

FACULTAD DE INGENIERÍA

Carrera de INGENIERÍA INDUSTRIAL

"PROPUESTA DE UNA VALIDACIÓN PARA MEJORAR LOS PROCESOS EN EL SISTEMA DE TRATAMIENTO DE AGUA PURIFICADA EN LA EMPRESA CORPORACIÓN FERCAT SAC"

Tesis para optar el título profesional de:

Ingeniera Industrial

Autor:

Lourdes Rosario Rojas Quispe

Asesor:

Mg. Danny Stephan Zelada Mosquera

https://orcid.org/0000-0003-3896-7666

Lima - Perú

JURADO EVALUADOR

Jurado 1	Cesar Enrique Santos Gonzales	41458690
Presidente(a)	Nombre y Apellidos	Nº DNI

lurado 2	Enrique Martin Avendaño Delgado	18087740
Jurado 2	Nombre y Apellidos	Nº DNI

Jurado 3	Rafael Luis Alberto Castillo Cabrera	45236444
Jurado 3	Nombre y Apellidos	Nº DNI

DEDICATORIA

A mi familia:

Mi padre, madre y mis hermanos; Por brindarme la oportunidad de estudiar, por su apoyo constante para afrontar las adversidades, siendo la causa y el motivo de mi desarrollo personal y

profesional.

A mi pareja, quien siempre estuvo apoyándome, es mi ejemplo a seguir y a nuestra hija Fernanda por ser mi gran motor, este logro es por ellos.

AGRADECIMIENTO

A mis profesores que por las enseñanzas brindadas y las orientaciones que nos ayudan a mejorar nuestra perspectiva de las cosas.

A mi familia, que me ha dado todo lo que soy ahora tener valores, perseverancia, empeño por hacer las cosas bien para lograr mis metas. Gracias por siempre estar ahí y confiar en mí.

Tabla de contenido

JURADO CA	LIFICADOR	2
DEDICATOR	IA	3
AGRADECIM	MIENTO	4
TABLA DE C	CONTENIDO	5
ÍNDICE DE T	ABLAS	7
ÍNDICE DE F	TIGURAS	8
RESUMEN		10
CAPÍTULO I:	INTRODUCCIÓN	11
1.1.	Realidad problemática	12
1.2.	Formulación del problema	17
1.3.	Objetivos	17
1.4.	Hipotesis	17
CAPÍTULO II	I: METODOLOGÍA	18
2.1.	Tipo de investigación	18
2.2.	Población y muestra	18
2.3.	Materiales, instrumentos y métodos	19
2.4.	Técnicas e instrumentos de recolección y análisis de datos	19
	Desarrollo de la investigación	20
	Calificación de instación	21
	Calificación de operación	21
	Calificación de desempeño	22

CAPÍTULO	III: RESULTADOS	23
3.1.	Diagnóstico situacional de los procesos	23
	Diagrama de Causa-Efecto (Ishikawa)	23
3.2.	Propuesta de la validación	24
	Diagrama de Flujo	24
	Descripción del proceso	25
	Diagrama de análisis de proceso (DAP	26
	Proceso de Validación	27
3.3.	Relación costo-beneficio de la propuesta de la validación	31
CAPÍTULO	IV: DISCUSIÓN Y CONCLUSIONES	33
4.1.	Limitaciones	33
4.2.	Interpretación comparativa	33
4.3.	Concluiones	34
REFERENC	CIAS	35
ANEXOS		37

ÍNDICE DE TABLAS

Tabla 1 : Cuadro de materiales, instrumentos y métodos	19
Tabla 2 : Cuadro de diagnóstico, proceso de validación y análisis costo beneficio	19
Tabla 3 : Parámetros de control y criterios de aceptación de la calificación de instalación	21
Tabla 4 : Parámetros de control y criterios de aceptación de la calificación de operación	21
Tabla 5 : Criterios de aceptación para la calificación de desempeño	22
Tabla 6 : Descripción del proceso del Sistema de Tratamiento de Agua Purificada	25
Tabla 7 : Diagrama de análisis de proceso	26
Tabla 8 : Plan General de Muestreo	27
Tabla 9: Plan de Muestreo -Fase 1 y Fase 2	28
Tabla 10: Plan de Muestreo -Fase 3	28
Tabla 11: Instrumentos de medición / Equipos / Kits / Medios de Cultivos/ Cepas	29
Tabla 12: Relación de Procedimientos e Instructivos Aplicables	30
Tabla 13: Programa de mantenimiento de los componentes del (STAP-001)	30
Tabla 14: Comparativo de la demanda de agua purificada a terceros	31
Tabla 15: Cuadro de inversión general para la validación de los procesos (STAP-001)	31
Tabla 16: Flujo de caja	32

ÍNDICE DE FIGURAS

Figura 1: Diagrama causa-efecto (Ishikawa)	23
Figura 2: Diagrama de flujo	24

ÍNDICE DE ANEXOS

Anexo N°1:	Calificación de instalación	
Anexo N°2:	Calificación de operación	39
Anexo N°3:	Cuadro de Inversión (infraestructura, equipos, componentes,	
	instrumentos de medición y materiales	43
Anexo N°4:	Cuadro de costos de personal por recibo por honorarios	44
Anexo N°5:	Costo por servicios requeridos en la validación de los procesos del	
	(STAP-001)	44
Anexo Nº6:	Cuadro de materiales y consumibles	45

RESUMEN

El agua es importante dentro de las industrias del mundo. El agua purificada es un tipo de agua requerida en las industrias farmacéuticas, los laboratorios la utilizan como materia prima para la fabricación de diferentes productos médicos; también para realizar operaciones de: limpieza de máquinas, salas, análisis fisicoquímicos y microbiológicos. El agua purificada necesita cumplir ciertos parámetros específicos y estos son requisitos de calidad o pureza; para lo cual se requieren realizar tres fases: Fase I y Fase II: muestreo diario durante 2 semanas y Fase III: muestreo semanal durante 12 meses, según las exigencias de las entidades reguladoras como; Organización Mundial de la Salud (OMS), Administración de Alimentos y Medicamentos (FDA), Sociedad Internacional de Ingeniería Farmacéutica (ISPE), Farmacopea de los Estados Unidos (USP vigente).

En este estudio se propone realizar una validación para mejorar los procesos dentro del sistema de tratamiento de agua purificada con evidencia documentada que proporcione un alto grado de seguridad, con las especificaciones preestablecidas y características de calidad. El proceso de validación se divide en tres actividades principales que son calificación de instalación, operación y desempeño. Contará con manuales, procedimientos, instructivos, programas de mantenimiento preventivo y correctivo; y la verificación en el tiempo recomendado por las entidades regulatorias.

PALABRAS CLAVES: Validación, Procesos, Agua Purificada, Procedimientos, Mantenimiento preventivo, Mantenimiento correctivo y Mejora Continua.

CAPÍTULO I: INTRODUCCIÓN

1.1. Realidad problemática

En el mundo entero Los Sistemas de Validación están contribuyendo de gran manera en la calidad de los procesos. Según, la Farmacopea de los Estados Unidos (2021). Agua purificada Capítulo <99>. Indica que "El Agua Purificada es agua obtenida mediante un proceso adecuado. Se prepara a partir de agua que cumple con el Reglamento Nacional Primario de Agua Potable de la Agencia de Protección Ambiental de los EE.UU., reglamentaciones para el agua potable de la Unión Europea o Japón, o con las Guías para la Calidad del Agua Potable de la OMS".

World Health Organization (2011), Ginebra, en su estudio titulado "Guías para la calidad del agua de consumo humano", muestra como resultado que "El agua es esencial para la vida y todas las personas deben disponer de un abastecimiento satisfactorio (suficiente, seguro y accesible). La mejora del acceso al agua de consumo humano puede proporcionar beneficios tangibles para la salud. Se debe hacer el máximo esfuerzo para lograr que el agua de consumo humano sea tan segura como sea posible".

En América los Sistemas de Validación y la Calidad del Agua han venido adecuando nuevas tecnologías y procesos. Y según, Romero Vargas, M. A., & Niño Martínez, S. (2017), Colombia, en su estudio "Validación del sistema de purificación de agua de la empresa Tecmol farmacéutica S.A.S.", muestra como resultado que, "La Validación demuestra, en forma documentada que un proceso, equipo, material o sistema como apoyo crítico, tales para la generación de agua purificada son importante; ya que garantiza para los distintos procesos de fabricación de productos farmacéuticos, análisis de control en el empresa, limpieza de equipos utilizados en la fabricación, son confiable y consistente en el tiempo.

De acuerdo a la industria, la calidad de agua exigida será vital, ya que de esto dependerá que las muestras elaboradas cumplan con los parámetros estandarizados y no arrastren contaminantes que podrían llegar a ser nocivos para la salud humana". Para ello según, Martín-Álvarez, N. C., & Mayo-Abad, O. (2013). "Calificación del desempeño de un sistema para la producción de agua purificada de la planta de producción de parenterales 3. Tecnología Química, 33(2), 207-220". Indica en el análisis estadístico de los resultados obtenidos para las variables del sistema: pH, conductividad, recuento microbiológico y otras, utilizando para dicho fin las gráficas de control x-R. Además, se realiza la evaluación del producto final, agua purificada, calculándose los índices de capacidad Cp y Cpk para todas las pruebas realizadas.

También según, Espíritu Silva, F. A. (2014). "Calificación y validación del sistema de tratamiento de agua purificada ro2/cedi 400 l/h". Se demuestra que el sistema de tratamiento de agua purificada se encuentra bajo control estadístico y que el agua producida cumple con las especificaciones establecidas. Los resultados del estudio de calificación y validación luego de todas las fases de análisis que comprende este estudio de aproximadamente 1 año y 5 meses, demuestran que el sistema de tratamiento de agua purificada se encuentra validado siempre y cuando se mantengan todas las condiciones de control y se cumplan los programas descritos para el mismo.

En El Perú los Sistemas de Validación y la Calidad del Agua no tienen una normatividad vigente acorde a las exigencias y requerimientos internacionales. Según. Flores Hernández, C. A. (2012). Lima, en su estudio titulado "Validación del sistema de purificación de agua: ósmosis inversa "milli-rx45" de la Empresa FARBIOVET SA.", Establece que "En el presente estudio se validó el sistema de purificación de agua por

ósmosis inversa, el estudio de análisis físicos, químicos, microbiológicos en el líquido que circulaba por este. Inicialmente no se contaban con una base de datos que determinara el estado del sistema, por lo que se procedió a levantar información. La obtención de resultados experimentables comparables del agua de cisterna y purificada dio paso al proceso de validación."

