrario se podría incidir en sobrecostos por el tratamiento de algún daño de forma inadecuada. Además, los daños sosegados en los pavimentos flexibles se dividen en 5 partes las cuales son fisuras, deformaciones, perdidas de las capas de la estructura, daños superficiales y entre otros daños como se muestran a continuación. Ver Tabla 1 y 2 de los tipos de fallas en el pavimento flexible.

Tabla 1: Tipos de fallas en el pavimento

A	DAÑOS EN LA MEZCLA ASFALTICA	1	Exudación
11		2	Ahuellamiento
		3	Huecos
		4	Desprendimiento de agregados
В	CAPAS SUBYACENTES	5	Abultamiento y hundimientos
D	CAPAS SUBTACENTES		·
		6	Corrugación
		7	Depresión
		8	Grieta de borde
		9	Desnivel Carril/Berma
		10	Grieta longitudinal y transversal
		11	Ahuellamiento
		12	Hinchamiento
С	CONSTRUCTIVOS	13	Exudación
		14	Parcheo
		15	Huecos
		16	Desprendimiento de agregados
D	DETERIORO DE LA CARPETA	17	Piel de cocodrilo
	ASFALTICA"CARGA"	18	Grieta longitudinal y transversal
		19	Pulimiento de agregados
		20	Huecos
		21	Desplazamiento
		22	Grietas parabólicas
		23	Desprendimiento de agregados
E	DETERIORO DE LA CARPETA	24	Agrietamiento en bloque
	ASFALTICA"CLIMA"	25	Grietas de reflexión de clima

Fuente: Elaboración propia (2020)

Tabla 2: Tipos de fallas en el pavimento según su causa

CLASE	TIPO DE DETERIORO	CAUSADO ORIGINALMEN TE POR EL TRANSITO	CAUSADO ORIGINALMEN TE POR LOS MATERIALES EL CLIMA O LA CONSTRUCCIO N
FISURAMIENTOS	Fisuramiento por fatiga	X	
	Fisuramiento en bloque		X
	Fisuramiento de borde		X
	Fisuramiento longitudinal		X
	Fisuramiento transversal		X
	Fisuras parabólicas		X
	Fisuras de reflexión	X	X
DEFORMACIONES	Ahuellamiento	Х	
	Abultamientos		X
	Depresiones		X
	Desplazamientos de borde		X
	Deterioro de parches	X	X
	Expansiones		X
DESPRENDIMIEN	Separación entre calzada y berma		
TOS	Pulimiento de agregados	X	
	Ojos de pescado	X	
	Descaramiento		X
	Perdida de ligante		X
	Perdida de agregado		X
AFLORAMIENTOS	Exudación		X
	Afloramiento de agua		X
	Afloramiento de finos	X	X
OTROS DETERIOROS	Desintegración de los bordes del pavimento	X	
	Escalonamientos entre calzada y berma		X
	Erosión de las bermas		X
	Segregación		x

Fuente:(Javier & Rebolledo, 2010)

1.5.3. Estudio de Trafico

El estudio de la demanda del tráfico vehicular es un aspecto esencial que se necesita conocer con relativa y suficiente precisión, para planificar y diseñar con éxito muchos aspectos de la vialidad y confiabilidad en todos los aspectos, sean social, económico y medio ambiental, entre ellos el diseño del pavimento y el de la plataforma del camino. El respectivo estudio realizado en dos partes de campo y gabinete deberá proporcionar la información del índice medio diario anual (IMDA) para cada el tramo de vía analizado según el tipo de obra a ejecutar. Es conveniente para ello que los Términos de Referencia de cada estudio ya proporcionen la identificación de los tramos homogéneos.

1.5.3.1. Tránsito vehicular

El tránsito vehicular es el fenómeno originado por el flujo de los medios de transportes en una vía, calle o autopista. Y de la misma manera se presenta también con muchas similitudes en otros fenómenos como el flujo de partículas y el de peatones.

1.5.3.2. Congestión vehicular

La congestión vehicular se refiere tanto urbana como interurbana, a la condición de un flujo vehicular que se ha saturado por un exceso en la demanda de las vías, produciendo incrementos en los tiempos de viaje. Este fenómeno se produce comúnmente en las horas punta u horas pico, y resultan frustrantes para los automovilistas, ya que resultan en pérdidas de tiempo y consumo excesivo de combustible.

1.5.4. Métodos de evaluación de pavimentos

1.5.4.1 Método del departamento nacional de infraestructura de transportes (DNIT)

Este sistema está basado en la norma DNIT 006/2003- PRO, se fijan procedimientos y condiciones para la evaluación de la superficie de pavimentos flexibles y semi rígidos, este recurso se realiza a través de un conteo y 57 jerarquías de ocurrencias aparentes y medias de las deformaciones permanentes sobre la huella de rodamiento. (Apolinario 2012:6)

1.5.4.2. Evaluación superficial y rango de pavimento (PASER)

El método Pavement Surface Evaluation and Rating (PASER), desarrollado en el Centro de Información del Transporte de la Universidad de Wisconsin, presenta un índice de fallas basado en una escalera gráfica con jerarquías que varían de 1 a 10, adonde 10 corresponde a las mejores necesidades de calidad. Además, cabe mencionar que, no considera escalas intermedias que permita mayor sensibilidad para calificar la superficie dañada. La evaluación responde a los estándares con los que han sido diseñados los otros procedimientos. (Apolinario 2012:12).

1.5.4.3. Método del PCI

Esta metodología del PCI se fundamenta en los resultados de un inventario visual del estado del pavimento en el cual se establecen clase, severidad y cantidad de cada falla presente. Dada la gran cantidad de combinaciones posibles, el método introduce un factor de ponderación, llamado "valor deducido", para indicar en qué grado afecta a la condición del pavimento cada combinación de deterioro, nivel de severidad y densidad. (Medina)

1.5.4.4. Método VIZIR

Desarrollado en Francia a partir de los años 60 para los pavimentos flexibles, además fue publicado por el laboratorio central de puentes y carreteras "Laboratoire Central des Ponts et Chaussées (LCPC)", esta metodología se experimentó por primera vez en los continentes asiático y africano, la cual es muy conocida en otros países; sin

embargo, en nuestro medio no está muy difundido. El cálculo VIZIR para la cuantificación y la calificación de los daños, a partir de las inspecciones visuales, permite atribuir el estado del pavimento mediante el índice global de degradación que está directamente vinculado a la tarea de mantenimiento de realizar. El objetivo fue desarrollar un índice de deterioro superficial (Is) para carreteras, para establecer un juicio apropiado sobre la condición del pavimento. La aplicación del método VIZIR no es únicamente en Francia, sino también en Europa, África, América del Sur y Central como Argentina, Brasil, Colombia y Costa Rica, adonde sirvió de base al establecimiento de las normas nacionales. Esta metodología se utiliza en por lo fuera de 20 países del mundo.(Imam Ardiansyah, 2019)

La metodología clasifica y cuantifica los deterioros de los pavimentos flexibles en carreteras, considera dos categorías de deterioros: los deterioros del Tipo "A", que caracterizan la condición estructural del pavimento y los deterioros del Tipo "B", en su mayoría de tipo funcional. El método inicia inventariando los defectos, haciendo referencia a su extensión y a su gravedad; para el registro de los deterioros se sugiere realizar los recorridos, con el objeto de tener un detalle aproximado y confiable de las condiciones de la vía. En este tipo de levantamiento, la gravedad del deterioro tiene escasa participación y es sobre todo su extensión la que se tiene en cuenta. La regla consiste en determinar la longitud del pavimento que presenta un defecto del tipo dado y hallar la extensión de esta misma longitud considerando otras clases: menos de 10% de 10 a 50 %, más de 50% de la superficie. El examen visual de los pavimentos, de acuerdo con el método VIZIR, debe ser efectuado de manera continua, para fines de mantenimiento preventivo de pavimentos.(Naranjo, 2014)

CAPÍTULO II. METODOLOGÍA

En este capítulo se presentará la estrategia de investigación utilizada, la caracterización de los materiales utilizados, los instrumentos y la descripción de los métodos y pruebas realizadas. Asimismo, esta investigación se clasifica como aplicada, con el objetivo de comparar la aplicación de las metodologías PCI y VIZIR en la evaluación superficial del del pavimento flexible del Ovalo La Marina hasta km 680 - Trujillo, y en cuanto a los procedimientos, la investigación se clasifica como descriptiva y cuantitativa , realizada a base del Instructivo para la inspección visual y la evaluación de los deterioros de los pavimentos asfálticos de carreteras (VIZIR) del año 2013 y para la evaluación PCI según la metodología normada vigente por el ASTM D – 6433 – 03.

2.1. Tipo de investigación

La investigación es Descriptiva / No experimental, porque tiene como propósito solucionar problemas concretos e identificables, sobre los que se deben intervenir mediante las metodologías PCI y VIZIR. Asimismo, la investigación es de enfoque cuantitativo ya que se recolectan, procesan y analizan datos, los que se transforman en valores numéricos.

Según el nivel de profundidad del fenómeno el cual se aborda se puede decir que la investigación es descriptiva, porque no se alterará la realidad del fenómeno de estudio, solo se obtendrá una información detallada de esta. (Murga & Zerpa, 2019)

2.2.Operacionalización de variables

Se ha identificado la variable dependiente siendo el estado de condición del pavimento y la variable independiente la metodología del PCI (Índice de condición) y VIZIR (Índice de deterioro superficial) del pavimento flexible.

• Variable Independiente

Tabla 3: Operacionalización de variable Independiente del método PCI

Variables	Definición	Definición	Indicadores	Instrumento
	Conceptual	Operacional		
		Dimensiones		
Independiente: Método índice de Condición del Pavimento (PCI)	Metodología que constituye la manera más completa para la evaluación y calificación objetiva de pavimentos flexibles.	Parámetros de evaluación Índice de condición	Identificar y describir las fallas que presenta el pavimento en estudioClase -Severidad -Extensión -Cálculo del valor deducido -Determinar el número máximo admisible del valor deducido -Cálculo del máximo valor deducido corregido -Determinar el PCI -Identificar la	Guía de Observación Guía de Observación Guía de
		pavimento	escala de clasificación PCI	Observación
			-Determinar la condición según la escala	

Tabla 4: Operacionalización de variable Independiente del método VIZIR

Variables	Definición Conceptual	Definición Operacional	Indicadores	Escala de medición	
		Dimensiones			
		Parámetros	-Tipo	- A y B	
	Metodología	de	-Clase	- 18 (Tipo A) y 7 (Tipo	
Independiente: Método de	que constituye	evaluación	-Gravedad	B)	
	la manera más		-Extensión	- 1 – 3	
visión e	completa para la			%	
inspección de	evaluación y				
zonas e	calificación	Índice de	-Índice de	-1-5	
itinerarios en	objetiva de	deterioro	Fisuración	1 3	
riesgo	pavimentos				
(VIZIR)	flexibles.	superficial	-Índice de	- 1 – 5	
, ,			deformación		

Fuente: Elaboración propia (2020)

• Variable Dependiente

Tabla 5: Operacionalización de variable Dependiente del método PCI

Variables	Definición	Definición	Indicadores	Instrumento		
	Conceptual	Operacional				
		Dimensiones				
Dependiente:	Actividad	Evaluación	Parámetros de	Guía de		
Evaluación	que permite	preliminar	evaluación	Observación		
superficial del	conocer la	Evaluación	Índice de condición	_		
pavimento	condición de	detallada	Condición del			
flexible	los		pavimento			
	pavimentos.		1			

Tabla 6: Operacionalización de variable Dependiente del método VIZIR

"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

Variables	Definición	Definición	Indicadores	Escala	de
	Conceptual	Operacional		medición	
		Dimensiones			
Dependiente:	Actividad que	Inventario de	-Registro de fallas	Guía	de
Evaluación	permite	fallas de la vía		Observación	
superficial del	conocer la				
pavimento	condición de	Estado de	-Calificación de la vía	-Bueno	
flexible	los	conservación		-Marginal	
	pavimentos.	de la vía		-Deficiente	

Fuente: Elaboración propia (2020)

Variable independiente: Metodología del PCI y Evaluación VIZIR.

Variable dependiente: El estado de condición superficial del pavimento flexible.

a) Parámetros de evaluación

- Tipos y Clases de fallas de la metodología PCI

Se consideran fallas, codificación y unidad de medida ver Tabla 7, se presenta el resumen de fallas según su tipo en las siguientes tablas:

Tabla 7: Fallas PCI, codificación y unidad del pavimento flexible.

No.	Descripción	Cod.	Unidades
1	Piel de cocodrilo	PC	m2
2	Exudación	EX	m2
3	Agrietamiento en bloque	BLO	m2
4	Abultamientos y hundimientos	ABH	m
5	Corrugación	COR	m2
6	Depresión	DEP	m2
7	Grieta de borde	GB	M
8	Grieta de reflexión de junta	GR	M
9	Desnivel carrilberma	DN	M
10	Grietas longitudinales y transversales	GLT	M
11	Parcheo	PA	m2

"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

12	Agregado pulido	PU	m2
13	Baches	HUE	m2
14	Cruce de vía férrea	CVF	m2
15	Ahuellamiento	AHU	m2
16	Desplazamiento	DES	m2
17	Fisura parabólica o por deslizamiento	GP	m2
18	Hinchamiento	HN	m2
19	Peladura por intemperismo y desprendimiento de agregados	DAG	m2

Fuente: Elaboración propia (2020)

- Tipos y Clases de fallas de la metodología VIZIR

Se consideran fallas tipo A (estructurales) ver Tabla 8 y fallas tipo ver Tabla 9 (funcionales), se presenta el resumen de fallas según su tipo en las siguientes tablas:

Tabla 8: Fallas VIZIR, codificación y unidad del pavimento flexible tipo A

FALLAS TIP	FALLAS TIPO A							
Tipos de fallas	Código	Unidad						
Ahuellamiento	AH	m2						
Depresiones o hundimiento longitudinales	DL	m2						
Depresiones o hundimiento transversales	DT	m2						
Fisuras longitudinales por fatiga	FLF	m						
Fisuras piel de cocodrilo	FPC	m2						
Bacheos y parcheos	В	m2						

Tabla 9: Fallas VIZIR, codificación y unidad del pavimento flexible tipo B

FALLAS TIP	FALLAS TIPO B							
Tipos de fallas	Código	Unidad						
Fisura longitudinal de junta de	FLJ	m						
construcción								
Fisura transversal de junta de	FTJ	m						
construcción								
Fisuras de contracción térmica	FCT	m						
Fisuras parabólicas	FP	m						
Fisura de borde	FB	m						
Ojos de pescado	O	und						
Desplazamiento o abultamiento	DM	m						
Pérdida de la película de ligante	PL	m2						
Pérdida de agregados	PA	m2						
Descascaramiento	D	m2						
Pulimento de agregados	PU	m2						
Exudación	EX	m2						
Afloramiento de mortero	AM	m2						
Afloramiento de agua	AA	m2						
Desintegración de los bordes del	DB	m2						
pavimento								
Escalonamiento entre calzada y berma	ECB	m						
Erosión de las bermas	EB	m						

Fuente: Elaboración propia (2020)

Segregación

- Severidad de la metodología PCI

La severidad PCI representan el nivel de severidad del deterioro en términos de su progresión, ver Tabla 10 de los niveles de severidad.

S

m2

Tabla 10: Niveles de severidad PCI del pavimento según su progresión

NIVELES DE SEVERIDAD

"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

Bajo	L	
Medio	M	
Alto	Н	

Fuente: Elaboración propia (2020)

- Gravedad de la metodología VIZIR

Representan el nivel de severidad del deterioro en términos de su progresión, ver Tabla 11 de los niveles de gravedad.

Tabla 11: Niveles de gravedad VIZIR del pavimento según su progresión

NIVELE	S DE GRAVEDAD
Bajo	1
Regular	2
Alto	3

Fuente: Elaboración propia (2020)

- Extensión de la metodología PCI

La calificación de la extensión estará representada por el número de veces que se repita dicha falla en uno o varios tramos.

- Extensión de la metodología VIZIR

Corresponde al segmento del tramo evaluado que es damnificada por un determinado tipo de deterioro.

b) Índice de deterioro y condición superficial

- Índice de condición de la metodología PCI
- La metodología PCI considera lo siguiente:
- El valor deducido (VD).
- El número máximo admisible del valor deducido
- El máximo valor deducido corregido (VDC)
- Indice de condición (PCI)

Para obtener la condición actual se considera:

- La escala de clasificación PCI
- La condición según la escala.
- Índice de deterioro de la metodología VIZIR

Para el cálculo del Índice de deterioro la metodología VIZIR considera lo siguiente:

- Índice de fisuración (If)
- Índice de deformación (Id)

2.3. Población y muestra (Materiales, instrumentos y métodos)

La población tomada para la presente investigación es todo el pavimento flexible de la Panamericana Norte RUTA al sur del Perú en la Ciudad de Trujillo, compuesta por una longitud de 44 km.

La muestra del presente estudio está compuesta desde el Ovalo La Marina hasta Km 680 – Trujillo. Por lo cual, el tipo de muestreo a utilizar para la aplicación de las metodologías antes mencionadas es no aleatoria, porque la cantidad de kilómetros de pavimento flexible no se medirán por criterios estadísticos, según a la guía técnica y conveniencia del investigador de acuerdo con la importancia de la vía Panamericana Norte para la ciudad de Trujillo.

Teniendo en cuenta la muestra no probabilística y por juicio del investigador, la investigación está compuesta por:

Tabla 12: Dimensiones de la Muestra

Datos							
Longitud Total	1062.00 m						
Ancho de la calzada	6.50 m						
Número de carriles	02						
	. (2020)						

Fuente: Elaboración propia (2020)

2.4. Técnicas e instrumentos de recolección y análisis de datos

Para el desarrollo del trabajo de investigación se utilizó como regla de evaluación inicial un recorrido personal y vehicular, luego la evaluación detallada la cual se

realizó a través de una recopilación de datos para identificarlos, clasificarlos para realizar el correspondiente análisis.

El instrumento de recolección de datos para la investigación se aplicó la inspección visual para el cual se realizó un formato con las exigencias de la metodología PCI y VIZIR, dicho formato se empleó para la toma de datos en campo.

Asimismo, se elaboró una guía de observación para el estudio de tráfico realizado en el tramo evaluado, ver Tabla 12 y una guía para la aplicación de ambas metodologías PCI y VIZIR, Ver Tabla 16 y 20, con la conformidad del asesor profesional a cargo.

- Google Earth Pro
- Cinta Métrica de 5 y 100 metros
- Regla Metálica de 30 cm
- Conos viales o conos de Tráfico
- Chaleco reflectivo
- Casco de seguridad industrial
- Implementos e insumos de bioseguridad para la protección y la prevención del coronavirus (Covid – 19)
- Formato de Campo conteo y clasificación vehicular
- Formato de Campo para metodología PCI
- Formato de Campo para metodología VIZIR

El uso del Google Earth sirvió para crear una ruta del tramo evaluado por las metodologías PCI y VIZIR, una vez ingresado al programa se dio agregar ruta desde el complemento de mapas de Google, luego de eso se ingreso el titulo de la ruta, considerando la ubicación inicial (Ovalo La Marina) y la ubicación final (Km 680), para crear una ruta, y por último guardamos ruta creada. Ver Figura 9, para más información del tramo evaluado.

El procesamiento para la ejecución del caso en estudio se realizó a través de una hoja de cálculo elaborada bajo las obligaciones y requerimientos de la metodología PCI y VIZIR y las disecciones se presentó a través de esquemas de sectorización, histogramas, gráficos de líneas, tablas de registro y gráfico de barras (Microsoft Excel) de información que se obtuvo de la medición de los daños levantados en campo, ver Figura 5 para el procedimiento de la investigación.

PROCEDIMIENTO PARA LA INVESTIGACIÓN ESTUDIO DE METODO PCI METODO VIZIR TRAFICO IDENTIFICAR LAS IDENTIFICAR LAS IDENTIFICAR LA MUESTRAS DE MUESTRA DE VÍA DE ESTUDIO **ESTUDIO ESTUDIO** ELABORAR LA ELABORAR LA ELABORAR LA GUÍA DE GUÍA DE GUÍA DE OBSERVACIÓN OBSERVACIÓN PCI OBSERVACIÓN MEDIR EL VOLUMEN REALIZAR EL REALIZAR EL VEHICULAR EN LEVANTAMIENTO LEVANTAMIENTO CAMPO EN CAMPO EN CAMPO PROCESAR DATOS DE CAMPO INFORME FINAL INTERPRETAR DATOS DE RESULTADOS SEGÚN NORMA APA DISCUSIÓN Y CONCLUSIONES

Figura 5:Procedimiento de la investigación

2.5. Procedimiento

2.4.1. Ubicación

La zona de estudio se encuentra ubicado en el departamento La Libertad de la provincia de Trujillo, distrito de Moche, el trabajo está comprendida desde; el Ovalo La Marina hasta km 680, los datos para la realización del proyecto fueron tomadas en un sentido, con una calzada de dos carriles, y con pavimento flexible.

Figura 6: Departamento de La Libertad del Perú

Figura 7: Provincia de Trujillo del Dep. de La Libertad

Figura 8: Distrito de Moche de la Prov. de Trujillo

2.4.1. Características de la zona de estudio

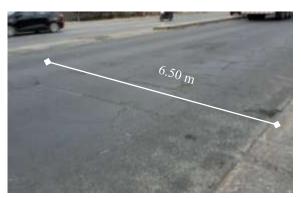
El área de estudio seleccionada para la aplicación se encuentra en la ciudad de Trujillo desde el Ovalo La Marina hasta Km 680, de la ruta al sur del Perú, continuación en la siguiente se muestra el tramo según Google Earth. ver Figura 9 y Figura 10.

Figura 9: Ubicación del pavimento flexible a evaluar

Fuente: Google Earth (2020)
Início 9100657.00 N 718052.00 E
Termino 9099812.00 N 718693.00 E

Datos tomados bajo el sistema geodésico de coordenadas geográficas UTM - WGS 84

De acuerdo con las mediciones realizadas en el sitio se obtuvo lo siguiente:


• Longitud de la vía: 1.062 Metros

• Ancho de calzada: 6.50 Metros

• Número de carriles: 2

• Tipo de pavimento: Flexible

Figura 10: Ancho de calzada a evaluar

Fuente: Elaboración propia (2020)

2.4.2. Aspecto ético

Entre los aspectos éticos para la respectiva evaluación superficial del pavimento flexible por las metodologías PCI y VIZIR, podemos mencionar que: los procedimientos han sido realizado bajo mi persona (Jorge Arturo Jimenez Marreros), con sus respectivo citado correctamente y precisando sus referencias bibliográficas,

sin alterar ni modificar la propiedad intelectual de los autores, esto es realizado bajo la orientación del Asesor Ing. Sheyla Cornejo Rodríguez. Por ello, los resultados son de vera confiabilidad y viabilidad técnicas según las guías de observación tomadas a continuación para culminar con éxito la presente investigación.

2.4.3. Conteo de tráfico vehicular

Se realizaron diversos trabajos de campo, siendo lo más importante la identificación de los diferentes tipos de vehículos de la vía, incluyendo aquellos de carga transportada y pasajeros. Además de la demanda actual, precisa del Índice Medio Diario (IMD), que para casos prácticos puede representar su equivalente anual, es decir el IMDA; y según metodología AASHTO.

El conteo de tránsito en los días laborables (incluyendo un sábado o un domingo) por un período consecutivo de 14 días, en la mañana y tarde (+sábado, domingo), como mínimo, en una semana que haya sido de circulación normal. Los conteos serán volumétricos y clasificados por tipo de vehículo, ver Tabla 12.

Sin embargo, se ha encontrado limitaciones debido a coyuntura del Covid – 19, disminuyendo las horas del conteo vehicular de 24 hrs contados en campo a 15 hrs contadas, pero sin embargo para cumplir la normativa vigente en el ministerio de transporte y comunicaciones, el tiempo de conteo faltante desde las 21 hrs hasta las 05 hrs, se ha tomado valores en referencia al conteo vehicular realizado en las horas permitidas y además con la asesoría del profesional a cargo.

Tabla 13: Guía de Observación de conteo y clasificación vehicular

calle													Ubicación					
od Estación													Semido					_
stación													Fecha					_
201011		-				ı							1.9018					
	Auto	Cmta pick	Cmta	Omr	ibes		Carrion			Semi	traylers	- 0		Tra	ylers			1
Hora/	movil	up	Rural	2E	3E	2E	3E	4E	25!/252	253	351 /352	>=353	212	213	312	>=313	Total	
Hora: Descripcion				Citie						KIV T .		111 m4		H11		100000000000000000000000000000000000000	Total	*
00-01					35.74													
01-02																		
02-03																		
03-04																		
04-05																		
05-06						-			No.			-						
08-07							100		1 1/4	0	-	1						
07-08							100			400	4	9						
08-09											4							
09-10							-	2	7. 7	-	7							
10-11																		
11-12																		
12-13																		
13-14																		
14-15																		
15-16																		
16-17																		
17-18																		
18-19																		
19-20																		_
20-21																		
21-22																		
22-23																		
23-24																		
TOTAL 5											-							

Fuente: Ministerio de Transporte y Comunicaciones, (DG 2013)

2.4.2.1 Determinación del Índice Medio Diario y Semanal

Se llevo a cabo el conteo diario entre mañana y tarde, durante el periodo de dos semanas, obteniendo información diaria para el estudio de tráfico, ver ecuación 1.

$$IMDs = \frac{(VDL1 + VDL2 + VDL3 + VDL4 + VDL5 + VDSAB + VDDOM)}{7}x F. C. E$$

Ecuación 1: Calculo para Índice Medio Diario Semanal

Fuente: Ministerio de Transporte y Comunicaciones, (2013)

Donde:

Vdl1, *Vdl2*, *Vdl3*, *Vdl4* y *Vdl5*: Volúmenes de tráfico registrados en los días laborables.

Vdsab: Volumen de tráfico registrado el sábado

Vddom: Volumen de tráfico registrado el sábado

Fce: Factor de corrección estacional

Imd semanal: Índice medio diario semanal

2.4.2.2. Factor de Corrección Estacional

Se realizó el conteo vehicular durante dos semanas continuos entre mañana y tarde, obtenida la observación directamente en el punto de conteo definido para la vía urbana en estudio, está ubicada en el parqueo del Hospital Oncológico de Trujillo.

Representativo para la estación en estudio del Ovalo La Marina hasta Km 680 - Trujillo, se promediarán los valores representativos, considerando como factor de corrección mensual el valor de 1.0.

2.4.4. Metodología de evaluación PCI

Esta metodología PCI (Pavement Condition Index) es un recurso que consiste en la definición de la condición del pavimento a través de inspecciones visuales, identificando la clase, severidad y cantidad de fallas encontradas, siguiendo una metodología de fácil implementación y que no requiere de herramientas especializadas, pues se mide la condición del pavimento de manera indirecta (Del et al., 2014)

El PCI es un índice algoritmo que varía desde cero (0), para un pavimento en mal estado, incluso cien (100) para un pavimento en excelentes condiciones. Existiendo rangos del PCI los cuales tienen su equivalente relación cualitativa de la condición del pavimento tal como se muestra, Ver 14.

Tabla 14: Clasificación del pavimento según PCI

P	CI	CLASIFICACIÓN
85-	-100	Excelente
70	-85	Muy bueno
55	-70	Bueno
40	-55	Regular
25	-40	Malo
10	-25	Muy malo
0-	-10	Fallado

Fuente: (ASTM 6433, 2003)

La primera etapa corresponde al trabajo de campo en el cual se identificarán los daños teniendo en cuenta la clase, severidad y extensión de estos. Esta información se registra en formatos adecuados para tal fin. En la tabla 16 y 23, se observa las guías de observación para la inspección de pavimentos asfálticos.

2.4.3.1. Unidades de muestras

Las unidades de muestras se dividen de acuerdo con la longitud de tramo a evaluar y al ancho de la calzada. Además, las carreteras con capa de rodadura asfáltica y ancho menor que 7.30 m: El área de la unidad de muestreo debe estar en el rango 230.0 ± 93.0 m². En la tabla 16 se presentan algunas relaciones longitud – ancho de calzada pavimentada.

Tabla 15: Longitud de la unidad de muestreo

Ancho de Calzada (m)	Longitud de la unidad de muestreo (m)
5.00	46.00
5.50	41.80
6.00	38.30
6.50	35.40
7.30 (máximo)	31.50

Fuente: Procedimiento estándar para la inspección del índice de condición del pavimento en caminos y estacionamientos ASTM D6433-03

Tabla 16: Guía de Observación 1 de las fallas de la metodología PCI

Fuente: Elaboración propia (2020)

2.4.3.2. Analizar las unidades de muestras para las metodologías PCI y VIZIR

Para el presente proyecto de tesis se ha realizado el seccionamiento de una vía que compone del Ovalo La Marina hasta km 680.

Tabla 17: Descomposición de la Red Vial

	Jerarquización				
Tramo	Panamericana Norte				
Sección	Desde Ovalo La Marina hasta km 680				

Fuente: Elaboración propia (2020)

Tabla 18:Dimensiones del Tramo de estudio

Datos						
Longitud Total	1062.00 m					
Ancho de la calzada	6.50 m					
Número de carriles	02					
E						

Fuente: Elaboración propia (2020)

La tabla 19, muestra las dimensiones de la vía en inspección, estas sirven para las metodologías PCI y VIZIR del tramo de evaluación tiene una longitud de 1062 metros.

 a) Se procede a detallar los datos de la muestra y se determina el número total de unidades de muestreo.

Tabla 19:Dimensiones de la sección

Datos						
Longitud de la sección	1062.00 m					
Ancho de la sección	6.50 m					
Longitud de U.M	35.40 m					
Número de unidades	30					

Fuente: Elaboración propia (2020)

Para la respectiva evaluación de nuestro proyecto de investigación se deberá inspeccionar todas las unidades; sin embargo, de no ser posible, el número mínimo de unidades de muestreo que deben evaluarse se obtiene mediante la Ecuación 2, la cual produce un estimado del PCI ± 5 del promedio verdadero con una confiabilidad del 95%.

Ecuación 2: Determinación de las unidades de muestreo para la evaluación

$$n = \frac{Nx\sigma^2}{\frac{e^2}{4}x(N-1) + \sigma^2}$$

$$n = \frac{30x10^2}{\frac{5^2}{4}x(30-1) + 10^2} = 10.67$$
 $n = 11 \text{ und}$

Donde:

n: Número mínimo de unidades de muestreo a evaluar.

N: Número total de unidades de muestreo en la sección del pavimento.

e: Error admisible en el estimativo del PCI de la sección (e = 5%).

σ: Desviación estándar del PCI entre las unidades, dado que para pavimento asfáltico se asume 10.

Si el número mínimo de unidades a evaluar es menor que cinco (n < 5), todas las unidades.

2.4.3.3. Selección de las unidades de muestras

El número de unidades se determinará mediante la división de la longitud de sección y la longitud de unidad de muestreo, dicho valor será aproximado al mayor entero.

$$N = \frac{1062 \, m}{35.40 \, m} = 30.00 \qquad N = 30 \, und.$$

Ecuación 3: Número de unidades

Se recomienda que las unidades elegidas estén igualmente espaciadas a lo largo de la sección del pavimento y que la primera de ellas se elija al azar. Para determinar el intervalo se empelará la ecuación 4.

$$i = \frac{N}{n}$$

$$i = \frac{30}{11} = \qquad \qquad i = 2$$

Ecuación 4: Unidades de muestreo

Donde:

n: Número mínimo de unidades de muestreo a evaluar.

N: Número total de unidades de muestreo en la sección del pavimento.

i: Intervalo de muestreo, se redondea al número entero inferior.

El inicio al azar se selecciona entre la unidad de muestreo 1 y el intervalo de muestreo i.

2.4.3.4. Cálculo del PCI de las unidades de muestras

La información sobre los daños se utiliza para calcular el PCI. El cálculo puede ser manual o computarizado y se basa en los "Valores Deducidos" de cada daño de acuerdo con la cantidad y severidad reportadas.

Etapa 1. Cálculo de los valores deducidos:

a. Totalice cada tipo y nivel de severidad de daño y regístrelo en la columna total del formato PCI. El daño puede medirse en área, longitud o por número según su tipo.

- b. Divida la cantidad de cada clase de daño, en cada nivel de severidad, entre el área total de la unidad de muestreo y exprese el resultado como porcentaje. Esta es la densidad del daño, con el nivel de severidad especificado, dentro de la unidad en estudio.
- c. Determine el valor deducido para cada tipo de daño y su nivel de severidad mediante las curvas denominadas "Valor Deducido del Daño" que se adjuntan al final de este documento, de acuerdo con el tipo de pavimento inspeccionado.

Etapa 2. Cálculo del Número Máximo Admisible de Valores Deducidos (m):

- a. Si ninguno o tan sólo uno de los "Valores Deducidos" es mayor que 2, se usa el "Valor Deducido Total" en lugar del mayor "Valor Deducido Corregido", CDV obtenido en la Etapa 4. De lo contrario, deben seguirse los pasos 2.b. y 2.c.
- **b.** Liste los valores deducidos individuales deducidos de mayor a menor.
- c. Determine el "Número Máximo Admisible de Valores Deducidos" (m), utilizando la Ecuación 7:

$$m_i = 1.00 + \frac{9}{98} (100 - HDV_i)$$

$$m_i = 1.00 + \frac{9}{98} (100 - 34)$$

$$m_i = 7.52$$

Ecuación 5: Número máximo admisible de valores deducidos

El número máximo admisible calculado anteriormente se realizó en base a los valores deducidos de la muestra 1, para mayor detalle ver anexo 2, tabla 42.

Donde:

mi: Número máximo admisible de valores deducidos.

HDV: El mayor valor deducido individual para la unidad de muestra

Etapa 3. Cálculo del "Máximo Valor Deducido Corregido", CDV.

- **a.** Determine el número de valores deducidos, q, mayores que 2.0.
- b. Determine el "Valor Deducido Total" sumando TODOS los valores deducidos individuales.

- **c.** Determine el CDV con q y el "Valor Deducido Total" en la curva de corrección pertinente al tipo de pavimento.
- **d.** Reduzca a 2.0 el menor de los "Valores Deducidos" individuales que sea mayor que 2.0 y repita las etapas 3.a. a 3.c. hasta que q sea igual a 1.
- e. El máximo CDV es el mayor de los CDV obtenidos en este proceso.

Etapa 4. Calcule el PCI de la unidad restando de 100 el máximo CDV obtenido en la etapa 3.

2.4.3.5. Cálculo del PCI de una sección de pavimento.

Una sección de pavimento abarca varias unidades de muestreo. Si todas las unidades de muestreo son inventariadas, el PCI de la sección será el promedio de los PCI calculados en las unidades de muestreo.

