A proximal multiplier method for convex separable symmetric cone optimization

Date
2020-05-01Author
Papa Quiroz, Erik Alex
López Luis, Julio
Cano Lengua, Miguel Angel
Metadata
Show full item recordAbstract
ABSTRACT
This work is devoted to the study of a proximal decomposition algorithm for solving convex symmetric cone optimization with separable structures. The algorithm considered is based on a decomposition method and proximal distances. Under suitable assumptions, we prove that each limit point of the primal-dual sequences generated by the algorithm solves the problem. Finally, the global convergence is established.
Mostrar más
Bibliographic citation
Papa, E. A., López, J., & Cano, M. A. (2020). A proximal multiplier method for convex separable symmetric cone optimization. ICMSSP 2020: Proceedings of the 2020 5th International Conference on Multimedia Systems and Signal Processing. https://doi.org/10.1145/3404716.3404734
Note
El texto completo de este trabajo no está disponible en el Repositorio Académico UPN por restricciones de la casa editorial donde ha sido publicado.
Collections
The following license files are associated with this item: