FACULTAD DE INGENIERÍA

Carrera de Ingeniería Geológica

"ANÁLISIS Y DETERMINACIÓN DE ZONAS SUSCEPTIBLES PARA MITIGAR LOS EFECTOS DE MOVIMIENTOS EN MASA, CASERIO JANCOS, PROVINCIA SAN PABLO, REGION CAJAMARCA, 2021"

Tesis para optar el título profesional de:

INGENIERO GEÓLOGO

Autores:

Bach. Sara Estefany Leon Astopilco Bach. Deymian Montenegro Hernández

Asesor:

Ing. Mg. Miguel Ricardo Portilla Castañeda

Cajamarca - Perú

2021

DEDICATORIA

Con todo el amor dedicamos esta investigación a Dios por su compañía en cumplir nuestras metas. A nuestros padres, que son los pilares fundamentales de nuestras vidas; sin ellos, jamás hubiésemos podido terminar la carrera profesional, por su tenacidad y lucha insaciable nos han hecho seguir su ejemplo. A nuestras familias en general por su apoyo, su comprensión, por sus consejos, su ánimo, su alegría

DEYMIAN Y SARA

Universidad PRIVADA DEL NORTE

AGRADECIMIENTO

Agradecemos a Dios por su amor y su bondad que no tiene fin, porque nos has permitido sonreír ante todos nuestros logros que son el resultado de esfuerzo y sacrificio, hemos aprendido de nuestros errores para mejorar como ser humano y crecer profesionalmente. El amor recibido, dedicación y paciencia de nuestros padres al preocuparse por nosotros estando lejos de ellos, siendo nuestros principales pilares de nuestros sueños, y por confiar y creer en nosotros, en nuestras expectativas. A nuestro asesor el Ing. Mg. Miguel Ricardo Portilla Castañeda por su apoyo incondicional, paciencia y ser nuestro guía durante el desarrollo de la Investigación.

DEYMIAN Y SARA

Tabla de contenidos

		Pág.
DEDIC	CATORIA	2
AGRA	DECIMIENTO	3
ÍNDIC	EE DE TABLAS	8
полс		•••••••
RESU	MEN	12
CAPÍ	TULO I. INTRODUCCIÓN	14
<i>1.1</i> .	Realidad problemática	14
1.2.	Formulación del problema	18
<i>1.3.</i>	Objetivos	18
1.3.1.	Objetivo general	18
1.3.2.	Objetivos específicos	18
<i>1.4</i> .	Hipótesis	19
CAPÍ	TULO II. METODOLOGÍA	20
2.1.	Tipo de investigación	20
2.2.	Población y Muestra	20
2.2.1.	Población	20
2.2.2.	Muestra	20
2.3.	Técnicas e Instrumentos de recolección, Análisis de Datos, Equipos y Materiales	20
2.3.1.	Técnicas e Instrumentos	20
2.3.1.1	!.Técnicas	20
2.3.1.2	P. Instrumentos	21
2.3.2.	Análisis de Datos	22
2.3.3.	Equipos	22
2.3.4.	Materiales	22
2.4.	Procedimiento	23
2.4.1.	Etapa de Pre Campo o Gabinete 1	23
2.4.2.	Etapa de Campo	31
2.4.3.	Etapa de Laboratorio	33
	Etapa de Post Campo o Gabinete II	
CAPÍ	TULO III. RESULTADOS	50
	EOLÓGIA	
	Formación Llama (Pe – vll)	
<i>3.2.</i>	, in the second of the second	
~· - ·		0 7

<i>3.2.1.</i>	Colinas	54
<i>3.2.2.</i>	Valles en V	55
<i>3.2.3.</i>	Laderas	56
<i>3.2.4</i> .	Planicies	57
<i>3.3.</i>	GEOLOGÍA ESTRUCTURAL	57
<i>3.3.1.</i>	Fallas	57
<i>3.3.2.</i>	Diaclasas	59
<i>3.4.</i>	HIDROLOGÍA	60
<i>3.4.1</i> .	Ríos	60
<i>3.4.2.</i>	Quebradas	60
<i>3.5.</i>	ASPECTOS GEODINÁMICOS	63
<i>3.5.1</i> .	Geodinámica Externa	64
3.5.1.1	l.Caída de Rocas	64
3.5.1.2	2. Volcamiento	65
3.5.1.3	3. Flujos	65
3.5.1.4	1.Deslizamiento Rotacional	66
<i>3.6.</i>	DESCRIPCIÓN DE ESTACIONES	68
<i>3.6.1.</i>	ESTACIÓN 1	68
3.6.1.1	I.Descripción	68
3.6.1.2	2.Análisis de Susceptibilidad	70
3.6.1.3	3.Análisis de Laboratorio	74
3.6.1.4	1. Análisis de Factor de Seguridad	
3.6.1.5	5.Diseño de Estación	77
<i>3.6.2.</i>	ESTACIÓN 2	
3.6.2.1	l.Descripción	
3.6.2.2	2.Análisis de Susceptibilidad	
3.6.2.3	3.Análisis de Laboratorio	84
3.6.2.4	4. Análisis Factor de Seguridad	
3.6.2.5	5.Diseño de Estación	88
<i>3.6.3.</i>	ESTACIÓN 3	
3.6.3.1	l.Descripción	
3.6.3.2	2.Análisis de susceptibilidad	92
3.6.3.3	3.Etapa de laboratorio	95
3.6.3.4	1. Factor de Seguridad	96
3.6.3.5	5.Diseño de Estación	98
3.6.4.	ESTACIÓN 4	99
	l.Descripción	
	2.Análisis de susceptibilidad	
	3.Etapa de Laboratorio	
	1. Factor de Seguridad	
	_	

3.6.4	5.Diseño de estación	107
CAPÍ	ÍTULO IV. DISCUSIÓN Y CONCLUSIONES	108
4.1	Discusión	108
4.2	Conclusiones	
REFE	ERENCIAS	114
ANEX	XOS	121
ANEX	XO N^{\bullet} 01. Ensayo de Corte Directo Muestra N° 01	121
ANEX	XO N^{\bullet} 02 . Ensayo de Corte Directo Muestra N° 02	122
ANEX	XO N^{\bullet} 03. Gráficos de Esfuerzo Cortante Muestra N° 01	123
ANEX	XO N° 04: Gráficos de Esfuerzo Cortante Muestra N° 02	124
ANEX	XO Nullet 05. Análisis Granulométrico por Tamizado Muestra N $^{\circ}$ 01	125
ANEX	XO N ullet 06. Análisis Granulométrico por Tamizado Muestra N $^{\circ}$ 02	126
ANEX	XO N ullet 07. Límite de Consistencia muestra N $^{\circ}$ 01	127
ANEX	XO N° 08. Límites de Consistencia Muestra N° 02	128
ANEX	XO N ullet 09. Ensayo de Peso Unitario Seco muestra N $^{\circ}$ 01	129
ANEX	XO N^{\bullet} 10. Ensayo de Peso Unitario Seco muestra N° 02	130
ANEX	XO N^{ullet} 11. Ensayo de Contenido de Humedad muestra N° 01	131
ANEX	XO N ullet 12. Ensayo de Contenido de Humedad muestra N $^{\circ}$ 02	132
ANEX	XO Nº 13. Ensayo de Propiedades Físicas	133
ANEX	XO N°14. Ensayo de Corte Directo en Roca	134
ANEX	XO N°15. Gráfico de Ensayo de Resistencia al Corte Directo en Roca – Gráfico sugerido – M1	
ANEX	XO N°16. Gráfico de Ensayo de Resistencia al Corte Directo en Roca – Gráfico M sugerido S.R. Hencher y L.R. Richards	
ANEX	XO N°17. Perfiles de Rugosidad medidos con el peine de Barton	137
	XO N°18. Muestra de Corte Directo el Antes y Después	
ANEX	XO N°19. Ficha de Observación de Factores Condicionantes y Desencadenantes	139
ANEX	XO N°20. Ficha de Procesamiento de Datos – Resultados de la Evaluación de Cob Vegetal	
ANEX	XO N^{ullet} 21. Ficha de Procesamiento de Datos $-$ Resultados de la Evaluación de Pendo	
ANEX	XO Nº 22. Ficha de Procesamiento de Datos – Resultados de la Evaluación de Geomorfo	_
ANEX	XO N^{ullet} $23.$ Ficha de Procesamiento de Datos — Resultados de la Evaluación de Litologí c	
ANEX	XO N° 24. Ficha de Procesamiento de Datos – Resultados de la Evaluación de Precipitac	
ANEX	XO N°25. Evaluación Pseudoestácticas de las Estaciones	145
ANEX	XO N°26. Caída de bloques de gran tamaño	147
ANEX	XO N°27. Flujos y Deslizamientos de Suelo	148

"ANÁLISIS Y DETERMINACIÓN DE ZONAS SUCEPTIBLES PARA MITIGAR LOS EFECTOS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA, 2021"

ANEXO N°28. Deslizamiento Planar	149
ANEXO Nº29. Talud que presenta caída de bloques por volcamiento	150
ANEXO N°31. Mapa Temático de Estaciones	152
ANEXO Nº 32. Mapa Geológico	153
ANEXO N°33. Mapa de Precipitaciones	154
ANEXO N°34. Mapa de Pendientes	155
ANEXO N°35. Mapa de Litología	156
ANEXO N°37. Mapa de Geomorfología	157
ANEXO N°38. Mapa de Cobertura Vegetal	
ANEXO N°39. Mapa de Susceptibilidad	159

ÍNDICE DE TABLAS

	Pág.
Tabla 1 Ficha de Observación de Factores Condicionantes y Desencadenantes	20
Tabla 2 Estudios de la Investigación	22
Tabla 3 Clasificación de Parámetros de Factores Condicionantes	25
Tabla 4 Escala de Saaty	25
Tabla 5 Matriz de comparación de pares de Factores Condicionante	26
Tabla 6 Matriz de Normalización de Factores Condicionantes	27
Tabla 7 Matriz de Vector Suma Ponderada	28
Tabla 8 Valores de Índices Aleatorios (IA)	28
Tabla 9 Tabla de Índice y Relación de Consistencia	29
Tabla 10 Resultados de la Evaluación de Parámetros de Factores Condicionantes	29
Tabla 11 Clasificación de los Movimientos de Masa	30
Tabla 12 Coordenadas de la Zona	38
Tabla 13 Resultados del Instrumento de Observación de la Estación	70
Tabla 14 Resultado de Evaluación de Factores Condicionantes	71
Tabla 15 Resultado de Evaluación de Factores Desencadenantes	71
Tabla 16 Resultado de la Evaluación de la Susceptibilidad	72
Tabla 17 Matriz de Susceptibilidad	72
Tabla 18 Resultados del Ensayo Corte Directo	73
Tabla 19 Resultados del Análisis Granulométrico por Tamizado	73
Tabla 20 Resultado de Limites de Consistencia	74
Tabla 21 Resultados del Ensayo de Peso Unitario en Seco	74
Tabla 22 Resultados del Instrumento de Observación de la Estación 2	81
Tabla 23 Resultado de Evaluación de Factores Condicionantes	82
Tabla 24 Resultado de Evaluación de Factores Desencadenantes	82
Tabla 25 Resultado de la Evaluación de la Susceptibilidad	83
Tabla 26 Matriz de Susceptibilidad	83

"ANÁLISIS Y DETERMINACIÓN DE ZONAS SUCEPTIBLES PARA MITIGAR LOS EFECTOS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA, 2021"

Tabla 27 Resultados del Ensayo Corte Directo	84
Tabla 28 Resultados del Análisis Granulométrico por Tamizado	84
Tabla 29 Resultado de Limites de Consistencia	85
Tabla 30 Resultados del Ensayo de Peso Unitario en Seco	85
Tabla 31 Resultados del Instrumento de Observación de la Estación 3	91
Tabla 32 Resultado de Evaluación de Factores Condicionantes	92
Tabla 33 Resultado de Evaluación de Factores Desencadenantes	92
Tabla 34 Resultado de la Evaluación de la Susceptibilidad	93
Tabla 35 Matriz de Susceptibilidad	93
Tabla 36 Resultados del Corte Directo en Roca	94
Tabla 37 Resultados del Corte Directo en Roca	94
Tabla 38 Resultados de Peso Unitario de la Roca	95
Tabla 39 Instrumento de Evaluación Estación 4	100
Tabla 40 Resultado de Evaluación de Factores Condicionantes	101
Tabla 41 Resultado de Evaluación de Factores Desencadenantes	101
Tabla 42 Resultado de la Evaluación de la Susceptibilidad	102
Tabla 43 Matriz de Susceptibilidad	102
Tabla 44 Resultados del Corte Directo en Roca	103
Tabla 45 Resultados del Corte Directo en Roca	103
Tabla 46 Resultados de Peso Unitario de la Roca	104

INDICE DE FIGURAS

	Pág.
Figura 1 Ensayo de Corte Directo	33
Figura 2 Análisis Granulométrico por Tamizado	34
Figura 3 Secado de muestras para el Límite Plástico	35
Figura 4 Instrumentos para el Ensayo de Peso Unitario en Seco	36
Figura 5 Ubicación Política de la Zona	37
Figura 6 Mapa de Ubicación Geográfica de la Zona	38
Figura 7 Accesibilidad a la Zona de Estudio	39
Figura 8 Probabilidad diaria de Precipitación en la Zona	40
Figura 9 Flora del caserío del Jancos	41
Figura 10 Vista Panorámica de la Vegetación en el Caserío de Jancos	42
Figura 11 Creación de Mapas	46
Figura 12 Ponderación de Resultados	46
Figura 13 Creación de los Perfiles de cada Estación	47
Figura 14 Aplicación del programa Slide V 5.0	48
Figura 15 Columna Estratigráfica de la Zona	49
Figura 16 Base de la Formación Llama	50
Figura 17 Capa de Toba Andesítica	51
Figura 18 Brecha Piroclástica	52
Figura 19 Toba Lapilli	53
Figura 20 Colinas del Distrito de San Luis	54
Figura 21 Valle en V	55
Figura 22 Colinas del Distrito de San Luis	55
Figura 23 Planicies	56
Figura 24 Fallas	57
Figura 25 Falla Inferida	58
Figura 26 Familia de Diaclasas	58
Figura 27 Río San Miguel	59

Figura 28 Quebrada Cuzcuden	60
Figura 29 Quebrada Lajos	61
Figura 30 Quebrada El Cardo	62
Figura 31 Caída de Rocas	63
Figura 32 Volcamiento de Roca Volcánica	64
Figura 33 Flujos de Detritos	65
Figura 34 Deslizamiento Rotacional	66
Figura 35 Foto Panorámica Estación 1	67
Figura 36 Arrastre de Vegetación	68
Figura 37 Perfil de Talud 1	69
Figura 38 Factor de Seguridad del Talud 1	75
Figura 39 Resultado de Factor de Seguridad	77
Figura 40 Propuesta de Geomalla	77
Figura 41 Modelo de Zanja de Coronación	78
Figura 42 Foto Panorámica Estación 2	79
Figura 43 Fracturamiento y Desprendimiento de Roca	79
Figura 44 Perfil Talud 2	80
Figura 45 Factor de Seguridad del Talud 2	86
Figura 46 Resultado de Factor de Seguridad	87
Figura 47 Propuesta de Geoceldas	88
Figura 48 Foto Panorámica Estación 3	89
Figura 49 Consecuencia de la Falla Regional	89
Figura 50 Producto de la Caídas de Rocas	90
Figura 51 Perfil de Talud 3	90
Figura 52 Factor de Seguridad del Talud 3	96
Figura 53 Resultado de Factor de Seguridad	97
Figura 54 Foto Panorámica Estación 4	98
Figura 55 Caída de Rocas	99
Figura 56 Perfil de Talud 4	99
Figura 57 Factor de Seguridad Talud 4	105
Figura 58 Resultado de Factor de Seguridad	106

RESUMEN

Esta investigación tiene como objetivo analizar y determinar las zonas susceptibles para mitigar los movimientos en masa en los taludes del caserío Jancos, provincia San Pablo, Región Cajamarca, 2021; el estudio tiene un enfoque descriptivo, según su propósito es aplicado, diseño no experimental y de corte transversal. Para la recolección de muestras se determinó cuatro estaciones en donde se hizo dos calicatas de suelo y se extrajo dos muestras representativas de roca las cuales fueron analizadas en laboratorio que permitió conocer sus propiedades físicas y mecánicas como cohesión, ángulo de fricción y peso unitario; además, se aplicó la recolección de datos mediante fichas de características geomorfológicas, cobertura vegetal, litología, pendientes y precipitaciones que fueron procesadas por el método de Análisis Jerárquico, obteniendo como resultado que en las cuatro estaciones determinadas se tiene índice de susceptibilidad alta y susceptibilidad muy alta proponiendo como método de mitigación el cambio de geometría del talud, la aplicación de geomallas y geoceldas y en los taludes cercanos a las quebradas la construcción de zanjas de coronación. Palabras clave: Susceptibilidad, Movimiento de Masas, Proceso de Análisis Jerárquico, Mitigación.

Bach. Sara Estefany Leon Astopilco Bach. Deymian Montenegro Hernández

ABSTRACT

The objective of this research is to analyze and determine the susceptible zones to mitigate mass movements in the slopes of the Jancos hamlet, San Pablo province, Cajamarca Region, 2021; the study has a descriptive approach, according to its purpose it is applied, non-experimental and cross-sectional design. For the collection of samples, four stations were determined where two soil pits were made and two representative rock samples were extracted and analyzed in the laboratory to determine their physical and mechanical properties such as cohesion, friction angle and unit weight; In addition, data collection was applied by means of geomorphological characteristics, vegetation cover, lithology, slopes and rainfall cards that were processed by the Hierarchical Analysis method, obtaining as a result that the four stations determined have high susceptibility index and very high susceptibility, proposing as a mitigation method the change of slope geometry, the application of geogrids and geocells and in the slopes near the streams the construction of crowning ditches.

Palabras clave: Susceptibility, Mass Movement, Hierarchical Analysis Process, Mitigation.

CAPÍTULO I. INTRODUCCIÓN

1.1. Realidad problemática

Para Palomino (2011), el impacto de los diversos peligros de origen natural con los que convive el hombre es creciente, tanto en términos de impacto a la vida y salud humana, como en la economía nacional, regional y local, reduciendo sus capacidades de sostenibilidad y desarrollo (p. 05). Los deslizamientos producen cambios en la morfología del terreno, diversos daños ambientales, daños en las obras de infraestructura, destrucción de viviendas, bloqueo de ríos, etc. (Suarez, 2012, p.09). Por ello, la meteorización, las lluvias, los sismos y la acción del hombre actúan sobre las laderas para desestabilizarlas y cambiar el relieve a una condición más plana.

A nivel mundial los peligros geológicos se evidencian de distintos grados por lo que se realizan estudios para poder mitigarlos. Es por ello que Ramos (2018), su estudio está basado en la ubicación geográfica y condiciones topográficas como geológicas de México, las que han provocado desastres naturales, ocasionando procesos de remoción de tierras que han afectado a las comunidades aledañas. Por otro lado, Guataquira (2018), da a conocer que en el sector Cerro de Buenavista presenta un sistema de fallas activas, pendientes inclinadas, la erosión del suelo y la hidrología, han generado áreas con una alta susceptibilidad en los puntos más altos, generando pérdida de la tierra para los pobladores y poniendo en riesgo la vida de la comunidad.

El Perú es uno de los países donde presenta bastantes peligros geológicos entre los cuales resaltan los movimientos de masa, por ello la base de datos del Instituto Nacional de Estadística e Informática (INEI), los movimientos en masa del tipo

deslizamiento representan el mayor número de emergencias ocasionadas por desastres naturales. Según Carrillo (2015) quien realizó la Evaluación de zonas susceptibles a movimientos en masa del tipo de deslizamiento en el centro poblado de Carampa, donde se presenta un deslizamiento rotacional regresivo de gran magnitud y siendo atribuidos principalmente a las precipitaciones pluviales que ocurren en la zona de estudio.

Así mismo, Zamalloa & Medina (2019), realizaron un estudio para identificar el riesgo geológico que tiene la construcción del Puesto de Salud de Huayllati en la Región Apurímac; ya que, la zona se encuentra en una ladera y en un cono aluvial. Donde el peligro y riesgo registrado es por movimiento en masa como deslizamientos, derrumbes y caídas de rocas. Por otro lado, Sosa (2016) menciona que, en la localidad de Pampamarca y Acobamba en el año 2014, en invierno y las constantes precipitaciones azotaron fuertemente las laderas de las comunidades las cuales fueron afectadas de manera muy gradual al punto de que se produjeron movimientos en masa en la zona.

Sin embargo, un gran porcentaje de las pérdidas por deslizamientos son evitables si el problema se identifica con anticipación y se implementa las medidas preventivas. Por esto el año 2011 se crea el Sistema Nacional de Gestión del Riesgo de Desastre (SINAGERD) a cargo del Centro Nacional de Estimación, Prevención y Reducción de Riesgos de Desastres (CENEPRED), este último en octubre del año 2013 ha publicado: El "Manual Para la Evaluación de riesgos originados por Fenómenos Naturales", que constituye una herramienta básica para la reducción y prevención de impactos negativos que puedan ocasionar los desastres naturales.

Para solucionar su investigación Ramos (2018) tiene el objetivo de demostrar que se pueden prevenir desastres naturales del tipo deslizamiento aplicando como solución el cartografiado y determinación de susceptibilidad mediante herramientas de Sistema de Información Geográfica (SIG), las que determinaran el índice de susceptibilidad de cada zona estudiada y su prevención. De otra manera, Guataquira (2018), mediante el SIG, realizó el mapa de susceptibilidad por movimientos en masa determinando las áreas con mayor susceptibilidad; mediante la aplicación del Índice Topográfico de Humedad se pudo determinar la capacidad de retención de agua por parte del suelo que genera los flujos de tierra en las laderas más críticas.

CARRILLO (2015) optó por usar el protocolo de CENEPRED a fin de poder delimitar zonas propensas ante la ocurrencia de un deslizamiento de tierra en la zona de estudio. En tanto, se afirma que la zona urbana del C.P Carampa se encuentra asentado sobre una ladera inestable, susceptible al reactivamiento y ocurrencia de deslizamientos de tierra. Para nuestra investigación el usar el protocolo de CENEPRED nos ayudará a identificar el tipo de peligro de los movimientos de masa y realizar nuestro mapa del nivel de susceptibilidad.

Además, Zamalloa & Medina (2019) para resolver su problema realizaron una evaluación geotécnica evaluando 02 calicatas, donde se determinó sus propiedades mecánicas. Llegando a identificar el tipo de suelo como GC-GM y Mediante un SIG del cartografiado de los movimientos en masa, topografía, litología, hidrogeología, permitió obtener un mapa de peligros de movimientos en masa. De esta manera, esta investigación nos ayuda a identificar movimientos de masa en nuestra zona realizando pruebas de laboratorio tanto de suelo y rocas para identificar sus

propiedades mecánicas y físicas, y así poder realizar un mejor diseño a cada estación para poder mitigar los movimientos de masa.

Sosa (2016), solucionó su problema por el método del Análisis Estadístico Bivariante; para el cual previamente se preparó mapas temáticos para cada factor considerado; el área de estudio se identificó 67 peligros. Terminado el análisis de susceptibilidad por medio de la aplicación del Método Bivariante con la ayuda del SIG ARCGIS 10.1, se obtiene como resultado el mapa de susceptibilidad a los movimientos en masa de las áreas de Pampamarca y Acobamba, a partir de este mapa se puede establecer que el 33.11% zona de muy baja susceptibilidad, el 25.8 % baja susceptibilidad, el 4.22 % moderada susceptibilidad, el 21.73 % alta susceptibilidad y 15.06 % presenta muy alta susceptibilidad.

Cajamarca ubicada al norte del país, en el contexto de susceptibilidad presenta factores que favorecen la ocurrencia de movimientos en masa. Tal es el caso del distrito de San Luis, provincia de San Pablo, que presenta una geomorfología muy accidentada donde destacan escarpes y laderas. Uno de los factores condicionantes son las precipitaciones intensas entre los meses de noviembre y abril cada año teniendo como consecuencia los movimientos de masa como deslizamiento rotacional, flujos de detritos, caída de rocas las cuales afectan a la zona. Por ello se tiene como objetivo analizar y determinar las zonas susceptibles para mitigar los efectos de los Movimientos en Masa.

1.2. Formulación del problema

¿Cómo al analizar y determinar zonas susceptibles se mitigará los efectos de movimientos en masa en el caserío Jancos, provincia san pablo, región Cajamarca, 2021?

1.3. Objetivos

1.3.1. Objetivo general

Analizar y determinar las zonas susceptibles para mitigar los movimientos en masa en los taludes del caserío Jancos, provincia San Pablo, Región Cajamarca, 2021

1.3.2. Objetivos específicos

Delimitar zonas susceptibles mediante la aplicación de técnicas de investigación como geología estructural, geomorfología, geodinámica, hidrogeología; las cuales permitan una adecuada evaluación de susceptibilidad en el caserío Jancos, Provincia de San Pablo, Región de Cajamarca - 2021.

Determinar mediante ensayos de laboratorio las características físicas y mecánicas de los suelos y macizos rocosos para evaluar la inestabilidad.

Estimar la susceptibilidad mediante el Proceso Análisis Jerárquico (PAJ), y obtener un mapa de susceptibilidad de la zona mediante la herramienta SIG.

Analizar el Factor de seguridad de los taludes de la zona mediante la aplicación del Software SLIDE.

Proponer y diseñar un modelo para la mitigación de los movimientos de masa en taludes.

Elaborar un mapa temático con las Zonas Susceptibles identificadas.

1.4. Hipótesis

Al analizar y determinar las zonas susceptibles se podrá mitigar los movimientos en masa en los taludes de la zona, teniendo en cuenta los diferentes análisis geológicos, geodinámico, análisis de laboratorio de roca, suelo y que al aplicando el protocolo de CENEPRED nos mostrará un índice de alta susceptibilidad por ello se propondrá un diseño de escalones, drenajes y cambio de talud.

CAPÍTULO II. METODOLOGÍA

2.1. Tipo de investigación

La investigación tiene diferentes enfoques; según su alcance es DESCRIPTIVO que tiene como objetivo especificar las propiedades, las características y cualquier otro fenómeno que se someta a un análisis (Hernández, 2010); según su propósito es APLICADA ya que está centrada en mecanismos o estrategias que permitan lograr un objetivo concreto; Por otro lado; con un enfoque CUANTITATIVO porque se centra en el estudio y análisis de la realidad a través de diversos procedimientos basados en la medición. De igual manera, su diseño es NO EXPERIMENTAL ya que no se manipula las variables y de CORTE TRANSVERSAL, por lo que se hace en un periodo de tiempo determinado sobre una población definida. (Oblitas, 2018).

2.2. Población y Muestra

2.2.1. Población

Todos los macizos rocosos y suelo de los taludes del caserío de Jancos.

2.2.2. Muestra

Las 4 estaciones de suelos y macizos rocosos del caserío de Jancos.

2.3. Técnicas e Instrumentos de recolección, Análisis de Datos, Equipos y Materiales

2.3.1. Técnicas e Instrumentos

2.3.1.1. Técnicas

La técnica a emplear es la **Observación**; consiste en realizar un reconocimiento general de la zona a trabajar, sin necesidad de alterar o intervenir el ambiente; para que la exploración sea confiable y obtener la mayor parte de aspectos geológicos en la zona y se pueden registrar adecuadamente en los instrumentos de campo.

2.3.1.2. Instrumentos

Los instrumentos de recolección de datos que se aplicaran en campo:

Ficha de Observación de Factores Condicionantes y Desencadenantes: Se anotó los valores encontrados en campo de acuerdo a los Descriptores de cada Parámetro que se evalúan en cada estación.

Tabla 1

Ficha de Observación de Factores Condicionantes y Desencadenantes

TITU	LO DEL PRO	УЕСТО				
UBICA	CIÓN	Departamento		Provincia	Distrito	
ESTACIÓN		Este		Norte	Cota	
Factores	Parámetro	Descriptores	Valores Ponderados	Valores en Campo		Fotografía
	æ	Matorral arbustivo	0.558			
	Cobertura Vegetal	Agricultura costera y andina	0.263			
	Cobe	Plantación Forestal	0.122			
		Bosque seco de montaña	0.057			
	olo	Escarpes	0.592			
ntes	Geomorfolo gía	Colina Volcánica	0.262			
na		Pie de monte	0.101			
Ci		Llanura Depósitos	0.045			
ndi	Litología Geomorfi	Depositos Cuaternario	0.444			
္မိ		Lutitas / Limoarcilla	0.252			
tores		Brechas - Tobas andesítica	0.148			
Fac		Calizas Margosas/ Lutitas	0.083			
		Arenisca	0.047			
		Caliza Masiva	0.027			
	tes	> 45° 25° - 45°	0.503			
	ent	25 - 45 10° - 25°	0.26 0.134			
	Pendientes	5° - 10°	0.068			
	Pe	0° - 5°	0.035			
e		MUYALTA > a 250 mm	0.482			
r nant	iones	ALTA (160 mm a 250 mm)	0.27			
Factor	itaci	MODERADA (90 a 160 mm)	0.141			
Factor Desencadenante	Precipitaciones	BAJA (50 mm a 90 mm)	0.068			
Ã	-	$MUYBAJA\ (< a$ 50 mm)	0.039			

NOTA: En la tabla se observa los factores condicionantes y desencadenantes que evaluaremos en la zona de estudio los cuales se les dará un valor de acuerdo a lo que encontremos en campo. **FUENTE:** Propia (2021).

Fichas de Procesamiento de Datos: Con estas fichas se reconocerá en campo los diferentes descriptores de los Factores que se evaluaran en las 4 estaciones, (**ANEXO** N° 19 - N° 20 - N° 21 - N° 22 - N° 23 - N° 24); fueron elaboradas mediante el método Proceso de Análisis Jerárquico.

2.3.2. Análisis de Datos

Los análisis de los datos se harán mediante los Softwares: Herramientas SIG (ArcGis, Arcsence), Software Slide, Google Earth y AutoCAD.

2.3.3. Equipos

GPS (Garmin)

Brújula tipo Brunton

Mapas topográficos (1/5000) y geológicos (1/5000).