Si se utilizó la técnica del muestreo, se emplea otro procedimiento. Si la selección de las unidades de muestreo para inspección se hizo mediante la técnica aleatoria sistemática o con base en la representatividad de la sección, el PCI será el promedio de los PCI de las unidades de muestreo inspeccionadas. (Vásquez, L, 2002)

Tabla 20: Guía de Observación 2 de los parámetros de la metodología PCI

No.	VALORES DEDUCIDOS				TOTAL	q	VD CORREGIDO	CALIFICACION		
								MAX CVD		VALOR PCI

Fuente: Elaboración propia (2020)

2.4.4. Metodología de evaluación VIZIR

La zona de estudio está compuesta por la vía de entrada del Ov. La Marina hasta Km 680 – Trujillo, con una longitud total de 1062 metros, trabajando solo un sentido, toda la avenida cuenta con un pavimento flexible que se caracteriza por sufrir muchos daños debido a su abundante tráfico de vehículos pesados y livianos que transitan por la zona, ver Figura 14 y 15.

Se definirá el tramo de la carretera, en donde se realizará el estudio según el método VIZIR, separando en secciones de 35.40 metros para cada unidad de muestra, partiendo del Ovalo La Marina hasta Km 680 al Sur del Perú, siendo un pavimento flexible todo el tramo de estudio, con una wincha de (100 metros), se realizará la medida de la primera sección, separada provisional por conos.

Definido el tramo y la calzada a evaluar se procederá a identificar desde el primer tramo hasta el último tramo, según la metodología VIZIR, apoyándonos de las tablas degradación del TIPO A y degradación DEL TIPO B, ver Tabla 8 y 9.

Identificado los deterioros se procede a la evaluación individual tratando de identificar una falla estructural, cuyo origen es la degradación de una o más capas en la calzada; si se trata de una falla funcional, son asociados a la capa asfáltica superficial, aunque no guardan relación con el comportamiento estructural de la calzada, sí le impiden cumplir la función prevista.

Definido el tipo de falla se procederá a evaluar la gravedad de los deterioros, no dejando de lado el nivel de gravedad del deterioro, apoyándonos en las tablas nivel de gravedad de los deterioros del tipo A y nivel de gravedad de los deterioros del tipo B, ver Tabla 17 y 18. (Marrugo, C 2014)

Tabla 21: Niveles de gravedad de los deterioros del tipo A

		NIVEL DE GRAVEDAD			
DETERIORO	1	2	3		
Ahuellamiento y otras deformaciones estructurales	Sensible al usuario, pero poco importante. Flecha< 20 mm	Deformaciones importantes. Hundimientos localizados ahuellamientos. 20 mm ≤ Flecha ≤ 40 mm	Deformaciones que afectan de manera importante la comodidad y la seguridad de los usuarios Flecha > 40 mm		
Grietas longitudinales por fatiga	Fisuras finas en la banda de rodamiento	Fisuras abiertas y a menudo ramificadas	Fisuras muy ramificadas y/o muy abiertas (grietas). Bordes de fisuras ocasionalmente degradados		
Piel de cocodrilo	Piel de cocodrilo formada por mallas grandes (> 500 mm) con fisuración fina, sin pérdida de materiales	Mallas más densas (< 500 mm), con pérdidas ocasionales de materiales, desprendimientos y ojos de pescado en formación.	Mallas con grietas muy abiertas y con fragmentos separados. Las mallas son muy densas (< 200 mm), con pérdida ocasional o generalizada de materiales		
		Intervenciones liga	das a deterioros tipo A		
Bacheos y parcheos	Intervencion de superficie ligada a deterioros del tipo B	Comportamiento satisfactorio de la reparacion	Ocurrencia de fallas en las zonas reparadas		

Fuente: Instituto Nacional de Vías – Anexo B (2013)

Tabla 22: Niveles de gravedad de los deterioros del tipo B

NIVEL DE GRAVEDAD						
DETERIO)RO	1	INIVE	2	i	3
DETERM	, KO					
Grieta longitudina construc		Fina y única	Ancha (10 mm o más) sin desprendimiento o Fina ramificada		Ancha con desprendimientos o ramificada	
Grietas de contrac	ción térmica	Fisuras finas	Anchas sin desprendimientos, o finas con desprendimientos o fisuras ramificadas		Anchas con desprendimientos	
Grietas para	bólicas	Fisuras finas	Anchas sin d	esprendimientos	Anchas con d	lesprendimientos
Grietas de borde		Fisuras finas	Anchas sin desprendimientos		Anchas con desprendimientos	
Abultamie	entos	F< 20 mm	20 mm ≤ F ≤ 40 mm		F > 40 mm	
	cantidad	<5	5 a 10 <5		>10	5 a 10
Ojos de pescado* (por cada 100 metros)	Diametro(mm)	≤300	≤300	≤1000	≤300	≤1000
Desprendimientos: película de ligante agregad	• Pérdida de	Perdidas aisladas	Perdidas continuas		Perdidas generalizadas y muy marcadas	
Descascaramiento	Prof.(mm)	≤25	≤25 ≤25		>25	
Descascaramiento	Area(m2)	≤0.8	>0.8 ≤0.8		>0.8	
Pulimento ag	regados		No se definen niveles de gravedad			
Exudaci	on	Puntual	Continua sobre la banda de rodamiento		Continua y muy marcada	
Afloramientos: • de m	ortero • de agua	Localizados y apenas perceptibles	Intensos		Muy intensos	
Desintegración de los bordes del pavimento		Inicio de la desintegración	La calzada ha sido afectada en un ancho de 500mm o mas		Erosión extrema que conduce a la desaparición del revestimiento asfáltico	
Escalonamiento entre calzada y berma		Desnivel de 10 a 50 mm	Desnivel enti	re 50 y 100 mm	Desnivel superiror a 100 mm	
Erosion de las bermas		Erosión incipiente	Erosión j	pronunciada	La erosión pone en peligro la estabilidad de la calzada y la seguridad de los usuarios	

Fuente: Instituto Nacional de Vías – Anexo B (2013)

Luego se definir la gravedad del deterioro se procederá a realizar las medidas y conteos, con los deterioros presentes, según el formato de la hoja de registro, ver Tabla 23, elaborado para cada unidad de muestra.

Tabla 23: Hoja de registro de campo de la metodología VIZIR.

Fuente: Elaboración propia (2020)

Después de identificar los deterioros del tramo de estudio se procesará la información, cabe recalcar que un deterioro identificado presenta diferentes valores de gravedad, haciendo un cálculo para la gravedad del deterioro.

$$G = L1 + SL2 + \frac{3L3}{L1} + L2 + L3$$

Ecuación 6: Valor ponderado de la condición global del pavimento

Donde:

G: Valor ponderado para la gravedad del deterioro.

Li: Longitud ocupada por el deterioro con gravedad "i"

De dicha ecuación se obtuvo un valor para la gravedad del deterioro el cual se aproximó según la tabla siguiente, ver Tabla 24.

Tabla 24: Aproximación Grado de Deterioro

Aproximación GRADO DE DETERIORO							
SI G < 1.5	Se toma	1					
SI $1.5 \le G < 2.5$	Se toma	2					
SI G \geq 2.5	Se toma	3					

Teniendo el nivel de gravedad para los deterioros identificados con diferentes niveles de gravedad se procederá a llenar las ultimas columnas del formato.

Se llenará el formato 1, luego vamos a llenar el formato 2 de registro, en este formato se anotarán los deterioros detectados, donde será; el área afectada, nivel de gravedad y su extensión en (%), determinaremos el índice de fisuración o índice de deformación (ld).

En la hoja de registro número 2, ver Tabla 21, se tomará la información de su deterioro como área, gravedad, extensión, para así realizar su respectiva calificación de la vía según su tipo y unidad de muestra en el tramo estudiado.

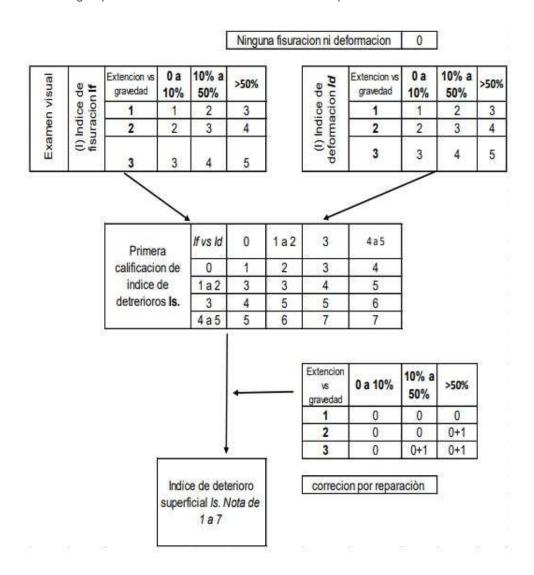
Tabla 25: Hoja de registro de parámetros de los deterioros detectados

TIPO	No.	AREA (m2)	GRAVEDAD P	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION

Fuente: Elaboración propia (2020)

2.4.4.1. Flujo grama para el cálculo del Índice de Deterioro Superficial

Flujo para el cálculo del índice de deterioro superficial (Is.): Para el cálculo del Is se combina los índices de fisura (If) e índice de deformación (Id), los que entregan un primer índice de calificación del pavimento, el cuál debe ser corregido en función a la extensión y gravedad.


Obtenido el índice de fisuración (lf) e índice de deformación (ld), según sea el caso, si encontramos varios valores se procede a promediar hasta llegar a un solo valor de fisuración y deformación.

Determinados los índices de fisuración y deformación y apoyándonos nuevamente en la figura del índice de deterioro superficial, se obtuvo el índice de deterioro superficial (Is).

Encontraremos el deterioro superficial (Is), el índice de reparación (Ir), apoyándonos la figura del índice de deterioro superficial y el índice de deterioro superficial definitivo (Is), ver Tabla 22.

Tabla 26: Guía metodológica para el diseño de obras de rehabilitación de pavimentos Asfálticos de carreteras

Fuente:(Amaral et al., 2013)

La metodología VIZIR plantea dos índices para calificar el deterioro superficial de un pavimento: el índice de fisuración (If), referido a las fisuras de tipo funcional, y el índice de deformación (Id), referido a las deformaciones de tipo estructural, ellos permiten determinar, de acuerdo con la extensión y gravedad, un valor numérico llamado índice de deterioro superficial (Is) (Apolinario 2012:18).

- Índice de Fisuración (If): El cálculo del índice de fisuración, el cual depende de la gravedad y la extensión de las fisuras de tipo funcional en cada zona evaluada; que tengan relación con la fisuración del pavimento, es por eso por lo que se hace la cuantificación del área dañada por este tipo de fallas (Apolinario 2012:18).
- Índice de Deformación (Id): El índice de deformación, el cual también depende de la gravedad y extensión de las deformaciones de origen estructural; es decir se mide en función de la extensión y gravedad de las fallas del Tipo A, que impliquen deformación del pavimento; llámese: Ahuellamientos, depresiones longitudinales y transversales (Apolinario 2012:19).

Tabla 27: Valores de índice de deformación

ÍNDICE DE	EXTENSION / GRAVEDAD	0 a 10%	10 a 50%	> 50%
DEFORMACIÓN ID	1	1	2	3
	2	2	3	4
	3	3	4	5

Fuente: Instituto Nacional de Vías (2013)

• Índice de Deterioro Superficial (Is) Se define de manera numérica la condición general de la superficie de pavimento y suministra pautas para la elección de alternativas de intervención. La combinación del If e Id, permite obtener lo que se conoce como la primera nota de degradación, valor que varía entre uno y siete, siendo mayor a medida que la estructura tenga más cantidad y/o gravedad y extensión de daños; la primera nota de degradación debe ser corregida de acuerdo con la extensión y gravedad de las intervenciones a la estructura de pavimento que se hayan encontrado en el tramo de análisis. (Apolinario 2012:19), ver Tabla 24.

Tabla 28: Primera calificación de índice de deterioro

PRIMERA CALIFICACIÓN								
)E	LD / LF	0	1 2	3	4 5			
	0	1	2	3	4			
	1 2	3	3	4	5			
	3	4	5	5	6			
Ú DI	4 5	5	6	7	7			

Fuente: Instituto Nacional de Vías (2013)

2.4.4.2. Clasificación del estado de la superficie del pavimento - VIZIR.

Los valores del "Is" de 1 y 2: Representan pavimentos con limitados fisuramientos deformaciones, que presentan un buen aspecto general y que, probablemente, no requieran en el momento más que acciones de mantenimiento rutinario (Apolinario 2012:19).

Los valores del "Is" 3 y 4: Representan pavimentos con fisuramientos de origen estructural y pocas o ninguna deformación, así como pavimentos sin fisuramientos, pero con deformaciones de alguna importancia; su estado superficial se considera regular y lo suficientemente degradado como para poner en marcha tratamientos de rehabilitación de mediana intensidad (Apolinario 2012:19).

Y los valores del "Is" 5, 6 y 7: Son indicativos de pavimentos con abundantes fisuramientos y deformaciones de origen estructural, cuyo deficiente estado superficial posiblemente exija la ejecución de trabajos importantes de rehabilitación (Apolinario 2012:19).

Se determinará la calificación del tramo en evaluación, ayudándonos con la tabla del estado de la superficie del pavimento, se determinó si el estado de conservación del tramo evaluado es bueno, regular o deficiente, ver Tabla 12.

Tabla 29: Rangos de calificación VIZIR

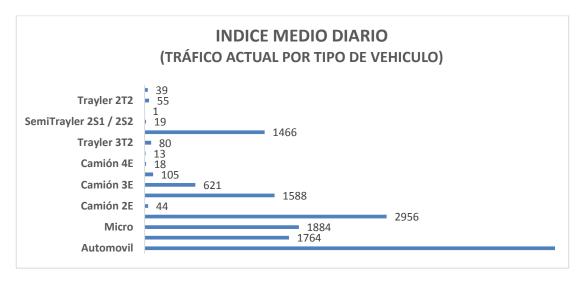
RANGOS DE CALIFICACIÓN DEL VIZIR			
RANGO	CALIFICACIÓN		
1 y 2	BUENO		
3 y 4	REGULAR		
5,6 y 7	DEFICIENTE		

Fuente: Instituto Nacional de Vías (2013)

CAPÍTULO III. RESULTADOS

3.1. Análisis del volumen de tránsito vehicular

De los análisis realizados en la tabla 30, se muestra la comparación de los valores de IMD según el tipo de vehículo, como se puede observar claramente una distribución significativa del tráfico actual según tipo de vehículo, mostrando un valor de 52.21% ocupada por el vehículo tipo automóvil, y el de menor valor con 0.01% el tipo de vehículo Trayler 2T3.

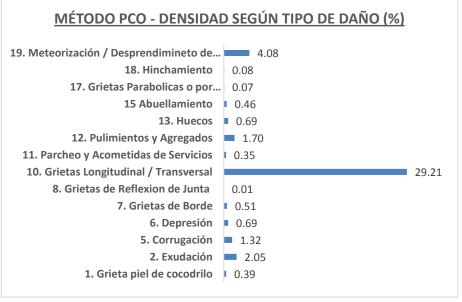

Tabla 30: Trafico actual por tipo de vehículo

Tipo de Vehículo	IMD	Distribución (%)
Automóvil	12210	53.41
Camioneta Pick up	1764	7.72
Camioneta Rural	1884	8.24
Micro	2956	12.93
Bus Grande	44	0.19
Camión 2E	1588	6.95
Camión 3E	621	2.72
Camión 4E	105	0.46
SemiTrayler 2S1 / 2S2	18	0.08
SemiTrayler 2S3	13	0.06
SemiTrayler 3S1 / 3S2	80	0.35
SemiTrayler >=3S3	1466	6.41
Trayler 2T2	19	0.08
Trayler 2T3	1	0.00
Trayler 3T2	55	0.24
Trayler >=3T3	39	0.17
IMD	22863	100.00

Fuente: Elaboración propia (2020)

Por último, se muestra un gráfico del índice medio diario, que nos indica que el tráfico actual por tipo automóvil es el de mayor cantidad con un numero de 12210 vehículos, con una gran diferencia de más de 5000 de los otros tipos de vehículos, que indica un alto tránsito vehicular debido a que el IMD supera los 6000 veh/día según su clasificación de la carretera siendo una autopista de primera clase.

Gráfico 1: Índice medio diario



Fuente: Elaboración propia (2020)

3.2. Análisis de las fallas en el pavimento flexible según la metodología Pci

Para la identificación de fallas se tuvo en cuenta los tipos de fallas establecidos por el Manual de Índice de condición de pavimento y la norma ASTM y se siguió los procedimientos mencionados en el capítulo II. Además, las unidades de muestras son de 34.50 metros con un ancho de 6.50m., para el tramo de 1062m se utilizaron 30 unidades de muestreo, A continuación, se relacionan los daños encontrados dentro del tramo evaluado.

Gráfico 2: Fallas encontrados según la metodología Pci

Según la metodología Pci existen 19 diferentes tipos de daños en el pavimento, de las cuales 14 han sido detectados en esta investigación, como grieta piel de cocodrilo, exudación, corrugación, depresión, grietas de borde, grieta de reflexión de junta, grietas longitudinales y transversales, parcheos y acometidas de servicios, pulimientos y agregados, huecos, ahuellamiento, grietas parabólicas o por deslizamiento, hinchamiento y desprendimiento de agregados.

En la gráfica 3, se ve claramente el predominio del daño de grietas longitudinales y transversales con una densidad de 29.21% y las grietas de reflexión de junta es la falla que menor incidencia con un valor mínimo de 0.01% del tramo evaluado.

3.3. Fallas en el pavimento flexible según metodología Vizir

Para la identificación de fallas se tuvo en cuenta los tipos de fallas establecidos por el Manual de Invias Anexo B y se siguió los procedimientos mencionados en el capítulo II e igualmente para las 30 unidades de muestras del tramo de 1062 m con un ancho de 6.50m. Asimismo, en la siguiente gráfica se relacionan los daños encontrados dentro del tramo evaluado.

MÉTODO VIZIR - EXTENSION SEGÚN TIPO DE DAÑO (%) 21. Desintegración de los bordes del... 0.04 18. Exudación 2.26 17. Pulimiento de agregados 16. Descaramiento 0.14 15 Perdida de agregados 3.87 14. Perdida de la pelicula de ligante 0.26 12. Ojos de borde 0.77 11. Fisuras de borde 0.29 6. Bacheos y Parcheos 0.26 5. Fisuras piel de cocodrillo 0.13 4. Fisuras long. Por fatiga 32.22 1. Ahuellamiento 0.36

Gráfico 3: Fallas encontrados según la metodología Vizir

Según la metodología Vizir existen 24 diferentes tipos de daños en el pavimento, de las cuales 12 han sido detectados en esta investigación, como ahuellamiento, fisuras longitudinales por fatiga, fisura piel de cocodrilo, bacheos y parcheos, fisuras de borde, ojos de borde, perdida de la película ligante, perdida de agregados, exudación y desintegración de los bordes del pavimento.

De todas las fallas encontradas las fisuras longitudinales por fatiga ocupan 32.22% de todas las muestras tomadas, siendo un valor considerable, a comparación de las otras fallas, asimismo la falla por desintegración de los bordes del pavimento ocupa un valor mínimo de 0.04%.

3.4. Parámetros de la metodología Pci

Mediante la aplicación de esta metodología podemos observar mediante la tabla 31, el resumen según la densidad y la severidad de los daños encontrados en tramo de 1062 metros.

Tabla 31: Resumen de daños según densidad vs severidad por la metodología Pci

	High	Medium	Low
1. Grieta piel de cocodrilo	0.26	0.13	0.00
2. Exudación	0.00	2.05	0.00
5. Corrugación	0.36	0.96	0.00
6. Depresión	0.43	0.26	0.00
7. Grietas de Borde	0.00	0.51	0.00
8. Grietas de Reflexión de Junta	0.00	0.00	0.01
10. Grietas Longitudinal / Transversal	6.10	19.58	3.77
11. Parcheo y Acometidas de Servicios	0.00	0.35	0.00
12. Pulimientos y Agregados	0.00	0.00	1.70
13. Huecos	0.27	0.44	0.01
15 Abuellamiento	0.46	0.00	0.00
17. Grietas parabólicas o por Deslizamiento	0.00	0.00	0.07
18. Hinchamiento	0.00	0.08	0.00
19. Meteorización / Desprendimiento de agregados	1.60	2.48	0.00

En el grafico 5 a continuación se puede observar que la falla de grietas longitudinales y transversales es la que más predomina con un valor de 19.58% de densidad con severidad high, y de la misma manera podemos ver que en promedio la severidad High y Medium (Alto y Medio) son los que más se ha encontrado en el tramo estudiado.

Y por otro lado el grado de severidad Low (baja), no es muy predominante debido que sus valores de densidad supera el 3.77% del tramo de 1062 metros, y en un valor promedio.

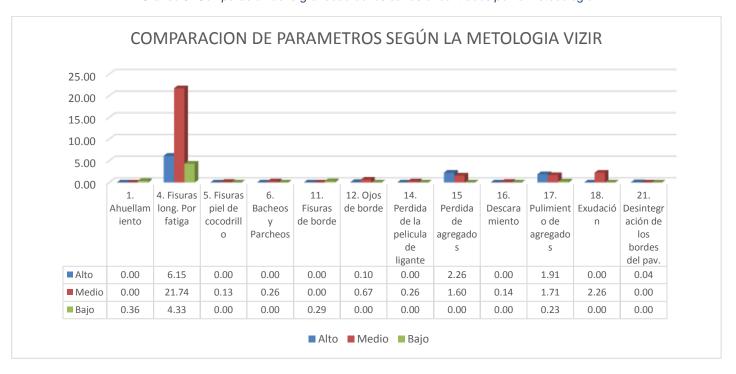
COMPARACION DE PARAMETROS SEGÚN LA METODOLOGIA PCI 20.00 18.00 16.00 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 2. 7. 1. 5. 6. 8. 10. 11. 12. 13 15 17. 18. 19. Grieta Exudaci Corruga Depresi Grietas Grietas Grietas Parcheo Pulimie Huecos Abuella Grietas Hincha Meteori piel de ción ón de de Longitu ntos y miento Paraboli miento zación / cocodril Borde Reflexio dinal / Acomet Agrega cas o Despre 0 n de Transve idas de dos por ndimine Junta rsal Servicio Desliza to de miento agregad OS High 0.26 0.00 0.36 0.43 0.00 0.00 6.10 0.00 0.00 0.27 0.46 0.00 0.00 1.60 0.26 0.00 0.35 0.00 0.00 Medium 0.13 2.05 0.96 0.51 19.58 0.44 0.00 0.08 2.48 Low 0.00 0.00 0.00 0.00 0.00 0.01 3.77 0.00 1.70 0.01 0.00 0.07 0.00 0.00 ■ High ■ Medium ■ Low

Gráfico 4: Comparación de la severidad de los danos encontrados por la metodología Pci

Fuente: Elaboración propia (2020)

3.5. Análisis de los parámetros de la metodología Vizir

En la tabla 32, se muestra la extensión (%) del tramo evaluado, y los parámetros de gravedad encontrados en los 12 daños por la metodología Vizir.


Tabla 32: Resumen de daños según extensión vs gravedad por la metodología Vizir

	Alto	Medio	Bajo
1. Ahuellamiento	0.00	0.00	0.36
4. Fisuras long. Por fatiga	6.15	21.74	4.33
5. Fisuras piel de cocodrillo	0.00	0.13	0.00
6. Bacheos y Parcheos	0.00	0.26	0.00
11. Fisuras de borde	0.00	0.00	0.29
12. Ojos de borde	0.10	0.67	0.00
14. Perdida de la película de ligante	0.00	0.26	0.00
15 Perdida de agregados	2.26	1.60	0.00
16. Descaramiento	0.00	0.14	0.00
17. Pulimiento de agregados	1.91	1.71	0.23
18. Exudación	0.00	2.26	0.00
21. Desintegración de los bordes del pav.	0.04	0.00	0.00

Fuente: Elaboración propia (2020)

En la evaluación de la metodología Vizir podemos observar que existe una similitud en la falla que más predomina, las fisuras longitudinales, además que la gravedad nivel Alto con un valor de 21.74% de densidad del tramo evaluado.

Gráfico 5: Comparación de la gravedad de los daños encontrados por la metodología Vizir

3.6. Clasificación según la metodología Pci

En los resultados siguientes, se muestra la clasificación por la metodología Pci, en un cuadro resumen según sus progresivas y valor Pci calculado según sus valores deducidos.

Tabla 33: Resumen de la clasificación por la metodología Pci

MUESTRA INICIAL FINAL PCI CLASIFICACION 1 0+0000 0+035.4 15 MUY MALO 2 0+035.4 0+070.8 78 MUY BUENO 3 0+070.8 0+106.2 46 REGULAR 4 0+106.2 0+141.6 64 BUENO 5 0+141.6 0+177.0 68 BUENO 6 0+177.0 0+212.4 69 BUENO 7 0+212.4 0+247.8 46 REGULAR 8 0+247.8 0+283.2 57 BUENO 9 0+283.2 0+318.6 49 REGULAR 10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+	UNIDAD DE	PROGRESIVA		DOL	CI A CHELCA CIÓN
2 0+035.4 0+070.8 78 MUY BUENO 3 0+070.8 0+106.2 46 REGULAR 4 0+106.2 0+141.6 64 BUENO 5 0+141.6 0+177.0 68 BUENO 6 0+177.0 0+212.4 69 BUENO 7 0+212.4 0+247.8 46 REGULAR 8 0+247.8 0+283.2 57 BUENO 9 0+283.2 0+318.6 49 REGULAR 10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4	MUESTRA	INICIAL	FINAL	PCI	CLASIFICACIÓN
3 0+070.8 0+106.2 46 REGULAR 4 0+106.2 0+141.6 64 BUENO 5 0+141.6 0+177.0 68 BUENO 6 0+177.0 0+212.4 69 BUENO 7 0+212.4 0+247.8 46 REGULAR 8 0+247.8 0+283.2 57 BUENO 9 0+283.2 0+318.6 49 REGULAR 10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8	1	0+0000	0+035.4	15	MUY MALO
4 0+106.2 0+141.6 64 BUENO 5 0+141.6 0+177.0 68 BUENO 6 0+177.0 0+212.4 69 BUENO 7 0+212.4 0+247.8 46 REGULAR 8 0+247.8 0+283.2 57 BUENO 9 0+283.2 0+318.6 49 REGULAR 10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2	2	0+035.4	0+070.8	78	MUY BUENO
5 0+141.6 0+177.0 68 BUENO 6 0+177.0 0+212.4 69 BUENO 7 0+212.4 0+247.8 46 REGULAR 8 0+247.8 0+283.2 57 BUENO 9 0+283.2 0+318.6 49 REGULAR 10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6	3	0+070.8	0+106.2	46	REGULAR
6 0+177.0 0+212.4 69 BUENO 7 0+212.4 0+247.8 46 REGULAR 8 0+247.8 0+283.2 57 BUENO 9 0+283.2 0+318.6 49 REGULAR 10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+778.0	4	0+106.2	0+141.6	64	BUENO
7 0+212.4 0+247.8 46 REGULAR 8 0+247.8 0+283.2 57 BUENO 9 0+283.2 0+318.6 49 REGULAR 10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4	5	0+141.6	0+177.0	68	BUENO
8 0+247.8 0+283.2 57 BUENO 9 0+283.2 0+318.6 49 REGULAR 10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 <td>6</td> <td>0+177.0</td> <td>0+212.4</td> <td>69</td> <td>BUENO</td>	6	0+177.0	0+212.4	69	BUENO
9 0+283.2 0+318.6 49 REGULAR 10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	7	0+212.4	0+247.8	46	REGULAR
10 0+318.6 0+354.0 46 REGULAR 11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+849.6 0+885.0 25 MUY MALO 25 0+84	8	0+247.8	0+283.2	57	BUENO
11 0+354.0 0+389.4 15 MUY MALO 12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885	9	0+283.2	0+318.6	49	REGULAR
12 0+389.4 0+424.8 56 BUENO 13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4<	10	0+318.6	0+354.0	46	REGULAR
13 0+424.8 0+460.2 37 MALO 14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955	11	0+354.0	0+389.4	15	MUY MALO
14 0+460.2 0+495.6 50 REGULAR 15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+	12	0+389.4	0+424.8	56	BUENO
15 0+495.6 0+531.0 63 BUENO 16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	13	0+424.8	0+460.2	37	MALO
16 0+531.0 0+566.4 29 MALO 17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	14	0+460.2	0+495.6	50	REGULAR
17 0+566.4 0+601.8 50 REGULAR 18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	15	0+495.6	0+531.0	63	BUENO
18 0+601.8 0+637.2 51 REGULAR 19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	16	0+531.0	0+566.4	29	MALO
19 0+637.2 0+672.6 1 FALLADO 20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	17	0+566.4	0+601.8	50	REGULAR
20 0+672.6 0+708.0 7 FALLADO 21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	18	0+601.8	0+637.2	51	REGULAR
21 0+708.0 0+743.4 31 MALO 22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	19	0+637.2	0+672.6	1	FALLADO
22 0+743.4 0+778.8 22 MUY MALO 23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	20	0+672.6	0+708.0	7	FALLADO
23 0+778.8 0+814.2 20 MUY MALO 24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	21	0+708.0	0+743.4	31	MALO
24 0+814.2 0+849.6 8 FALLADO 25 0+849.6 0+885.0 25 MUY MALO 26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	22	0+743.4	0+778.8	22	MUY MALO
25	23	0+778.8	0+814.2	20	MUY MALO
26 0+885.0 0+920.4 68 BUENO 27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	24	0+814.2	0+849.6	8	FALLADO
27 0+920.4 0+955.8 19 MUY MALO 28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	25	0+849.6	0+885.0	25	MUY MALO
28 0+955.8 0+991.2 10 FALLADO 29 0+991.2 1+026.6 69 BUENO	26	0+885.0	0+920.4	68	BUENO
29 0+991.2 1+026.6 69 BUENO	27	0+920.4	0+955.8	19	MUY MALO
	28	0+955.8	0+991.2	10	FALLADO
30 1+026.6 1+062.0 82 MUY BUENO	29	0+991.2	1+026.6	69	BUENO
	30	1+026.6	1+062.0	82	MUY BUENO

En el grafico 7 se muestra la comparación de la clasificación por la metodología PCI, donde se observa que encontramos 6, 7 y 8 unidades de clasificación muy mala, regular y bueno respectivamente, y asimismo podemos decir que el estado del pavimento que más predomina es REGULAR según la metodología PCI.

RESUMEN DE LA CLASIFICACIÓN DEL MÉTODO PCI

TOTAL SERVICIO DE LA CLASIFICACIÓN DEL MÉTODO PCI

MUY MALO FALLADO MALO REGULAR BUENO MUY EXCELENTE BUENO

Gráfico 6: Comparación de la clasificación del método PCI

Fuente: Elaboración propia (2020)

Considerando los valores de la tabla 33, en el siguiente grafico podemos apreciar mejor los valores de la calificación según la metodología PCI.

Gráfico 7: Sectorización Pci del Carril Derecho

3.7. Clasificación según la metodología VIZIR

En la siguiente tabla 34, se presenta las 30 unidades de muestras, según sus progresivas, su valor VIZIR, y su clasificación, todas estas identificadas con color según su estado de conservación, considerando verde como bueno, amarrillo como regular y rojo como malo, y nos permitió su estado clasificado como REGULAR.

Tabla 34: Resumen de la clasificación por la metodología Vizir

UNIDAD DE	PROGR	ESIVA	VIZID	CI ACIEICA CIÓN
MUESTRA	INICIAL	FINAL	VIZIR	CLASIFICACIÓN
			2	BUENO
1	0+0000	0+035.4	2	BUENO
			4	REGULAR
			2	BUENO
2	0+035.4	0+070.8	3	REGULAR
			2	BUENO
			3	REGULAR
3	0+070.8	0+106.2	2	BUENO
			4	REGULAR
			3	REGULAR
4	0+106.2	0+141.6	2	BUENO
			4	REGULAR
5	0+141.6	0+177.0	5	DEFICIENTE
-	0 : 177 0	0.212.4	2	BUENO
6	0+177.0	0+212.4	3	REGULAR
7	0+212.4	0+247.8	4	REGULAR
8	0+247.8	0+283.2	2	BUENO
0	0+247.8	0+283.2	5	DEFICIENTE
9	0+283.2	0+318.6	2	BUENO
9	0+263.2	0+318.0	3	REGULAR
10	0+318.6	0+354.0	3	REGULAR
11	0+354.0	0+389.4	3	REGULAR
			5	DEFICIENTE
12	0+389.4	0+424.8	2	BUENO
12	0+369.4	0+424.6	3	REGULAR
			3	REGULAR
13	0+424.8	0+460.2	5	DEFICIENTE
13	U+424.8	U+40U.Z	3	REGULAR
14	0+460.2	0+495.6	3	REGULAR
14	U+40U.2	U+49J.U	3	REGULAR
15	0+495.6	0+531.0	3	REGULAR
16	0+531.0	0+566.4	3	REGULAR
10	U+331.U	0∓300.4	5	DEFICIENTE

		1	3	REGULAR
17	0+566.4	0+601.8	2	BUENO
			2	BUENO
			3	REGULAR
18	0+601.8	0+637.2	5	DEFICIENTE
			3	REGULAR
			3	REGULAR
19	0+637.2	0+672.6	5	DEFICIENTE
			3	REGULAR
			4	REGULAR
20	0+672.6	0+708.0	2	BUENO
			3	REGULAR
			5	DEFICIENTE
21	0+708.0	0+743.4	2	BUENO
			3	REGULAR
			5	DEFICIENTE
22	0+743.4	0+778.8	5	DEFICIENTE
			2	BUENO
23	0+778.8	0+814.2	2	BUENO
			5	DEFICIENTE
			3	REGULAR
			2	BUENO
24	0+814.2	0+849.6	5	DEFICIENTE
			5	DEFICIENTE
			3	REGULAR
			2	BUENO
2.5	0.040.6	0.005.0	3	REGULAR
25	0+849.6	0+885.0	5	DEFICIENTE
			3	REGULAR
			2	BUENO
26	0+885.0	0+920.4	3	REGULAR
			5	DEFICIENTE
			5	DEFICIENTE
27	0+920.4	0+955.8	3	REGULAR
			4	REGULAR
			5	DEFICIENTE
20	0.055.0	0.001.2	5	DEFICIENTE
28	0+955.8	0+991.2	5	DEFICIENTE
			3	REGULAR
20	0+001-2	1,0266	3	REGULAR
29	0+991.2	1+026.6	2	BUENO
			2	BUENO
30	1+026.6	1+062.0	3	REGULAR
			2	BUENO

En el grafico 8, se puede observar que las unidades que más predominan son de clasificación regular por la metodología VIZIR con 36 unidades con diferente grado de gravedad, a comparación de 19 y 22; siendo deficiente y bueno respectivamente.

RESUMEN DE LA CLASIFICACIÓN DEL MÉTODO VIZIR

36

19

DEFICIENTE REGULAR BUENO

Gráfico 8: Comparación de la clasificación del método Vizir

Fuente: Elaboración propia (2020)

Considerando los valores de la tabla 34, en el siguiente grafico podemos apreciar mejor los valores de la calificación según la metodología VIZIR.

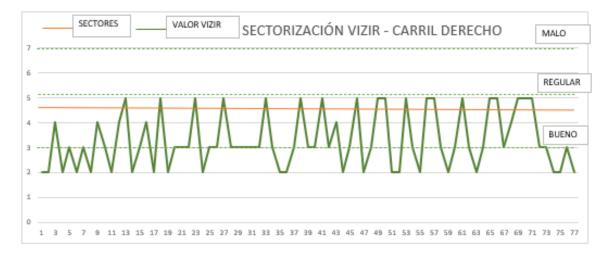


Gráfico 9: Sectorización Vizir del Carril Derecho

3.8. Comparación de la metodología Pci y Vizir

El grafico 9, muestra la respuesta al objetivo principal siendo esta la comparación de la aplicación de ambas metodologías ya antes mencionadas, en el pavimento flexible.

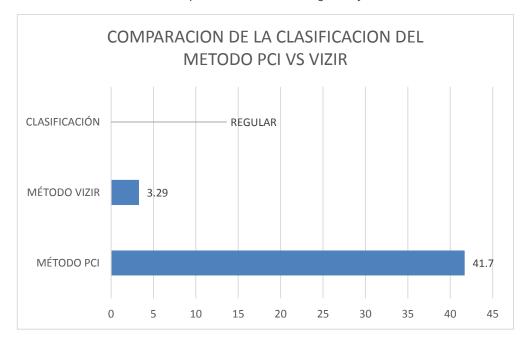


Gráfico 10: Comparación de la metodología Pci y Vizir

Fuente: Elaboración propia (2020)

El tramo de 1062 metros en la vía que conecta el Ovalo La Marina hasta el Km 680 de la cuidad de Trujillo, fue evaluado mediante las dos metodologías PCI y VIZIR establecidas para su estudio, arrojó resultados muy favorables y en general similares, el resultado obtenido en la metodología PCI fue de noventa y cuatro (41.7), valor que lo clasifica en un estado REGULAR y el resultado obtenido mediante la metodología VIZIR fue de (3.29), valor que clasifica el tramo vial estudiado como REGULAR, como se muestra en el grafico anterior.

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión

Por otro lado, el autor Morales (2019), en el antecedente mencionado en esta investigación, en la aplicación de ambas metodologías se obtuvo resultados similares, con lo cual se pudo identificar el tratamiento requerido por la vía; por lo tanto, según el método PCI el pavimento se encuentra en una condición MUY BUENA con un 76% y mediante el método VIZIR el pavimento se encuentra en un estado BUENO con un 91%. Así mismo, la falla más predominada fue el Pulimiento de Agregados en una muestra de pavimento de 1400 metros. De la misma manera en nuestra investigación, la metodología PCI nos brinda un índice promedio de 41.70 y una clasificación regular, lo cual es un valor más objetivo, conservador y acorde a lo observado en campo, mientras que en la metodología VIZIR nos da un índice promedio de 3.21 y una clasificación de regular, y la falla que más predomina fue grieta longitudinales y transversales, en una unidad de muestra de 1062 metros lineales.

4.1.1. Limitaciones

Las limitaciones encontradas de esta investigación fueron que durante el conteo vehicular de acuerdo con la Normativa del Ministerio de Transporte y Telecomunicaciones (2013), debe ser las 24 horas, durante una semana, y que debido a la Pandemia Covid - 19, toque de queda no fue permitido dicha contabilización, sin embargo, se ha seguido el respectivo procedimiento teniendo valores complementarios para el término de la guía de observación, aprobado por el respectivo asesor a cargo. Además, hubo limitaciones en el levantamiento de datos en campo según la guía de observación PCI y VIZIR, fue el alto tránsito vehicular, porque para inspección visual de las metodologías constan de distintos parámetros lo cual toma más tiempo y teniendo un tránsito alto se dificultad sin embargo, se tomó estrategias de seguridad

(realizar la inspección con la menor presencia de vehículos tomándonos más tiempo), pero para culminar con éxito la base de datos se optó por esas medidas.

4.1.2. Implicancias

Y, por último, podemos explicar que este estudio no solo se guio de las bases teóricas de cada metodología, si no también se complementó con el criterio de mi persona respetando las bases técnicas de la normativa del Ministerio de Transporte y Comunicaciones y el Asesor Ms. Sheyla Cornejo, así como también lo expuesto de varios investigadores que han realizado la aplicación de ambas metodologías.

4.2 Conclusiones

Dando respuesta al primer objetivo específico, se determinó el estudio de tráfico teniendo como punto de estación el hospital Oncológico de Trujillo, obteniendo un IMD de 22863, considerando así un alto tránsito vehicular, siendo el viernes es de mayor flujo vehicular con 12519 veh/día y el martes es el de menor flujo con 11944 veh/día, sin embargo, los vehículos de tipo automóviles con valor IMD de 12210 veh/día, es el del mayor flujo con 53.41% de distribución del tráfico actual por tipo de vehículo, cabe mencionar que el valor del índice medio diario no tiene influencia alguna en la aplicación de las metodologías.

Según el segundo objetivo específico se logró determinar los diferentes tipos de daño que se presentan en el pavimento con la metodología PCI y VIZIR, obteniendo los daños por el método Pci con una densidad de: Grieta Piel de cocodrilo 0.39%, exudación 2.05%, corrugación 1.32%, depresión 0.69%, grieta de borde 0.51%, grieta de reflexión de junta 0.01%, grieta longitudinal y transversal 29.21%, parcheo y acometidas de servicios 0.35%, pulimientos y agregados 1.70%, huecos 0.69%, abuellamiento 0.46%, grieta parabólicas o por deslizamiento 0.07%, hinchamiento 0.08% y por ultimo meteorización o desprendimiento de agregados 4.08%, densidades

del tramo de 1062 metros lineales. Y según el método Vizir se obtuvo los valores siguientes: Ahuellamiento 0.36%, fisura longitudinal por fatiga 32.22%, fisuras piel de cocodrilo 0.13%, bacheos y parcheos 0.26%, fisuras de borde 0.29%, ojos de borde 0.77%, perdida de la película de ligante 0.26%, perdida de agregados 3.87%, descaramiento 0.14%, pulimiento de agregados 4.61%, exudación 2.26% y desintegración de los bordes del pavimento 0.04%, extensiones del tramo evaluado de 1062 metros lineales.

Según el tercero objetivo específico se logró evaluar los parámetros de daños de las metodologías PCI y VIZIR del Ovalo La Marina hasta km 680 – Trujillo, para Pci obtuvimos valores de extensión de severidad high: grieta de piel de cocodrilo 0.26%, corrugación 0.36%, depresión 0.43%, grietas longitudinales y transversales 6.10%, huecos 0.27%, abuellamiento 0.46% y meteorización o desprendimientos de agregados 1.60%; con severidad médium: grieta piel de cocodrilo 0.13%, exudación 2.05%, corrugación 0.96%, depresión 0.26%, grieta de borde 0.51%, grieta longitudinal y transversal 19.58%, parcheos y acometidas de servicios 0.35%, huecos 0.44%, hinchamiento 0.08% y meteorización o desprendimientos de agregados 2.48%; y con severidad low: grieta de reflexión de junta 0.01%, grietas longitudinales y transversales 3.77, pulimientos y agregados 1.70%, huecos 0.01%, y grieta parabólica o por deslizamiento 0.07%; y para la metodología Vizir con gravedad alta: fisuras longitudinal por fatiga 6.15%, ojos de borde 0.10%, perdida de agregados 2.26%, pulimiento de agregados 1.91% y desintegración de los bordes del pavimento 0.04%; con gravedad medio: Fisuras longitudinal por fatiga 21.74%, fisuras piel de cocodrilo 0.13%, bacheos y parcheos, ojos de borde 0.67%, perdida de la película de ligante 0.26%, perdida de agregados 1.60%, descaramiento 0.14%, pulimientos de agregados 1.71%, exudación 2.26%; y de gravedad bajo: Ahuellamiento 0.36%, fisura

longitudinal por fatiga 4.33%, fisuras de borde 0.29%, y pulimiento de agregados 0.23%.

Según el cuarto objetivo específico se concluyó con la calificación del estado superficial del pavimento de Ovalo La Marina hasta Km 680 - Trujillo, mediante la metodología PCI se obtuvo un valor Pci de 41.7 y su condición operacional calificada como REGULAR y asimismo según la metodología vizir se obtuvo un valor cuantitativo de 3.29 calificada como REGULAR,

Al realizar el levantamiento de información en campo, se pudo visualizar que en la vía no se han realizado trabajos de mantenimiento hasta la fecha, este factor ocasiona el aumento en la severidad de las fallas.

En conclusión, se observa que el deterioro predominante en todo el segmento de las vías en estudio es la fisuración longitudinal, ocasionada aparentemente por la deficiente modulación del pavimento y el manteamiento constante. Las vías se ven afectado en su mayoría por fisuración longitudinal y por la pérdida de material, las posibles causas de este pueden ser falta de homogeneidad de la mezcla o proceso constructivo.

REFERENCIAS

Alzate, Z. S. (2019). Sistema de clasificación de severidad de daños en pavimentos flexibles para determinar posibles intervenciones [tesis de pregrado, Universidad EIA]. Repositorio Universidad EIA. http://repository.eia.edu.co/handle/11190/2344 ASTM. (2003). ASTM D-6433-03, Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. Pensilvania - USA: ASTM.

Cusquisiban, O. E. (2017). Planteamiento de estrategias de rehabilitación del pavimento flexible aplicando la metodología VIZIR, para la optimización de recursos en la avenida 225 (Ventanilla – Lima) [tesis de pregrado, Universidad San Martín de Porres]. Repositorio Académico USMP. http://repositorio.usmp.edu.pe/handle/usmp/3262

Gómez, V. S. (2014). Diseño estructural del pavimento flexible para el anillo vial del óvalo Grau – Trujillo - La Libertad [tesis de pregrado, Universidad Privada Antenor Orrego]. Repositorio de Tesis UPAO.

Guzmán, M. O; Gaitán, B. J. (2018). Evaluación De Deterioros En Pavimentos Asfalticos Mediante La Metodología Vizir- INVIAS 2013 Sobre Tramo K 0 + 000 – K 01 +000 De La Vía Acceso Municipio De Espinal -Coello [tesis de pregrado, Universidad Piloto de Colombia]. Repositorio Institucional Universidad Piloto de Colombia. http://repository.unipiloto.edu.co/handle/20.500.12277/5715

Institucional Universidad Católica de Colombia. https://repository.ucatolica.edu.co/handle/10983/13987

Higuera, V.B. (2015). El estado de las vías de pavimento rígido y su incidencia en la circulación del tráfico pesado de la planta HOLCIM Latacunga del cantón Latacunga provincia de Cotopaxi [tesis de pregrado, Universidad Técnica de Ambato].

Repositorio Universidad Técnica de Ambato.

https://repositorio.uta.edu.ec/handle/123456789/10005

Huacha, C (2019). "Evaluación del pavimento flexible de la Av. Mario Urteaga mediante el rugosímetro de merlín y el método PCI para determinar el estado de condición del pavimento, 2017". [tesis de pregrado, Universidad Privada del Norte de Perú].

Obtenido de:

file:///G:/TITULO%202021/TESIS%20DE%20GUIA/Huaccha%20Montenegro%20 Cristhian%20Jhon.pdf

INVIAS. (2002). Determinación del índice de deterioro superficial de un pavimento asfaltico mediante el método VIZIR.

INVIAS. (2013). ANEXO B. Instructivo para la inspección visual y la evaluación de los deterioros de los pavimentos asfálticos de carreteras

Marrugo, M. C. (2014). Evaluación de la metodología VIZIR como herramienta para la toma de decisiones en las intervenciones a realizar en los pavimentos flexibles [tesis de pregrado, Universidad Militar Nueva Granada]. Repositorio Institucional UMNG. http://hdl.handle.net/10654/12067

Medina, P.A; De la Cruz, P.M. (2019). Evaluación superficial del pavimento flexible del Jr. José Gálvez del distrito de Lince aplicando el método del PCI [tesis de pregrado, Universidad Peruana de Ciencias Aplicadas]. Repositorio Académico UPC. http://repositorio.upeu.edu.pe/handle/UPEU/1956

MTC. (2013). Manual de Carreteras: Conservación Vial. Lima: MTC. MTC. (2013). Manual de Carreteras: Especificaciones Técnicas Generales para Construcción - (EG 2013). Lima: MTC PERÚ.

MTC. (2013). Manual de Carreteras: Suelos, Geología, Geotecnia y Pavimentos. Lima: MTC PERÚ.

Oropeza, I. (2019). Evaluación del estado del pavimento asfáltico aplicando los métodos PCI y VIZIR para proponer alternativas de mantenimiento – Av. canto grande. [tesis de pregrado, Universidad Ricardo Palma de Perú] Obtenido de: file:///G:/TITULO%202021/TESIS%20DE%20GUIA/VIZIR/CIV_Tineo%20Oropez a%20Ivellise_Tesis%20Final.pdf

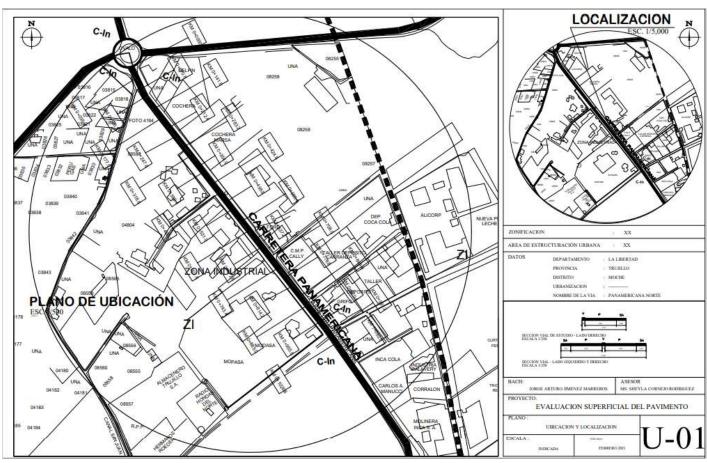
Patarroyo, P. H. (2019). Evaluación de patologías método VIZIR en pavimentos flexibles y posibles técnicas de rehabilitación del tramo comprendido entre el km 8+500 hasta el km 9+000 de la vía Ibagué—Rovira, departamento del Tolima [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/14577

Porta, R. S. (2016). Evaluación y comparación de metodologías índice de condición de pavimentos (PCI) y visión e inspección de zonas e itinerarios en riesgo (VIZIR) en la avenida Mariscal Castilla. [tesis de pregrado, Universidad Nacional del Centro del Perú]. Repositorio Institucional UNCP. http://repositorio.uncp.edu.pe/handle/UNCP/432

Quiroz. G. W. (2018). Evaluación del estado de conservación del pavimento flexible de la carretera Cajabamba – Río Negro, utilizando el método VIZIR. [tesis de pregrado, Universidad Nacional de Cajamarca]. Repositorio Institucional UNC. http://repositorio.unc.edu.pe/handle/UNC/2540

Rodríguez, M.Y. (2016). Evaluación de la condición operacional del pavimento rígido, aplicando el método del pavement condition index (PCI), en las pistas del barrio el triunfo, distrito de Carhuaz, provincia de Carhuaz, región Ancash, diciembre 2015. [tesis de pregrado, Universidad Católica Los Angeles de Chimbote]. Repositorio Institucional ULADECH. http://repositorio.uladech.edu.pe/handle/123456789/699

Sierra, D. C; Rivas, Q. A. (2016). Aplicación y comparación de las diferentes metodologías de diagnóstico para la conservación y mantenimiento del tramo pr 00+000 – pr 01+020 de la vía al llano (dg 78 bis sur – calle 84 sur) en la UPZ YOMASA [tesis de pregrado, Universidad Católica de Colombia]. Repositorio


Yampara, T. R. (2019). Comparación de los métodos PCI y VIZIR en la evaluación de fallas del pavimento flexible de la avenida Aviación de la ciudad de Juliaca [tesis de pregrado, Universidad Peruana Unión]. Repositorio de Tesis Universidad Peruana de Unión. http://repositorio.upeu.edu.pe/handle/UPEU/1956

Zerpa, R. R.; Murga, V. C. (2019). Determinación del estado de conservación superficial del pavimento flexible aplicando los métodos del PCI y VIZIR en la Avenida Costa Rica y prolongación César Vallejo, Trujillo. [tesis de pregrado, Universidad Privada Antenor Orrego]. Repositorio de Tesis UPAO. http://repositorio.uladech.edu.pe/handle/123456789/699

Vásquez Valera, L. R. (2002). Ingeniería de Pavimentos. Manizales: INGEPAV. Obtenido en https://sjnavarro.files.wordpress.com/2008/08/manual-pci1.pdf

ANEXOS

Anexo n° 1. Plano de ubicación

Anexo n° 2. Formato de estúdio de tráfico.

Tabla 35: Conteo vehicular del lunes 04 de enero del 2021

	Auto	Cmta	Cmta	Omr	ibus		Camion			Semit	traylers			Trayl	ers			
Hora /	movil	pick up	Rural	2E	3E	2E	3E	4E	2S! / 2S2	2S3	3S1 / 3S2	>=3S3	2T2	2T3	3T2	>=3T3		
Descripcion			-		الروب الموارية الموارية	<u>, А</u>	"	∞ [}	; 	777 F	, , , !	550 86 ♣	, , , [;	55 5 2 4	1 6 R C		Total	%
00-01	427	31	29	99	1	54	28	4	1	-	3	62	1	-	2	2	744	3.27
01-02	412	28	18	89	-	45	18	6	-	1	2	58	-	-	1	2	680	2.99
02-03	398	32	32	110	1	48	22	2	-	1	3	49	1	-	-	1	700	3.08
03-04	371	45	45	119	2	39	18	3	2	-	4	42	2	-	4	-	696	3.06
04-05	352	65	61	128	-	41	16	4	-	-	2	46	1	-	2	3	721	3.17
05-06	260	48	43	116	4	23	13	3	1	-	1	35	-	-	2	2	551	2.42
06-07	520	94	71	174	3	51	27	6	-	1	2	81	2	-	5	3	1040	4.57
07-08	630	101	121	214	3	87	31	5	2	1	3	67	1	-	6	2	1274	5.60
08-09	525	111	112	123	2	92	23	3	1	-	1	64	3	-	8	3	1071	4.71
09-10	431	66	104	95	1	67	26	6	-	-	-	36	-	-	1	-	833	3.66
10-11	598	127	139	87	3	90	37	4	-	-	1	48	-	1	5	2	1142	5.02
11-12	623	107	122	104	6	73	35	5	2	1	1	51	-	-	1	3	1134	4.99
12-13	619	79	107	127	3	65	22	8	1	1	3	47	1	-	1	4	1088	4.79
13-14	424	73	116	110	1	71	24	6	-	3	3	51	1	-	1	1	885	3.89
14-15	430	69	98	72	2	69	18	5	-	1	4	43	-	1	4	2	818	3.60
15-16	452	58	79	83	1	89	15	3	-	-	2	48	-	-	2	-	832	3.66
16-17	534	84	92	102	-	96	10	2	1	1	4	51	2	-	-	5	984	4.33
17-18	556	78	110	141	1	76	18	5	2	2	50	58	2	-	-	1	1100	4.84
18-19	620	64	85	131	5	82	24	4	1	2	7	73	1	-	2	-	1101	4.84
19-20	715	83	76	218	4	115	23	6	2	-	3	66	1	-	3	1	1316	5.79
20-21	740	71	79	152	3	72	29	3	-	1	2	84	2	-	2	-	1240	5.45
21-22	599	48	68	142	4	42	31	3	1	-	3	65	1	-	3	1	1011	4.45
22-23	575	37	58	130	2	48	35	5	-	1	1	71	-	-	2	-	965	4.24
23-24	453	38	48	125	1	61	18	6	-	-	2	55	-	-	1	-	808	3.55
TOTAL	12264	1637	1913	2991	53	1596	561	107	17	17	107	1351	22	2	58	38	22734	100
%	53.95	7.2	8.41	13.16	0.23	7.02	2.47	0.47	0.07	0.07	0.47	5.94	0.1	0.01	0.26	0.17		

Tabla 36: Conteo vehicular del martes 05 de enero del 2021

	Auto	Cmta	Cmta	Omn	ibus		Camion			Semit	traylers			Trayl	ers			
Have /	movil	pick up	Rural	2E	3E	2E	3E	4E	2S! / 2S2	2S3	3S1 / 3S2	>=3S3	2T2	2T3	3T2	>=3T3		
Hora / Descripcion			-		50 Log	7 A	" 4	‱ - ₽	; 	555 E 	2—24	558 BR 4	, , , 	55 87 [1 6 tt C		Total	%
00-01	427	31	29	99	1	54	28	4	1	-	3	62	1	-	2	2	744	3.30
01-02	412	28	18	89	-	45	18	6	-	1	2	58	-	-	1	2	680	3.01
02-03	398	32	32	110	1	48	22	2	-	1	3	49	1	-	-	1	700	3.10
03-04	371	45	45	119	2	39	18	3	2	-	4	42	2	-	4	-	696	3.08
04-05	352	65	61	128	-	41	16	4	-	-	2	46	1	-	2	3	721	3.20
05-06	261	51	48	117	3	25	14	2	1	-	1	36	-	1	1	2	563	2.50
06-07	523	101	71	164	2	58	29	4	-	1	3	84	2	-	4	3	1049	4.65
07-08	635	98	118	214	3	91	34	9	2	1	2	71	1	-	6	2	1287	5.70
08-09	523	111	128	123	2	95	24	3	1	-	1	75	2	-	7	3	1098	4.87
09-10	420	64	101	92	1	63	23	6	1	-	-	35	-	-	1	-	807	3.58
10-11	451	62	105	92	1	72	49	5	2	1	5	52	-	-	-	-	897	3.98
11-12	311	57	56	46	-	48	19	2	-	-	1	38	-	-	1	-	579	2.57
12-13	450	86	99	102	5	59	27	2	2	-	4	37	-	-	1	1	875	3.88
13-14	535	99	101	110	-	72	32	4	3	-	5	70	-	-	-	8	1039	4.60
14-15	544	105	127	86	5	79	33	6	-	1	4	78	-	-	5	4	1077	4.77
15-16	503	108	95	107	-	71	38	2	-	-	-	72	-	1	4	3	1004	4.45
16-17	486	119	101	84	2	85	30	4	3	2	6	69	-	-	1	1	993	4.40
17-18	619	108	119	135	1	95	23	5	1	1	9	93	-	-	4	2	1215	5.38
18-19	621	71	94	142	4	89	29	4	1	2	6	75	1	-	2	1	1142	5.06
19-20	723	82	76	217	4	118	24	5	-	1	4	72	1	-	1	-	1328	5.89
20-21	752	75	79	161	3	89	31	3	2	1	2	83	1	-	2	1	1285	5.70
21-22	599	48	68	142	4	42	31	3	1	-	3	65	1	-	3	1	1011	4.48
22-23	575	37	58	130	2	48	35	5	-	1	1	71	-	-	2	-	965	4.28
23-24	453	38	48	125	1	61	18	6	-	-	2	55	-	-	1	-	808	3.58
TOTAL	11944	1721	1877	2934	47	1587	645	99	23	14	73	1488	14	2	55	40	22563	100
%	52.94	7.63	8.32	13	0.21	7.03	2.86	0.44	0.1	0.06	0.32	6.59	0.06	0.01	0.24	0.18		

Tabla 37: Conteo vehicular del miércoles 06 de enero del 2021

	Auto	Cmta	Cmta	Omn	ibus		Camion			Semit	traylers			Trayl	ers			
Hora /	movil	pick up	Rural	2E	3E	2E	3E	4E	2S! / 2S2	2S3	3S1 / 3S2	>=3\$3	2T2	2T3	3T2	>=3T3		
Descripcion					الوجيانية الوجيانية	3 B	" 4	‱ - ₽	; 	55 7 4	, , , ,	558 88	, , , 	55 5 2 E	1 0 tt - E		Total	%
00-01	427	31	29	99	1	54	28	4	1	-	3	62	1	-	2	2	744	3.27
01-02	412	28	18	89	-	45	18	6	-	1	2	58	-	-	1	2	680	2.99
02-03	398	32	32	110	1	48	22	2	-	1	3	49	1	-	-	1	700	3.08
03-04	371	45	45	119	2	39	18	3	2	-	4	42	2	-	4	-	696	3.06
04-05	352	65	61	128	-	41	16	4	-	-	2	46	1	-	2	3	721	3.17
05-06	250	48	51	118	2	23	15	2	1	-	1	41	-	1	1	2	556	2.44
06-07	515	99	69	154	3	56	31	5	-	1	2	79	2	-	5	3	1024	4.50
07-08	631	101	115	213	2	94	36	8	2	1	3	69	1	-	4	2	1282	5.64
08-09	515	108	131	118	3	89	27	3	1	-	1	76	2	-	7	3	1084	4.77
09-10	433	58	104	93	2	67	24	5	1	-	-	33	-	-	1	-	821	3.61
10-11	452	62	101	95	1	72	39	4	-	1	4	51	-	-	-	-	882	3.88
11-12	410	71	63	42	1	43	18	3	1	-	1	41	-	-	1	-	695	3.06
12-13	502	74	124	99	3	48	23	3	-	1	4	67	-	-	-	-	948	4.17
13-14	645	149	134	103	-	72	41	3	2	-	5	60	-	-	3	3	1220	5.36
14-15	439	95	115	97	2	73	23	5	1	1	9	53	-	-	3	3	919	4.04
15-16	576	136	117	110	-	123	36	7	-	-	3	65	1	-	2	5	1181	5.19
16-17	434	69	109	96	1	70	22	3	1	-	4	95	-	1	1	2	908	3.99
17-18	623	132	93	121	-	91	31	4	2	-	4	57	2	1	2	2	1165	5.12
18-19	628	72	92	139	4	91	31	4	1	2	5	72	1	-	1	1	1144	5.03
19-20	718	84	77	220	3	109	26	3	-	1	6	75	1	-	2	-	1325	5.82
20-21	738	76	81	159	4	93	35	5	2	1	2	69	1	-	2	1	1269	5.58
21-22	599	48	68	142	4	42	31	3	1	-	3	65	1	-	3	1	1011	4.44
22-23	575	37	58	130	2	48	35	5	-	1	1	71	-	-	2	-	965	4.24
23-24	453	38	48	125	1	61	18	6	-	-	2	55	-	-	1	-	808	3.55
TOTAL	12096	1758	1935	2919	42	1592	644	100	19	12	74	1451	17	3	50	36	22748	100
%	53.17	7.73	8.51	12.83	0.18	7	2.83	0.44	0.08	0.05	0.33	6.38	0.07	0.01	0.22	0.16		

Tabla 38: Conteo vehicular del jueves 07 de enero del 2021

	Auto	Cmta	Cmta	Omn	ibus		Camion			Semit	traylers			Trayl	ers			
Hora /	movil	pick up	Rural	2E	3E	2E	3E	4E	2S! / 2S2	2S3	3S1 / 3S2	>=3\$3	2T2	2T3	3T2	>=3T3		1
Descripcion				ol .	50 50	, <u>A</u>	" .	‱ - ₽	نادرسي والموسي	337 7 6		550 8₹	, , , 	55 87 E	- a R - E		Total	%
00-01	427	31	29	99	1	54	28	4	1	-	3	62	1	-	2	2	744	3.26
01-02	412	28	18	89	-	45	18	6	-	1	2	58	-	-	1	2	680	2.98
02-03	398	32	32	110	1	48	22	2	-	1	3	49	1	-	-	1	700	3.07
03-04	371	45	45	119	2	39	18	3	2	-	4	42	2	-	4	-	696	3.05
04-05	352	65	61	128	-	41	16	4	-	-	2	46	1	-	2	3	721	3.16
05-06	240	49	49	128	2	22	16	2	1	-	1	41	-	1	1	2	555	2.43
06-07	513	101	58	164	3	57	28	8	-	1	2	69	2	-	4	2	1012	4.44
07-08	621	112	118	199	2	95	37	5	1	1	2	79	1	-	5	3	1281	5.62
08-09	514	99	129	99	3	90	28	3	1	-	1	76	2	-	7	3	1055	4.63
09-10	438	72	110	93	2	68	24	8	-	-	-	34	-	-	1	-	850	3.73
10-11	458	84	115	100	1	71	53	4	1	1	3	58	-	-	-	-	949	4.16
11-12	302	79	68	45	-	49	21	1	-	-	1	41	-	-	1	-	608	2.67
12-13	548	99	117	81	-	76	30	4	-	-	1	58	-	-	1	3	1018	4.47
13-14	600	161	128	96	1	86	40	9	-	1	4	49	2	-	-	4	1181	5.18
14-15	524	95	108	96	2	78	27	8	1	1	9	67	-	-	2	2	1020	4.47
15-16	539	124	109	92	1	99	47	4	-	1	6	54	-	-	4	4	1084	4.76
16-17	573	71	100	110	1	92	23	8	1	1	2	64	-	-	8	2	1056	4.63
17-18	589	109	86	112	2	95	36	2	-	-	7	56	3	-	2	1	1100	4.83
18-19	618	69	93	142	3	91	32	4	1	2	5	73	1	-	1	1	1136	4.98
19-20	715	82	78	214	3	99	27	5	-	1	5	76	2	-	2	-	1309	5.74
20-21	725	74	82	161	4	93	35	3	2	1	2	71	1	-	1	1	1256	5.51
21-22	599	48	68	142	4	42	31	3	1	-	3	65	1	-	3	1	1011	4.44
22-23	575	37	58	130	2	48	35	5	-	1	1	71	-	-	2	-	965	4.23
23-24	453	38	48	125	1	61	18	6	-	-	2	55	-	-	1	-	808	3.54
TOTAL	12104	1804	1907	2874	41	1639	690	111	13	14	71	1414	20	1	55	37	22795	100
%	53.1	7.91	8.37	12.61	0.18	7.19	3.03	0.49	0.06	0.06	0.31	6.2	0.09	0	0.24	0.16		

Tabla 39: Conteo vehicular del viernes 08 de enero del 2021

	Auto	Cmta	Cmta	Omr	ibus		Camion			Semit	traylers			Trayl	ers			
Hora /	movil	pick up	Rural	2E	3E	2E	3E	4E	2S! / 2S2	2S3	3S1 / 3S2	>=3\$3	2T2	2T3	3T2	>=3T3		
Descripcion					المنظمية المنظمية	- A	"	∞ [,,- 4	555 2 4	, , , 	550 88 ♣	, , , {	55 57 [- ex-t		Total	%
00-01	427	31	29	99	1	54	28	4	1	-	3	62	1	-	2	2	744	3.14
01-02	412	28	18	89	-	45	18	6	-	1	2	58	-	-	1	2	680	2.87
02-03	398	32	32	110	1	48	22	2	-	1	3	49	1	-	-	1	700	2.96
03-04	371	45	45	119	2	39	18	3	2	-	4	42	2	-	4	-	696	2.94
04-05	352	65	61	128	-	41	16	4	-	-	2	46	1	-	2	3	721	3.05
05-06	302	84	59	135	1	37	14	8	1	-	4	40	-	-	5	6	696	2.94
06-07	595	109	97	214	-	58	24	3	-	2	2	74	1	-	3	2	1184	5.00
07-08	684	153	146	229	8	105	27	7	2	-	4	61	4	-	10	3	1443	6.10
08-09	525	123	118	221	6	99	25	6	1	-	5	65	2	-	6	4	1206	5.10
09-10	490	95	107	93	1	94	24	7	-	-	-	34	-	-	1	-	946	4.00
10-11	460	75	98	94	-	71	52	4	2	1	4	57	-	-	-	-	918	3.88
11-12	420	72	54	47	1	52	21	2	-	-	1	42	-	-	1	-	713	3.01
12-13	480	103	124	82	-	79	33	3	1	-	1	61	-	-	1	3	971	4.10
13-14	585	173	119	97	1	72	39	8	-	1	5	53	2	-	-	4	1159	4.90
14-15	542	115	91	80	1	81	37	3	2	1	4	43	-	-	-	7	1007	4.25
15-16	574	75	124	114	-	82	22	4	-	-	2	60	-	1	2	4	1064	4.50
16-17	598	137	106	109	1	99	32	4	1	-	4	52	2	-	3	3	1151	4.86
17-18	664	80	95	140	1	87	23	1	1	-	12	89	1	-	1	-	1195	5.05
18-19	752	110	91	225	1	126	23	9	1	2	1	70	3	-	5	-	1419	6.00
19-20	641	74	86	170	6	60	37	9	-	-	7	90	-	-	1	2	1183	5.00
20-21	620	58	75	150	3	54	29	7	-	-	6	85	-	-	-	-	1087	4.59
21-22	599	48	68	142	4	42	31	3	1	-	3	65	1	-	3	1	1011	4.27
22-23	575	37	58	130	2	48	35	5	-	1	1	71	-	-	2	-	965	4.08
23-24	453	38	48	125	1	61	18	6	-	-	2	55	-	-	1	-	808	3.41
TOTAL	12519	1960	1949	3142	42	1634	648	118	16	10	82	1424	21	1	54	47	23667	100
%	52.9	8.28	8.24	13.28	0.18	6.9	2.74	0.5	0.07	0.04	0.35	6.02	0.09	0	0.23	0.2		••••••

Tabla 40: Conteo vehicular del sábado 09 de enero del 2021

	Auto	Cmta	Cmta	Omr	ibus		Camion			Semit	traylers			Trayl	lers			
Here /	movil	pick up	Rural	2E	3E	2E	3E	4E	2S! / 2S2	2S3	3S1 / 3S2	>=3S3	2T2	2T3	3T2	>=3T3		
Hora / Descripcion			-		50 50	<u>, 4</u>	" ^	∞. [-	,,- 4	555 € {		550 BR 4	, , , {	55 87 E	- e a - E	, , , 4	Total	%
00-01	427	31	29	99	1	54	28	4	1	-	3	62	1	-	2	2	744	3.27
01-02	412	28	18	89	-	45	18	6	-	1	2	58	-	-	1	2	680	2.99
02-03	398	32	32	110	1	48	22	2	-	1	3	49	1	-	-	1	700	3.07
03-04	371	45	45	119	2	39	18	3	2	-	4	42	2	-	4	-	696	3.06
04-05	352	65	61	128	-	41	16	4	-	-	2	46	1	-	2	3	721	3.17
05-06	294	48	42	121	4	29	13	7	1	1	3	39	1	-	4	5	612	2.69
06-07	523	95	75	199	1	54	23	4	-	2	2	81	2	-	3	3	1067	4.68
07-08	630	120	123	215	5	99	28	4	2	-	3	71	3	-	9	2	1314	5.77
08-09	525	116	118	118	4	101	27	6	1	-	4	67	2	-	6	4	1099	4.83
09-10	405	61	98	102	1	55	22	4	1	-	-	29	-	-	1	-	779	3.42
10-11	490	68	95	85	-	69	47	3	-	1	4	49	-	-	-	-	911	4.00
11-12	421	58	92	32	1	42	21	6	1	-	1	41	-	-	1	-	717	3.15
12-13	521	130	131	86	2	71	10	3	-	1	3	41	-	-	4	-	1003	4.40
13-14	581	114	107	108	2	77	18	3	1	1	3	58	-	-	1	2	1076	4.72
14-15	479	123	101	89	-	79	24	4	2	1	5	40	-	-	-	5	952	4.18
15-16	503	78	120	98	1	86	23	3	-	-	2	54	-	-	2	6	976	4.29
16-17	548	138	108	124	-	82	19	3	1	-	3	49	2	-	3	4	1084	4.76
17-18	623	81	98	139	1	91	23	1	1	-	8	51	1	-	1	-	1119	4.91
18-19	630	65	85	130	1	84	24	2	1	1	9	85	1	-	1	-	1119	4.91
19-20	715	85	84	215	2	122	23	6	-	-	2	69	2	-	4	-	1329	5.84
20-21	780	71	75	155	5	59	41	9	1	2	4	89	-	-	3	-	1294	5.68
21-22	599	48	68	142	4	42	31	3	1	-	3	65	1	-	3	1	1011	4.44
22-23	575	37	58	130	2	48	35	5	-	1	1	71	-	-	2	-	965	4.24
23-24	453	38	48	125	1	61	18	6	-	-	2	55	-	-	1	-	808	3.55
TOTAL	12255	1775	1911	2958	41	1578	572	101	17	13	76	1361	20	0	58	40	22776	100
%	53.81	7.79	8.39	12.99	0.18	6.93	2.51	0.44	0.07	0.06	0.33	5.98	0.09	-	0.25	0.18		

Tabla 41: Conteo vehicular del domingo 10 de enero del 2021

	Auto	Cmta	Cmta	Omn	ibus		Camion			Semit	traylers			Tray	lers			
Hora /	movil	pick up	Rural	2E	3E	2E	3E	4E	2S! / 2S2	2S3	3S1 / 3S2	>=3\$3	2T2	2T3	3T2	>=3T3		
Descripcion			-		50 50	, Ą			باد باد جه	555 € 	2—2 ∳	550 Bt 4	, , , { ;	55 8 8 E	- e ee - E		Total	%
00-01	427	31	29	99	1	54	28	4	1	-	3	62	1	-	2	2	744	3.27
01-02	412	28	18	89	-	45	18	6	-	1	2	58	-	-	1	2	680	2.99
02-03	398	32	32	110	1	48	22	2	-	1	3	49	1	-	-	1	700	3.08
03-04	371	45	45	119	2	39	18	3	2	-	4	42	2	-	4	-	696	3.06
04-05	352	65	61	128	-	41	16	4	-	-	2	46	1	-	2	3	721	3.17
05-06	278	47	41	118	3	24	12	4	1	-	2	37	-	-	3	4	574	2.52
06-07	518	93	72	178	2	48	26	5	2	1	3	82	3	-	4	3	1040	4.57
07-08	628	98	119	216	4	89	29	6	-	1	4	68	1	-	8	2	1273	5.59
08-09	515	110	110	116	4	96	24	4	1	-	3	63	2	-	6	3	1057	4.64
09-10	471	66	104	95	1	67	26	6	-	-	-	36	-	-	1	-	873	3.84
10-11	483	62	105	92	1	72	49	5	2	1	5	52	-	-	-	-	929	4.08
11-12	384	57	56	46	-	48	19	2	-	-	1	38	-	-	1	-	652	2.86
12-13	554	105	78	80	-	29	8	4	2	-	3	42	1	-	1	-	907	3.99
13-14	489	118	-	55	2	26	7	2	-	-	4	31	-	-	3	2	739	3.25
14-15	523	113	91	80	1	81	37	3	2	1	4	43	-	-	-	7	986	4.33
15-16	518	68	124	114	-	82	22	4	-	-	2	60	-	-	2	4	1000	4.39
16-17	598	137	106	109	1	99	32	4	1	-	4	52	2	-	3	3	1151	5.06
17-18	664	80	95	140	1	87	23	1	1	-	12	489	1	-	1	-	1595	7.01
18-19	618	62	84	129	2	83	23	3	2	2	8	83	1	-	2	-	1102	4.84
19-20	714	82	79	218	5	119	24	4	1	-	3	66	1	-	2	-	1318	5.79
20-21	746	69	76	148	2	61	38	6	-	1	2	84	2	-	3	-	1238	5.44
21-22	599	48	68	142	4	42	31	3	1	-	3	65	1	-	3	1	1011	4.44
22-23	575	37	58	130	2	48	35	5	-	1	1	71	-	-	2	-	965	4.24
23-24	453	38	48	125	1	61	18	6	-	-	2	55	-	-	1	-	808	3.55
TOTAL	12288	1691	1699	2876	40	1489	585	96	19	10	80	1774	20	0	55	37	22759	100
%	53.99	7.43	7.47	12.64	0.18	6.54	2.57	0.42	0.08	0.04	0.35	7.79	0.09	-	0.24	0.16		l .

Tabla 42: Resultados de los conteos de trafico

The A. Maliforda			Tráfico Vehic	ular en un	Sentido po	or Día		TOTAL	
Tipo de Vehículo	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo	SEMANAL	IMDs
Automóvil	12264	11944	12096	12104	12519	12255	12288	85,470	12210
Camioneta Pick up	1637	1721	1758	1804	1960	1775	1691	12,346	1764
Camioneta Rural	1913	1877	1935	1907	1949	1911	1699	13,191	1884
Micro	2991	2934	2919	2874	3142	2958	2876	20,694	2956
Bus Grande	53	47	42	41	42	41	40	306	44
Camión 2E	1596	1587	1592	1639	1634	1578	1489	11,115	1588
Camión 3E	561	645	644	690	648	572	585	4,345	621
Camión 4E	107	99	100	111	118	101	96	732	105
SemiTrayler 2S1 / 2S2	17	23	19	13	16	17	19	124	18
SemiTrayler 2S3	17	14	12	14	10	13	10	90	13
SemiTrayler 3S1 / 3S2	107	73	74	71	82	76	80	563	80
SemiTrayler >=3S3	1351	1488	1451	1414	1424	1361	1774	10,263	1466
Trayler 2T2	22	14	17	20	21	20	20	134	19
Trayler 2T3	2	2	3	1	1	0	0	9	1
Trayler 3T2	58	55	50	55	54	58	55	385	55
Trayler >=3T3	38	40	36	37	47	40	37	275	39
TOTAL	22734	22563	22748	22795	23667	22776	22759	160042	22863

Anexo n° 3. Formatos de la evaluación PCI del estado del pavimento.

Tabla 43: Inspección visual en campo por el método Pci de la muestra 1

				MEI	ODO DE			INDICE D				NTO (PC	I)			
					НОЈА	DE REGIS	STRO								Lm	
NOMBRE DE VÍA:	Panamericana	Norte		ι	JNIDAD I	DE MUES	TRA:	Mues	stra 1						Am	6.50
SECCION DE VÍA:	Calzada derecl	ıa		1	AREA DE	MUESTR	EO:	230	.10						\	
EVALUADOR:	Jorge Arturo J	imenez	Marreros	I	FECHA DI	EEVALUA	ACION:	11/01/	/2021						35.40m	
1. Grieta piel de cocodrilo	6. Depresión					11. Parche	o v Acom	etidas de S	Servicios		16. Despl	azamiento)			
2. Exudación	7. Grietas de B	orde					entos y Ag				•		icas o por De	eslizamiento		
3. Agrietamiento en bloque	8. Grietas de R	eflexio	n de Junta			13. Hueco		,			18. Hinch					
l. Agrietamientos y Hundimientos	9. Desnivel Ca	rril / Be	rma			14. Cruce	de Vía Fen	rea			19. Metec	orización /	Desprendin	nineto de agregados		
5. Corrugación	10. Grietas Lor	ıgitudir	nal / Trans	versal		15 Abuella	amiento						-			
FALLA SEVERIDAD						CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
13 Medium	1.2	4											5.2	2.26	5 47	
1 Medium	4	5											9	3.91	35	
10 Medium	3	2.8	2.5	32	0.8	1.2	1.5	2	1.8	0.8	1.15		49.55	21.53	3 27	
19 Medium	15	\perp											15	6.52	2 16	
6 High	30												30	13.04	46	
10 Low	10	3	3	3	2.8	1.2	15	1.1					51.15	22.23	3 13	
	1.8	2	1.2	1.5	1.5	1.25	1.25	0.55								
10 Low		0.4														
10 Low 10 Low	0.6						1									
	0.6															
	0.6															
	0.6															

Tabla 44: Inspección visual en campo por el método Pci de la muestra 2

					ME	TODO DE				DE CONDI ERFICIE A	L PA VIME A	NTO (PCI))			
						HOJA	A DE REG	ISTRO							Lm	
NOMBRE DE VÍA:		Panameric	ana Norte	•		UNIDAD	DE MUE	STRA:	Mue	estra 2					Am	6.50m
SECCION DE VÍA:		Calzada d	erecha			AREA DI	E MUESTI	REO:	23	0.10					•	
EVALUADOR:		Jorge Arti	uro Jimene	ez Marrero	s	FECHA D	DE EVALU	ACION:	11/0	1/2021					35.40m	
Grieta piel de coco	odrilo	6. Depresi	ión				11. Parch	eo v Acon	netidas de	Servicios	16. Despl	azamiento				
2. Exudación		7. Grietas						ientos y A			•			eslizamiento		
3. Agrietamiento en	bloque	8. Grietas	de Reflexi	on de Junt	a		13. Hueco	-			18. Hinch		•			
4. Agrietamientos y	Hundimientos	9. Desnive	el Carril / E	Berma			14. Cruce	de Vía Fe	rrea		19. Metec	rización /	Desprendi	mineto de agregados		
5. Corrugación		10. Grietas	s Longitud	linal / Trar	sversal		15 Abuel	lamiento								
FALLA	SEVERIDAD						CAN'	ΓΙDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO	
													IOIAL	DENSIDAD	VALOR DEDUCIDO	
10 Me	ledium	1.5	2	1.2	1.8	2	1.8	0.8	1				12.1	5.26		
	ledium ledium	1.5	2	1.2	1.8	2	1.8	0.8	1				-		5 10	
<u> </u>		1.5	2	1.2	1.8	2	1.8	0.8	1				-	5.26	5 10	
		1.5	2	1.2	1.8	2	1.8	0.8	1				-	5.26	5 10	
		1.5	2	1.2	1.8	2	1.8	0.8	1				-	5.26	5 10	
		1.5	2	1.2	1.8	2	1.8	0.8	1				-	5.26	5 10	
		1.5	2	1.2	1.8	2	1.8	0.8	1				-	5.26	5 10	
		1.5	2	1.2	1.8	2	1.8	0.8	1				-	5.26	5 10	
		1.5	2	1.2	1.8	2	1.8	0.8	1				-	5.26	5 10	
		1.5	2	1.2	1.8	2	1.8	0.8	1				-	5.26	5 10	
		1.5	2	1.2	1.8	2	1.8	0.8	1				-	5.26	5 10	

Tabla 45: Inspección visual en campo por el método Pci de la muestra 3

					ME	ETODO DE				DE CONDI ERFICIE A	L PAVIME CA	NTO (PCI)			
						HOJA	DE REGI	STRO							Lm	-
NOMBRE DE VÍ	A:	Panameric	ana Norte	,		UNIDAD	DE MUES	TRA:	Mue	stra 3					Am	6.50m
SECCION DE VÍA	A:	Calzada d	erecha			AREA DI	E MUESTR	REO:	230	0.10					\	
EVALUADOR:		Jorge Arti	uro Jimene	ez Marrero	s	FECHA D	DE EVALU	ACION:	11/01	/2021					35.40m	
Grieta piel de c	cocodrilo	6. Depresi	ión				11. Parche	eo v Acom	etidas de l	Servicios	16. Despl	azamiento				
2. Exudación		7. Grietas					12. Pulimie	-			-			eslizamiento		
3. Agrietamiento	en bloque	8. Grietas	de Reflexi	on de Junt	ta		13. Hueco		5 0		18. Hinch		•			
_	s y Hundimientos	9. Desnive	el Carril / E	Berma			14. Cruce	de Vía Fer	rea		19. Metec	rización /	Desprendi	nineto de agregados		
5. Corrugación		10. Grietas	s Longitud	linal / Trai	nsversal		15 Abuell	amiento								
FALLA	SEVERIDAD						CANT	TIDAD					TOTAL	DENSIDAD	VALOR DEDUCIDO	
5	Medium	12	21	6	15								54	23.47	50	
2	Medium	35.4											35.4	15.38	15	
10	Medium	3	3	2.8	1.8	1.9	2.8	2.9	2.5	1.5			22.2	9.65	18	
10	Low	1	1.2	1.8	1.1	0.9	0.8	1.15	3	4			14.95	6.50	7	
12	low	1											1	0.43	0	
						1	1		I	ĺ		1				

Tabla 46: Inspección visual en campo por el método Pci de la muestra 4

				MI	ETODO DE			L INDICE I				NTO (PCI)			
					HOJA	A DE REG	ISTRO								Lm	•
NOMBRE DE VÍA:	Panamer	icana Norte	:		UNIDAD	DE MUE	STRA:	Mue	stra 4						Am	6.50m
SECCION DE VÍA:	Calzada	derecha			AREA DI	E MUESTI	REO:	230	0.10						\	
EVALUADOR:	Jorge A	turo Jimene	ez Marrero	s	FECHA I	DE EVALU	ACION:	11/01	/2021						35.40m	
Grieta piel de cocodrilo	6. Depre	sión				11. Parch	eo y Acor	netidas de l	Servicios		16. Despl	azamiento				
2. Exudación	-	de Borde					-	gregados			-			eslizamiento		
3. Agrietamiento en bloque	8. Grieta:	de Reflexi	on de Junt	ta		13. Hueco	os				18. Hinch	amiento	-			
4. Agrietamientos y Hundimientos	9. Desni	vel Carril / I	Berma			14. Cruce	de Vía Fe	rrea			19. Meteo	orización /	Desprendi	mineto de agregados		
5. Corrugación	10. Grieta	as Longitud	linal / Trai	nsversal		15 Abuel	lamiento									
FALLA SEVERIDA	AD					CAN	ΓΊDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
FALLA SEVERIDA 10 Medium	AD	1 1.2	1.8	8 8	3 1.5		·	1.6	0.75	1.5	2	1.15		DENSIDAD 9.91	VALOR DEDUCIDO 18	
	AD 35.	+			3 1.5		·	5 1.6	0.75	1.5	2	1.15			18	
10 Medium		35.4			3 1.5		·	1.6	0.75	1.5	2	1.15	22.8	9.91	18 28	
10 Medium 2 Medium	35.	35.4			3 1.5		·	5 1.6	0.75	1.5	2	1.15	22.8 106.2	9.91 46.15	18 28	
10 Medium 2 Medium	35.	35.4			3 1.5		·	5 1.6	0.75	1.5	2	1.15	22.8 106.2	9.91 46.15	18 28	
10 Medium 2 Medium	35.	35.4			3 1.5		·	5 1.6	0.75	1.5	2	1.15	22.8 106.2	9.91 46.15	18 28	
10 Medium 2 Medium	35.	35.4			3 1.5		T	1.6	0.75	1.5	2	1.15	22.8 106.2	9.91 46.15	18 28	
10 Medium 2 Medium	35.	35.4			3 1.5		T	5 1.6	0.75	1.5	2	1.15	22.8 106.2	9.91 46.15	18 28	
10 Medium 2 Medium	35.	35.4			3 1.5		T	5 1.6	0.75	1.5	2	1.15	22.8 106.2	9.91 46.15	18 28	
10 Medium 2 Medium	35.	35.4			3 1.5		T	1.6	0.75	1.5	2	1.15	22.8 106.2	9.91 46.15	18 28	
10 Medium 2 Medium	35.	35.4			3 1.5		T	1.6	0.75	1.5	2	1.15	22.8 106.2	9.91 46.15	18 28	

Tabla 47: Inspección visual en campo por el método Pci de la muestra 5

				ME	TODO DE				DE CONDI ERFICIE A			NTO (PCI))		
					НОЈА	DE REGI	STRO								Lm
NOMBRE DE VÍA:	Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mue	stra 5						Am 6.50m
SECCION DE VÍA:	Calzada de	erecha			AREA DE	MUESTR	REO:	230	0.10						•
EVALUADOR:	Jorge Artu	ıro Jimene	z Marreros	s	FECHA D	E EVALU.	ACION:	11/01	/2021						35.40m
Grieta piel de cocodrilo	6. Depresi	ón				11. Parche	eo y Acom	etidas de S	Servicios		16. Despl	azamiento			
2. Exudación	7. Grietas						entos y Ag				-			eslizamiento	
3. Agrietamiento en bloque	8. Grietas	de Reflexio	on de Junta	a		13. Hueco					18. Hinch	amiento	•		
4. Agrietamientos y Hundimientos	9. Desnive	el Carril / B	Berma			14. Cruce	de Vía Fer	rea			19. Meteo	orización /	Desprendi	nineto de agregados	
5. Corrugación	10. Grietas	Longitud	inal / Tran	sversal		15 Abuell	amiento								
FALLA SEVERIDAD						CANT	TIDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO
10 Low	1.2	1.3	1.25										22.6	9.82	2 8
10 Medium	1.8	0.8	1	1.6	1.4	0.6	10	1	1.2	0.9			71.17	30.93	30
10 Medium	1.12	0.35	0.4		1.4	1.2	8	6	4.5	2		1			
10 Medium	0.25	0.15	0.45	2.2	1.8	4	1.8	1.4	1.1	1.6	1.45	1.8			
1															

Tabla 48: Inspección visual en campo por el método Pci de la muestra 6

					ME	TODO DE			LINDICE D				TO (PCI)				
						НОЈА	DE REGI	STRO								Lm	
NOMBRE DE VÍA:		Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	stra 6						Am	6.50m
SECCION DE VÍA:		Calzada de	erecha			AREA DE	MUESTR	EO:	230	.10						•	
EVALUADOR:		Jorge Artu	aro Jimene	z Marreros	i	FECHA D	E EVALU.	ACION:	11/01/	/2021						35.40m	
Grieta piel de cocodi	Irilo	6. Depresi	ón				11. Parche	o v Acom	etidas de S	Servicios		16. Despla	zamiento				
2. Exudación		7. Grietas						entos y Ag				-		as o por De	eslizamiento		
3. Agrietamiento en blo	loque	8. Grietas		on de Junta	a		13. Hueco		56			18. Hincha		F			
4. Agrietamientos y Hu	•	9. Desnive						de Vía Fen	rea					Desprendin	nineto de agregados		
5. Corrugación		10. Grietas	Longitud	inal / Tran	sversal		15 Abuell	amiento									
			· ·														
FALLA	SEVERIDAD						CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
10 Medi	lium	4.5	0.8	0.2	3.5	2	1.5	2	1.8	1.6	1.4	4	2.5	72.45	31.49	31	
10 Medi	lium	4	5	3.5	4	5.5	6	5	1.2	1.3	4.1	1.6	1.7				
10 Medi											4.1	1.0					
	lium	0.7	1.65	1.4							4.1	1.0					
	lium	0.7	1.65	1.4							4.1	1.0					
	lium	0.7	1.65	1.4							4.1	1.0					
	lium	0.7	1.65	1.4							4.1	1.0					
	ium	0.7	1.65	1.4							4.1	1.0					
	lium	0.7	1.65	1.4							4.1	1.0					
	lium	0.7	1.65	1.4							4.1	1.0					
	lium	0.7	1.65	1.4							4.1	1.0					
	lium	0.7	1.65	1.4							4.1						

Tabla 49: Inspección visual en campo por el método Pci de la muestra 7

					ME	TODO DE			. INDICE D				NTO (PCI)				
						НОЈА	DE REGI	STRO								Lm	•
NOMBRE DE V	ÍA:	Panamerio	ana Norte			UNIDAD	DE MUES	TRA:	Mues	stra 7						Am	6.50n
SECCION DE VÍ	ÍA:	Calzada d	erecha			AREA DE	MUESTR	EO:	230	.10						▼	
EVALUADOR:		Jorge Art	uro Jimene	z Marreros	3	FECHA D	E EVALU	ACION:	11/01/	/2021						35.40m	
1. Grieta piel de	cocodrilo	6. Depres	ión				11 Parche	o v Acom	etidas de S	Servicios		16. Despla	zamiento				
2. Exudación		7. Grietas					12. Pulimie	•				•		as o por D	eslizamiento		
3. Agrietamiento	o en bloque	8. Grietas		on de Junt	a		13. Hueco		,8			18. Hincha		p			
_	os y Hundimientos	9. Desniv	el Carril / B	erma			14. Cruce	de Vía Fen	rea			19. Meteo	rización /	Desprendi	nineto de agregados		
5. Corrugación	•	10. Grietas	s Longitud	inal / Tran	sversal		15 Abuella	amiento						•			
FALLA	SEVERIDAD						CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
1:	3 High	0.42												0.42	0.18	8 20	
13	3 Low	0.1												0.1	0.0	4 2	
10	0 Low	1	0.8	0.65	1	5	0.65	0.75						9.85	4.28	8 3	
10	High	1.2	4.8	5.1	5.25	1.25	0.6	0.5	2.2	1.1	0.9	2.15	1.2	45.1	19.60	0 48	
10	High	1	0.8	0.35	0.45	0.6	1.5	3	1.2	3.5	1.55	1.4	3.5				

Tabla 50: Inspección visual en campo por el método Pci de la muestra 8

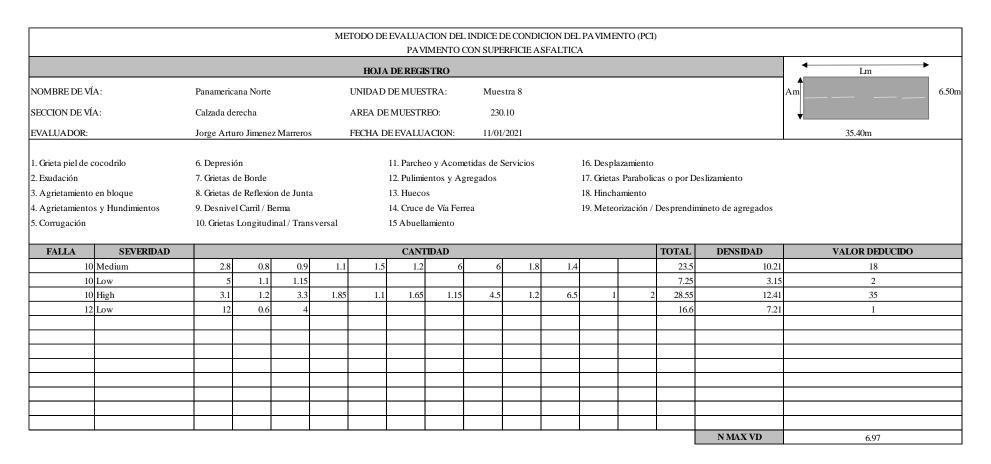


Tabla 51: Inspección visual en campo por el método Pci de la muestra 9

					ME	TODO DE				DE CONDI ERFICIE A			NTO (PCI))			
						HOJA	DE REG	ISTRO								Lm	•
NOMBRE DE VÍ	ÍA:	Panamerio	ana Norte	;		UNIDAD	DE MUE	STRA:	Mue	estra 9						Am	6.50n
SECCION DE VÍ	ÍA:	Calzada d	erecha			AREA DI	E MUESTI	REO:	23	0.10						▼	
EVALUADOR:		Jorge Arti	uro Jimene	ez Marrero	s	FECHA D	E EVALU	ACION:	11/0	1/2021						35.40m	
1. Grieta piel de o	cocodrilo	6. Depresi	ión				11. Parch	eo y Acon	netidas de	Servicios		16. Despla	azamiento				
2. Exudación		7. Grietas						ientos y A				•		as o por D	eslizamiento		
3. Agrietamiento	en bloque	8. Grietas	de Reflexi	on de Junt	a		13. Hueco	-				18. Hinch					
_	os y Hundimientos	9. Desnive	el Carril / E	Berma			14. Cruce	de Vía Fei	теа			19. Meteo	rización /	Desprendi	nineto de agregados		
5. Corrugación		10. Grietas	Longitud	linal / Tran	sversal		15 Abuel	lamiento									
FALLA	SEVERIDAD						CAN	ΓΙDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
10	Medium	7	4.5	4.75	1	9	1.5	1.8	1	1.2	1.8	2.1	2.1	37.75	16.41	1 22	
10	Low	1.5	3.1	3.3	2.5	2.1								12.5	5.43	3 4	
	High	1.44												1.44	0.63		
19	Medium	3	1.6											4.6	2.00	10	

Tabla 52: Inspección visual en campo por el método Pci de la muestra 10

					ME	TODO DE				DE CONDI ERFICIE A			NTO (PCI))		
						НОЈА	DE REGI	STRO								Lm
NOMBRE DE VÍA:		Panameric	ana Norte	:		UNIDAD	DE MUES	STRA:	Mue	stra 10						Am 6
SECCION DE VÍA:		Calzada de	erecha			AREA DE	EMUESTE	REO:	230	0.10						•
EVALUADOR:		Jorge Artı	uro Jimene	z Marrero	s	FECHA D	E EVALU	ACION:	11/0	1/2021						35.40m
Grieta piel de coc	odrilo	6. Depresi	ión				11 Parche	eo y Acom	etidas de	Servicios		16. Despla	zamiento			
2. Exudación	ourno	7. Grietas						entos y Ag		Bel vicios		-		es o nor D	eslizamiento	
Agrietamiento en	hloque	8. Grietas		on de Iunt	a		13. Hueco		gregados			18. Hincha		as o por D	CSHZAIIBCIIIO	
4. Agrietamientos y	•	9. Desnive			u			de Vía Fer	rea					Desprendi	mineto de agregados	
5. Corrugación	Hundingentos	10. Grietas			sversal		15 Abuell		icu			17.1416160	inzacion /	Безріснан	imieto de agregados	
3. Confugución		To. Grictus	Donghue	iniui, iiui	is versur		15 Trouch	шишене								
FALLA	SEVERIDAD						CAN	TIDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO
10 Lc	ow	1.2	1.5	1.7	0.9	5	1.2	10	1.3					22.8	9.91	8
13 Hi	igh	1.75												1.75	0.76	5 48
10 M	Iedium	6	1.2	13	1.8	2	2.5	0.6	6	3	2.5	1.8	1.75	42.15	18.32	24
8 La	ow	0.6												0.6	0.26	0
										-						

Tabla 53: Inspección visual en campo por el método Pci de la muestra 11

					ME	TODO DE	EEVALUA PAV		LINDICE D				NTO (PCI)	ı			
						НОЈА	DE REGI	STRO								Lm	•
NOMBRE DE VÍ	A:	Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 11						Am	6.50m
SECCION DE VÍ	A:	Calzada de	erecha			AREA DE	E MUESTR	EO:	230	.10						•	
EVALUADOR:		Jorge Artı	aro Jimene	z Marreros	S	FECHA D	DE EVALU	ACION:	11/01	/2021						35.40m	
Grieta piel de c Exudación	eocodrilo	6. Depresi 7. Grietas					11. Parche	•		Servicios		16. Despla		as o por D	eslizamiento		
3. Agrietamiento	=	8. Grietas			a		13. Hueco					18. Hincha					
Agrietamiento Corrugación	s y Hundimientos	9. Desnive 10. Grietas			sversal		14. Cruce		rea			19. Meteo	orización /	Desprendii	mineto de agregados		
FALLA	SEVERIDAD						CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
10	High	1.2	1.4	1.6	1.6	3	4	3	1.5	1.5	1.2	4		24	10.43	35	
13	High	2.25	0.66											2.91	1.26	55	
13	Medium	1.44	1.2											4.64	2.02	45	
	Low	1.5	1.2			1.6		0.6	0.45	0.55				12.35	5.37		
	Medium	0.6	0.6	0.6		1	2.5	4	1.4	1.2	0.9	0.55	0.85	32.18	13.99	19	
10	Medium	1.1	1.35	2	1.6	1	1.8	3	1.1	1.2	1.05	1.18	0.9				
		1 1															

Tabla 54: Inspección visual en campo por el método Pci de la muestra 12

					ME	ETODO DE			L INDICE D				NTO (PCI)	ı			
						НОЈА	DE REGI	STRO								Lm	
NOMBRE DE VÍ	A:	Panameric	ana Norte			UNIDAD	DE MUES	STRA:	Mues	tra 12						Am	6.50m
SECCION DE VÍ	A:	Calzada de	erecha			AREA DE	EMUESTR	REO:	230	.10						\	
EVALUADOR:		Jorge Artı	aro Jimene	z Marrero	s	FECHA D	E EVALU.	ACION:	11/01/	/2021						35.40m	
Grieta piel de c	cocodrilo	6. Depresi	ón				11. Parche	eo y Acom	etidas de S	Servicios		16. Despla	zamiento				
2. Exudación		7. Grietas						entos y Ag				-		as o por D	eslizamiento		
3. Agrietamiento	en bloque	8. Grietas	de Reflexio	on de Junt	a		13. Hueco	s	_			18. Hincha	miento				
4. Agrietamiento	s y Hundimientos	9. Desnive	el Carril / E	Berma			14. Cruce	de Vía Fer	rea			19. Meteo	rización /	Desprendi	nineto de agregados		
5. Corrugación		10. Grietas	Longitud	linal / Trar	nsversal		15 Abuell	amiento									
FALLA	SEVERIDAD						CANT	TIDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
13	High	0.42												0.42	0.18	23	
-	High Low	0.42 0.85	1.45	1.6										0.42 3.9	0.18 1.69	23 1	
10 13	Low Medium	+												3.9 2.25	1.69 0.98	23 1 30	
10 13 10	Low Medium Medium	0.85	1.4	1.1	1.15		0.85	1.2	1.45	1.6	0.95	0.4	0.55	3.9	1.69	1	
10 13 10	Low Medium	0.85 2.25		1.1	1.15		0.85	1.2	1.45	1.6	0.95	0.4	0.55	3.9 2.25	1.69 0.98	1 30	
10 13 10	Low Medium Medium	0.85 2.25 1.2	1.4	1.1	1.15		0.85	1.2	1.45	1.6	0.95	0.4	0.55	3.9 2.25	1.69 0.98	1 30	
10 13 10	Low Medium Medium	0.85 2.25 1.2	1.4	1.1	1.15		0.85	1.2	1.45	1.6	0.95	0.4	0.55	3.9 2.25	1.69 0.98	1 30	
10 13 10	Low Medium Medium	0.85 2.25 1.2	1.4	1.1	1.15		0.85	1.2	1.45	1.6	0.95	0.4	0.55	3.9 2.25	1.69 0.98	1 30	
10 13 10	Low Medium Medium	0.85 2.25 1.2	1.4	1.1	1.15		0.85	1.2	1.45	1.6	0.95	0.4	0.55	3.9 2.25	1.69 0.98	1 30	
10 13 10	Low Medium Medium	0.85 2.25 1.2	1.4	1.1	1.15		0.85	1.2	1.45	1.6	0.95	0.4	0.55	3.9 2.25	1.69 0.98	1 30	
10 13 10	Low Medium Medium	0.85 2.25 1.2	1.4	1.1	1.15		0.85	1.2	1.45	1.6	0.95	0.4	0.55	3.9 2.25	1.69 0.98	1 30	

Tabla 55: Inspección visual en campo por el método Pci de la muestra 13

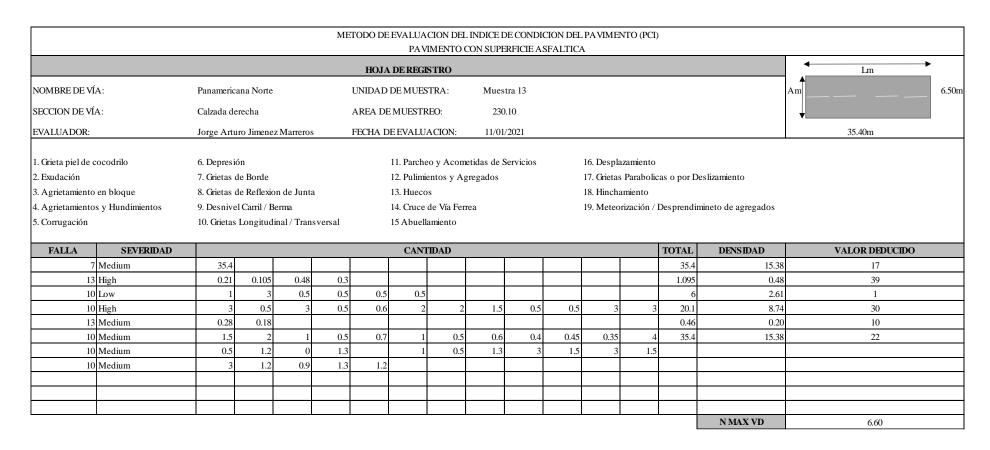


Tabla 56: Inspección visual en campo por el método Pci de la muestra 14

				ME	ETODO DE			L INDICE I			L PA VIME A	NTO (PCI))			
					НОЈА	DE REGI	STRO								Lm	•
NOMBRE DE VÍA:	Panameric	ana Norte			UNIDAD	DE MUES	STRA:	Mues	tra 14						Am	6.50m
SECCION DE VÍA:	Calzada d	erecha			AREA DE	E MUESTR	REO:	230	0.10						•	
EVALUADOR:	Jorge Arti	uro Jimene	z Marrero	S	FECHA D	E EVALU.	ACION:	11/01	/2021						35.40m	
Grieta piel de cocodrilo	6. Depresi	ión				11. Parche	eo v Acom	netidas de S	Servicios		16. Despl	azamiento				
2. Exudación	7. Grietas						entos y Ag				-			eslizamiento		
3. Agrietamiento en bloque	8. Grietas	de Reflexio	on de Junt	a		13. Hueco					18. Hinch	amiento	•			
4. Agrietamientos y Hundimientos	9. Desnive	el Carril / B	Berma			14. Cruce	de Vía Fer	теа			19. Meteo	rización /	Desprendi	mineto de agregados		
5. Corrugación	10. Grietas	s Longitud	inal / Tran	sversal		15 Abuell	amiento									
FALLA SEVERIDAD						CANI	TIDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
FALLA SEVERIDAD 13 Medium	0.3	1.12	0.42	0.16	1.44			0.55					TOTAL 4.52	DENSIDAD		
13 Medium 10 Medium	0.3	1.12	3	1	1	0.2	0.33 1.1	0.45	0.8	3	3 0.5	0.8	4.52		42	
13 Medium 10 Medium 10 Medium	3	1.12 3	3 1.5	1.5	1	0.2	0.33 1.1	0.45	0.8	3 5	0.5	0.8	4.52	1.96	42	
13 Medium 10 Medium	0.3 3 3 0.7	1.12 3 1 3	3	1.5	1	0.2	0.33 1.1	0.45	0.8	3 5	0.5	0.8	4.52	1.96	42	
13 Medium 10 Medium 10 Medium	3	1.12 3 1 3	3 1.5	1.5	1	0.2	0.33 1.1	0.45	0.8	3 5	0.5	0.8	4.52	1.96	42	
13 Medium 10 Medium 10 Medium	3	1.12 3 1 3	3 1.5	1.5	1	0.2	0.33 1.1	0.45	0.8	3 5	0.5	0.8	4.52	1.96	42	
13 Medium 10 Medium 10 Medium	3	1.12 3 1 3	3 1.5	1.5	1	0.2	0.33 1.1	0.45	0.8	3 5	0.5	0.8	4.52	1.96	42	
13 Medium 10 Medium 10 Medium	3	1.12 3 1 3	3 1.5	1.5	1	0.2	0.33 1.1	0.45	0.8	3 5	0.5	0.8	4.52	1.96	42	
13 Medium 10 Medium 10 Medium	3	1.12 3 1 3	3 1.5	1.5	1	0.2	0.33 1.1	0.45	0.8	3 5 5	0.5	0.8	4.52	1.96	42	
13 Medium 10 Medium 10 Medium	3	1.12 3 1 3	3 1.5	1.5	1	0.2	0.33 1.1	0.45	0.8	3 5 5	0.5	0.8	4.52	1.96	42	
13 Medium 10 Medium 10 Medium	3	1.12 3 1 3	3 1.5	1.5	1	0.2	0.33 1.1	0.45	0.8	3 5 5	0.5	0.8	4.52	1.96	42	

Tabla 57: Inspección visual en campo por el método Pci de la muestra 15

					ME	TODO DE			INDICE D				NTO (PCI))			
						НОЈА	DE REGI	STRO								Lm	>
NOMBRE DE V	ÍA:	Panamerio	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 15						Am	6.50n
SECCION DE V	ÍA:	Calzada d	erecha			AREA DE	MUESTR	EO:	230	.10						*	
EVALUADOR:		Jorge Arti	uro Jimene	z Marrero	s	FECHA D	E EVALU	ACION:	28/01/	2021						35.40m	
1. Grieta piel de	cocodrilo	6. Depresi	ión				11. Parche	o v Acom	etidas de S	ervicios		16. Despla	zamiento				
2. Exudación		7. Grietas					12. Pulimie	•				•		as o por D	eslizamiento		
3. Agrietamiento	o en bloque	8. Grietas		on de Junt	a		13. Hueco		,8			18. Hincha		F			
_	os y Hundimientos	9. Desnive					14. Cruce		rea					Desprendi	mineto de agregados		
5. Corrugación		10. Grietas	Longitud	inal / Tran	sversal		15 Abuella	amiento									
FALLA	SEVERIDAD						CANT	TDAD	-	ı				TOTAL	DENSIDAD	VALOR DEDUCIDO	
	3 Medium	0.75												0.75	0.33		
	3 Low	0.06		_										0.0625	0.03		
	0 Low	8	0.8	3	3.1	1.6		_				_		16.5	7.1		
	0 Medium	0.9	0.6	0.95		0.97	1.1	7	1.6	0.7	0.6	2	1.5	45.92	19.90	6 24	
	0 Medium	2	0.6	0.75		1.2	1.3	3	4	1.5	2	0.6	3				
10	0 Medium	1.5	1.55	1	1.35												
							1										

Tabla 58: Inspección visual en campo por el método Pci de la muestra 16

					ME	TODO DE			INDICE D				NTO (PCI))			
						НОЈА	DE REGIS	STRO								Lm	
NOMBRE DE V	ÍA:	Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 16						Am	6.50m
SECCION DE V	ÍA:	Calzada d	erecha			AREA DE	MUESTR	EO:	230	.10						•	
EVALUADOR:		Jorge Arti	aro Jimene	z Marreros	3	FECHA D	E EVALUA	ACION:	12/01/	2021						35.40m	
1. Grieta piel de	cocodrilo	6. Depresi	ón				11. Parche	o y Acom	etidas de S	ervicios		16. Despla	zamiento				
2. Exudación		7. Grietas					12. Pulimie	-				-		as o por D	eslizamiento		
3. Agrietamiento	o en bloque	8. Grietas	de Reflexio	on de Junt	a		13. Hueco	s	, 0			18. Hincha	amiento	•			
4. Agrietamiento	os y Hundimientos	9. Desnive	el Carril / B	erma			14. Cruce	de Vía Ferr	rea			19. Meteo	rización /	Desprendi	nineto de agregados		
5. Corrugación		10. Grietas	Longitud	inal / Tran	sversal		15 Abuella	amiento									
FALLA	SEVERIDAD					ı	CANT	TDAD	ı					TOTAL	DENSIDAD	VALOR DEDUCIDO	
	2 Low	1.8	0.40	0.10		0.01		0.44	0.55	0.4				1.8	0.78		
	Medium Low	0.18	0.18	0.18 1.75	0.27	0.24	0.3	0.21	0.55	0.4	0.5			3.01 4.85	1.31 2.11	36	
	O High	1.0	1.5	3.2	3.3	0.6	0.6	0.85	0.9	0.82	1.7	0.85	0.8	78.82	34.25	63	
	O High	0.8	0.8	0.8	5.5	0.0	0.0	0.85	0.9	0.82	1.7	10	2	70.02	34.23	0.5	
10								0.05	0.05	0.0	1.0	10	_				
10		_		3	6	6	3	1.5	1.5	1.6	1.55	1.4					
10	0 High	1.8	1.45		6	6	3	1.5	1.5	1.6	1.55	1.4					
10		_			6	6	3	1.5	1.5	1.6	1.55	1.4					
10		_			6	6	3	1.5	1.5	1.6	1.55	1.4					
10		_			6	6	3	1.5	1.5	1.6	1.55	1.4					
1(_			6	6	3	1.5	1.5	1.6	1.55	1.4					
1(_			6	6	3	1.5	1.5	1.6	1.55	1.4			N MAX VD	4.40	

Tabla 59: Inspección visual en campo por el método Pci de la muestra 17

					ME	TODO DE			INDICE D				NTO (PCI)	ı			
						НОЈА	DE REGIS	STRO								Lm	-
NOMBRE DE VÍ	ÍA:	Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 17						Am	6.50m
SECCION DE VÍ	Á:	Calzada d	erecha			AREA DE	MUESTR	EO:	230	0.10						•	
EVALUADOR:		Jorge Arti	uro Jimene	z Marrero	s	FECHA D	E EVALU <i>A</i>	ACION:	12/01	/2021						35.40m	
1. Grieta piel de d	cocodrilo	6. Depresi	ión				11. Parche	o v Acom	etidas de S	Servicios		16. Despla	azamiento				
2. Exudación		7. Grietas					12. Pulimie	-				•		as o por D	eslizamiento		
3. Agrietamiento	en bloque	8. Grietas		on de Junt	a		13. Huecos		,,			18. Hinch:		p			
	os y Hundimientos	9. Desnive	el Carril / E	Berma			14. Cruce o		rea			19. Meteo	rización /	Desprendi	mineto de agregados		
5. Corrugación		10. Grietas	Longitud	inal / Trar	nsversal		15 Abuella	amiento									
			Ü														
FALLA	SEVERIDAD						CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
13	Medium	0.125	0.18											0.305	0.13	5	
10	Low	1.5	1.45											2.95	1.28	1	
13	High	0.48	0.6											1.08	0.47	39	
10	Medium	22	6	3	0.35	0.5	0.6	1.5	0.8	0.85	0.75	0.4	0.6	75.1	32.64	31	
-	Medium	1.55	1.6		5.1	1.55	0.5	1.1	0.6	2	1.5	0.4	1.45				
10	Medium	0.5	0.7	0.95	3.25	5	3	6									
							-										

Tabla 60: Inspección visual en campo por el método Pci de la muestra 18

					ME	TODO DE		CION DEL					NTO (PCI)	ı			
						НОЈА	DE REGIS	STRO								Lm	
NOMBRE DE V	ÍA:	Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 18						Am	6.50m
SECCION DE VI	ÍA:	Calzada de	erecha			AREA DE	MUESTR	EO:	230	.10						•	
EVALUADOR:		Jorge Artı	ıro Jimene	z Marreros	s	FECHA D	E EVALUA	ACION:	12/01	/2021						35.40m	
1. Grieta piel de	cocodrilo	6. Depresi	ón				11. Parche	o y Acomo	etidas de S	Servicios		16. Despla	zamiento				
2. Exudación		7. Grietas						entos y Ag				-		as o por D	eslizamiento		
3. Agrietamiento	en bloque	8. Grietas	de Reflexio	n de Junta	a		13. Hueco					18. Hincha		1			
	os y Hundimientos	9. Desnive	el Carril / B	erma			14. Cruce	de Vía Ferr	ea			19. Meteo	rización /	Desprendi	nineto de agregados		
5. Corrugación	•	10. Grietas	Longitud	inal / Tran	sversal		15 Abuella	amiento						-			
FALLA	SEVERIDAD						CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
19	Medium	23.01												23.01	10.00	19	
13	Medium	0.12												0.12	0.05	5	
11	Medium	2.64												2.64	1.15	11	
13																	
1.	High	0.21	0.18											0.39	0.17	21	
10	Medium	0.21	0.18 1.55	1.1		2	1	2.1	1.1	1	2.65	23	1	0.39 72.3	0.17 31.42	21 32	
10				1.1		2	1 0.4	2.1 0.95	1.1 0.85	1 3	2.65	23	1 2				
10	Medium				0.8	2 1 0.5	1 0.4			3	2.65	23	1 2				
10	Medium Medium		1.55	0.7	0.8		1 0.4			3	2.65	23	1 2				
10	Medium Medium		1.55	0.7	0.8		0.4			3	2.65	23	1 2				
10	Medium Medium		1.55	0.7	0.8		1 0.4			3	2.65	23	1 2				
10	Medium Medium		1.55	0.7	0.8		0.4			1 3	2.65	23	1 2				
10	Medium Medium		1.55	0.7	0.8		0.4			1 3	2.65	23	1 2				

Tabla 61: Inspección visual en campo por el método Pci de la muestra 19

					ME	TODO DE			INDICE D			. PA VIMEI	NTO (PCI)	l			
						НОЈА	DE REGI	STRO								Lm	•
NOMBRE DE VÍA	:	Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 19						Am	6.50m
SECCION DE VÍA	:	Calzada de	erecha			AREA DE	MUESTR	EO:	230	.10						•	
EVALUADOR:		Jorge Artı	ıro Jimene	z Marreros	s	FECHA D	E EVALU	ACION:	12/01	/2021						35.40m	
Grieta piel de co Exudación Agrietamiento e		6. Depresi 7. Grietas 8. Grietas	de Borde	on de Junt	a		11. Parche 12. Pulimie 13. Hueco	entos y Ag	etidas de S gregados	Servicios		16. Despla 17. Grietas 18. Hincha	Parabolio	as o por D	eslizamiento		
Agrietamientos Corrugación	y Hundimientos	9. Desnive 10. Grietas			sversal		14. Cruce		rea			19. Meteo	rización /	Desprendii	mineto de agregados		
FALLA	SEVERIDAD						CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
15 F	High	12	20											32	13.91	61	
13 F	High	1.04												1.04	0.45	38	
13 N	Medium	0.12	0.12	0.36										0.6	0.26	13	
18 N	Medium	5.2												5.2	2.26	19	
10 N	Medium	1	0.5	1.5	1.5	1	0.6	3	2	3	0.9	0.8	0.5	59.3	25.77	28	
10 N	Medium	8	3	4	0.9	0.8	0.9	2	1	1	1	1.5	2				
10 N	Medium	1	1	0.9	2	1.5	2	1	1.2	1.5	0.9	0.9	3				
10 H	High	0.5	6.5	6.5	2.5	2.5	2.5	6.5	6.5	6.5	6.5	4	0.45	65.65	28.53	61	
10 F	High	0.8	0.8	0.7	0.75	0.6	0.55	3.5	2	4.5							

Tabla 62: Inspección visual en campo por el método Pci de la muestra 20

					ME	TODO DE		CION DEL					NTO (PCI)				
						НОЈА	DE REGIS	STRO								Lm	
NOMBRE DE VÍA:	F	Panamerica	ana Norte			UNIDAD	DE MUES	TRA:	Muest	tra 20						Am	6.50m
SECCION DE VÍA:	(Calzada de	erecha			AREA DE	MUESTR	EO:	230.	.10						•	
EVALUADOR:	J	Jorge Artu	ıro Jimene	z Marreros	1	FECHA D	E EVALU <i>A</i>	ACION:	12/01/	2021						35.40m	
Grieta piel de cocodrile Exudación		6. Depresio						o y Acome		ervicios		16. Despla		as o por D	es lizamiento		
3. Agrietamiento en bloc			de Reflexio	n de Junta	a		13. Huecos		,,			18. Hinch		F			
4. Agrietamientos y Hun	1		l Carril / B		-			- de Vía Ferr	ea					Desprendir	nineto de agregados		
5. Corrugación		10. Grietas	Longitud	inal / Tran	sversal		15 Abuella	amiento									
FALLA S	SEVERIDAD						CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
19 Mediu	ım	97.5												97.5	42.37	32	
		91.3												71.0	72.31		
11 Mediu		7.15												7.15	3.11	18	
11 Mediu 13 Mediu	um													-		18 58	
	um													-	3.11		
13 Mediu	um	7.15												7.15 6	3.11 2.61		
13 Medius 12 Low	um	7.15 6 10												7.15 6 10	3.11 2.61 4.35	58 1	
13 Mediu 12 Low 13 Low 1 High 10 Mediu	um um	7.15 6 10 0.2	0.7	0.85	0.45	1.2	2	4	1.8	1,1	1.2	1	1	7.15 6 10 0.2	3.11 2.61 4.35 0.09	58 1 2	
13 Mediu 12 Low 13 Low 1 High	um um	7.15 6 10 0.2 18	0.7	0.85	0.45	1.2	2 0.5	4 1.2	1.8	1.1 6.5	1.2	1 1.3	1 1.4	7.15 6 10 0.2 18	3.11 2.61 4.35 0.09 7.82	58 1 2 56	
13 Mediu 12 Low 13 Low 1 High 10 Mediu	um um	7.15 6 10 0.2 18 0.5						4 1.2				1 1.3 0.5	1 1.4	7.15 6 10 0.2 18	3.11 2.61 4.35 0.09 7.82	58 1 2 56	
13 Mediu 12 Low 13 Low 1 High 10 Mediu 10 Mediu	um um	7.15 6 10 0.2 18 0.5	1.2	1.2		0.45		4 1.2 1			1.4		1 1.4	7.15 6 10 0.2 18	3.11 2.61 4.35 0.09 7.82	58 1 2 56	
13 Mediu 12 Low 13 Low 1 High 10 Mediu 10 Mediu	um um	7.15 6 10 0.2 18 0.5	1.2	1.2		0.45		4 1.2 1			1.4		1 1.4	7.15 6 10 0.2 18	3.11 2.61 4.35 0.09 7.82	58 1 2 56	

Tabla 63: Inspección visual en campo por el método Pci de la muestra 21

					ME	TODO DE		CION DEL					NTO (PCI)	ı			
						НОЈА	DE REGIS	STRO								Lm	•
NOMBRE DE VÍ	ÍA:	Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 21						Am	6.50m
SECCION DE VÍ	A:	Calzada de	erecha			AREA DE	MUESTR	EO:	230	.10						•	
EVALUADOR:		Jorge Artu	ıro Jimene:	z Marreros	3	FECHA D	E EVALUA	ACION:	12/01/	2021						35.40m	
1. Grieta piel de o	cocodrilo	6. Depresi	ón				11. Parche	o y Acom	etidas de S	ervicios		16. Despla	zamiento				
2. Exudación		7. Grietas						entos y Ag				•		as o por D	eslizamiento		
3. Agrietamiento	en bloque	8. Grietas	de Reflexio	n de Junta	a		13. Hueco	s				18. Hincha	miento	•			
4. Agrietamiento	os y Hundimientos	9. Desnive	el Carril / B	erma			14. Cruce	de Vía Fen	ea			19. Meteo	rización /	Desprendi	mineto de agregados		
5. Corrugación		10. Grietas	Longitudi	inal / Tran	sversal		15 Abuella	amiento									
FALLA	SEVERIDAD						CANT	TDAD									
				-	-		CILIT	עאעו						TOTAL	DENSIDAD	VALOR DEDUCIDO	
	Low	0.03	0.24				CALVI	IDAD						0.27	0.12	2 2	
12	Low	3	0.24				CHIL	DAD						0.27	0.12 1.30	2 2	
12 13	Low High	3 0.84								0.75		0.15		0.27 3 0.84	0.12 1.30 0.37	2 2 1 7 36	
12 13 10	Low High Medium	3 0.84 20	35.4	0.6	0.6	0.6	0.7	0.6	0.9	0.55	0.55	0.65	0.75	0.27	0.12 1.30	2 2 1 7 36	
12 13 10 10	Low High Medium Medium	3 0.84 20 1.2		1.4	1.6	1.1			1.25	1.3	1.05	1.4	1.3	0.27 3 0.84	0.12 1.30 0.37	2 2 1 7 36	
12 13 10 10	Low High Medium Medium Medium	3 0.84 20 1.2 1.8	35.4 1.25 3	1.4 1.4	1.6 0.9	1.1 1.1	0.7 1.25	0.6 1.3 2		1.3 1.2				0.27 3 0.84	0.12 1.30 0.37	2 2 1 7 36	
12 13 10 10	Low High Medium Medium	3 0.84 20 1.2	35.4	1.4	1.6	1.1	0.7	0.6	1.25	1.3	1.05	1.4	1.3	0.27 3 0.84	0.12 1.30 0.37	2 2 1 7 36	
12 13 10 10	Low High Medium Medium Medium	3 0.84 20 1.2 1.8	35.4 1.25 3	1.4 1.4	1.6 0.9	1.1 1.1	0.7 1.25	0.6 1.3 2	1.25	1.3 1.2	1.05	1.4	1.3	0.27 3 0.84	0.12 1.30 0.37	2 2 1 7 36	
12 13 10 10	Low High Medium Medium Medium	3 0.84 20 1.2 1.8	35.4 1.25 3	1.4 1.4	1.6 0.9	1.1 1.1	0.7 1.25	0.6 1.3 2	1.25	1.3 1.2	1.05	1.4	1.3	0.27 3 0.84	0.12 1.30 0.37	2 2 1 7 36	
12 13 10 10	Low High Medium Medium Medium	3 0.84 20 1.2 1.8	35.4 1.25 3	1.4 1.4	1.6 0.9	1.1 1.1	0.7 1.25	0.6 1.3 2	1.25	1.3 1.2	1.05	1.4	1.3	0.27 3 0.84	0.12 1.30 0.37	2 2 1 7 36	
12 13 10 10	Low High Medium Medium Medium	3 0.84 20 1.2 1.8	35.4 1.25 3	1.4 1.4	1.6 0.9	1.1 1.1	0.7 1.25	0.6 1.3 2	1.25	1.3 1.2	1.05	1.4	1.3	0.27 3 0.84	0.12 1.30 0.37	2 2 1 7 36	

Tabla 64: Inspección visual en campo por el método Pci de la muestra 22

					ME	TODO DE		CION DEL IMENTO C					TO (PCI)				
						НОЈА	DE REGIS	STRO								Lm	
NOMBRE DE VÍA	A:	Panamerica	na Norte			UNIDAD	DE MUES	TRA:	Mues	tra 22						Am	6.50m
SECCION DE VÍA	A:	Calzada der	recha			AREA DE	MUESTR	EO:	230	.10						•	
EVALUADOR:		Jorge Artur	ro Jimene	z Marreros	s	FECHA D	E EVALUA	ACION:	12/01	/2021						35.40m	
Grieta piel de co	ocodrilo	6. Depresió	n				11 Parche	o y Acome	tidas de S	Servicios		16. Despla	zamiento				ļ
2. Exudación	ocourno	7. Grietas de						entos y Agi		.01 / 10100		•		as o nor D	eslizamiento		
3. Agrietamiento	en bloque	8. Grietas de		on de Junt:	a		13. Hueco		regudos			18. Hincha		us o por D			
	s y Hundimientos	9. Desnivel						de Vía Ferra	ea					Desprendir	nineto de agregados		ļ
5. Corrugación	y manamientos	10. Grietas 1			sversal		15 Abuella					17.1.101001		Sespionan	ameto de agregados		
o. corragación		To: Gretus I	Longituu	,	5,01541		101104011										
FALLA	SEVERIDAD						CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
13	High	0.25												0.25	0.11	21	
,														0.23	0,		
10	Medium	35.4	3	3.3	1.2	0.9	1	0.4	1.5	1.5	0.6	0.7	0.5	119.1	51.76		
	Medium Medium		3 0.5	3.3	1.2	0.9 1	1 2	0.4	1.5 0.9	1.5 1.7	0.6 1.5	0.7	0.5				
10		35.4	3 0.5 3	3.3 1 0.4	1.2 1 0.6	1 0.6	1 2 0.4					0.7 1 1.5	0.5 1 1.5				
10 10 10	Medium Medium Medium	35.4 1.5 1.2 1.5	3 0.5 3	1 0.4 1	0.6 1.5	1 0.6 0.9	0.5	0.4	0.9	1.7		1	1				
10 10 10	Medium Medium	35.4 1.5 1.2	3 0.5 3 1 0.5	1	0.6	1 0.6	-	0.4 1.2	0.9 0.4	1.7 20	1.5	1.5	1.5				
10 10 10 10	Medium Medium Medium	35.4 1.5 1.2 1.5	3	1 0.4 1	0.6 1.5	1 0.6 0.9	0.5	0.4 1.2	0.9 0.4	1.7 20 0.5	1.5 1 0.4	1 1.5 0.5	1 1.5 0.4				
10 10 10 10	Medium Medium Medium Medium	35.4 1.5 1.2 1.5 0.2	3 1 0.5	1 0.4 1	0.6 1.5	1 0.6 0.9 0.9	0.5	0.4 1.2	0.9 0.4	1.7 20 0.5	1.5 1 0.4	1 1.5 0.5	1 1.5 0.4				
10 10 10 10	Medium Medium Medium Medium	35.4 1.5 1.2 1.5 0.2	3 1 0.5	1 0.4 1	0.6 1.5	1 0.6 0.9 0.9	0.5	0.4 1.2	0.9 0.4	1.7 20 0.5	1.5 1 0.4	1 1.5 0.5	1 1.5 0.4				
10 10 10 10	Medium Medium Medium Medium	35.4 1.5 1.2 1.5 0.2	3 1 0.5	1 0.4 1	0.6 1.5	1 0.6 0.9 0.9	0.5	0.4 1.2	0.9 0.4	1.7 20 0.5	1.5 1 0.4	1 1.5 0.5	1 1.5 0.4				
10 10 10 10	Medium Medium Medium Medium	35.4 1.5 1.2 1.5 0.2	3 1 0.5	1 0.4 1	0.6 1.5	1 0.6 0.9 0.9	0.5	0.4 1.2	0.9 0.4	1.7 20 0.5	1.5 1 0.4	1 1.5 0.5	1 1.5 0.4				

Tabla 65: Inspección visual en campo por el método Pci de la muestra 23

					ME	TODO DE			L INDICE I			. PAVIME	NTO (PCI))			
						НОЈА	DE REGIS	STRO								Lm	+
NOMBRE DE VI	ÍA:	Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 23						Am	6.50m
SECCION DE VÍ	ÍA:	Calzada de	erecha			AREA DE	MUESTR	EO:	230	0.10							
EVALUADOR:		Jorge Artı	ıro Jimene	z Marreros		FECHA D	E EVALU <i>i</i>	ACION:	12/01	/2021						35.40m	
1. Grieta piel de	cocodrilo	6. Depresi	ón				11. Parche	o v Acom	etidas de S	Servicios		16. Despla	azamiento				
2. Exudación		7. Grietas					12. Pulimie	-				•		as o por D	eslizamiento		
3. Agrietamiento	en bloque	8. Grietas	de Reflexio	on de Junta	ı		13. Hueco					18. Hinch		1			
4. Agrietamiento	os y Hundimientos	9. Desnive	el Carril / B	Berma			14. Cruce	de Vía Fer	теа			19. Meteo	rización /	Desprendir	nineto de agregados		
5. Corrugación	-	10. Grietas	Longitud	inal / Tran	sversal		15 Abuella	amiento						-			
FALLA	SEVERIDAD			T			CANT		Г			T		TOTAL	DENSIDAD	VALOR DEDUCIDO	
	Medium	35.4	0.6		0.6	0.5	1.5	0.6		0.3	0.8		1.2	100.6	43.72	69	
	Medium	1.4	0.6	5	5	1.1	0.5	0.4	0.3	0.2	1.2	1.5	1				
	Medium	1.5	0.4	0.6	0.2	0.5	1	0.9		0.5	1	1.5	1.5				
	Medium	0.9	0.8	0.5 2.5	0.4	0.9	1.5	0.5	0.4	0.4	0.5	0.6	1.5				
	Medium Low	0.9	0.09	0.05	0.09	0.6	1.5	1	2.2	0.4	0.3	0.6		0.2725	0.12	2	
	2 Low	0.04	0.09	0.03	0.09									0.2723	0.03		
-	Medium	15												15	6.52	16	
	High	0.5	0.6	0.7	0.4	0.5	0.6	1	0.2	0.3	1	1	1	37	16.08		
	High	1.2	1	1.2	0.5	1	1.5	1	0.9	0.9	10	1	0.5				
	High	0.7	0.7	2	2.5	0.2	0.3	0.5	0.6	1							
															N MAX VD	3.85	

Tabla 66: Inspección visual en campo por el método Pci de la muestra 24

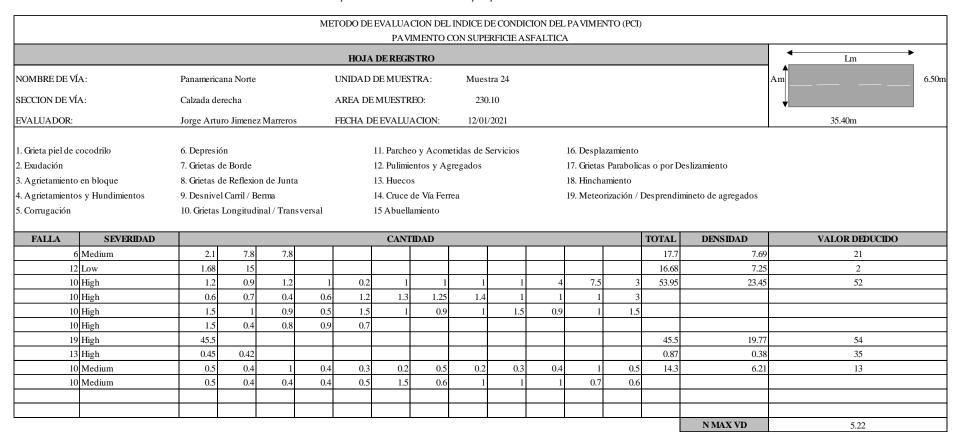


Tabla 67: Inspección visual en campo por el método Pci de la muestra 25

					ME	TODO DE				E CONDIC		PAVIMEN	NTO (PCI)	ı			
						НОЈА	DE REGIS	STRO								Lm	
NOMBRE DE VÍ	ÍA:	Panameric	ana Norte			UNIDAD	DE MUES	ΓRA:	Muest	tra 25						Am	6.50m
SECCION DE VÍ	ÍA:	Calzada de	erecha			AREA DE	MUESTR	EO:	230.	.10						•	
EVALUADOR:		Jorge Artı	ıro Jimenez	z Marreros	i	FECHA D	E EVALU <i>A</i>	ACION:	12/01/	2021						35.40m	
Grieta piel de d	cocodrilo	6. Depresi	ón				11. Parche	o v Acome	etidas de S	ervicios		16. Despla	zamiento				
2. Exudación		7. Grietas					12. Pulimie	-				•		as o por D	eslizamiento		
3. Agrietamiento	en bloque	8. Grietas	de Reflexio	n de Junta	ı		13. Huecos					18. Hincha		1			
"	os y Hundimientos	9. Desnive	el Carril / Be	erma			14. Cruce o	le Vía Ferr	rea			19. Meteo	rización /	Desprendi	nineto de agregados		
5. Corrugación	•	10. Grietas	Longitudi	nal / Tran	sversal		15 Abuella	miento						•			
		_														-	
FALLA	SEVERIDAD						CANT	IDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
	2 Low	9												9	3.91	1	
	Medium	2.8												2.8	1.22	10	
	High	2	1.5	0.4	0.5	1.5	0.6	0.7	0.9	1.2							
									0.9		0.5	1	1.5	36.4	15.82	40	
	High	1	0.8	1.5	1	1	0.4	0.6	1	0.4	1.5	1.5	1.5	36.4	15.82	40	
10	High	1	0.9	0.9	0.5	2.5	0.4	0.6 1.5	1.5	0.4 0.6	1.5	1.5	1				
10	High Medium	1 1 0.4		0.9 0.3	0.5 0.5	0.4	0.4 3 0.5	0.6	1 1.5 1	0.4		1	1.5	28.1	15.82	20	
10 10 10	High Medium Medium	1 1 0.4 1.2	0.9 0.2 1	0.9		0.4	0.4	0.6 1.5 0.3	1 1.5 1 1.1	0.4 0.6	1.5	1 1.5	1				
10 10 10 10	High Medium Medium Medium	1.2	0.9 0.2 1 1.5	0.9 0.3		0.4	0.4 3 0.5	0.6 1.5	1 1.5 1	0.4 0.6	1.5	1	1	28.1	12.21	20	
10 10 10 10 10	High Medium Medium Medium Medium Medium	1.2 1 0.36	0.9 0.2 1 1.5 0.48	0.9 0.3 1.1		0.4	0.4 3 0.5	0.6 1.5 0.3	1 1.5 1 1.1	0.4 0.6	1.5	1	1	28.1	12.21	20	
10 10 10 10 10	High Medium Medium Medium	1.2	0.9 0.2 1 1.5	0.9 0.3		0.4	0.4 3 0.5	0.6 1.5 0.3	1 1.5 1 1.1	0.4 0.6	1.5	1	1	28.1	12.21	20	
10 10 10 10 10	High Medium Medium Medium Medium Medium	1.2 1 0.36	0.9 0.2 1 1.5 0.48	0.9 0.3 1.1		0.4	0.4 3 0.5	0.6 1.5 0.3	1 1.5 1 1.1	0.4 0.6	1.5	1	1	28.1	12.21	20	

Tabla 68: Inspección visual en campo por el método Pci de la muestra 26

					ME	ETODO DE		CION DEL					NTO (PCI)	ı			
						НОЈА	DE REGI	STRO								Lm	•
NOMBRE DE VÍ	A:	Panameric	ana Norte			UNIDAD	DE MUES	STRA:	Mues	tra 26						Am	6.50m
SECCION DE VÍ	A:	Calzada de	erecha			AREA DE	EMUESTR	REO:	230	.10						\	
EVALUADOR:		Jorge Artı	aro Jimene	z Marrero	s	FECHA D	E EVALU.	ACION:	28/01	/2021						35.40m	
1. Grieta piel de d	cocodrilo	6. Depresi	ón				11. Parche	eo y Acom	etidas de S	Servicios		16. Despla	zamiento				
2. Exudación		7. Grietas						entos y Ag				-		as o por D	eslizamiento		
3. Agrietamiento	en bloque	8. Grietas	de Reflexio	on de Junt	a		13. Hueco					18. Hincha	miento	•			
4. Agrietamiento	s y Hundimientos	9. Desnive	el Carril / E	erma			14. Cruce	de Vía Fen	rea			19. Meteo	rización /	Desprendi	nineto de agregados		
5. Corrugación		10. Grietas	Longitud	inal / Tran	sversal		15 Abuella	amiento									
FALLA	SEVERIDAD						CANT	TIDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
	Low	2.7	12											14.7	6.39		
13	Medium	0.3	0.18	0.06										0.54	0.23	11	
13 10	Medium Medium	0.3		1.5	3	1	0.2	0.5	1.5	3	1	1.5	0.5			11	
13 10 10	Medium Medium Medium	0.3	0.18 0.5				0.2	0.5	1.5	3	1 1.5	1.5	1	0.54	0.23	11	
13 10 10 10	Medium Medium Medium Medium	0.3	0.18	1.5	3 0.4 1	0.9	0.2	1 2	1.5 1.5	3 1 1	1 1.5	1.5	0.5 1 1.5	0.54	0.23	11	
13 10 10 10	Medium Medium Medium	0.3	0.18 0.5	1.5	3	0.9	0.2	0.5 1 2 0.5	1.5	3 1 1	1 1.5 3	1.5	1	0.54	0.23	11	
13 10 10 10	Medium Medium Medium Medium	0.3	0.18 0.5	1.5	3 0.4 1	0.9	0.2	1 2	1.5 1.5	3 1 1	1 1.5 3	1.5	1	0.54	0.23	11	
13 10 10 10	Medium Medium Medium Medium	0.3	0.18 0.5	1.5	3 0.4 1	0.9	0.2	1 2	1.5 1.5	3 1 1	1 1.5 3	1.5	1	0.54	0.23	11	
13 10 10 10	Medium Medium Medium Medium	0.3	0.18 0.5	1.5	3 0.4 1	0.9	0.2	1 2	1.5 1.5	3 1 1	1 1.5 3	1.5	1	0.54	0.23	11	
13 10 10 10	Medium Medium Medium Medium	0.3	0.18 0.5	1.5	3 0.4 1	0.9	0.2	1 2	1.5 1.5	3 1 1	1 1.5 3	1.5	1	0.54	0.23	11	
13 10 10 10	Medium Medium Medium Medium	0.3	0.18 0.5	1.5	3 0.4 1	0.9	0.2 1 1 1	1 2	1.5 1.5	3 1 1 1	1 1.5 3	1.5	1	0.54	0.23	11	

Tabla 69: Inspección visual en campo por el método Pci de la muestra 27

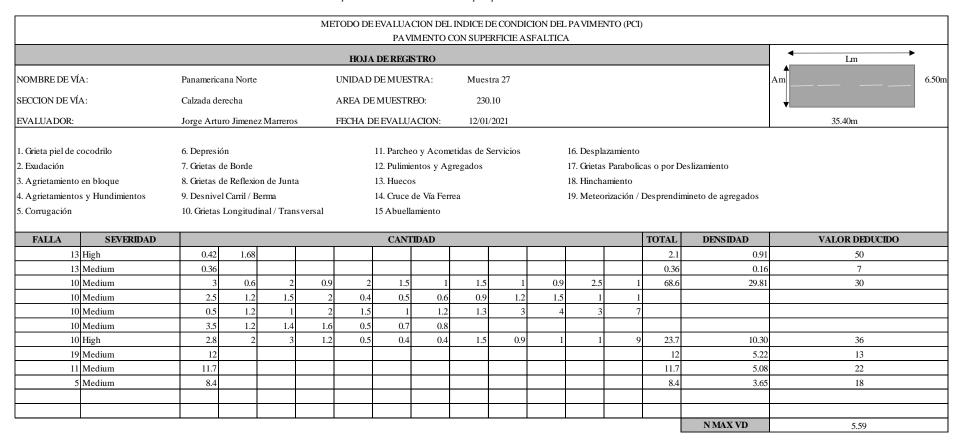


Tabla 70: Inspección visual en campo por el método Pci de la muestra 28

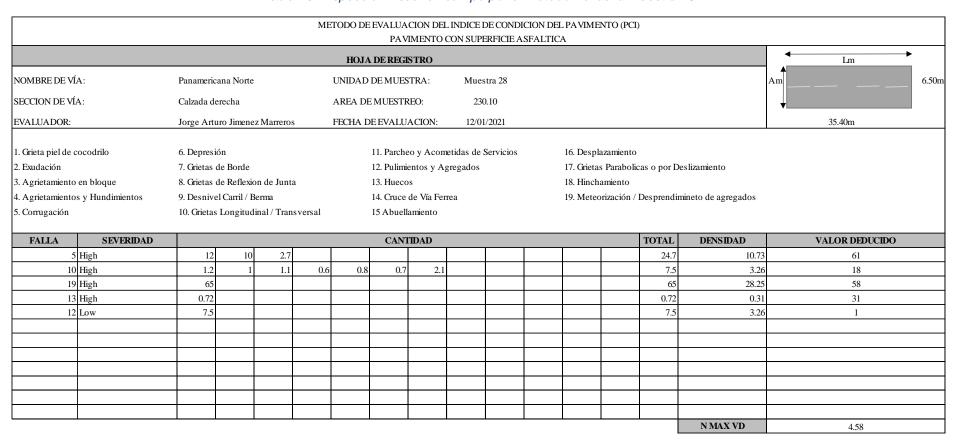
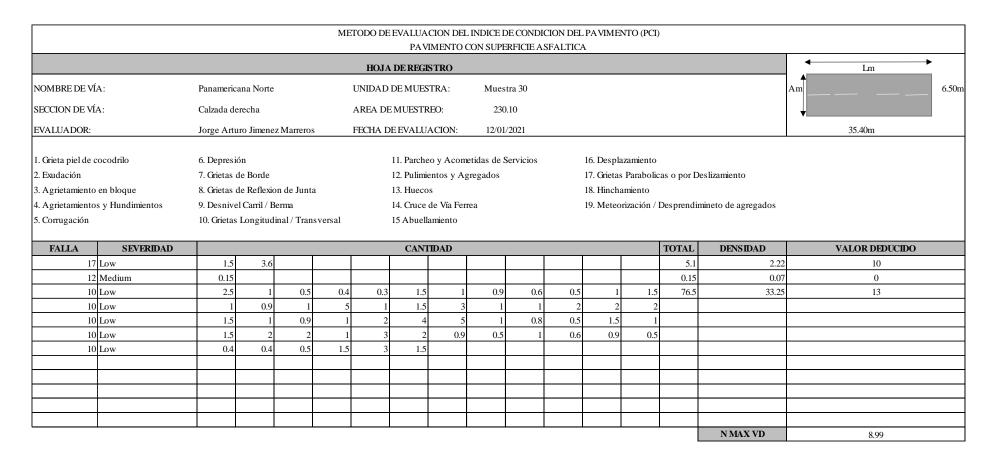



Tabla 71: Inspección visual en campo por el método Pci de la muestra 29

			ME	TODO DE		CION DEL IMENTO (NTO (PCI)				
				НОЈА	DE REGIS	STRO								Lm	•
NOMBRE DE VÍA:	Panamericana 2	Norte		UNIDAD	DE MUES	TRA:	Mues	tra 29						Am	6.50m
SECCION DE VÍA:	Calzada derech	ıa		AREA DE	MUESTR	EO:	230	.10						•	
EVALUADOR:	Jorge Arturo J	imenez Marrero	s	FECHA D	E EVALUA	ACION:	28/01/	2021						35.40m	
Grieta piel de cocodrilo	6. Depresión				11. Parche	o y Acom	etidas de S	ervicios		16. Despla	zamiento				
2. Exudación	7. Grietas de B	orde				entos y Ag				-		as o por D	eslizamiento		
3. Agrietamiento en bloque	8. Grietas de R	eflexion de Junt	a		13. Hueco		, 0			18. Hinch	miento	•			
4. Agrietamientos y Hundimientos	9. Desnivel Car	rril / Berma			14. Cruce	de Vía Ferr	rea			19. Meteo	rización /	Desprendir	nineto de agregados		
5. Corrugación	10. Grietas Lon	gitudinal / Trar	sversal		15 Abuella	amiento									
FALLA SEVERIDAD					CANT	TDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO	
12 Low	24	13										37	16.08	5	
10 Medium	10	1 0.9	0.9	0.6	0.7	0.9	0.7	0.6	0.4	0.9	1	64.7	28.12	29	
	10	1 0.9						0.0	0.4	0.7					
10 Medium	1.5	1 2.5		0.6	0.9	1	2	3	1	1	0.9	0.1.7	20112	·	
10 Medium 10 Medium				0.6 1.5	0.9 1.5	1 0.9	2	3	1 2	1	0.9	0.1.7	20112		
	1.5		0.5 5			0.9	2	3	1 2	1		07	20112		
10 Medium	1.5 1.5	1 2.5 3 4	0.5 5		1.5	0.9	2	3	1 2	1		0/	2012		
10 Medium	1.5 1.5	1 2.5 3 4	0.5 5		1.5	0.9	2	3	1 2	1			300.73		
10 Medium	1.5 1.5	1 2.5 3 4	0.5 5		1.5	0.9	2	3	1 2	1 1					
10 Medium	1.5 1.5	1 2.5 3 4	0.5 5		1.5	0.9	2	3	1 2	1 1					
10 Medium	1.5 1.5	1 2.5 3 4	0.5 5		1.5	1 0.9	2	3	1 2	1					
10 Medium	1.5 1.5	1 2.5 3 4	0.5 5		1.5	0.9	2	3	1 2	1					

Tabla 72: Inspección visual en campo por el método Pci de la muestra 30

Anexo n° 4. Formatos de la evaluación VIZIR del estado del pavimento.

Tabla 73: Inspección visual en campo por el método Vizir de la muestra 1

				METOI				SCULTAC ERFICIE A			IZIR			
				НОЈА	DE REGI	STRO								Lm
NOMBRE DE VÍA:	Panamericana No	orte		UNIDAD	DE MUES	TRA:	Mues	stra 1						Am 6.5
SECCION DE VÍA:	Calzada derecha			AREA DE	MUESTR	EO:	230	0.10						▼
EVALUADOR:	Jorge Arturo Jim	enez Marreros	s :	FECHA D	E EVALU	ACION:	13/01	/2021						35.40m
DETERIORO DEL TIPO A		DETERIORO DEL TIPO B												
1. Ahuellamiento	7. Fisura Long. d	isura Long. de junta de construcción 13. Desplaz. Abult. o Ahuella de mezcla 19. Afloramiento de mortero												
2. Depresiones o humdimientos long.	8. Fisura Transv.	isura Long. de junta de construcción 13. Desplaz. Abult. o Ahuella de mezcla 19. Afloramiento de mortero isura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua												
3. Depresiones o hundiminetos transv	. 9. Fisuras de con	tracción termi	ica	es del pav.										
4. Fisuras long. Por fatiga	10. Fisuras parab	olicas		la y berma										
5. Fisuras piel de cocodrillo	11. Fisuras de bo	rde			17. Pulimie	ento de ag	regados			23. Erosio	in de las b	ermas		
6. Bacheos y Parcheos	12. Ojos de borde	e			18. Exudad	ción				24. Segre	gación			
FALLA GRAVEDAD					C	CANTIDAI	D						G. PONDERADA	AREA AFECTADA
17	2 15												2	15
5	2 4	5											2	9
4	2 3	2.8 2.5	32	0.8	1.2	1.5	2	1.8	0.8	1.15			2	49.55
4	1 10	3 3	3	2.8	1.2	15	1.1						1	51.15
4	1 1.8	2 1.2	1.5	1.5	1.25	1.25	0.55							
4	1 0.6	0.4												
										ļ				
	1 1	1								1	1	1		1

Tabla 74: Inspección visual en campo por el método Vizir de la muestra 2

						METO		ALUACIO IMENTO (NCESA VI A	ZIR				
						HOJA	DE REGI	STRO								Lm	→
NOMBRE DE VÍA:		Panameric	ana Norte	;		UNIDAD	DE MUES	STRA:	Mue	stra 2						Am	6.50m
SECCION DE VÍA:		Calzada de	erecha			AREA DI	E MUESTE	REO:	230	0.10						•	
EVALUADOR:		Jorge Artu	uro Jimene	z Marrero	s	FECHA I	E EVALU	ACION:	13/0	1/2021						35.40m	
DETERIORO DE	L TIPO A									DE	TERIORO	DEL TIPO) B				
1. Ahuellamiento		7. Fisura I	ong. de ju	ınta de co	nstrucción		13. Despl	az. Abult. o	Ahuella	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdim	ientos long.	8. Fisura 7	Γrans v. de	junta de c	onstrucció	ón	14. Perdid	a de la pel	icula de li	gante		20. Aflora	miento de	agua			
3. Depresiones o hundimi	inetos transv.	9. Fisuras	de contra	cción term	ica		15 Perdid	a de agrega	ados			21. Desin	tegración	de los bord	les del pav.		
4. Fisuras long. Por fatiga	ı	10. Fisuras	s paraboli	cas			16. Desca	ramiento				22. Escalo	namiento	entre calza	da y berma		
5. Fisuras piel de cocodril	llo	11. Fisuras	s de borde	;			17. Pulimi	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos		12. Ojos d	e borde				18. Exuda	ción				24. Segre	gación				
FALLA G	RAVEDAD						(CANTIDA	D						G. PONDERADA	AREA AFECTADA	
14	2	18													2	2 18	
17	3	0.36													3	3 0.36	
4	2	1.5	2	1.2	1.8	2	1.8	0.8	1						2	2 12.1	
			1	·								1			TOTAL	30.46	

Tabla 75: Inspección visual en campo por el método Vizir de la muestra 3

					METO		ALUACIC IMENTO (ZIR				
					НОЈА	DE REGI	STRO								Lm	•
NOMBRE DE VÍA:	Panamerio	cana Norte			UNIDAD	DE MUES	STRA:	Mue	stra 3						Am	6.50m
SECCION DE VÍA:	Calzada d	erecha			AREA DE	E MUESTR	REO:	230	0.10						\	
EVALUADOR:	Jorge Arti	uro Jimene	z Marreros	s	FECHA D	E EVALU.	ACION:	13/01	/2021						35.40m	
DETERIORO DEL TIPO A																
1. Ahuellamiento	7. Fisura I	Fisura Long, de junta de construcción 13. Desplaz. Abult. o Ahuella de mezcla 19. Afloramiento de mortero Fisura Transv, de junta de construcción 14. Perdida de la película de ligante 20. Afloramiento de agua														
2. Depresiones o humdimientos long.	8. Fisura 7	risura Long. de junta de construcción 13. Despiaz. Abuit. o Anuella de mezcia 19. Afloramiento de mortero 20. Afloramiento de agua 21. Desintegración de los bordes del pav.														
3. Depresiones o hundiminetos transv.	9. Fisuras	de contra	cción term	ica	les del pav.											
4. Fisuras long. Por fatiga	10. Fisura	s paraboli	cas		da y berma											
5. Fisuras piel de cocodrillo	11. Fisura	s de borde	;			17. Pulimi	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos	12. Ojos d	le borde				18. Exuda	ción				24. Segre	gación				
FALLA GRAVEDAD						(CANTIDAI	D						G. PONDERADA	AREA AFECTADA	
18																
10	2 35.4													2	35.4	
17	2 35.4 1 1													2	1	
	1 1 1 1	1.2	1.8		0.9	0.8	1.15	3	4					2 1 1	1 14.95	
	2 35.4 1 1 1 1 2 1.75	1.2	1.8	1.1	0.9	0.8	1.15	3 2.9		1.5				2 1 1 2	1	
	1 1 1 1	1.2	1.8					3 2.9		1.5				2 1 1 2	1 14.95	
	1 1 1 1	1.2	1.8					3 2.9		1.5				2 1 1 2	1 14.95	
	1 1 1 1	1.2	1.8					3 2.9		1.5				2 1 1 2 2	1 14.95	
	1 1 1 1	1.2	1.8					3 2.9		1.5				2 1 1 2 2	1 14.95	
	1 1 1 1	1.2	1.8					3 2.9		1.5				2 1 1 2 2	1 14.95	
	1 1 1 1	3	1.8					3 2.9		1.5				2 1 1 2 2	1 14.95	
	1 1 1 1	1.2 3	1.8					3 2.9		1.5				2 1 1 2 2	1 14.95	
	1 1 1 1	3	1.8					3 2.9		1.5				2 1 1 2 2	1 14.95	

Tabla 76: Inspección visual en campo por el método Vizir de la muestra 4

					METOI				SCULTAC ERFICIE A			ZIR				
					НОЈА	DE REGI	STRO								Lm	<u>+</u>
NOMBRE DE VÍA:	Panameri	cana Norte	;		UNIDAD	DE MUES	TRA:	Mue	stra 4						Am	6.50m
SECCION DE VÍA:	Calzada d	lerecha			AREA DE	MUESTR	REO:	230	0.10						▼	
EVALUADOR:	Jorge Art	uro Jimene	ez Marrero	s	FECHA D	E EVALU.	ACION:	13/01	/2021						35.40m	
DETERIORO DEL TIPO A									DEI	ERIORO	DEL TIPO) B				
1. Ahuellamiento	7. Fisura	isura Long, de junta de construcción 13. Desplaz. Abult. o Ahuella de mezcla 19. Afloramiento														•
2. Depresiones o humdimientos long.	8. Fisura	isura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de ag														
3. Depresiones o hundiminetos transv.	9. Fisuras	risura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua risuras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav.												es del pav.		
4. Fisuras long. Por fatiga	10. Fisura	isuras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del par Fisuras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y berm												da y berma		
5. Fisuras piel de cocodrillo	11. Fisura	s de borde	•			17. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos	12. Ojos o	le borde				18. Exudad	ción				24. Segre	gación				
FALLA GRAVEDAD						(CANTIDAI	D						G. PONDERADA	AREA AFECTADA	
18	2 35.4	35.4	35.4											2	2 106.2	
15	2 4.2													2	2 4.2	
4	1 1.5													1	1.5	
4	2 1	1.2	1.8	8	1.5	0.8	1.5	1.6	0.75	1.5	2	1.15		2	2 22.8	
4	3 4													3	3 4	
		-														
		1														
L	1		1											TOTAL	138.7	

Tabla 77: Inspección visual en campo por el método Vizir de la muestra 5

						METOD				SCULTAC ERFICIE A			ZIR				
						НОЈА	DE REGI	STRO								Lm	<u> </u>
NOMBRE DE VÍA:		Panamerica	ana Norte		1	UNIDAD I	DE MUES	TRA:	Mue	stra 5						Am	6.50m
SECCION DE VÍA:		Calzada de	erecha			AREA DE	MUESTR	EO:	230	0.10						▼	
EVALUADOR:		Jorge Artu	ıro Jimene	z Marreros]	FECHA DI	E EVALU	ACION:	13/01	/2021						35.40m	
DETERIOR	O DEL TIPO A		DETERIORO DEL TIPO B														
1. Ahuellamiento	·	7. Fisura L	Fisura Long, de junta de construcción 13. Desplaz. Abult. o Ahuella de mezcla 19. Afloramiento de mortero													·	· · · · · ·
2. Depresiones o hu	amdimientos long.	8. Fisura T															
3. Depresiones o hu	andiminetos transv.	9. Fisuras	Fisura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua Fisuras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav.														
4. Fisuras long. Por	fatiga	10. Fisuras	Fisuras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav. Fisuras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y berma														
5. Fisuras piel de co	ocodrillo	11. Fisuras	de borde				17. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parche	eos	12. Ojos de	e borde				18. Exudad	ción				24. Segreg	gación				
FALLA	GRAVEDAD						C	CANTIDA	D						G. PONDERADA	AREA AFECTADA	
4	1	1.2	1.3	1.25	1.2											1 4.95	
4	2	1.8	0.8	1	1.6	1.4	0.6	10	1	1.2	0.9		1.5			2 133.27	
4		1.12	0.35	0.4	0.8	1.4	1.2	8	6	4.5	2		3	0.6			
4	2	0.25	0.15	0.45	2.2	1.8	4	1.8	1.4	1.1	1.6	1.45	1.8	60			
																138.22	

Tabla 78: Inspección visual en campo por el método Vizir de la muestra 6

						METOI			ON DE AUX CON SUPE				ZIR				
						НОЈА	DE REGI	STRO								Lm	>
NOMBRE DE VÍA	:	Panameric	ana Norte			UNIDAD	DE MUES	STRA:	Mue	stra 6						Am	6.50m
SECCION DE VÍA:	:	Calzada de	erecha			AREA DE	MUESTR	REO:	230	0.10						*	
EVALUADOR:		Jorge Artı	aro Jimene	z Marreros	3	FECHA D	E EVALU.	ACION:	13/01	/2021						35.40m	
DETERIO	RO DEL TIPO A									DEI	ERIORO	DEL TIPO	ЭB				
1. Ahuellamiento		7. Fisura I	.ong. de ju	nta de con	strucción		13. Despla	az. Abult. o	mortero								
2. Depresiones o h	numdimientos long.	8. Fisura T	sura Transv. de junta de construcción 13. Desplaz. Abult. o Ahuella de mezcla 19. Afloramiento de mortero sura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua														
3. Depresiones o h	nundiminetos transv.	9. Fisuras															
4. Fisuras long. Po	or fatiga	10. Fisuras	uras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav. suras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y berma														
5. Fisuras piel de c	cocodrillo	11. Fisuras	s de borde				17. Pulimi	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parch	heos	12. Ojos d	e borde				18. Exuda	ción				24. Segre	gación				
FALLA	GRAVEDAD						(CANTIDA	D						G. PONDERADA	AREA AFECTADA	
18		14.16													2	14.16	
4		2 4.5	0.8	0.2	3.5	2	1.5	2	1.8				2.5		2	2 72.45	
4		2 4	5	3.5	4	5.5	6	5	1.2	1.3	4.1	1.6	1.7				
4		2 0.7	1.65	1.4													
-																	
												-	-		TOTAL	86.61	

Tabla 79: Inspección visual en campo por el método Vizir de la muestra 7

						METOD				SCULTAC ERFICIE A			ZIR					
						ноја	DE REGI	STRO									Lm	→
NOMBRE DE VÍA:		Panameric	ana Norte		ī	UNIDAD I	DE MUES	TRA:	Mue	stra 7						Am		6.50m
SECCION DE VÍA:		Calzada de	erecha		1	AREA DE	MUESTR	REO:	230	0.10						+		
EVALUADOR:		Jorge Artu	ıro Jimenez	z Marreros	I	FECHA DE	EEVALU	ACION:	13/01	/2021							35.40m	
DETERIOR	O DEL TIPO A									DEI	ERIORO	DEL TIPO) B					
1. Ahuellamiento		7. Fisura L	ong. de jui	nta de con	strucción	1	13. Despla	az. Abult. o	Ahuella	de mezcla		19. Aflora	miento de	mortero				
2. Depresiones o hu	mdimientos long.	8. Fisura T	ransv. de j	junta de co	onstrucciói	n 1	4. Perdid	a de la pel	icula de lig	gante		20. Aflora	miento de	agua				
3. Depresiones o hu	ndiminetos transv.	9. Fisuras	de contrac	ción termi	ca	1	15 Perdida	a de agreg	ados			21. Desin	tegración	de los borde	es del pav.			
4. Fisuras long. Por	fatiga	10. Fisuras	s parabolic	as		1	l 6. Descar	ramiento				22. Escalo	namiento	entre calzad	la y berma			
5. Fisuras piel de co	codrillo	11. Fisuras	de borde			1	17. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas				
6. Bacheos y Parche	eos	12. Ojos d	e borde			1	18. Exudad	ción				24. Segre	gación					
FALLA	GRAVEDAD						C	CANTIDA	D						G. PONDERADA	A	REA AFECTADA	
4		2 4.5	0.4	0.5	0.8	0.7	1	1.2	1.1	1						2	11.2	
4		1 1	0.8	0.65	1	5	0.65	0.75								1	9.85	
4		3 1.2	4.8	5.1	5.25	1.25	0.6	0.5			0.9					3	45.1	
4		3 1	0.8	0.35	0.45	0.6	1.5	3	1.2	3.5	1.55	1.4	3.5					
																1		
					+											+		
					+											+		
					+											+		
																+		
					+													
L		1						1						·	TOTAL		66.15	

Tabla 80: Inspección visual en campo por el método Vizir de la muestra 8

						METOI				SCULTAC ERFICIE A			ZIR				
						НОЈА	DE REGIS	STRO								Lm	→
NOMBRE DE VÍA:		Panameric	ana Norte		1	UNIDAD	DE MUES	TRA:	Mues	stra 8						Am	6.50m
SECCION DE VÍA:		Calzada de	erecha			AREA DE	MUESTR	EO:	230	0.10						•	
EVALUADOR:		Jorge Artı	uro Jimene	z Marreros	1	FECHA D	E EVALUA	ACION:	13/01	/2021						35.40m	
DETERIOR	O DEL TIPO A									DEI	ERIORO	DEL TIPO	ОВ				
1. Ahuellamiento		7. Fisura I	.ong. de ju	nta de con	strucción		13. Despla	z. Abult. o	Ahuella o	de mezcla		19. Aflora	amiento de	mortero			
2. Depresiones o hu	mdimientos long.	8. Fisura 7	Γransv. de	junta de co	onstrucció	n	14. Perdida	a de la pel	icula de lig	ante		20. Aflora	amiento de	agua			
3. Depresiones o hu	ndiminetos transv.	9. Fisuras	de contrac	cción termi	ca		15 Perdida	de agrega	ndos			21. Desin	tegración	de los borde	es del pav.		
4. Fisuras long. Por t	fatiga	10. Fisuras	s parabolic	eas			16. Descai	ramiento				22. Escalo	onamiento	entre calzac	la y berma		
5. Fisuras piel de coo	codrillo	11. Fisuras	s de borde				17. Pulimie	ento de ag	regados			23. Erosió	in de las b	ermas			
6. Bacheos y Parche	os	12. Ojos d	e borde				18. Exudac	ción				24. Segre	gación				
FALLA	GRAVEDAD						C	CANTIDAI)						G. PONDERADA	AREA AFECTADA	
17	2	2 12	0.6	4											2	2 16.6	
4	2	2.8	0.8	0.9	1.1	1.5	1.2	6	6	1.8	1.4	0.6			2	2 24.1	
4	1	1 5	1.1	1.15											1	1 7.25	
4	3	3.1	1.2	3.3	1.85	1.1	1.65	1.15	4.5	1.2	6.5	1	2		3	3 28.55	
		1											-				
						-											
				1		-							1			<u> </u>	
													1				
													-				
													1				
		1										<u> </u>	L		TOTAL	76.5	

Tabla 81: Inspección visual en campo por el método Vizir de la muestra 9

					METOI				SCULTAC ERFICIE A			ZIR				
					НОЈА	DE REGI	STRO								Lm	•
NOMBRE DE VÍA:	Panamericana	Norte			UNIDAD	DE MUES	TRA:	Mue	stra 9						Am	6.50m
SECCION DE VÍA:	Calzada derec	ha			AREA DE	MUESTR	EO:	230	0.10						▼	
EVALUADOR:	Jorge Arturo	Jimenez	Marreros		FECHA D	E EVALU	ACION:	13/01	/2021						35.40m	
DETERIORO DEL TIPO A									DEI	ERIORO	DEL TIPO) B				
1. Ahuellamiento	7. Fisura Long	g. de jun	nta de con	strucción		13. Despla	ız. Abult. o	Ahuella	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long.	8. Fisura Tran	ısv. de jı	unta de co	onstrucció	n	14. Perdid	a de la pel	icula de lig	gante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos transv.	9. Fisuras de d	contracc	ción termi	ca		15 Perdida	de agrega	ados			21. Desin	egración o	de los bord	es del pav.		
4. Fisuras long. Por fatiga	10. Fisuras pa	ırabolica	as			16. Descar	ramiento				22. Escalo	namiento	entre calza	da y berma		
5. Fisuras piel de cocodrillo	11. Fisuras de	borde				17. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos	12. Ojos de bo	orde				18. Exudad	ción				24. Segre	gación				
FALLA GRAVEDAD						C	CANTIDAI	D						G. PONDERADA	AREA AFECTADA	
15 2	2 3	1.6												2	2 4.6	
4 2	2 7	4.5	4.75	1	9	1.5	1.8	1	1.2	1.8	2.1	2.1		2	2 40.85	
4 2	0.4	0.5	1	1.2												
4 1	1.5	3.1	3.3	2.5	2.1									1	1 12.5	
		-	1		-											
					1											
		-+			1											
	I			J									1	TOTAL	57.95	

Tabla 82: Inspección visual en campo por el método Vizir de la muestra 10

						МЕТОГ				SCULTAC ERFICIE A			IZIR				
						НОЈА	DE REGI	STRO								Lm	>
NOMBRE DE VÍA:		Panameric	ana Norte			UNIDAD I	DE MUES	STRA:	Mues	stra 10						Am	6.50m
SECCION DE VÍA:		Calzada de	erecha			AREA DE	MUESTR	REO:	230	0.10						•	
EVALUADOR:		Jorge Artu	ıro Jimene	z Marreros	1	FECHA DI	E EVALU.	ACION:	13/01	1/2021						35.40m	
DETERIOR	O DEL TIPO A									DE	TERIORO	DEL TIPO	ОВ				
1. Ahuellamiento		7. Fisura L	ong. de ju	nta de con	strucción		13. Despla	az. Abult. e	Ahuella	de mezcla		19. Aflora	amiento de	mortero			
2. Depresiones o hu	ımdimientos long.	8. Fisura T	ransv. de	junta de co	onstrucció	n	14. Perdid	a de la pel	icula de liş	gante		20. Aflora	amiento de	agua			
3. Depresiones o hu	indiminetos transv.	9. Fisuras	de contrac	cción termi	ca		15 Perdida	a de agreg	ados			21. Desin	tegración	de los bord	es del pav.		
4. Fisuras long. Por	fatiga	10. Fisuras	s parabolic	eas			16. Desca	ramiento				22. Escalo	onamiento	entre calza	da y berma		
5. Fisuras piel de co	codrillo	11. Fisuras	s de borde				17. Pulimi	ento de ag	regados			23. Erosió	in de las b	ermas			
6. Bacheos y Parche	eos	12. Ojos d	e borde				18. Exuda	ción				24. Segre	gación				
FALLA	GRAVEDAD						(CANTIDA	D						G. PONDERADA	AREA AFECTADA	
4	1	1.2	1.5	1.7	0.9	5	1.2	10	1.3						1	22.8	
4	2	6	1.2	13	1.8	2	2.5	0.6	6	3	2.5	1.8	1.75	0.6	2	2 43.5	
4	2	0.4	0.35														
												1	1				
			I		I	I I		1			•				TOTAL	66.3	

Tabla 83: Inspección visual en campo por el método Vizir de la muestra 11

						METOD			ON DE AUS CON SUPE				ZIR					
						ноја і	DE REGIS	STRO								 	Lm	→
NOMBRE DE VÍA:		Panamerica	ana Norte		τ	JNIDAD D	E MUES	TRA:	Mues	tra 11						Am		6.50m
SECCION DE VÍA:		Calzada de	recha		A	AREA DE N	MUESTR	EO:	230	.10						+		
EVALUADOR:		Jorge Artu	ro Jimenez	z Marreros	F	ECHA DE	EVALUA	ACION:	13/01/	/2021							35.40m	
DETERIOR	O DEL TIPO A									DET	ERIORO	DEL TIPO) B					
1. Ahuellamiento		7. Fisura L	ong. de jui	nta de con	strucción	1:	3. Despla	z. Abult. o	Ahuella o	le mezcla		19. Aflora	miento de	mortero				
2. Depresiones o hu	ımdimientos long.	7. Fisura Long. de junta de construcción 13. Desplaz. Abult. o Ahuella de mezcla 19. Afloramiento de mortero 8. Fisura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua												agua				
3. Depresiones o hu	indiminetos transv.	9. Fisuras o	. Fisura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua . Fisuras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav.												del pav.			
4. Fisuras long. Por	fatiga	10. Fisuras	parabolica	as		1	6. Descar	amiento				22. Escalo	namiento	entre calzada	y berma			
5. Fisuras piel de co	codrillo	11. Fisuras	de borde			1	7. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas				
6. Bacheos y Parche	eos	12. Ojos de	borde			1	8. Exudac	ción	Ü			24. Segreg	gación					
FALLA	GRAVEDAD						C	ANTIDAI	D					(G. PONDERADA	Al	REA AFECTADA	
4	3	1.2	1.4	1.6	1.6	3	4	3	1.5	1.5	1.2	4				3	24	
4	1	1.5	1.2	0.95	4	1.6	1.5	0.6	0.45	0.55						1	12.35	
4	2	0.6	0.6	0.6	0.7	1	2.5	4	1.4	1.2	0.9	0.55	0.85			2	49.43	
4	2	1.1	1.35	2	1.6	1	1.8	3	1.1	1.2	1.05	1.18	0.9					
4	2	1.8	10	0.6	0.75	1.1	1.35	0.9	0.75									
										ļ								
															TOTAL		85.78	

Tabla 84: Inspección visual en campo por el método Vizir de la muestra 12

					METOI				SCULTAC ERFICIE A			ZIR				
					НОЈА	DE REGI	STRO								Lm	•
NOMBRE DE VÍA:	Panamericar	na Norte			UNIDAD	DE MUES	TRA:	Mues	tra 12						Am	6.50m
SECCION DE VÍA:	Calzada dere	recha			AREA DE	MUESTR	EO:	230	0.10						•	
EVALUADOR:	Jorge Arture	o Jimenez	z Marreros		FECHA D	E EVALU	ACION:	13/01	/2021						35.40m	
DETERIORO DEL TIPO A									DEI	ERIORO	DEL TIPO	B				
1. Ahuellamiento	7. Fisura Lo	Fisura Long. de junta de construcción 13. Desplaz. Abult. o Ahuella de mezcla 19. Afloramiento de mortero Fisura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua														
2. Depresiones o humdimientos long.	8. Fisura Tra	Fisura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua														
3. Depresiones o hundiminetos transv.	9. Fisuras de	Fisuras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav.														
4. Fisuras long. Por fatiga	10. Fisuras p	Fisuras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav. Fisuras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y berma														
5. Fisuras piel de cocodrillo	11. Fisuras o	de borde				17. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos	12. Ojos de	borde				18. Exudad	ción				24. Segreg	gación				
FALLA GRAVEDAD						C	CANTIDAI	D						G. PONDERADA	AREA AFECTADA	
21	3 1.2	1.225												3	2.425	
11	1 20													1	20	
1	1 25													1	25	
4	1 0.85	1.45	1.6											1	3.9	
4	2 1.2	1.4	1.1	1.15	0.6	0.85	1.2	1.45		0.95	0.4	0.55		2	21.68	
4	2 0.6	1.45	1.1	1.1	1.1	0.6	0.8	0.65	0.18	0.45	1.2					
				1												
				1												
		J				I								TOTAL	73.005	

Tabla 85: Inspección visual en campo por el método Vizir de la muestra 13

						METOL				SCULTAC ERFICIE A			ZIR				
						НОЈА	DE REGI	STRO								Lm	*
NOMBRE DE VÍA:		Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 13						Am	6.50m
SECCION DE VÍA:		Calzada de	erecha			AREA DE	MUESTR	EO:	230	0.10						•	
EVALUADOR:		Jorge Artu	ıro Jimene	z Marreros		FECHA D	E EVALU	ACION:	13/01	/2021						35.40m	
DETERIOR	O DEL TIPO A		DETERIORO DEL TIPO B														
1. Ahuellamiento	•	7. Fisura L	ong. de ju	nta de con	strucción	•	13. Despla	ız. Abult. o	Ahuella	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o hu	mdimientos long.	8. Fisura T	Fisura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua														
3. Depresiones o hu	ndiminetos transv.	9. Fisuras	. Fisuras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav 0. Fisuras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y berma											es del pav.			
4. Fisuras long. Por t	fatiga	10. Fisuras	s parabolic	cas			16. Descar	ramiento				22. Escalo	namiento	entre calza	da y berma		
5. Fisuras piel de coo	codrillo	11. Fisuras	de borde				17. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parche	os	12. Ojos d	e borde				18. Exudad	ción				24. Segreg	gación				
FALLA	GRAVEDAD						C	CANTIDAI	D						G. PONDERADA	AREA AFECTADA	
12		3 0.21	0.105	0.48	0.3										3	1.095	
4		1 1	3	0.5	0.5	0.5	0.5	0.6	8	5	2	0.5	0.6		1	22.7	
4		3 3	0.5	3	0.5	0.6	2	2	1.5		0.5		3		3	20.1	
4		2 0.28	0.18	3	1.2	0.9	1.3	1.2		-	0.45		4	0.5	2	71.26	
4		2 1.5	2	1	0.5	0.7	1	0.5	0.6	3	1.5	3	1.5	1.3			
4	:	2 0.5	1.2	0	1.3	1											
					-												
															TOTAL	115.155	

Tabla 86: Inspección visual en campo por el método Vizir de la muestra 14

					METOI				SCULTAC ERFICIE A		NCESA VI A	ZIR				
					НОЈА	DE REGI	STRO								Lm	-
NOMBRE DE VÍA:	Panamerica	ana Norte		1	UNIDAD	DE MUES	TRA:	Mues	tra 14						Am	6.50m
SECCION DE VÍA:	Calzada de	recha			AREA DE	MUESTR	EO:	230	0.10						•	
EVALUADOR:	Jorge Artu	ro Jimenez	z Marreros]	FECHA D	E EVALU	ACION:	13/01	/2021						35.40m	
DETERIORO DEL TIPO A		DETERIORO DEL TIPO B														
1. Ahuellamiento	7. Fisura L	isura Long, de junta de construcción 13. Desplaz. Abult. o Ahuella de mezcla 19. Afloramiento de mortero														
2. Depresiones o humdimientos long.	8. Fisura T	ura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua														
3. Depresiones o hundiminetos transv	9. Fisuras o	uras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pa												es del pav.		
4. Fisuras long. Por fatiga	10. Fisuras	suras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y be											da y berma			
5. Fisuras piel de cocodrillo	11. Fisuras	suras de borde 17. Pulimiento de agregados 23. Erosión de las bermas														
6. Bacheos y Parcheos	12. Ojos de	e borde				18. Exudad	ción				24. Segreg	gación				
FALLA GRAVEDAD						C	CANTIDAI	D						G. PONDERADA	AREA AFECTADA	
12	2 0.3	1.12	0.42	0.16										2	2 2	
4	1 0.4	1	1.3	1.5	0.4	0.6								1	5.2	
4	2 3	3	3	1	1	0.5	1.1		0.8	3	0.5	0.8		2	57.21	
4	2 3	1	1.5	1.5	3	0.5	1.5		3	5	3	1	-			
4	2 0.7	3	1.5	1.9	0.6	0.45	0.65	0.555	0.9	1.8						
													-			
+																
				I										TOTAL	64.405	