Tenemos las siguientes terminologías, las Buenas prácticas de Manufacturas, establecer un análisis de indicadores de producción para mejorar la productividad del departamento de producción, así implementar el plan de mantenimiento preventivo de las máquinas del área de producción para la reducción del costo de mantenimiento y establecer las normas de higiene personal y uso de equipo de protección para el personal del departamento de producción para minimizar la contaminación cruzada y determinar el análisis financiero para la implementación de la propuesta de mejora para la reducción de los costos de producción. Meoño Mazariegos, R. R. (2021). Implementación de un sistema de gestión de buenas prácticas de manufactura (BPM), para una industria farmacéutica (Doctoral dissertation, Universidad de San Carlos de Guatemala).

La calidad, la evidencia reportada sugiere que esta nueva visión de la calidad es una estrategia que genera confianza en clientes, industria y organismos reguladores, respecto a la calidad de los productos farmacéuticos. Aponte, O. F. G., Díaz, B. M. V., & Huertas, C. E. M. (2015). La calidad desde el diseño: principios y oportunidades para la industria farmacéutica. Estudios Gerenciales, 31(134), 68-78. Mientras que, el control de calidad, se inspecciona las especificaciones de los medicamentos en las diferentes etapas del proceso de producción. El objetivo es verificar que los productos se encuentren dentro de las especificaciones establecidas por la USP.

El mantenimiento preventivo que es la actividad técnica relacionada con la conservación y el buen funcionamiento de un equipo, mecanismo o maquinaria, ejecutada antes de que ocurra la falla, con el objetivo de evitar interrupciones innecesarias favoreciendo la disponibilidad, confiabilidad y operatividad del equipo.

El Aseguramiento de la calidad es una estrategia que genera confianza en clientes, industria y organismos reguladores, respecto a la calidad de los productos farmacéuticos. Aponte, O. F. G., Díaz, B. M. V., & Huertas, C. E. M. (2015). La calidad desde el diseño: principios y oportunidades para la industria farmacéutica. Estudios Gerenciales, 31(134), 68-78. Los principios básicos del aseguramiento de la calidad tienen como objetivo la producción de productos que sean adecuados para su uso previsto (calidad, seguridad y eficacia).

La validación se define como el establecimiento de pruebas documentales que aportan un alto grado de seguridad de que un proceso planificado se efectuará uniformemente en conformidad con los resultados previstos especificados. Los estudios de validación son aplicables a las pruebas analíticas, los equipos, los sistemas y servicios del establecimiento (como aire, agua, vapor) y procesos (como el de fabricación, limpieza, esterilización, llenado estéril, liofilización, etc.). De la Salud, O. M. S. (1998). "Validación". ANEXO 6 DEL INFORME 34.

¿Qué se debe validar?, Se debe validar los siguientes: Métodos Analíticos, Procesos de Manufactura, Procesos de Llenado aséptico, Procesos de Limpieza, Procesos Térmicos, Procesos de Filtración y Sistemas de Apoyo Crítico. Emerson León, José Luis Medrano. (2017). Validación de procesos en la industria farmacéutica.

La estrategia de validación tiene cada día más importancia para las autoridades sanitarias y todas las industrias farmacéuticas han de disponer de documentación detallada de la validación de los sistemas, equipos y procesos de fabricación, así como la validación de los métodos analíticos. El primer paso a cumplir para asegurar el correcto funcionamiento del sistema es que cada uno de los equipos, componentes, materiales de construcción y consideraciones generales del diseño cumplan con las farmacopeas vigentes y con las Normas de Correcta Fabricación (GMP).

Las etapas de la validación son las siguientes: Calificación de diseño (CDI), Calificación de instalación (CI), Calificación de operación (CO), y Calificación de desempeño (CD).

La Calificación de Instalación (CI): Debe proporcionar pruebas documentadas de que la instalación ha sido completa y satisfactoria, en el entorno seleccionado y que el entorno es adecuado para el funcionamiento y uso del equipo. Las especificaciones de compra, planos, manuales, listas de piezas de repuesto y los detalles del proveedor deben ser verificados durante la calificación de instalación y en la medida de lo posible deben ser adjuntados al reporte correspondiente. Previamente a la calificación de instalación se debe contar con los instrumentos de control y de medición calibrados y sus certificados deben ser adjuntados.

La Calificación Operacional (CO): Debe proporcionar pruebas documentadas de que los equipos o sistemas (incluyendo todos sus componentes) funcionan en conformidad con las especificaciones de operación (de acuerdo a lo descrito por el fabricante) en el lugar seleccionado para el mismo. Las pruebas deben ser diseñadas para demostrar que el funcionamiento es satisfactorio en todo el rango de operación normal, así como en los límites

de sus condiciones de operación (incluyendo las condiciones del peor caso). Los controles de operación, alarmas, interruptores, pantallas y otros componentes operacionales deben ser probados.

La Calificación de Desempeño (CD): Debe proporcionar pruebas documentadas de que los equipos o sistemas (incluyendo todos sus componentes), pueden consistentemente desempeñarse de acuerdo con las especificaciones durante su uso rutinario. Los resultados de los ensayos deben ser registrados, procesados y analizados durante un período de tiempo adecuado para demostrar consistencia.

La empresa Corporación Fercat S.A.C., se encuentra ubicado en el distrito de San Juan de Lurigancho, Lima – Perú. Presta servicios y está dirigido a las industrias farmacéuticas, que están bajo regulación nacional de La Dirección General de Medicamentos, Insumos y Drogas (DIGEMID). Durante la fabricación de los medicamentos es necesario el agua purificada. El agua purificada es obtenida de manera tercerizada y por ser tan cara, tienen la necesidad de implementar su propio sistema de tratamiento de agua purificada el cual tiene varios procesos. Cuenta con una planta de procesamiento de agua purificada que no está validada, lo cual presume que pueda producir agua fuera de especificación para el uso en fabricación de medicinas. Y para asegurar la calidad de la fabricación de diversos medicamentos se requiere de una validación para mejorar los procesos en el sistema de tratamiento de agua purificada en base a las normas legales y los parámetros preestablecidos. Los parámetros de métrica de un proceso de purificación de agua pueden ser diversas, entre ellas tenemos:

a) Los parámetros fisicoquímicos que implican parámetros como: Cloro Residual, Dureza, pH, Conductividad y Sustancias Oxidables.; y

b) Los parámetros microbiológicos: Recuento Microbiano e Identificación de microorganismos específicos.

Como consecuencias, de tener parámetros fuera de especificación puede repercutir totalmente en los procesos dentro del sistema de tratamiento de agua purificada, siendo que atente contra el producto final, clientes insatisfechos, enfermedades crónicas, deterioro de la imagen de la empresa.

1.2. Formulación del problema

¿En qué medida la propuesta de validación mejorará los procesos en el sistema de tratamiento de agua purificada en la empresa Corporación Fercat SAC?

1.3. Objetivos

1.3.1. Objetivo general

Proponer la validación para mejorar los procesos en el sistema de tratamiento de agua purificada en la empresa Corporación Fercat SAC

1.3.2. Objetivos específicos

- 1. Elaborar un diagnóstico situacional de los procesos en el sistema de tratamiento de agua purificada en la empresa Corporación Fercat SAC.
- 2. Proponer la validación para mejorar los procesos en el sistema de tratamiento de agua purificada en la empresa Corporación Fercat SAC, en sus tres Fases.
- 3. Elaborar la relación costo-beneficio de la propuesta de la validación para mejorar los procesos en el sistema de tratamiento de agua purificada en la empresa Corporación Fercat SAC.

1.4. Hipótesis

La propuesta de validación mejorará significativamente los procesos en el sistema de tratamiento de agua purificada en la empresa Corporación Fercat SAC

CAPÍTULO II: METODOLOGÍA

2.1. Tipo de investigación

La presente investigación es no experimental dado que no se realizó manipulación deliberada de variables y tan sólo se limitó a proponer un diseño de sistema de gestión de riesgos. No hay intervención en la variable de estudio. La alteración intencional de alguna variable es muy propia de los métodos experimentales.

Diseño Transeccional, ya que la investigación es de carácter transversal pues permitirá recopilar información sobre una población o muestra predefinida en un momento determinado, en un tiempo único. A partir de ello se recogerán las características o comportamiento de cada variable.

Estudio Correlacional que corresponde una investigación propositiva dado que está orientada a proponer el diseño de un sistema de gestión de calidad.

El diseño de contrastación de la hipótesis es no experimental – correlacional.

01 ->	X	\rightarrow	O2
-------	---	---------------	----

Donde:

- O1: Es la observación que se realiza para hacer el estudio.
- X: Es la propuesta de solución.
- O2: Es la observación después de la propuesta.

2.2. Población y muestra

En todo el sistema de tratamiento de agua purificada se tiene instalados 09 puntos de muestreos, ubicados estratégicamente para el control de cada uno de los procesos, según norma vigente se tiene que validar todos los procesos y por lo tanto todos los puntos de muestreo en el sistema. En esta investigación la población es la misma que la muestra

dado que, según: Hernández citado en Castro (2003), expresa que "si la población es menor a cincuenta (50) individuos, la población es igual a la muestra" (p.69).

2.3. Materiales, instrumentos y métodos.

Tabla 1: Cuadro de materiales, instrumentos y métodos

	Descripción	Aplicación		
	Laptop	Desarrollo de la investigación.		
Materiales	Teléfono móvil	Coordinaciones, toma de tiempos, imágenes		
	Libreta de apunte	Para anotación de lo observado en las visitas		
	Programa de Microsoft	Word, Excel		
Instrumentos	Buscador de Google	Búsqueda de información		
	Lista de chequeo	Para la realidad problemática		
	Normas APA	Citas, referencias y formatos de documentos		
Métodos	Herramientas de	Diagrama de flujo, Diagrama de análisis de proceso,		
	diagnóstico	Ishikawa.		

Fuente: Elaboración propia

2.4. Técnicas e instrumentos de recolección y análisis de datos

Desarrollo de la investigación. El desarrollo de la presente investigación se divide en 3 partes y el proceso de validación en 4 etapas, las cuales son:

Tabla 2: Cuadro de Diagnóstico, Proceso de Validación y Análisis Costo Beneficio.