Cámara fotográfica digital (12 mega pixeles)

Cuaderno de campo

2.3.4. Materiales

Tablero

Picota

Protactor (1/1000)

Colores

Ácido Clorhídrico

Wincha métrica

Lápices

Bolsas de Muestreo

2.4. Procedimiento

2.4.1. Etapa de Pre Campo o Gabinete 1

Primer ítem, realizamos la búsqueda de información en las diferentes bases de datos en biblioteca virtuales y revistas científicas: Universidad Privada del Norte, Redalyc, Scielo, Alicia; donde encontramos 30 investigaciones de tesis, revistas y artículos científicos; estas investigaciones son estudios realizados a nivel internacional como local. Los criterios de selección para obtener las referencias para esta investigación fueron: uso de palabras claves como estabilidad de taludes, susceptibilidad de taludes, movimientos de masa, zonas susceptibles; estos estudios publicados preferentemente se encuentran entre el 2014 hasta el 2020 tanto en el idioma español como en inglés, de todos los estudios encontrados solo se trabajará con 10 investigaciones relevantes los cuales presentan una semejanza con nuestro estudio en donde los diferentes autores coinciden en que los movimientos en masa están sujetos a diferentes agentes de modelación del relieve terrestre teniendo al más perjudicial que es la erosión pluvial el cuál es el principal agente condicionante de nuestra zona de estudio, a continuación detallamos los estudios:

Tabla 2

Estudios de la Investigación

BASE DE DATOS	NOMBRE DE LA INVESTIGACIÓN	AUTOR	AÑO
UNIVERSIDAD PRIVADA DEL NORTE	"Análisis de Susceptibilidad Geotécnica y su influencia en los movimientos de masa en el Caserío Huaynamarca, Cajamarca – 2019"	Bach. Deiser Wilver De La Cruz Vásquez Bach. Diego Roycin Ramírez Díaz	2019
REPOSITORIO UNIVERSIDAD NACIONAL DE CAJAMARCA	"Estimación de Áreas Susceptibles por Movimientos de Masa en la Cuenca Hidrográfica del Río Chonta – Cajamarca"	Bach. Roberto Tacilla Juárez.	2019

ALICIA	"Análisis de Susceptibilidad a los peligros geológicos por movimientos en masa - poblados de Pampamarca y Acobamba, Región Huánuco"	Norma Luz Sosa Senticala	2016
ALICIA	"Modelo De Susceptibilidad Por Movimientos En Masa En Lima Metropolitana Y El Callao"	Sandra Villacorta Segundo Núñez Christian Obregón, Lucile Tatard	2014
ALICIA	"Análisis del peligro y vulnerabilidades por movimiento de masas de tierra para mitigar los riesgos en el distrito de Cuenca"	Mg. Hugo Juan Caballero Iparraguirre	2018
RENATI	"Estudio de riesgo geológico por movimientos en masa, para la construcción del puesto de salud de Huayllati, del distrito de Huayllati, provincia de Grau, Región Apurímac"	Bach. Meliza Milagros Zamalloa Pilco Bach. Luz Angela Medina Janampa	2019
REPOSITORIO UNP, IGP	"Evaluación de zonas susceptibles a movimientos en masa del tipo de deslizamiento en el centro poblado de Carampa, distrito de Pazos, provincia de Tayacaja, región Huancavelica, aplicando el protocolo de CENEPRED"	Br. Roberth Paúl Carrillo Elizalde	2015
REPOSITORIO UNIVERSIDAD REY JUAN CARLOS - ESPAÑA	"Estudio de la susceptibilidad al deslizamiento de laderas en el estado de Guerrero, México, aplicando tecnologías de información geográfica"	Rocío Nayelly Ramos Bernal	2018
REPOSITORIO UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA	"Zonificación de susceptibilidad y amenaza por movimientos en masa para el Municipio de Cuítiva Boyacá a escala 1:25.000"	Juan Camilo Estepa Rojas Yenny Andrea Talero Rodríguez	2016
TESIS	"Análisis de movimientos en masa mediante la aplicación de SIG en la ciudad de Villavicencio en el sector cerro de Buenavista"	Manuel Felipe Guataquira Rojas	2018

NOTA: La tabla presenta los 10 estudios elegidos de acuerdo a los criterios de selección. **FUENTE:** Propia (2021)

estudio se revisó en la plataforma de INGEMMET en el cuadrángulo de Cajamarca la Geología local. Además, se accedió a la página del GEOCATMIN para descargar y obtener data (shapefiles) de la zona de estudio, luego se descargaron imágenes satelitales del programa Google Earth para tener un plano de ubicación preliminar y

Segundo ítem, para tener un conocimiento previo de la geología de nuestra zona de

un previo concepto de lo que vamos a encontrar en campo. Por último, se utilizó el

programa ArcGis 10.5 en donde se utilizó la data descargada para elaborar los planos

topográfico y geológico de la zona de estudio en escala 1:25000 y 1:50000

respectivamente.

Tercer ítem se elaboró el instrumento de evaluación, mediante el Proceso de Análisis

Jerárquico (PAJ), desarrollado en 1982 por el profesor Thomas Saaty, el cuál utiliza

la técnica de multicriterio y multiatributo, su aplicación es simple ya que se

descompone el problema, luego se realiza juicios comparativos y finalmente se

sintetiza los resultados. Para la elaboración del instrumento se realizó el siguiente

procedimiento:

1° Se inició con obtención de información de la data espacial, descargando los

shapefiles de cobertura vegetal, geomorfología, litología, pendientes y

precipitaciones, se clasificó en Factores Condicionantes y Factores Desencadenante

determinando los descriptores que predominan en la zona de estudio.

2° Luego se clasifica los descriptores de cada factor de alta susceptibilidad a baja

susceptibilidad y se le da una breve descripción; los cuales son evaluados por la

Escala de Saaty.

Bach. Sara Estefany Leon Astopilco Bach. Deymian Montenegro Hernández

Tabla 3

Clasificación de Parámetros de Factores Condicionantes

Parámetros Características		Nivel de Susceptibilidad
Cobertura Vegetal	La cobertura vegetal aporta de manera positiva a los taludes y laderas debido a que las raíces refuerzan la resistencia del suelo; por otro lado, la deforestación afecta de manera negativa a los suelos	Baja
Geomorfología	Se consideró a la geomorfología como tercer factor potencial para generar movimientos de masa. Como se sabe las geoformas que han sufrido mayor acción erosiva han tenido y tienen mayor condición para que el material presente rotura, que las zonas de menor actividad.	Media
Pendientes	La pendiente es un factor que condiciona los taludes y laderas de la zona porque depende de este y su inclinación abarcar más porcentaje de susceptibilidad al movimiento de masa debido a que mayor inclinación mayor acción de gravedad a la que estén sometidos los taludes	Alta
Litología	Es uno de los factores más importantes a evaluar, cuyas propiedades como tipo de material, textura, estructura y grado de meteorización van a determinar el comportamiento dinámico de las laderas.	Muy Alta

NOTA: En la tabla se observa los cuatro factores condicionantes con sus respectivas características y la magnitud de susceptibilidad que ocasiona cada uno de los factores en la zona de estudio. **FUENTE**: Propia (2021).

Tabla 4

Escala de Saaty

ESCALA NUMERICA	ESCALA VERBAL	EXPLICACIÓN			
9	Absolutamente o muchísimo más importante o preferido que	Al comparar un elemento con el otro, el primero se considera absolutamente o muchísimo más importante que el segundo.			
7	Mucho más importante o preferido que.	Al comparar un elemento con el otro, el primero se considera mucho más importante o preferido que el segundo.			
5	Más importante o preferido que	Al comparar un elemento con el otro, el primero se considera más importante o preferido que el segundo			
3	Ligeramente más importante o preferido que	Al comparar un elemento con el otro, el primero es ligeramente más importante o preferido que el segundo.			
1	Igual o diferente a	Al comparar un elemento con el otro, hay indiferencia entre ellos			
1/3	Ligeramente menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera ligeramente menos importante o preferido que el segundo.			

1/5	Menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera menos importante o preferido que el segundo
1/7	Mucho menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera mucho menos importante o preferido que el segundo.
1/9	Absolutamente o muchísimo menos importante o preferido que	Al comparar un elemento con el otro, el primero se considera absolutamente o muchísimo menos importante o preferido que el segundo
2,4,6,8	Valores intermedios entre d término medio entre dos de	os juicios adyacentes, que se emplean cuando es necesario un las intensidades anteriores

NOTA: En la tabla se muestra la escala de Saaty la cual permite evaluar de forma verbal y numérica la comparación de dos parámetros mediante una serie de interrogantes, los valores van desde 1/9 hasta 9. **FUENTE:** Manual para la Evaluación de Riesgos originados por Fenómenos Naturales (Versión 02) (2004). Saaty (1980).

3° Se verifica el tipo de matriz el cual considera la cantidad de descriptores de cada factor; en este caso nuestra matriz es de 4x4. Ahora se elabora la matriz de comparación de pares donde se evalúa la intensidad de preferencia de un parámetro frente a otro, donde los valores oscilan entre 9 y 1/9 teniendo en cuenta a la escala de Saaty, luego se hace una suma de cada columna y debajo de ella se obtiene la división de 1 entre la suma.

Tabla 5

Matriz de comparación de pares de Factores Condicionantes

Parámetros	Cobertura Vegetal	Pendientes	Geomorfología	Litología
Cobertura Vegetal	1.00	0.33	0.20	0.14
Pendientes	3.00	1.00	0.33	0.20
Geomorfología	5.00	3.00	1.00	0.33
Litología	7.00	5.00	3.00	1.00
Suma	16.00	9.33	4.53	1.68
1/Suma	0.06	0.11	0.22	0.60

NOTA: En la tabla se muestra el resultado de la comparación de pares de los parámetros usando la escala de Saaty, y la suma de dichas columnas. **FUENTE:** Propia (2021).

4° A continuación, se realiza la Matriz de Normalización la cual consiste en hallar el Vector Priorización, para ello primero debe obtenerse los valores mediante la multiplicación de los valores de la Matriz de Comparación de pares por la división de 1 entre la suma total, seguido se obtiene, el vector priorización es la suma de cada valor de la fila entre la cantidad de estos; adicional a esto se obtiene el porcentaje del vector priorización el cual es multiplica por 100%.

Tabla 6

Matriz de Normalización de Factores Condicionantes

Parámetros	Cobertura Vegetal	Pendientes	Geomorfología	Litología	Vector Priorización (Ponderación)	Porcentaje%
Cobertura Vegetal	0.063	0.036	0.044	0.085	0.057	5.7%
Pendientes	0.188	0.107	0.074	0.119	0.122	12.2%
Geomorfología	0.313	0.321	0.221	0.199	0.263	26.3%
Litología	0.438	0.536	0.662	0.597	0.558	55.8%

NOTA: En la tabla se muestra el resultado del vector priorización de cada parámetro evaluado, el cual indica la importancia (peso) de cada parámetro en la determinación del nivel de susceptibilidad. **FUENTE**: Propia (2021).

5° Luego se obtiene el Vector Suma Ponderada, el cual consiste en multiplicar los valores de cada fila por el valor del vector priorización obtenido en la Tabla 6; después de haber obtenido dicho resultado, el vector suma ponderada se obtiene por la suma de cada columna.

Tabla 7

Matriz de Vector Suma Ponderada

Parámetros	Muy alta (Más de 100%)	Alta (50-100%)	Mediana (30-50%)	Baja (15-30%)	Muy baja (0-15%)
Muy alta (Más de 100%)	0.035	0.104	0.174	0.244	0.313

Alta (50-100%)	0.022	0.068	0.203	0.339	0.475
Mediana (30-50%)	0.027	0.044	0.134	0.403	0.672
Baja (15-30%)	0.036	0.052	0.086	0.260	0.781
Muy baja (0-15%)	0.055	0.070	0.101	0.166	0.503
Vector Suma Ponderada	0.175794	0.339002	0.698215	1.411814	2.743025

NOTA: En la tabla se muestra el resultado del vector suma ponderada de cada parámetro evaluado. **FUENTE**: Propia (2021).

 6° Para comprobar que los resultados obtenidos de la matriz son correctos, debemos hallar el Índice de Consistencia (IC) se obtiene mediante el dónde λ máx. es el máximo autovalor y n es la dimensión de la matriz de decisión. Si el índice de consistencia igual a cero significa que la consistencia es completa.

$$IC = \frac{\lambda_{m\acute{a}x.} - n}{n - 1}$$

La Relación de Consistencia (RC) este coeficiente debe ser menor al 10% (RC < 0,1). Los Valores del Índice Aleatorio (IA) para los diferentes "n", obtenidos mediante la simulación de 100,000 matrices (Aguarón y Moreno – Jiménez, 2001), son:

Tabla 8

Valores de Índices Aleatorios (IA)

N	3	4	5	6	7	8	9	10	11	12	13	14	15	16
IA	0.525	0.882	1.115	1.252	1.341	1.404	1.452	1.484	1.513	1.535	1.555	1.583	1.595	1.570

NOTA: En la tabla se muestra valores del Índice Aleatorio (IA) para los diferentes "n", obtenidos mediante la simulación de 100,000 matrices (Aguarón y Moreno – Jiménez, 2001. **FUENTE:** Manual para la Evaluación de Riesgos originados por Fenómenos Naturales (Versión 02) (2004)

$$RC = \frac{IC}{IA}$$

Tabla 9

Tabla de Índice y Relación de Consistencia

Índice de Consistencia	0.039	
Relación de Consistencia	0.045	

NOTA: En la tabla se muestra el resultado del Índice de Consistencia y Relación de Consistencia el cual es menor al 10% (RC < 0,1). **FUENTE:** Propia (2021).

7° Finalmente se elabora el cuadro con los pesos ponderados de cada Parámetro del Factor Condicionante, los cuales se tendrán en cuentan para la evaluación de Susceptibilidad.

Tabla 10

Resultados de la Evaluación de Parámetros de Factores Condicionantes

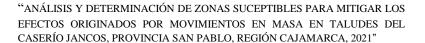
PARÁMETRO S		(PESO POND.	%				
Cobertura Vegetal	Matorral arbustivo	Agricultura costera y andina	Plantació n Forestal	Bosque seco de montaña	-	-	0.057	5.7%
Geomorfologí a	> 45°	25°- 45°	10° - 25°	5°- 10°	0°- 5°		0.122	12.2%
Pendientes	Escarpes	Colina Volcánica	Pie de monte	Llanura	-	-	0.263	26.3%
Litología	Depósitos Cuaterna rio	Lutitas Limoarcilla	Brechas - Tobas andesític a	Calizas Margosas Lutitas	Arenisca	Caliza Masiva	0.558	55.8%

NOTA: La tabla se muestra los valores ponderados encontrados para cada parámetro condicionante propuesto de acuerdo a la zona de estudio, obteniendo que el más afectante a la zona es la litología de está con un 55.8%. **FUENTE:** Propia (2021)

8° El procedimiento mostrado es el que se realiza con cada descriptor de cada parámetro, los cuales, al obtener la tabla de Resultados de la Evaluación de Parámetros, se inicia con la elaboración del instrumento el cual aplicaremos en campo.

2.4.2. Etapa de Campo

Para esta etapa se realizaron las salidas a campo, considerando las medidas de bioseguridad. En la zona de estudio se procede a observar el punto de inicio en el GPS registrándolo en la libreta de campo y una fotografía. Con ayuda del plano topográfico se fue reconociendo la zona, se llevó a cabo la identificación de geología, geomorfología, hidrogeología, estructuras y para la evaluación de Movimientos en Masa se consideró la clasificación de (Varnes, 1978); el cual tipifica los principales tipos de movimientos que a continuación se detallan:


Tabla 11

Clasificación de los Movimientos de Masa

		TIPO DE MATERIAL				
TIPO DE		NIERILES				
MOVIMIENTOS	ROCA	DETRITO predominantemente granular (<80% arena y más fina)	TIERRA predominantemente (>80% arena y más fino)			
CAÍDAS	Caída de rocas	Caída de detritos	Caída de tierra			
VUELCOS	Vuelcos de roca	Vuelco en suelo granular	Vuelco en suelo cohesivo			
	Deslizamiento		Derrumbe de tierra			
DESLIZAMIENTO	de rocas	Deslizamiento de detritos	Deslizamiento de tierra			
DESLIZAMIENTO LATERAL	Desplazamiento de rocas	Desplazamiento de detritos	Desplazamiento de tierra			
	Flujos de rocas	Flujos de detritos	Flujo húmedo de arna y limo Flujo rápido de tierra			
<i>FLUJOS</i>	reptación de		Flujo loess			
	rocas	Avalancha, reptación de suelos, solifluxión	Flujo seco de arena			
			Flujo de tierra			
COMPLEJO Combinación de dos o más de los principales tipos de deslizamientos.						

NOTA: En la tabla se describe los movimientos de masa que existen y el tipo de material que tiene cada uno. **FUENTE**: Varnes (1978).

Se reconoció las principales unidades litoestratigráficas de la zona, cartografiando las estaciones con indicios de movimientos en masa y deslizamientos, por antecedentes anteriores se sabe que existen varios tipos de deslizamientos que

perjudican a la población y vías de acceso de esta manera la geología es un factor importante en determinar la susceptibilidad. También se llegó a reconocer 4 puntos más vulnerables a la ocurrencia de movimiento en masa; de esta manera se realizó la evaluación de estas cuatro estaciones mediante la Ficha de Observación de Factores Condicionantes (geomorfología, litología, cobertura vegetal, pendientes) y Factores Desencadenantes (precipitaciones por promedio anual), teniendo en cuenta las Fichas de Procesamiento de Datos, las cuales nos guiamos de acuerdo a la descripción de sus parámetros que se está evaluando en cada estación.

Luego de obtener los valores de campo en el instrumento de observación, procedemos a la extracción de las muestras de las estaciones; se decidió realizar los ensayos de suelos de las estaciones N° 01 y N° 02, ya que ambas estaciones son deslizamientos de detritos. Primero se realizó el debido reconocimiento de la zona para evaluar la accesibilidad de la zona, luego se hizo las calicatas con las dimensiones de 1.5 x 1.5 m y a una profundidad de 3 metros. Después de haber realizado las calicatas, se recogió la muestra en un tubo de 5 cm de diámetro y 25 de largo las cuales fueron tapados; también se recogió aproximadamente 8 kilos de muestra de cada calicata; todos debidamente identificados con su código de cada estación. Luego fueron enviadas al Laboratorio de Mecánica de Suelos, Concreto y Pavimentos para efectuar los ensayos respectivos. Para las estaciones N° 03 y N° 04, también se reconoció la zona para evaluar la accesibilidad de donde sacar la muestra y que no esté expuesta a la erosión. Las medidas de la muestra son de 30 x 35 x 20 cm., se le designo un código de identificación, se le envió la muestra al laboratorio GEOMEC - Ingeniería de rocas y suelos para la Estabilidad y Seguridad de Excavaciones en la ciudad de Lima para efectuar los ensayos respectivos.

2.4.3. Etapa de Laboratorio

Esta etapa consistió en analizar cada muestra extraída de campo, se extrajo dos muestras de suelo y dos de roca. Se procedió a iniciar con las muestras de suelo las cuales fueron enviadas al Laboratorio de Mecánica de Suelos, Concreto y Pavimentos en la ciudad de Cajamarca, para efectuar los ensayos respectivos.

Se llevó a cabo los siguientes ensayos:

Ensayo de Corte Directo (ASTM D 3080)

Análisis Granulométrico por Tamizado (AASHTO T-27 ASTM D 422)

Ensayo de Peso Unitario Seco (NTO 400.017 / ASTM C-29)

Contenido de Humedad (Norma ASTM D 2216/4643)

Límites de Consistencia (Norma AASHTO T–90–ASTM D 4318)

A continuación, se detallará el procedimiento de estos:

Ensayo Corte Directo (ASTM D 3080)

Este ensayo tiene como finalidad calcular el valor de cohesión y el ángulo de fricción; primero se pesa la muestra, se mide el área y diámetro; ya que de esto dependerá el peso a la cual estará sometida la muestra. Estando consolidada la muestra se coloca en el equipo, y se procede a colocar diferentes cargas. En la maquina se muestra todos los valores lo cuales vamos anotando; hasta que se produzca el fallamiento a partir de esto se calcula el valor de cohesión y ángulo de fricción de cada muestra.

Figura 1

Ensayo de Corte Directo

NOTA: En la figura se observa la toma de datos que arroja la máquina de Corte Directo. **FUENTE:** Propia (2021).

Análisis Granulométrico por Tamizado (AASHTO T-27 ASTM D 422)

Este ensayo sirve para determinar el tamaño de los elementos que componen la muestra, donde se obtiene el porcentaje de arenas, limos, gravas y finos; dando a conocer la clasificación de suelo según el SUCS. El procedimiento es verificar que la muestra esté seca, luego se pesa la muestra, se arma los tamices de acuerdo a la medida de las mallas y se vacía la muestra de suelo por las mallas. Para finalizar se pesa el tamiz más el contenido del suelo que quedo en esta, y se procede a notar en la libreta.

Figura 2

Análisis Granulométrico por Tamizado.

NOTA: En la figura se observa el proceso de tamizado desde la malla 4" hasta N° 200, obteniendo una clasificación SC del sistema SUCS. **FUENTE:** Propia (2021)

Ensayo de Límites de Consistencia (Norma AASHTO T-90-ASTM D 4318)

Este ensayo tiene la finalidad de obtener tanto el Limite Líquido como Plástico, las cuales ayudaran a entender el comportamiento de los suelos en nuestra zona. El procedimiento general del límite líquido, consiste en colocar una muestra húmeda en la Copa de Casagrande, se divide la muestra en 2 y seguidamente se empieza a golpear y contar el número de golpes requerido para cerrar la ranura; si el número de golpes es exactamente 25, se obtiene el límite líquido. Por otro lado, el límite plástico se realiza con una muestra pequeña húmeda convirtiéndola en un cilindro pequeño

de 3 mm de diámetro, luego, rodando dicho suelo entre los dedos de la mano y una superficie lisa, hasta que los cilindros presenten grietas se obtendrá el resultado.

Figura 3
Secado de muestras para el Límite Plástico

NOTA: En la figura se observa el proceso de tamizado desde la malla 4" hasta N° 200, obteniendo una clasificación SC del sistema SUCS. **FUENTE:** Propia (2021).

Ensayo Peso Unitario Seco (NTP 400-017 / STM C – 29)

Consiste en colocar la muestra en la material olla de rendimiento y a golpear con la varilla de acero de tal manera que esto hará que se compacte la muestra a partir de eso se pesa la muestra además de aplicar una fórmula para sacar el peso unitario de la muestra.

Figura 4

Instrumentos para el Ensayo de Peso Unitario en Seco

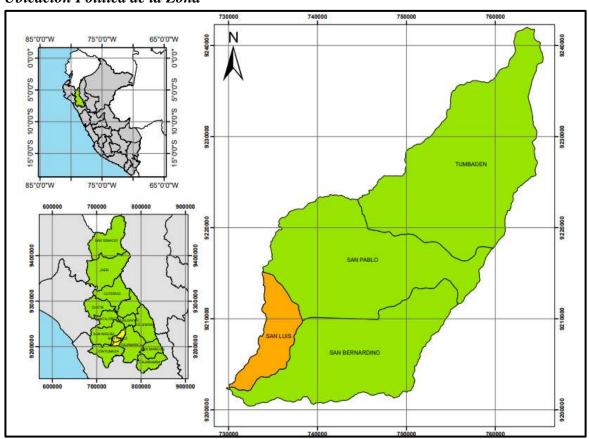
NOTA: En la figura se observa los instrumentos los cuales son usados por el ensayo de peso unitario en seco; la olla de rendimiento y la varilla. **FUENTE:** Propia (2021)

Ahora se procede a trabajar con las muestras de rocas extraídas, las cuales se le designo un código de identificación, y fueron al laboratorio GEOMEC - Ingeniería de rocas y suelos para la Estabilidad y Seguridad de excavaciones para efectuar los ensayos respectivos, donde se aplicó las normas internacionalees para ensayos de Mecánica de Rocas como las indicas en el ASTM (Sociedad Americana para Ensayos y Materiales), las Sugerencias / Recomendaciones del ISRM (Sociedad Internacional de Mecánica de Rocas) y los estudios avanzados del ARMA (Asociación Americana de Mecánica de Rocas). Se llevó acabo los siguientes ensayos:

Ensayo de Corte Directo, Ensayo de Peso Unitario Seco

Debido a que en la Ciudad de Cajamarca no cuenta con un laboratorio de rocas, en la que se realicen estos ensayos, fue enviado a la ciudad de Lima.

2.4.4. Etapa de Post Campo o Gabinete II


En esta etapa se procesa todos los datos obtenidos en campo y laboratorio detallado cada objetivo para obtener los resultados. Se inicia con los aspectos generales, los cuales nos ayudan a identificar la ubicación de la zona.

Aspectos Generales

Ubicación Política

La zona de estudio comprende el caserío de Jancos, del distrito de San Luis, de la Provincia de San Pablo y Región Cajamarca (Zona 17).

Figura 5 *Ubicación Política de la Zona*

NOTA: Esta figura demuestra los diferentes mapas de la ubicación de la zona de estudio. **FUENTE:** Propia (2021)

Ubicación Geográfica

La zona de estudio se encuentra ubicada a una altitud entre los 1785 y 3 108 m.s.n.m. barca tres caseríos como Capellanía, El Palto y Jancos que pertenece al distrito de San Luis. Con la posición geográfica delimitada por las siguientes coordenadas:

Tabla 12

Coordenadas de la Zona

VERTICE	NORTE	ESTE	COTA
1	9220765	731222	3018
2	9220765	741282	3012
3	9213816	741282	2950
4	9213816	731222	2945

NOTA: La tabla muestra las coordenadas de la zona de estudio las cuales empleamos el sistema UTM – WGS84. **FUENTE:** Propia (2021)

Figura 6

Mapa de Ubicación Geográfica de la Zona

NOTA: En la figura se observa el área de estudio ubicado los cuatros vértices. **FUENTE:** Google Earth (2021).

Accesibilidad

El acceso es mediante carreteras tipo asfaltadas y trochas. El acceso a la zona de estudio es mediante la ruta Cajamarca – San Pablo – caserío de Jancos. La ruta Cajamarca- San Pablo – caserío de Jancos es asfaltada tiene una distancia de 88.1 km con un tiempo de 1 hora y 58 min. Se inicia tomando carro en el paradero ubicado en la Av. Angamos frente al Grifo Continental, se siguió la carretera 3N hasta el desvío en la Granja Porcón, desde el cruce se transitó por la carretera 8A que se dirige a San Pablo. Al llegar entre el cruce San Pablo – San Miguel y San Pablo – Chilete, se toma el desvío San Pablo – San Miguel que es la ruta 103, la cual nos dirige al caserío de Jancos a una distancia aprox. 28 min donde finalmente es el punto inicial de la zona de estudio.

Figura 7

Accesibilidad a la Zona de Estudio

NOTA: Se observa la ruta desde la Región Cajamarca hasta la zona de estudio. **FUENTE:** Google Earth (2021).

Clima

El distrito de San Luis de la provincia de San Pablo presenta un clima seco y semicálido, se caracteriza por presentar 3000 mm de precipitación promedio anual, deficiente en lluvias en todas las estaciones y sin cambio térmico invernal bien definido, su periodo de estiaje radica entre mayo y septiembre su temperatura anual varía entre 8 °C y 21°C, presentando mayores temperaturas entre abril y octubre. La temporada de lluvia dura 7 meses, del 25 de septiembre hasta el 16 de mayo, con un intervalo móvil de 31 días de lluvia de por lo menos 13 milímetros. La mayoría de la lluvia cae durante los 31 días centrados alrededor del 22 de marzo, con una acumulación total promedio de 45 milímetros. El periodo del año sin lluvia dura 4.3 meses, del 16 de mayo al 25 de setiembre. La fecha aproximada con la menor cantidad de lluvia es el 20 de julio, con una acumulación total promedio de 1 milímetros.

Figura 8

Probabilidad diaria de Precipitación en la Zona

NOTA: Según la imagen los días más secos son desde el 29 abril al 09 de octubre donde la probabilidad de que ocurra algún movimiento en masa es menor y el mayor porcentaje de lluvia es desde el 10 de octubre hasta el 28 de abril. **FUENTE:** Weather Spark (2021).

Vegetación

El distrito de San Luis tiene una superficie de 42,88 km. por lo que presenta una vegetación muy variada de bosques secos y tropicales entre los cuales encontramos arboles como la Tara, Nogal, Molle y Eucalipto; por otro lado, la población dedicada a la producción y comercio de fruta, legumbres se observa los cultivos de palta, plátano, naranja, mangos, sandías, papayas, trigo, camote entre otros más.

Figura 9

Flora del caserío del Jancos

NOTA: En la figura se aprecia un árbol de Nogal y plantas de plátano. FUENTE: Propia (2021).

Figura 10

Vista Panorámica de la Vegetación en el Caserío de Jancos

NOTA: En la figura se aprecia parte de la flora de la zona, donde existe parte altura y parte valle. **FUENTE:** Propia (2021)

Aspectos Geológicos

Geología Regional

Formación Farrat (ki – f)

Según Benavides (1956) esta formación consta de cuarcitas y areniscas blancas de grano medio a grueso. La formación Farrat suprayace con aparente concordancia a la formación Carhúaz y subyace, con la misma relación, a la formación Inca.

Formación Inca (ki – in)

Para Benavides (1956), la formación Inca infrayace concordantemente a la formación Chúlec y suprayace con la misma relación a la formación Farrat. Esta formación se intercalan areniscas calcáreas, lutitas ferruginosas y lechos de cuarcitas, dando en superficie un matiz amarillento.

Formación Chúlec (Ki - chu)

La formación Chúlec, se extiende en la zona norte del Perú suprayaciendo concordantemente a la formación Inca e infrayaciendo con la misma relación a la formación Pariatambo. Esta formación consiste en una secuencia fosilífera de calizas arenosas, lutitas calcáreas y margas, las que por intemperismo adquieren un color crema amarillento. Generalmente los bancos de margas se presentan muy nodulosos y las calizas frescas muestran colores gris parduzcos algo azulados. (Benavides, 1956).

Formación Pariatambo (ki – pa)

Esta unidad para Benavides (1956); consiste de una alternancia de lutitas con lechos delgados de calizas bituminosas negruzcas, estratos calcáreos con nódulos silíceos (chert) y dolomíticos, con un característico olor fétido al fracturarlas. Generalmente la formación Pariatambo yace concordantemente sobre la formación Chúlec e infrayace, con suave discordancia a la formación Yumagual.

Formación Pulluicana (ks – pu)

Un estudio realizado por Gobierno Regional de Cajamarca (2009), esta formación predomina intercalaciones de calizas, donde hay capaz de margas marrones y lutitas grisáceas o verdosos, así como algunas capas de limonitas y areniscas.

Formación Quilquiñán (ks – q)

Para Benavides (1956), esta formación infrayace con discordancia paralela a la formación Cajamarca. Su base consiste en una gruesa secuencia de calizas nodulares macizas, seguida de una intercalación de margas y lutitas amarillentas, continúan delgados lechos de calizas nodulares con margas pardo-amarillentas y bancos de calizas claras con lutitas arenosas y margas delgadas con abundantes fósiles.

Formación Cajamarca (ks – ca)

La formación Cajamarca, nombre dado por BENAVIDES (1956), esta unidad yace concordantemente sobre el Grupo Quilquiñán y con la misma relación subyace a la formación Celendín. Consiste generalmente de calizas gris oscuras o azuladas y macizas, con delgados lechos de lutitas y margas de los mismos colores.

Grupo Calipuy (P – ca)

Formación Llama (Pe - vll)

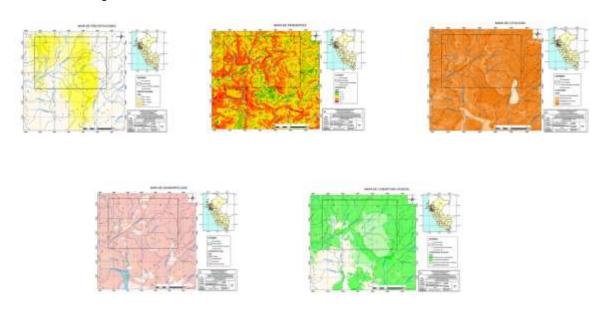
El volcánico Llama suprayace a los conglomerados de la formación Chota que se considera correspondiente al cretáceo superior, este se correlaciona con la parte inferior del grupo Calipuy. Su litología comienza con un conglomerado basal rojizo intercalado con capas de toba andesítica de color morado o violáceo. Los fragmentos del conglomerado son guijarros bien redondeados de cuarcita con proporciones menores de caliza y roca volcánica. Sobre el conglomerado basal se encuentra una secuencia gruesa de piroclásticos y derrames también se encuentran derrames andesíticos porfiríticos o equigranulares, mostrando tonos gris verdosos y gris azulados cuando están frescos, además se encuentran horizontes de tobas andesíticas de varios colores. (Gobierno Regional de Cajamarca, 2009).

Formación Porculla (Nm – vp)

Para el Gobierno Regional de Cajamarca (2009), el volcánico Porculla suprayace en discordancia angular a rocas tan diferentes como el basamento metamórfico precambriano paleozoico y el volcánico Llama. Su litología consiste de un grosor considerable de volcánicos dacíticos con intercalaciones de andesitas donde los piroclástos son más abundantes que los derrames. La litología típica es una dacita compuesta por pequeños fenocristales de presenta sills y pequeños stocks en

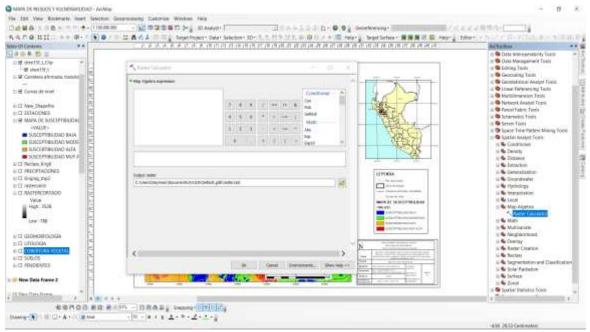
muchas áreas plagioclasas y cuarzo en una matriz fina y dura de color gris verdoso.

Depósito Cuaternarios


En discordancia angular sobre todas las unidades descritas anteriormente se tiene una variedad de depósitos cuaternarios. En nuestra zona de estudio encontramos **cuaternarios aluviales** (**Q** –**al**) en las faldas de cerros, laderas de valles, y **cuaternarios fluviales** (**Q** – **fl**) en los lechos de los ríos. Dentro de los depósitos aluviales se han considerado los materiales con poco transporte y en los fluviales las diferentes terrazas dejadas por los ríos. (Benavides, 1956).

Luego se continuo con el procesamiento de datos geológicos, geomorfológicos, geodinámica externa e hidrología, los cuales fueron desarrollados de acuerdo a lo encontrado en la zona de estudio. Con siguiente, comenzó con la descripción de los taludes donde se determinaron en detallar 5 aspectos trabajados: Descripción de la Estación donde se detalla claramente en las condiciones que se encuentra la estación, teniendo en cuenta el movimiento de masa predominante. Análisis de Susceptibilidad, consistió en analizar los valores obtenidos en el instrumento de Observación y hallar la susceptibilidad de cada estación, mediante el Proceso de Análisis Jerárquico. Luego de haber obtenido los valores de la susceptibilidad se elabora los planos de cada factor mediante la aplicación de herramientas SIG, teniendo en cuenta los parámetros estudiados se realizó los mapas de Geomorfología, Litología, Pendientes, Cobertura Vegetal y Precipitaciones con la data descargada (*Figura 11*), luego se pondera los resultados del proceso de Análisis Jerárquico (*Figura 12*), para así obtener el mapa de susceptibilidad de la zona (ANEXO N° 39).

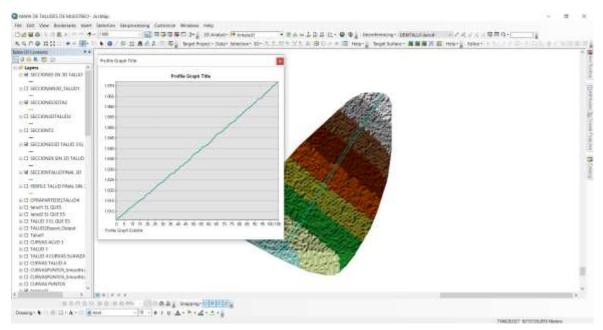
Figura 11


Creación de Mapas

NOTA: En la figura se observó los mapas de los diferentes Factores de la zona, Litología, Pendientes, Geomorfología, Precipitaciones y Cobertura Vegetal. **FUENTE:** Propia (2021).

Figura 12

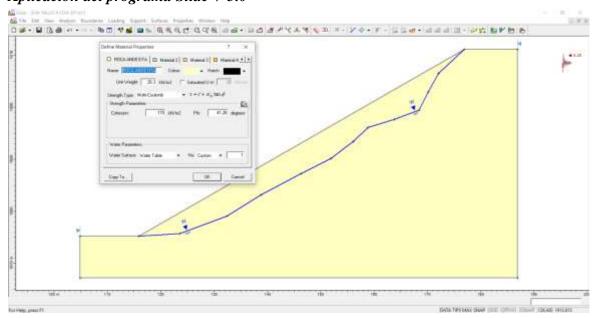
Ponderación de Resultados.


NOTA: En la figura se observó la ponderación de los mapas anteriores, para la creación del mapa de susceptibilidad de la zona mediante la herramienta ArcMap – Map Algebra. **FUENTE:** Propia (2021).

Para continuar con el procedimiento se necesita realizar perfiles de cada estación es por esto que para la creación de los perfiles de los taludes se utiliza la herramienta de ArcMap, generando un modelo TIN el cual nos sirve para crear una recta y a continuación con la herramienta Interpolate Shape para obtener nuestro perfil de cada estación.

Figura 13

Creación de los Perfiles de cada Estación



NOTA: Se observa el perfil creado de una estación de la zona de estudio la cual será procesada después en el programa Slide. **FUENTE:** Propia

Seguidamente para realizar el cálculo de factor de seguridad de cada talud es necesario utilizar los perfiles creados anteriormente en la herramienta ArcMap ya que estos serán descargados y procesados en el programa Excel para darle formato en este programa se guardará en formato .csv para luego exportarlos al programa AutoCAD en el cual se dará forma al perfil para después exportarlo a la herramienta que nos permitirá calcular el factor de seguridad.

Figura 14 Aplicación del programa Slide V 5.0

NOTA: Se observa el procesamiento de los resultados de laboratorio para determinar el factor de seguridad de los taludes. **FUENTE:** Propia (2021)

A continuación, se procesará los datos en la herramienta Slide V.5.0 en el cual, utilizando los resultados de laboratorio de cada estación como cohesión, ángulo de fricción y peso unitario servirá para determinar el factor de seguridad en condiciones estáticas y pseudoestáticas el cuál si es menor a 1.1 se considera el talud inestable y si es mayor a 1.0 se considera estable. Por último, para proponer un método de diseño en el que se evaluó cual es más económico y fácil de ejecutar.

CAPÍTULO III. RESULTADOS

En este capítulo se darán a conocer los resultados que se obtuvieron en campo desde la geología hasta la propuesta de diseño para cada estación.

3.1. GEOLÓGIA

En el distrito de San Luis de la provincia de San Pablo, la geología viene a ser un aspecto muy importante en la susceptibilidad de la zona; ya que, puede amplificar o atenuar la magnitud del evento de movimiento de masa, debido a la permeabilidad de la roca o suelo y su distribución puede dar como resultado un evento catastrófico para los ciudadanos que habitan en la zona por ello se reconoció la unidad volcánica del Paleógeno (Paleoceno – Oligoceno) donde el piso estratigráfico es la Formación Llama (Pe – vll) que está comprendido en el Grupo Calipuy.

Figura 15

Columna Estratigráfica de la Zona

RATEMA	SISTEMA	SER	ΙE		IIDAD ATIGRAFICA	Grosor (m)	LITOLOGIA	DESCRIPCION			
CUATERNARIO		HOLOCE		Dep. fluviales y aluviales Dep. lagunares y glaciares			00000	Arenas, gravas. Limos, arcillas			
		PLEISTOC PLIOCE		Formación C Formación (150 290		Conglomerados, areniscas y arcillas rojas. Lufitas, lodolitas, areniscas finas blanco amarillentas.			
	NEOGENO		Sup	Formación B	lambamarta	300	* * * * * * * * * * * * * * * * * * *	Tobas daciticas y traquiandesiticas blanquecinas. Disc ang.			
0 0 -		MOCENO	Inf.					Tobas blanco amanillentas intercaladas con areniscas. rojizas, aglomerados y piroclastos.			
0 Z C				Ánd	Formación Porcula	2100		Dacita			
z u		CLIGOCE	ENO.	3rupo Ca				areniscas tobáceas y conglomerados lenticulares. Diorita			
0	PALEOGENO						V IV AV AV A	Tobas blanquecinas intercaladas con delgados lechos de areniscas y lutitas tobáceas.			
		EOCEN	10		Formación Llama	600	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Derrames y brechas andesificas.			

NOTA: Se observa la columna estratigráfica de Cajamarca, donde encerramos de color amarillo la Formación Llama la cual se identifica en la geología de la zona. **FUENTE:** Orbasa Geología UNC (2013).

3.1.1. Formación Llama (Pe – vll)

En la zona de estudio San Luis la formación predominante es Volcánico Llama, el cual se correlaciona con la parte inferior del grupo Calipuy. Se aprecia la Formación Llama en la trayectoria de la carretera San Pablo – San Miguel. Se observó un conglomerado basal de color rojizo; el cual vendría hacer la base de la Unidad Litoestrátigráfica.

Figura 16

Base de la Formación Llama

NOTA: En la figura se observa el conglomerado de color rojizo donde se ha observado granos de cuarcita y carbonatos. **FUENTE:** Propia (2021)

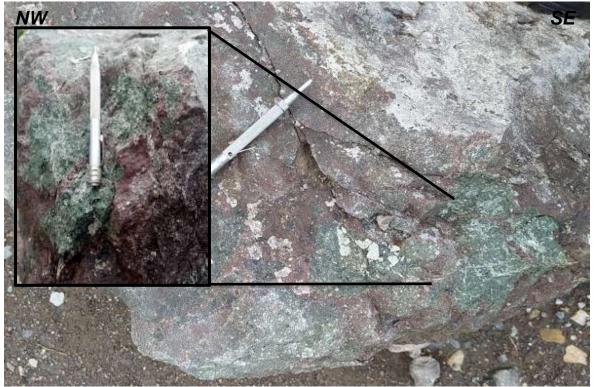
Figura 17

Capa de Toba Andesítica

NOTA: Se observa una capa de toba andesítica de color morado o violáceo de unos 10 cm. **FUENTE:** Propia (2021).

También se observó 2 facies:

La primera es un Andesita; la cual está compuesta por una lava andesítica de color rojizo con abundantes plagioclasas y algunos cristales ferromagnesianos que se altera y algunos son magnéticos (cristales de olivinos). La segunda es una Toba Lapilli con fragmentos de andesita verdosas y en campo se observó 2 tipos: una rica en minerales de fenocristales de anfíboles en mayor parte y la otra sus cristales de anfíboles son pequeños y lo que predomina son las plagioclasas con fragmentos de lava y una matriz carbonatada la cual burbujea al ser vertida ácido.


Brecha Piroclástica

NOTA: En la figura se observa un aglomerado donde los fragmentos encerrados de color verde predominan el olivino y presenta magnetismo, y los encerrados de color naranja son fragmentos de hematita con fenocristales. **FUENTE:** Propia (2021).

Toba Lapilli

NOTA: La muestra de debido a que la presencia de los ferromagnesianos tiene bastante magnetismo. **FUENTE:** Propia (2021).

3.2. GEOMORFOLOGÍA

La geomorfología de la zona es muy accidentada se tienen los relieves montañosos de pendientes pronunciadas; que caracteriza la mayor parte del relieve andino y cordillerano. A continuación, explicaremos la geomorfología de la zona de estudio.

3.2.1. Colinas

Las colinas en la zona de estudio presentan laderas mayores a 20° de pendiente.

Colinas del Distrito de San Luis

NOTA: La colina litológicamente está compuesta de rocas volcánicas de la formación Llama. **FUENTE:** PROPIA (2021)

3.2.2. Valles en V

Los valles en V son típicos en los cursos altos de los ríos, las dos vertientes laterales presentan fuertes pendientes y quebrada El Cardo erosiona verticalmente

Valle en V

NOTA: En la figura se observa un valle entre montañas, las cuales se formaron debido a la erosión por el flujo de agua de la quebrada El Cardo. **FUENTE:** Propia (2021).

3.2.3. Laderas

A lo largo de la zona de estudio encontramos laderas entre 10° y 30° de pendiente clasificándose como laderas inclinadas a muy inclinadas según Demek.

Figura 22

Colinas del Distrito de San Luis

NOTA: Las flechas rojas indican el sentido de la pendiente FUENTE: Propia (2021)

3.2.4. Planicies

Son zonas cuyas superficies presentan ligeras ondulaciones, litológicamente está constituido por rocas volcánicas de las Formación Llama. La cobertura vegetal es principalmente por arbustos y sembríos.

Figura 23

Planicies

SW NW

NOTA: En la figura se observa una planicie de la zona, con bastante vegetación y quebrada. **FUENTE:** Propia (2021)

3.3. GEOLOGÍA ESTRUCTURAL

En nuestra zona de estudio que corresponde al distrito de San Luis, provincia de San Pablo hemos evidenciado la presencia de algunas estructuras geológicas como fallas, diaclasas, fracturas, los cuales a continuación los describimos e ilustramos.

3.3.1. Fallas

En nuestra zona se puede evidenciar un conjunto de fallas debido a la debilidad del macizo rocoso y producto del peso ha ido asentando a lo largo de muchos años y es por esto que se ha producido un fallamiento en partes continuas del talud. Se muestra un sistema de fallas originado por la deformación a lo largo de los miles de años el

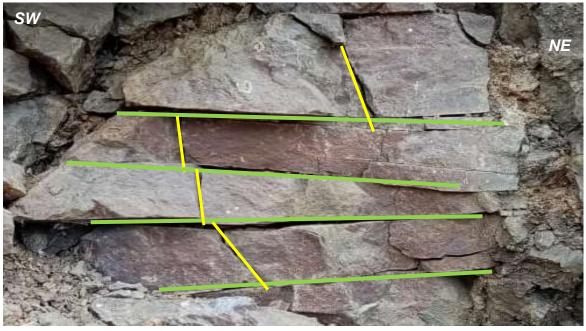
cual está sometido a esfuerzos normales y axiales y por ende el macizo rocoso se encuentra deformado.

Figura 24
Fallas

NOTA: Sistema de fallas ubicado en las coordenadas **E**:736039 y **N**: 9216339. **FUENTE**: Propia (2021).

En la zona también se observa una falla regional inferida la cual tiene una dirección NE – SW, de la que depende el comportamiento del talud mostrado en la figura 17; ya que controla su estabilidad ocasionado innumerables deslizamientos de rocas y suelo en los últimos años adicionando a esto la presencia de lluvias que resulta ser muy perjudicial para la población de Jancos.

Falla Inferida


NOTA: Falla Regional Inferida ubicada en las coordenadas **E:** 736122 y **N:** 9217813. **FUENTE:** Propia (2021).

3.3.2. Diaclasas

En la zona de estudio encontramos varios taludes donde se observan familias de diaclasas.

Figura 26

Familia de Diaclasas

NOTA: En la figura se observa diaclasas las que están orientadas en muchas direcciones por lo cual podemos deducir que han sido resultado de la torsión. **FUENTE:** Propia (2021).

3.4. HIDROLOGÍA

Respecto a la Hidrología la zona presenta tres ríos principales cuenca del Jequetepeque en donde discurren las aguas del río principal San Miguel y sus principales quebradas Cuzcuden, El Cardo, Lajos, los cuales en tiempo de lluvia perjudican a la zona y se observan los movimientos de masa.

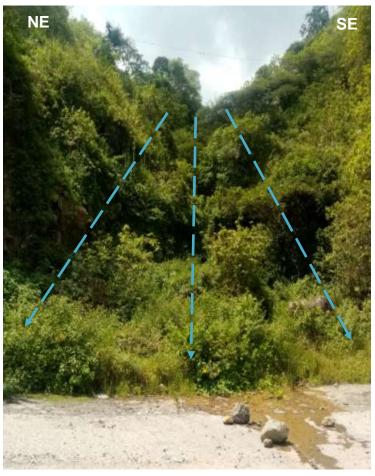
3.4.1. Ríos

Río San Miguel: El río San Miguel, va de N a S el cual tributan las quebradas El Pozo, Moyan y Yerba Buena, finalmente desemboca en el río Jequetepeque.

Figura 27 *Río San Miguel*

NOTA: Río San Miguel ubicado en las coordenadas E:737712 y N:9222054; principal vertiente al río Jequetepeque con un azimut de N210°. **FUENTE**: Propia (2021).

3.4.2. Quebradas


Cuzcuden: Nace al NE del distrito de San Luis descendiendo con dirección SW beneficiando a los cultivos a través de canales al caserío de Jancos discurriendo sus

aguas en el Río San Miguel formando parte del río Jequetepeque y aguas abajo con la represa Gallito Ciego.

Figura 28

Quebrada Cuzcuden

NOTA: Quebrada Cuzcuden ubicado en las coordenadas **E**:736677 y **N**:9219854; principal vertiente del río San Miguel, su azimut es N250°. **FUENTE**: Propia (2021).

Lajos: Nace al NW del centro poblado de Capellania aguas arriba y desciende con dirección al SE, al pie del poblado en donde recibe las aguas de la quebrada El Cardo.

Quebrada Lajos

NOTA: Quebrada El Cardo se encuentra ubicado en las coordenadas **E**:736622 **N**:9215633; principal vertiente del río San Miguel, su azimut es N280°. **FUENTE**: Propia (2021).

El Cardo: Nace al NE del centro poblado de Capellania teniendo una dirección hacia el SE aguas abajo en donde se une con la quebrada Lajos.

Figura 30

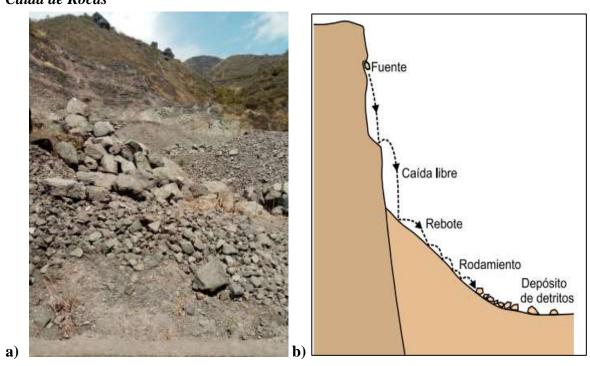
Quebrada El Cardo

NOTA: Quebrada El Cardo se encuentra ubicado en las coordenadas E:736622 N:9215633; principal vertiente del río San Miguel, su azimut es N264° y buzamiento S30°E. **FUENTE:** Propia (2021).

3.5. ASPECTOS GEODINÁMICOS

El estudio ha permitido observar que ocurren fenómenos de geodinámica externa cuyos indicios se manifiestan por los deslizamientos rotacional, caídas de rocas, volcamiento, flujos de detritos. En algunos sectores del tramo, los afloramientos y las acumulaciones de tierra y material rocoso se hallan en montículos con demasiada cantidad que traen en consecuencia el cierre de la vía principal que conduce a la provincia de San Miguel.

3.5.1. Geodinámica Externa


Entre los factores que tienen más incidencia en la geodinámica de la zona de estudio es la erosión pluvial ya que a partir de este se originan los movimientos de masa: deslizamientos, volcamiento, flujos de detritos y caída de rocas, los cuales afectan de manera directa el bienestar de las personas que transitan por las vías de acceso a sus viviendas.

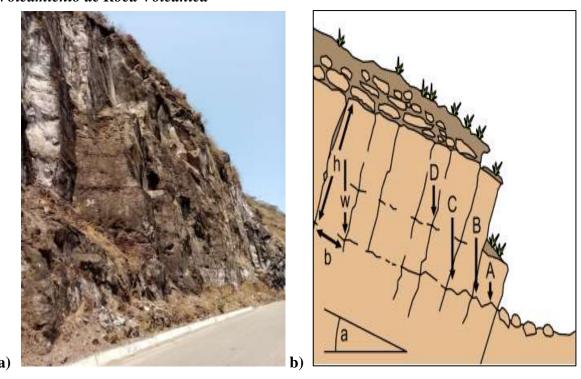
3.5.1.1. Caída de Rocas

La caída de rocas es muy frecuente en la zona debido a que el material que soporta es muy deleznable, por lo que ante la presencia de fuertes precipitaciones se produce un desprendimiento de rocas frecuentemente.

Figura 31

Caída de Rocas

NOTA: En la figura **a**) se observa una caída de rocas de la zona hacia la carretera, en la **b**) esquema de caída de rocas **FUENTE: a**) PROPIA (2021) y **b**) Corominas y Yagué (1997).



3.5.1.2. Volcamiento

Las pendientes de los taludes favorecen para el volcamiento de rocas a que son muy pronunciadas y son de macizos rocosos grandes.

Figura 32

Volcamiento de Roca Volcánica

NOTA: En la figura **a**) se observa un volcamiento de rocas hacia la carretera, en la **b**) Esquema del vuelco en bloque. **FUENTE: a**) PROPIA (2021) **b**) Freitas y Waters, (1973) y Varnes (1976).

3.5.1.3. Flujos

Es muy habitual que se produzcan este tipo de deslizamientos en la zona de estudio y más frecuente en épocas de invierno debido a que el suelo soporta intensas lluvias, por lo tanto, su capacidad portante es sobrepasada teniendo como resultado los flujos de detritos, los cuales arrastran con lo que se encuentran en su camino.

Figura 33

Flujos de Detritos

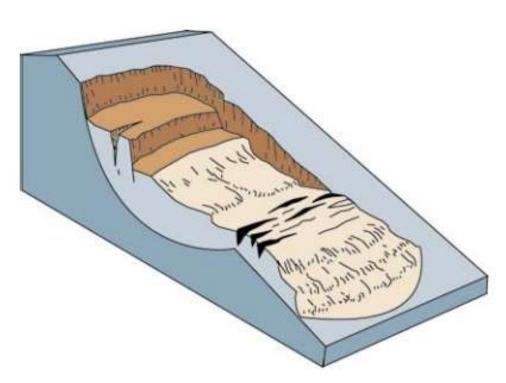
Roca meteorizada

Poco profundo

b) NOTA: En la figura **a)** se observa un flujo de detritos, en la **b)** Esquema de flujos de detritos. **FUENTE: a)** PROPIA (2021) **b)** Ayala Carcedo y Olcinas, (2002).

3.5.1.4. Deslizamiento Rotacional

En la zona se ha identificado la presencia de deslizamiento rotacional producto de una falla regional que controla este deslizamiento, reduciendo su estabilidad y a esto sumándole la pendiente elevada hace de este un peligro de la población, por lo que



perjudica el bienestar y tranquilidad de la población ya que ante cualquier evento este puede perjudicar el acceso a la comunidad y la pérdida de alguna vida.

Figura 34

Deslizamiento Rotacional

NOTA: En la figura **a)** se observa un deslizamiento tipo rotacional en la cual afecta a la carretera, en la **b)** Esquema de un deslizamiento rotacional. **FUENTE: a)** PROPIA (2021).

b)

3.6. DESCRIPCIÓN DE ESTACIONES

3.6.1. ESTACIÓN 1

3.6.1.1. Descripción

Se encuentra ubicado en las coordenadas E:736597, N:9215659; el cual se considera que es un deslizamiento de masa del tipo flujo de detritos porque arrastra a su paso bloques de rocas, suelo y vegetación, aproximadamente tiene una altura de 50 m. Las épocas más frecuentes en los que existe deslizamientos son entre noviembre y abril épocas de muchas precipitaciones en esta zona, otro factor de riesgo es la proximidad que tiene con la quebrada El Cardo ya que en época de mucha lluvia puede desbordar y ocasionar un movimiento de masa, teniendo como evidencia el último flujo de detritos que se produjo en el mes de febrero del año 2021 bloqueando la carretera y poniendo en peligro la seguridad de los habitantes en esta zona y los vehículos que transitan.

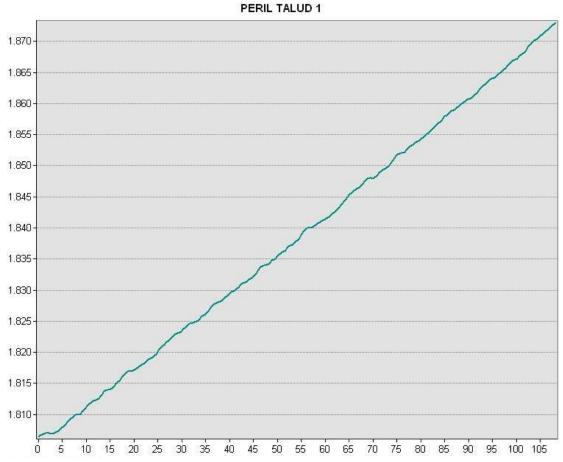
Figura 35

Foto Panorámica Estación 1

NOTA: Deslizamiento de flujos, caída de rocas, arrastre de vegetación. FUENTE: Propia (2021)

Figura 36

Arrastre de Vegetación



NOTA: En la figura se observa parte de la vegetación que ha sido arrastrada por un deslizamiento. **FUENTE:** Propia (2021).

Figura 37

Perfil de Talud 1

NOTA: En la figura se muestra el perfil del talud 1, el cual tiene una altura de 50 m y profundidad de 105 m, se obtuvo en el Software ArcGis. **FUENTE:** Propia (2021).

3.6.1.2. Análisis de Susceptibilidad

Mediante el Instrumento de Observación de Factores Condicionantes y Desencadenantes se obtuvo los valores que presenta la estación 1 en campo, por lo que se describirá los pasos para encontrar el valor de susceptibilidad de la estación.

1º Se obtuvo los valores de la estación 1 en el instrumento de Observación.

Tabla 13

Resultados del Instrumento de Observación de la Estación 1

"Análisis y Determinación de Zonas Susceptibles para Mitigar los Efectos de Movimientos en Masa, Caserío Jancos, Provincia San

Pablo, Región Cajamarca, 2021"										
UBICACIÓN		Departament o	ment Cajamarca Provinci San Pablo		Distrito: San Luis					
EST.	01	Este	736597	Norte	9215659	Cota: 2 895 m.s.n.m.				
Factore s	Parámetr o	Descriptores	Valores Ponderad	Valores en Campo		Fotografía				
	etal	Matorral arbustivo	os 0.558	x						
Cobertura Vegetal		Agricultura costera y andina	0.263							
	ertur	Plantación Forestal	0.122							
	Co	Bosque seco de montaña	0.057							
es Geomorfología	gía	Escarpes	0.592	x						
	orfolo	Colina Volcánica	0.262			STATES V				
	фo	Pie de monte	0.101							
antes	Ğ	Llanura	0.045							
cions		Depósitos Cuaternario	0.444	x						
Condi		Lutitas / Limoarcilla	0.252		1					
Factores Condicionantes Litología Ge	ología	Brechas - Tobas andesítica	0.148		7					
	Lit	Calizas Margosas/ Lutitas	0.083							
		Arenisca	0.047			The state of the s				
		Caliza Masiva	0.027							
		> 45°	0.503	x						
Factor Desencadenante Precipitaciones Pendientes	ntes	25° - 45°	0.260		Sign Const					
	endie	10° - 25°	0.134							
	P.	5° - 10°	0.068							
		0° - 5°	0.035							
	x	MUYALTA > a $250 mm$	0.482	x						
	cione	ALTA (160 mm a 250 mm)	0.270							
	ipita	MODERADA (90 a 160 mm)	0.141							
	Prec	BAJA (50 mm a 90 mm)	0.068							
-		MUY BAJA (< a 50 mm)	0.039							

NOTA: En la tabla se muestra los resultados obtenidos en campo de la evolución de factores condicionantes y desencadenantes en la estación 1; obteniendo que en todos los descriptores presenta el mayor valor. **FUENTE:** Propia (2021).

2° Ahora tenemos que hallar el valor total de los factores condicionantes y desencadenantes. En este caso hallamos el valor total de los Factores Condicionantes, mediante:

$$V.T = VCE * VC + VCE * VC + VCE * VC + VCE * VC$$

Tabla 14

Resultado de Evaluación de Factores Condicionantes

	Evaluación de Factores Condicionantes								
Descriptores		Cobertura Vegetal		Geomorfología		Pendientes		Litología	
	VCE	VC	VCE	VC	VCE	VC	VCE	VC	
TALUD 1	0.057	0.558	0.122	0.592	0.263	0.503	0.558	0.444	0.484

NOTA: En la tabla se muestra los resultados de la evaluación de los factores condicionantes de la estación 1, donde halla el valor total de los descriptores. **FUENTE**: Propia (2021).

Por otro lado, la evaluación de Factores Desencadenantes es un solo parámetro, por lo que se considera lo que hallamos en campo como valor total.

Tabla 15

Resultado de Evaluación de Factores Desencadenantes

Evaluación de Factores Desencadenantes					
Descriptores	Precipitaciones Pluviales	VALOR TOTAL			
TALUD 1	MUY ALTA (> a 250 mm)	0.482			

NOTA: En la tabla se muestra los resultados de la evaluación de los factores desencadenantes de la estación 1, donde se considera como valor total a lo encontrado en campo. **FUENTE**: Propia (2021).

3° Luego de haber obtenido los valores totales de ambos factores, hallaremos la susceptibilidad, la cual se considera el peso ponderado para evaluar es de 0.5 para cada factor:

Tabla 16

Resultado de la Evaluación de la Susceptibilidad

SUSCEPTIBILIDAD							
FACTORES	Factores Condicionantes Factores Desencadenantes			VALOR			
	VALOR	PESO	VALOR	PESO	TOTAL		
TALUD 1	0.484	0.5	0.482	0.5	0.483		

NOTA: Valor total de la Susceptibilidad de cada talud, observando que el valor total de la susceptibilidad en la Estación 1 es de 0.483. **FUENTE:** Propia (2021).

4° Ahora se evaluará el nivel de susceptibilidad mediante la matriz la cual está dividida en rangos.

Tabla 17

Matriz de Susceptibilidad

NIVEL	RANGO
Susceptibilidad Muy Alto	0.400 – 500
Susceptibilidad Alto	0.300 - 0.400
Susceptibilidad Medio	0.200 - 0.300
Susceptibilidad Bajo	0.100 - 0.200

NOTA: En la tabla se muestra encerrado de color verde el resultado en la matriz, la Estación 1 se encuentra con un nivel de susceptibilidad Muy Alto por lo que el rango oscila en 0.400 a 0.500; y en la evaluación de esto obtuvimos como resultado 0.483. **FUENTE**: Propia (2021).

3.6.1.3. Análisis de Laboratorio

Ensayo Corte Directo (ASTM D 3080)

La Calicata 1, la cual viene hacer de la Estación N°01, su ángulo de fricción es 26,10 y su cohesión es 0,00 debido a que es un suelo granular (gravas, arenas) presentando poca resistencia al corte.

Tabla 18

Resultados del Ensayo Corte Directo

Muestra	Densidad Húmeda	Densidad Seca	Angulo de Fricción	Cohesión
	(gr/cm³)	(gr/cm³)	Interna (φ)	(Kg/cm²)
C 01	1,910	1,61	26,10	0,00

NOTA: En la tabla se muestra los resultados obtenidos en laboratorio del ensayo de corte directo de la calicata 1, donde se da a conocer la densidad húmeda y seca, el ángulo de fricción interna y la cohesión de la muestra, también se pueden observar en el Anexo N° 13 **FUENTE:** Laboratorio de Mecánica de Suelos, Concreto y Pavimentos (2021).

Análisis Granulométrico por Tamizado (AASHTO T-27 ASTM D 422)

La Calicata 1, la cual viene hacer de la Estación N°01, según la Clasificación SUCS es SP que vienen hacer arenas mal graduadas, arena con gravas, con poca o nada de finos, también presenta 5,6 % de humedad en la muestra.

Tabla 19

Resultados del Análisis Granulométrico por Tamizado

Muestra	Peso	Peso	Peso	Clasificación	Clasificación	%
	Total	Gravas	Arena	SUSC	AASHTO	Humedad
C 01	1443,0	73,0	1370,0	SP	A-2-4 (0)	5,6

NOTA: En la tabla se muestra los resultados obtenidos en laboratorio del análisis granulométrico por tamizado, donde se da a conocer el peso total, peso de gravas y arena, la clasificación SUCS Y AASHTO y el contenido de humedad en cada muestra, también se puede observar mejor resultados en el Anexo N° 05. **FUENTE:** Laboratorio de Mecánica de Suelos, Concreto y Pavimentos (2021).

Ensayo de Límites de Consistencia (Norma AASHTO T-90-ASTM D 4318)

En la Calicata 01 el L.L. es de 25,61% y el L.P. no presenta, por lo que es un suelo arenoso.

Tabla 20

Resultado de Limites de Consistencia

Muestra	Limite Liquido	Limite Plástico	Índice Plástico
C 01	25,61%	NP	NP

NOTA: En la tabla se observa el resultado de los límites de consistencia tanto liquido como plástico de las ambas calicatas, en la calicata 01 el suelo no presenta limite plástico debido a que no presenta plasticidad, también se puede observar mejor resultados en el Anexo N° 07. **FUENTE:** Laboratorio de Mecánica de Suelos, Concreto y Pavimentos (2021).

Ensayo Peso Unitario Seco (NTP 400-017 / STM C – 29)

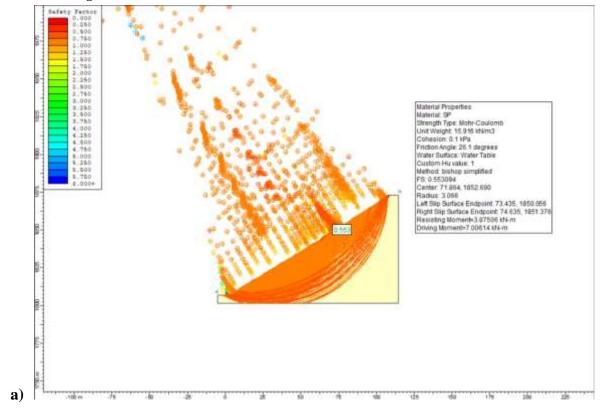
La Muestra 1 en la prueba de suelto obtuvo un peso unitario promedio de 1,596 gr/c³, y en varillado dio como resultado 1,623 gr/c³.

Tabla 21

Resultados del Ensayo de Peso Unitario en Seco

ENSAYO DE PESO UNITARIO SECO **MUESTRA 1 SUELTO VARILLADO Ensayo** I II Ш I II Ш Peso Unitario 1,531 1,507 1,481 1,632 1,644 1,592 Peso Unitario $1,596 \text{ gr/c}^3$ $1,623 \text{ gr/c}^3$ Prom.

NOTA: En la tabla se observa el resultado del peso unitario en seco, llevado a cabo en dos ensayos suelto y varillado, este valor será usado para el software Slide, también se puede observar mejor resultados en el Anexo N° 01. **FUENTE:** Laboratorio de Mecánica de Suelos, Concreto y Pavimentos (2021).



3.6.1.4. Análisis de Factor de Seguridad

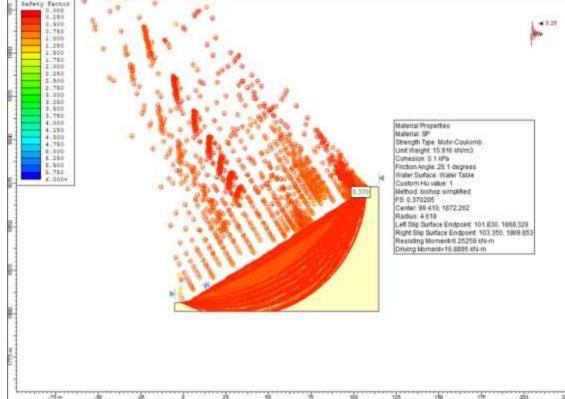
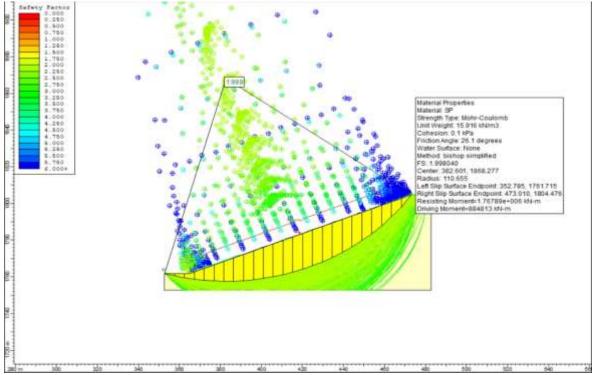

Se analizará mediante el software Slide con los datos obtenidos en laboratorio, cohesión de 0 kg/cm², su ángulo de fricción 26,10 ° y peso unitario 1,506 gr/cc. También se llevó a cabo el diseño con índice de sismicidad que en el departamento de Cajamarca es de 0.25.

Figura 38

Factor de Seguridad del Talud 1

NOTA: En la figura **a)** se observa el modelo de talud con un factor de seguridad de 0.553 mediante el Método de Bishop Simplifed, en cambio en la figura **b)** se le aplica un índice de sismicidad de 0.25 obteniendo un F.S. de 0.370; por lo que ninguno de los dos modelos es estable ya que el F.S. > 1 según el Manual de Protección de Taludes (Pág. 113). **FUENTE:** Propia (2021).


3.6.1.5. Diseño de Estación

Considerada de acuerdo a su movimiento de masa como flujo de detritos, presenta un ángulo de pendiente 32°, su clasificación SUCS es SP que son arenas mal graduadas, arena con gravas con poca o nada de finos y un Factor de Seguridad de 0,553. Sus propiedades influyen mucho en la inestabilidad del talud, ya que no presenta cohesión y su ángulo de pendiente es abrupto; por ello se opta modificar el ángulo de pendiente del talud para mejorar la estabilidad del mismo e instalar una capa de geomalla uniaxial para ayudar a estabilizar el suelo que se encuentran en toda la pendiente del talud. De esta manera se logrará tener un talud estable y sin poner en riesgos la vida de las personas que transitan por esta vía.

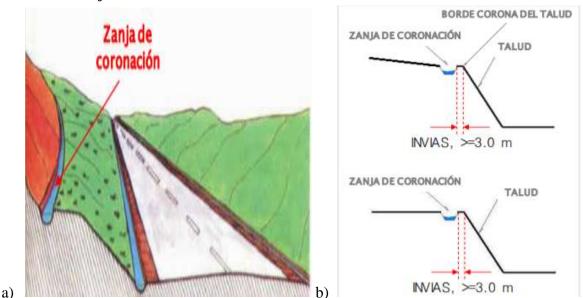
Figura 39

Resultado de Factor de Seguridad

NOTA: La figura muestra el resultado aplicado en Talud N°1; se disminuyó el ángulo de pendiente de 32° a 22° obteniendo un F.S. de 1.998. **FUENTE:** Propia (2021).

Figura 40

Propuesta de Geomalla


NOTA: En la figura se observa una Geomalla tejida uniaxial Terragrid UX 120 que su resistencia a la tensión a largo plazo es de 76.0KN, la cual ayudara a controlar la estabilidad del talud. **FUENTE:** Eco Green.

También se ha considerado realizar una zanja de coronación en la parte alta de este aprovechando que junto a este talud pasa el río Cardo y que debido a que en las épocas de invierno el índice de precipitaciones es muy elevado por lo que desestabiliza el suelo y por ende se producen deslizamientos además de que se producen en algunos casos flujos de detritos, es necesario que se realice este canal. Esta propuesta también beneficiaría a la población ya que se mejoraría el riego de sus cultivos ya que de manera más fácil y tecnificada llegaría el agua a sus sembríos.

Figura 41

Modelo de Zanja de Coronación

NOTA: En la figura **a)** se observa un modelo de zanja de coronación en la parte superior del talud. **b)** se observa un modelo de zanja de coronación con medidas adecuadas. **FUENTE:** Tipología obras de drenaje y Subdrenaje en vías, Colombia.

3.6.2. ESTACIÓN 2

3.6.2.1. Descripción

Se encuentra ubicado en las coordenadas E:735931, N:9217043; es considerado como un talud en el que se produce frecuentemente la caída de suelo debido a que la roca por lo que se encuentra muy meteorizado y fracturado, en esta estación el principal agente de caída de rocas es la erosión pluvial ya que condiciona la

estabilidad del talud y sus propiedades físicas que al estar sometido a las frecuentes lluvias en la zona el suelo se satura y sus capacidad portante se ve afectada por lo que por consecuencia se producen caídas y algunos deslizamientos de roca llenando las cunetas de drenaje y desviando el cauce de las escorrentías hacia los terrenos de los pobladores afectando su sembríos.

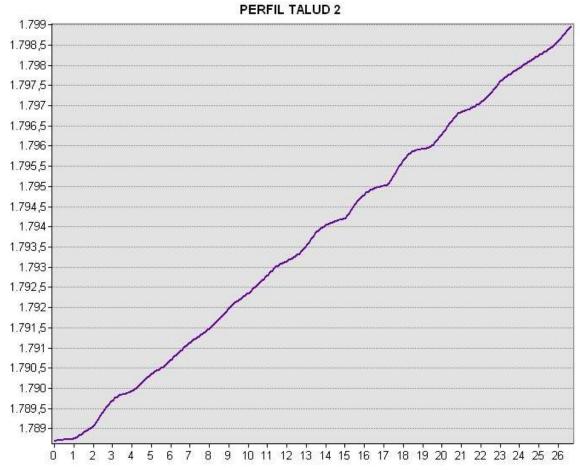
Figura 42

Foto Panorámica Estación 2

NOTA: En la figura se observa como la roca por mucho intemperismo ha sido fracturada y ha llegado a ser suelo. **FUENTE:** Propia (2021)

Figura 43

Fracturamiento y Desprendimiento de Roca



NOTA: a) se observa como la roca del talud esta demasiada intemperizada por lo que en la b) se muestra como se desprende y cae en la pista como en la cuneta. **FUENTE:** Propia (2021).

Figura 44

Perfil Talud 2

NOTA: En la figura se muestra el perfil del talud 2, el cual tiene una altura de 10 m y profundidad de 26 m, se obtuvo en el Software ArcGis. **FUENTE:** Propia (2021).

3.6.2.2. Análisis de Susceptibilidad

Mediante el Instrumento de Observación de Factores Condicionantes y Desencadenantes se obtuvo los valores que presenta la estación 2 en campo, por lo que se describirá los pasos para encontrar el valor de susceptibilidad de la estación.

1º Se obtuvo los valores de la Estación 2 en el instrumento de Observación.

Fotografía

Distrito: San Luis

Cota: 3 108 m.s.n.m.

Tabla 22

Resultados del Instrumento de Observación de la Estación 2

"Análisis y Determinación De Zonas Susceptibles Para Mitigar Los TITULO DEL PROYECTO Efectos De Movimientos En Masa, Caserío Jancos, Provincia San Pablo, Región Cajamarca, 2021"

San Pablo

9217043

			Pablo, Región Cajan		
UBIO	CACIÓN	Departament 0	Cajamarca	Provinc	
EST.	02	Este	735931	Norte	
Facto res	Parámetr o	Descriptores	Valores Ponderados	Valore en Campo	
	egetal	Matorral arbustivo Agricultura	0.558		
	Cobertura Vegetal	costera y andina Plantación	0.263	x	
	obert	Fiantacion Forestal Bosque seco de	0.122		
		montaña Escarpes	0.057 0.592		
	fología	Colina Volcánica	0.262	x	
Factores Condicionantes	Geomorfología	Pie de monte	0.101		
	Ğ	Llanura Depósitos	0.045		
	Litología	Cuaternario Lutitas /	0.444	x	
		Limoarcilla Brechas - Tobas andesítica	0.252 0.148		
		Calizas Margosas/ Lutitas	0.083		
		Arenisca	0.047		
		Caliza Masiva	0.027		
	ø	> 45° 25° - 45°	0.503 0.260	x	
Factor Desencadenante	Pendientes	10° - 25°	0.134	-	
	Pen	5° - 10°	0.068		
		0° - 5°	0.035		
	83	MUY ALTA > a 250 mm ALTA (160 mm	0.482	x	
	Precipitaciones	a 250 mm) MODERADA	0.270		
	ecipit	(90 a 160 mm) BAJA (50 mm a	0.141 0.068		
De	Ā	90 mm) MUY BAJA (< a 50 mm)	0.039		
		a so min j			

NOTA: En la tabla se muestra los resultados obtenidos en campo de la evolución de factores condicionantes y desencadenantes en la Estación 2. **FUENTE:** Propia (2021).

2° Ahora tenemos que hallar el valor total de los factores condicionantes y desencadenantes. En este caso hallamos el valor total de los Factores Condicionantes, mediante:

$$V.T = VCE * VC + VCE * VC + VCE * VC + VCE * VC$$

Tabla 23

Resultado de Evaluación de Factores Condicionantes

Evaluación de Factores Condicionantes									
Descriptores		rtura etal	Geomo	rfología	Pend	ientes	Lito	logía	VALOR TOTAL
	VCE	VC	VCE	VC	VCE	VC	VCE	VC	
TALUD 2	0.057	0.263	0.122	0.262	0.263	0.260	0.558	0.482	0.384

NOTA: En la tabla se muestra los resultados de la evaluación de los factores condicionantes de la Estación 2, donde halla el valor total de los descriptores. **FUENTE**: Propia (2021).

Por otro lado, la evaluación de Factores Desencadenantes es un solo parámetro, por lo que se considera lo que hallamos en campo como valor total.

Tabla 24

Resultado de Evaluación de Factores Desencadenantes

Evaluación de Factores Desencadenantes					
Descriptores	Precipitaciones Pluviales	VALOR TOTAL			
TALUD 2	MUY ALTA (> a 250 mm)	0.482			

NOTA: En la tabla se muestra los resultados de la evaluación de los factores desencadenantes de la Estación 2, donde se considera como valor total a lo encontrado en campo. **FUENTE**: Propia (2021).

3° Luego de haber obtenido los valores totales de ambos factores, hallaremos la susceptibilidad, la cual se considera el peso ponderado para evaluar es de 0.5 para cada factor:

Tabla 25

Resultado de la Evaluación de la Susceptibilidad

SUSCEPTIBILIDAD						
FACTORES	Factores Condicionantes Factores Desencadenantes			VALOR		
	VALOR	PESO	VALOR	PESO	TOTAL	
TALUD 2	0.384	0.5	0.482	0.5	0.433	

NOTA: Valor total de la Susceptibilidad de cada talud, observando que el valor total de la susceptibilidad en la Estación 2 es de 0.433. **FUENTE:** Propia (2021).

4° Ahora se evaluará el nivel de susceptibilidad mediante la matriz la cual está dividida en rangos.

Tabla 26

Matriz de Susceptibilidad

NIVEL	RANGO
Susceptibilidad Muy Alto	0.400 – 500
Susceptibilidad Alto	0.300 - 0.400
Susceptibilidad Medio	0.200 - 0.300
Susceptibilidad Bajo	0.100 - 0.200

NOTA: En la tabla se muestra encerrado de color morado el resultado en la matriz, la estación 2 se encuentra con un nivel de susceptibilidad Muy Alto por lo que el rango oscila en 0.400 a 0.500; y en la evaluación de esto obtuvimos como resultado 0.433. **FUENTE**: Propia (2021).

3.6.2.3. Análisis de Laboratorio

Ensayo Corte Directo (ASTM D 3080)

La Calicata 2, la cual viene hacer de la Estación N°02, su ángulo de fricción es 20,30 y su cohesión es 0,11 debido a que es un suelo areno arcilloso y sus partículas tienden a juntarse (interacción agua/partícula).

Tabla 27

Resultados del Ensayo Corte Directo

Muestra	Densidad Húmeda	Densidad Seca	Angulo de Fricción	Cohesión
	(gr/cm³)	(gr/cm³)	Interna (φ)	(Kg/cm²)
C 02	1,840	1,532	20,30	0,11

NOTA: En la tabla se muestra los resultados obtenidos en laboratorio del ensayo de corte directo de las dos calicatas donde se da a conocer la densidad húmeda y seca, el ángulo de fricción interna y la cohesión de las muestras, también se pueden observar en el Anexo N° 13 **FUENTE:** Laboratorio de Mecánica de Suelos, Concreto y Pavimentos (2021).

Análisis Granulométrico por Tamizado (AASHTO T-27 ASTM D 422

La Calicata 2, la cual viene hacer de la Estación N°02, según la Clasificación SUCS es SC que son arenas arcillosas, mezclas de arena y arcilla, también presenta 15,9 % de humedad en la muestra.

Tabla 28

Resultados del Análisis Granulométrico por Tamizado

Muestra	Peso Total	Peso Gravas	Peso Arena	Clasificación SUSC	Clasificación AASHTO	% Humedad
C 02	1562,0	62,5	1499,5	SC	A-4 (1)	15,9

NOTA: En la tabla se muestra los resultados obtenidos en laboratorio del análisis granulométrico por tamizado, donde se da a conocer el peso total, peso de gravas y arena, la clasificación SUCS Y AASHTO y el contenido de humedad en cada muestra, también se puede observar mejor resultados en el Anexo N° 06. **FUENTE:** Laboratorio de Mecánica de Suelos, Concreto y Pavimentos (2021)

Ensayo de Límites de Consistencia (Norma AASHTO T-90-ASTM D 4318)

En la calicata 02 el L.L es 29,98% y el L.P. es 20.35%, los cuales presentan baja plasticidad.

Tabla 29

Resultado de Limites de Consistencia

Muestra	Limite Liquido	Limite Plástico	Índice Plástico
C 02	30,50%	20,66%	9,84%

NOTA: En la tabla se observa el resultado de los límites de consistencia tanto liquido como plástico de la calicata N° 02, también se puede observar mejor resultados en el Anexo N° 08. **FUENTE:** Laboratorio de Mecánica de Suelos, Concreto y Pavimentos (2021).

Ensayo Peso Unitario Seco (NTP 400-017 / STM C - 29)

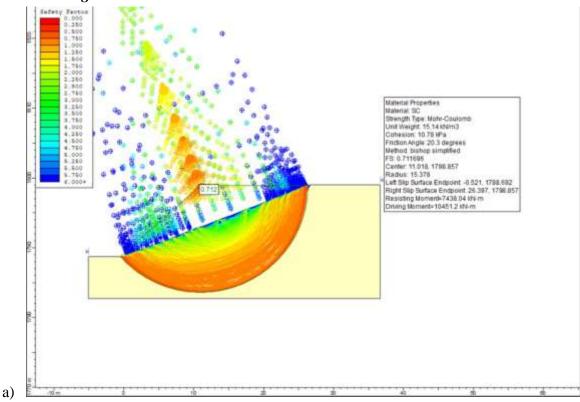
La muestra 2 en la prueba de suelto obtuvo un peso unitario promedio de 1,596 gr/c³, y en varillado dio como resultado 1,623 gr/c³.

Tabla 30

Resultados del Ensavo de Peso Unitario en Seco

ENSAYO DE PESO UNITARIO EN SECO									
Ensayo	Ensayo SUELTO VARILLADO								
\mathbf{N}°	I	II	III	I	II	III			
Peso Unitario	1,465	1,422	1,337	1,597	1,544	1,490			
Peso Unitario Prom.			$1,544 \text{ gr/c}^3$						

NOTA: En la tabla se observa el resultado del peso unitario en seco, llevado a cabo en dos ensayos suelto y varillado, este valor será usado para el software Slide, también se puede observar mejor resultados en el Anexo N° 02. **FUENTE:** Laboratorio de Mecánica de Suelos, Concreto y Pavimentos (2021).


3.6.2.4. Análisis Factor de Seguridad

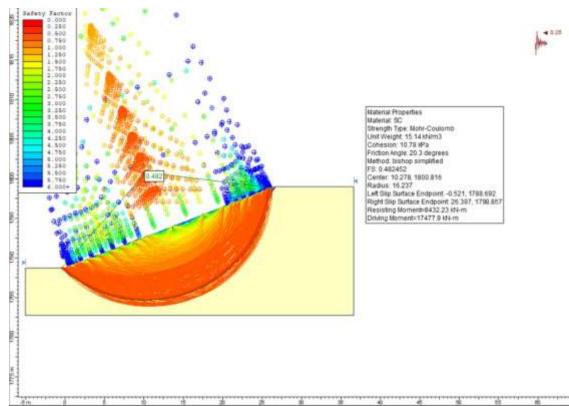
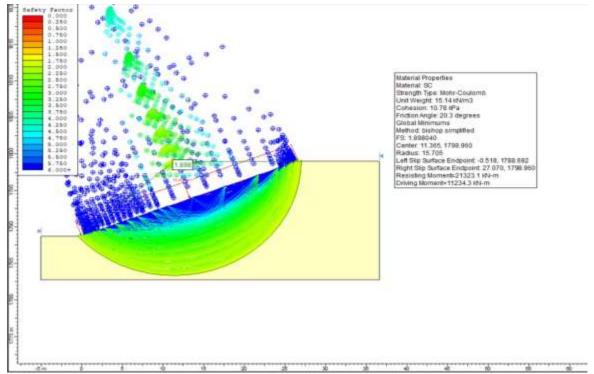

Se analizará mediante el software Slide con los datos obtenidos en laboratorio, cohesión de 0,11 kg/cm², su ángulo de fricción 20,30° y peso unitario 1,408 gr/cc. También se llevó a cabo el diseño con índice de sismicidad que en el departamento de Cajamarca es de 0.25.

Figura 45

Factor de Seguridad del Talud 2

NOTA: En la figura **a)** se observa el modelo de talud con un factor de seguridad de 0.712 mediante el Método de Bishop Simplifed, en cambio en la figura **b**) se le aplica un índice de sismicidad de 0.25 obteniendo un F.S. de 0.482; por lo que ninguno de los dos modelos es estable ya que el F.S. > 1 según el Manual de Protección de Taludes (Pág. 113). **FUENTE**: Propia (2021).

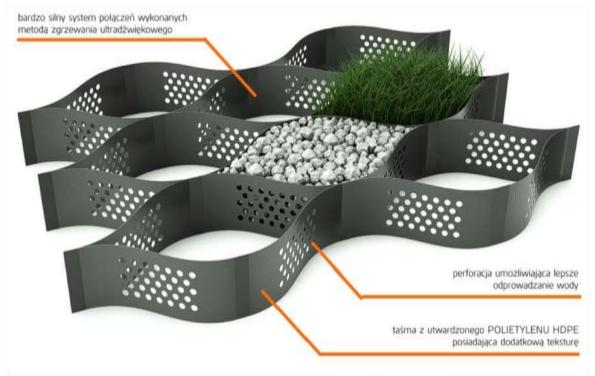


3.6.2.5. Diseño de Estación

Considerada de acuerdo a su movimiento de masa como caída de roca meteorizada, por ello es considerada suelo; presenta un ángulo de pendiente 22°, su clasificación SUCS es SC que son arenas arcillosas, mezclas de arena y arcilla y un Factor de Seguridad de 0,712. Debido a la meteorización de las rocas del talud se ha convertido en suelo; por ello se opta modifique la geometría del talud, proponiendo un ángulo de pendiente de 19° e instalar una capa de geomalla uniaxial para ayudar a estabilizar el suelo que se encuentran en toda la pendiente del talud.

Figura 46

Resultado de Factor de Seguridad



NOTA: La figura muestra el resultado aplicado en Talud N°2; se disminuyó el ángulo de pendiente de 22° a 19° obteniendo un F.S. de 1.898. **FUENTE:** Propia (2021).

Figura 47

Propuesta de Geoceldas

NOTA: En la figura se observa un modelo de geo celdas. FUENTE: Geo Globe Polska.

3.6.3. Estación 3

3.6.3.1.Descripción

Se encuentra ubicado en las coordenadas E:736122, N:9217813, en esta estación se observa dos movimientos de masas como el deslizamiento rotacional y a pocos metros más adelante caída de rocas ambos están controlados por una falla regional con dirección N que también afecta en gran parte a la vía de acceso a los centros poblados, y por otra parte es la presencia de la quebrada Lajos la que divide ambos movimientos de masa. Esta zona se considera con un alto nivel de riesgo ya que en épocas de invierno y de muchas precipitaciones afectan al deslizamiento rotacional que a medida que pasa el tiempo se sigue deslizando, últimamente debido a la caída de rocas están rompieron parte de la pista, y un poste de luz.

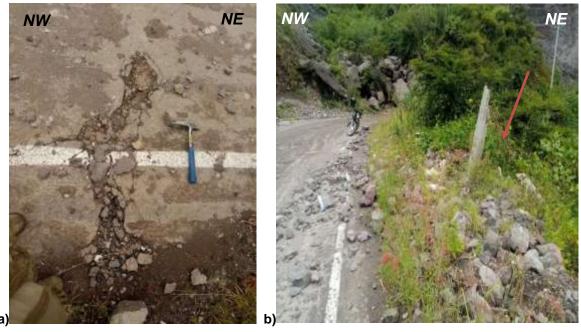
Figura 48

Foto Panorámica Estación 3

NOTA: La flecha de color naranja muestra el movimiento de masa de caída de rocas, las flechas amarillas indican el deslizamiento rotacional y la flecha celeste que las divide es la quebrada Lajos. **FUENTE:** Propia (2021)

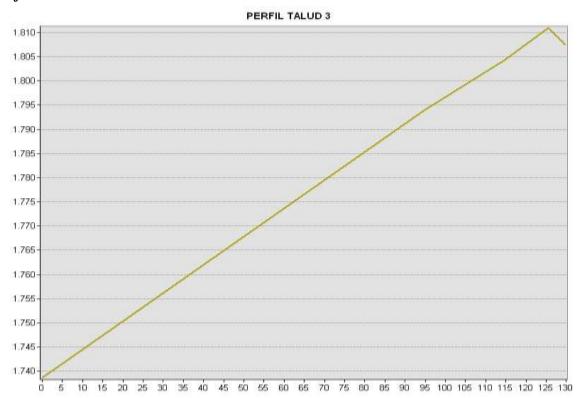
Figura 49

Consecuencia de la Falla Regional



NOTA: Se observa la consecuencia de la falla regional donde destruyo parte de la pista y la cuneta. **FUENTE:** Propia (2021)

Figura 50


Producto de la Caídas de Rocas

NOTA: a) Se observa como huecos en la pista que son un peligro latente para los conductores b) Se muestra como un poste de luz debido a la caída de rocas grandes ha sido partido, y lo que ha ocasionado es que no haya luz en el caserío de Jancos. **FUENTE:** Propia (2021).

Figura 51

Perfil de Talud 3

NOTA: En la figura se muestra el perfil del talud 3, el cual tiene una altura de 70 m y profundidad de 130 m, se obtuvo en el Software ArcGis. **FUENTE:** Propia (2021).

3.6.3.2. Análisis de susceptibilidad

Mediante el Instrumento de Observación de Factores Condicionantes y Desencadenantes se obtuvo los valores que presenta la estación 3 en campo, por lo que se describirá los pasos para encontrar el valor de susceptibilidad de la estación.

1º Se obtuvo los valores de la estación 3 en el instrumento de Observación.

Tabla 31

Resultados del Instrumento de Observación de la Estación 3

Kesulta	dos del In	strumento de						
TITU	LO DEL PF	ROYECTO	"Análisis y Determinación De Zonas Susceptibles Para Mitigar Los Efectos De Movimientos En Masa, Caserío Jancos, Provincia San Pablo, Región Cajamarca, 2021"					
UBICACIÓN		Departament o	Cajamarca	Provinci a	San Pablo	Distrito: San Luis		
EST.	03	Este	736122	Norte	9217813	Cota:2 684m.s.n.m.		
Factore s	Parámetr o	Descriptores	Valores Ponderados	Valores en Campo		Fotografía		
	getal	Matorral arbustivo	0.558	x				
	a Ve	Agricultura costera y andina	0.263					
	rtur	Plantación Forestal	0.122					
	Cobertura Vegetal	Bosque seco de montaña	0.057					
,g		Escarpes	0.592	x				
intes Geomorfología	Colina Volcánica	0.262						
ies	0 m 0	Pie de monte	0.101		The second			
onaní	g	Llanura	0.045		THE WAY			
ndici		Depósitos Cuaternario	0.444		A PARK			
Factores Condicionantes		Lutitas / Limoarcilla	0.252					
ctore	ogía	Brechas - Tobas andesítica	0.148	x				
Fac	Litología	Calizas Margosas/ Lutitas	0.083		10000000000000000000000000000000000000	AND ASSESSED ASSESSED.		
		Arenisca	0.047					
		Caliza Masiva	0.027		100			
		> 45°	0.503					
	Pendientes	25° - 45°	0.260	x				
	Pendi	10° - 25°	0.134					
	•	5° - 10°	0.068					

		0° - 5°	0.035			
ante		MUYALTA > a 250 mm	0.482	x		
adens	ones	ALTA (160 mm a 250 mm)	0.270			
Desencadenante	Precipitaciones	MODERADA (90 a 160 mm)	0.141			
	Precij	BAJA (50 mm a 90 mm)	0.068			
Factor	-	MUY BAJA (< a 50 mm)	0.039			

NOTA: En la tabla se muestra los resultados obtenidos en campo de la evolución de factores condicionantes y desencadenantes en la Estación N° 03; obteniendo que en todos los descriptores presenta el mayor valor. **FUENTE:** Propia (2021).

2° Ahora tenemos que hallar el valor total de los factores condicionantes y desencadenantes. En este caso hallamos el valor total de los Factores Condicionantes, mediante:

$$V.T = VCE * VC + VCE * VC + VCE * VC + VCE * VC$$

Tabla 32

Resultado de Evaluación de Factores Condicionantes

	Evaluación de Factores Condicionantes								
Descriptores	Cobertura Vegetal		Geomorfología		Pendientes		Litología		VALOR
Descriptores	VCE	VC	VCE	VC	VCE	VC	VCE	VC	TOTAL
TALUD 3	0.057	0.558	0.122	0.592	0.263	0.260	0.558	0.148	0.255

NOTA: En la tabla se muestra los resultados de la evaluación de los factores condicionantes de la Estación N°03, donde halla el valor total de los descriptores. **FUENTE**: Propia (2021).

Por otro lado, la evaluación de Factores Desencadenantes es un solo parámetro, por lo que se considera lo que hallamos en campo como valor total.

Tabla 33

Resultado de Evaluación de Factores Desencadenantes

	Evaluación de Factores Desencadenantes	s
Descriptores	Precipitaciones Pluviales	VALOR TOTAL
TALUD 3	MUY ALTA (> a 250 mm)	0.482

NOTA: En la tabla se muestra los resultados de la evaluación de los factores desencadenantes de la Estación N°03, donde se considera como valor total a lo encontrado en campo. **FUENTE**: Propia (2021).

3° Luego de haber obtenido los valores totales de ambos factores, hallaremos la susceptibilidad, la cual se considera el peso ponderado para evaluar es de 0.5 para cada factor

Tabla 34

Resultado de la Evaluación de la Susceptibilidad

SUSCEPTIBILIDAD							
EACTODES	Factores Condicion	onantes	Factores Desencad	VALOR			
FACTORES	VALOR	PESO	VALOR	PESO	TOTAL		
TALUD 3	0.255	0.5	0.482	0.5	0.369		

NOTA: Valor total de la Susceptibilidad de cada talud, observando que el valor total de la susceptibilidad en la Estación N°03 es de 0.369. **FUENTE:** Propia (2021).

4° Ahora se evaluará el nivel de susceptibilidad mediante la matriz la cual está dividida en rangos.

Tabla 35

Matriz de Susceptibilidad

NIVEL	RANGO
Susceptibilidad Muy Alto	0.400 – 500
Susceptibilidad Alto	0.300 - 0.400
Susceptibilidad Medio	0.200 – 0.300
Susceptibilidad Bajo	0.100 - 0.200

NOTA: En la tabla se muestra encerrado de color rojo el resultado en la matriz, la Estación N°03 se encuentra con un nivel de susceptibilidad Alto por lo que el rango oscila en 0.400 a 0.500; y en la evaluación de esto obtuvimos como resultado 0.369. **FUENTE**: Propia (2021).

3.6.3.3.Etapa de laboratorio

Ensayo de Corte Directo

Tabla 36

Resultados del Corte Directo en Roca

Código de Muestra	Día. "D" (mm)	Tipo de Discont.	Fuerza Normal	Fuerza de Corte	Fuerza Normal	Fuerza de Corte	ISRM Su Met	
Mucsira	(IIIII)						Cohesión (MPa)	Angulo de Fricción Residual
			1.00	1.39	336.05	468.02	0.18	(°) 41.26
			2.00	2.27	672.10	764.42		
M-1	54.72	Natural $(a = 36^{\circ})$	3.00	3.17	1008.16	1066.06		
		(* ',	4.00	4.02	1344.21	1350.22		
			5.00	4.79	1680.26	1610.60		

NOTA: En la tabla se muestra los resultados obtenidos mediante el ensayo de corte directo según la norma ASTM e ISRM que indica que el análisis de la muestra debe ser de diámetro mayor a 54mm aplicando fuerza de corte en KN. **FUENTE:** GEOMEC - Ingeniería de rocas y suelos para la Estabilidad y Seguridad de excavaciones.

Tabla 37

Resultados del Corte Directo en Roca

Código	Día. "D"	Tipo do	Fuerza	Fuerza Normal (kN) Fuerza Fuerza Normal (kN) Fuerza Fuerza de Normal (kPa) Corte (kPa)		S.R. Hen Richards	icher L.R. UPPER
de Muestra	(mm)	Tipo de Discont.				Cohesión (MPa)	Angulo de Fricción Residual(°)
			1.00	368.65	500.84		
		Natural (a = 36°)	2.00	781.69	821.48		
M-1	54.72		3.00	1172.96	1211.91	0.17	41.23
		,	4.00	1551.17	1558.11		
			5.00	1932.11	1840.11		

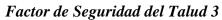
NOTA: Se muestran los resultados obtenidos en el ensayo de corte directo mediante la aplicación del método de Hencher y Richards, 1989 en discontinuidad natural en donde la muestra es sometida a una fuerza de corte normal en KPa. **FUENTE:** GEOMEC - Ingeniería de rocas y suelos para la Estabilidad y Seguridad de excavaciones.

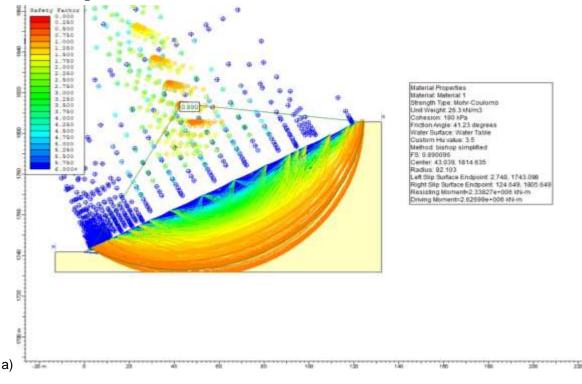
Ensayo de Peso Unitario

Tabla 38

Resultados de Peso Unitario de la Roca

Código de Muestra	Día. "D" (mm)	Altura "h" (cm)	Densidad Seca (gr/cm3)	Densidad Húmeda (gr/cm3)	Peso Específico Aparente (kN/m3)	Contenido de Humedad (%)	Porosidad Aparente (%)
	4.76	1.93	2.63	2.65	26.01	0.86	2.31
M-1	4.76	2.00	2.66	2.68	26.31	0.97	2.65
	4.76	1.91	2.69	2.71	26.60	0.89	2.45
	Promedio		2.66	2.68	26.30	0.91	2.47


NOTA: En la tabla se muestran los resultados de propiedades físicas obtenidos en laboratorio en donde la muestra tiene un diámetro de 4cm, y un peso específico de 26.30 medida necesaria para obtener los resultados adecuados para luego ser procesados en el software Slide. **FUENTE:** GEOMEC - Ingeniería de rocas y suelos para la Estabilidad y Seguridad de excavaciones.


3.6.3.4. Factor de Seguridad

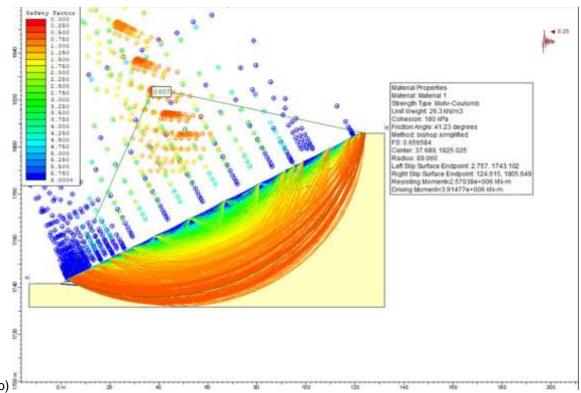
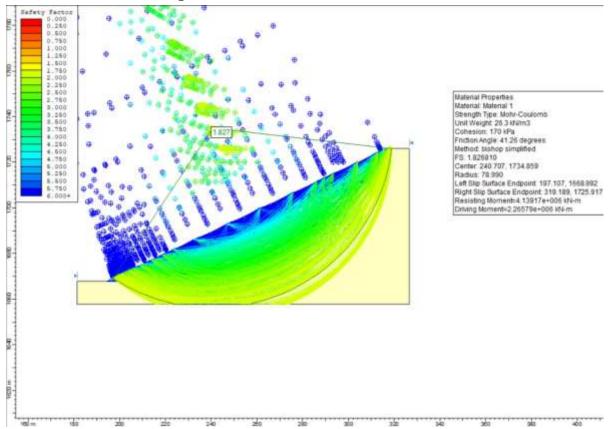

Se analizará mediante el software Slide con los datos obtenidos en laboratorio, cohesión de 0,18 kg/cm², su ángulo de fricción 41,26° y peso unitario 26,30 gr/cc. También se llevó a cabo el diseño con índice de sismicidad que en el departamento de Cajamarca es de 0.25.

Figura 52

NOTA: En la figura **a** se observa el modelo de talud con un factor de seguridad de 0.846689 mediante el Método de Bishop Simplifed, en cambio en la figura **b** se le aplica un índice de sismicidad de 0.25 obteniendo un F.S. de 0.483; por lo que ninguno de los dos modelos es estable ya que el F.S. > 1 según el Manual de Protección de Taludes (Pág. 113). **FUENTE:** Propia (2021)



3.6.3.5. Diseño de Estación

Se ha considerado que existe un gran problema con la caída de rocas y en ocasiones flujos de detritos en épocas de invierno, para este talud, también presenta un deslizamiento rotacional, por ello es considerada suelo; presenta un ángulo de pendiente 28° y un Factor de Seguridad de 0,890. Se propone disminuir el ángulo de pendiente a 25° por lo que se tiene una roca competente, pero está cubierta por vegetación y rocas sueltas, de esta manera se logrará un factor de seguridad adecuado de 1.827 y por lo cual será una manera fácil y poco costosa para realizar.

Figura 53

Resultado de Factor de Seguridad

NOTA: La figura muestra el resultado aplicado en Talud N°03; se disminuyó el ángulo de pendiente de 28° a 25° obteniendo un F.S. de 1.827. **FUENTE:** Propia (2021).

3.6.4. Estación 4

3.6.4.1. Descripción

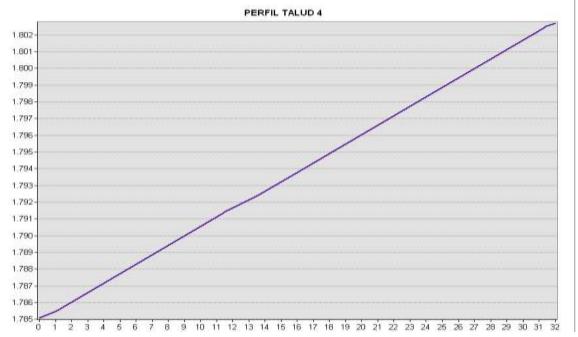
Se encuentra ubicado en las coordenadas E:735886, N:9218985 en la última estación se produce la caída de suelo, con una altura de 20 m aproximadamente es un talud de 50m de longitud de ancho que en tiempo de lluvias entre (Noviembre – Abril) se manifiestan caídas de rocas en gran cantidad; ya que, en la pendiente pueden llegar

Figura 54

Foto Panorámica Estación 4

NOTA: Deslizamiento de roca y suelo a la vía de acceso al caserío de Jancos. **FUENTE:** Propia (2021).

Figura 55


Caída de Rocas

NOTA: a) Se observa una caída de rocas de gran tamaño en la carretera principal b) Se muestra la caída de rocas que ha ocupado un carril de la pista que son un peligro latente para los conductores. **FUENTE:** Propia (2021).

Figura 56

Perfil de Talud 4

NOTA: En la figura se muestra el perfil del talud 4, el cual tiene una altura de 17 m y profundidad de 32 m, se obtuvo en el Software ArcGis. **FUENTE:** Propia (2021).

3.6.4.2. Análisis de susceptibilidad

Mediante el Instrumento de Observación de Factores Condicionantes y Desencadenantes se obtuvo los valores que presenta la estación 4 en campo, por lo que se describirá los pasos para encontrar el valor de susceptibilidad de la estación.

1° Se obtuvo los valores de la estación 4 en el instrumento de Observación.

Tabla 39

Instrumento de Evaluación Estación 4

TITU	JLO DEL PR	OYECTO	"Análisis y Determinación De Zonas Susceptibles Para Mitigar Los Efectos De Movimientos En Masa, Caserío Jancos, Provincia San Pablo, Región Cajamarca, 2021"				
UBIC	CACIÓN	Departamento	Cajamarca	Provincia	San Pablo	Distrito: San Luis	
EST.	04	Este	735886	Norte	9218985	Cota: 2 985 m.s.n.m.	
Factores	Parámetro	Descriptores	Valores Ponderado s	Valores en Campo		Fotografía	
	getal	Matorral arbustivo	0.558				
	Cobertura Vegetal	Agricultura costera y andina	0.263	x			
	ertur	Plantación Forestal	0.122				
	Cob	Bosque seco de montaña	0.057			Mary Mary	
es Geomorfología	Escarpes	0.592					
	Colina Volcánica	0.262	x	A VO			
	Pie de monte	0.101					
nte	9	Llanura	0.045		1		
Factores Condicionantes		Depósitos Cuaternario	0.444		Series - Iv		
\ondi		Lutitas / Limoarcilla	0.252				
ores (ogía	Brechas - Tobas andesítica	0.148	x			
Facto	Litología	Calizas Margosas/ Lutitas	0.083		A CONTRACTOR		
		Arenisca	0.047				
		Caliza Masiva	0.027		ts tower	10 To 10 10 15 16	
		> 45°	0.503		die alle		
	ntes	25° - 45°	0.260	x			
	Pendientes	10° - 25°	0.134				
	P _c	5° - 10°	0.068				
		0° - 5°	0.035				

Factor Desencadenante		MUY ALTA > a 250 mm	0.482	x		_
	ones	ALTA (160 mm a 250 mm)	0.270			
	Ğ.	MODERADA (90 a 160 mm)	0.141			
	Preci	BAJA (50 mm a 90 mm)	0.068			
		$MUY BAJA \ (< a \ 50 \ mm \)$	0.039			

NOTA: En la tabla se muestra los resultados obtenidos en campo de la evolución de factores condicionantes y desencadenantes en la Estación N°04; obteniendo que en todos los descriptores presenta el mayor valor. **FUENTE:** Propia (2021).

2° Ahora tenemos que hallar el valor total de los factores condicionantes y desencadenantes. En este caso hallamos el valor total de los Factores Condicionantes, mediante:

$$V.T = VCE * VC + VCE * VC + VCE * VC + VCE * VC$$

Tabla 40

Resultado de Evaluación de Factores Condicionantes

Evaluación de Factores Condicionantes									
Descriptores	Cobertura Vegetal		Geomorfología		Pendientes		Litología		VALOR TOTAL
	VCE	VC	VCE	VC	VCE	VC	VCE	VC	
TALUD 4	0.057	0.263	0.122	0.262	0.263	0.260	0.558	0.148	0.198

NOTA: En la tabla se muestra los resultados de la evaluación de los factores condicionantes de la Estación N°04, donde halla el valor total de los descriptores. **FUENTE**: Propia (2021).

Por otro lado, la evaluación de Factores Desencadenantes es un solo parámetro, por lo que se considera lo que hallamos en campo como valor total.

Tabla 41

Resultado de Evaluación de Factores Desencadenantes

	Evaluación de Factores Desencadenante.	S
Descriptores	Precipitaciones Pluviales	VALOR TOTAL
TALUD 4	MUY ALTA (> a 250 mm)	0.482

NOTA: En la tabla se muestra los resultados de la evaluación de los factores desencadenantes de la Estación N°04, donde se considera como valor total a lo encontrado en campo. **FUENTE**: Propia (2021).

3° Luego de haber obtenido los valores totales de ambos factores, hallaremos la susceptibilidad, la cual se considera el peso ponderado para evaluar es de 0.5 para cada factor:

Tabla 42

Resultado de la Evaluación de la Susceptibilidad

SUSCEPTIBILIDAD									
FACTORES	Factores Condicio	ndicionantes Factores Desencadenantes			VALOR				
	VALOR	PESO	VALOR	PESO	TOTAL				
TALUD 4	0.198	0.5	0.482	0.5	0.340				

NOTA: Valor total de la Susceptibilidad de cada talud, observando que el valor total de la susceptibilidad en la Estación N°04 es de 0.340. **FUENTE:** Propia (2021).

4° Ahora se evaluará el nivel de susceptibilidad mediante la matriz la cual está dividida en rangos.

Tabla 43

Matriz de Susceptibilidad

NIVEL	RANGO
Susceptibilidad Muy Alto	0.400 – 500
Susceptibilidad Alto	0.300 – 0.400
Susceptibilidad Medio	0.200 - 0.300
Susceptibilidad Bajo	0.100 - 0.200

NOTA: En la tabla se muestra encerrado de color naranja el resultado en la matriz, la Estación N°04 se encuentra con un nivel de susceptibilidad Alto por lo que el rango oscila en 0.300 a 0.400; y en la evaluación de esto obtuvimos como resultado 0.340. **FUENTE**: Propia (2021).

3.6.4.3. Etapa de Laboratorio

Corte Directo en Roca

Tabla 44

Resultados del Corte Directo en Roca

Código de Muestra	Día.	Tipo de Discont.		Fuerza	Fuerza Normal	Fuerza de Corte	ISRM Suggested Method	
	"D" (mm)			de Corte			Cohesión (MPa)	Angulo de Fricción Residual (°)
			1.00	1.39	336.05	468.02		,
			2.00	2.27	672.10	764.42		
M-2	54.72	Natural (a = 36°)	3.00	3.17	1008.16	1066.06	0.18	41.26
			4.00	4.02	1344.21	1350.22		
			5.00	4.79	1680.26	1610.60		

NOTA: En la tabla se muestra los resultados obtenidos mediante el ensayo de corte directo según la norma ASTM e ISRM que indica que el análisis de la muestra debe ser de diámetro mayor a 54mm aplicando fuerza de corte en KN. **FUENTE:** GEOMEC - Ingeniería de rocas y suelos para la Estabilidad y Seguridad de excavaciones

Tabla 45

Resultados del Corte Directo en Roca

Código de Muestra	Día. "D" (mm)	Tipo de Discont.	Fuerza Normal (kN)	UPPER		S.R. Hen Richards	icher L.R. UPPER
				Fuerza Normal (kPa)	Fuerza de Corte (kPa)	Cohesión (MPa)	Angulo de Fricción Residual(°)
	54.72	Natural (a = 36°)	1.00	368.65	500.84		
			2.00	781.69	821.48		
M-2			3.00	1172.96	1211.91	0.17	41.23
			4.00	1551.17	1558.11		
			5.00	1932.11	1840.11		

NOTA: Se muestran los resultados obtenidos en el ensayo de corte directo mediante la aplicación del método de Hencher y Richards, 1989 en discontinuidad natural en donde la muestra es sometida a una fuerza de corte normal en KPa. **FUENTE:** GEOMEC - Ingeniería de rocas y suelos para la Estabilidad y Seguridad de excavaciones

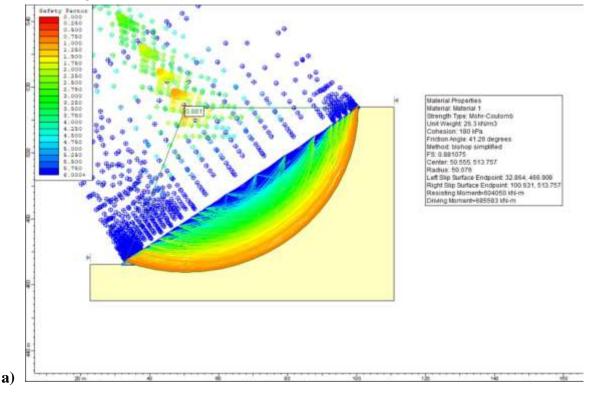
Ensayo de Peso Unitario

Tabla 46

Resultados de Peso Unitario de la Roca

Código de Muestra	Día. "D" (mm)	Altura "h" (cm)	Densidad Seca (gr/cm3)	Densidad Húmeda (gr/cm3)	Peso Específico Aparente (kN/m3)	Contenido de Humedad (%)	Porosidad Aparente (%)
	4.76	1.93	2.63	2.65	26.01	0.86	2.31
M-2	4.76	2.00	2.66	2.68	26.31	0.97	2.65
	4.76	1.91	2.69	2.71	26.60	0.89	2.45
	Promedio		2.66	2.68	26.30	0.91	2.47

NOTA: En la tabla se muestran los resultados de propiedades físicas obtenidos en laboratorio en donde la muestra tiene un diámetro de 4cm, y un peso específico de 26.30 medida necesaria para obtener los resultados adecuados para luego ser procesados en el software Slide. **FUENTE:** GEOMEC - Ingeniería de rocas y suelos para la Estabilidad y Seguridad de excavaciones.


3.6.4.4. Factor de Seguridad

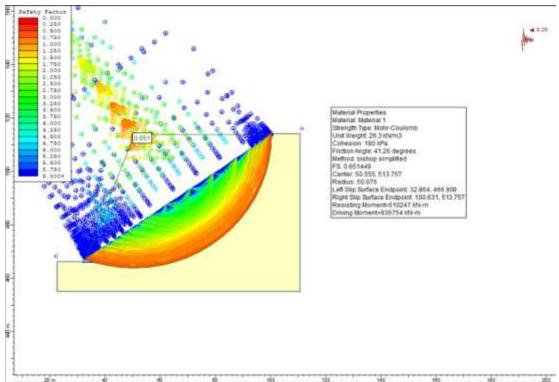
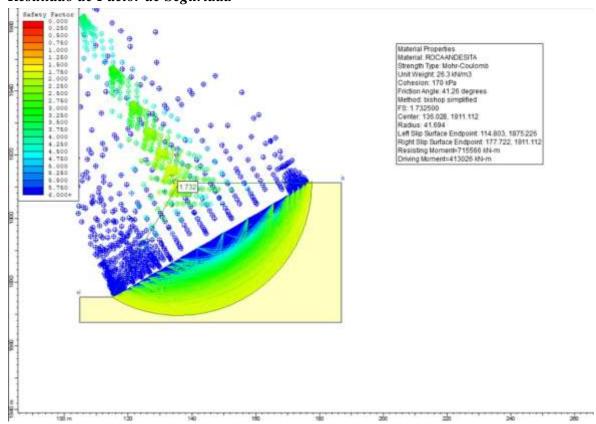

Se analizará mediante el software Slide con los datos obtenidos en laboratorio, cohesión de 0,17 kg/cm², su ángulo de fricción 41,23° y peso unitario 26,30 gr/cc. También se llevó a cabo el diseño con índice de sismicidad que en el departamento de Cajamarca es de 0.25.

Figura 57

Factor de Seguridad Talud 4

NOTA: En la figura **a** se observa el modelo de talud con un factor de seguridad de 0.724795 mediante el Método de Bishop Simplifed, en cambio en la figura **b** se le aplica un índice de sismicidad de 0.25 obteniendo un F.S. de 0.459; por lo que ninguno de los dos modelos es estable ya que el F.S. > 1 según el Manual de Protección de Taludes (Pág. 113). **FUENTE:** Propia (2021).



3.6.4.5. Diseño de estación

En esta estación existe la problemática de caída de rocas con mucha frecuencia y más en épocas de invierno acompañada de suelo y lodo debido a que existe poca cobertura vegetal y su pendiente del talud es muy inclinada, para este talud se propone modifica el ángulo de talud a 30° al ser un talud mediano esto influirá a que exista un factor de seguridad y adecuado de la zona de 1.732.

Figura 58

Resultado de Factor de Seguridad

NOTA: La figura muestra el resultado aplicado en Talud N°04; se disminuyó el ángulo de pendiente de 35° a 30° obteniendo un F.S. de 1.732. **FUENTE:** Propia (2021).

CAPÍTULO IV. DISCUSIÓN Y CONCLUSIONES

4.1 Discusión

El desarrollo de la investigación plasma la problemática que existe en la zona de estudio por constantes movimientos de masa, a lo que lleva poder deducir e indicar que los produce, es pues de esta manera que a partir de los resultados obtenidos se acepta la hipótesis general que establece que, al analizar y determinar las zonas susceptibles se podrá mitigar los movimientos en masa en los taludes de la zona, teniendo en cuenta los diferentes análisis geológicos, geodinámicos, análisis de laboratorio de roca, suelo y que al aplicar el protocolo de CENEPRED nos mostrará un índice de alta peligrosidad por ello se propondrá un diseño de drenajes, modelamiento de talud y geomallas.

Se llegó a delimitar las zonas susceptibles mediante el mapeo geológico, y diferentes técnicas de investigación como el reconocimiento de las estructuras de la zona, su geomorfología, la geodinámica externa que predomina e hidrología, esto aporta a realizar el método de Proceso de Análisis Jerárquico para obtener parámetros de evaluación como la vegetación, pendientes, geomorfología, litologías y precipitaciones que son considerados factores condicionante y desencadenante que se encuentran en la zona. De esta manera podemos hallar la susceptibilidad y con la ayuda de las herramientas SIG al combinar cada mapa de los factores se obtiene el mapa de susceptibilidad identificando las zonas que presenta un peligro geológico.

Para dar un contraste más exacto de los resultados obtenido anteriormente se analizó muestras de roca y suelo para obtener las propiedades físicas y mecánicas de estas como la cohesión, el ángulo de fricción y peso unitario de esta manera se adquirió valores exactos de las estaciones las cuales nos sirvieron para modelar los taludes y

expresar su estabilidad mediante el factor de seguridad por el software Slide. De esta manera, proponemos tres métodos para lograr mitigar los movimientos en masa, el ángulo del talud es uno de lo más factores que ocasionan estos, por ello se opta por modificar la geometría del talud disminuyendo el ángulo de pendiente para obtener un factor de seguridad mayor que 1; para reforzar este factor se propone colocar geomallas o geoceldas, ambas ayudan con la estabilidad del talud y aportan con el medio ambiente, por ultimo debido a la épocas de invierno donde las precipitaciones son uno de los factores que desencadenan estos movimientos en masa se plantea un diseño de drenajes en la parte superior de los taludes, evitando peligros para la población como para los transportistas.

Estos resultados guardan relación con Ramos (2018), Guataquira (2018) y Sosa (2016), quienes mediante la observación y cartografiado de las zonas, identifican que la ubicación geográfica, condiciones geológicas, su geomorfología del talud y las constantes precipitaciones en el tiempo de invierno, son los factores que desencadenan la susceptibilidad y los movimientos de masa. También los autores Ramos (2018), Guataquira (2018), Zamalloa y Medina (2019) y Sosa (2016); concluyen que las herramientas del SIG permiten obtener datos de geografía espacial, los cuales son procesados para obtener el mapa de susceptibilidad por movimientos en masa identificando las áreas más susceptibles de la zona.

Por otro lado, el estudio guarda relación con Zamalloa y Medina (2019) quienes optan por realizar un estudio geotécnico de la zona mediante calicatas para determinar las propiedades físicas y mecanizas del suelo y roca. Esto es de acorde con lo que en el estudio se halla. Así mismo, Carrillo (2015) opta por trabajar con el

Manual de CENEPRED mediante el método de Procesos de Análisis Jerárquico a fin de poder delimitar zonas propensas ante la ocurrencia de un movimiento de masa, identificando los factores condicionantes y desencadenantes. Contrariamente Sosa (2016), solucionó su problema por el método del Análisis Estadístico Bivariante; el que presenta una metodología diferente, pero llega a evaluar la susceptibilidad de la zona mediante factores condicionante de la zona de estudio. Pero en lo que no concuerda el estudio de Guataquira (2018), referidos con la presente investigación, es que determinó la capacidad de retención de agua por parte del suelo, mediante la aplicación del Índice Topográfico de Humedad, los que genera los flujos de tierra en las laderas más críticas.

Las únicas limitantes que se tuvo para el desarrollo de la investigación es que fue trabajada durante los meses de invierno por lo que las lluvias fueron constantes y se produjo un huayco que fue una dificultad para el acceso al talud 1, llegando a postergar las salidas hasta que las precipitaciones sean menores o escazas. Por otro lado, se tuvo que en la ciudad de Cajamarca no realizan el ensayo de Corte Directo en Roca, debido a esto se tuvo que enviar a la ciudad de Lima para su respectivo estudio.

Se recomienda para trabajos posteriores realizar una evaluación de vulnerabilidad, esto ayudará a ver el riesgo que tiene el caserío de Jancos y sus anexos. Se recomienda a las entidades públicas que al ejercer esta metodología de mitigación de movimientos se tenga en cuenta que esta investigación abarca una pequeña parte de los deslizamientos en la provincia de San Pablo, por lo que se recomienda realizar más investigaciones con el fin de mitigar todo o gran porcentaje de los movimientos

en masa que perjudican a la población, con el fin de que las familia y pobladores se sientan seguros en donde viven y trabajan. Se recomienda a la Municipalidad de San Pablo, a tomar medidas preventivas frente a cualquier evento de movimiento en masa.

4.2 Conclusiones

La zona fue analizada mediante un análisis geológico, hidrológico, geodinámico, estructural usando técnicas de mapeo geológico, además se realizó estudios de laboratorio de suelo y roca determinando las propiedades físicas y mecánicas de las muestras. Se determinó la susceptibilidad mediante fichas de los factores condicionantes y desencadenantes por el método de Proceso de Análisis Jerárquico del Manual de CENEPRED; logrando determinar que la zona de estudio se encuentra entre los valores de Muy alta y alta susceptibilidad, que las muestras de suelo tienen una clasificación en SP y SC, y las muestras de roca son moderadamente competentes Por ello se establece tres métodos de mitigación a los movimientos de masa en los taludes como cambio de geometría, aplicación de geomallas o geoceldas y para dos taludes preferentemente se le aplicará una de zanja de coronación.

Mediante las técnicas de investigación, se delimitó las zonas susceptibles que afectan al caserío de Jancos, reconociendo que la zona pertenece a la unidad litoestratigráfica de la Formación Llama, también se observó que su geomorfología presenta laderas empinadas, colinas, valles en v debido a la erosión de las quebradas, y zonas escarpadas; por otro lado se observa que existen diferentes quebradas, canales de agua que influyen en los movimientos de masa, por ello se reconoció 4 estaciones las cuales son las más perjudiciales, reconociendo su geodinámica como deslizamiento

rotacional, caída de rocas, vuelco de rocas, flujos de detritos, deslizamiento por fallamiento.

Se logró determinar las propiedades físicas y mecánicas de las muestras de suelos y rocas; teniendo como resultados para la muestra 1 de suelo que está clasificada como SP con un ángulo de fricción 26,10°; cohesión 0,00 kg/cm², y de peso unitario 1,623 gr/cm³, la muestra 2 se obtuvo que su clasificación SUCS es SC con un ángulo de fricción de 20,30°, cohesión 0,11kg/cm² y peso unitario de 1,544 gr/cm³; para los ensayos de roca, en la muestra 3 se obtuvo que el ángulo de fricción es de 41,26°, su cohesión 0.18 MPa y peso unitario de 26,30 kN/m³ y en la muestra 4 se obtuvo que el ángulo de fricción es de 41,26°, su cohesión 0.18 MPa y peso unitario de 26,30 kN/m³.

Se logró estimar la susceptibilidad de cada talud mediante el Proceso de Análisis Jerárquico, se trabajó con factores que predominan en la zona de estudio, los condicionantes como la cobertura vegetal, geomorfología, pendientes y litología, por otro lado, los desencadenantes como las precipitaciones; con estos parámetros se les designo descriptores los cuales obtuvieron un peso ponderado que usamos para hallar la susceptibilidad de cada talud. Por ello el talud 1 con un valor de 0,483 y el talud 2 con un valor de 0,423 se los clasifíca como Susceptibilidad Muy Alta; el talud 3 y 4 con valores de 0,369 y 0,340 respectivamente son clasificados como Susceptibilidad Alta.

Al procesar los análisis de laboratorio en la herramiento Slide V.5.0, por el método de Bishop's Simplified, logrando obtener un Factor de Seguridad de cada talud y los

resultaron fueron los siguientes; en el talud 1 el F.S en estado estático es de 0,553, y F.S pseudoestático es de 0,370; en el talud 2 el F.S en estado estático es de 0,712, y F.S pseudoestático es de 0,482 en el talud 3 el F.S en estado estático es de 0,890, y F.S pseudoestático es de 0,657 y en el talud 4 el F.S en estado estático es de 0,881 y F.S pseudoestático es de 0,651; por ello se concluye que ninguno de los taludes es estable, porque no presentan un F.S. > 1.

Se propuso tres diseños de mitigación para los taludes de acuerdo a las propiedades físicas y factores que estos presentan, para el talud 1 se propone un cambio de geometría (ángulo de pendiente), para ser reforzado una geo malla y debido a que al costado del talud está la quebrada Lajos se propone una zanja de coronación, para el talud 2 un cambio de geometría y reforzarlo con geoceldas; para el talud 3 y el talud 4 solo un cambio de geometría.

REFERENCIAS

- Almaguer, Y. y Guardado, R. (2006). *Tipología de Movimientos de Masas desarrollados en el Territorio de Moa, Cuba*. Revista Minería y Geología v. 22 n. 1 ISSN 0258 5979. Instituto Superior Minero Metalúrgico de Moa. Recuperado de: https://www.redalyc.org/pdf/2235/223517653001.pdf
- Anchelía, D. y Mori, X. (2020). Determinación de Zonas Susceptibles a Inundaciones y Análisis Comparativo del Proceso de Análisis Jerárquico (Ahp) Y Random Forest (Rf). Caso Estudio: Cuenca Baja Del Río Chancay Lambayeque. Lambayeque, Perú. Título Profesional de Ingeniero Geógrafo en la Universidad Nacional Mayor de San Marcos. Recuperado de: https://cybertesis.unmsm.edu.pe/handle/20.500.12672/15868
- Aristizábal, E., Gamboa, M., Leoz, F. (2010). Sistema de Alerta Temprana por Movimientos en Masa Inducidos por lluvia para el Valle de Aburrá, Colombia. Revista Escuela De Ingeniería De Antioquía, Issn 1794-1237. Envigado, Colombia. Número 13, p. 155-169. Escuela de Ingeniería de Antioquia, Medellín (Colombia). Recuperado de: https://www.redalyc.org/pdf/1492/149213727011.pdf
- Aristizábal, E., López, S. Sánchez, O. et. Al (2019). Evaluación de la Amenaza por Movimientos en Masa Detonados por lluvias para una Región de los Andes Colombianos Estimando la Probabilidad Espacial, Temporal, y Magnitud. DOI: 10.18273/revbol.v41n3-2019004 Recuperado de: https://www.redalyc.org/jatsRepo/3496/349664643006/index.html
- Aristizábal, E., Martínez, H. y Velé, J. (2010). *Una Revisión sobre el Estudio de Movimientos en Masa Detonados por Lluvias*. Colombia: Rev. Acad. Colombia Cienc. 34 (131): 209-227, 2010. ISSN 0370-3908. Recuperado de:

 https://www.researchgate.net/publication/234076770 Una revision sobre el estudio de movimientos en masa detonados por lluvias/link/00b4951a0b2e8c0f3f000000/download

- Blanco, F. (2013). Evaluación de la Susceptibilidad a Movimientos en Masa en la Zona Central de la Cuenca del Río Mantaro Region Junín. Lima, Perú. Título Profesional de Ingeniero Geólogo. Universidad Nacional de Ingeniería. Recuperado de: http://cybertesis.uni.edu.pe/bitstream/uni/1138/1/blancorf.pdf
- Caballero, H. (2015). Análisis del Peligro y Vulnerabilidades por Movimiento de Masas de Tierra para Mitigar los Riesgos en el Distrito de Cuenca. Huancavelica, Perú. Grado Académico de Doctor en Ciencias Ambientales de la Universidad Nacional de Huancavelica. Recuperado de: http://repositorio.unh.edu.pe/handle/UNH/2172
- Caballero, H. (2018). Análisis del Peligro y Vulnerabilidades por Movimiento de Masas de Tierra para Mitigar los Riesgos en el Distrito de Cuenca. Huancavelica, Perú. Tesis grado académico de doctor en: Ciencia Ambientales. Universidad Nacional de Huancavelica. Recuperado de: https://repositorio.unh.edu.pe/handle/UNH/2172
- Cárdenas, J. (2021). Vulnerabilidad y Peligros por Movimientos en Masa en los Torrentes Pedregal y Vizcachera de Reciente Expansión Urbana en el Distrito Lurigancho Chosica, Lima. Tesis de pregrado, Universidad Nacional Mayor de San Marcos. Repositorio institucional Cybertesis UNMSM. Recuperado de: https://cybertesis.unmsm.edu.pe/handle/20.500.12672/16489
- Carrillo, R. (2015). Evaluación de Zonas Susceptibles a Movimientos en Masa del Tipo de Deslizamiento en el Centro Poblado de Carampa, Distrito de Pazos, Provincia de Tayacaja, Región Huancavelica, Aplicando el Protocolo de Cenepred. Huancavelica, Perú. Tesis para optar el título profesional de Ingeniero Geólogo. Universidad Nacional de Piura, Perú. Recuperado de: https://repositorio.igp.gob.pe/handle/20.500.12816/938
- Castro, R. (2014). Evaluación del Riesgo de Desastres por Peligros Naturales y Antrópicos del Área Urbana del Distrito de Punta Hermosa. Lima, Perú. Título para Optar al Título de Geógrafo. Repositorio de la Universidad Nacional de San Marcos. Recuperado de: https://cybertesis.unmsm.edu.pe/han

- CENEPRED (2014). Manual para la Evaluación de Riesgos Originados por Fenómenos Naturales 2da

 Versión. Recuperado de: https://www.cenepred.gob.pe/web/wp-content/uploads/Guia Manuales/Manual-Evaluacion-de-Riesgos v2.pdf
- Chunga, U. (2016). Evaluación de la Gestión de Riesgos de Desastres Naturales y la Capacidad de Respuesta a las Emergencias en las Instituciones Educativas de la UGEL la Unión Arequipa, 2016. Arequipa Perú. Título para optar Magíster en Ciencias en la Universidad Nacional De San Agustín De Arequipa. Recuperado de: http://repositorio.unsa.edu.pe/handle/UNSA/5876
- Cruden, D. y Varnes, D. (1996). *Landslide Types and Processes*. Special Report, Transportation Research Board, National Academy of Sciences. Washington D.C. 247,36-75 p. Recuperado de: http://www.researchgate.net/publication/269710355
- Cruzado, G. Act. Crisólogo, M. (2009). *Estudio de Geología*. Recuperado de: https://zeeot.regioncajamarca.gob.pe/sites/default/files/GEOLOGIA.pdf
- De La Cruz, D. W., y Ramírez, D. R. (2019). Análisis de Susceptibilidad Geotécnica y su Influencia en los Movimientos de Masa en el Caserío Huaynamarca, Cajamarca 2019. Tesis de licenciatura. Repositorio de la Universidad Privada del Norte. Recuperado de http://hdl.handle.net/11537/23017
- Elmes, M. (2006) Análisis y Evaluación de Riesgos por Movimientos en Masa, Inundación y Sismicidad en el Piedmont de la Comuna de Puente Alto. Santiago, Chile. Memoria para Optar al Título de Geógrafo.

 Repositorio Académico de la Universidad de Chile. Recuperado de: http://repositorio.uchile.cl/handle/2250/100928
- Estepa, J. y Talero, Y. (2016). Zonificación de Susceptibilidad y Amenaza por Movimientos en Masa para el Municipio de Cuítiva Boyacá a Escala 1:25.000. (Trabajo de pregrado). Universidad Pedagógica y

"ANÁLISIS Y DETERMINACIÓN DE ZONAS SUCEPTIBLES PARA MITIGAR LOS EFECTOS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA, 2021"

Tecnológica de Colombia, Sogamoso. Recuperado de: http://repositorio.uptc.edu.co/handle/001/1686

GEMMA (2007). Movimientos en Masa en la Región Andina: Una Guía para la Evaluación de Amenaza.

Recuperado
de:
https://repositorio.segemar.gov.ar/handle/308849217/2792;jsessionid=ED5D3D33FCF5051633C2B

E7BAD6E486D

Guataquira, M. (2018). Análisis de Movimientos en Masa mediante la aplicación de SIG en la Ciudad de Villavicencio en el Sector Cerro de Buenavista Villavivencio, Colombia. Título para optar el título de Ingeniero Civil. Repositorio de la Universidad Santo Tomás. Recuperado de: https://repository.usta.edu.co/handle/11634/12019

Hernández, M. (2016). Evaluación Geodinámica de Laderas y Taludes entre Sunudén San Miguel, Jangalá,

Provincia de San Miguel. Cajamarca, Perú. Repositorio Universidad Nacional de Cajamarca.

Recuperado de: https://repositorio.unc.edu.pe/handle/UNC/114

Highland, L., Bobrowsky, P. (2008). *Manual de Derrumbes: Una guía para entender todo sobre los Derrumbes*. Virginia, Estados Unidos. Recuperado de: http://bvpad.indeci.gob.pe/doc/pdf/esp/doc2665/doc2665-contenido.pdf

INDECI (2006). *Manual Básico para la Estimación de Riesgos*. Unidad de Estudios y Evaluación de Riesgos.

Lima, Perú. Recuperado de:

http://bvpad.indeci.gob.pe/doc/pdf/esp/doc319/doc319 contenido.pdf

Lavado, H. (2019). Vulnerabilidad del Poblado de Cajamarquilla ante los Movimientos en Masa. Distrito de Lurigancho – Chosica. Lima, Perú. Tesis título profesional de Geógrafo, Universidad Nacional Mayor de San Marcos. Recuperado de:

https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/11285/Lavado_sh.pdf?sequenc e=3&isAllowed=y

- Marqués, G. y Lukiantchuki, J (2016). Evaluation of the Stability of a Highway Slope Through Numerical Modeling. Redalyc. ORG. Brasil. Número (1 -17) DOI: 10.15446/dyna.v84n200.53850 Recuperado de: https://www.redalyc.org/jatsRepo/496/49650910015/html/index.html
- Montalbán, L. (2015). *Identificación de Movimientos en Masa entre las Localidades de Cancha que y San Miguel del Faique con Fines de Estabilización*. Piura, Perú. Título Profesional De Ingeniero Geólogo, Universidad Nacional de Piura. Recuperado de: http://repositorio.unp.edu.pe/bitstream/handle/UNP/710/GEO-MON-SAY15.pdf?sequence=1&isAllowed=y
- Ozdemir, A., and Altural, T. (2013). A Comparative Study of Frequency Ratio, Weights of Evidence and Logistic Regression Methods for Landslide Susceptibility Mapping: Sultan Mountains, Sw Turkey. Journal of Asian Earth Sciences, 64, 180-197. DOI: 10.1016/j.jseaes.2012.12.014.

 Recuperado de: https://www.sciencedirect.com/science/article/abs/pii/S1367912012005585
- Pérez, R. y Rojas, J. (2005). Estudio de Vulnerabilidad ante Deslizamientos de Tierra en la Microcuena las Marías Telica, León. Managua, Colombia. Trabajo de Diploma en la Universidad Nacional Agraria.

 Recuperado de: https://repositorio.una.edu.ni/1077/
- Puma, E. (2020). Zonificación de Peligros por Movimientos en Masa en la Microcuenca Acomayo Cusco.

 Perú. Tesis Bachiller, Universidad Peruana Unión. Repositorio de Tesis Universidad Peruana Unión.

 Recuperado de: https://repositorio.upeu.edu.pe/handle/UPEU/3766
- Ramos, R. (2018). Estudio de la Susceptibilidad al Deslizamiento de Laderas en el Estado de Guerrero, México, Aplicando Tecnologías de Información Geográfica. Tesis Doctoral leída en la Universidad Rey Juan Carlos de Madrid en 2018. Repositorio Universidad Rey Juan Carlos España. Recuperado de: http://hdl.handle.net/10115/15869

- Reyes, W. (1980). *Geología del Cuadrángulo de Cajamarca, San Marcos, Cajabamba, Serie A, Boletín N° 31*.

 Instituto Geológico Minero y Metalúrgico. 104 p. Recuperado de: http://bvpad.indeci.gob.pe/doc/pdf/esp/doc319/doc319 contenido.pdf
- Sosa, N. (2016). Análisis De Susceptibilidad A Los Peligros Geológicos Por Movimientos En Masa Poblados

 De Pampamarca Y Acobamba, Región Huánuco. (Tesis de Título). Repositorio de la Universidad

 Nacional del Altiplano. Recuperado de: http://repositorio.unap.edu.pe/handle/UNAP/2969
- Suarez, J. (1998). *Deslizamientos y Estabilidad de Taludes en Zonas Tropicales*. Recuperado de: https://www.erosion.com.co/deslizamientos-y-estabilidad-de-taludes-en-zonastropicales.html
- Tarazona, J. (2018). Estimación del Riesgo por Movimientos en Masa en a Subcuenca del Río Ancash Yungay 2016. Ancash, Perú. Título Profesional De Ingeniero Ambiental. Universidad Nacional "Santiago Antúnez de Mayolo". Repositorio Alicia. Recuperado de: http://repositorio.unasam.edu.pe/handle/UNASAM/2227
- Vila, R. Y Vásquez, W. (2016). Evaluación del Riesgo Originado por Movimientos en Masa, Quebrada

 Thuniyoc, Distritos de San Sebastián y San Jerónimo, Cusco. Cuzco, Perú. Universidad Nacional de

 San Antonio Abad del Cusco. Recuperado de:

 http://repositorio.unsaac.edu.pe/handle/20.500.12918/2377
- Villacorta, S., Núñez, S., Obregón, C. y Tatardí, L. (2014). Modelo de Susceptibilidad por Movimientos en Masa en Lima Metropolitana y el Callao. Rev. del Instituto de Investigación (RIIGEO), FIGMMG-UNMSM. Lima, Perú. Vol. 17, N.º 33, pp. 125-129. Recuperado de: https://hdl.handle.net/20.500.12544/2308.
- Zamalloa, M. y Medina, L. (2019). Estudio de Riesgo Geológico por Movimientos en Masa, para la Construcción del Puesto de Salud de Huayllati, del Distrito de Huayllati, Provincia de Grau, Región

"ANÁLISIS Y DETERMINACIÓN DE ZONAS SUCEPTIBLES PARA MITIGAR LOS EFECTOS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA, 2021"

Apurímac. Perú. Título profesional de Ingeniero Geólogo. Universidad Nacional de San Antonio Abad

del Cusco. Recuperado de: http://repositorio.unsaac.edu.pe/handle/20.500.12918/4128

ANEXOS

ANEXO Nº 01. Ensayo de Corte Directo Muestra Nº 01

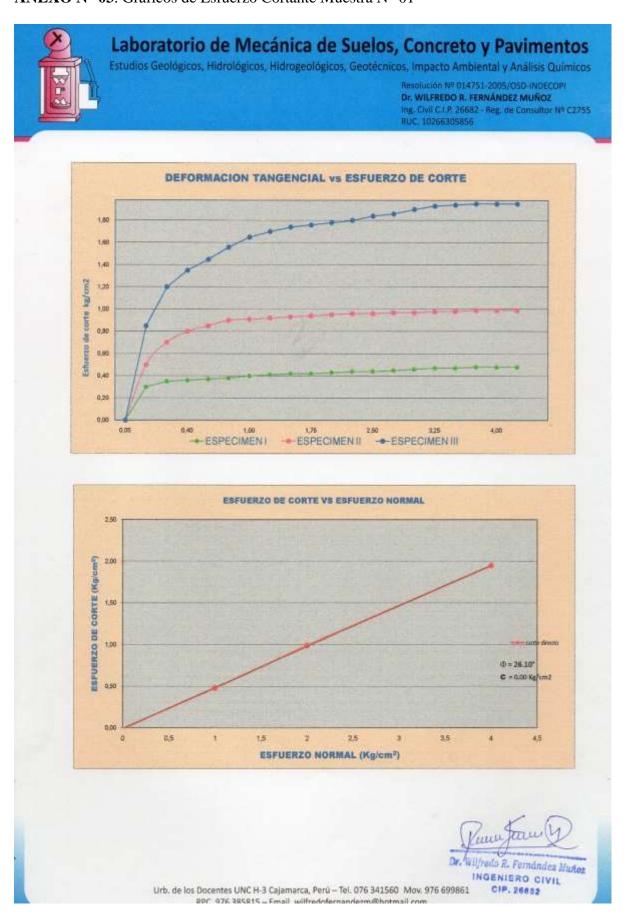


ENSAYO DE CORTE DIRECTO ASTM D 3080

TESIS	: ANÁLISIS Y DETERMINACIÓN DE ZONAS SUSCEPTIBLES PARA MITIGAR LOS EFECTOS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA, 2021							
UBICACIÓN	: CASERIO JAI	NCOS, PROVINC	IA SAN PABLO	, REGIÓN CAJ	AMARCA			
MUESTRA	: N º1 - PROFL	JNDIDAD (m) : 3	,00	COORDENADAS	UTM: E 736697, N 9:	115659		
TIPO DE MUESTRA	: REMOLDEADA					100000		
TESISTAS	: BACH, DEYMIA)	N MONTENEGRO H	ERNÁNDEZ Y BAC	H. SARA ESTEFAN	Y LEON ASTOPILCO)		
FECHA	: MAYO DEL 20	21	8					
		CARACTERIS	TICAS DE LA	MUESTRA				
ado o diámetro (cm)	-		Humedad (%)	NAME OF TAXABLE PARTY.	5,64			
Altura inicial de la munstra (i	1,99)	Altura final de la r	nuestru (cm)	1,91	1		
Arma (cm2)	28,27	r.	Densidad humeda	final(gr/cm3)	3,910			
/olumeo (cm3)	56,26		Densidad seca fina	Control of the Contro	1,61			
STEEL TEN		APLICA	CIONES DE C	ARGA				
relocidad de cargo de la maquina (r	mm/min)		0,2	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED				
larga normal (HG)			100	5				
ap. de muestra		12		11		T .		
rafuarro Normai (m) (Ng/rm2)	1	,00	2	,00	4/	00		
of, the course malabras (ct.) (Ng/cec2)	0	,00 ,48 26,30		.00	1,			
if, in rate mixture (ii) (12/csQ) INGULO DE FRICCION II COMESION (Kg/cm2)	OTERNA (0) +	25,10 0,00		.99	I.	95		
afuero Normal (n) (Kg/mO) of, de certe ménho (n) (Kg/cmO) ENGULO DE FRICCION II COMESION (Kg/cm2) Deformación	0	26,10				95 ESFUERZO		
if in anu minto (z) (Kg/crd) INGULO DE FRICCIÓN II COMESION (Kg/cm2)	OTERNA (0) =	25,10 0,00	ESPUERZO	esfuenzo	ESFUERZO	95 ESFUERZO		
of, its rans makes (in) (Eg/cm2) ENGULO DE FRICCION II COMESION (Kgicm2) Deformación	OVTERNA (#) = ESPJERZO DE CONTE	25,10 0,00	ESPLERZO DE CONTE	esfuenzo	ESPUERZO DE CONTE	95		
of its constraints (a) (Eg/cod) ENGULO DE FRECCION II COMESSION (Kg/cm2) Deformación 0,00 0,05	ESPJERZO DE CONTE (Kutori) 0,00 0,30	26,10 0,00 ESFUERZO NORMALIZADO 0,00 0,30	ESFLERZO DE CORTE (Kg/cm²) 0,00 0,50	ESFUERZO NORMALIZADO 0,00 0,25	ESFUERZO DE CONTE (Kglon') 0,00 0,85	ESFUERZO NORMALIZADO		
Operation (a) (Eg/crd) COMESION (Kgicm2) Deformación 0,00 0,05 0,10	ESPUERZO DE CONTE (Kg/tm²) 0,00 0,30 0,35	26,10 0,00 ESFUERZO NORMALIZADO 0,00 0,30 0,35	ESFLERZO DE CONTE (Kajton') 0,00 0,50 0,70	ESFUERZO NORMALIZADO 0,00 0,25 0,35	ESPUERZO DE CONTE (Nglom) 0,00 0,85 1,20	ESFUERZO NORMAL CIACO 0,00 0,21 0,30		
Deformación O,00 O,00 O,00 O,20 O,20	ESPJERZO DE CONTE (Kultur) 0,00 0,30 0,35 0,36	26,10 0,00 ESPUERZO NORMALIZADO 0,30 0,30 0,35 0,36	ESPUERZO DE CONTE (Kajemi) 0,00 0,50 0,70 0,80	0,00 0,25 0,40	ESPUENZO DE CONTE 0Kg/cm/) 0,00 0,85 1,20 1,35	ESFUERZO NORMALIZADO 0,00 0,21 0,30 0,34		
OPERION (Rg/cm2) Deformation 0,00 0,05 0,10 0,40	ESPJERZO DE CONTE (6) # 0,00 0,30 0,35 0,36 0,37	26,10 0,00 ESFUERZO NORMALIZADO 0,00 0,30 0,35 0,36 0,37	ESPLERZO DE GORTE (Kalton) 0,00 0,50 0,70 0,80 0,85	0,00 0,25 0,40 0,40	ESPUENZO DE COATE DE COATE DE COATE 0,00 0,85 1,20 1,35 1,45	ESFUERZO NORMAL CACO 0,00 0,21 0,30 0,34 0,36		
Deformation 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	(Subm) 0,00 0,30 0,35 0,36 0,37 0,38	26,10 0,00 ESFLERZO NORMALIZADO 0,30 0,30 0,35 0,36 0,37 0,38	ESFLERZO DE CORTE (Kg/cm²) 0,00 0,50 0,70 0,80 0,85 0,90	0,00 0,25 0,40 0,43 0,45	ESTUERZO DE CONTE (Nglen') 0,00 0,85 1,20 1,35 1,45 1,56	95 ESFUERZO NORMALUACO 0,00 0,21 0,30 0,34 0,36 0,39		
Deformation Deformation Option Opti	ESPJERZO DE CONTE (6) # 0,00 0,30 0,35 0,36 0,37	26,10 0,00 ESFUERZO NORMALIZADO 0,00 0,30 0,35 0,36 0,37	ESPLERZO DE GORTE (Kalton) 0,00 0,50 0,70 0,80 0,85	0,00 0,25 0,40 0,40	ESPUENZO DE COATE DE COATE DE COATE 0,00 0,85 1,20 1,35 1,45	ESFUERZO NORMAL CACO 0,00 0,21 0,30 0,34 0,36		
Determination (#) (Rg/cm2) RNOULD DE FRICCION II COMESION (Kgicm2) Determination \$ 0,00 0,05 0,10 0,40 0,50 0,75	ESPUERZO DE CONTE (Kg/tm²) 0,00 0,30 0,35 0,36 0,37 0,38 0,40	26,10 0,00 ESFUERZO NORMALIZADO 0,00 0,30 0,35 0,36 0,37 0,38 0,40	ESFLERZO DE CONTE (Kajton ⁴) 0,00 0,50 0,70 0,80 0,88 0,90 0,91	0,00 0,25 0,40 0,43 0,45 0,46	ESPUENZO DE CONTR (Nglent) 0,00 0,85 1,20 1,35 1,45 1,56 1,65	95 ESFUERZO NORMAL CIACO 0,00 0,21 0,30 0,34 0,36 0,39 0,41		
### (#################################	ESPUERZO DE CONTE (65µtm) 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41	25,10 0,00 ESFLERZO NORMALIZADO 0,00 0,30 0,35 0,35 0,36 0,37 0,38 0,40	ESFLERZO CE CORTE (Kightom) 0,00 0,50 0,70 0,80 0,80 0,85 0,90 0,91 0,92	0,00 0,25 0,40 0,45 0,46 0,46	ESPUENZO DE CORTE (Ng/cm) (0,00 0,85 1,20 1,35 1,45 1,56 1,65 1,70	95 SCHMAL (ZADO 0,00 0,21 0,30 0,34 0,36 0,39 0,41 0,43		
OMESION (Kgicm2) Determinion 0,00 0,05 0,10 0,75 1,00 1,25 1,75	ESPLERZO DE CONTE (650-mm) 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,42	26,10 0,00 ESFUERZO NORMALIZADO 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42	ESFLERZO DE CONTE (Kajtom ⁵) 0,00 0,50 0,70 0,80 0,88 0,90 0,91 0,92 0,93 0,94 0,95	0,00 0,25 0,45 0,45 0,46 0,46 0,47 0,47	ESPUENZO DE CONTE (Nglenn) 0,00 0,85 1,20 1,35 1,45 1,56 1,65 1,70 1,74 1,74 1,76 1,78	0,00 0,21 0,30 0,34 0,36 0,39 0,41 0,43 0,44 0,44		
OHESION (Kg/cm2) Oesomation Oesomation 0,00 0,05 0,10 0,20 0,40 0,50 0,75 1,00 1,25 1,50 1,75 2,00	ESPJERZO DE CONTE (6/a/tm) 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,42 0,45 0,44	26,10 0,00 SEFUERZO NORMALIZADO 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,43	ESPUERZO DE GORTE (Karton) 0,00 0,50 0,70 0,80 0,88 0,90 0,91 0,92 0,93 0,94 0,95 0,96	0,00 0,25 0,35 0,40 0,43 0,45 0,46 0,46 0,47 0,47 0,47	ESPUENZO DE CORTE (Mg/cmr) (0,00 0,85 1,20 1,35 1,45 1,56 1,65 1,70 1,74 1,76 1,78 1,80	0,00 0,00 0,21 0,36 0,36 0,38 0,41 0,43 0,44 0,44 0,44		
OMESION (Kg/cm2) Determation 0,00 0,05 0,10 0,20 0,40 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25	######################################	26,10 0,00 NOMMALIZADO NOMMALIZADO 0,30 0,35 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,42	ESFLERZO DE CORTE (Kg/cm²) 0,00 0,50 0,70 0,80 0,85 0,90 0,91 0,92 0,93 0,94 0,95 0,96	0,00 0,25 0,40 0,45 0,46 0,46 0,47 0,47 0,48 0,48	ESFUERZO DE COATE 0,00 0,85 1,20 1,35 1,45 1,56 1,65 1,70 1,74 1,76 1,78 1,80 1,84	95 ESFUERZO NORMALUZADO 0,00 0,21 0,30 0,34 0,36 0,39 0,41 0,43 0,44 0,44 0,45 0,45 0,46		
OPESION (Kg/cm2) Deformation 0,00 0,05 0,10 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,15 2,15 2,10	ESPJERZO DE CONTE (Kultori) 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,42 0,44 0,45	26,10 0,00 ESFUERZO NORMALIZADO 0,30 0,35 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,42 0,43	ESPUERZO DE CORTE (Kg/cm²) 0,00 0,50 0,70 0,80 0,85 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,96	0,00 0,25 0,40 0,43 0,45 0,46 0,46 0,47 0,48 0,48 0,48	ESTUERZO DE CONTE (Nglenn) 0,00 0,85 1,20 1,35 1,45 1,56 1,65 1,70 1,74 1,76 1,78 1,80 1,80 1,84 1,86	ESFUERZO NOMAN, CADO 0,00 0,21 0,30 0,34 0,36 0,39 0,41 0,43 0,44 0,44 0,45 0,45 0,45 0,45 0,45 0,45		
Deformation Defor	ESPJERZO DE CONTE (69/4mm) 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,42 0,44 0,45 0,44	25,10 0,00 ESFLERZO NORMALIZADO 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,42 0,43 0,44 0,44	ESFLIERZO CE CORTE (Kightom) 0,00 0,50 0,70 0,80 0,85 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,96 0,97 0,97	0,00 0,25 0,40 0,45 0,45 0,46 0,47 0,47 0,48 0,48 0,48	ESPUENZO DE CORTE (%g/cm²) (0,00 (0,85 (1,20 (1,35 (1,45 (1,56 (1,56 (1,70 (1,74 (1,76 (1,76 (1,80 (1,84 (1,86 (1,90)	0,00 0,21 0,30 0,34 0,36 0,39 0,41 0,43 0,44 0,44 0,45 0,45 0,45 0,46		
OHESION (Kg/cm2) Deformation 0,00 0,05 0,10 0,20 0,40 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,75 2,90 2,75 3,00	0 (4) = CONTENTA (4)	26,10 0,00 SEPUERZO NORMALIZADO 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,43 0,44 0,44 0,44 0,45 0,46	ESPLERZO CHE GORTE (Karlom ²) 0,00 0,50 0,70 0,80 0,85 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,97	0,00 0,25 0,35 0,40 0,42 0,45 0,46 0,46 0,47 0,47 0,47 0,48 0,48 0,49	ESPUENZO DE CORTE (%g/cm²) (0,00 (0,85 (1,20 (1,35 (1,45 (1,56 (1,56 (1,70 (1,74 (1,76 (1,76 (1,80 (1,84 (1,86 (1,90)	ESFUERZO NOMAN, CADO 0,00 0,21 0,30 0,34 0,36 0,39 0,41 0,43 0,44 0,44 0,45 0,45 0,45 0,45 0,45 0,45		
Options (a) (Eg/col) RNOULO DE FRICCION II COMESSION (Kg/cm2) Deformación 0,00 0,05 0,10 0,20 0,40 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,75 2,00 2,75 3,00 3,25 3,25	Contract	26,10 0,00 NOMMALIZADO NOMMALIZADO 0,30 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,42 0,43 0,44 0,44 0,44	ESFLIERZO CE CORTE (Kightom) 0,00 0,50 0,70 0,80 0,85 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,96 0,97 0,97	0,00 0,25 0,35 0,40 0,43 0,45 0,46 0,47 0,47 0,48 0,48 0,48 0,49 0,49	ESTUERZO DE CONTE (Nglenr) 0,00 0,85 1,20 1,35 1,45 1,56 1,65 1,70 3,74 1,76 1,78 1,80 1,84 1,86 1,90	ESFUERZO NCHMAN, CADX 0,00 0,21 0,30 0,34 0,36 0,39 0,41 0,43 0,44 0,44 0,45 0,45 0,46 0,46 0,46 0,46 0,46		
Octomation Octomatic Octomat	0 (4) = CONTENTA (4)	26,10 0,00 SEPUERZO NORMALIZADO 0,00 0,30 0,35 0,36 0,37 0,38 0,40 0,41 0,42 0,42 0,43 0,44 0,44 0,44 0,45 0,46 0,47	ESFLERZO DE CORTE (Kg/cm²) 0,00 0,50 0,70 0,80 0,85 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,96 0,97 0,97 0,97 0,98	0,00 0,25 0,35 0,40 0,42 0,45 0,46 0,46 0,47 0,47 0,47 0,48 0,48 0,49	ESPUENZO DE CORTE (%g/cm²) (0,00 (0,85 (1,20 (1,35 (1,45 (1,56 (1,56 (1,70 (1,74 (1,76 (1,76 (1,80 (1,84 (1,86 (1,90)	0,00 0,00 0,21 0,30 0,34 0,36 0,39 0,41 0,43 0,44 0,45 0,45 0,45 0,45 0,46 0,45 0,46 0,45 0,46 0,46 0,46 0,46 0,46 0,46 0,46 0,46		

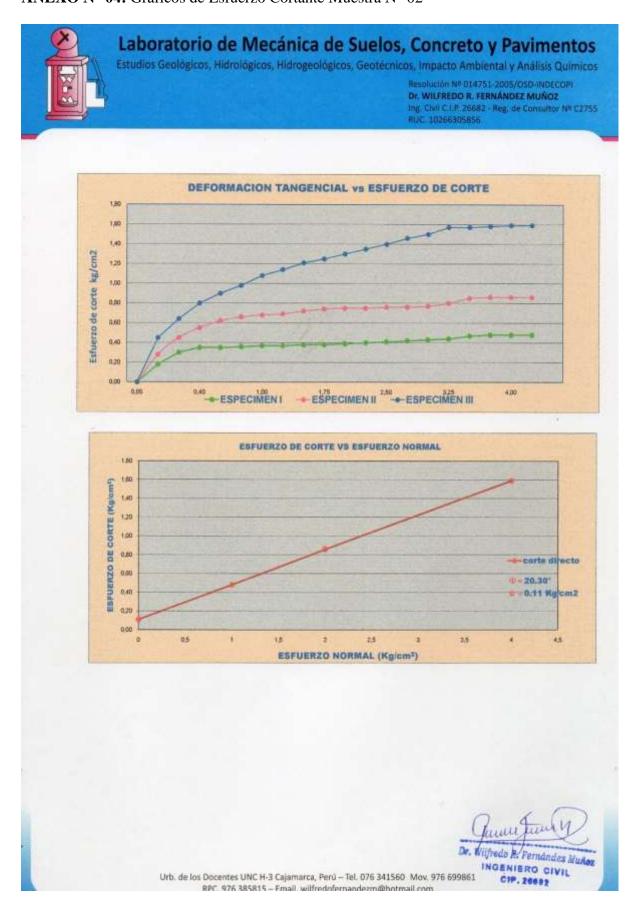
ANEXO N° 02. Ensayo de Corte Directo Muestra N° 02