Tabla 87: Inspección visual en campo por el método Vizir de la muestra 15

						METOD			ON DE AUS CON SUPE			NCESA VI A	ZIR				
						НОЈА	DE REGIS	STRO								Lm	<u>+</u>
NOMBRE DE VÍA:		Panameric	ana Norte		1	UNIDAD E	E MUES	TRA:	Mues	tra 15						Am	6.50m
SECCION DE VÍA:		Calzada de	recha			AREA DE	MUESTR	EO:	230	.10						•	
EVALUADOR:		Jorge Artu	ıro Jimene:	z Marreros]	FECHA DE	EVALUA	ACION:	13/01	/2021						35.40m	
DETERIOR	O DEL TIPO A									DEI	ERIORO	DEL TIPO	В				
1. Ahuellamiento		7. Fisura L	ong. de ju	nta de con	strucción	1	3. Despla	z. Abult. o	Ahuella d	le mezcla		19. Aflora	miento de	mortero			
2. Depresiones o hu	ımdimientos long.	8. Fisura T	ransv. de	junta de co	nstrucció	n 1	4. Perdida	a de la pel	icula de lig	ante		20. Aflora	miento de	agua			
3. Depresiones o hu	indiminetos transv.	9. Fisuras	de contrac	ción termio	ea	1	5 Perdida	de agrega	ados			21. Desint	egración o	le los bord	es del pav.		
4. Fisuras long. Por	fatiga	10. Fisuras	parabolic	as		1	6. Descar	amiento				22. Escalo	namiento	entre calza	da y berma		
5. Fisuras piel de co	codrillo	11. Fisuras	de borde			1	7. Pulimie	nto de ag	regados			23. Erosió	n de las be	ermas			
6. Bacheos y Parche	eos	12. Ojos do	e borde			1	8. Exudac	ión				24. Segreg	gación				
FALLA	GRAVEDAD						CANTIDAD								G. PONDERADA	AREA AFECTADA	
4	1	. 8	0.8	3	3.1	1.6										1 22	
4	4	0.9	0.6	0.95	2.1	0.97	1.1	7	1.6	0.7	0.6		1.5	0.6		2 48.92	
4		2 2	0.6	0.75	0.55	1.2	1.3	3	4	1.5	2	0.6	3	0.7			
4		2 1.5	1.55	1	1.35	0.5	0.4	0.4	0.4								
					-	-									TOTAL	70.92	

Tabla 88: Inspección visual en campo por el método Vizir de la muestra 16

			METO	DO DE EVA PA VI		ON DE AUS				ZIR				
			НОЈА	DE REGIS	STRO								Lm	*
NOMBRE DE VÍA:	Panamericana Norte	e	UNIDAD	DE MUES	TRA:	Mues	tra 16						Am	6.50m
SECCION DE VÍA:	Calzada derecha		AREA DE	E MUESTR	EO:	230	.10						•	
EVALUADOR:	Jorge Arturo Jimen	ez Marreros	FECHA D	E EVALUA	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A							DEI	ERIORO	DEL TIPO	B				
1. Ahuellamiento	7. Fisura Long. de j	junta de construcc	ión	13. Despla	z. Abult. o	Ahuella o	le mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long.	8. Fisura Transv. de	e junta de construc	cción	14. Perdida	a de la peli	icula de lig	ante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos transv.	9. Fisuras de contra	acción termica		15 Perdida	de agrega	ados			21. Desint	egración o	de los borde	s del pav.		
4. Fisuras long. Por fatiga	10. Fisuras paraboli	licas		16. Descar	amiento				22. Escalo	namiento	entre calzad	a y berma		
5. Fisuras piel de cocodrillo	11. Fisuras de bord	le		17. Pulimie	nto de ag	regados			23. Erosió	n de las be	ermas			
6. Bacheos y Parcheos	12. Ojos de borde			18. Exudac	ión				24. Segreg	ación				
FALLA GRAVEDAD			ANTIDAI	D						G. PONDERADA	AREA AFECTADA			
12	2 1.8 0.21	1										2	2.01	
4	1 1.8 1.3		0.8	0.5	0.45	0.65	0.45					1	8.2	
4	3 3 3		3.3 0.6	0.6	0.85	0.9	0.82	1.7	0.85	0.8		3	78.82	
4	3 0.8 0.8		6 3	3	0.85	0.85	0.8	1.5	10	2				
4	3 1.8 1.45	5 3	6 6	3	1.5	1.5	1.6	1.55	1.4					
		+												
		+ +												
		1												
		1												
		1												
<u> </u>	I I	1 1	I								<u>'</u>	TOTAL	89.03	

Tabla 89: Inspección visual en campo por el método Vizir de la muestra 17

						METOL				SCULTAC ERFICIE A			ZIR				
						НОЈА	DE REGI	STRO								Lm	<u>*</u>
NOMBRE DE VÍA:		Panameric	ana Norte			UNIDAD I	DE MUES	TRA:	Mues	tra 17						Am	6.50m
SECCION DE VÍA:		Calzada de	recha			AREA DE	MUESTR	REO:	230	0.10						▼	
EVALUADOR:		Jorge Artu	ıro Jimene	z Marreros		FECHA DI	E EVALU.	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A										DEI	ERIORO	DEL TIPO) B				
1. Ahuellamiento		7. Fisura L	ong. de ju	nta de con	strucción		13. Despla	az. Abult. o	Ahuella o	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long	ζ.	8. Fisura T	ransv. de	junta de co	onstrucció	n	14. Perdid	a de la pel	icula de lig	ante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos trans	sv.	9. Fisuras	de contrac	ción termi	ca		15 Perdida	a de agreg	ados			21. Desin	tegración o	de los bord	les del pav.		
4. Fisuras long. Por fatiga		10. Fisuras	parabolic	as			16. Desca	ramiento				22. Escalo	namiento	entre calza	ida y berma		
5. Fisuras piel de cocodrillo		11. Fisuras	de borde				17. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos		12. Ojos do	e borde				18. Exuda	ción				24. Segreg	gación				
FALLA GRAVEDAL)						C	CANTIDA	D						G. PONDERADA	AREA AFECTADA	
12	2	0.48	0.6	0.45	0.3	0.9	0.55								-	2 3.28	
4	1	1.5	1.45	5												1 7.95	
4	2	22	6	3	0.35	0.5	0.6	1.5		0.85	0.75				2	2 78.05	
4	2	1.55	1.6	3	3.1	1.55	0.5	1.1	0.6		1.5						
4	2	0.5	0.7	0.95	3.25	5	3	6	0.45	0.55	0.65	0.4	0.5				
				-													
				İ	İ												
				1	1												
			i	I	I			1							TOTAL	89.28	

Tabla 90: Inspección visual en campo por el método Vizir de la muestra 18

						METOI		ALUACIO IMENTO (ZIR				
						НОЈА	DE REGI	STRO								Lm	-
NOMBRE DE VÍA:		Panamerica	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 18						Am	6.50m
SECCION DE VÍA:		Calzada de	recha			AREA DE	MUESTR	REO:	230	0.10						•	
EVALUADOR:		Jorge Artu	ro Jimene	z Marreros	s	FECHA DI	E EVALU.	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIP	0 A									DE	TERIORO	DEL TIPO) B				
1. Ahuellamiento		7. Fisura L	ong. de ju	nta de con	nstrucción		13. Despla	az. Abult. o	Ahuella	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos	long.	8. Fisura T	ransv. de	junta de c	onstrucció	n	14. Perdid	a de la peli	icula de lig	ante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos	transv.	9. Fisuras o	de contrac	cción termi	ica		15 Perdida	a de agrega	ados			21. Desin	tegración (de los borde	es del pav.		
4. Fisuras long. Por fatiga		10. Fisuras	parabolic	eas			16. Descar	ramiento				22. Escalo	namiento	entre calzad	la y berma		
5. Fisuras piel de cocodrillo		11. Fisuras	de borde				17. Pulimi	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos		12. Ojos de	e borde				18. Exuda	ción				24. Segre	gación				
FALLA GRAVI	EDAD .						C	CANTIDAI	D						G. PONDERADA	AREA AFECTADA	
15	2	23.01														2 23.01	
6	2	2.64														2 2.64	
12	3	0.21	0.18													3 0.39	
4	2	1.5	1.55	1.1		2	1	2.1	1.1		2.65	23	1			2 75.05	
4	2	2	1	0.7	0.8	1	0.4	0.95	0.85		1	1	2				
4	2	1	15	1.7	0.4	0.5	0.45	1.1	1.2								
4	1	1	1.5	1	1	0.5	0.55									1 5.55	
				1				•							TOTAL	106.64	

Tabla 91: Inspección visual en campo por el método Vizir de la muestra 19

						METOI				SCULTAC RFICIE AS		NCESA VIZ A	ZIR					
						НОЈА	DE REGIS	STRO									Lm	<u></u>
NOMBRE DE VÍA:	Pana	mericana	Norte			UNIDAD	DE MUES	TRA:	Mues	tra 19						Am		6.50m
SECCION DE VÍA:	Calz	ıda derec	ha			AREA DE	MUESTR	EO:	230	.10						↓		
EVALUADOR:	Jorg	e Arturo J	Jimenez	Marreros		FECHA D	E EVALU <i>A</i>	ACION:	14/01/	/2021							35.40m	
DETERIORO DEL TIPO A										DET	ERIORO	DEL TIPO	В					
1. Ahuellamiento	7. Fis	ura Long	g. de jun	ıta de con	strucción		13. Despla	z. Abult. o	Ahuella	le mezcla		19. Aflora	niento de	mortero				
2. Depresiones o humdimientos long.	8. Fis	ura Tran	sv. de jı	unta de co	onstrucció	n	14. Perdida	a de la peli	cula de lig	ante		20. Aflorai	niento de	agua				
3. Depresiones o hundiminetos transv	7. 9. Fis	uras de c	contracc	ción termi	ca		15 Perdida	de agrega	dos			21. Desint	egración o	de los bordes d	lel pav.			
4. Fisuras long. Por fatiga	10. F	isuras pa	rabolica	ıs			16. Descar	amiento				22. Escalo	namiento	entre calzada y	berma			
5. Fisuras piel de cocodrillo	11. F	isuras de	borde				17. Pulimie	nto de agi	egados			23. Erosión	n de las b	ermas				
6. Bacheos y Parcheos	12. C	jos de bo	orde				18. Exudac	ión				24. Segreg	ación					
FALLA GRAVEDAD							C	ANTIDAI)					(. PONDERADA		AREA AFECTADA	
17	3	18														3	18	
4	2	1	0.5	1.5	1.5	1	0.6	3	2	3	0.9	0.8	0.5			2	64	
4	2	8	3	4	0.9	0.8	0.9	2	1	1	1	1.5	2					
4	2	1	1	0.9	2	1.5	2	1	1.2	1.5	0.9	0.9	3					
4	2	0.6	0.4	0.8	1	1.15	0.75											
4	3	0.5	6.5	6.5	2.5	2.5	2.5	6.5	6.5	6.5	6.5	4	0.45			3	65.65	
4	3	0.8	0.8	0.7	0.75	0.6	0.55	3.5	2	4.5								
							-	-		1								
										+								
							-	+		-								
															TOTAL		147.65	

Tabla 92: Inspección visual en campo por el método Vizir de la muestra 20

						METOI				SCULTAC RFICIE A		NCESA VI A	ZIR				
						НОЈА	DE REGIS	STRO								Lm	
NOMBRE DE VÍA:		Panamerica	ana Norte			UNIDAD	DE MUES	TRA:	Mues	tra 20						Am	6.50m
SECCION DE VÍA:		Calzada de	erecha			AREA DE	MUESTR	EO:	230	.10						•	
EVALUADOR:		Jorge Artu	ıro Jimene	z Marreros		FECHA D	E EVALUA	ACION:	14/01	/2021						35.40m	
DETERIOR	O DEL TIPO A		DETERIORO DEL TIPO B														
1. Ahuellamiento		7. Fisura L	Fisura Long, de junta de construcción 13. Desplaz. Abult, o Ahuella de mezcla 19. Afloramiento de mortero														
2. Depresiones o hu	amdimientos long.	8. Fisura T	isura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua														
3. Depresiones o hu	andiminetos transv.	9. Fisuras	suras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav.											es del pav.			
4. Fisuras long. Por	fatiga	10. Fisuras	Fisuras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y berma											a y berma			
5. Fisuras piel de co	ocodrillo	11. Fisuras	Fisuras de borde 17. Pulimiento de agregados 23. Erosión de las bermas														
6. Bacheos y Parche	eos	12. Ojos de	e borde				18. Exudad	ción				24. Segreg	gación				
FALLA	GRAVEDAD						C	CANTIDAI)						G. PONDERADA	AREA AFECTADA	
16	2	7.15													2	7.15	
15	2	97.5													2	97.5	
17	2	10													2	10	
4	2	0.5	0.7	0.85	0.45	1.2	2	4	1.8	1.1	1.2		1		2	50.9	
4	2	1.2	1.2	1.2	0.4	0.45	0.5	1.2	1.4	6.5	1.4		1.4				
4	2	8	0.7	0.8	1	1.45	1	1	1	1	0.5	0.5					
					-												
					-	-								 			
					İ	İ											
						J	l										

Tabla 93: Inspección visual en campo por el método Vizir de la muestra 21

				METOD				SCULTAC RFICIE AS			ZIR				
				НОЈА 1	DE REGIS	STRO								← Lm	*
NOMBRE DE VÍA:	Panamericana N	Vorte	U	NIDAD D	DE MUES	TRA:	Mues	tra 21						Am	6.50m
SECCION DE VÍA:	Calzada derecha	a	A	REA DE I	MUESTR	EO:	230	.10						•	
EVALUADOR:	Jorge Arturo Jin	menez Marreros	F	ECHA DE	EEVALUA	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A								DEI	ERIORO	DEL TIPO) B				
1. Ahuellamiento	7. Fisura Long.	de junta de con	strucción	1	3. Despla	z. Abult. o	Ahuella o	le mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long.	8. Fisura Transv	v. de junta de co	onstrucción	1	4. Perdida	a de la pel	icula de lig	ante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos transv.	9. Fisuras de con	ntracción termi	ca	1	5 Perdida	de agrega	ados			21. Desin	egración o	de los bordes	del pav.		
4. Fisuras long. Por fatiga	10. Fisuras paral	bolicas		1	6. Descar	ramiento				22. Escalo	namiento	entre calzada	y berma		
5. Fisuras piel de cocodrillo	11. Fisuras de bo	orde		1	7. Pulimie	ento de ag	regados			23. Erosió	n de las be	ermas			
6. Bacheos y Parcheos	12. Ojos de bord	de		1	8. Exudac	ción				24. Segre	gación				
FALLA GRAVEDAD					C	CANTIDAL	D						G. PONDERADA	AREA AFECTADA	
12	3 0.84												3	0.84	
17	1 3												1	3	
4	- 1	35.4 0.6	0.6	0.6	0.7	0.6	0.9	0.55	0.55		0.75		2	104.23	
4	- 1	1.25 1.4	1.6	1.1	1.25	1.3	1.25	1.3	1.05		1.3				
4	2 1.8	3 1.4	0.9	1.1	1	2	1.25	1.2	1.15	0.6	0.7				
4	2 0.85	0.9 1.25	2.5	0.4	0.55	0.18	1	1.2	2						
			-		-										
			-		-										
I I			<u> </u>	ı	1					ı	I		TOTAL	108.07	

Tabla 94: Inspección visual en campo por el método Vizir de la muestra 22

				METOD				SCULTAC ERFICIE A			ZIR				
				НОЈА	DE REGI	STRO								Lm	
NOMBRE DE VÍA:	Panamericana Nor	te	τ	UNIDAD I	DE MUES	TRA:	Mues	tra 22						Am 0	6.50m
SECCION DE VÍA:	Calzada derecha		A	AREA DE	MUESTR	EO:	230	0.10						+	
EVALUADOR:	Jorge Arturo Jime	nez Marreros	s I	FECHA DI	EEVALU	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A								DEI	ERIORO	DEL TIPO) B				
1. Ahuellamiento	7. Fisura Long. de	junta de con	strucción	1	13. Despla	z. Abult. o	Ahuella	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long.	8. Fisura Transv. o	le junta de c	onstrucciór	n 1	14. Perdid	a de la pel	icula de lig	ante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos transv.	9. Fisuras de contr	racción termi	ica	1	15 Perdida	de agrega	ados			21. Desint	tegración o	de los boro	les del pav.		
4. Fisuras long. Por fatiga	10. Fisuras parabo	licas		1	16. Descai	ramiento				22. Escalo	namiento	entre calza	ida y berma		
5. Fisuras piel de cocodrillo	11. Fisuras de bor	de		1	17. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos	12. Ojos de borde			1	18. Exudad	ción				24. Segreg	gación				
FALLA GRAVEDAD					C	CANTIDAL	D						G. PONDERADA	AREA AFECTADA	
12	0.25												3	0.25	
4 2	2 35.4	3 3.3	1.2	0.9	1	0.4	1.5	1.5	0.6	0.7	0.5		2	119.1	
4 2	2 1.5 0.	.5 1	1	1	2	0.4	0.9	1.7	1.5	1	1				
4 2	2 1.2	3 0.4	0.6	0.6	0.4	1.2	0.4	20	1	1.5	1.5				
4 2	2 1.5	1 1	1.5	0.9	0.5	0.4	0.5	0.5	0.4						
4 2	0.2 0.		1.5	0.9	0.1	1	1	1.5	0.9	0.3	0.5				
4 2	2 2 0	.5 1	1	0.9											
			+	+											
	 		+	+											
	1 1	_		<u>l</u>						<u> </u>	<u> </u>	<u> </u>	TOTAL	119.35	

Tabla 95: Inspección visual en campo por el método Vizir de la muestra 23

						METOI				SCULTAC ERFICIE A			ZIR					
						НОЈА	DE REGI	STRO									Lm	
NOMBRE DE VÍA:		Panamerica	ana Norte			UNIDAD	DE MUES	STRA:	Mues	stra 23						Am		6.50n
SECCION DE VÍA:		Calzada de	recha			AREA DE	MUESTR	REO:	230	0.10						*		
EVALUADOR:		Jorge Artu	ro Jimene:	z Marreros		FECHA D	E EVALU.	ACION:	14/01	/2021							35.40m	
DETERIORO	DEL TIPO A									DEI	ERIORO	DEL TIPO	В					
1. Ahuellamiento		7. Fisura L	ong. de ju	nta de con	strucción		13. Despla	az. Abult.	o Ahuella	de mezcla		19. Aflora	miento de	mortero				
2. Depresiones o hur	ndimientos long.	8. Fisura T	ransv. de	junta de co	onstrucció	n	14. Perdid	a de la pel	icula de lig	gante		20. Aflora	miento de	agua				
3. Depresiones o hur	ndiminetos transv.	9. Fisuras o	uras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pa															
4. Fisuras long. Por f	atiga	10. Fisuras	suras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y ber															
5. Fisuras piel de coc	odrillo	11. Fisuras	de borde				17. Pulimi	ento de ag	regados			23. Erosió	n de las b	ermas				
6. Bacheos y Parcheo	os	12. Ojos de	borde				18. Exuda	ción				24. Segreg	ación					
FALLA	GRAVEDAD						(CANTIDA	D						G. PONDERADA	Al	REA AFECTADA	
17		0.8														2	0.8	
15	2	2 15													2	2	15	
4	2	35.4	0.6	0.3	0.6	0.5	1.5	0.6	2	0.3	0.8		1.2		2	2	100.6	
4	2	1.4	0.6	5	5	1.1	0.5	0.4	0.3				1					
4		2 1.5	0.4	0.6	0.2	0.5	1	0.9				1.5	1.5					
4	2	2 1	0.8	0.5	0.4	0.9	1	0.5	0.4		0.5		1.5					
4		0.9	0.5	2.5	0.5	0.6	1.5	1	2.2			0.6						
4		0.5	0.6	0.7	0.4	0.5	0.6	1	0.2			1	1		3	3	37	
4		1.2	1	1.2	0.5	1	1.5	1	0.9		10	1	0.5					
4		0.7	0.7	2	2.5	0.2	0.3	0.5	0.6	1								

Tabla 96: Inspección visual en campo por el método Vizir de la muestra 24

					METOE				SCULTAC RFICIE AS			ZIR				
					НОЈА	DE REGIS	STRO								Lm	<u></u>
NOMBRE DE VÍA:	Panam	ericana Norte	e	1	UNIDAD I	DE MUES	TRA:	Mues	tra 24						Am	6.50n
SECCION DE VÍA:	Calzad	derecha			AREA DE	MUESTR	EO:	230	.10						V	
EVALUADOR:	Jorge A	Arturo Jimen	ez Marreros	. 1	FECHA DI	E EVALUA	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A									DEI	ERIORO	DEL TIPO) B				
1. Ahuellamiento	7. Fisu	a Long. de j	unta de con	strucción		13. Despla	z. Abult. o	Ahuella	le mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long	. 8. Fisu	a Transv. de	e junta de co	onstrucció	n :	14. Perdida	a de la peli	cula de lig	ante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos trans	v. 9. Fisu	as de contra	cción termi	ca		15 Perdida	de agrega	dos			21. Desint	egración d	le los bord	les del pav.		
4. Fisuras long. Por fatiga	10. Fis	Fisuras parabolicas 16. Descaramiento									22. Escalo	namiento	entre calza	da y berma		
5. Fisuras piel de cocodrillo	11. Fis	Fisuras parabolicas 16. Descaramiento Fisuras de borde 17. Pulimiento de agregados									23. Erosió	n de las be	ermas			
6. Bacheos y Parcheos	12. Ojo	s de borde				18. Exudac	ción				24. Segreg	gación				
FALLA GRAVEDAD)					C	CANTIDAL)						G. PONDERADA	AREA AFECTADA	
6	2	2.1 7.8	7.8												2 17.7	
17	2 1	68 15													2 16.68	
15		5.5												:	3 45.5	
12	3 0	45 0.42													3 0.87	
4		1.2 0.9		1	0.2	1	1	1	1	4	7.5	3		:	3 53.95	
4	3	0.7	1	0.6	1.2	1.3	1.25	1.4	1	1	1	3				
4		.5 1	0.9	0.5	1.5	1	0.9	1	1.5	0.9	1	1.5				
4		1.5 0.4		0.9	0.7											
4		0.4	+	0.4	0.3	0.2	0.5	0.2	0.3	0.4		0.5	0.1	:	2 15.95	
4		0.4		0.4	0.5	1.5	0.6	1	1	1	0.7	0.6	0.3			
4	2	0.25	0.6													
														TOTAL	150.65	

Tabla 97: Inspección visual en campo por el método Vizir de la muestra 25

					METOD				SCULTAC ERFICIE AS			ZIR				
					НОЈА	DE REGI		CONSUL	EKTICIE A.	STALTICA	-1				Lm	-
NOMBRE DE VÍA:	Panamerica	na Norte		1	UNIDAD I	DE MUES	TRA:	Mues	stra 25						Am	6.50m
SECCION DE VÍA:	Calzada der	recha			AREA DE	MUESTR	REO:	230	0.10						+	
EVALUADOR:	Jorge Artur	ro Jimenez	Marreros	. 1	FECHA DI	E EVALU	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A									DEI	ERIORO	DEL TIPO) B				
1. Ahuellamiento	7. Fisura Lo	ong. de jui	nta de con	strucción		13. Despla	az. Abult. o	Ahuella	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long.	8. Fisura Tr	ansv. de j	unta de co	onstrucció	n	14. Perdid	a de la pel	icula de lig	gante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos transv.	9. Fisuras d	ras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordes del pav. uras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y berma														
4. Fisuras long. Por fatiga	10. Fisuras	isuras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y ber														
5. Fisuras piel de cocodrillo	11. Fisuras	uras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y bern uras de borde 17. Pulimiento de agregados 23. Erosión de las bermas														
6. Bacheos y Parcheos	12. Ojos de	borde				18. Exudad	ción				24. Segreg	gación				
FALLA GRAVEDAD						C	CANTIDAI	D						G. PONDERADA	AREA AFECTADA	
17 2	9													2	9	
16 2	2.8													2	2.8	
12 2	0.36	0.48												2	0.84	
12 3	0.24	0.4	0.24											3	0.88	
4 3	2	1.5	0.4	0.5	1.5	0.6	0.7	0.9	1.2	0.5	1	1.5		3	36.4	
4 3	1	0.8	1.5	1	1	0.4	0.6	1	0.4	1.5	1.5	1				
4 3	1	0.9	0.9	0.5	2.5	3	1.5	1.5								
4 2	0.4	0.2	0.3	0.5	0.4	0.5	0.3	1	1.2	0.9		1.1		2	2 28.1	
4 2	1.2	1	1.1	1	0.6	0.2	1	1.1		1	0.6	1				
4 2	1	1.5	1	1	1.2	1	0.9	0.9	1							
		+														
														TOTAL	78.02	

Tabla 98: Inspección visual en campo por el método Vizir de la muestra 26

				METODO			ON DE AU			NCESA VI	ZIR				
				НОЈА Г	DE REGIS	STRO								Lm	→
NOMBRE DE VÍA:	Panamericana Nort	e	τ	UNIDAD D	E MUES	TRA:	Mues	tra 26						Am	6.50m
SECCION DE VÍA:	Calzada derecha		A	AREA DE N	MUESTR	EO:	230	0.10						•	
EVALUADOR:	Jorge Arturo Jimer	ez Marreros	I	FECHA DE	EVALUA	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A								DE	ERIORO	DEL TIPO) B				
1. Ahuellamiento	7. Fisura Long. de	junta de con	strucción	13	3. Despla	z. Abult. o	Ahuella (de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long.	8. Fisura Transv. d	e junta de co	onstrucciór	n 14	4. Perdida	a de la pel	icula de lig	ante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos transv.	9. Fisuras de contr	acción termi	ca	15	5 Perdida	de agrega	ados			21. Desin	egración o	de los borde	es del pav.		
4. Fisuras long. Por fatiga	10. Fisuras parabo	licas		10	6. Descar	ramiento				22. Escalo	namiento	entre calzad	la y berma		
5. Fisuras piel de cocodrillo	11. Fisuras de boro	le		17	7. Pulimie	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos	12. Ojos de borde			18	8. Exudac	ción				24. Segre	gación				
FALLA GRAVEDAD					C	CANTIDAL	D						G. PONDERADA	AREA AFECTADA	
17	2 2.7 1:	2											2	14.7	
12	2 0.3 0.1												2	0.57	
4	2 0.6 0.	5 1.5	3	1	0.2	0.5	1.5		1	1.5	0.5		2	58.8	
4	2 0.4	1 2	0.4	2	1	1	1.5		1.5	3	1				
4	2 2 1.	5 2	1	0.9	1	2	1.5		3	1	1.5				
4	2 1	3 2	0.9	1	1	0.5	0.4								
		+										-			
		+	+									+			
		1										+ +			
		+										+			-
L L	<u> </u>	- L	L							I		' 	TOTAL	74.07	

Tabla 99: Inspección visual en campo por el método Vizir de la muestra 27

						METOD		ALUACIO MENTO (ZIR				
						НОЈА	DE REGIS	STRO								Lm	→
NOMBRE DE VÍA:		Panamerica	ana Norte			UNIDAD I	DE MUES	TRA:	Mues	tra 27						Am	6.50m
SECCION DE VÍA:		Calzada de	erecha			AREA DE	MUESTR	EO:	230	.10						▼	
EVALUADOR:		Jorge Artu	ıro Jimene	z Marreros		FECHA DI	E EVALUA	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A										DEI	ERIORO	DEL TIPO) B				
1. Ahuellamiento		7. Fisura L	ong. de ju	nta de con	strucción		13. Despla	z. Abult. c	Ahuella o	le mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos lon	g.	8. Fisura T	ransv. de	junta de co	onstrucció	n :	14. Perdida	a de la peli	icula de lig	ante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos trar	isv.	9. Fisuras	de contrac	ción termi	ca		15 Perdida	de agrega	ndos			21. Desint	egración o	de los bord	les del pav.		
4. Fisuras long. Por fatiga		10. Fisuras	parabolic	as			16. Descai	amiento				22. Escalo	namiento	entre calza	da y berma		
5. Fisuras piel de cocodrillo		11. Fisuras	de borde				17. Pulimie	ento de agi	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos		12. Ojos de	e borde				18. Exudac	ción				24. Segreg	gación				
FALLA GRAVEDA	D						C	ANTIDAI)						G. PONDERADA	AREA AFECTADA	
12	3	0.42	1.68													3 2.1	
12	2	0.36														2 0.36	
15	2	12													:	2 12	
4	2	3	0.6	2	0.9	2	1.5	1	1.5	1	0.9		1		:	2 58.9	
4	2	2.5	1.2	1.5	2	0.4	0.5	0.6	0.9	1.2	1.5	1	1				
4	2	0.5	1.2	1	2	1.5	1	1.2	1.3	3	4	3	7				
4	1	3.5	1.2	1.4	1.6	0.5	0.7	0.8	1.5	0.9	1	1	0			1 9.7 3 23.7	
4	3	2.8	2	3	1.2	0.5	0.4	0.4	1.5	0.9	1	1	9			3 23.7	
· · · · · · · · · · · · · · · · · · ·		L	ı												TOTAL	106.76	

Tabla 100: Inspección visual en campo por el método Vizir de la muestra 28

						METO		ALUACIO IMENTO (NCESA VI A	ZIR				
						НОЈА	DE REGI	STRO								Lm	
NOMBRE DE VÍA:	Pa	namerica	ana Norte	;		UNIDAD	DE MUES	STRA:	Mues	stra 28						Am	6.50n
SECCION DE VÍA:	Ca	lzada de	recha			AREA DE	MUESTF	REO:	230	0.10						\	
EVALUADOR:	Jo	rge Artu	ro Jimene	z Marrero	s	FECHA D	E EVALU	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A										DE	TERIORO	DEL TIPO) B				
1. Ahuellamiento	7.	Fisura Lo	ong. de ju	ınta de co	nstrucción		13. Despla	az. Abult. o	Ahuella	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long.	. 8.	Fisura T	ransv. de	junta de c	onstrucció	in	14. Perdid	a de la pel	icula de lig	gante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos trans	v. 9.	Fisuras c	de contra	cción term	ica		15 Perdida	a de agrega	ados			21. Desin	tegración	de los bord	es del pav.		
4. Fisuras long. Por fatiga	10	. Fisuras	paraboli	cas			16. Desca	ramiento				22. Escalo	namiento	entre calza	da y berma		
5. Fisuras piel de cocodrillo	11	. Fisuras	de borde	;			17. Pulimi	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos	12	. Ojos de	borde				18. Exuda	ción				24. Segreg	gación				
FALLA GRAVEDAD							(CANTIDA	D						G. PONDERADA	AREA AF	ECTADA
15	3	65														6.	5
12	3	0.6														0.	6
17	3	97.5	15													3 113	
4	3	1.2	1	1.1	0.6	0.8	0.7	2.1								7.	5
												1					
LL		I		l	l					1	l	1	l	1	TOTAL	186	.68

Tabla 101: Inspección visual en campo por el método Vizir de la muestra 29

						МЕТОІ				SCULTAC ERFICIE A			ZIR				
						НОЈА	DE REGI	STRO								Lm	*
NOMBRE DE VÍA:]	Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	stra 29						Am	6.50m
SECCION DE VÍA:	(Calzada de	erecha			AREA DE	MUESTR	REO:	230	0.10						•	
EVALUADOR:	j	orge Artu	ıro Jimene	z Marreros	s	FECHA D	E EVALU.	ACION:	14/01	/2021						35.40m	
DETERIORO DEL TIPO A										DE	ERIORO	DEL TIPO) B				
1. Ahuellamiento	,	7. Fisura L	ong. de ju	ınta de cor	nstrucción		13. Despla	az. Abult.	o Ahuella	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humdimientos long	g. 8	3. Fisura T	ransv. de	junta de c	onstrucció	n	14. Perdid	a de la pel	icula de lig	gante		20. Aflora	miento de	agua			
3. Depresiones o hundiminetos trans	sv.	. Fisuras	de contra	cción term	ica		15 Perdida	a de agreg	ados			21. Desin	egración o	de los bord	les del pav.		
4. Fisuras long. Por fatiga		0. Fisuras	parabolic	cas			da y berma										
5. Fisuras piel de cocodrillo		1. Fisuras	de borde				17. Pulimi	ento de ag	regados			23. Erosió	n de las b	ermas			
6. Bacheos y Parcheos		2. Ojos de	e borde				18. Exuda	ción				24. Segreg	gación				
FALLA GRAVEDAD)						(CANTIDA	D						G. PONDERADA	AREA AFECTADA	
12	2	24	13													2 37	
4	2	10	1	0.9		0.6	0.7	0.9	0.7	0.6	0.4	0.9	1			2 64.7	
4	2	1.5	1	2.5	0.5	0.6	0.9	1	2	3	1	1	0.9				
4	2	1.5	3	4	5	1.5	1.5	0.9	1	1.5	2	1	0.4				
4	2	0.5	1	1.5	2	1	0.9										

Tabla 102: Inspección visual en campo por el método Vizir de la muestra 30

						МЕТО	DO DE EV			SCULTAC ERFICIE A			ZIR				
						HOJA	DE REGI	STRO								Lm	<u>+</u>
NOMBRE DE VÍA:		Panameric	ana Norte			UNIDAD	DE MUES	TRA:	Mues	stra 30						Am	6.50m
SECCION DE VÍA:		Calzada de	erecha			AREA DI	E MUESTR	EO:	230	0.10						+	
EVALUADOR:		Jorge Artu	ıro Jimene	z Marreros		FECHA D	E EVALU	ACION:	14/01	/2021						35.40m	
DETERIORO I	DEL TIPO A									DEI	ERIORO	DEL TIPO) B				
1. Ahuellamiento		7. Fisura L	ong. de ju	nta de con	strucción		13. Despla	z. Abult. o	Ahuella	de mezcla		19. Aflora	miento de	mortero			
2. Depresiones o humo	limientos long.	8. Fisura T	Fisura Transv. de junta de construcción 14. Perdida de la pelicula de ligante 20. Afloramiento de agua Fisuras de contracción termica 15 Perdida de agregados 21. Desintegración de los bordos														
3. Depresiones o hund	iminetos transv.	9. Fisuras															
4. Fisuras long. Por fat	iga	10. Fisuras	Fisuras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y berr														
5. Fisuras piel de coco	drillo	11. Fisuras	Fisuras parabolicas 16. Descaramiento 22. Escalonamiento entre calzada y berr Fisuras de borde 17. Pulimiento de agregados 23. Erosión de las bermas														
6. Bacheos y Parcheos		12. Ojos do	e borde				18. Exudad	ción				24. Segreg	gación				
FALLA	GRAVEDAD						C	CANTIDAI	D						G. PONDERADA	AREA AFECTADA	
17	1	1.5	3.6	7											1	1 12.1	
12	2	0.15													2	2 0.15	
4	1	2.5	1	0.5	0.4	0.3	1.5	1	0.9	0.6	0.5	1	1.5		1	1 76.5	
4	1	1	0.9	1	5	1	1.5	3	1	1	2	2	2				
4	1	1.5	1	0.9	1	2	4	5	1	0.8	0.5	1.5	1				
4	1	1.5	2	2	1	3	2	0.9	0.5	1	0.6	0.9	0.5				
4	1	0.4	0.4	0.5	1.5	3	1.5										
				+	+											<u> </u>	
				1	1												
		<u> </u>													TOTAL	88.75	

Anexo n° 5. Resultados de PCI y clasificación de pavimento por unidades de muestreo.

Tabla 103: Índice de condición del pavimento (PCI) y clasificación de la muestra 1

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACION
1	47	46	35	26	16	13	183	6	83	
2	47	46	35	26	16	2	172	5	84	
3	47	46	35	26	2	2	158	4	85	
4	47	46	35	2	2	2	134	3	80	MUYMALO
5	47	46	2	2	2	2	101	2	69	
6	47	2	2	2	2	2	57	1	56	
				-				MAX CVD	85	VALOR PCI 15

Fuente: Elaboración propia (2021)

Tabla 104: Índice de condición del pavimento (PCI) y clasificación de la muestra 2

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	20	10					30	2	22		
2	20	2					22	1	22		
										MUYBUE	NO
								MAX CVD	22	VALOR PCI	78

Tabla 105: Índice de condición del pavimento (PCI) y clasificación de la muestra 3

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACIO	ON
1	50	18	15	7			90	4	51		
2	50	18	15	2			85	3	52		
3	50	18	2	2			72	2	53		
4	50	2	2	2			56	1	54	REGULAR	
						·					
								MAX CVD	54	VALOR PCI	46

Tabla 106: Índice de condición del pavimento (PCI) y clasificación de la muestra 4

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	28	18	10				56	3	34		
2	28	18	2				48	2	36		
3	28	2	2				32	1	31		
4										BUENC)
5											
6											
7											
								MAX CVD	36	VALOR PCI	64

Tabla 107: Índice de condición del pavimento (PCI) y clasificación de la muestra 5

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICAC	CION
1	30	8					38	2	28		
2	30	2					32	1	32		
3											
4										BUENO	1
5											
6											
7											
								MAX CVD	32	VALOR PCI	68

Tabla 108: Índice de condición del pavimento (PCI) y clasificación de la muestra 6

No.		VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	31.49					31.49	1	31		
									BUENC)
									•	
		 · · · · · ·			· · · · · ·		MAX CVD	31	VALOR PCI	69

Tabla 109: Índice de condición del pavimento (PCI) y clasificación de la muestra 7

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACION
1	48	20	3	2			73	4	41	
2	48	20	3	2			73	3	44	
3	48	20	2	2			72	2	51	
4	48	2	2	2			54	1	54	REGULAR
								MAX CVD	54	VALOR PCI 46

Tabla 110: Índice de condición del pavimento (PCI) y clasificación de la muestra 8

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICAC	ION
1	35	18	2	1			56	4	30		
2	35	18	2	2			57	3	36		
3	35	18	2	2			57	2	43		
4	35	2	2	2			41	1	41	BUENO	
							•	MAX CVD	43	VALOR PCI	57

Tabla 111: Índice de condición del pavimento (PCI) y clasificación de la muestra 9

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACION
1	44	22	10	4			80	4	46	
2	44	22	10	2			78	3	50	
3	44	22	2	2			70	2	51	
4	44	2	2	2			50	1	50	REGULAR
	•	•	•	•	•	•		MAX CVD	51	VALOR PCI 49

Fuente: Elaboración propia (2021)

Tabla 112: Índice de condición del pavimento (PCI) y clasificación de la muestra 10

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	48	24	8				80	3	51		
2	48	24	2				74	2	54		
3	48	2	2				52	1	52		
4										REGULA	.R
5											
6										•	
7											
					· · · · · ·			MAX CVD	54	VALOR PCI	46

Tabla 113: Índice de condición del pavimento (PCI) y clasificación de la muestra 11

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICAC	CION
1	55	45	35	19	3		157	5	80		
2	55	45	35	19	2		156	4	85		
3	55	45	35	2	2		139	3	82		
4	55	45	2	2	2		106	2	73	MUYMA	LO
5	55	2	2	2	2		63	1	63		
										1	
										1	
	,	•	•			•		MAX CVD	85	VALOR PCI	15

Tabla 114: Índice de condición del pavimento (PCI) y clasificación de la muestra 12

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	30	23	14	1			68	4	39		
2	30	23	14	2			69	3	44		
3	30	23	2	2			57	2	42		
4	30	2	2	2			36	1	36	BUENC)
								MAX CVD	44	VALOR PCI	56

Tabla 115: Índice de condición del pavimento (PCI) y clasificación de la muestra 13

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACI	ON
1	39	30	22	17	10	1	119	6	58		
2	39	30	22	17	10	2	120	5	62		
3	39	30	22	17	2	2	112	4	63		
4	39	30	22	2	2	2	97	3	61	MALO	
5	39	30	2	2	2	2	77	2	55		
6	39	2	2	2	2	2	49	1	49		
7											
				-			•	MAX CVD	63	VALOR PCI	37

Fuente: Elaboración propia (2021)

Tabla 116: Índice de condición del pavimento (PCI) y clasificación de la muestra 14

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	42	27					69	2	50		
2	42	2					44	1	44		
										REGULA	ΛR
	•			•		•	•	MAX CVD	50	VALOR PCI	50

Tabla 117: Índice de condición del pavimento (PCI) y clasificación de la muestra 15

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICAC	CION
1	24	14	4	1			43	4	22		
2	24	14 4 2					44	3	37		
3	24	14	2	2			42	2	31		
4	24	2	2	2			30	1	30	BUENC)
	24 2 2 2										
								MAX CVD	37	VALOR PCI	63

Tabla 118: Índice de condición del pavimento (PCI) y clasificación de la muestra 16

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	63	36	1	1			101	4	57		
2	63	36	1	2			102	3	63		
3	63	36	2	2			103	2	71		
4	63	2	2	2			69	1	69	MALC)
								MAX CVD	71	VALOR PCI	29

Tabla 119: Índice de condición del pavimento (PCI) y clasificación de la muestra 17

No.			VALO	RES DEDU	CIDOS			TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	39	31	5	1				76	4	44		
2	39							77	3	50		
3	39		2	2				43	2	32		
4	39	2	2	2				45	1	45	REGULA	ΛR
	39 2 2 2											
								MAX CVD	50	VALOR PCI	50	

Tabla 120: Índice de condición del pavimento (PCI) y clasificación de la muestra 18

No.			VALO	RES DEDU	CIDOS			TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	32	21	19	11	5			88	5	46		
2	32	21	19	11	2			85	4	48		
3	32	21	19	2	2			76	3	49		
4	32 21 2 2 2							59	2	44	REGULA	.R
5	32	2						40	1	40		
								MAX CVD	49	VALOR PCI	51	

Tabla 121: Índice de condición del pavimento (PCI) y clasificación de la muestra 19

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACION
1	61	61	38	28	19	13	220	6	90	
2	61	61	38	28	19	2	209	5	92	
3	61 61 38 28 2 2						192	4	99	
4	61	61	38	2	2	2	166	3	93	FALLADO
5	61	61	2	2	2	2	130	2	85	
6	61	2	2	2	2	2	71	1	71	
7	·		·							
								MAX CVD	99	VALOR PCI 1

Tabla 122: Índice de condición del pavimento (PCI) y clasificación de la muestra 20

No.			VALO	RES DEDU	CIDOS			TOTAL	q	VD CORREGIDO	CALIFICACION
1	58	56	32	27	18	2	1	194	7	82	
2	58	56	32	27	18	2	2	195	6	87	
3	58 56 32 27 18 2						2	195	5	91	
4	58	56	32	27	2	2	2	179	4	93	FALLADO
5	58	56	32	2	2	2	2	154	3	88	
6	58	56	2	2	2	2	2	124	2	82	
7	58	2	2 2 2 2 2				2	70	1	70	
		•	•		•		•		MAX CVD	93	VALOR PCI 7

Tabla 123: Índice de condición del pavimento (PCI) y clasificación de la muestra 21

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACION
1	70	36	2	1			109	5	57	
2	70	36					110	4	63	
3	70 36 2 2						110	3	69	
4	70 2 2 2					76	2	54	MALO	
5	2	2 2 2				8	1	8		
								MAX CVD	69	VALOR PCI 31

Tabla 124: Índice de condición del pavimento (PCI) y clasificación de la muestra 22

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	76	21					97	2	68		
2	76	2				78	1	78			
3											
4										MUYMA	LO
5											
6											
7											
								MAX CVD	78	VALOR PCI	22

Tabla 125: Índice de condición del pavimento (PCI) y clasificación de la muestra 23

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACION
1	69	46	16	2			133	4	74	
2	69						133	3	79	
3	69	46	2	2			119	2	80	
4	69 2 2 2					75	1	75	MUYMALO	
								MAX CVD	80	VALOR PCI 20

Tabla 126: Índice de condición del pavimento (PCI) y clasificación de la muestra 24

No.			VALO	RES DEDU	CIDOS			TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	54	52	35	21	13	2		177	6	83		
2	54	52						177	5	92		
3	54							166	4	89		
4	54 52 35 2 2 2							147	3	85	FALLAI	00
5	54						114	2	78			
6	54	2	2	2	2	2		64	1	64		
7												
									MAX CVD	92	VALOR PCI	8

Tabla 127: Índice de condición del pavimento (PCI) y clasificación de la muestra 25

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACION
1	51	40	20	19	10	1	141	6	69	
2	51	40	20	19	10	2	142	5	73	
3	51	40	20	19	2	2	134	4	75	
4	51	40	20	2	2	2	117	3	72	MUYMALO
5	51	40	2	2	2	2	99	2	68	
6	51	2	2	2	2	2	61	1	61	
								MAX CVD	75	VALOR PCI 25

Tabla 128: Índice de condición del pavimento (PCI) y clasificación de la muestra 26

No.			VALO	RES DEDU	CIDOS			TOTAL	q	VD CORREGIDO	CALIFICAC	CION
1	28	11	1					40	3	25		
2	28							41	2	31		
3	28	2	2					32	1	32		
											BUENC)
_								MAX CVD	32	VALOR PCI	68	

Tabla 129: Índice de condición del pavimento (PCI) y clasificación de la muestra 27

No.			VALO	RES DEDU	CIDOS			TOTAL	q	VD CORREGIDO	CALIFICACION
1	50	36	28	22	18	13	7	174	7	78	
2	50	36	28	22	18	13	2	169	6	81	
3	50	36	28	22	18	2	2	158	5	80	
4	50	36	28	22	2	2	2	142	4	79	MUYMALO
5	50	36	28	2	2	2	2	122	3	74	
6	50	36	2	2	2	2	2	96	2	66	
7	50	2	2	2	2	2	2	62	1	62	
							_		MAX CVD	81	VALOR PCI 19

Fuente: Elaboración propia (2021)

Tabla 130: Índice de condición del pavimento (PCI) y clasificación de la muestra 28

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	61	58	31	18	1		169	5	83		
2	61	58	31	18	2		170	4	90		
3	61	58	31	2	2		154	3	89		
4	61	58	2	2	2		125	2	83	FALLAI	00
5	61	2	2	2	2		69	1	69		
6											
7											
					_			MAX CVD	90	VALOR PCI	10

Tabla 131: Índice de condición del pavimento (PCI) y clasificación de la muestra 29

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICACIO	ON
1	29	5					34	2	25		
2	29	2					31	1	31		
3											
4										BUENO	
5											
6											
7											
	•	•	•	•	•	•	•	MAX CVD	31	VALOR PCI	69

Tabla 132: Índice de condición del pavimento (PCI) y clasificación de la muestra 30

No.			VALO	RES DEDU	CIDOS		TOTAL	q	VD CORREGIDO	CALIFICA	CION
1	13	10					23	2	18		
2	13	2					15	1	15		
										MUYBUI	ENO
								MAX CVD	18	VALOR PCI	82

Anexo n° 6. Resultados de VIZIR y clasificación de pavimento por unidades de muestreo

Tabla 133: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 1

TIPO	No.	AREA (m2)	GRAVEDAD P	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	17	15	2	6.52	2	0	2	0	2	BUENO
A	5	9	2	3.91	2	0	2	0	2	BUENO
A	4	100.7	2	43.76	3	0	3	1	4	REGULAR

Fuente: Elaboración propia (2021)

Tabla 134: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 2

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	14	18	2	7.82	2	0	2	0	2	BUENO
В	17	0.36	3	0.16	3	0	3	0	3	REGULAR
A	4	12.1	2	5.26	2	0	2	0	2	BUENO

Tabla 135: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 3

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	18	35.4	2	15.38	3	0	3	0	3	REGULAR
В	17	1	1	0.43	1	0	2	2	2	BUENO
A	4	38.9	2	16.91	3	0	3	1	4	REGULAR

Tabla 136: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 4

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	18	106.2	2	46.15	3	0	3	0	3	REGULAR
В	15	4.2	2	1.83	2	0	2	0	2	BUENO
A	4	28.3	2	12.30	3	0	3	1	4	REGULAR

Tabla 137: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 5

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
A	4	138.22	2	60.07	4	0	4	1	5	DEFICIENTE

Tabla 138: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 6

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	18	14.16	2	6.15	2	0	2	0	2	BUENO
A	4	72.45	2	31.49	3	0	3	0	3	REGULAR

Tabla 139: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 7

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
A	4	66.15	3	28.75	3	0	3	1	4	REGULAR

Tabla 140: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 8

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	17	16.6	2	7.21	2	0	2	0	2	BUENO
A	4	59.9	3	26.03	4	0	4	1	5	DEFICIENTE

Tabla 141: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 9

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	15	4.6	2	2.00	2	0	2	0	2	BUENO
A	4	53.35	2	23.19	3	0	3	0	3	REGULAR

Tabla 142: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 10

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
A	4	66.3	2	28.81	3	0	3	0	3	REGULAR

Tabla 143: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 11

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
A	4	85.78	2	37.28	3	0	3	0	3	REGULAR

Tabla 144: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 12

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	21	2.43	3	1.05	3	3	5	0	5	DEFICIENTE
В	11	20	1	8.69	1	0	2	0	2	BUENO
A	1	25	1	10.86	0	2	3	0	3	REGULAR
A	4	25.58	2	11.12	3	0	3	0	3	REGULAR

Tabla 145: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 13

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	12	1.095	3	0.48	3	3	5	0	5	DEFICIENTE
A	4	114.06	2	49.57	3	0	3	0	3	REGULAR

Tabla 146: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 14

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	12	2	2	0.87	2	2	3	0	3	REGULAR
A	4	62.41	2	27.12	3	0	3	0	3	REGULAR

Tabla 147: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 15

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
A	4	70.92	2	30.82	3	0	3	0	3	REGULAR

Tabla 148: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 16

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	12	2.01	2	0.87	2	2	3	0	3	REGULAR
A	4	87.02	3	37.82	4	0	4	1	5	DEFICIENTE

Tabla 149: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 17

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	12	3.28	2	1.43	2	2	3	0	3	REGULAR
A	4	86	2	37.38	3	0	2	0	2	BUENO

Tabla 150: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 18

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	15	23.01	2	10.00	2	0	2	0	2	BUENO
A	6	2.64	2	1.15	0	2	3	0	3	REGULAR
В	12	0.39	3	0.17	3	3	5	0	5	DEFICIENTE
A	4	80.6	2	35.03	3	0	3	0	3	REGULAR

Tabla 151: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 19

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	17	18	3	7.82	3	0	3	0	3	REGULAR
A	4	129.65	3	56.35	5	0	4	1	5	DEFICIENTE
									·	

Tabla 152: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 20

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	16	7.15	2	3.11	2	2	3	0	3	REGULAR
В	15	97.5	2	42.37	3	0	3	1	4	REGULAR
В	17	10	2	4.35	2	0	2	0	2	BUENO
A	4	50.9	2	22.12	3	0	3	0	3	REGULAR

Tabla 153: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 21

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	12	0.84	3	0.37	3	3	5	0	5	DEFICIENTE
В	17	3	1	1.30	1	0	2	0	2	BUENO
A	4	104.23	2	45.30	3	0	3	0	3	REGULAR

Tabla 154: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 22

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	12	0.25	3	0.11	3	3	5	0	5	DEFICIENTE
A	4	119.1	2	51.76	4	0	4	1	5	DEFICIENTE

Tabla 155: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 23

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	17	0.8	2	0.35	2	0	2	0	2	BUENO
В	15	15	2	6.52	2	0	2	0	2	BUENO
A	4	137.6	3	59.80	5	0	4	1	5	DEFICIENTE

Tabla 156: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 24

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
A	6	17.7	2	7.69	0	2	3	0	3	REGULAR
В	17	16.68	2	7.25	2	0	2	0	2	BUENO
В	15	45.5	3	19.77	4	0	4	1	5	DEFICIENTE
В	12	0.87	3	0.38	3	3	5	0	5	DEFICIENTE
A	4	69.9	2	30.38	3	0	3	0	3	REGULAR

Tabla 157: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 25

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	17	9	2	3.91	2	0	2	0	2	BUENO
В	16	2.8	2	1.22	2	2	3	0	3	REGULAR
В	12	1.72	3	0.75	3	3	5	0	5	DEFICIENTE
A	4	64.5	2	28.03	3	0	3	0	3	REGULAR

Tabla 158: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 26

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	17	14.7	2	6.39	2	0	2	0	2	BUENO
В	12	0.57	2	0.25	2	2	3	0	3	REGULAR
A	4	58.8	2	25.55	4	0	4	1	5	DEFICIENTE

Tabla 159: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 27

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	12	2.46	3	1.07	3	3	5	0	5	DEFICIENTE
В	15	12	2	5.22	3	2	3	0	3	REGULAR
A	4	92.3	2	40.11	3	0	3	1	4	REGULAR

Tabla 160: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 28

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	15	65	3	28.25	4	0	4	1	5	DEFICIENTE
В	12	0.6	3	0.26	3	3	5	0	5	DEFICIENTE
В	17	113.58	3	49.36	4	0	4	1	5	DEFICIENTE
A	4	7.5	3	3.26	3	0	3	0	3	REGULAR
									·	

Tabla 161: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 29

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	12	37	2	16.08	3	3	3	0	3	REGULAR
A	4	64.7	2	28.12	3	0	2	0	2	BUENO

Tabla 162: Índice de deterioro superficial (VIZIR) y clasificación de la muestra 30

TIPO	No.	AREA (m2)	GRAVEDAD	EXTENSION	IF	ID	IS1	IC	IR	CALIFICACION
В	17	12.1	1	5.259	1	0	2	0	2	BUENO
В	12	0.15	2	0.065	2	2	3	0	3	REGULAR
A	4	76.5	1	33.246	2	0	2	0	2	BUENO

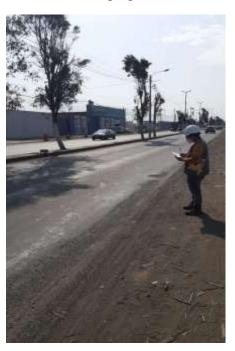
Anexo nº 7. Fotografías Muestra 1 Desprendimiento de agregados

Muestra 2

Grietas Longitudinales y Transversales

Grietas Longitudinales y Transversales

Grietas Longitudinales y Transversales

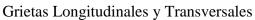


"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

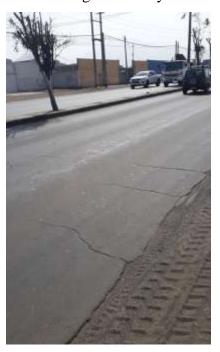
Muestra 3 Pulimiento de agregados

Muestra 4 Pulimiento de agregados

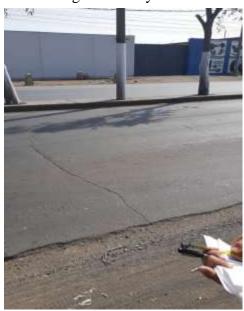
Desprendimiento de agregados



Grieta Transversal

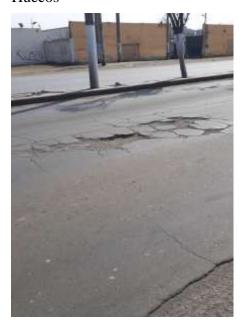

"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

Muestra 5



Muestra 6 Grietas Longitudinales y Transversales

Grietas Longitudinales y Transversales



Grietas Longitudinales y Transversales

Muestra 7


Muestra 8 Pulimiento de agregados

Grietas Longitudinales y Transversales


Grietas Longitudinales y Transversales

"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

Muestra 9

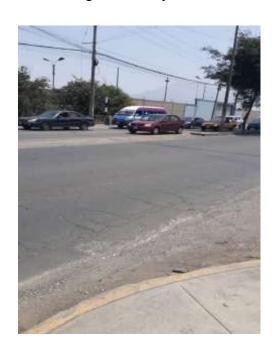
Huecos

Muestra 10 Grietas Longitudinales y Transversales

Grietas Longitudinales y Transversales

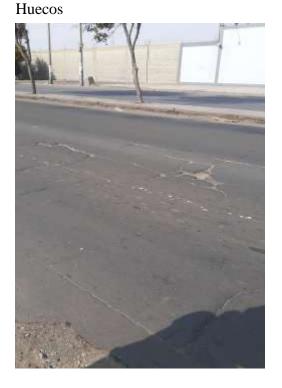
Muestra 11

Huecos



Muestra 12 Huecos

Grietas Longitudinales y Transversales



Muestra 13 Grieta de borde

Muestra 14

Grietas Longitudinales y Transversales

Grieta de borde

Muestra 15 Grietas Longitudinales y Transversales

Muestra 16 Grietas Longitudinales y Transversales

Desprendimiento de agregados



Grietas Longitudinales y Transversales

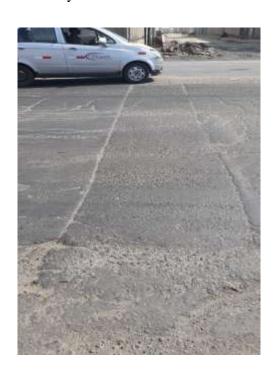
Muestra 17 Grietas Longitudinales y Transversales

Muestra 18 Parcheos y acometidas de servicios

Huecos

Huecos

Muestra 19 Grietas Longitudinales y Transversales


Huecos

Muestra 20 Grietas Longitudinales y Transversales

Parcheos y acometidas de servicios

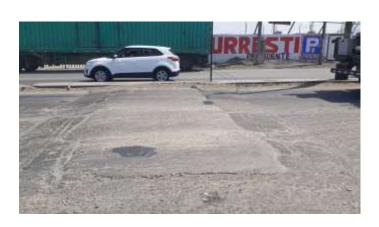
Muestra 21

Desprendimiento de agregados

Muestra 22

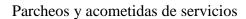
Huecos

Desprendimiento de agregados


Muestra 23 Hinchamiento

Grietas Longitudinales y Transversales

Muestra 24 Parcheos y acometidas de servicios



Huecos

Muestra 25 Huecos

Muestra 26 Huecos

Grietas Longitudinales y Transversales

Muestra 27 Grietas Longitudinales y Transversales

Grietas Longitudinales y Transversales

"APLICACIÓN DE LAS METODOLOGÍAS PCI Y VIZIR EN LA EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE DEL OVALO LA MARINA HASTA KM 680 - TRUJILLO"

Muestra 28 Desprendimiento de agregados

Muestra 29 Pulimiento y agregados

Grietas Longitudinales y Transversales

Muestra 30 Pulimiento y agregados

Grietas Longitudinales y Transversales

Anexo nº 8. Evidencias de Evaluador

Inicio de tramo

Tamaño de muestra 35.40m

Apuntes de datos M2

Levantamiento de medidas

Apuntes de datos

Levantamiento de medidas

Levantamiento de grieta

Formatos de registros

Levantamiento de Profundidades

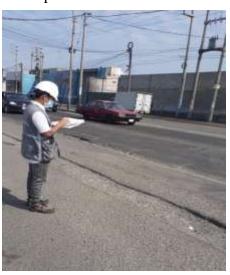
Levantamiento de Huecos

Levantamiento de Huecos

Levantamiento de Huecos

Punto de estación para el tráfico

Levantamiento de áreas de Fallas


Levamiento de grita de borde

Levantamiento de Huecos

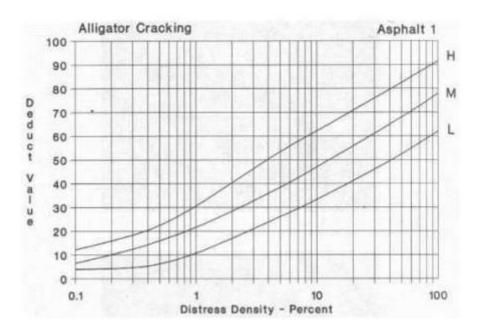
Apuntes de Fallas

Levantamiento de Huecos

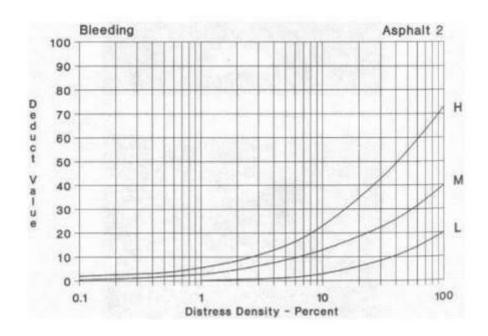
Levantamiento de Falla

Ancho de tramo evaluado

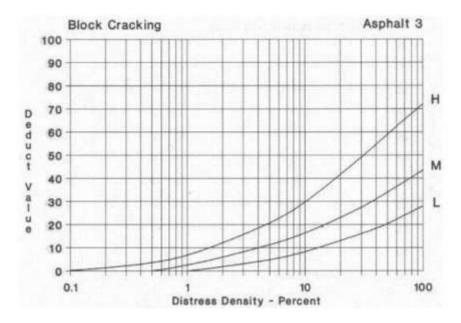
Fin de Tramo


Altura de Falla

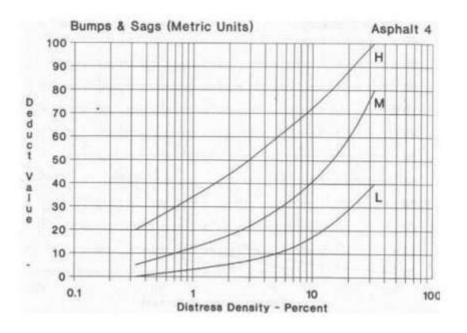
Levantamiento de Hinchamiento



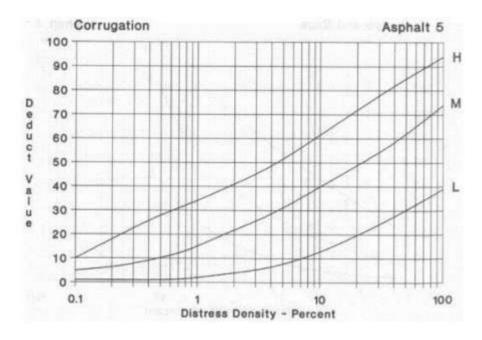
Anexo n° 9. Curvas para determinar VD y CDV en pavimentos asfálticos. Piel de cocodrilo


Fuente: (Vásquez Valera, 2006)

Exudación

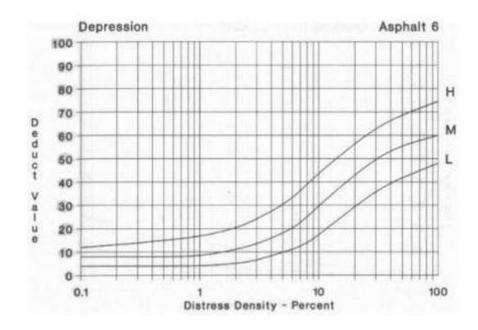


Agrietamiento en bloque

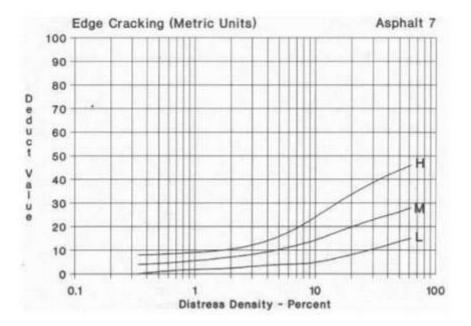


Fuente: (Vásquez Valera, 2006)

Abultamientos (Bumps) y Hundimientos (Sags)

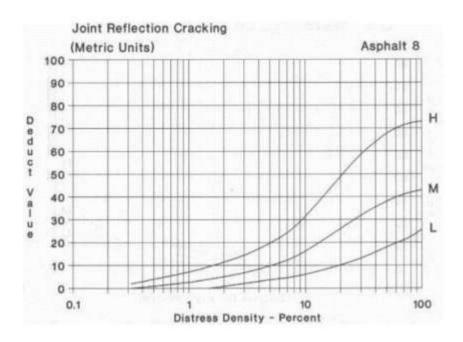


Corrugación

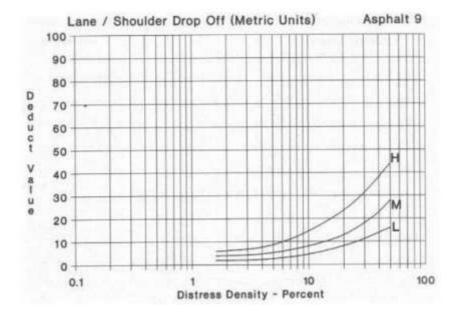


Fuente: (Vásquez Valera, 2006)

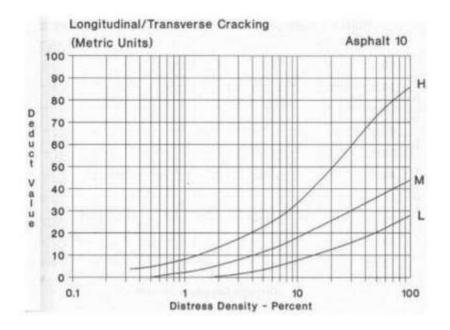
Depresión



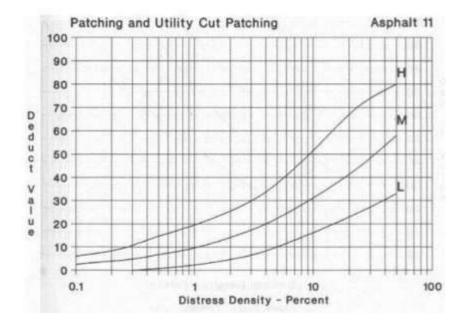
Grieta de borde


Fuente: (Vásquez Valera, 2006)

Grieta de reflexión de junta

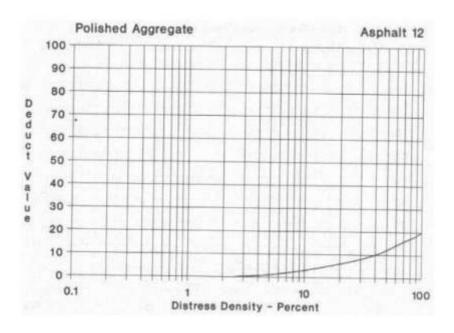


Desnivel carril/berma

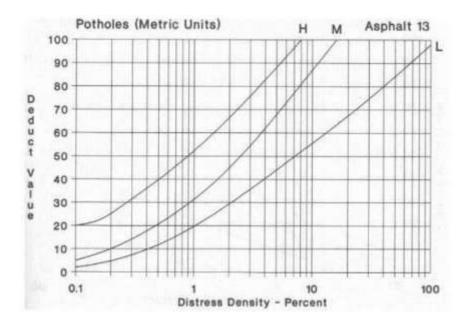


Fuente: (Vásquez Valera, 2006)

Grietas longitudinales y transversales

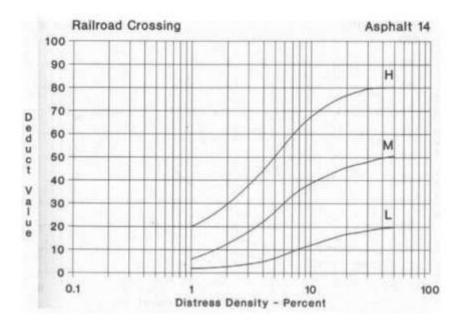


Parchado y acometidas de servicios públicos

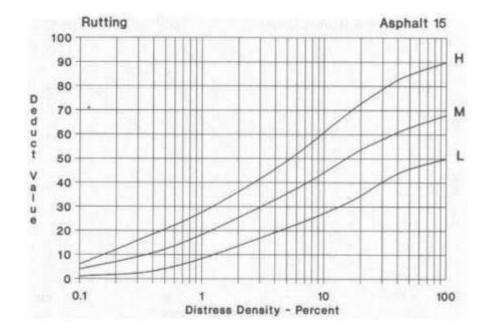


Fuente: (Vásquez Valera, 2006)

Pulimento de agregados

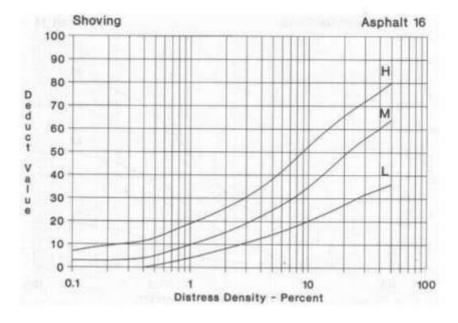


Huecos

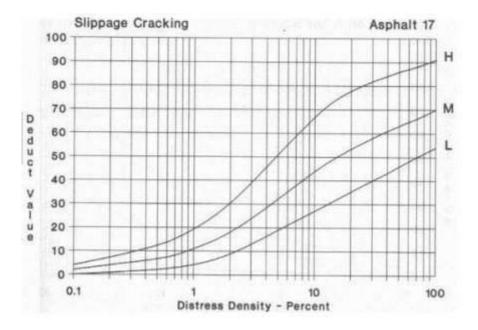


Fuente: (Vásquez Valera, 2006)

Cruce de vía férrea

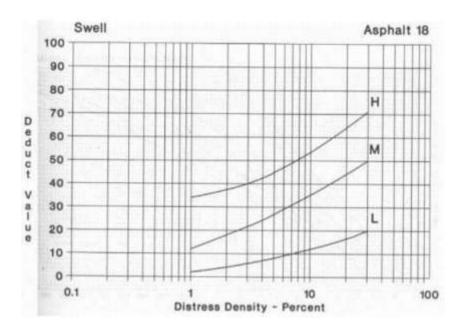


Ahuellamiento

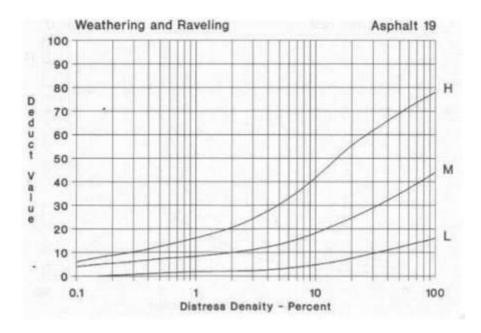


Fuente: (Vásquez Valera, 2006)

Desplazamiento

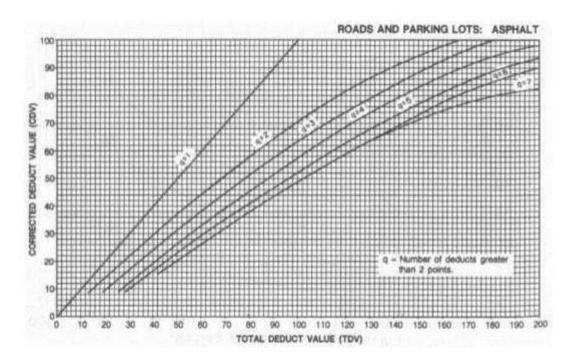


Grietas parabólicas



Fuente: (Vásquez Valera, 2006)

Hinchamiento



Meteorización / desprendimiento de agregados

Fuente: (Vásquez Valera, 2006)

Curvas para evaluación del CDV