Diagnóstico	Proceso de Validación			Análisis Costo Beneficio	
Tratamiento actual	Etapa I	Etapa II	Etapa III	Etapa IV	Tratamiento optimizado
Sin Validación	Calificación de Diseño	Calificación de Instalación	Calificación Operativa	Calificación Desempeño	Proceso Validado
	CDI	CI	CO	CD	
purificación del agua sin los procedimientos establecidos para la obtención. El costo del proceso es aproximadament e 1.5 soles por	documentado para asegurar que la implementación de un diseño es factible. El sistema ya está instalado, por lo tanto, esta etapa ya no es	de todos los aspectos importantes de la instalación en conformidad con las especificaciones de diseño y	documentada que demuestra que todos los componentes de un sistema o equipo funcionan según lo especificado.	mente que cada sistema y pieza del equipo realizará la función para	Se logra la validación del proceso. El costo del proceso es aproximadam ente 1.2 soles por m3 pues el proceso se optimiza.

Fuente: Elaboración propia

SAC"

Consideraciones

CDI: Si el sistema ya se encuentra instalado ya no será necesario.

CI y CO: En el caso de equipos cuya operación correcta es un indicador suficiente de su

funcionamiento que se monitorea y calibran regularmente (Ejemplo: potenciómetros,

incubadoras, centrífugas, congeladores, etc.).

CI, CO y CD: Sistemas tales como los de abastecimientos de aire, agua, vapor y los

equipos importantes que desempeñan procesos de apoyo cruciales, como la esterilización

(autoclave u horno), la deshidrogenación (horno ó túnel) y la liofilización.

El tipo de validación del presente estudio es Retrospectiva, ya que se pretende establecer

un programa documentado acerca de un proceso que no ha sido validado en forma

prospectiva (aprobación previa al proceso), debido a que el proceso de fabricación se

considera estable, ya que se sustenta en el análisis de datos de lotes que han sido

elaborados con anterioridad.

Toda la información obtenida servirá para dos cosas:

Plan Maestro de Validación; y Protocolo de Validación.

Datos generales del sistema de tratamiento sin validación en sus procesos.

 Descripción : Sistema de Tratamiento de Agua Purificada

 Fabricante : INSERIND S.R.L

 Código : STA-001

 Aplicación : Agua para uso farmacéutico

• Material en Contacto : Acero inoxidable 316L

• Ubicación General : CORPORACION FERCAT SAC

• Ubicación específica : Piso Técnico de la Planta

CALIFICACIÓN DE INSTALACIÓN

Tabla 3: Parámetros de control y criterios de aceptación de la calificación de instalación

PARÁMETROS DE CONTROL	CRITERIOS DE ACEPTACIÓN
A. Instalación de los componentes y equipos.	Los componentes del equipo deben haber sido instalados de acuerdo a lo especificado en el plano correspondiente.
B. Inspección de soldaduras	 Los orificios deben estar ausentes. La apariencia del cordón de las soldaduras debe ser regular y uniforme. El craqueo térmico debe de estar ausente. El espesor de la soldadura no debe ser más del 20% del espesor del tubo.
C. Estado de conservación	Los componentes del equipo deben encontrarse en condiciones óptimas de conservación.
D. Material en Contacto	El certificado debe indicar acero inoxidable 316L.
E. Calificación del soldador	Certificado de calificación del soldador conforme.
F. Sensores	Los sensores deben haber sido instalados correctamente.
G. Análisis de puntos muertos	La sección muerta no debe ser > a 2 veces el diámetro de la tubería.
H. Pendiente de tubería	Al medir las pendientes de la tubería de recirculación con el nivel, la burbuja debe desplazarse hacia el lado contrario del sentido de dicha tubería.

Fuente: Elaboración propia

CALIFICACIÓN DE OPERACIÓN

Tabla 4: Parámetros de control y criterios de aceptación de la calificación de operación

PARÁMETROS DE CONTROL	CRITERIOS DE ACEPTACIÓN						
I. Control de funciones	Los componentes del sistema deben estar operativos y presentar correspondencia entre el rótulo y la función llevada a cabo.						
J. Verificación de hermeticidad	No deben observarse fugas en c sistema de tratamiento de agua.		es y equipos del				
	Equipo	Instrumento	Rango de trabajo				
	Equipo hidroneumático	MAN-STA-001-MAN-001 MAN-STA-001-MAN-002	40.0 - 50.0 PSI 40.0 - 50.0 PSI				
W.D.	Filtro de 5 μm y de 10 μm Filtro de carbón activado	MAN-STA-001-MAN-003 MAN-STA-001-MAN-004	40.0 - 50.0 PSI Máx. 20 PSI				
K. Parámetros	Ablandadores	MAN-STA-001-RSS-001	≥ 0.2 Meg–Ohms				
operacionales	Resina Mixta	MAN-STA-001-CON-001	$\leq 1.3 \ \mu \text{S/cm}$				
	Electrobomba de recirculación	MAN-STA-001-MAN-005	80 PSI				
	Tubería de Recirculación	MAN-STA-001-CON-002	$\leq 1.3 \ \mu \text{S/cm}$				
	Tanque de Almacenamiento de agua purificada	Sensor de nivel	Nivel mínimo RX				
L. Caudal de alimentación.	≥ 400.0 L/h						
M. Caudal de producción.	≥ 200.0 L/h						
N. Caudal de recirculación.	Referencial.						
O. Velocidad del flujo y turbulencia.	\geq 2.0 ft/s y \geq 4000.0 número de Reynolds.						
P. Control de nivel	Detiene la operación de la electr	robomba.					
Q. Verificación de la	- Ausencia de ácido peracético.						
pasivación	- pH y conductividad dentro de	especificación.					

Fuente: Elaboración propia

CALIFICACIÓN DE DESEMPEÑO

Tabla 5: Criterios de Aceptación para la calificación de desempeño

	ESPECIFICACIONES						
PRUEBAS	Fisicoquímico	Microbiológico					
		RTMA	RTCHL	Patógenos			
AGUA PO	FABLE						
Cloro Residual	No menor a 0.5 mg/L			Pseudomonas aeruginosa:			
pН	6.5 - 8.5	≤500	≤500	Ausente/mL			
Conductividad	No Aplica	UFC/mL	UFC/mL	Coliformes:			
Sustancia Oxidables	No Aplica			Ausente/mL			
AGUA DES	CLORADA						
Cloro Residual	0.0 mg/L			Pseudomonas aeruginosa:			
pН	6.5 - 8.5	≤500	≤500	Ausente/mL			
Conductividad	No Aplica	UFC/mL	UFC/mL	Coliformes:			
Sustancia Oxidables	No Aplica			Ausente/mL			
AGUA BLA	NDA						
Dureza Total	Máx. 60 ppm			Pseudomonas aeruginosa:			
pН	6.5 - 8.5	≤500	≤500	Ausente/mL			
Conductividad	< 1 500 μS/cm	UFC/mL	UFC/mL	Coliformes:			
Sustancia Oxidables	Permanece el color			Ausente/mL			
AGUA PUR	IFICADA						
pH (25°C +/- 2°C)	5.0 - 7.0			Pseudomonas aeruginosa:			
Conductividad (25°C +/- 2°C)	≤ 1.3 μS/cm*	≤ 100	≤100	Ausente/mL			
Sustancias oxidables	Permanece el color	UFC/mL	UFC/mL	Coliformes: Ausente/mL			

^{*} Conductividad medida en la primera etapa, de acuerdo a lo señalado en la USP vigente <645> Conductividad del agua. De ser necesario serán consideradas los valores correspondientes a la Etapa 2 y Etapa 3.

Fuente: Elaboración propia

CAPÍTULO III: RESULTADOS

3.1. Diagnóstico situacional de los procesos

Para lograr el objetivo n°1 de la investigación referido al diagnóstico, se muestra el siguiente diagrama de Ishikawa.

Diagrama Causa-Efecto (Ishikawa). Se ha elaborado el Diagrama de Causa y Efecto en base a las evidencias encontradas y la información brindada por los responsables del área. Donde se puede observarlas principales causas que tienen efecto directo en el problema principal, estopermitirá analizar con profundidad los procesos para la propuesta de validación en el sistema de tratamiento.

Diagrama de Ishikawa MAQUINARIA MEDICIÓN MÉTODOS FALTA VALIDACION FALTA DE CALIBRACION DE INSTRUMENTOS DE PROCESOS EOUIPOS SIN CALIFICAR FALTA IMPLEMENTACION DE PROCEDIMIENTOS E INSTRUCTIVOS FALTA DE REGISTROS DE FALTA IMPLEMENTAR FALTA DE TECNICAS ANALITICAS NO VALIDADAS MANTENIMIENTO PREVENTIVO CONDUCTIVIDAD Y PH FALTA DE VALIDACION DE PROCESOS EN EL SISTEMA DE TRATAMIENTO DE AGUA PURIFICADA FALTA DE PERSONAL CAPACITADO FALTA CALIFICAR A LOS PROVEEDORES DE — MATERIALES, ESTANDARES, CEPAS ATTC, MEDIOS DE CULTIVOS Y REACTIVOS AUSENCIA DE REGISTROS DE TEMPERATURA EN EL AREA FALTA DE ORGANIZACION MATERIALES MEDIO AMBIENTE MANO DE OBRA

Figura 1: Diagrama Causa-Efecto (Ishikawa)

Fuente: Elaboración Propia

3.2. Propuesta de la validación.

Al mismo tiempo como propuesta de mejora se establece un diagnóstico de la empresa y se desarrollaron las siguientes herramientas:

Diagrama de Flujo. Se propone una mejora en los procesos en el sistema de tratamiento de agua purificada para ello se ilustra la secuencia de las operaciones que se realizan en los procesos a través de un diagrama de flujo, esto permitirá comprenderlo y estudiarlo para tratar de mejorar sus procedimientos. (ver figura 1).

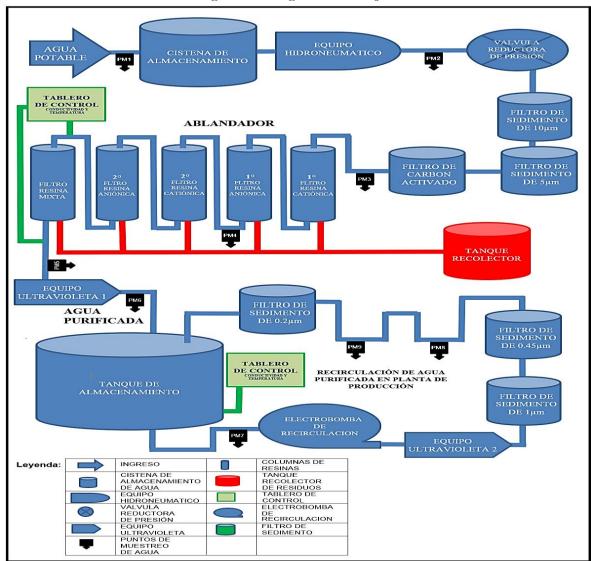


Figura 2: Diagrama de flujo

Fuente: Elaboración propia

A continuación, se realiza también:

Descripción de los procesos. En el Sistema de Tratamiento de Agua Purificada (STAP-001), se muestran distintos procesos que pasa el agua para la generación, almacenamiento y distribución de agua purificada. (ver Tabla 6).