ENSAYO DE CORTE DIRECTO ASTM D 3080


TESIS	: ANÁLISIS Y DETERMINACIÓN DE ZONAS SUSCEPTIBLES PARA MITIGAR LOS EFECTOS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA, 2021										
UBICACIÓN	: CASERÍO	JANCOS, PROV	/INCIA SAN PABL	O, REGIÓN CA.	JAMARCA						
MUESTRA	: N *2 - PRO	: N *2 - PROFUNDIDAD (m) : 3,00 COORDENADAS UTM: E 735931, N 921704									
TIPO DE MUESTRA											
TESISTAS	: BACH. DEY	MIAN MONTENE	GRO HERNÁNDEZ	Y BACH, SARA	ESTEFANY LEON	ASTOPILCO					
FECHA	: MAYO DEL	2021									
order Call III		CARACTERIS	TICAS DE LA M	IUESTRA	NEW AND	N VIII					
Lado o diámetro (cm)	5		Humedad (%)		13,2						
Altura inicial de la muestra (cm)	1,98		Altura final de la mu	restra (cm)	1,91						
Area (cm2)	16,00		Denslad humeds fin	al(gr/cm3)	2,840						
Volumen (cm3)	71,28		Densiad seca final (gr/cm3)	1,532						
		APLICA	CIONES DE CAF	RGA	Etan Si						
Velocidad de carga de la maquina (mm/e	sin)		0,2								
Carga normal (KG)				5							
Esp. de muestra		1	1	I.	III						
(sheets Normal (v) (Kg/cm2)		1,00	2,1	00	4,00						
The state of the s		Colors .			Man						
Est, de corte máximo (n) (Kg/cm2)		0,48	0,86		1,59						
	RNA (0) n	20,30 0,31									
	ESPUERZO DE CORTE		ESFLIERZO DE CORTE	ESFLERZO NORMALIZADO	ESFUERZO DE CORTE	ESFUERZO NORMALIZADO					
COHESION (Kg/cm2) Deformacion	ESPUERZO DE CORTE (Kg/cm²)	ESFUERZO NORMALIZADO	DE CORTE (Kaleni')	NORMALIZADO	DE CORTE (Kg/cm²)	NORMALIZADO					
Deformacion S 0,00	ESPUERZO DE CORTE (Kalon')	ESFUERZO NORMALIZADO	OE CORTE (Kg/km²) 0,00	NORMALIZADO 0,00	DE CORTE (Kg/cm²) 0,00	NORMALIZADO					
Determactor S 0,00 0,05	ESPUERZO DE CORTE (Kg/cm²) 0,00 0,18	ESFUERZO NORMALIZADO 0,00 0,18	0Kg/km²) 0,00 0,28	0,00 0,14	(Kg/cm²) 0,00 0,45	0,00 0,11					
Didormactor 5. 0,00 0,05 0,10	ESPUERZO DE CORTE (Kg/cm²) 0,00 0,18 0,30	6.11 65FUERZO NORMALIZADO 0,00 0,18 0,30	0Kg/cm/y 0,00 0,28 0,45	0,00 0,14 0,23	06 CORTE (Kg/cm²) 0,00 0,45 0,64	0,00 0,11 0,16					
Difference (Kg/cm2) Difference (Kg/cm2) 5. 0,00 0,05 0,10 0,20	ESPUERZO DE CORTE 0/Gg/cm ¹) 0,00 0,18 0,30 0,35	0.01 0.00 0.00 0.18 0.30 0.35	0Kg/cm/y 0,00 0,28 0,45 0,55	0,00 0,14 0,23 0,28	DE CORTE (Kg/cm²) 0,00 0,45 0,64 0,80	0,00 0,11 0,16 0,20					
Distantation Distantation 5. 0,00 0,05 0,10	ESPUERZO DE CORTE (Kg/cm²) 0,00 0,18 0,30 0,35 0,35	0,00 0,00 0,30 0,35 0,35	0Kg/cm/y 0,00 0,28 0,45	0,00 0,14 0,23	06 CORTE (Kg/cm²) 0,00 0,45 0,64	0,00 0,11 0,15					
Deformacion 18. 0,00 0,05 0,10 0,20 0,40	ESPUERZO DE CORTE 0/Gg/cm ¹) 0,00 0,18 0,30 0,35	0.01 0.00 0.00 0.18 0.30 0.35	0Kg/cm²/ 0,00 0,08 0,45 0,55 0,62	0,00 0,14 0,23 0,28 0,31	(Kglom*) 0,00 0,45 0,64 0,80 0,90	0,00 0,11 0,15 0,20 0,23					
Difference (Kg/cm2) Difference (Kg/cm2) S. 0,000 0,05 0,10 0,20 0,40 0,50 0,75 1,00	ESPUERZO DE CORTE (Kg/km²) 0,00 0,18 0,30 0,35 0,35 0,35 0,36 0,37	0.00 0.00 0.18 0.30 0.35 0.35 0.36 0.37	DE CORTE (Kg/cm²) 0,00 0,28 0,45 0,55 0,62 0,66 0,68 0,69	0,00 0,14 0,23 0,28 0,31 0,33 0,34 0,35	DE CORTE (Kg/cm²) 0,00 0,45 0,64 0,80 0,90 0,98 1,08 1,14	0,00 0,11 0,16 0,20 0,23 0,25 0,27 0,29					
Deformacion S. 0,000 0,05 0,10 0,20 0,40 0,50 0,75 1,00 1,25	ESPUERZO DE CORTE (Kg/km²) 0,00 0,18 0,30 0,35 0,35 0,36 0,37 0,37	0.01 0.00 0.18 0.30 0.35 0.35 0.35 0.37 0.37	0Kg/cm²) 0,00 0,28 0,45 0,58 0,62 0,66 0,68	0,00 0,14 0,23 0,28 0,31 0,33 0,34	0,00 0,45 0,64 0,80 0,90 0,98 1,08	0,00 0,11 0,15 0,20 0,23 0,25 0,27					
Determation 18. 0,000 0,05 0,10 0,20 0,40 0,50 0,75 1,00 1,25 1,50	ESPUERZO DE CORTE 0Kg/cm²y 0,00 0,18 0,30 0,35 0,35 0,35 0,36 0,37 0,37 0,38	0,00 0,00 0,18 0,30 0,35 0,35 0,36 0,37 0,37	DE CORTE 0Kg/cm²) 0,00 0,28 0,45 0,55 0,62 0,66 0,68 0,69 0,72 0,74	0,00 0,14 0,23 0,28 0,31 0,33 0,34 0,35 0,36 0,37	DE CORTE (Kg/cm²) 0,00 0,45 0,54 0,80 0,90 0,96 1,08 1,14 1,21 1,25	0,00 0,11 0,16 0,20 0,23 0,25 0,27 0,29 0,30 0,31					
Deformactory S. 0,00 0,05 0,10 0,20 0,40 0,50 0,75 1,00 1,25 1,56 1,75	ESPUERZO DE CORTE (Kgicm') 0,00 0,18 0,30 0,35 0,35 0,35 0,35 0,37 0,37 0,38 0,38 0,39	0.31 0,00 0,18 0,30 0,35 0,35 0,36 0,37 0,37 0,38 0,38	DE CORTE 0Kg/cm²? 0,00 0,28 0,45 0,55 0,62 0,66 0,68 0,69 0,72 0,74 0,75	0,00 0,14 0,23 0,28 0,51 0,33 0,34 0,35 0,36 0,37	DE CORTE (Ka/cm²) 0,00 0,45 0,64 0,80 0,90 0,98 1,08 1,14 1,21 1,25 1,30	0,00 0,11 0,16 0,20 0,23 0,25 0,27 0,29 0,30 0,31					
Distriction Distriction S. 0,000 0,005 0,100 0,200 0,400 0,500 0,755 1,000 1,255 1,500 1,755 2,000	ESPUERZO DE CORTE 0Kg/km²) 0,00 0,18 0,30 0,35 0,35 0,35 0,37 0,37 0,38 0,38 0,38 0,38	0.00 0.00 0.18 0.30 0.35 0.35 0.35 0.37 0.37 0.38 0.39	DE CORTE (Kg/cm²) (0,00 0,28 0,45 0,58 0,62 0,66 0,68 0,69 0,72 0,74 0,75	0,00 0,14 0,23 0,28 0,31 0,33 0,34 0,35 0,36 0,37 0,38	DE CORTE (Kalomi) 0,00 0,45 0,64 0,80 0,90 0,96 1,08 1,14 1,21 1,25 1,30 1,35	0,00 0,11 0,15 0,20 0,23 0,25 0,27 0,29 0,30 0,31 0,33					
COHESION (Kg/cm2) Distribution 1. 0,000 0,005 0,100 0,200 0,400 0,500 0,75 1,000 1,25 1,500 1,75 2,000 2,25	ESPUERZO DE CORTE (Kg/km²) 0,000 0,18 0,300 0,35 0,35 0,35 0,37 0,37 0,37 0,38 0,38 0,39 0,40 0,40	0.01 0.00 0.00 0.18 0.30 0.35 0.35 0.36 0.37 0.38 0.38 0.38 0.39 0.40	DE CORTE 0Kg/cm²) 0,00 0,28 0,45 0,55 0,62 0,66 0,68 0,72 0,74 0,75 0,75 0,75 0,75 0,75	0,00 0,14 0,23 0,28 0,31 0,33 0,34 0,35 0,36 0,37 0,38 0,38	DE CORTE (Kg/cm²) 0,00 0,45 0,64 0,80 0,90 0,98 1,08 1,14 1,21 1,25 1,30 1,35 1,40	0,00 0,11 0,16 0,20 0,23 0,25 0,27 0,29 0,30 0,31 0,34 0,35					
Determactor 18. 0,000 0,005 0,100 0,200 0,400 0,500 0,75 1,000 1,25 1,500 1,75 2,000 2,25 2,500	ESPUERZO DE CORTE OKG/cm²) 0,00 0,18 0,30 0,35 0,35 0,35 0,37 0,38 0,37 0,38 0,39 0,40 0,41 0,42	0,00 0,00 0,18 0,30 0,35 0,35 0,35 0,36 0,37 0,37 0,38 0,38 0,39 0,40	De CORTE 0Kg/cm²) 0,00 0,28 0,45 0,55 0,62 0,66 0,68 0,69 0,72 0,74 0,75 0,75 0,76	0,00 0,14 0,23 0,28 0,31 0,33 0,34 0,35 0,36 0,37 0,38 0,38	DE CORTE (Kg/cm²) 0,00 0,45 0,54 0,80 0,90 0,96 1,08 1,14 1,21 1,25 1,30 1,35 1,40 1,46	0,00 0,11 0,16 0,20 0,23 0,25 0,27 0,29 0,30 0,31 0,33 0,34 0,35 0,37					
COHESION (Kg/cm2) Deformactory 18. 0,000 0,05 0,100 0,20 0,40 0,50 0,75 1,000 1,25 1,50 1,75 2,000 2,25 2,25 2,50 2,75	ESPUERZO DE CONTE (Majorn) (Ma	0.00 0.00 0.18 0.30 0.35 0.35 0.36 0.37 0.37 0.38 0.38 0.39	DE CORTE 0Kg/cm²) 0,00 0,28 0,45 0,55 0,62 0,66 0,68 0,69 0,72 0,74 0,75 0,75 0,75 0,76 0,76	0,00 0,14 0,23 0,28 0,31 0,33 0,34 0,35 0,36 0,37 0,38 0,38 0,38	DE CORTE (Ka/cm²) 0,00 0,45 0,64 0,80 0,90 0,96 1,08 1,14 1,21 1,25 1,30 1,35 1,40 1,46 1,50	0,00 0,11 0,16 0,20 0,23 0,25 0,27 0,29 0,30 0,31 0,33 0,34 0,35 0,37					
COHESION (Kg/cm2) Distormaction 1. 0,000 0,005 0,100 0,20 0,40 0,50 0,75 1,000 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00	ESPUERZO DE CORTE 0Kg/km²) 0,00 0,18 0,30 0,35 0,35 0,37 0,37 0,37 0,38 0,38 0,39 0,40 0,41 0,42 0,42 0,43 0,44	0.00 0.00 0.18 0.30 0.35 0.35 0.35 0.37 0.37 0.38 0.38 0.39 0.40 0.41 0.42	DE CORTE 0Kg/cm²? 0,000 0,28 0,45 0,55 0,62 0,66 0,68 0,69 0,72 0,74 0,75 0,75 0,75 0,76 0,77 0,80	0,00 0,14 0,23 0,28 0,31 0,33 0,34 0,35 0,36 0,37 0,38 0,38	DE CORTE (Kg/cm²) 0,00 0,45 0,54 0,80 0,90 0,96 1,08 1,14 1,21 1,25 1,30 1,35 1,40 1,46	0,00 0,11 0,15 0,20 0,23 0,25 0,27 0,39 0,31 0,33 0,34 0,35 0,37					
\$. 0,00 0,05 0,10 0,20 0,40 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,75	ESPUERZO DE CORTE 0Kg/km²) 0,000 0,18 0,300 0,35 0,35 0,36 0,37 0,37 0,37 0,38 0,38 0,39 0,40 0,41 0,42 0,43 0,43 0,44	0.00 0.00 0.18 0.30 0.35 0.35 0.36 0.37 0.37 0.38 0.38 0.39	DE CORTE 0Kg/cm²) 0,00 0,28 0,45 0,55 0,62 0,66 0,68 0,69 0,72 0,74 0,75 0,75 0,75 0,76 0,76	0,00 0,14 0,23 0,28 0,31 0,33 0,34 0,35 0,36 0,37 0,38 0,38 0,38	DE CORTE (Ka/cm*) 0,00 0,45 0,54 0,80 0,90 0,98 1,08 1,14 1,21 1,25 1,30 1,35 1,40 1,46 1,50 1,57 / 1,57	0,00 0,11 0,16 0,20 0,23 0,25 0,27 0,29 0,30 0,31 0,33 0,34 0,35 0,37					
COHESION (Kg/cm2) Distantation 1. 0,000 0,005 0,100 0,200 0,400 0,500 0,755 1,000 1,255 1,500 1,755 2,500 2,255 2,500 2,755 3,000 3,255	ESPUERZO DE CORTE 0Kg/km²) 0,00 0,18 0,30 0,35 0,35 0,37 0,37 0,37 0,38 0,38 0,39 0,40 0,41 0,42 0,42 0,43 0,44	0.00 0.00 0.18 0.30 0.35 0.35 0.35 0.36 0.37 0.37 0.38 0.38 0.39 0.40 0.41	De CORTE 0Kg/cm²) 0,00 0,28 0,45 0,55 0,62 0,66 0,68 0,72 0,74 0,75 0,75 0,76 0,76 0,77 0,80 0,85	0,00 0,14 0,23 0,28 0,31 0,33 0,34 0,35 0,36 0,37 0,38 0,38 0,38 0,38 0,38 0,38 0,38	DE CORTE (Kg/cm²) 0,00 0,45 0,64 0,80 0,90 0,96 1,08 1,14 1,21 1,25 1,30 1,35 1,40 1,46 1,50 1,57 / 1,57	0,00 0,11 0,16 0,20 0,23 0,25 0,27 0,29 0,30 0,31 0,34 0,35 0,35 0,36 0,38					

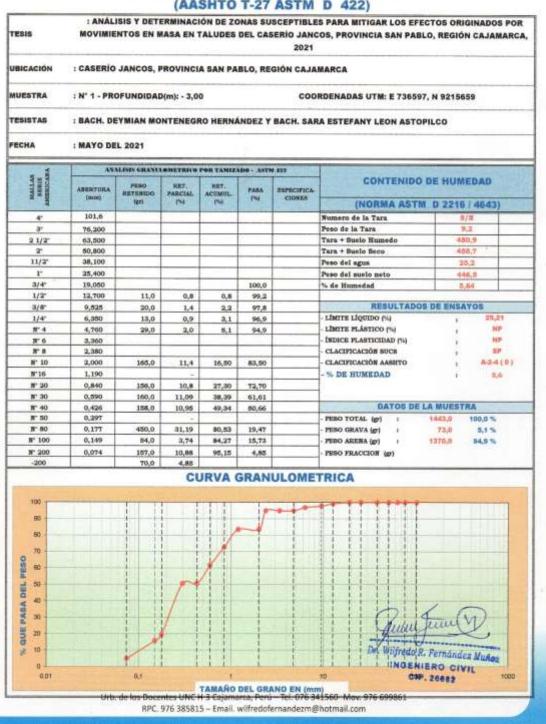
CIP. 26682

Urb. de los Docentes UNC H-3 Cajamarca, Perú – Tel. 076 341560 Mov. 976 699861 RPC. 976 385815 – Email. wilfredofernandezm@hotmail.com

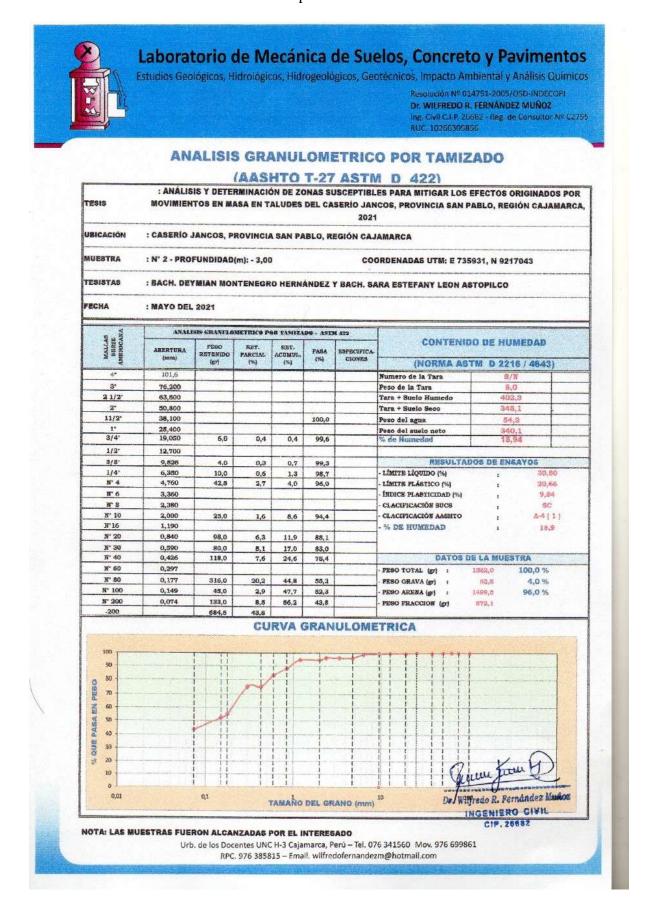


ANEXO Nº 03. Gráficos de Esfuerzo Cortante Muestra Nº 01

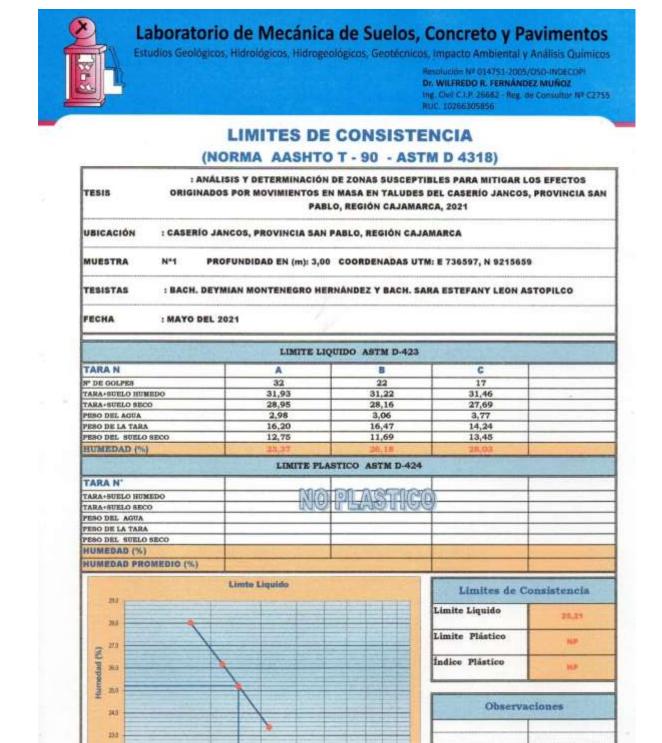
ANEXO N° 04: Gráficos de Esfuerzo Cortante Muestra N° 02



ANEXO N° **05.** Análisis Granulométrico por Tamizado Muestra N° 01

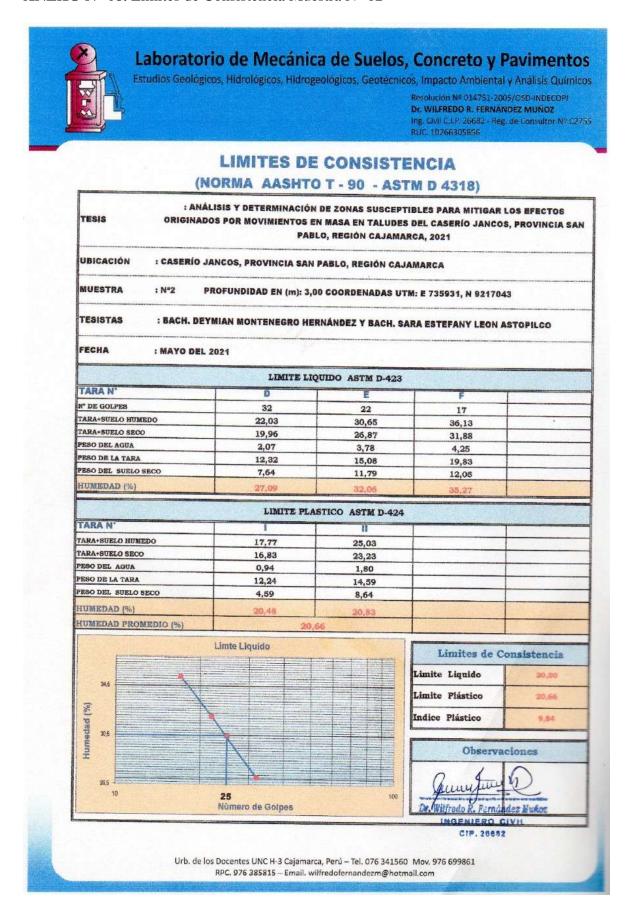

ANALISIS GRANULOMETRICO POR TAMIZADO

(AASHTO T-27 ASTM D 422)



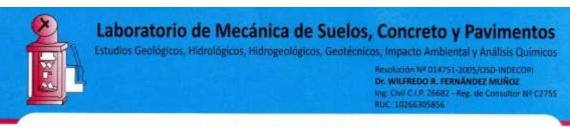
ANEXO N° 06. Análisis Granulométrico por Tamizado Muestra N° 02

ANEXO N° 07. Límite de Consistencia muestra N° 01


Urb. de los Docentes UNC H-3 Cajamarca, Perú – Tel. 076 341560 Mov. 976 699861 RPC. 976 385815 – Email. wilfredofernandezm@hotmail.com

Número de Golpes

Dr. Wilfredo R. Fernández Muñoz INGENIERO CIVIL



ANEXO N° 08. Límites de Consistencia Muestra N° 02

ANEXO Nº 09. Ensayo de Peso Unitario Seco muestra Nº 01

ENSAYO DE PESO UNITARIO SECO NTP 400.017 / ASTM C - 29

TESIS	: ANÁLISIS Y DETERMINACIÓN DE ZONAS SUSCEPTIBLES PARA MITIGAR LOS EFECTOS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA, 2021						
UBICACIÓN	: CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA						
MUESTRA	: Nº1 PROFUNDIDAD EN (m): 3,00 COORDENADAS UTM: E 736597, N 9215659						
TESISTAS	: BACH, DEYMIAN MONTENEGRO HERNÁNDEZ Y BACH, SARA ESTEFANY LEON ASTOPILCO						
FECHA	: MAYO DEL 2021						

ENSAYO DE PESO UNITARIO SECO

DESCRIPCION	UNIDAD		SUELTO		
Ensayo					
Recipiente N°		A	В	C	
Recipiente + Suelo seco	gr.	8458	8406	8351	
Peso del Recipiente	gr.	5221	5221	5221	
Peso de la Muestra	gr.	3237,0	3185,0	3130,0	
Volumen del Molde	gr.	2114,0	2114,0	2114,0	
Peso unitario	gr/cc	1,531	1,507	1,481	
Peso Unitario Promedio		1,506			

ENSAYO DE PESO UNITARIO SECO

DESCRIPCION	UNIDAD		VARILLADO		
Ensayo			* THE CONTRACTOR		
Recipiente N°		D	Е	F	
Recipiente + Suelo seco	gr.	8671	8696	8586	
Peso del Recipiente	gr.	5221	5221	5221	
Peso de la Muestra	gr.	3450,0	3475,0	3365,0	
Volumen del Molde	gr.	2114,0	2114,0	2114,0	
Peso unitario	gr/ee	1,632	1,644	1,592	
Peso Unitario Promedio			1,623		

LAS MUESTRAS FUERON ALCANZADAS POR EL INTERESADO

Dr. Wilfredo R. Fernández Huñoz INGENIERO CIVIL CIP 28862

Urb, de los Docentes UNC H-3 Cajamarca, Perú – Tel. 076 341560 Mov. 976 699861 RPC. 976 385815 – Email, wilfredofernandezm@hotmail.com

ANEXO N° 10. Ensayo de Peso Unitario Seco muestra N° 02

DESCRIPCION

Ensayo

Laboratorio de Mecánica de Suelos, Concreto y Pavimentos

Estudios Geológicos, Hidrológicos, Hidrogeológicos, Geotécnicos, Impacto Ambiental y Análisis Químicos

Resolución Nº 014751-2005/OSD-INDECOPI Dr. WILFREDO R. FERNÁNDEZ MUÑOZ Ing. Civil C.I.P. 26682 - Reg. de Consultor Nº C2755 RUC. 10266305856

NTP 400.017 / ASTM C - 29

TESIS	: ANÁLISIS Y DETERMINACIÓN DE ZONAS SUSCEPTIBLES PARA MITIGAR LOS EFECTOS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERIO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA, 2021					
UBICACIÓN	: CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA					
MUESTRA	: N°2 - PROFUNDIDAD EN (m): 3,00 COORDENADAS UTM: E 735931, N 9217643					
TESISTAS	: BACH. DEYMIAN MONTENEGRO HERNÁNDEZ Y BACH. SARA ESTEFANY LEON ASTOPILCO					
FECHA	: MAYO DEL 2021					

Recipiente N° Recipiente + Suelo seco Peso del Recipiente Peso de la Muestra 3098.0 3007.0 2826.0 Volumen del Molde 2114,0 2114,0 2114,0 gr. Peso unitario gr/cc 1,465 1,422 1,337 Peso Unitario Promedio

ENSAYO DE PESO UNITARIO SECO DESCRIPCION UNIDAD VARILLADO Ensayo Recipiente N° Ш 8371 Recipiente + Suelo seco 8597 8486 gr. Peso del Recipiente 5221 5221 5221 3376,0 3265,0 3150,0 Peso de la Muestra RT. Volumen del Molde 2114,0 2114.0 2114,0 gr. 1,597 1,544 1,490 Peso unitario gr/cc Peso Unitario Promedio

LAS MUESTRAS FUERON ALCANZADAS POR EL INTERESADO

Pr. Wilfredo R. Fernández Muños INGENIERO CIVIL CIP 28862

Urb. de los Docentes UNC H-3 Cajamarca, Perú – Tel. 076 341560 Mov. 976 699861 RPC. 976 385815 – Email. wilfredofernandezm@hotmail.com

ANEXO N° 11. Ensayo de Contenido de Humedad muestra N° 01

Laboratorio de Mecánica de Suelos, Concreto y Pavimentos

Estudios Geológicos, Hidrológicos, Hidrogeológicos, Geotécnicos, Impacto Ambiental y Análisis Químicos

Resolution N® 014751-2005/OSD-INDECOPI Dr. WILFREDO R. FERNÁNDEZ MUÑOZ Ing. CNII C.I.P. 26682 - Reg. de Consultor N® C2755 RUC. 10266305856

(NORMA ASTM D 2216 / 4643)

: ANÁLISIS Y DETERMINACIÓN DE ZONAS SUSCEPTIBLES PARA MITIGAR LOS EFECTOS
TESIS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERÍO JANCOS, PROVINCIA
SAN PABLO, REGIÓN CAJAMARCA, 2021

UBICACIÓN : CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA

UESTRA : Nº1 - PROFUNDIDAD EN (m): 3,00 COORDENADAS UTM: E 736597, N 9215659

TESISTAS : BACH. DEYMIAN MONTENEGRO HERNÁNDEZ Y BACH. SARA ESTEFANY LEON ASTOPILCO

FECHA : MAYO DEL 2021

DESC

	(MUESI	KAT)			
CRIPCION	UNIDAD		MUESTRA		
piente N°		1	п	ш	
piente + Suelo Humedo	gr.	963,9	857,1	957,6	
piente + Suelo seco	gr.	921,5	829,3	919,1	
Cranic care			10.75	5.00-00	٦

Recip Recip Peso del Agua. 42,4 27,8 38,5 Peso del Recipiente 211,70 204,9 209,1 gr. Peso del Suelo Seco 709,8 624.4 710,0 gr. 5,42 % de Humedad 5,97 4,45 % de Humedad Promedio

> Dr. Wilfredo R. Fernández Muños INGENIERO CIVIL CIP 28882

Urb. de los Docentes UNC H-3 Cajamarca, Perù – Tel. 076 341560 Mov. 976 699861 RPC. 976 385815 – Email. wilfredofernandezm@hotmail.com

ANEXO N° 12. Ensayo de Contenido de Humedad muestra N° 02

Laboratorio de Mecánica de Suelos, Concreto y Pavimentos

Estudios Geológicos, Hidrológicos, Hidrogeológicos, Geotécnicos, Impacto Ambiental y Análisis Químicos

Resolución Nº 014751-2005/OSD-INDECOPI Dr. WILFREDO R. FERNÁNDEZ MUÑOZ Ing. Civil C.i.P. 26682 - Reg. de Consultor Nº C2755 RUC. 10266305856

CONTENIDO DE HUMEDAD (NORMA ASTM D 2216 / 4643)

TESIS	: ANÁLISIS Y DETERMINACIÓN DE ZONAS SUSCEPTIBLES PARA MITIGAR LOS EFECTOS ORIGINADOS POR MOVIMIENTOS EN MASA EN TALUDES DEL CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA, 2021
UBICACIÓN	: CASERÍO JANCOS, PROVINCIA SAN PABLO, REGIÓN CAJAMARCA
MUESTRA	: N°2 - PROFUNDIDAD EN (m): 3,00 COORDENADAS UTM: E 735931, N 9217043
TESISTAS	: BACH. DEYMIAN MONTENEGRO HERNÁNDEZ Y BACH. SARA ESTEFANY LEON ASTOPILCO
FECHA	: MAYO DEL 2021

(MUESTRA 2)										
DESCRIPCION	UNIDAD MUESTRA									
Recipiente N°		01	02	03						
Recipiente + Suelo Humedo	gr.	498,3	504,8	489,9						
Recipiente + Suelo seco	gr.	440,6	451,2	434,7						
Peso del Agua.	gr.	57,7	53,6	55,2						
Peso del Recipiente	gr.	20,8	25,7	22,4						
Peso del Suelo Seco	gr.	419,8	425,5	412,3						
% de Humedad	%	13,74	12,60	13,39						
% de Humedad Promedio	%	13	,24							

LAS MUESTRAS FUERON ALCANZADAS POR EL INTERESADO

Dr. Wafredo R. rernández Muñoz INGENIERO CIVIL CIP 26682

Urb. de los Docentes UNC H-3 Cajamarca, Perú – Tel. 076 341560 Mov. 976 699861 RPC. 976 385815 – Email. wilfredofernandezm@hotmail.com

ANEXO Nº 13. Ensayo de Propiedades Físicas

EMPRESA DEL GRUPO: GEOMECÀNICA LATINA S.A.

5. RESULTADOS NUMÉRICOS DE LOS ENSAYOS DE MECÁNICA DE ROCAS

5.1 RESULTADOS DE ENSAYO DE RESISTENCIA AL CORTE DIRECTO - CD

Cuadro 4: Resultados de Ensayo de Propiedades Físicas

CÓDIGO DE MUESTRA	DIÁMETRO "d" (cm)	ALTURA "h" (cm)	DENSIDAD SECA (gr/cm3)	DENSIDAD HÚMEDA (gr/cm3)	PESO ESPECÍFICO APARENTE (kN/m3)	CONTENIDO DE HUMEDAD (%)	POROSIDAD APARENTE (%)
M-1	4.76	1.93	2.63	2.65	26.01	0.86	2.31
	4.76	2.00	2.66	2.68	26.31	0.97	2.65
	4.76	1.91	2.69	2.71	26.60	0.89	2.45
	Promedio		2.66	2.68	26.30	0.91	2.47

Av. Marginai # 467, Salamanca, Ate - LIMA Telefax: (+511) 4351969 / RUC: 20415405597 BOLIVIA AV. Ecuador 2074, Sopocachi – LA PAZ Telefax: (+591) 2-2411079 CHILE mirante La Torre # 475 – SANTIAGO Telefax: (+562) 2-6984768

info@geomecanicalatina.com / www.geomecanicalatina.com - www.geomec.pe

ANEXO N°14. Ensayo de Corte Directo en Roca

EMPRESA DEL GRUPO: GEOMECÁNICA LATINA S.A.

Ingenieria de rocas y suelos para la Estabilidad y Seguridad de excavaciones

Cuadro 5: Resultados de Ensayo de Resistencia al Corte Directo

CÓDIGO DE	DÍA.	TIPO DE	FUERZA	FUERZA	ESFUERZO	ESFUERZO	The second second	uggested ethod	
MUESTRA	"D" (mm)	DISCONT.	NORMAL (kN)	DE CORTE (kN)	NORMAL (kPa)	DE CORTE (kPa)	COHESIÓN (MPa)	ANGULO DE FRICCIÓN RESIDUAL(*)	
			1.00	1.39	336.05	468.02			
		200000000000000000000000000000000000000	2.00	2.27	672.10	764.42			
M-1	54.72	Natural (a=36°)	3.00	3.17	1008.16	1066.06	0.18	41.26	
		(a-30)	4.00	4.02	1344.21	1350.22			
		- 9	5.00	4.79	1680.26	1610.60			

				UP	UPPER		L.R. Richards
CÓDIGO DE	DÍA.	TIPO DE	FUERZA	ESFUERZO	ESFUERZO DE	UP	PER
MUESTRA	"D" (mm)	DISCONT NORMAL		NORMAL (kPa)	CORTE (kPa)	COHESIÓN (MPa)	ANGULO DE FRICCIÓN RESIDUAL(*)
			1.00	368.65	500.84		
		200	2.00	781.69	821.48		
M-1	54.72	Natural (a=36°)	3.00	1172.96	1211.91	0.17	41.23
		(9-30)	4.00	1551.17	1558.11		
			5.00	1932.11	1840.11		

Nota 1: El diámetro para Ensayo de Resistencia al Corte Directo recomendado conforme ASTM e ISRM es: 54mm a más. Los resultados de las muestras que no cumplan esta condición, se sugieren deben ser tomados como Referenciales.

Nota 2: Esfuerzo de corte aplicado con Consola Independiente SERCOMP 7 de sistema Presión constante Serva-Controlado.

Nota 3: Ángulo respecto a la horizontal, de la discontinuidad Natural o Simulada (a).

Nota 4: Los Esfuerzos Normales y Cizaliantes, se calcularon sobre el área de contacto de las muestras ensayadas a lo largo de cada etapa de prueba. (Ecuación de Corrección del área de Hencher y Richards, 1989.)