Tabla 6: Descripción del proceso del Sistema de Tratamiento de Agua Purificada.

TIPO DE	PROCESO	DESCRIPCIÓN
AGUA	ROCESO	DESCRIPTION
	ALMACENAMIENTO	Cisterna de almacenamiento: Tanque de 40m³ de capacidad,
Agua	1	elaborado en concreto pulido. Almacena agua potable de la red de
Potable		distribución para alimentar al sistema de tratamiento de agua.
	PRESURIZACION	Equipo hidroneumático: El equipo presuriza el agua potable para
		facilitar el paso del mismo a través del sistema de filtros de
		sedimentos/carbón.
		Válvula reductora de presión: Reduce la presión del agua potable
	EX ED (CION	para alcanzar la especificación de los intercambiadores iónicos.
	FILTRACION	Filtro de sedimentación de 10µm: El agua potable pasa a través de
	1	filtros cartucho con tamaño de poro de 10μm que retiene material
		particulado presente en el agua potable.
		Filtro de sedimento de 5μm: El agua potable pasa a través de filtros cartucho con tamaño de poro de 5μm que retiene material particulado
		presente en el agua potable.
		Filtro de carbón activado: El agua pasa a través de un filtro de carbón
		activado compacto con el objetivo de eliminar sabores, olores y el cloro
		presente en el agua.
Agua	ABLANDAMIENTO	Ablandador de agua: Luego que el agua pase por el equipo ablandador
Blanda		de agua, se obtendrá como producto agua blanda (conductividad<1500
2101101		μS/cm).
	DESIONIZACION	Filtro de resina catiónica, aniónica y mixta: Posteriormente el agua
Agua		pasa a través de las resinas catiónica, aniónicas y mixta reduciéndose la
Purificada		conductividad para alcanzar especificación.
	DESINFECCION	Equipo ultravioleta 1: El agua purificada obtenida pasa a través de un
	1	equipo UV de desinfección (λ=254nm) el cual reduce la carga
	A T D CA CEDY A D CEDY TO	microbiana presente en el sistema.
	ALMACENAMIENTO	Tanque de almacenamiento: El agua purificada obtenida es
	2	almacenada en un tanque de acero inoxidable 316L con una capacidad útil de 1000L.
	RECIRCULACION	Electrobomba de recirculación: A la salida del tanque de
	RECIRCULACION	almacenamiento se ubica una electrobomba de recirculación que se
		encarga de mantener el agua purificada en recirculación constante.
	DESINFECCION	Equipo ultravioleta 2: El agua purificada obtenida para a través de un
	2	equipo UV de desinfección (κ =254nm) el cual reduce la carga
		microbiana presente en el sistema.
	FILTRACION	Filtro de sedimento 1µm y Filtro de sedimento 0.45µm: El agua
	2	purificada pasa a través de filtros cartucho con tamaño de poro de 1 y
		0.45 µm que retiene material particulado que pudiera estar presente.
		Filtro de esterilizante de 0.2µm: El agua purificada pasa a través de
		un filtro cartucho8 con tamaño de poro de 0.2 µm que retiene material
		orgánico.

Fuente: Elaboración propia

Diagrama de análisis de proceso (DAP). Nos permitirá conocer a través de una representación gráfica los pasos que se siguen, identificándolos mediante símbolos para la atención de los pedidos en la empresa y poder así descubrir y eliminar ineficiencias.

Tabla 7: Diagrama de análisis de proceso

Dia	grama N°01	Hoja N°01 de 01					F	Resun	nen
	C	·	Acti	Actividad		S	Símbolo		Sub total
Obj	Objetivo: Tratamiento de agua purificada		Operaci	Operación Transporte			01		9 2
Lug	gar: Corporaci	ón Fercat SAC	Espera				TOOP		0
Ope	erario (s): 1	Ficha N°: 01	- Inspecci Almace		ento		4		2 2
N°	I	Descripción	Tiempo (min)		Si	mbo	olo		Observaciones
1	Se almacena	el agua potable.	7:20				_	X	Cisterna de almacenamiento de 40m^2 de capacidad.
2	potable.	y transporta el agua			X				Equipo hidroneumático
3	especificació intercambiao	lores iónicos.		X	/				Válvula de presión reductora
4		material particulado el agua potable.	8:05	X					Filtros de cartucho con tamaño de poro 10µm
5	presente en e	material particulado el agua potable.		Х					Filtros de cartucho con tamaño de poro 5µm
6	Se eliminan agua potable			X					Filtros carbón activo compacto
7	Se reduce <1500µS/cm	la conductividad (agua blanda).	8:25				X		Columnas de resina aniónica (1) y catiónica (1)
+8		agua purificada).					X		Columnas de resina aniónica (2), catiónica (2) y mixta.
9		e la carga microbiana el agua purificada.	8:40	X _{<}					Equipo Ultravioleta (1) de desinfección (<i>κ</i> =254nm)
10	Se almacena	el agua purificada.	9:45			/		$>^{X}$	Tanque de acero inoxidable de almacenamiento de 1000 L
11	sistema.	el agua purificada por el			X				Electrobomba de recirculación
12	presente en e	material particulado el agua purificada.		X/					Filtros de cartucho con tamaño de poro 1µm
13		material particulado el agua purificada.	9:28	X					Filtros de cartucho con tamaño de poro 0.45µm
14		e la carga microbiana el agua purificada.	9:33	X					Equipo Ultravioleta (2) de desinfección (<i>κ</i> =254nm)
15	Se retiener presente en e	n material orgánico el agua purificada.	9:38	X					Filtros de cartucho con tamaño de poro 0.2µm

Fuente: Elaboración Propia

De igual forma se propone el siguiente Proceso de Validación:

CALIFICACIÓN DE INSTALACIÓN Y CALIFICACIÓN DE OPERACIÓN

Los componentes del Sistema de Tratamiento de Agua Purificada serán realizados de acuerdo a los lineamientos establecidos en POE/VAL-06 CALIFICACIÓN DE EQUIPOS. (Ver: Anexo N°1: Calificación de instalación y Anexo N°2: Calificación de operación).

Consideraciones importantes calificación de instalación:

- a) Revisión de las instalaciones y especificaciones de todos los equipos componentes.
- b) Revisión de la ausencia de puntos muertos en la red de tuberías (distribución).
- c) Revisión de los procedimientos de operación, limpieza y mantenimiento.
- d) Revisión de la calibración de los instrumentos de medición.

Consideraciones importantes calificación de operación:

- a) Parámetros de operación unitaria de los componentes.
- **b)** Medición del caudal de operación del sistema.
- c) Verificación de la operación de las válvulas, alarmas y controles del sistema.

Al finalizar las actividades se procederá a emitir un reporte técnico y certificado de calificación, firmando como responsables: Jefe de Validaciones y Dirección Técnica.

CALIFICACIÓN DE DESEMPEÑO

En esta etapa se verifica la consistencia y confiabilidad del Sistema de Tratamiento de Agua Purificada (CÓD.: STAP-001) en cuanto a sus características de calidad preestablecidas y de acuerdo a la normatividad vigente.

El plan de Muestreo ha sido diseñado en función a las fases de la Validación, la frecuencia de muestreo, los análisis y los puntos de muestreo del sistema, para el control de calidad de cada proceso, el cual se detalla a continuación:

Tabla 8: Plan General de Muestreo

FASE	DURACIÓN	ANÁLISIS FISICOQUÍMICO Y MICROBIOLOGICO	ESPECIFICACIONES	OBJETIVO
FASE 1	2 Semanas	Todos los puntos. Los 7 días de la semana.	WHO 46, USP vigente	Determinar los factores críticos operacionales, se aplicarán los programas, procedimientos de operación, limpieza y sanitización.
FASE 2	2 Semanas	Todos los puntos. Los 7 días de la semana.	WHO 46, USP vigente	Demostrar que el sistema no influirá en la producción de agua de la calidad deseada cuando se opere de acuerdo a los procedimientos establecidos.

FASE 3	12 Meses	Todos los puntos / Una vez por semana.	WHO 46, USP vigente	Demostrar que cuando el sistema está operando con los procedimientos establecidos durante un prolongado período de tiempo y a diferentes variaciones estacionales se producirá de forma consistente un agua que cumpla con las especificaciones pre-establecidas.
--------	-------------	--	------------------------	---

Fuente: Elaboración Propia

Tabla 9: Plan de Muestreo -Fase 1 y Fase 2

PROCESO I	DE CONTROL	TIPO DE		FR	ECUENCIA DE A	NÁLISIS
PUNTOS DE MUESTREO	UBICACIÓN	AGUA	Cloro Residual	Dureza	Fisicoquímico pH, Conductividad y Sustancias Oxidables	Microbiológico Recuento Microbiano / Identificación de microorganismos específicos
STA-001-PM1	Ingreso de Agua Potable	Agua Potable	Diario	-	Diario Solo pH	Diario
STA-001-PM2	Salida de Equipo Hidroneumático	Agua Potable	Diario	-	Diario Solo pH	Diario
STA-001-PM3	Salida Carbón Activado	Agua Desclorada	Diario	-	Diario Solo pH	Diario
STA-001-PM4	Salida del Ablandador	Agua Blanda	-	Diario	Diario	Diario
STA-001-PM5	Salida del filtro resina mixta	Agua Purificada	-	-	Diario	Diario
STA-001-PM6	Salida del equipo ultravioleta 1	Agua Purificada	-	-	Diario	Diario
STA-001-PM7	Salida de la electrobomba	Agua Purificada	-	-	Diario	Diario
STA-001-PM8	Fabricación de Líquidos - LIQ	Agua Purificada	-	-	Diario	Diario
STA-001-PM9	Lavadero de Utensilios - SOL	Agua Purificada	-	-	Diario	Diario

Fuente: Elaboración Propia

Tabla 10: Plan de Muestreo -Fase 3

PROCESO	DE CONTROL	TIPO DE		FR	ECUENCIA DE A	CUENCIA DE ANÁLISIS		
PUNTOS DE MUESTREO	UBICACIÓN	AGUA	Cloro Residual	Dureza	Fisicoquímico pH, Conductividad y Sustancias Oxidables	Microbiológico Recuento Microbiano / Identificación de microorganismos específicos		
STA-001-PM1	Ingreso de Agua Potable	Agua Potable	Mensual	-	Semanal Solo pH	Semanal		
STA-001-PM2	Salida de Equipo Hidroneumático	Agua Potable	Mensual	-	Semanal Solo pH	Semanal		
STA-001-PM3	Salida Carbón Activado	Agua Desclorada	Mensual	-	Semanal Solo pH	Semanal		
STA-001-PM4	Salida del Ablandador	Agua Blanda	-	Semanal	Semanal	Semanal		
STA-001-PM5	Salida del filtro resina mixta	Agua Purificada	-	-	Semanal	Semanal		
STA-001-PM6	Salida del equipo ultravioleta 1	Agua Purificada	-	-	Semanal	Semanal		
STA-001-PM7	Salida de la electrobomba	Agua Purificada	-	-	Semanal	Semanal		
STA-001-PM8	Fabricación de Líquidos - LIQ	Agua Purificada	-	-	Semanal	Semanal		
STA-001-PM9	Lavadero de Utensilios - SOL	Agua Purificada	-	-	Semanal	Semanal		

Fuente: Elaboración Propia

Tabla 11: Instrumentos de medición / Equipos / Kits / Medios de Cultivos/ Cepas ATTC

	DESCRIPCION	MARCA	MODELO	N° SERIE O LOTE	CÓDIGO	FECHA DE CALIBRACIÓN
	Conductivímetro	Thermo Scientific	STAR A212	X11229	ICC-01	
INSTRUMENTOS DE MEDICIÓN	Potenciómetro	Jenway	3510		ICC-02	
	Baño María	Lauda	AQUALINE		ICC-03	
	Balanza	Ohaus	NVT1609/1		ICC-04	
	Balanza	Ohaus	NVT1607/1		ICC-05	
	Espectrofotómetro UV-VIS	Agilent	8453-G1103A		ECC-01	
	Autoclave	Indumelab	VCA-40		ECC-02	
	Autoclave	Gemmy	SA-232V		ECC-03	
EQUIPOS	Cabina de bioseguridad	Indumelab			ECC-04	
	Flujo laminar	Indumelab	OPCFV-120		ECC-05	
	Incubadora	Indumelab	OPVR-D-35	OVR-0722	ECC-06	
	Incubadora	Incucell	55R	D120490	ECC-07	
	Refrigeradora	Coldex			ECC-08	
	kit de Ácido Peracético	Leviband			RXL-01	
	Kit de Dureza	Merck	MColortest		RXL-02	
REACTIVOS	Kit de Cloro Residual	Merck	Chlorintest		RXL-03	
ILL:1011 (OS	Kit de cloruros	Merck	Chlorintest		RXL-04	
	Kit de sulfatos	Merck	Chlorintest		RXL-05	
	Kit de plomo	Merck	Chlorintest		RXL-06	
	Agar Plate Count	Merck			MC-01	
MEDIOS DE	Agar Cetrimide	Merck			MC-02	
CULTIVOS	Agar Mack Conkey	Merck			MC-03	
CULTIVOS	Caldo Tripticasa soya	Merck			MC-04	
	Caldo Mack Conkey	Merck			MC-05	
	Staphylococcus aureus	Microbiologics			CP-01	
	Pseudomonas aeruginosa	Microbiologics			CP-02	
CEPAS ATCC	Bacillus subtilis	Microbiologics			CP-03	
	Escherichia coli	Microbiologics			CP-04	
	Bioindicadores biológicos	Mesalabs			CP-05	

Fuente: Elaboración Propia

Tabla 12: Relación de Procedimientos e Instructivos Aplicables

CÓDIGO	TÍTULO
POE/VAL-04	Validación del sistema de tratamiento de agua purificada.
POE/VAL-06	Calificación de equipos.
POE/ASC-001	Preparación y uso de soluciones sanitizantes y detergentes
PRG/MAN-01	Programa de mantenimiento del sistema de tratamiento de agua purificada (STAP-001).
POE/MAN-03	Mantenimiento preventivo y correctivo de equipos.
POE/MAN-04	Operación, mantenimiento, limpieza y sanitización del sistema de tratamiento de agua purificada.
POE/MAN-08	Plan de contingencias frente a situaciones de riesgos de los sistemas de apoyo crítico.
INS/MAN-01	Uso del kit para detección de ácido peracético.
INS/MAN-02	Regeneración del desionizador de agua en los sistemas de tratamiento de agua purificada.
INS/CDC-01	Muestreo, análisis de agua potable, blanda y purificada.
INS/CDC-02	Análisis fisicoquímico del agua.
INS/CMC-01	Análisis microbiológico del agua

Fuente: Elaboración Propia

Tabla 13: Programa de mantenimiento de los componentes del (STAP-001).

	Frecuencia de	Frecuencia	Frecuencia de Cambio		
COMPONENTES	Mantenimiento / Limpieza *	de Sanitización*	Por Tiempo	Criterio Alternativo	
Cisterna	Semestral	Semestral	N.A.	N.A.	
Equipo Hidroneumático	Semestral	Mensual	N.A.	N.A.	
Válvula reductora de presión		N.A.	N.A.	Se realiza calibración anual.	
Filtro de sedimentación de 10µm	Semanal	Mensual	90 días	Diferencia entre presión de ingreso y salida ≥ 5.0 PSI	
Filtro de sedimento de 5µm	Semanal	Mensual	90 días	Diferencia entre presión de ingreso y salida ≥ 5.0 PSI	
Filtro de carbón activado	Semanal	Mensual	90 días	Cada vez que haya presencia de cloro libre.	
Filtro de resina 1° catiónica y 1° aniónica	Anual	Mensual	Anual (resinas)	Cada vez que no se pueda obtener agua blanda.	
Megómetro		N.A.	N.A.	Se realiza calibración anual.	
Filtro de resina 2° catiónica, 2° aniónica y resina mixta	Anual	Mensual	Anual (resinas)	Cada vez que la conductividad este menor a 1.0 μS/cm.	
Equipo Ultravioleta 1	Semestral	Semanal	365 días	Señal de alarma "Falla de Lámpara".	
Tanque de almacenamiento	Anual	Semanal	N. A.	Rotura o colapso.	
Filtros de venteo	-	N. A.	Anual	N.A.	
Electrobomba de recirculación	Semestral	Semanal	N. A.	Cuando la velocidad de flujo sea < 1.0 ft/s	
Equipo Ultravioleta 2	Semestral	Semanal	365 días	Señal de alarma "Falla de Lámpara".	
Filtro de sedimento 1µm	Semanal	Mensual	N.A.	Diferencia entre presión de ingreso y salida ≥ 5.0 PSI	
Filtro de sedimento 0.45µm	Semanal	Mensual	N.A.	Diferencia entre presión de ingreso y salida ≥ 5.0 PSI	
Filtro de esterilizante de 0.2µm	Semanal	Mensual	N.A.	Diferencia entre presión de ingreso y salida ≥ 5.0 PSI	
Tuberías de recirculación	Anual	Semanal	N. A.	Rotura, fuga, daño estructural, fisura.	
Llaves mariposa, conexiones clamp, empaquetaduras	Anual	Semanal	N. A.	Por fugas.	
Tablero eléctrico	Anual	N.A.	N.A.	Mal funcionamiento.	

^{*} Según POE-ASC-001 "Preparación y uso de soluciones sanitizantes y detergentes".

Fuente: Elaboración Propia

3.3. Relación costo-beneficio de la propuesta de la validación

A continuación, se hace un estudio de costo beneficio, se plantea lo siguiente:

Se realiza un levantamiento de información acerca de la demanda de agua purificada a terceros, en la Tabla 14, se muestra los litros por año y los costos en soles por agua purificada, por lo tanto, se evidencia un incremento de consumo (L) directamente a los costos (S/) y entre el año 2021 al 2022 hay un total de S/259,500.00 por 173 mil litros consumidos.

Tabla 14: Comparativo de la demanda de agua purificada a terceros.

Consumo de agua	Añ	o 2021	Año 2022		
purificada a terceros	Consumo (L)	Consumo (L) Costo (S/ 1.72)		Costo (S/ 1.72)	
Enero			5,000	S/8,600.00	
Febrero			5,000	S/8,600.00	
Marzo			10,000	S/17,200.00	
Abril			10,000	S/17,200.00	
Mayo	11,000	S/18,920.00	11,000	S/18,920.00	
Junio	10,000	S/17,200.00	10,000	S/17,200.00	
Julio	10,000	S/17,200.00	10,000	S/17,200.00	
Agosto	5,000	S/8,600.00	15,000	S/25,800.00	
Setiembre	10,000	S/17,200.00	5,000	S/8,600.00	
Octubre	10,000	S/17,200.00	11,000	S/18,920.00	
Noviembre	10,000	S/17,200.00	10,000	S/17,200.00	
Diciembre	15,000	S/25,800.00	15,000	S/25,800.00	
Total, consumo (L) y Soles	S/81,000.00	S/139,320.00	S/117,000.00	S/201,240.00	

Fuente: Elaboración Propia

Se analizan los recursos con los que cuenta la empresa Corporación Fercat SAC., y en la siguiente Tabla 15, se realiza la descripción y su valor total en soles de la inversión que se requiere para la validación de los procesos del (STAP-001).

Tabla 15: Cuadro de inversión general para la validación de los procesos (STAP-001)

Descripción	Inversión	se cuentan cor		
	general (S/) *	SI	No	
Infraestructura de las áreas	S/20,090.00	\checkmark		
Equipos, componentes e instrumentos de medición del STAP-001	S/37,340.00	✓		
Instrumentos de medición de control de calidad	S/3,639.10	\checkmark		
Equipos de control de calidad	S/34,750.00	\checkmark		
Materiales de control de calidad	S/1,048.00	\checkmark		
Personal	S/46,350.00	✓		
Servicios	S/27,207.05	✓		
Costos materiales consumibles	S/39,744.82		√	
Tota l, costo inversión general	S/210,168.97			

*La validación tiene un tiempo que dura, 1 año con 28 días.

Fuente: Elaboración Propia

Más detalles, revisar en el anexo N°4: Costos de inversión general para la validación de los procesos (STAP-001), Anexo N°5: Costos de personal por recibo por honorarios, Anexo N°6: Cuadro de costos por servicios requeridos durante la validación de los procesos del (STAP-001) y Anexo N° 7: Cuadro de materiales y consumibles.