Nota 5: Los valores de Cohesión y ángulo de Fricción (UPPER) fueron hallados aplicando la metodología de Hencher y Richards, cabe resaltar que estos valores no han sido corregidos por el efecto de dilatación. (Assessing the shear Strength of Rock Discontinuities at Laboratory and Field Scales, Hencher y Richards, August 2014.)

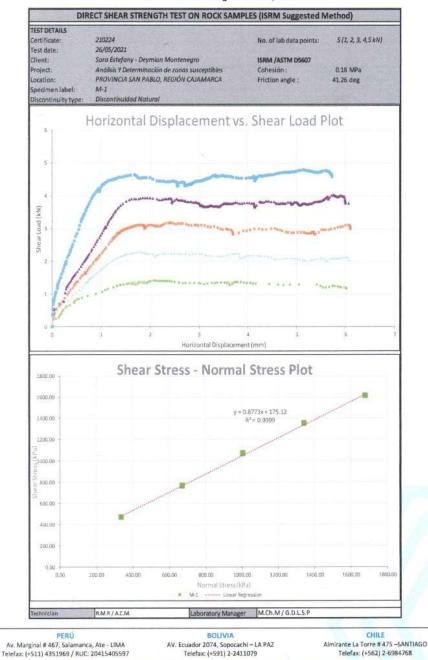
PERÚ

Av. Marginal # 467, Salamanca, Ate - LIMA Telefax: (+511) 4351969 / RUC: 20415405597 BOLIVIA AV. Ecuador 2074, Sopocachi – LA PAZ Telefax: (+591) 2-2411079 CHILE
Almirante La Torre # 475 –SANTIAGO
Telefax: (+562) 2-6984768

info@geomecanicalatina.com / www.geomecanicalatina.com - www.geomec.pe

sugerido ISRM - M1

ANEXO N°15. Gráfico de Ensayo de Resistencia al Corte Directo en Roca – Gráfico



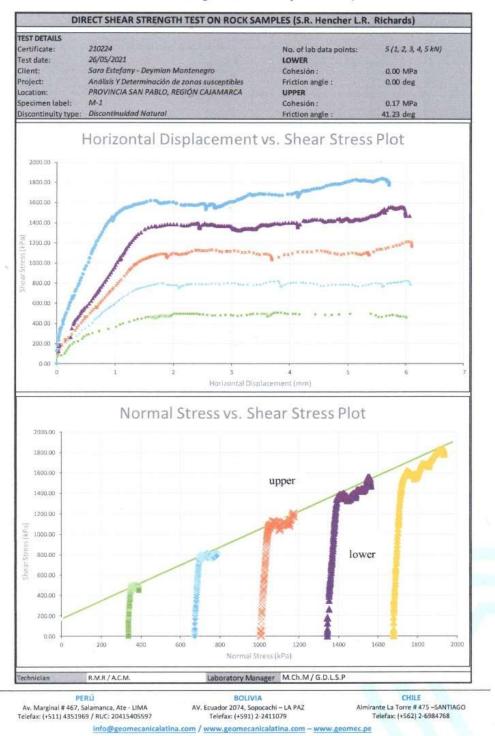
16 EMPRESA DEL GRUPO: GEOMECÁNICA LATINA S.A.

6. RESULTADOS GRÁFICOS DE EN+SAYOS DE MECÁNICA DE ROCAS

6.1 GRÁFICOS DE ENSAYO DE RESISTENCIA AL CORTE DIRECTO - CD

Gráfico 1: Método sugerido ISRM, M-1

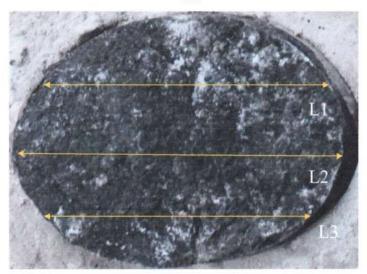
info@geomecanicalatina.com / www.geomecanicalatina.com - www.geomec.pe

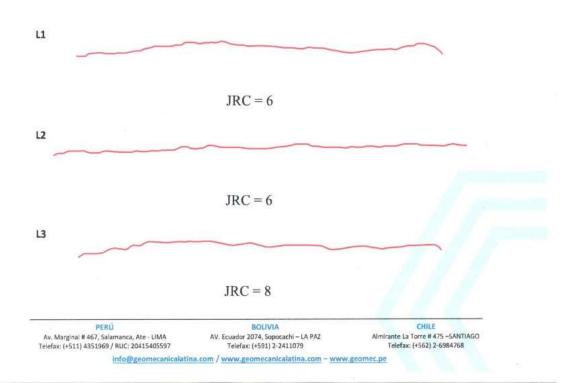

Bach. Sara Estefany Leon Astopilco Bach. Deymian Montenegro Hernández

ANEXO N°16. Gráfico de Ensayo de Resistencia al Corte Directo en Roca – Gráfico Método sugerido S.R. Hencher y L.R. Richards.

Gráfico 2: Método sugerido S.R. Hencher y L.R. Richards, M-1

$ANEXO\ N^{\circ}17.$ Perfiles de Rugosidad medidos con el peine de Barton




EMPRESA DEL GRUPO: GEOMECÁNICA LATINA S.A.

Perfiles de rugosidad medidos con el Peine de Barton a escala normal (100 mm).

ANEXO N°18. Muestra de Corte Directo el Antes y Después



EMPRESA DEL GRUPO: GEOMECÁNICA LATINA S.A.

7. RESULTADOS FOTOGRÁFICOS DE LOS ENSAYOS DE MECÁNICA DE ROCAS

7.1 FOTOS DE ENSAYO DE RESISTENCIA AL CORTE DIRECTO - CD

Foto 1: Muestra para CD, M-1

M-1 M-1

DESPUÉS

Av. Marginal # 467, Salamanca, Ate - LIMA Telefax: (+511) 4351969 / RUC: 20415405597 AV. Ecuador 2074, Sopocachi – LA PAZ Telefax: (+591) 2-2411079 CHILE Almirante La Torre # 475 –SANTIAGO Telefax: (+562) 2-6984768

info@geomecanicalatina.com / www.geomecanicalatina.com - www.geomec.pe

ANEXO N°19. Ficha de Observación de Factores Condicionantes y Desencadenantes

TITULO DEL PROYECTO						
UBICACIÓN		Departament o		Provinci a	Distrito	
ESTACIÓ N		Este		Norte	Cota	
Factores	Parámetr o	Descriptores	Valores Ponderado s	Valores en Campo	Fotografía	
	etal	Matorral arbustivo	0.558			
	ra Veg	Agricultura costera y andina	0.263			
	Cobertura Vegetal	Plantación Forestal	0.122			
	<u>చ</u>	Bosque seco de montaña	0.057			
	Geomorfolog ía	Escarpes Colina	0.592			
ntes	norf ía	Volcánica	0.262			
lar	103 103	Pie de monte	0.101			
ioi	Ğ	Llanura	0.045			
Condic	Litología	Depósitos Cuaternario	0.444			
Factores Condicionantes		Lutitas / Limoarcilla Brechas -	0.252			
		Tobas andesítica Calizas	0.148			
		Margosas/ Lutitas	0.083			
		Arenisca	0.047			
		Caliza Masiva	0.027			
	es	> 45°	0.503			
	ent	25° - 45°	0.26			
	Pendientes	10° - 25°	0.134			
		5° - 10° 0° - 5°	0.068			
Factor Desencadenante		MUY ALTA > a 250 mm	0.035 0.482			
	Precipitaciones	ALTA (160 mm a 250 mm)	0.27			
		MODERADA (90 a 160 mm)	0.141			
	Ā	BAJA (50 mm a 90 mm)	0.068			
		MUY BAJA $(< a 50 mm)$	0.039			

ANEXO N°20. Ficha de Procesamiento de Datos – Resultados de la Evaluación de Cobertura Vegetal.

Parát.	Cobertura Vegetal		Peso Ponderado = 0.057	
	Matorral arbustivo	Este tipo de cobertura vegetal aporta muy poco a la estabilidad de los taludes, ya que permite que las escorrentías se infiltren rápidamente en los suelos.	PCV1	0.558
DESCRIPTORES	Agricultura costera y andina	Generalmente son valles los cuales presentan cultivos de bajo riego y en secano asentados en partes inclinadas y en colinas las cuales tienen poco sostenimiento.	PCV2	0.263
DESC	Plantación Forestal	Son plantaciones las cuales tienen un buen sostenimiento de los taludes ya que sus raíces sostienen y dan soporte a los suelos.	PCV3	0.122
	Bosque seco de montaña	Bosques secos en pendientes los cuales controlan la erosión del suelo y por ende los deslizamientos y los huaicos.	PCV4	0.057

NOTA: La tabla se muestra los valores ponderados encontrados del parámetro Cobertura Vegetal, obteniendo que los matorrales arbustivos son los que más perjudican a la zona de estudio. **FUENTE:** Propia (2021)

ANEXO N° 21. Ficha de Procesamiento de Datos – Resultados de la Evaluación de Pendientes.

Parámetros		Pendientes	Peso Ponderado = 0.263	
	> 45°	Muy inclinado	PP1	0.503
	25° - 45°	Inclinado	PP2	0.260
DESCRIPTORES	10° - 25°	Moderadamente inclinado	PP3	0.134
	5° - 10°	Suave	PP4	0.068
	0° - 5°	Muy suave	PP5	0.035

NOTA: La tabla se muestra los valores ponderados de pendientes, luego se le dará valor a cada talud para hallar la susceptibilidad. **FUENTE:** Propia (2021).

ANEXO N° 22. Ficha de Procesamiento de Datos – Resultados de la Evaluación de Geomorfología.

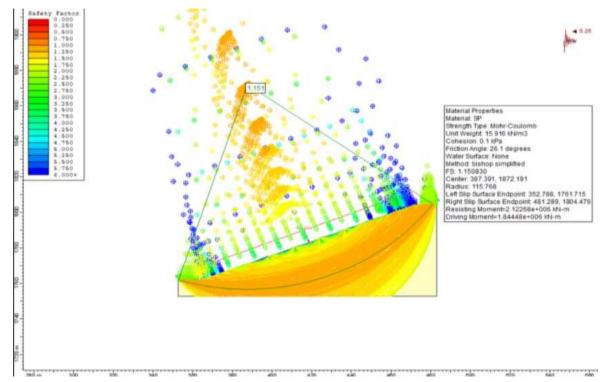
Parámetros		Geomorfología		Peso Ponderado = 0.122	
	Escarpes	Se caracteriza por presentar una pendiente muy inclinada y una topografía muy accidentada, desencadenando en épocas de invierno movimientos de masa y deslizamientos de rocas.	PG1	0.592	
DESCRIPTORES	Colina Volcánica	Se encuentran colinas de pendientes bajas, colinas altas y cimas que presentan formaciones rocosas y depósitos cuaternarios que son rocas y conglomerados rocosas sueltos demás de presencia de rocas en las partes bajas por el deslizamiento que se producen por los agentes denudativos.	PG2	0.262	
DESCI	Pie de monte	Valles interandinos, originados por depósitos aluviales y fluviales como consecuencia del transporte de sedimentos, producto de procesos denudaciones y erosivos de las partes altas de las colinas y de las montañas; muy excepcionalmente son originados por depósitos coluviales.	PG3	0.101	
	Llanura	Son relieves suaves los cuales presentan escorrentías en las partes bajas de la topografía los cuales presentan bajo índice de ocurrir algún deslizamiento.	PG4	0.045	

NOTA: La tabla se muestra los valores ponderados de geomorfología, luego se le dará valor a cada talud para hallar la susceptibilidad. **FUENTE:** Propia (2021)

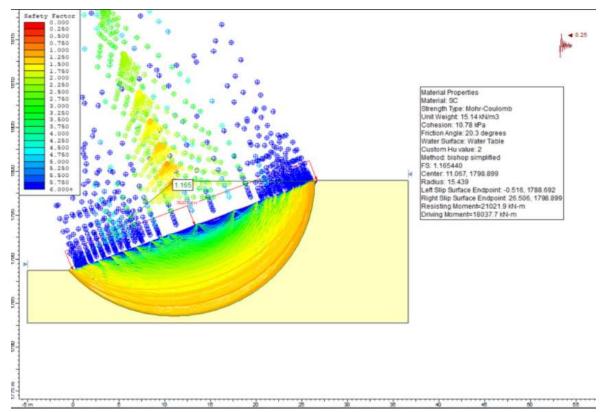
ANEXO N° 23. Ficha de Procesamiento de Datos – Resultados de la Evaluación de Litología.

Parámetros	Litología		Peso Ponderado = 0.558	
	Depósitos Cuaternarios	Presentan una baja consolidación ya que no están fuertemente compactadas, al contacto con la picota es notable ver que se disgregan con facilidad puesto que no tienen una fuerte cohesión al ser productos de transporte y depositados en partes bajas.	PL1	0.444
	Lutitas Limoarcillas	Tienden a ser muy débiles y frágiles, al momento de ser sometidas a algún esfuerzo son claramente fisibles por lo que se concluye que tienen alta potencialidad a provocar algún deslizamiento.	PL2	0.252
DESCRIPTORES	Brechas / Tobas andesíticas	Presentan una calidad moderada al ser sometidas a algún esfuerzo ya que con uno o dos golpes son fracturadas además de formar parte de colinas afectadas por la erosión tienen una calificación de moderada.	PL3	0.148
DESCRI	Calizas Margosas/ Lutitas	De textura nodular, en muchos casos con presencia de fósiles, incompetente estructuralmente de poca resistencia a la picota por lo que se deduce que es de calidad moderada.	PL4	0.083
	Areniscas	Presenta textura clástica de grano medio en la mayoría de casos muy bien cementadas. Se fractura con uno o dos golpes de picota y se deduce muy baja potencialidad de generar inestabilidad. Según lo descrito presenta una calidad muy buena de la roca.	PL5	0.047
	Caliza Masiva	Presenta una calidad alta ya que al ser sometida a esfuerzos tienen la capacidad de soportarlos y no fracturarse, por lo que presenta una baja susceptibilidad a presentar algún deslizamiento.	PL6	0.027

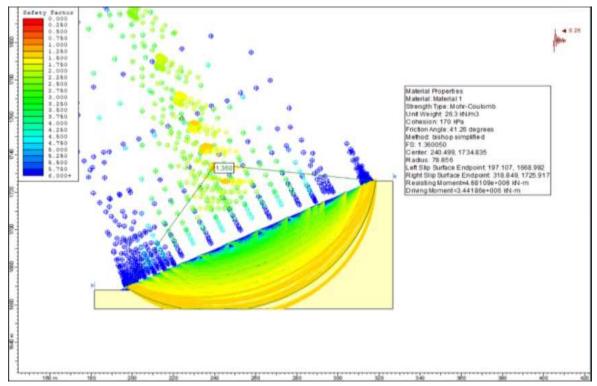
NOTA: La tabla se muestra los valores ponderados de litología, luego se le dará valor a cada talud para hallar la susceptibilidad. **FUENTE:** Propia (2021)


ANEXO N° 24. Ficha de Procesamiento de Datos – Resultados de la Evaluación de Precipitaciones.

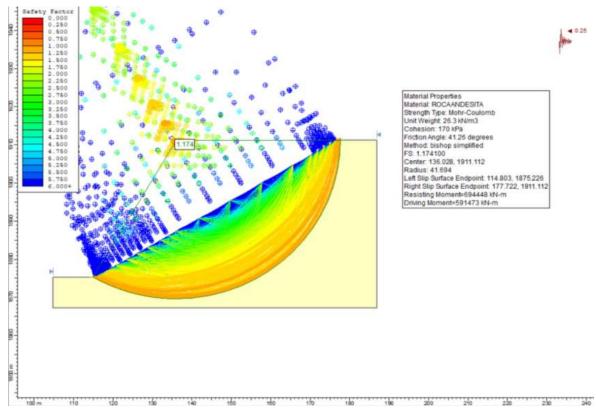
Parámetros		Precipitaciones	Peso Ponderado
	MUY ALTA (> a 250 mm)	Considerado un rango muy alto en la zona afectada ya que las precipitaciones tienen una duración promedio de 15 min hasta de 30 min esto es suficiente para que las precipitaciones desestabilicen los taludes y por consecuencia se produzcan movimientos en masa y por lo general caída de rocas.	0.482
ES	ALTA (160 a 250 mm)	Se considera en la zona de estudio un índice de precipitaciones alto ya que por lo general las lluvias en la zona de estudio son más perjudiciales en la época de invierno debido a que las llueve con demasiada frecuencia por lo que es un agente claramente desencadenante debido a esto se suscitan muchos deslizamientos en épocas de invierno.	0.270
DESCRPITORES	MODERADA (90 a 160 mm)	En la zona de estudio es considerado un rango moderado puesto que los taludes y laderas no son sometidos a intensas lluvias, pero si a lluvias moderadas que en algún momento la saturación del suelo excede su capacidad y puede provocar algún movimiento en masa.	0.141
	BAJA (50 a 90 mm)	Por lo general no se suscitan deslizamientos en este rango de precipitaciones, pero cabe resaltar que, aunque las lluvias sean suaves el tiempo en que se prolongue la duración de las lluvias pueden llegar a afectar a las masas de suelo y por consecuencia producir algún movimiento en masa.	0.068
	MUY BAJA (< a 50 mm)	No se reportan problemas de deslizamientos en este rango de precipitaciones puesto que en las estaciones del año entre verano, otoño y primavera son muy escasa las precipitaciones.	0.039


NOTA: La tabla se muestra los valores ponderados de precipitaciones, luego se le dará valor a cada talud para hallar la susceptibilidad. **FUENTE:** Propia (2021)

ANEXO N°25. Evaluación Pseudoestácticas de las Estaciones



NOTA: Evaluación de talud 1 en condiciones pseudoestáticas, se disminuyó el ángulo de talud a 22° además de proponer un sistema de geomalla tejido uniaxial terragrid UX en el cual se obtuvo un resultado de un factor de seguridad de 1,151



NOTA: Evaluación de talud 2 en condiciones pseudoestáticas, se disminuyó el ángulo de talud a 19° además de proponer un sistema de geomalla tejido uniaxial terragrid UX en el cual se obtuvo un resultado de un factor de seguridad de 1,165.

NOTA: Evaluación de talud 3 en condiciones pseudoestáticas con resultado de un factor de seguridad de 1,360 en donde se aplicó el método de cambio de pendiente de talud por lo que se disminuyó el ángulo a 25° de pendiente.

NOTA: Evaluación de talud 4 en condiciones pseudoestáticas con resultado de un factor de seguridad de 1,360 en donde se aplicó el método de cambio de pendiente de talud por lo que se disminuyó el ángulo a 30° de pendiente por el hecho de que la roca es competente.

ANEXO Nº26. Caída de bloques de gran tamaño

NOTA: Caída de rocas en la estación 4 en donde hay presencia de bloques de gran tamaño que perjudican a la población.

NOTA: Talud en condiciones susceptibles muy altas en donde es muy probable la caída de rocas.

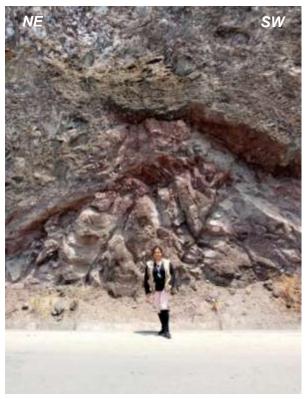
ANEXO N°27. Flujos y Deslizamientos de Suelo

NOTA: Deslizamientos de roca y suelo debido que el suelo presenta una pendiente elevada y la cohesión del suelo es baja por el hecho de ser arenas.

NOTA: Movimiento de masa del tipo flujo de detritos a pequeña escala, pero en la que se puede inferir que ante un evento de lluvias intensas perjudicaría en mayor escala a la población.

ANEXO N°28. Deslizamiento Planar

NOTA: Deslizamiento del tipo planar en la parte baja de la vía de acceso a Jancos poniendo en riesgo a los pobladores y sus cultivos.


CAÍDA DE BLOQUES MEDIANOS

NOTA: Caída de rocas en talud cercano a la estación 3 en el cual se observa el peligro debido a los constantes deslizamientos.

$ANEXO\ N^{\circ}29.$ Talud que presenta caída de bloques por volcamiento.

NOTA: Formación rocosa en donde se produce caída de rocas por volcamiento.

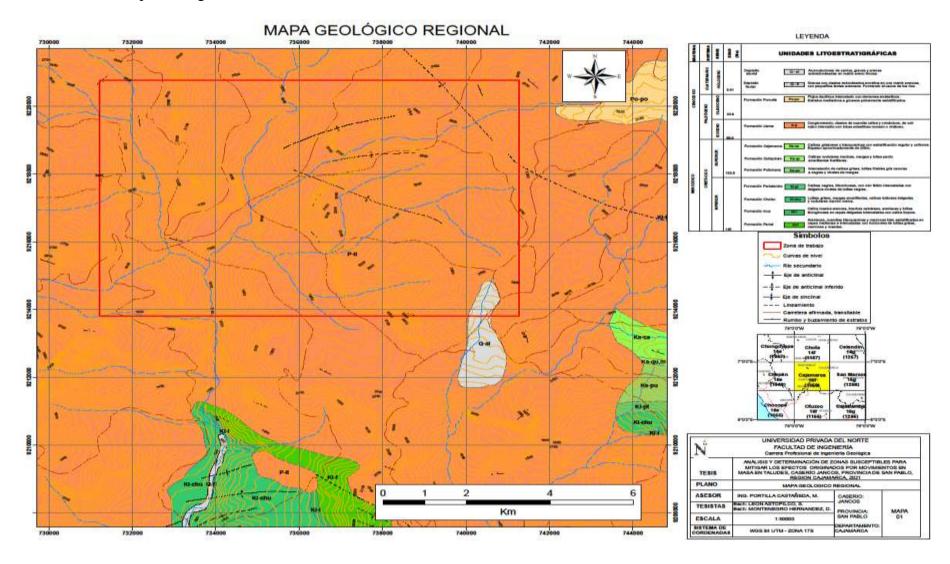
TOMA DE DATOS

NOTA: Recopilación de datos de los taludes evaluados.

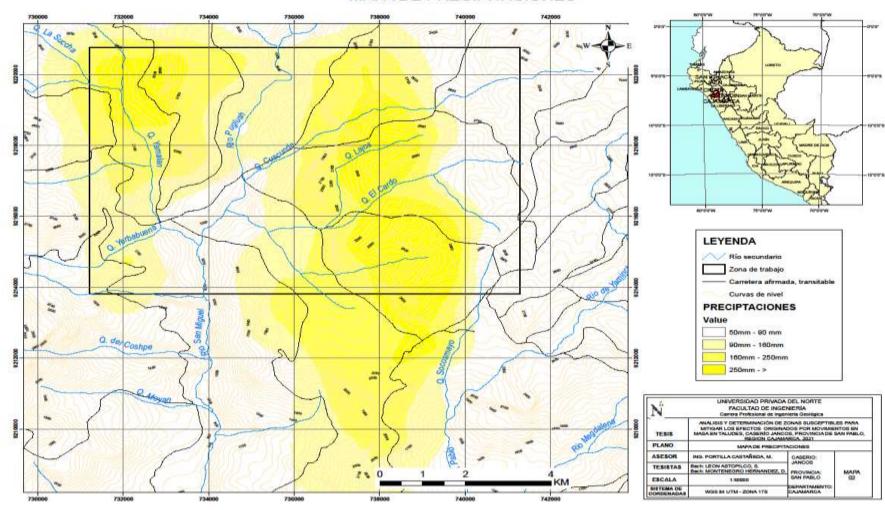
 $ANEXO\ N^{\circ}30.$ Taludes que presentan Caída de bloques por volcamiento y fallamiento.



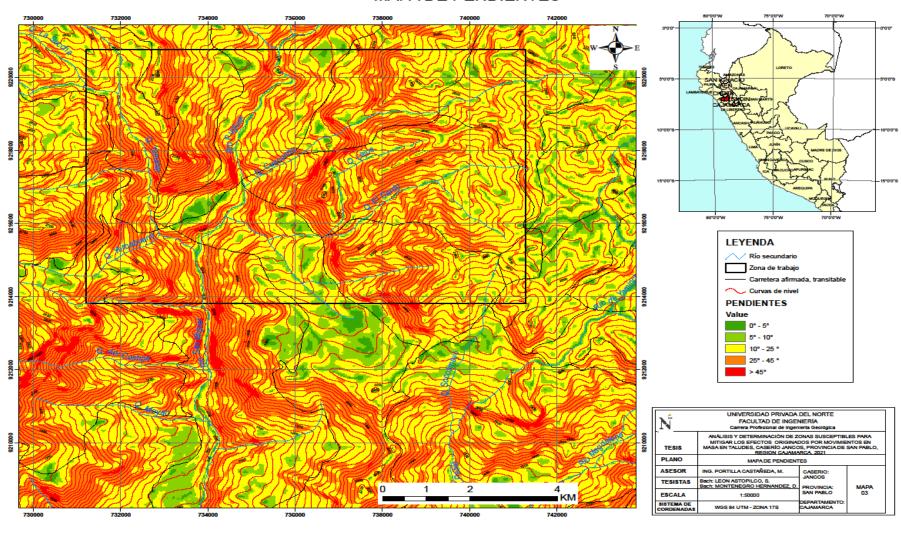
NOTA: Se muestra en las imágenes dos Taludes en los cuales hay constantes deslizamientos y caída de rocas.



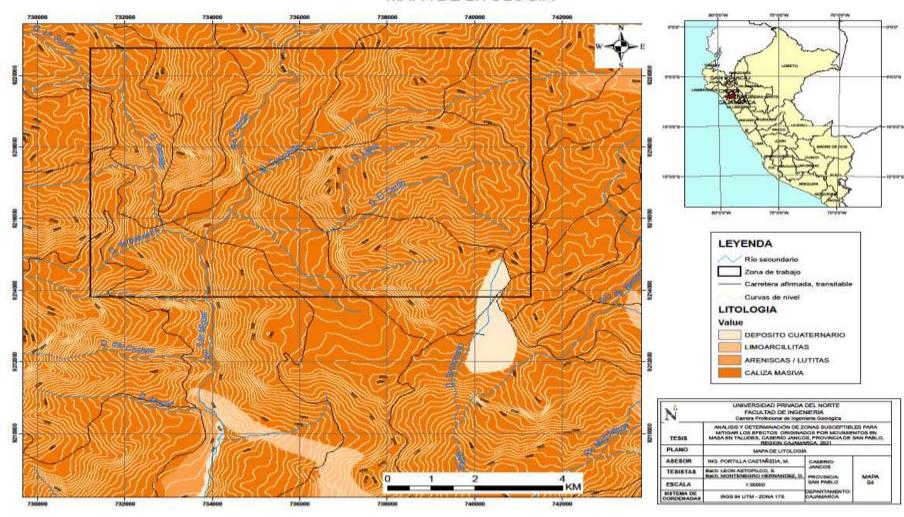
ANEXO N°31. Mapa Temático de Estaciones



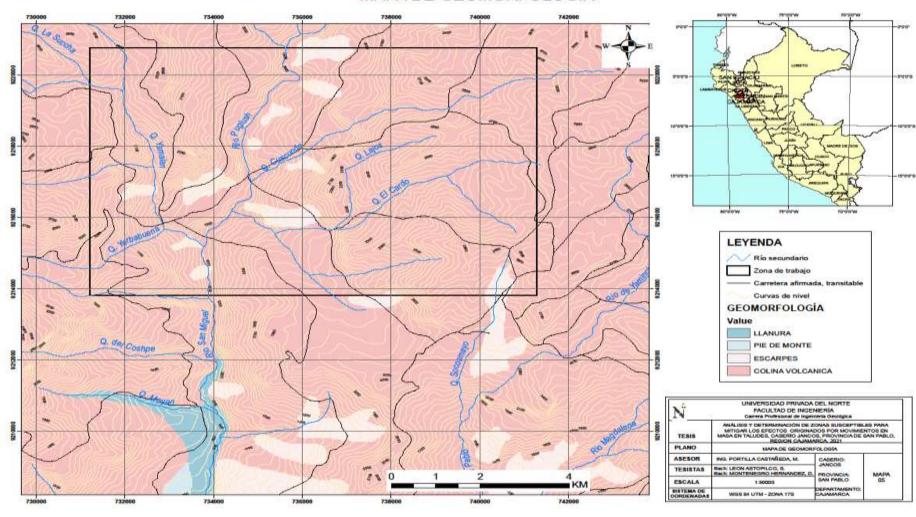
ANEXO Nº 32. Mapa Geológico


ANEXO N°33. Mapa de Precipitaciones

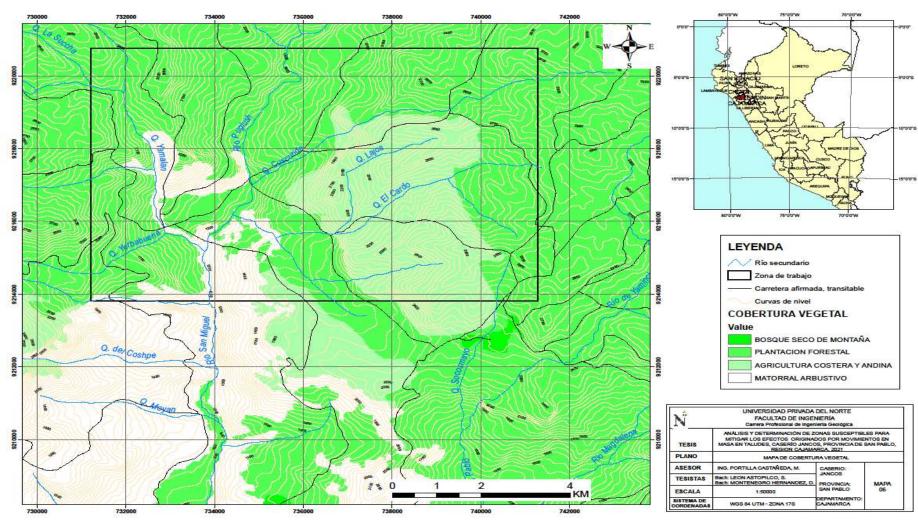
MAPA DE PRECIPITACIONES


ANEXO N°34. Mapa de Pendientes

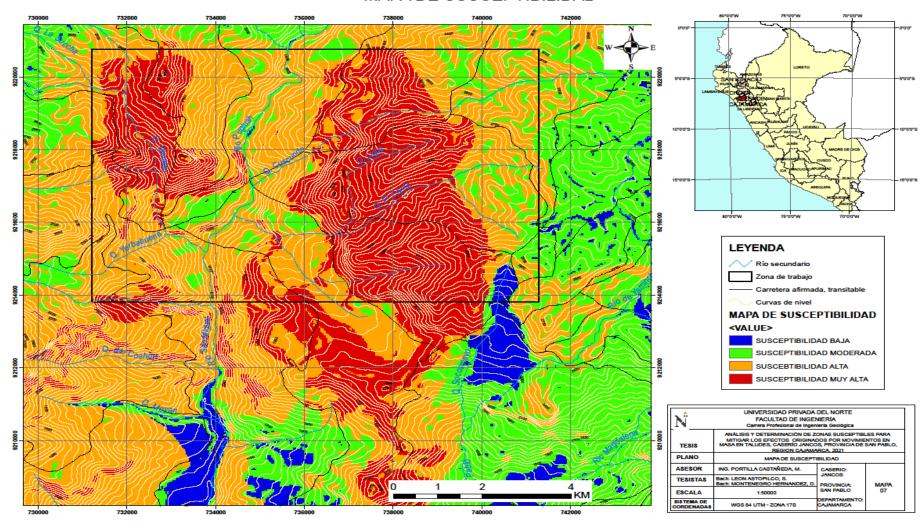
MAPA DE PENDIENTES


ANEXO N°35. Mapa de Litología

MAPA DE LITOLOGÍA


ANEXO N°37. Mapa de Geomorfología

MAPA DE GEOMORFOLOGÍA


ANEXO N°38. Mapa de Cobertura Vegetal

MAPA DE COBERTURA VEGETAL

ANEXO N°39. Mapa de Susceptibilidad

MAPA DE SUSCEPTIBILIDAD