El sistema de tratamiento de agua purificada produce el litro con un costo de S/1.50, la propuesta de validar los procesos reduce los costos por cada litro a S/1.20, el cual asegura la calidad y conviene económicamente.

Se muestra en la Tabla 16, flujo de caja de los ingresos son tomados de la demanda del año 2022, el cual (117000 L* S/1.20 = S/140400.00) y se le suma el 20% en cada año.

Tabla 16: Flujo de caja

	FLUJO DE CAJA - PROYECTADO									
	AÑO 0	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5				
SALDO INICIAL	S/ 210,168.97	S/-	S/27,098.13	S/82,277.26	S/171,153.39	S/300,465.72				
INGRESOS		S/ 140,400.00	S/ 168,480.00	S/ 202,176.00	S/ 242,611.20	S/ 291,133.44				
EGRESOS		-S/ 113,301.87	-S/ 113,300.87	-S/ 113,299.87	-S/ 113,298.87	-S/ 113,297.87				
FLUJO DE CAJA	S/ -210,168.97	S/ 27,098.13	S/ 82,277.26	S/ 171,153.39	S/ 300,465.72	S/ 478,301.29				

СОК		12%
VAN	S/	463,792.71
TIR		53%
C/B		S/1.12

TIR > COK	ES RENTABLE
TIR = COK	ES INDIFERENTE
TIR < COK	NO ES RENTABLE

CAPÍTULO IV: DISCUSIÓN Y CONCLUSIONES

4.1. Limitaciones

Las limitaciones que se han tenido para el desarrollo de la presente investigación ha sido poca la información por ser industrias farmacéuticas con respecto al tipo de enfoque que tiene el estudio. Para realizar el diagnóstico se tuvo que acceder a los manuales y planos que era limitado por que el personal no estaba capacitado.

4.2. Interpretación comparativa

Los resultados obtenidos de esta propuesta son la mejora de sus procesos validados, el cual repercute en la mejora económica que se ve reflejado en el costo por m3 de agua procesada, pasando de un costo de S/1.50 a S/1.20. Asimismo, estos están sujetos a mejoras.

Al respecto, Tatiana B. T. y Carmen C. H. (2018), "Propuesta sistema de costos de producción para la planta purificadora Palma de agua SAS", nos expone que: "La propuesta realizada, benefició a la organización con un control efectivo de sus procesos de costos de producción guiándolos a una forma mas adecuada para la toma decisiones financieras".

Pues teniendo una TIR 53% nos indica que la inversión es rentable y se debe ejecutar en cualquier momento. Asimismo, Alanis Jimenez, R. & Roman Vences, A. L. (2013). En su tesis nos indica," bajo el criterio de TIR (45,25 anual) garantiza y negocio una vez puesto en marcha podrá operar correctamente y además generar ganancias sin arriesgar el capital invertido inicialmente".

Por lo contrario, Araceli D. S. (2005), nos dice que, "La adquisición de nueva tecnología, como el sistema de agua purificada siempre trae contratiempos los cuales pueden ser mínimos si se tiene participación de las distintas áreas para realizar una buena planeación,

disminuyendo retrasos en la implantación y por consiguiente en la obtención de agua que cumpla con las especificaciones de calidad".

Y finalmente, todo ello redundara en los costos y en los procesos del sistema ya validado para que sean mucho más eficientes. Por lo que, todo esto contribuirá a la competencia de la industria farmacéutica.

4.3. **Conclusiones:**

- 1. Se consigue elaborar un diagnóstico situacional de los procesos en el sistema de tratamiento de agua purificada en la empresa Corporación Fercat SAC., a través del diagrama de Ishikawa se evidencia las principales causas que tienen efecto directo en el problema principal, esto permitirá analizar con profundidad los procesos para la propuesta de validación en el sistema de tratamiento de agua purificada (STAP-001).
- 2. Se logra proponer la validación para mejorar los procesos en el sistema de tratamiento de agua purificada en la empresa Corporación Fercat SAC, en sus tres Fases. Además de elaborar el diagrama de flujo, la descripción de sus procesos y también el diagrama de análisis de proceso (DAP).
- 3. Se logra elaborar la relación costo-beneficio de la propuesta de la validación para mejorar los procesos en el sistema de tratamiento de agua purificada en la empresa Corporación Fercat SAC., en el cual, se obtiene una relación de que por cada sol invertido se tiene S/ 1.12 de beneficio y esto nos indica que nuestra propuesta es rentable.

También se realiza una disminución de los tiempos de procesos, pues al tener el proceso validado, se acortan los tiempos de espera entre procesos esto mejora significativamente la obtención de agua purificada que sea necesaria para la fabricación. Con un proceso validado, el personal tiene más seguridad en los procesos de producción, pues la validación hace que obvien determinados procesos donde se utiliza agua hervida.

REFERENCIAS

De la Salud, O. M. S. (1998). "Validación". Anexo 6 del informe 34.

La Farmacopea de los Estados Unidos (2021). "Agua purificada Capítulo <99>".

World Health Organization (2011), "Ginebra, en su estudio titulado "Guías para la calidad del agua de consumo humano"

Romero Vargas, M. A., & Niño Martínez, S. (2017), "Colombia, en su estudio "Validación del sistema de purificación de agua de la empresa Tecmol farmacéutica S.A.S."

Martín-Álvarez, N. C., & Mayo-Abad, O. (2013). "Calificación del desempeño de un sistema para la producción de agua purificada de la planta de producción de parenterales 3. Tecnología Química, 33(2), 207-220"

Espíritu Silva, F. A. (2014). "Calificación y validación del sistema de tratamiento de agua purificada ro2/cedi 400 l/h"

Flores Hernández, C. A. (2012). "Validación del sistema de purificación de agua: ósmosis inversa "MILLI-RX45" de la Empresa FARBIOVET SA."

O. F. G., Díaz, B. M. V., & Huertas, C. E. M. (2015). "La calidad desde el diseño: principios y oportunidades para la industria farmacéutica. Estudios Gerenciales, 31(134), 68-78"

Emerson León, José Luis Medrano. (2017). "Validación de procesos en la industria farmacéutica".

Alanis Jimenez, R. & Roman Vences, A. L. (2013). "Propuesta de un plan de negocio para una planta purificadora de agua en TEMASCALTEPEC, estado de México".

Tatiana B. T. y Carmen C. H. (2018), "Propuesta sistema de costos de producción para la planta purificadora Palma de agua SAS"

Araceli D. S. (2005), "Protocolo de control de calidad para la validación del sistema de agua purificada en el área de inyectables".

ANEXO N°1:

Calificación de instalación

A) INSTALACIÓN DE LOS COMPONENTES Y EQUIPOS:

Método de Inspección: Verificar visualmente la instalación de todos los componentes

COMPONENTES	PUNTOS A VERIFICAR
1. Tablero de Control General.	 Identificar los controles de mando. Correctamente instalado y con las conexiones eléctricas completas.
2. Cisterna de Almacenamiento de Agua Potable.	- Correctamente instalado
 3. Generación de Agua Purificada: Equipo Hidroneumático. Válvula Reductora de Presión. Medidor de Flujo. Filtro de 5 μm. Filtro de Carbón Activado. Ablandadores de agua. Resina Catiónica, Aniónica y Mixta. Sensor de conductividad. Equipo UV – Desinfección 1. 	Correctamente instalado, identificado y con las conexiones completas.
 4. Almacenamiento de agua purificada: - Tanques de Almacenamiento de Agua Purificada. - Sprayball - Filtros de venteo 	Correctamente instalado, identificado y con las conexiones completas.
 5. Recirculación de Agua Purificada: Electrobomba de Recirculación. Sensor de Conductividad. Equipo UV – Desinfección 2. Filtro de 1 μm. Filtro de 0.45 μm. Filtro de 0.2 μm. 	Correctamente instalado, identificado y con las conexiones completas.

Se adjuntan ficha técnica y certificados de los componentes.

Criterio de Aceptación: Los componentes del equipo deben haber sido instalados de acuerdo a lo especificado en el plano correspondiente.

B) INSPECCIÓN DE SOLDADURAS DE LA TUBERÍA DE ACERO **INOXIDABLE ASU316:**

Método de Inspección: Se debe realizar una inspección de cada uno de los puntos de soldadura de las conexiones con la finalidad de evaluarlos de acuerdo a los criterios de aceptación correspondientes.

Se adjuntará fotografías en el reporte de calificación correspondiente.

Criterio de Aceptación: La inspección visual se debe corroborar que:

- Los orificios deben estar ausentes.
- La apariencia del cordón de la soldadura debe ser regular y uniforme.
- El craqueo térmico debe estar ausente.

El espesor de la soldadura no debe ser más de 20% del espesor del tubo.

C) ESTADO DE CONSERVACIÓN:

Método de Inspección: Verificar visualmente el estado de conservación de cada uno de los componentes del equipo.

Criterio de Aceptación: Los componentes del equipo deben encontrarse en condiciones óptimas de conservación.

D) MATERIAL EN CONTACTO:

Método de inspección: Las tuberías por donde circula el agua purificada deben poseer certificado de material.

Criterio de aceptación: El certificado debe indicar acero inoxidable 316.

E) CALIFICACIÓN DEL SOLDADOR:

Método de inspección: El soldador debe contar con un certificado de capacitación y aptitud correspondiente.

Criterio de aceptación: Se adjunta certificado de calificación del soldador conforme.

F) SENSORES Y CONTROLADORES

Método de inspección: Verificar la presencia y correcta instalación de los sensores y controladores: Conductivímetro (Cód.: MAN-STA-001-CON-001). Conductivímetro (Cód.: MAN-STA-001-CON-002)., Medidor de Resistividad (Cód.: MAN-STA-001-RSS-001). Sensor de nivel.

Criterio de aceptación: Los sensores deben haber sido instalados correctamente.

G) ANÁLISIS DE PUNTOS MUERTOS:

Método de Prueba: En cada uno de los puntos de muestreo / uso desde STA-001-PM5 hasta el STA-001-PM10 realizar la medición de la longitud de la sección muerta (X) y el valor del diámetro de la tubería (D).

Criterio de Aceptación: La sección muerta (X) no deberá ser mayor 2 del valor del diámetro de la tubería (D).

H) PENDIENTE DE LA TUBERÍA:

Método de inspección: Verificar que la pendiente de las tuberías de distribución permita el drenado del agua presente en las tuberías.

Criterio de aceptación: Al medir las pendientes de la tubería recirculación con el nivel, la burbuja debe desplazarse hacia el lado contrario del sentido de dicha tubería.

ANEXO N°2:

Calificación de operación

I) CONTROL DE FUNCIONES:

Método de prueba: Con el sistema energizado correctamente someter a prueba cada uno de los componentes del sistema.

Criterio de Aceptación: Todos los componentes deben estar operativos y presentar correspondencia entre el rótulo y la función llevada a cabo.

J) **VERIFICACIÓN DE HERMETICIDAD:** Encontrándose todo el sistema en correcta operación se procede a verificar la hermeticidad del sistema.

Método de Prueba: Inspección visual.

Criterio de Aceptación: No deben observarse fugas en cada uno de los componentes y equipos del sistema de tratamiento de agua.

K) PARÁMETROS OPERACIONALES DEL SISTEMA:

Método de Prueba: Encendido y apagado de las electrobombas del sistema.

Equipo	Instrumento	Rango
Equipo hidroneumático	MAN-STA-001-MAN-001	40.0 - 50.0 PSI
Equipo indioneumatico	MAN-STA-001-MAN-002	40.0 - 50.0 PSI
Filtro de 5 µm	MAN-STA-001-MAN-003	40.0 - 50.0 PSI
Filtro de carbón activado	MAN-STA-001-MAN-004	Máx. 20 PSI
Ablandadores	MAN-STA-001-RSS-001	\geq 0.2 Meg – Ohms
Resina Mixta	MAN-STA-001-CON-001	$\leq 1.3 \ \mu \text{S/cm}$
Electrobomba de recirculación	MAN-STA-001-MAN-005	80 PSI
Tubería de Recirculación	MAN-STA-001-CON-002	$\leq 1.3 \ \mu \text{S/cm}$
Tanque de Almacenamiento de agua purificada	Sensor de nivel	Nivel mínimo R(X)

R: Recirculación.

L) CAUDAL DE ALIMENTACIÓN:

Método de prueba: Medición indirecta del caudal de agua de alimentación:

Materiales: Probeta graduada

Procedimiento:

Rojas Quispe, L. R.

- Llenar la probeta graduada con agua potable (250 mL aproximadamente) y anotar el tiempo transcurrido en dicho llenado.
- Repetir los pasos del b.1 por triplicado.
- Realizar los cálculos con la siguiente fórmula:

$$Q (mL/s) = V (mL) / t (s)$$

Q: CaudalV: Volument: Tiempo

• Convertir lo calculado en mL/s a L/h y reportar.

7 1

Criterio de aceptación: El caudal de alimentación actual del sistema debe ser ≥ 400 L/h.

M) CAUDAL DE PRODUCCIÓN:

Método de prueba: Medición indirecta del caudal de producción de agua purificada en el punto de muestra STA-001-PM5.

a) Materiales: Probeta graduada.

b) Procedimiento:

- Llenar la probeta graduada con agua purificada del punto de muestra STA-001-PM5 (250 mL aproximadamente) y anotar el tiempo transcurrido en dicho llenado.
- Repetir los pasos del b.1 por triplicado.
- Realizar los cálculos con la siguiente fórmula:

$$Q_{(mL/s)} = V_{(mL)} / t_{(s)}$$

Dónde:

O: Caudal

V: Volumen

t: Tiempo

• Convertir lo calculado en mL/s a L/h y reportar.

Criterio de aceptación: Caudal de producción de agua purificada ≥ 200.0 L/h.

N) CAUDAL DE RECIRCULACIÓN:

Método de prueba: Medición indirecta del caudal de agua purificada de recirculación en el punto de muestra STA-001-PM6.

- a) Materiales: Probeta graduada.
- b) Procedimiento:
 - Llenar la probeta graduada con agua purificada del punto de muestra STA-001-PM6 (250 mL aproximadamente) y anotar el tiempo transcurrido en dicho llenado.
 - Repetir los pasos del b.1 por triplicado.
 - Realizar los cálculos con la siguiente fórmula:

$$Q_{(mL/s)} = V_{(mL)} / t_{(s)}$$

Dónde:

Q: Caudal

V: Volumen

t: Tiempo

• Convertir lo calculado en mL/s a L/h o ft³/min y reportar.

Criterio de aceptación: Referencial

O) VELOCIDAD DE FLUJO Y TURBULENCIA: El sistema de tratamiento de agua está diseñado para mantener una velocidad de flujo continua y una turbulencia adecuada

en el loop de recirculación, previniendo así la formación y crecimiento de biofilm en la tubería.

Método de Prueba: Medición indirecta de la velocidad de flujo en el punto de muestreo STA-001-PM6

a) Utilizar la siguiente fórmula para velocidad de flujo:

$$V_{\text{(ft/min)}} = Q_{\text{(ft}^3/\text{min)}} / S_{\text{(ft}^2)}$$

Dónde:

V: Velocidad de flujo

Q: Caudal obtenido en STA-001-PM6

S: Área de la luz de la tubería (5.4367x10⁻³ ft²)

- **b)** Convertir lo calculado en m/s
- c) Utilizar la siguiente fórmula para turbulencia:

$$Re = d (Kg/m^3) \times D (m) \times V (m/s) / \mu (Kg/m.s)$$

Dónde:

Re: Número de Reynolds

Densidad (densidad del agua 1000 Kg/m³) d:

Diámetro de la tubería (0.0254 m) D:

V: Velocidad de flujo (hallado con la fórmula antes indicada)

Viscosidad cinética del agua (0.00089 Kg/(m.s)) u:

Criterio de Aceptación:

- Velocidad de flujo ≥ 2.0 ft/s.
- Velocidad de flujo > 4000 N° Reynolds.
- P) CONTROL DE NIVEL: El sistema posee un sensor de nivel el cual controla la operación del mismo acorde a los valores programados que permiten asegurar el correcto funcionamiento de sus componentes.

Método de Prueba: Prueba directa del sensor de nivel:

Con el Tanque de Almacenamiento de Agua Purificada lleno, verificar que el sistema cumpla con lo programado según el fabricante.

Criterio de Aceptación: Una vez alcanzado el nivel mínimo de agua programado se apaga el funcionamiento de la Electrobomba de Recirculación.

Q) VERIFICACIÓN DE LA PASIVACIÓN: El sistema se pasiva con el uso de una solución de ácido peracético.

Método de Prueba:

- Trasladar de materiales al área de trabajo.
- Establecer las conexiones con el tanque de almacenamiento de agua purificada para que pueda recircular la solución pasivante.
- Realizar las pruebas correspondientes con agua purificada para verificar la inexistencia de fugas.

- d. Proceder a preparar una solución pasivante de ácido peracético (1 L en $400 L H_2O$) a temperatura ambiente.
- e. Iniciar la recirculación por espacio de 60 minutos.
- f. Transcurrido el tiempo de recirculación en el circuito, se procede a neutralizar la solución con soda caústica hasta obtener pH = 7.0.
- g. Drenar el agua del sistema de recirculación.
- h. Encender la generación de agua purificada para enjuagar el loop de recirculación.
- i. Enjuagar con agua purificada el circuito por 03 veces con 400 L de agua cada enjuague.
- j. Luego del tercer enjuague proceder a utilizar el Kit de determinación de ácido peracético en una muestra del último enjuague. Se debe corroborar ausencia de ácido peracético.
- k. Enviar una muestra del agua para medición de conductividad y pH al laboratorio de Control de Calidad.

Criterio de Aceptación: Luego del paso de la solución pasivante y el enjuague correspondiente se debe verificar la ausencia de ácido peracético con valores de pH y conductividad dentro de especificación.

ANEXO N°3:

Cuadro de Inversión (infraestructura, equipos, componentes, instrumentos de medición y materiales)

	fraestructura, equipo,	Cant.	Costo	Costo	Tasa de	Vida				Año		
	s, instrumentos de n y materiales		unitario (S/)	Total (S/)	depreciación anual	útil equivalente		2022		2023		2024
medicio	Área del STAP-001	1	S/ 3,500.00	S/ 3,500.00	10.0%	10 años	S/	350.00	S/	250.00	S/	250.00
Infraestructura	Área de CC	1	S/ 5,700.00	S/ 5,700.00	2.2%	45 años	S/	126.54	S/	111.00	S/	111.00
	Fisicoquímico	1	3,700.00	3,700.00	2.270	45 anos	3/	120.34	3/	111.00	3/	111.00
	Área de CC	1	S/ 8,890.00	S/ 8,890.00	2.2%	45 años	S/	197.36	S/	177.60	S/	177.60
	Microbiología		,	,								
	Área de	1	S/ 2,000.00	S/ 2,000.00	2.2%	45 años	S/	44.40	S/	44.40	S/	44.40
	Mantenimiento		a. 2.500.00	G / 2 700 00	10.00/	10 ~	G /	250.00	G /	250.00	G /	250.00
	Cisterna 40 m3	1	S/ 2,500.00 S/ 5,000.00	S/ 2,500.00 S/ 5,000.00	10.0%	10 años	S/	250.00 500.00	S/	250.00 500.00	S/	250.00 500.00
	Equipo Hidroneumático	1	5/ 5,000.00	S/ 5,000.00	10.0%	10 años	3/	300.00	S/	300.00	3/	300.00
	Válvula reductora	1	S/ 1,300.00	S/ 1,300.00	10.0%	10 años	S/	130.00	S/	130.00	S/	130.00
	de presión	•	5/ 1,500.00	1,500.00	10.070	To unos	, 	150.00	<i>D</i> ,	150.00	<i>D</i> ,	150.00
Equipos,	Megómetro	1	S/ 800.00	S/ 800.00	10.0%	10 años	S/	80.00	S/	80.00	S/	80.00
componentes	Tanque de	1	S/ 3,500.00	S/ 3,500.00	10.0%	10 años	S/	350.00	S/	350.00	S/	350.00
e	almacenamiento				40.00	10	~ .		~ .		~ .	
instrumentos	Filtros de venteo	1	S/ 900.00	S/ 900.00	10.0%	10 años	S/	90.00	S/	90.00	S/	90.00
de medición del STAP-	Electrobomba de recirculación	1	S/ 5,200.00	S/ 5,200.00	10.0%	10 años	S/	520.00	S/	520.00	S/	520.00
001	Tuberías de	1	S/ 10,000.00	S/ 10,000.00	2.5%	40 años	S/	250.00	S/	250.00	S/	250.00
	recirculación	1	3/ 10,000.00	3/ 10,000.00	2.570	+0 anos	3/	230.00	5/	230.00	5/	230.00
	Llaves mariposa,	1	S/ 3,500.00	S/ 3,500.00	2.5%	40 años	S/	87.50	S/	87.50	S/	87.50
	conexiones clamp,											
	empaquetaduras											
	Tablero eléctrico	1	S/ 4,640.00	S/ 4,640.00	10.0%	10 años	S/	464.00	S/	464.00	S/	464.00
	Conductivímetro	1	S/ 367.00	S/ 367.00	10.0%	10 años	S/	36.70	S/	36.70	S/	36.70
Instrumentos	Potenciómetro Baño María	1	S/ 367.00 S/ 367.00	S/ 367.00 S/ 367.00	10.0% 10.0%	10 años 10 años	S/	36.70 36.70	S/	36.70 36.70	S/	36.70 36.70
de medición	Balanzas 1	1	S/ 367.00	S/ 367.00	10.0%	10 años	S/	36.70	S/	73.40	S/	73.40
de control de	Balanzas 2	1	S/ 367.00	S/ 367.00	10.0%	10 años	S/	36.70	S/	73.40	S/	73.40
calidad	Micropipeta x 5 mL	1	S/ 952.70	S/ 952.70	10.0%	10 años	S/	95.27	S/	95.27	S/	95.27
	Micropipeta x 1 mL	1	S/ 851.40	S/ 851.40	10.0%	10 años	S/	85.14	S/	85.14	S/	85.14
	Espectrofotómetro	1	S/ 10,000.00	S/ 10,000.00	10.0%	10 años	S/	1,000.00	S/	1,000.00	S/	1,000.00
	UV-VIS											
	Autoclave 40 L	1	S/ 3,000.00	S/ 3,000.00	10.0%	10 años	S/	300.00	S/	600.00	S/	600.00
Equipos de	Autoclave 20 L Cabina de	1	S/ 3,000.00 S/ 5,900.00	S/ 3,000.00 S/ 5,900.00	10.0% 10.0%	10 años 10 años	S/	300.00 590.00	S/	600.00 590.00	S/	600.00 590.00
control de	bioseguridad de	1	3,900.00	3,900.00	10.0%	10 anos	3/	390.00	3/	390.00	3/	390.00
calidad	Flujo laminar	1	S/ 3,000.00	S/ 3,000.00	10.0%	10 años	S/	300.00	S/	300.00	S/	300.00
	Incubadoras 1	1	S/ 4,000.00	S/ 4,000.00	10.0%	10 años	S/	400.00	S/	800.00	S/	800.00
	Incubadoras 2	1	S/ 4,000.00	S/ 4,000.00	10.0%	10 años	S/	400.00	S/	800.00	S/	800.00
	Refrigeradora	1	S/ 1,850.00	S/ 1,850.00	10.0%	10 años	S/	185.00	S/	185.00	S/	185.00
	Frascos con tapa x	10	S/ 25.37	S/ 253.70	20.0%	5 años	S/	50.74	S/	50.74	S/	50.74
	1000 mL	20	G/ 10.00	g/ 260.00	20.00/	E _~	C /	72.00	C /	72.00	C /	72.00
	Frascos con tapa x 500 mL	20	S/ 18.00	S/ 360.00	20.0%	5 años	S/	72.00	S/	72.00	S/	72.00
	Frascos con tapa x	10	S/ 14.23	S/ 142.30	20.0%	5 años	S/	28.46	S/	28.46	S/	28.46
	100 mL	10	5, 17.23	5, 142.30	20.070	Janos	5/	20.70	J/	20.70	5/	20.70
Materiales	Tubos de ensayo x	50	S/ 2.42	S/ 121.00	20.0%	5 años	S/	24.20	S/	24.20	S/	24.20
de control de calidad	20 mL											
Candad	Pipetas graduada x	5	S/ 8.00	S/ 40.00	20.0%	5 años	S/	8.00	S/	8.00	S/	8.00
	5 mL		g/	9/ 25.55	20.000		~ .		~ .		~ .	
	Pipetas graduada x	5	S/ 5.00	S/ 25.00	20.0%	5 años	S/	5.00	S/	5.00	S/	5.00
	1 mL Bombilla	2	S/ 28.00	S/ 56.00	20.0%	5 0800	S/	11.20	C /	11.20	S /	11.20
	Gradilla x 25 und	2.	S/ 28.00 S/ 25.00	S/ 50.00	20.0%	5 años 5 años	S/	10.00		10.00		11.20
	Total, costo		23.00	S/ 96,867.10	20.070	Janos	13 /	10.00	13 /	10.00	.J/	10.00
	Total, costo			5/ 20,007.10								

Fuente: Elaboración Propia

 $\label{eq:AnexoNo4} Anexo\ N^\circ 4:$ Cuadro de costos de personal por recibo por honorarios

Costo personal	Cantidad	Costo mensual (S/)	Costo x hora (S/)	Costo x 3h x 28 días	Costo anual (S/)
Jefe de control de calidad	1	S/4,000.00	S/17.86	S/1,500.00	S/18,000.00
Analista de fisicoquímico	1	S/2,000.00	S/8.93	S/750.00	S/9,000.00
Analista de microbiología	1	S/1,500.00	S/6.70	S/562.50	S/6,750.00
Técnico en mantenimiento	1	S/2,800.00	S/12.50	S/1,050.00	S/12,600.00
Total, costo personal		S/10,300.00	S/45.98	S/3,862.50	S/46,350.00

Fuente: Elaboración Propia

 $\label{eq:costo} Anexo~N^{\circ}5:$ Costo por servicios requeridos en la validación de los procesos del (STAP-001)

Costos por servicios	Costo mensual (S/)	Costo anual (S/)	Costo total para el tiempo de validación
Agua Sedapal (1m3=1000 L) S/ 7.69	S/ 429.45	S/ 5,153.40	S/ 5,582.85
Luz	S/ 578.00	S/ 6,936.00	S/ 7,514.00
Telefonía	S/ 49.00	S/ 588.00	S/ 637.00
Internet	S/ 59.90	S/ 718.80	S/ 778.70
Útiles de oficina	S/ 26.50	S/ 318.00	S/ 344.50
Limpieza y mantenimiento	S/ 950.00	S/ 11,400.00	S/ 12,350.00
Total, costo de servicios	S/ 2,092.85	S/ 25,114.20	S/ 27,207.05

Fuente: Elaboración Propia

$\label{eq:constraints} Anexo\ N^\circ 6:$ Cuadro de materiales y consumibles

	rsión de materiales y consumibles	Cantidad	Costo	Costo
para 81 analisi	s de los 9 puntos de muestreo del STAP-001		unitario (S/)	total (S/) *
_	Filtro de sedimentación de 10µm	01	S/ 39.00	S/ 39.00
Repuestos	Filtro de sedimento de 5µm	01	S/ 39.00	S/ 39.00
del	Filtro de carbón activado	01	S/ 35.90	S/ 35.90
(STAP-001)	Resina catiónica	01	S/ 89.90	S/ 89.90
	Resina aniónica	01	S/ 89.90	S/ 89.90
	Resina mixta	01	S/ 109.90	S/ 109.90
	Equipo Ultravioleta	02	S/ 1190.00	S/ 2380.00
	Filtro de sedimento 1µm	01	S/ 390.00	S/ 390.00
	Filtro de sedimento 0.45µm	01	S/ 390.00	S/ 390.00
	Filtro de sedimento 0.2µm	01	S/ 390.00	S/ 390.00
	Placas Petri x 25 mL x 500 und	04	S/ 210.00	S/ 840.00
Materiales	Puntas de 5 mL x 100 und	01	S/ 45.00	S/ 45.00
consumibles	Puntas de 1 mL x 100 und	01	S/ 41.00	S/ 41.00
	Cinta bioindicador	02	S/ 39.00	S/ 78.00
	kit de Ácido Peracético x 50 test	02	S/ 115.00	S/ 230.00
Reactivos	Ácido clorhídrico al 33%	285	S/ 2.00	S/ 570.00
	Soda caustica al 50%	103	S/ 2.30	S/ 236.90
	Kit de Dureza x 300 test	02	S/ 390.00	S/ 780.00
	Kit de Cloro x 1000 test	01	S/ 1,240.00	S/ 1,240.00
	Kit de cloruros x 100 test	03	S/ 450.00	S/ 1,350.00
	Kit de sulfatos x 25 test	11	S/ 350.00	S/ 3,850.00
	Kit de plomo x 50 test	06	S/ 520.00	S/ 3,120.00
	Solución pH 10.00 x 500 mL	08	S/ 110.00	S/ 880.00
	Solución pH 7.00 x 500 mL	08	S/ 110.00	S/ 880.00
	Solución pH 4.00 x 500 mL	08	S/ 140.00	S/ 1,120.00
	Potasio cloruro x 500 g	01	S/ 160.00	S/ 160.00
	Estándar de conductividad 5*100 mL	08	S/ 210.00	S/ 1,680.00
	Permanganato de potasio 25 g	01	S/ 52.00	S/ 52.00
	Ácido sulfúrico x 25 g	01	S/ 34.00	S/ 34.00
	Hidróxido de sodio x 250g	01	S/ 140.00	S/ 140.00
	Tiosulfato de sodio x 250 g	01	S/ 200.00	S/ 200.00
	Teew 80 x 250 g	01	S/ 135.00	S/ 135.00
	Agar Plate Count x 500 g	02	S/ 190.44	S/ 380.88
Medios	Agar Cetrimide x 500 g	03	S/ 211.89	S/ 635.67
de	Agar Mack Conkey x 500 g	04	S/ 194.54	S/ 778.16
cultivos	Caldo Tripticasa Soya x 500 g	03	S/ 194.54	S/ 583.62
	Caldo Mack Conkey x 500 g	03	S/ 369.77	S/ 1,109.31
	Staphylococcus aureus x 5 und	02	S/ 1,564.56	S/ 3,129.12
Cepas	Pseudomonas aeruginosa x 5 und	02	S/ 1,564.56	S/ 3,129.12
ATCC	Bacillus subtilis x 5 und	02	S/ 1,564.56	S/ 3,129.12
	Escherichia coli x 5 und	02	S/ 1,564.56	S/ 3,129.12
	Bioindicadores biológicos x 100 und	02	S/ 1,062.60	S/ 2,125.20
	Total, costo		S/ 15,936.62	S/ 39,744.82

^{*} Costo total (S/) materiales para la validación tiempo duración 1 año con 28 días.

Fuente: Elaboración Propia